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Summary
This paper presents a software tool for computation of partial safety factors and load combinations.
The implemented theory is summarised. Due to numerical algorithms few approximations show to
be needed compared to manual calculation of safety factors. In addition, an algorithm is proposed to
compute the optimum level of reliability. Computed safety factors can supplement safety factors in
codes of practice for special projects or exceptional safety requirements.
Keywords : design software; partial factors; safety factors; load and resistance factor design; load

combinations.

1. Introduction
To date, reliability theory is sufficiently developed for computation of failure probabilities of both
structural elements and structural systems. In the near future personal computers will be sufficiently
fast to process reliability analyses in everyday engineering practice. This is a most promising
development because it is commonly expected that reliability-based design will be more economical
than load and resistance factor design or partial factor design.
However, reliability-based design might not be suitable in the first cycle of a design process
because it does not show how much structural dimensions should be improved. In other words, the
convergence of a strictly reliability-based design process can be slow. Instead, typical of traditional
design procedures is that the first – and often only – design cycle already gives quite acceptable
dimensions. Therefore, a future design procedure might start with traditional safety factors in the
first design cycles and use reliability analysis in the last cycle to validate or optimise a structural
design. So, it can be expected that safety factors will be used for a long time to come.
Of course, safety factors and load combinations are included in codes of practice (standards).
However, codified factors and combinations do not cover design of special projects with
exceptional safety and durability requirements. For such a project a structural designer needs to
calculate safety factors and load combinations himself. The theory and data to do so is often
available [1] but what is lacking is support by user-friendly software. Therefore, a simple software
tool is being developed for computing safety factors and load combinations.

2. Computation of Safety Factors
In this section the safety factors are derived in two steps applying well know probability theory. In
Section 2.2 stochastic processes are approximated as combinations of stochastic variables. In
Section 2.3 each combination of stochastic variables is approximated as combinations of
deterministic values.

2.1 Stochastic Processes
In this paper a load case is defined as a set of correlated data that presents a hazard to a structure. It
can include forces, support displacements, temperature increases, material shrinkage, prestress and
absent structural components. For example all actions related to a storm can be conveniently
assembled in one load case. Fluctuation of the load can be described as a load case multiplied by a
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factor λ. When λ equals 1, the structure carries the characteristic or nominal load. When λ equals a
load factor γ , the structure carries the design load. Due to uncertainty of future loading, the factor λ
is best described as a stochastic process in time. Uncertainty of future strength can be described in
the same way. The characteristic strength is multiplied by a stochastic factor λ. When λ equals 1,
the strength equals the characteristic or nominal strength. When λ equals the strength reduction
factor φ, the strength equals the design strength.

2.2 Combinations of Stochastic Load Cases
Usually more than one load case can act on a structure, however, it is not feasible to simulate every
minute of the live of a structure. Therefore the combination rule of Ferry Borges [2] was
implemented to approximate the most demanding moments. The rule uses periods in which the
largest magnitude of a load case is approximately constant. Each of the load cases in turn is
considered leading except for dead load D and strengths R. The leading load has its largest
magnitude during a reference period or the design live t. Load cases with larger periods than the
leading load case have usual magnitudes. The load cases with smaller periods have largest
magnitudes in the period of the load case with a just longer period. Thus the simultaneous stochastic
processes are reduced to combinations of stochastic variables.
As an example, suppose that wind load W is leading; thus a storm. Dead load D is always present
and is just added. Live load L is also added because it changes in a longer period than wind. Clearly,
a large earthquake is very unlikely in the small period in which the storm is extreme but a small
earthquake load E cannot be excluded. So, the maximum earthquake over this period is added. This
combination is shown in the third row of the list below.
D inst(λD) & R inst(λR)

D inst(λD) & L extr(λL, t) & W extr(λW, tL) & E extr(λE , tW) & R inst(λR)

D inst(λD) & L inst(λL) & W extr(λW, t) & E extr(λE , tW) & R inst(λR) (1)

D inst(λD) & L inst(λL) & W inst(λW) & E extr(λE , t) & R inst(λR)

where inst(λ) is the instantaneous value of load factor λ and extr(λ, t) is the extreme value of λ over
period t. The distribution functions of the extreme values can be derived as
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where Fx is the extreme distribution function of load factor λx over reference period tx .

2.3 Combinations of Deterministic Load Cases
Clearly, a structure needs to have sufficient safety against each of the combinations of stochastic
load cases in the previous section. This is fulfilled if the limit state boundary – plotted in the space
of load factors λ – is at sufficient distance from the origin. To this end, combinations of
deterministic load cases (i.e. conservatively estimated design points) are selected for each
combination of stochastic load cases. A structure will be safe if designed such that the considered
limit state shall not occur for any of these deterministic combinations.
As usual, the safety factors γ can be related to sensitivity factors α according to
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where Φ is the standard normal distribution function and β  is the target reliability index of the
considered limit state over a reference period. When α has been selected, the safety factor γ in
Equation 3 can be quickly computed as a root by iteratively dividing the feasible interval [3]. It is
noted that there is no need for further approximations because closed form expressions of γ are not
needed.
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The following algorithm is adopted to generate sensitivity
factors α [1]. The sensitivity factor of a leading load case
is 0.70 while sensitivity factors of all other load cases are
0.28 or -0.28. Non leading load cases are also included
with α = 0.70 whilst for the leading load cases α = 0.28
and for the others α = 0.28 or α = -0.28. The sensitivity
factor of the leading material is -0.80 and -0.32 for the
other materials. If ductility is essential (capacity-based
design) the other materials should also be included with α
= 0.32. For example if three load cases and two materials
(concrete and reinforcing steel) are present, the α values
of Table 1 would be used when live load L is leading.
Thus, each row of the table provides the safety factors of
a deterministic load combination.
The number of deterministic combinations that result
from Table 1 is considerably larger than adopted for
calculation of safety factors in many codes of practice.
However, these codified factors require considerable
judgement as to how load cases contribute to section
forces. It would therefore be difficult to implement this in
software, especially if the structural model is nonlinear. A
more convenient way to program structural design
software is systematically processing a large number of
combinations and subsequently to determine the envelope
of section forces.

3. Software Tool
A small software program has been developed based on
the discussed theory (Fig. 1.). Basically, the program allows a structural designer to enter the
statistics of the loading on the structure and select its target reliability. Subsequently, it generates
the safety factors of the load combinations.

Fig. 1: Software tool for computation of safety factors and load combinations

To improve the usability of the program, it needs to include an extensive database of load data for
locations all over the world. Substantial maintenance will be needed to provide a designer with the
last data available. This suggests that the best way to make the tool available is on the World Wide
Web (WWW). An additional advantage of a WWW application is that designers do not need to
install software but can start the tool in a few mouse clicks, provided that WWW access is
available. It is planned to build a WWW version of the program if potential users show to be
interested (Fig. 2.).

Table 1: Sensitivity factors in case of
three load cases and two materials

αD αL αW αfc αfy

 0.28 0.70 0.28 -0.32 -0.80

 0.28 0.70 0.28 -0.80 -0.32

-0.28 0.70 0.28 -0.32 -0.80

-0.28 0.70 0.28 -0.80 -0.32

 0.28 0.70 -0.28 -0.32 -0.80

 0.28 0.70 -0.28 -0.80 -0.32

 -0.28 0.70 -0.28 -0.32 -0.80

 -0.28 0.70 -0.28 -0.80 -0.32

 0.70 0.28 0.28 -0.32 -0.80

 0.70 0.28 0.28 -0.80 -0.32

 0.70 0.28 -0.28 -0.32 -0.80

 0.70 0.28 -0.28 -0.80 -0.32

 0.28 0.28 0.70 -0.32 -0.80

 0.28 0.28 0.70 -0.80 -0.32

 -0.28 0.28 0.70 -0.32 -0.80

 -0.28 0.28 0.70 -0.80 -0.32
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Table 2: Statistics of the load factors and strength factors

Bias Inst. Var. Coef. Inst. Bias Ext. Var. Coef. Ext.
D Dead Load 1.05 0.07
L Live Load (Imposed Load) 0.30 0.40 1.00 0.40
W Wind Load 0.15 1.10 1.20 0.20
fc Concrete Crushing Strength 1.10 0.15
fy Steel Yield Strength 1.15 0.08

As an example, safety factors are computed for design of a reinforced concrete structure. The data
(Table 2) could represent a location at the North Sea for design of an offshore structure. All
distributions are normal and Turkstra combinations are used so that the results can be verified
manually. The target reliability index β  is 3.0. The result is shown in Table 3.

Table 3: Computed safety factors for
 design of an offshore structure

Fig. 2: Concept of a WWW applet for computing
safety factors

1.20 D,                             0.94 fc,  0.93 fy
1.20 D,                             0.70 fc,  1.06 fy
1.11 D,  1.84 L,  0.29 W,  0.94 fc,  0.93 fy
1.11 D,  1.84 L,  0.29 W,  0.70 fc,  1.06 fy
0.99 D,  1.84 L,  0.29 W,  0.94 fc,  0.93 fy
0.99 D,  1.84 L,  0.29 W,  0.70 fc,  1.06 fy
1.11 D,  1.84 L,  0.01 W,  0.94 fc,  0.93 fy
1.11 D,  1.84 L,  0.01 W,  0.70 fc,  1.06 fy
0.99 D,  1.84 L,  0.01 W,  0.94 fc,  0.93 fy
0.99 D,  1.84 L,  0.01 W,  0.70 fc,  1.06 fy
1.20 D,  1.34 L,  0.29 W,  0.94 fc,  0.93 fy
1.20 D,  1.34 L,  0.29 W,  0.70 fc,  1.06 fy
1.20 D,  1.34 L,  0.01 W,  0.94 fc,  0.93 fy
1.20 D,  1.34 L,  0.01 W,  0.70 fc,  1.06 fy
1.11 D,  1.34 L,  0.50 W,  0.94 fc,  0.93 fy
1.11 D,  1.34 L,  0.50 W,  0.70 fc,  1.06 fy
0.99 D,  1.34 L,  0.50 W,  0.94 fc,  0.93 fy
0.99 D,  1.34 L,  0.50 W,  0.70 fc,  1.06 fy
1.11 D,  0.40 L,  1.70 W,  0.94 fc,  0.93 fy
1.11 D,  0.40 L,  1.70 W,  0.70 fc,  1.06 fy
0.99 D,  0.40 L,  1.70 W,  0.94 fc,  0.93 fy
0.99 D,  0.40 L,  1.70 W,  0.70 fc,  1.06 fy
1.11 D,  0.20 L,  1.70 W,  0.94 fc,  0.93 fy
1.11 D,  0.20 L,  1.70 W,  0.70 fc,  1.06 fy
0.99 D,  0.20 L,  1.70 W,  0.94 fc,  0.93 fy
0.99 D,  0.20 L,  1.70 W,  0.70 fc,  1.06 fy
1.20 D,  0.40 L,  1.40 W,  0.94 fc,  0.93 fy
1.20 D,  0.40 L,  1.40 W,  0.70 fc,  1.06 fy
1.20 D,  0.20 L,  1.40 W,  0.94 fc,  0.93 fy
1.20 D,  0.20 L,  1.40 W,  0.70 fc,  1.06 fy
1.11 D,  0.55 L,  1.40 W,  0.94 fc,  0.93 fy
1.11 D,  0.55 L,  1.40 W,  0.70 fc,  1.06 fy
0.99 D,  0.55 L,  1.40 W,  0.94 fc,  0.93 fy
0.99 D,  0.55 L,  1.40 W,  0.70 fc,  1.06 fy

4. Optimum Reliability
An expression for optimum reliability has been derived in [4]. This expression considers normally
distributed strength R and load S and assumes a limit state function Z = R – S in the optimisation
process. However, this elegant expression is restricted to just two variables. Closed form formulae
for optimum reliability are derived in [5]. These expressions include just one loading, which is very
suitable for Japanese practice but less for Western design. (Typical for Japanese design is that all
load cases in a combination are factored by a single safety factor.) Therefore, in this section an
expression is derived for optimum reliability including multiple load cases and strengths.

4.1 Minimum Expected Cost
The total expected cost of a project Ce consists of the initial costs Cp and the risk of structural
failure. The risk of failure is defined as the probability of failure Pf during the design live times the
costs of failure Cf. So,
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ffpe CPCC += (4)

In this formulation maintenance cost and interest on investments have been neglected. The initial
project cost is a function of the safety factors used in design of the structure. Cp = Cp(γ2, γ2, γ3, …).
This includes all safety factors of one load combination and applies to each load combination of a
limit state. The equation can be approximated by a Taylor expansion about the values that are being
used in current practice for similar structures.
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where n is the number of safety factors. In this Co is the initial project cost when common safety
factors are used. The variables γoi are common safety factors and γi are the optimised safety factors
to be calculated. The factors ki are cost ratios, which are defined as
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The failure costs are expressed in the
initial project costs Co and cost ratio g.

of gCC = (7)
The total cost needs to be minimised
with respect to the safety index β .
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Substitution of Equations (4) (5) and (7)
in (8) gives
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Both the failure probability Pf and the
safety factors γi depend on β .

)( β−Φ=fP      )()( βαΦ=γ iiiF (10)

where Φ is the standard normal
probability distribution and Fi the
distribution function of the load or
strength parameter λi . Substitution of
Equations (10) into (9) gives the
following relation.
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were fi is the probability density function of load or strength parameter λi . A solution of βopt can be
computed quickly by the secant algorithm [3]. It is noted that it can differ for different load
combinations. The αi values in (11) are the same as in the previous section. (It can be argued that
the αi values should be normalised to a unit length because in this situation the approximation
should not be conservative). The γi values are computed with Equation (10). In the distributions the
design live is used instead of a reference period. The cost ratios ki and g are discussed in the
subsequent section.
For normally distributed safety factors, equation (11) can be written in closed form
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Structural costs
[1000 yen/m2] 26 storey steel frame

with a 4 storey
reinforced concrete
basement

11 storey
composite frame

8 storey steel frame

6 storey reinforced concrete frame
6 storey reinforced concrete
frame and shear walls

Fig. 3: Structural costs of different high-rise buildings for
varying earthquake loads used in design (Assembled from
data in [7]). The costs are per square meter of floor plus
roof.
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For n = 1 this expression has been derived in [5]. Note that σi is the standard deviation of load
factor λi . As a small example consider the third load combination of Table 3. When we select g = 6,
ki = 0.2, 0.2, 0.1, -0.1, -0.2 respectively then the optimal reliability index is computed as βopt = 2.6
in the design live of the structure.

4.2 Economical Parameters
Failure cost ratios g for different structures are available in literature [5][6]. For example for houses
g = 2 for tall office buildings g = 7 and for hospitals g = 30. They should be used as indication only
because of varying local situations. For an individual project, actual values can be calculated or
judiciously estimated.
Unfortunately, cost ratios k are not constants. They depend not only on the type of structure but also
on the costs of non-structural components and on the magnitude of the load. However, using
Equation 8 we can write k as
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i
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C
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k = where
)( ii

p
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C
K
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∂
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Symbol Co represents the usual initial project costs while Li is the nominal load, which can be
selected arbitrarily as long as it is consistently used. There is evidence that the factors Ki are fairly
constant. In Figure 3 the structural costs of several high-rise buildings are plotted for varying
magnitude of a design earthquake load. It shows that almost linear relations exist between design
load and cost. In this figure, K is interpreted as the slope of a line. (The design load has little
influence on non-structural costs of a building. So, non-structural costs can be neglected in
calculating K.)

5. Conclusions
Safety factors and load combinations can be computed with few approximations when numerical
algorithms on modern personal computers are used. Computed safety factors can supplement safety
factors in codes of practice for special projects or exceptional safety requirements. For automatic
processing more load combinations are needed than for manual calculations. However, advantages
include 1) nonlinear analysis in design 2) possible economies in materials and 3) fewer design
errors.
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