
5 Theory of elasticity in three dimensions 

After the one-dimensional applications of chapter 2 and the two-dimensional plate problems 
of the chapters 3 and 4, a generalisation to three dimensions will be made. 
In a space continuum the displacement of a point ( , , )x y z  in a cartesian coordinate system, 
can be decomposed into the components  in the ( , , )xu x y z x -direction,  in the -
direction and  in the -direction. Per unit of volume the external loads ,  and 

 can be applied, which correspond with the degrees of freedom ,  and , 
respectively. Regarding the internal quantities, it already was demonstrated that a surface 
element in a continuum is able to transmit a force per unit of area and that this force per unit 
of area was called a stress vector. In a space continuum, the stress vectors acting in arbitrary 
direction on three areas that are perpendicular to the cartesian coordinate axes 

( , , )yu x y z y
( , , )zu x y z z xP yP

zP xu yu zu

, ,x y z  can be 
decomposed into three components along these three coordinate directions. Doing so, nine 
quantities appear indicated by , ,xx xy xzσ σ σ  (acting on the area perpendicular to the x -axis), 

, ,yx yy yzσ σ σ  (acting on the area perpendicular to the -axis) and y , ,zx zy zzσ σ σ  (acting on the 
area perpendicular to the -axis). Again it can be seen that the first subscript of the stress 
components (often just called stresses) indicates the direction of the normal on the area, and 
the second subscript the direction of the component of the stress vector. Similarly as in the 
plate theory, a stress component is called a normal stress when the two indices are equal 

z

( , ,xx yy zz )σ σ σ . When the indices are different they are called shear stresses ( , ,xy xz yx ,σ σ σ  
, ,yz zx zy )σ σ σ . Also in this case the sign convention holds that a stress component is positive 

when it is working in positive coordinate direction on an area with its normal in positive 
coordinate direction. 
With the defined internal stress components, internal deformation components correspond. 
These are known as specific strains caused by the normal stresses and changes of the right 
angle due to the shear stresses. 
As indicated in Fig. 5.1, the specific strains associated with the normal stresses are called 

, ,xx yy zzε ε ε , respectively. The shear deformations consist out of three pairs of equal angular 
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Fig. 5.1: Positive normal stresses with corresponding strains 
 in a three-dimensional continuum. 
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Fig. 5.2: Positive shear stresses with corresponding strains 
 in a three-dimensional continuum. 

 

changes , ,yz zy xz xz xy yxε ε ε ε ε ε= = = (see Fig. 5.2). As done before, the shear deformations 
can be used, which are defined by: 2 , 2 , 2yz yz zx zx xy xyγ ε γ ε γ ε= = = . Then the scheme of 
relations as shown in Fig. 5.3 can be set up. 
Since six stress components are present and only three load components (i.e. three 
equilibrium equations) a three-dimensional stress problem is statically indeterminate to the 
third degree. 
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Fig. 5.3: Diagram displaying the relations between the quantities playing a role in 
the analysis of three-dimensional problems. 
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5.1 Basic equations 

Subsequently the three categories of basic equations will be formulated in the following 
order: kinematic equations, constitutive equations and equilibrium equations. 

Kinematic equations 
In section 3.1, the kinematic equations for a plate were derived. Similarly by considerations in 
three directions, the kinematic equations for a space continuum are found: 

 
, ,

, ,

, ,

; 2
; 2
; 2

xx x x yz yz y z z y

yy y y zx zx z x x z

zz z z xy xy x y y x

u u
u u
u u

ε γ ε
ε γ ε
ε γ ε

= = = +
= = = +
= = = +

,

,

,

u
u
u

 (5.1) 

In this notation, the subscript  “ , x ” means differentiation with respect to x , etc. 
In addition to deformations, a volume particle can also be subjected to a displacement as a 
rigid body. Six displacement components exist. Three of them are pure translations x y  
in 

, , zu u u
-, -, -x y z directions, respectively. The other three are rotations about the -, -, -x y z  axes. 

They are called , ,yz zx xyω ω ω , respectively. 
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Fig. 5.4: Rotation about z-axis. 

Fig. 5.4 shows the rotation xyω  about the -axis. Doing so, for the three rotations it is found 
(anticlockwise is positive): 
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 (5.2) 
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Constitutive equations 
Hooke’s law is valid for an isotropic linear-elastic material. The stress-strain relations are: 

 

( ) ( )

( ) ( )

( ) ( )

2 11 ; 2

2 11 ; 2

2 11 ; 2
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E E E

E E E

E E E

υυε σ σ σ ε σ

υυε σ σ σ ε σ

υυε σ σ σ ε σ

+
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+
= − + =

+
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 (5.3) 

where  is the modulus of elasticity (Young’s modulus) and E υ  Poisson’s ratio (lateral 
contraction coefficient). The term ( )2 1 Eυ+  is the reciprocal quantity of the shear modulus 

. The matrix formulation of the constitutive equations read: G

 ( )
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 (5.4)a 

symmetrical 

  or briefly: 

 =ε C σ  (5.4)b 

where C  is called the flexibility matrix or compliance matrix. 
Through inversion, the stiffness formulation of the constitutive equations appears: 
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 (5.5)a 

symmetrical 
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or briefly: 

 =σ D ε  (5.5)b 

where D  is called the stiffness matrix or rigidity matrix. 
In this formulation the constitutive equations are normally used in the finite element 
programmes with spatial elements. 

Equilibrium equations 
In Fig. 5.5 the equilibrium in x -direction is considered. The edges of the drawn cube have 
unit length. Similarly the equilibrium in the  and directions can be set up. Doing so, it 
can be derived: 

-y -z
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 (5.6)a 
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Fig. 5.5: Forces in x-direction. 

Equilibrium of moments about the -x ,  and axis leads to: -y -z

 ; ;yz zy zx xz xy yxσ σ σ σ σ σ= = =  (5.6)b 

Check with matrices of differential operators 
For the kinematic equations it can be written: 
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 (5.7)a 

or briefly: 

 =ε uB  (5.7)b  

Likewise, the equilibrium equations (5.6)a in this notation read: 
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  (5.8)a 

or briefly: 

 ′ =σ PB  (5.8)b 
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Also in this case  can be obtained by transposition of B  plus the introduction of a minus 
sign for all uneven derivatives. 

′B

5.2 Solution procedures and boundary conditions 

For the force method, one would expect three compatibility conditions. However, in literature 
continuously six compatibility conditions are derived. But these conditions are linearly 
independent, so that from the six conditions also three identities can be derived, the so-called 
identities of Bianchi. This means that in the three-dimensional analysis an extra complication 
arises, which is not present in the previously discussed one- and two-dimensional problems. 
In this Course, no further attention will be paid to this matter. 
In the displacement method, the kinematic and the constitutive equations are substituted in the 
equilibrium equations. This approach results in a set of three simultaneous partial differential 
equations in the three components ,  and  of the displacement field: xu yu zu

 

x y z x

x y z y

x y z z

u u u P
u u u P
u u u P

+ + =
+ + =
+ + =

  (5.9) 

The positions indicated by the three dots are occupied by differential operators multiplied by 
the stiffness terms from (5.5). An alternative description of these three differential equations 
will be provided in section 5.5. 

Remark 
In this course, no general applications will be discussed for three-dimensional stress-states, 
which are described by the system of differential equations given by (5.9). Only one special 
case will be highlighted, the torsion of bars. Chapter 6 is completely dedicated to this 
problem. For the case of torsion, it appears that the three-dimensional stress-state can be 
reduced to a two-dimensional problem. 

Boundary conditions 
The general goal of the theory of elasticity can be described as follows: 
The calculation of displacements, deformations and stresses inside a body, which is subjected 
to known volume forces and certain known conditions at its outer surface.  
The most frequently appearing boundary conditions are: 

Kinematic boundary conditions 
This boundary condition occurs when at a specific part of the outer surface (say ), such a 
provision is made that the points of that part are subjected to a prescribed displacement. For 
example, a part of the body can be glued completely to a rigid supporting block. Then the 
displacements for the glued surface are zero (in other words: it is prescribed that the 
displacements are zero). The formulae for this type of boundary condition read: 

uS
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 (5.10) 

where ,  and are prescribed (for example zero). o
xu o

yu o
zu

Dynamic boundary conditions 
This boundary condition occurs when at a specific part of the outer surface (say p ) a certain 
surface load is acting. For that case, three relations can be formulated between the stress 
components with respect to the cartesian coordinate system. When the unit outward-pointing 
normal on the surface has the components ,  and , the formulation of the boundary 
condition becomes: 

S

xe ye ze

 on
xx x yx y zx z x

xy x yy y zy z y p

xz x yz y zz z z

e e e p

e e e p S
e e e p

σ σ σ

σ σ σ

σ σ σ

⎫+ + =
⎪

+ + = ⎬
⎪+ + = ⎭

 (5.11) 

where xp , yp  and zp  are prescribed. On an unloaded part of the surface xp , yp  and zp  are 
zero of course. 
The boundary conditions (5.11) are a generalisation into three dimensions of the 
corresponding conditions for a plate loaded in its plane. The derivation is performed 
analogously. A triangular surface element  with unit area as shown in Fig. 5.6 is 

considered, on which a vector  is acting with components 

ABC

p xp , yp  and zp . As mentioned 
before, the unit outward-pointing normal on  has the components ,  and . From 
elementary stereometric principles it follows that the areas of triangles OBC , OAC  and 

 are equal to ,  and , respectively. By considering the equilibrium of the 
tetrahedron in the directions 

ABC xe ye ze

OAB xe ye ze
x ,  and , the three conditions of (5.11) can be derived. y z

p
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unit normal=e
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Fig. 5.6: Derivation of dynamic boundary conditions. 
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Exercises 

1. Find the deformation field corresponding with the following displacement field: 
 ; ;x yu a b y u c b x u d= + = − =z

2. Determine the displacement field corresponding with the following (homogeneous) 
deformation field, when also is given that 0zu = : 

; ;xx yy zz xy yz zxa b 0ε ε ε ε ε ε= = = = = =

0=

 

3. Is the following stress field possible, for a body in equilibrium without being subjected to 
volume loads? 

 2 2; 2 ; ;xx xy yx yy xz yz zx zy zza x a x y a yσ σ σ σ σ σ σ σ σ= = = − = = = = =

4. When in a body, which is in equilibrium, the following stresses are present ( k , ρ  and  
are constants): 

g
; ; 0xx yy zz xy xz yx yz zx zyk g z g zσ σ ρ σ ρ σ σ σ σ σ σ= = = = = = = == . 

Which volume force is acting on the body? 

5.3 Alternative formulation of the constitutive equations 

In section 5.1 Hooke’s law was presented for the description of the behaviour of isotropic 
linear-elastic material. A relation was formulated between the six stress components xxσ , yyσ , 

zzσ , yzσ , zxσ , xyσ  and the associated deformations xxε , yyε , zzε , yzε , zxε , xyε . This relation 
was presented in both flexibility and stiffness formulation. It appeared that the two elastic 
constants  and E υ  were sufficient for a unique description of the material behaviour. 
Sometimes it is advantageous, to adapt the description such that in the total deformation 
distinction can be made between the change of volume and the change of shape. For example 
for the behaviour of soil this may be important, where the change of volume is prevented by 
the pore water while the change of shape can take place unhampered. Then instead of the 
constants  and E υ , two other constants are introduced. Another example is rubber, which is 
incompressible. This means that change of volume is zero and the value of υ  is practically 
0.5. In (5.5)a the term ( )1 2υ−  that appears in the denominator  makes the relation between 
stresses and strains undetermined. The splitting-up of the deformations causing a change of 
volume and a change of shape may simplify the description of the non-linear behaviour of 
materials. Among other things this is important for concrete and soil. In this section the 
alternative description of Hooke’s law will be summarised. To start with, the law will be split 
up in a separate law for the change of volume and a law for the change of shape. This will be 
done in both the flexibility and stiffness formulations. Then two other material constants will 
be introduced, they are the compression modulus  and the shear modulus G . The starting 
point of the derivation is formed by the basic equations (5.4) and (5.5). Finally, for the two 
description methods, the two separate laws are combined to one total law of Hooke. Further, it 
appears that for the stiffness formulation another alternative exists, where the constants  
and G  are replaced by the so-called constants of Lamé 

K

K
λ  and µ .   

5.3.1 Separate laws of Hooke for the change of volume and shape 

From the occurring stress-state given by the stress components xxσ , yyσ , zzσ , yzσ , zxσ , xyσ  
the so-called hydrostatic stress 0σ  is split off. The hydrostatic stress is defined by: 
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 ( )0
1
3 xx yy zzσ σ σ σ= + +  (5.12) 

The remaining stress components are the deviator stresses , , , xxs yys zzs yzσ , zxσ , xyσ . For the 
first three components it holds: 
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σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

= − = − −

= − = − −

= − = − −

 (5.13)  

Analogously a component 0  is split off from the existing deformations e xxε , yyε , zzε , yzε , 
zxε , xyε , which is equal to one third of the change of volume :     e

 ( )0
1
3 3xx yy zze ε ε ε= + + =

1 e  (5.14) 

Then the remaining part is formed by the deviator deformations , , , xxe yye zze yzε , zxε , xyε . 
The first three components are: 

 

( )

( )

( )

0

0

0

1 2
3
1 2
3
1 2
3

xx xx xx yy zz

yy yy yy zz xx

zz zz zz xx yy

e e

e e

e e

ε ε ε ε

ε ε ε ε

ε ε ε ε

= − = − −

= − = − −

= − = − −

 (5.15) 

No change of volume is associated with the six deviator deformations. It just changes the 
form (shape) of a material particle.  

Flexibility relations 
A relation can be established between  and e 0σ  by adding up the first three equations of  
(5.4)a. This delivers: 

 ( ) ( )3 1 2 1
3xx yy zz xx yy zzE

υ
ε ε ε σ σ σ

−
+ + = + +    

or: 
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 0

(1
)

Hooke's law for the change of
e         

volume in flexibility formulationK
σ=  (5.16) 

with: 

 
( )3 1 2

EK
υ

=
−

 (modulus of compression) (5.17) 

Relation (5.16) is Hooke’s law for the change of volume. A relation can also be derived 
between the deviator deformations xxe , ,  and the deviator stresses xx , yy , zz . For 
example from (5.15) it is known that 

yye zze s s s
0xx xxe eε= − , for both xxε  and  the relation with the 

stresses is known, so that: 
0e

 ( ) ( )1 1 2
3xx xx yy zz xx yy zze

E E
υσ υσ υσ σ σ σ−

= − − − + +  

or: 

 1 2 1 1
3 3 3xx xx yy zze

E
υ σ σ σ+ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

This expression can be briefly written as: 

 1
2xx xxe s
G

=  

where G  is the shear modulus. A similar derivation holds for the relations between yy  and 
yy , and between  and zz . The shear modulus also establishes a relation between the shear 

deformations yz

e
s zze s

γ , zxγ , xyγ  and the shear stresses yzσ , zxσ , yxσ . When for the shear 
deformations the quantities yzε , zxε , xyε  are used the factor 1 2G  appears again. Therefore, 
for all six deviator deformations and stresses it holds: 

 

1 1;
2 2

(1 1;
)2 2

1 1;
2 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

e s
G G

Hooke's law for the change of 
e s        

shape in flexibility formulationG G

e s
G G

ε σ

ε σ

ε σ

= =

= =

= =

 (5.18)  

with: 
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( )2 1

EG
υ

=
+

 (shear modulus) (5.19)  

Stiffness relations 
The two components (5.16) and (5.18) of Hooke’s law can also be derived in inverse form as 
stiffness relations. By addition of the first three equations in (5.5)a, and division of the result 
by three, it is found: 

 ( ) ( ) (
1
3 3 1 2xx yy zz xx yy zz

E )σ σ σ ε ε ε
υ

+ + = + +
−

  

which is just equal to: 

 0

(
)

Hooke's law for the change of 
K e         

volume in stiffness formulation
σ =  (5.20) 

The relation between the deviator stresses xx , ,  and the deviator strains , yy ,  
can simply be obtained. For xx  it is known that 

s yys zzs xxe e zze
s 0xx xxs σ σ= − . Substitution of xxσ  and 0σ  as 

functions of the deformations then yields: 

 ( )
( )( ) ( ) ( )1
1 1 2 1 1 3 1 2xx xx yy zz xx yy zz

E Es
υ υ υε ε ε ε ε

υ υ υ υ υ
− ⎛ ⎞= + + − +⎜ ⎟+ − − − −⎝ ⎠

ε+  

After some elaboration this reduces to: 
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2 1 1
1 3 3 3xx xx yy zz

Es ε ε ε
υ

⎛= − −⎜+ ⎝ ⎠
⎞
⎟    

which briefly can be written as: 

  2xx xxs G e=

Analogously similar expressions are found for  and . Therefore, Hooke’s law for the 
change of shape in stiffness form reads: 

yys zzs

  
2 ; 2

(
2 ; 2

)
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

s G e G
Hooke's law for the change of

s G e G        
shape in stiffness formulation

s G e G

σ ε
σ ε
σ ε

= =
= =
= =

 (5.21) 
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5.3.2  Hooke’s law for total deformations and stresses 

With the two separate laws of Hooke on basis of  and G  for the change of volume and 
shape, respectively, a general law on basis of  and G  can be formulated for the total 
deformations (in flexibility formulation), or for the total stresses (in stiffness formulation). 

K
K

Flexibility relations 
The total strains xxε , yyε , zzε , yzε , zxε , xyε  are the sum of the average strain 1

0 3e = e  and the 
deviator deformations , , , xxe yye zze yzε , zxε , xyε . With the relations (5.16) and (5.18) it then 
directly can be found: 
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 (5.22) 

Stiffness relations 
The total stresses xxσ , yyσ , zzσ , yzσ , zxσ , xyσ  are the sum of the hydrostatic stress 0σ  and 
the deviator stresses , , , xxs yys zzs yzσ , zxσ , xyσ . With the relation (5.20) and (5.21), for the 
total stresses it then directly can be found: 
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 (5.23) 

This law for the total stresses in stiffness formulation, can also be represented in a different 
manner. The three deviator deformations , ,  are replaced by xxe yye zze 1

3xx eε − , 1
3yy eε − , 

1
3zz eε − , respectively. The law then becomes: 

 
2 ; 2

(
2 ; 2

)
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

e
Hooke's law in  and  for the total 

e       
stresses in stiffness formulation

e

σ λ µε σ µε
λ µ

σ λ µε σ µε
σ λ µε σ µε

= + =
= + =
= + =

 (5.24) 

where λ  and µ  are called the Lamé constants. These constants can be expressed in and  
and also in  and 

K G
E υ . The following expressions are valid: 
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The quantity µ  is identical to , but it is customary to use G µ  in combination with λ . 

5.3.3 The displacement method in the description of Lamé 

In section 5.2 it has been discussed that the displacement method for three-dimensional 
problems amounts to the simultaneous solution of three partial differential equations in , 

 and u  (see (5.9)). 
xu

y z

These three differential equations can be formulated very concisely, if Hooke’s law is 
expressed in the Lamé constants 

u

λ  and µ .  
The three sets basic equations then are: 
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 (kinematic equations) 
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 (equilibrium equations)  

By downward substitution the three equilibrium equations are transformed into the so-called 
equations of Navier: 
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 (equations of Navier) (5.26) 

where the volume strain  is a function of the displacements and e 2∇  is the Laplace operator 
for three dimensions, i.e.: 
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Use of tensor notation 
A big advantage in the formulation of above relations can be obtained by the use of the index 
notation including summation convention. To start with, the coordinate axes , ,x y z  are 
indicated by 1 2 3, ,x x x , respectively. The displacement components then are . The 
stress components are ij

1 2 3, ,u u u
σ  ( ) and the strain components are , 1, 2, 3i j = ijε  ( ). The 

notation for partial differentiation is: 
, 1, 2, 3i j =

 ,i
i

aa
x
∂

=
∂

 

The summation convention of Einstein requires that when in an expression one subscript 
appears twice, a summation has to be carried out with respect to this index from 1 to 3, i.e.: 

  
3

11 22 33
1

ii ii
i

a a a a
=

= = + +∑ a

Another useful quantity is the Kronecker delta, defined by: 
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The three sets of basic equations now become: 
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Downward substitution again provides the equations of Navier: 

 ( ) , , ( 1, 2, 3)0j ji i jj i iu u Pλ µ µ =+ + + =  (5.28) 

The boundary conditions are: 

 
0

0

on ( 1, 2, 3)
on ( 1, 2, 3)

i i p

ij i j

u u S i
e p S jσ
= =
= =

 (5.29) 

The advantage of this notation is that the whole system of equations can be written very 
concisely and simple. Substitution of one equation into another can be done as well. In 
literature this notation is used intensively. 
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6 Torsion of bars 

6.1 Problem definition 

During the civil engineering training at the university, the student is thoroughly introduced in 
the behaviour of bar structures. The student has been familiarised with the basic cases of 
extension, bending, shear, torsion and their combinations. For each basic case, two external 
quantities can be identified, namely a specific deformation and a corresponding generalised 
stress resultant. For the case of extension they are ε  and , for bending  and N κ M , for shear 
γ  and V  and for torsion θ  and tM . 
From each of the four basic cases, for the designer always two specifications are important. 
First, he has to know the stiffness. This is the relation between the specific deformation and 
the corresponding stress resultant. For the several cases the relations are: 
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( )

s

t t

N EA extension
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M GI torsion
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=
=
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=

 

Here is  the axial stiffness,  the bending stiffness, EA EI sGA  the shear stiffness and  the 
torsional stiffness. The quantity  is the modulus of elasticity (also called Young’s modulus) 
and G  is the shear modulus. The quantities 

tGI
E

, , sA I A  and tI  follow from the shape of the 
cross-section of the bar. The area  and the bending moment of inertia A I of the cross-section 
do not need extra explanation. The quantity sA  is the cross-sectional area to be applied for 
shear; only for circular cross-sections this area is equal to . The quantity A tI  is called the 
torsional moment of inertia. During previous courses a lot of attention is paid to the 
determination of  and A I , and to a less extend to sA . Compared to this, the torsional 
problem was summarily dealt with. In previous lectures, only for a number simple cases a 
solution has been derived, but a generally valid analysis has not been provided up to now. 
As mentioned, a second quantity in each of the basic cases is important for the designer. This 
is information about the stress distribution over the cross-section. For the case of extension 
the stress is constant, for bending the stress varies linearly, and for shear the stresses can be 
derived from the stress distribution for bending via an equilibrium consideration. The stress 
distribution for torsion has been derived only for the above-mentioned simple special cases.   
A generally valid procedure has not been presented yet. In summary, for the stress calculation 
the following is known: 
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Here is  the cross-sectional area, W  the section factor, A I  the bending moment of inertia, b  
the width subjected to the shear stress σ  and  the static moment of a part of the cross-
section. The stiffness problems and the stress distributions are shown schematically in Fig. 
6.1. For the case of torsion, the only thing that can be established is that the torsional moment 

t

S

M  has to be obtained from the integration over the cross-section of the product of the shear 
stress σ  and the lever arm . r

Before this problem definition is concluded, the three simple special cases of torsion are 
mentioned, for which the solution was generated in previous courses. It only concerned 
prismatic bars of circular cross-section, strip-shaped cross-section and thin-walled hollow 
cross-section. The found relations for the torsional moments of inertia tI  and the maximum 
occurring stresses are indicated in Fig. 6.2. 
The main goal of this chapter is to offer a generally valid theory for prismatic bars with 
arbitrarily shaped cross-sections. These cross-sections may be solid but may contain holes as 
well. In the case of hollow cross-sections, the wall thickness not necessarily needs to be small. 
Attention is also paid to the possibility of cross-sections composed out of two different 
materials. Fig. 6.3 provides an overview of the cross-sections to be considered. 

Fig.6.1: Definition of stiffness and stress distribution for the four basic load cases of a bar.
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Fig. 6.2: Torsional moment of inertia tI  and shear stress σ  for simple special cases. 

Fig. 6.3: A general theory is required to analyse cross-sections that 
 are common in the engineering practice. 

 

Solid cross-section              Cross-section with holes            cross-section composed 
  of arbitrary shape              thick- and thin-walled                  of several materials 

The approach to be followed is summarised in Fig. 6.4. By definition, the torsional moment 
tM  is equal to the product of  and the specific torsion tGI θ . However, tM  is also equal to 

the integral over the cross-sectional area of the shear stress σ  times the arm . This means 
that a recipe can be formulated for the calculation of , provided that a value of 

r
tGI θ  is 

adopted. For this assumed deformation the stresses σ  are determined. The torsional moment 
in the cross-section then can be obtained by calculation of the integral for rσ . Because the 
torsional stiffness  is equal to the torque tGI tM  for 1θ = , the torsional moment of inertia is 
known too (see Fig. 6.4). Since the stress distribution is known, the largest stress and its 
position in the cross-section are fixed as well.  
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Fig. 6.4: The calculation of the torsional stiffness is formulated as a 
stress problem for an imposed deformation θ .   
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6.2 Basic equations and boundary conditions 

De Saint-Venant has published the theory for torsion in 1855. This theory is correct if at the 
ends of the bar certain conditions are satisfied. These conditions prescribe that the torsional 
moments have to be applied via a certain distribution of shear stresses over the cross-section, 
and that no normal stresses are generated in axial direction at the ends (a dynamic boundary 
condition). This last condition implies that an eventual distribution of displacements in axial 
direction can be generated without restrictions, because at the surface where the (surface) load 
has been prescribed, no kinematic boundary condition can be imposed at the same time. 
The right-handed coordinate system is chosen such that the x -direction is parallel to or 
coincides with the bar axis. So, the -axis and -axis are situated in the cross-section (see 
Fig. 6.5). The figures are drawn in such a manner that the 

y z
x -axis is pointing backwards. In a 

 

x

y

z

tM

tM

Fig. 6.5: Choice of coordinate system. 

three-dimensional stress state, normally three displacements are generated, and in the three 
corresponding directions a volume load may be applied. Generally, six different stresses with 
six corresponding strains are present as well. The kinematic, constitutive and equilibrium 
equations are already provided in chapter 5. Using the brief notation for differentiation, they 
can be summarised as follows: 

Kinematic equations 
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   (6.1) 

Constitutive equations 
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 (6.2) 
⎢⎪ ⎪ ⎪ ⎪⎥ ⎣⎩ ⎭ ⎩ ⎭⎦symm.                                                           symm. 
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Equilibrium equations 
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 (6.3) 

In the case of torsion the volume forces  and  are absent. ,x yP P zP

Distribution of displacements and stresses 
De Saint-Venant succeeded to indicate a displacement field with enough freedom to allow for 
displacements at the ends, and from which a stress field follows that satisfies all requirements 
for equilibrium in the volume, along the circumference and at the ends of the bar. In the 
theory of elasticity only one unique solution can exist, which is in equilibrium with the 
external load and which satisfies the boundary conditions. Therefore, the solution of De Saint-
Venant has to be the correct one. 
The displacement field in question will be described now. De Saint-Venant stated that for 
torsion, the shape of the cross-section is not affected by the deformations. Regarding the 
displacements  and  in the plane of the cross-section, the displacement field manifests 
itself as a rotation about the 

yu zu
x -axis as a rigid body.  

This rotation is indicated by the symbol ϕ . This ϕ  is identical to the rotation yzω  as 
discussed in chapter 5. Further, it can be stated that the displacement  can be different from 
zero and may have a certain distribution over the cross section. However, this distribution is 
the same for all cross sections. This means that the displacement field is independent of 

xu

x . 
The fact that an arbitrary distribution of  can occur over the cross section means that an 
initially unloaded flat cross-section starts to warp as soon as a torque is applied. Such a 
displacement field for a bar with square cross-section is drawn in Fig. 6.6. Possible 

xu

             A B

             E F

               A A B

              C C D
                 C D

             G E F′ ′ ′

            E F

               G H

E′

F ′

H ′

G′
y y

z
y′

z′

ϕ

              A B D′ ′ ′

xyσ

xzσ

z

Fig. 6.6: The displacement field is composed of a rotation ϕ  of the cross-section and a 
warping of the cross-section (the magnitude of ϕ  is very exaggerated). 
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distributions of the shear stresses have been sketched. Along the edges  and AC BD  the shear 
stress xyσ  has to be zero. This means that the stress in the points  and A B  and C  and is 
zero, but between those points along the edges  and CD  the stress is allowed to increase. 
The same holds for the shear angle xy

D
AB

γ , which causes the originally rectangular lateral surface 
 to deform into (see Fig. 6.6). The other lateral surfaces experience the same 

deformation, which makes it plausible that after deformation the originally flat cross-sections 
are warped.  

ABEF A B E F′ ′ ′ ′

y

z

x

u z
u y

ϕ θ

ϕ
ϕ

=

= −
= +

z

y
z

y

ϕ

ϕ

yu

zu

x

Fig. 6.7: The displacement field described by  and . yu zu

After this qualitative description of the displacement field, a quantitative formulation will be 
provided. As a result of the rotation ϕ , the displacements  and  in a point yu zu , ,x y z  of the 
cross-section are equal to (see Fig. 6.7): 

 y

z

u z
u y

ϕ

ϕ

= −

= +
 

The rotation ϕ  depends on the specific torsion θ . For constant θ , from d dxϕ θ=  it 
follows: 

 xϕ θ=  

where it has been used that 0ϕ =  for 0x = . So, the displacements  and  become: yu zu

 y

z

u x z
u x y

θ

θ

= −

= +
 (6.4)a 

The warping displacement  is independent of xu x , it will increase linearly with the specific 
torsion θ . Therefore, it can be written: 

 ( , )xu y zψ θ=  (6.4)b  

where the so-called warping function ψ  describes the displacement distribution over the 
cross-section for 1θ = . In order to check whether this displacement field is suitable for the 
considered torsion problem, it is substituted into the kinematic equation (6.1). The result is: 
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θ  (6.5) 

Only zxγ  and xyγ  appear to become unequal to zero. Then from the constitutive equations it 
follows that only the stresses zxσ  and xyσ  are different from zero too: 
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 (6.6) 

The stresses zxσ  and xyσ  are the shear stresses in the cross-section that correspond with the 
torsional moment in the cross-section. So, the chosen displacement field satisfies the 
requirements. Of the three equilibrium equations (6.3), only the first one is important for the 
equilibrium of the bar. The second and third one are satisfied automatically, because 
differentiation of ψ  with respect to x  yields zero, i.e.: 

 
, ,0 0

0 0 0 0
0 0 0 0

yx y zx z

          
          

σ σ+ + =

+ + =
+ + =

 (6.7) 

In Fig. 6.8 it is demonstrated how the remaining equilibrium equation can be interpreted. An 
elementary cube of material is considered the edges of which have unit length and are parallel 
to the coordinate directions. In the face coinciding with the cross-section the shear stresses 

xyσ  and xzσ  are present. In the x -direction, on the faces with constant  and , their 
counterparts yx

y z
σ  and zxσ  can be found. As shown these stresses increase in and direction, 

respectively. The requirement that the cube is in equilibrium in 
y z

x -direction, directly leads to 
the obtained equilibrium equation. 
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Fig. 6.8: Interpretation of the equilibrium equation in x-direction. 
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Summarising, for the special case of the De Saint-Venant torque, the general three-
dimensional kinematic, constitutive and equilibrium equations reduce to: 
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 (kinematic equations) (6.8) 
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 (constitutive equations) (6.9) 

 , , 0yx y zx zσ σ+ =  (equilibrium equation) (6.10) 

The problem contains only one degree of freedom, the warping function ( , )y zψ ; this 
corresponds with the fact that just one equilibrium equation is present. No volume load in x -
direction exists. Only two stresses and their corresponding strains are different from zero, 
therefore just two kinematic equations and two constitutive equations remain. 
The scheme of relations as depicted in Fig. 6.9 is applicable. The two stresses xz zxσ σ=  and 

Fig. 6.9: Diagram displaying the relations between the quantities playing a role in 
the analysis of the De Saint-Venant torsion. 
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Fig. 6.10: A torsional moment will generate shear stresses 
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xy yxσ σ= , which play a role in the assumed displacement field of the problem, are exactly the 
shear stresses in the cross-section that are caused by the torsional moment. This has been 
depicted in Fig. 6.10.  

Dynamic boundary conditions 
The two stresses xzσ  and xyσ  can also satisfy the dynamic boundary conditions along the 
circumference of the bar. Generally a normal stress nnσ  and two shear stresses nsσ  and  

nxσ  are present on the cylindrical surface (see Fig. 6.11). The stresses nnσ  and nsσ  follow via 

a transformation from the stresses ,yy yzσ σ  and zzσ . Because all these stresses are zero, the 
stresses nnσ  and nsσ  will be zero too. The shear stress nxσ  is equal to xnσ , which is situated 
in the plane of the cross-section. The shear stresses xnσ  and xsσ  can be obtained via a 
transformation in the same plane of the shear stresses xzσ  and xyσ . The stresses xsσ and 

xnσ are tangent and normal to the circumference of the cross-section, respectively. The stress 
xnσ  has to be zero, because nxσ  cannot occur on the stress-free cylindrical surface. In other 

words, a completely stress-free cylindrical surface can be realised by requiring that nxσ  is 
zero, i.e.: 

xsσ

xnσ

x

y

z

nnσ
nxσ

nsσ

x
n

s

Fig. 6.11: The stresses resulting from the displacement field of De Saint-Venant can satisfy 
the condition that the stresses  and  along the outer surface are zero. ,nn nsσ σ nxσ

 0xnσ =  (dynamic boundary condition) (6.11) 

Solution strategies 
After the formulation of the three sets of basic equations, the next step is the establishment of 
the solution procedure for these equations. Again the two strategies of the displacement and 
force method can be followed. Both methods will be discussed and it will become clear that 
the displacement method leads to a simple and concise formulation for both solid cross-
sections and cross-sections with holes. The force method provides a simple formulation only 
for solid cross-sections, for cross-sections with holes the formulation becomes rather 
complicated. Nevertheless, in the past the force method was used in the classical approach of 
the torsional problem. The reason was that for this method a number of analogies exist that 
provided a lot of insight into the problem. Nowadays in the computer age, no clear preference 
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for one of the methods exists and both methods can be applied. However, in this course most 
of the attention is paid to the force method, because this method links up with the visual 
imagination of the engineer. 

6.3 Displacement method 

Differential equation 
In the procedure of the displacement method, successive substitutions take place from the 
kinematic equations towards the equilibrium equation. Here the constitutive equations are 
used in stiffness formulation. Doing so, the equilibrium equation is transformed into a 
differential equation for the unknown degree of freedom ψ . The procedure can be 
summarised by:  
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 (kinematic equations) 

 zx zx

xy xy

G
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σ γ
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=

 (constitutive equations) 

 , , 0yx y zx zσ σ+ =  (equilibrium equation) 

 ( ), , 0yy zzG ψ ψ θ+ =  (6.12) 

Because  and G θ  are constants, the found differential equation simply states that the Laplace 
operator of ψ  is equal to zero: 

 , , 0yy zzψ ψ+ =  (6.13) 

Boundary condition 
For the solution of differential equation (6.13) it is required to reformulate the boundary 
condition 0xnσ =  in terms of ψ . This can be done as follows. 
The condition 0xnσ =  implies that the deformation 0xnγ =  too. For this deformation it can be 
written:  

 , ,xn x n n xu uγ = +  

The displacement n  can simply be expressed in  and  by the following transformation 
formula (also see Fig. 6.12): 

u yu zu

 cos sinn y zu u uα α= +  

The expression for the deformation becomes: 
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yu

zu

su

nu α

y

n

zs

cos sin
sin cos

n y z

s y z

u u u
u u u

α α
α α

= + +
= − +

Fig. 6.12: Transformation of displacements in the plane of the cross-section. 

 , , ,cos sinxn x n y x z xu u uγ α α= + +  

Finally, the relations for  and  given by (6.4) are substituted, they read: ,x yu u zu

 ; ;x y zu u x z u x yψ θ θ= = − = θ  

The requirement that xnγ  is zero delivers the relation: 

  ( ), cos sin 0n z yψ α α θ− + =

or differently written, it delivers the condition for the slope of ψ  perpendicular to the edge: 

 , cos sinn z yψ α α= −  (6.14) 

In each point of the edge the values of  and ,y z α  are known, so that ,nψ  is prescribed along 
the entire circumference. The solution of differential equation (6.13) together with boundary 
condition (6.14) is classified as a problem of the Neumann type. Now from a mathematical 
point of view, the warping function ψ  is determined and can be solved. After that zxγ  and xyγ  
can be solved from the kinematic equations, which also determine the values of the stresses. 
For obtaining a correct solution for ψ , in one point of the cross-section a value of ψ  has to 
be prescribed in order to prevent a rigid body movement of the body in x -direction. 

Hollow Cross-sections 
When the cross-section is not solid but contains one or more holes, the procedure is not 
essentially more difficult. Then along the circumference of each hole the dynamic boundary 
condition 0xnσ =  applies too. This means that along the holes the condition (6.14) for ,nψ  
has to be imposed.   

6.4 Force method 

In the force method a solution for the stresses is sought that a priori satisfies the equilibrium 
equations and dynamic boundary conditions. Because one equilibrium equation exists for the 
two unknown stresses xyσ  and xzσ , the problem is statically indeterminate to the first degree. 
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Therefore, only one stress function has to be introduced, which just like the stresses is a 
function of  and . In this case, a stress function that meets the conditions is defined by: y z

 , ,;xy z xz yσ φ σ= = φ−  (6.15) 

These relations between the stresses and the redundant φ  guarantee that the equilibrium 
equation , ,yx y zx z 0σ σ+ =  is satisfied automatically. For the determination of φ  a 
compatibility condition has to be formulated. This condition is found by elimination of the 
degree of freedom ψ  from the two kinematic equations: 

 ( ) ( ), ,;zx z xy yy zγ ψ θ γ ψ= + = − θ  

When both equations are differentiated with respect to  and  respectively, the two 
equations contain the term 

y z
, yzψ , which easily can be eliminated. The result reads: 

 , , 2xz y xy zγ γ θ− =    (6.16) 

where ,zx yγ  is replaced by ,xz yγ . It appears that the deformations xzγ  and xyγ  cannot obtain 
independently any value, they are coupled. 

xyσ

xzσ

xyσ

xzσ
xzγ

xyγ

, , 2xz y xy zγ γ θ− =

 and  have to be compatible.  Fig. 6.13: The deformations xzγxyγ

On basis of Fig. 6.13, a physical interpretation of the compatibility condition can be given. In 
a horizontal slice of the bar the shear stresses xyσ  generate the shear angles xyγ . The 
originally rectangular slice deforms into another shape. At the same time a vertical 
rectangular slice deforms under the influence of the shear stresses xzσ , which initiate the 
shear angles xzγ . All those horizontal and vertical slices have to fit precisely during 
deformation, such that a continuous warped cross-section is maintained. This means that there 
has to be a relation between the deformations xyγ  and xzγ . 
The solution strategy now is the successive substitution from the equilibrium equation up to 
the compatibility equation. In this case, the constitutive equations are given in flexibility 
formulation, i.e.: 
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 ( ), ,
1 2yy zzG

φ φ θ− + =  (6.17) 

 , , 2xz y xy zγ γ− = θ  (compatibility equation) 

 

1

1

xy xy

xz xz

G

G

γ σ

γ σ

=

=
 (constitutive equations) 

 ,

,

xy z

xz y

σ φ
σ φ

= +
= −

 (equilibrium equations) 

It can be seen that the force method results in a Laplace equation too. However, in this case 
the right-hand side is not equal to zero. 

Remark 
In (6.15) the stress function is defined in such a manner that the stress xyσ , which is acting in 

-direction is equal to the derivative of y φ  in the -direction perpendicular to that. Likewise, 
the value of the stress xz

z
σ  is equal to the derivative of φ  in perpendicular direction (except 

for the sign). It can be shown that this property also holds for the shear stresses xnσ  and xsσ  
in arbitrarily chosen orthogonal directions  and  (see Fig. 6.14): n s

 , ,;xn s xs nσ φ σ= + = −φ  (6.18) 

To prove this, the stresses xnσ  and xsσ  and also ,nφ  and ,sφ  will be expressed in , yφ  and , zφ . 
From the results, relation (6.18) can be confirmed. 
Fig. 6.14 shows that the coordinates and the shear stresses in the cross-section transform by 
the same rule. In the expression for the stresses, xyσ  and xzσ  are replaced by respectively , zφ  
and , yφ− . This results in: 

 , ,

, ,

cos sin

sin cos
xn z y

xs z y

σ φ α φ α

σ φ α φ

= + −

= − + α
 (6.19) 

α
y

n

zs

cos sincos sin
               

sin cossin cos
xn xy xz

xs xy xz

n y z
s y z

σ σ α σ αα α
σ σ α σ αα α

= + += + +
= − += − +

α1dA =
xyσ

xsσ

xzσ

xnσ

Fig. 6.14: Transformation of coordinates and shear stresses in the cross-section. 
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By using the chain rule, ,nφ  and ,sφ  can be expressed in , yφ  and , zφ : 

 , , , , ,

, , , ,

n y n z

,

n

s y s z s

y z

y z

φ φ φ

φ φ φ

= +

= +
    

To determine the derivatives of  and  with respect to  and , the coordinate 
transformations of Fig. 6.14 are inverted: 

y z n s

 
cos sin
sin cos

y n s
z n s

α α
α α

= −
= +

 

This leads to the expressions: 

 , , ,

, , ,

cos sin

sin cos
n y z

s y z

φ φ α φ α

φ φ α φ

= + +

= − + α

0

 (6.20) 

Comparison of (6.19) with (6.20) shows that relation (6.18) is generally valid. 

Boundary conditions 
The dynamic boundary condition along the circumference of a solid cross-section reads: 

 xnσ =  

where  is normal to the edge and pointing outward (see Fig. 6.15). On basis of (6.18) it then 
follows that: 

n

 , 0sφ =   

The derivative in the direction of the circumference is equal to zero. This means that φ  has a 
constant value along the circumference. For a solid section this constant value can be set to 
zero without any loss of general validity, for the stresses are obtained by differentiation of φ  
so that the constant disappears. Therefore, as boundary condition it will be prescribed: 

 0φ =  (6.21) 

The found differential equation and corresponding boundary condition given by: 

xnσ

nxσ x
n

s

,0 0
 constant choose 0

xn sσ φ
φ φ

= → = →
= → =

Fig. 6.15: Boundary condition along  the circumference of the bar. 

 168



 
( ), ,

1 ( )2

0 ( )

yy zz differential equation
G

boundary condition

θφ φ

φ

− + =

=
 (6.22) 

determine in mathematical sense the torsional problem in the force method. In this way the 
problem is written in the so-called Dirichlet formulation. The stress function φ  can be solved 
from the set (6.22), after which the stresses can be found by the derivatives of the function φ : 

 ,

,

xy z

xz y

σ φ
σ φ

= +
= −

 (6.23)  

The φ -bubble 
From the simple torsional problem of the circular cross-section, as discussed in previous 
courses, it is known that the shear stresses are zero in the centre of the cross-section and that 
the “round-going” stresses increase in radial direction. This pattern can be expected for cross-
sections of arbitrary shape too. In the point where the stresses xyσ  and xzσ  are zero, the 
derivatives , zφ  and , yφ  have to be zero. At that position the function φ  obtains an extreme 
value, while φ  is zero on the edge. When a section is made through the distribution of φ  
perpendicular to the cross-section a sort of hood covering of the cross-section can be noticed, 
which will be called the “φ -bubble” (see Fig. 6.16). The slopes of the φ -bubble determine 
the magnitude of the stresses. Indeed it can be observed that the stresses increase towards the 
edge. 

φ

z

y ,
max

,

  on circumference 0

0
in point where   

0
y

z

φ

φ
φ φ

φ

→ =

= ⎫
→ =⎬= ⎭

z y

-bubbleφ

Fig. 6.16: The distribution of φ  over the cross-section is called a “φ -bubble”. 

Check of the shear forces 
It was shown that xyσ  and xzσ  are the only stresses present, and how they can be determined. 
In general, the resultants of these stresses over the cross-section may be a torsional moment 

tM  and the shear forces yV  and zV . In the case of torsion, the stress distribution should be 
statically equivalent with a torsional moment tM , while the shear forces  and  are zero. 
Therefore, the values of the shear forces will be checked. 

yV zV

The horizontal shear force equals: 
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 y xy

A A

V dA
z
φσ ∂

= =
∂∫∫ ∫∫ dydz  

First, integration is carried out in -direction and then in -direction (see Fig. 6.17): z y

d y

y

z

y

z

dz

  for calculation of  V               for calculation of  V  y z

1y 2y

1z

2z

Fig. 6.17: Integration paths required  for the conformation that V  and V  are zero. y z

   ( )
2 2

1 1

2 1 0y

z z

z z

V  dz dy d dy dy
z
φ φ φ φ

⎧ ⎫ ⎧ ⎫
∂⎪ ⎪ ⎪ ⎪= = = − =⎨ ⎬ ⎨ ⎬
∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫ ∫ ∫ ∫
At the edge the values of 1φ  and 2φ  are both zero, which means that V  is zero too. y

For the vertical shear force a similar approach is adopted. In this case the integration is first 
carried out in -direction: y

   ( )
2

1

2 1 0z xz z

y

yA A

V d  A dydz V d dz dz
y
φσ φ φ φ

⎧ ⎫
∂ ⎪ ⎪= − = − → = − = − − =⎨ ⎬∂ ⎪ ⎪

⎩ ⎭
∫∫ ∫∫ ∫ ∫ ∫

The resulting torsional moment 
During the problem definition in section 6.1, the resulting moment was written as: 

 t

A

M r dAσ= ∫∫  

This integral can be worked out into more detail by introducing the shear stresses xyσ  and xzσ  
with their arms  and , respectively. As can be observed in Fig. 6.18, positive values of 

xy

z y
σ  deliver moments that reduce the torque and the positive values of xzσ  increase the torque 
(in the first quadrant). Therefore, the expression of the torsional moment becomes: 

 (t xz xy )M y z dσ σ= −∫∫ A  (6.24) 
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y

z

dA

xzσ
xyσ

tM

Fig. 6.18: Calculation of the resulting torsional moment. 

It is advantageous to solve integral (6.24) in two parts. During the solution process integration 
by parts takes place. It is recalled to mind how this is done. Two functions  and  are 
considered on the interval 

( )u x ( )v x
1 2x x x≤ ≤ . For 1x  the function values are  and  and for 1u 1v 2x  

they are  and . For the product of the two functions it holds: 2u 2v

 
2 2 2

1 1 1

2 2 1 1 2 2 1 1( ) or

x x x

x x x

d u v u v u v u dv v du u v u v= − + = −∫ ∫ ∫  

As rule for integration by parts, the last expression is used in the form: 

2 2x x

 ( )
1 1

2 2 1 1

x x

u dv v du u v u v= − + −∫ ∫  (6.25)  

After this short intermezzo, it is continued with the determination of the surface integral of the 
vertical stresses. They deliver a share in the torsional moment given by: 

 vertical xz

A A

M y dA y dydz
y
φσ ∂

= = −
∂∫∫ ∫∫    

First the integration in -direction is performed, see Fig. 6.19: y

y

z

y

z

d y

dz

1y 2y

1z

2z

cross-section
φ -bubble

φ

y

  for calculation of  M               for calculation of  M  horizontal vertical

Fig. 6.19: Integration paths for the calculation of  and  verticalM horizontalM .
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2 2

1 1

vetical

y y

y y

M y dy dz y d d
y
φ φ

⎛ ⎞ ⎛
∂⎜ ⎟ ⎜= − = −⎜ ⎟ ⎜∂⎜ ⎟ ⎜

⎝ ⎠ ⎝
∫ ∫ ∫ ∫ z

⎞
⎟
⎟
⎟
⎠

 

Now, the integral in -direction will be integrated by parts according to the rule (6.25). Then 
it is found: 

y

 ( )
2 2

1 1

2 2 1 1

y y

y y

y d dy y yφ φ φ− = − −∫ ∫ φ  

Because 1φ  and 2φ  are situated on the edge they are zero, so that the following remains: 

  
2

1

y

y

dyφ∫  (area of the vertical section of the φ -bubble) (6.26) 

This result is exactly the area of the considered vertical section of the φ -bubble. It then is 
clear that the moment of the vertical stresses is equal to the volume of the φ -bubble: 

 vertical

A

M dydzφ= ∫∫   (volume of the φ -bubble) (6.27) 

In an analogous manner the contribution of horizontal  is calculated. For that purpose 
integration in -direction is carried out. Also for this case it is found: 

M
z

 horizontal

A

M dydzφ= ∫∫   (volume of the φ -bubble) (6.28) 

Therefore, the total result for the torsional moment becomes: 

 2t

A

M dAφ= ∫∫   (two times the volume of the φ -bubble) (6.29) 

Recalling to mind that for this moment it also holds t tM GI θ= , for the torsional stiffness it is 
found: 

 
2

t

A

GI dAφ
θ

= ∫∫    (6.30) 
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Conclusions 
Up to now, results have been derived which are worthwhile mentioning in a summary. Fig. 
6.20 supports these conclusions.  
− The stiffness t  and the torsional moment GI tM  are determined by the double volume of 

the φ -bubble (for 1θ = ). 
− The shear stress is determined by the slope of the φ -bubble perpendicular to the direction 

of the stress. This property holds for every direction. 
− It appears that the contribution of the vertical and horizontal stresses to t  and tGI M  is the 

same, namely one volume of the φ -bubble each. This generally holds irrespective the 
shape of the cross-section, for example for a strip-shaped as well as a square cross-section.  

y

z

xzσ
xyσ

φ

z

σ

tGI

      CONCLUSIONS 
 
 
− Stiffness = 2 times volume of φ -bubble for 1θ =  
 
 
− Shear stress = slope of the φ -bubble 
 
 
− The contributions of verticalσ  and horizontalσ  are equal 
 

y

Fig. 6.20: Summary of the conclusions. 

Remarks 
1. The x -axis has been chosen arbitrarily parallel to the bar axis. The displacement field 

(6.4) contains a rotation about the x -axis. This creates the impression that this axis has 
certain special properties. However, this is not the case, because an extra rotation as a 
rigid body about the - and -axes can be added to the displacement field (6.4), such that 
any other line parallel to the 

y z
x -axis start to act as the rotation axis. For the displacement 

field it then has to be chosen: 

 ( , )xu y z b y azψ θ θ= − + θ  
 rotation about -axis y
 ( )yu x z b θ= −  
 rotation about z-axis  
 ( )zu x y a θ= −  
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It simply can be established that the additional terms have no influence on the stresses, 
and that now the rotation takes place about the axis ,y a z b= = . So, this indicates that the 
x -axis indeed can be chosen arbitrarily without loss of generality provided that it is 
parallel to the axis of the bar. 
 

2. During the analysis it was made clear that xxσ  has to be zero, also at the ends of the bar 
and that for that reason the warping cannot be prevented. In section 6.12 the consequences 
of a prevented warping will be discussed. Theoretically, the shear stresses xyσ  and xzσ  at 
the ends have to be distributed exactly as the derivatives of the stress function φ  
prescribe. If this is not the case at the ends an interference length will occur in which the 
stress-state gradually evolves to the distribution according to the derivatives of φ .  

 
3. The surface integral for tM  given by (6.29) could have been determined directly from 

(6.24) by replacement of xyσ  and xzσ  by the respective derivatives of φ , which is 
followed by the application of the proposition of Green for the transformation of a surface 
integral into a contour integral. However, the disadvantage of this approach is that it 
would not have revealed that the contributions of the horizontal and vertical stresses to the 
moment are identical.  

6.5 Exact solution for an elliptic cross-section 

For some cross-sections, it appears to be possible to derive an exact solution for the 
differential equation and boundary condition (6.22). An example is the elliptic cross-section 
(see Fig. 6.21). The equation of the edge in this case is: 

y

z

                  a a

b

b

Fig. 6.21: Elliptic cross-section. 

 
2 2

2 2 1y z
a b

+ =  

Then the following function is zero all along the edge: 

 
2 2

2 21 y zA
a b

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 

It turns out that the differential equation can be satisfied if φ  is made equal to this function: 
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2 2

2 21 y zA
a b

φ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

Substitution of this relation into differential equation (6.22) yields the following result for : A

 
2 2

2 2

a bA G
a b

θ=
+

 

Therefore, the solution is: 

 
2 2 2 2

2 2 2 21a b y zG
a b a b

φ θ
⎛ ⎞

= − −⎜ ⎟+ ⎝ ⎠
  (6.31) 

Using (6.15) the shear stresses become: 

 
2 2

2 2 2 22 ; 2xy xz
a z b yG G

a b a b
σ θ σ= − = +

+ +
θ

b

  (6.32) 

The shear stresses are linearly distributed along straight lines through the origin, just as 
known for the circular cross-section (see Fig. 6.22). The largest shear stress occurs on the 
edge at the short axis (at , , when ). The absolute value of this stress is: 0y = z = ± a b>

y

z

In this figure the x -axis 
is pointing into the paper 

Fig. 6.22: Stress distribution in an elliptic cross-section. 

 
2

max 2 22 fora bG a
a b

σ θ= >
+

b   

The torsional moment is according to (6.29) two times the volume of the φ -bubble: 

 
2 2

2 2
2 2 2 2

1 12t
a bM G dy dz y dy dz z dy dz

a b a b
θ

⎧ ⎫
= − −⎨ ⎬+ ⎩ ⎭∫∫ ∫∫ ∫∫  

The first integral is the area of the ellipse, abπ . The second and third integrals are the 
moments of inertia with respect to the -axis and -axis, respectively. The values are equal 
to 

z y
3 4a bπ  and 3 4abπ , respectively. Thus the term between braces equals 2abπ  and the 

moment becomes: 
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3 3

2 2t
a bM G

a b
π θ=

+
 (6.33) 

Because it also holds: 

 t tM GI θ=  

For an ellipse it apparently is found: 

 
3 3

2t
a bI

a b
π

=
+ 2  (6.34) 

 By using (6.33), the relations (6.32) for the stresses can be expressed in the torsional moment 
tM : 

 
3 3

;1 1
2 2

t t
xy xz

z M y M

ab a b
σ σ

π π
= − = +   (6.35) 

A designer mainly will be interested in the maximum shear stress. Expressed in the torsional 
moment this shear stress equals:  

 max
2

for1
2

tM a b
ab

σ
π

= >

ection 
− 

 (6.36) 

6.6 Membrane analogy 

Already during the discussion of the force method it was mentioned that analogies can be 
used. Prandtl introduced a well-known analogy. He recognised that the differential equation 
for the torsional problem was similar to the problem of a membrane under tension. This so-
called membrane analogy is depicted in Fig. 6.23. 

     ANALOGY 
 
− shape of membrane = shape of cross-s

2p θ=  
− 1s G=  
 

( ) ( ), , , ,
1 2

                
on edge: 0 on edge: 0

yy zz yy zzS w w p
G

w

φ φ θ

φ

− + = − + =

= =

z

y

w
p

S
S

Fig. 6.23: The differential equations for a stressed membrane and 
 for torsion have the same character. 
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The bending stiffness of the membrane is very low. In the plane of the membrane an 
omnidirectional tensile force per unit of width is present. When a part of the membrane is 
considered with unit width in -direction and length , it can be modelled as a cable. For 

sufficiently small deflection  under a constant excess pressure 

z dy

w p , the vertical equilibrium 
of this part of the membrane equals (see Fig. 6.24): 

1v

2v

S

S

1α
2α

dy

w

y

Fig. 6.24: Free-body diagram. 

  1 2v v p dy− =

where  and  are the membrane shear forces, for which it can be written: 1v 2v

 1 1 2;v S v S 2α α= =  

So: 

  ( )1 2S pα α− = dy

Further, for the increase of the slope it holds: 

 2 1 , yyw dyα α− =  

This provides: 

  , ,yy yyS w dy p dy S w p− = → − =

When both the -direction and -direction are considered, the differential equation for a 
membrane is found: 

y z

 ( ), ,yy zzS w w p− + =  (6.37) 

Experimental membrane analogy 
The membrane analogy can be utilised experimentally as discussed below. A box is made 
with vertical walls and horizontal bottom. The horizontal top of the box is open and is 
covered by a stretched rubber membrane. The plan view of the box has the shape of the cross-
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section to be investigated. By pressurising the inside of the box, the membrane will bulge out. 
A shape will be created similar to the φ -bubble (Fig. 6.23 shows this phenomenon for a 
rectangular cross-section). By measurement of the slope of the membrane in different points, 
the stress distribution over the cross-section can be determined. In literature articles can be 
found of how this was done in the past with soap films. Therefore, this approach is also called 
the soap-film analogy.  

Fig. 6.25: Example of contour lines for a T-shaped cross-section.  

A method to visualise the membrane surface is the drawing of contour lines of constant φ  
(see Fig. 6.25). When a  coordinate system is attached with  parallel and  
perpendicular to the contour line, then along the contour line it holds  and therefore 

-s n s n
, 0sw =

, 0sφ = . This means that xnσ  is zero and only the shear stress xsσ  is present. So, the direction 
of the shear stress is tangent to the contour lines. The contour lines can be drawn at constant 
intervals of  (and thus w φ ). Then it can be concluded that the shear stress xsσ  is large where 
the density of he contour lines is high, because at those spots the gradient ,nφ  is large. The 
contour lines can be visualised by the so-called “shadow moiré”. With optical means, the lines 
of constant displacement are visualised, with a constant difference in displacement between 
the lines. 

Membrane analogy as mental experiment 
The membrane analogy can be used too, without the actual execution of a real test with a 
membrane. The analogy is applied as a mental experiment. This can be done both 
qualitatively and quantitatively. Qualitatively, the analogy is useful, since it provides an 
indication where the largest shear stresses will occur and how the cross-section can be 
adapted to optimise it for torsion. Fig. 6.26 shows a triangular cross-section. When a soap 
film is imagined under pressure over this cross-section, the largest slope will occur halfway 

maxσ σ=

0σ =

 

Fig. 6.26: membrane analogy as mental experiment to optimize cross-sections. 
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the sides of the triangle. At those positions the shear stress reaches its maximum. In the 
vertices, the soap film will be practically horizontal and no significant contribution to the 
moment and stiffness can be expected. Therefore, rounding off the vertices can save material. 
At the right side of Fig. 6.26, a notched rectangular cross-section is depicted. When the notch 
is sharp the contour lines will be concentrated around the tip of the notch and large stresses 
will occur. A blunt notch is much more favourable. 

b

t

z

y
t b

Fig. 6.27: Strip-shaped cross-section. 

The mental experiment can be applied too for obtaining quantitative information. A well-
known example is the torsion of a bar with a strip-shaped cross-section as shown in Fig. 6.27  
(for this case, in previous lectures a solution was found already by a different method). When 
the experiment would be carried out with a membrane it can be expected that the deflection  
would be cylindrically shaped over practically the entire width b , independently of . Only  y
at the two ends 2y b=  and 2y b= −  a deviation from this shape would occur. For  
this will hardly affect the volume under the membrane, if it is assumed that the deflection  
over the full width is only a function of , see Fig. 6.28. 

t b
w

z

pt
S S

z

( )w zb

t y

z 1t b

Fig. 6.28: Shape of the membrane for a strip-shaped cross-section. 

The differential equation then simplifies to: 

 
2

2

1 d w p
S d z

− =  

with boundary condition that  is zero for w 2z t= ± . 
The solution for this equation is: 

 
2

2
2

4( )= 1
8
p zw z t
S t

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

This is a parabola. In Fig. 6.23 it is shown that  is equivalent to w φ , if at the same time it is 
substituted: 
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 12 ;p s
G

θ= =  

Therefore, for the stress function φ  it holds: 

 
2 2

2

4( )= 1
4

Gt zz
t

φ θ
⎛

−⎜
⎝ ⎠

⎞
⎟  (6.38) 

This is a parabolic distribution with a maximum of: 

 
2

max 4
Gtφ θ=  

The area between this parabola and the -axis equals: z

 3
max

2 1
3 6

Area t Gtφ θ= × × =  (6.39) 

The torsional moment is twice the volume of the φ -bubble; 

 312
3tM b Area G bt θ= × × =  

Since it also holds that: 

 t tM GI θ=   

For the torsional moment of inertia it is found: 

 31
3tI bt=  (6.40) 

which already was indicated in Fig. 6.2. 
Further, the stress distribution can be checked. In the direction of the long edge it holds: 

 2xy Gz
z
φσ θ∂

= = −
∂

 (6.41)   

The maximum values in absolute sense occur for 2z t= ± , see Fig. 6.29: 

 max Gtσ θ=  

b

            φ σ

t

Fig. 6.29: Stress distribution in a strip-shaped cross-section. 
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With the aid of (6.39) this maximum stress can be expressed in the moment, an interesting 
relation for design purposes: 

 max
21

3

tM

bt
σ =    (6.42) 

This expression was mentioned in Fig. 6.2 too. 

Remarks 
1. From the mental experiment it follows that the formula 31

3tI bt=  also can be used (in a 
similar approach) to determine the torsional moment of inertia of cross-sections, which 
are built up out of strip-shaped parts as shown in Fig. 6.30. 

wb

fb

ft

ft
wt wb

fb

ft

ft
wt

t

R

3 3 3 3 31 2 1 2 1                            where  2
3 3 3 3 3t w w f f t w w f f tI b t b t I b t b t I bt b Rπ= + = + = =

Fig. 6.30: Torsional moments of inertia of thin-walled cross-sections. 

2. The result for φ  given by (6.38) leads to the stresses: 

 
3

; 01
6

t
xy xz

M z

bt
σ σ= − =  

It was shown in general that the contribution to the moment of the stress xzσ  is the same 
as that of the stress xyσ . However in this case this is not possible because xzσ  is zero. The 
share of the horizontal shear stresses xyσ  is correct: 

 

1 1
2 2

1 1
2 2

2

3

1
1 2
6

t
xy t

t t

t t

M bb z dz z dz
bt

σ
− −

− = =∫ ∫ M  

Nevertheless, in reality the missing part 2tM  is delivered by vertical shear stresses xzσ , 
which are present at the ends of the cross-section as shown in Fig. 6.31. At these ends the 

b

t

Fig. 6.31: Shear stresses at the ends contribute half of the torsional moment. 
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distribution of φ  is not cylindrically in  but has to decrease to zero (see Fig. 6.28). 
These stresses are of the same order of magnitude as xy

z
σ , but because of the large distance 

between them (about b ) they still produce half of the torsional moment tM .  

6.7 Numerical approach 

The availability of fast computers makes it possible to generate numerical solutions. Suitable 
for this purpose is the Finite Element Method. A cross-section is divided into elements and in 
the nodes of the element mesh a value is determined for the displacement  of the 
membrane. It is a method of approximation, which produces more accurate results for finer 
meshes. 

w

Strip-shaped cross-section 
A very detailed discussion of this numerical method falls outside the scope of this course. 
Only the principle will be indicated and as an example the strip-shaped cross-section is taken, 
for which in section 6.6 already a solution has been determined. This solution will be labelled 
as the exact one. Since a cylindrically shaped displacement  is present, it is sufficient just to 
define an element distribution over the shortest edge t  of the cross-section. 

w

1 1 1
3 3 3                             t t t

S S

1 1
8 8                                             t t

S S8 elements 

approximation 

3 elements 

node 1         node 2 

Fig. 6.32: Approximation of the shape of the membrane by three and eight elements. 

The real distribution of the displacement  that is drawn by the dashed line in Fig. 6.32, is 
approximated by linear interpolation between two adjacent nodes. The figure shows  the cases 
with three and eight elements. Now, the shape of the membrane is polygonal. With eight 
elements the approximation seems already to be quite good, but with three elements not yet. 

( )w z

However for the coarse distribution with three elements the finite element method can be 
simulated by a calculation by hand. In the analysis, use will be made of the symmetry of the 
membrane surface. Fig. 6.33 shows the strip-shaped cross-section once more, including the 
section over the membrane. The uniformly distributed load p  is concentrated as point loads 

 in the nodes at distances of F 3t . The problem contains one degree of freedom . This 
degree of freedom can be obtained from the equilibrium of node 1. After the determination of 

, the torsional stiffness is calculated from the double volume beneath the membrane. 

w

w
The calculation scheme of  is listed in Fig. 6.33. In node 1, the point load  has to be in 
equilibrium with the vertical component of the tension force  in the first element. Because 

 is small, 

w F
S

w tanα  can be replaced by the angle α  itself and the displacement becomes: 

 
2

9
tw p
S

=   (6.43) 

The area of the section under the membrane over the full thickness t  equals: 
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3)

Fig. 6.33: Calculation of the displacement  for three elements. w

 2
3

Area wt=  

and the double volume: 

 42 2
3

Vol Area b wbt× = × × =  

Substitution of  from (6.43) yields: w

  342
27

pVol bt
S

× =  

The φ -bubble is introduced by choosing: 

 12 ;p S
G

θ= =  

Then the double volume is equal to the torsional moment, and for 1θ =  the result is the 
torsional stiffness : tGI

 3 34 2 8
27 1/ 27tGI bt Gbt

G
= =  

The exact solution is: 

 31
3tGI Gbt=  

The difference is in the order of 10 percent; for such a coarse element mesh this is quite a 
good result. The approximated solution appears to be exactly the inscribed polygon of the 
parabola. 
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In the computation with eight elements four different unknown displacements  occur. Then 
four equilibrium equations have to be set up and solved simultaneously. In that case, the error 
in  already will be less than 1 percent. 

w

tGI

b

xy             φ σ

t

φ φ
8 elements 3 elements 

exact stress distribution 

xyσ xyσ
exact exact

Fig. 6.34: Stress distribution obtained by finite element method. 

The accuracy of the stress distribution is investigated as well. The exact solution is displayed 
in Fig. 6.34. Since φ  is a parabolic function, its derivative the stress xyσ  will be linear over 
the thickness t  of the cross-section. For a polygon description of φ  with straight branches, 
the derivative will be constant per branch and will be discontinuous in the nodes. Fig. 6.34 
shows the result that can be expected with the discussed finite element example. With three 
elements the largest error is not less than 33 percent, but for eight elements the error already 
reduces to 12 percent. In the middle of the elements always the correct value is found.    

Arbitrarily shaped cross-sections 
For arbitrarily shaped cross-sections a two-dimensional element mesh is applied. This can be 
done with triangular, rectangular and quadrilaterals of arbitrary shape (see Fig. 6.35). In the 
finite element approximation the load is again concentrated in the nodes. An unknown  
(and therefore 

w
φ ) is introduced in each node. Between the nodes, i.e. along the element edges 

the variation of  (and w φ ) is linear. Generally, the number of equations that can be 
formulated is equal to the number of nodes, thus equal to the number of unknown ’s (and w
φ ’s). From this set the unknowns are solved. 

y

z

y

z

φ

Fig. 6.35: Element mesh and φ -bubble for a cross-section of arbitrary shape.  
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Now, the φ -bubble is a collection of flat surfaces (above the triangular elements) and a 
collection of ruled surfaces (Dutch: “regelvlak”) (above the rectangular and quadrilateral 
elements). The formula read: 

     1 2 3

1 2 3 4

( , ) ( )
( , ) ( )
y z a a y a z triangle
y z a a y a z a yz rectangle

φ
φ

= + +
= + + +

The double content of the φ -bubble for 1θ =  again provides the stiffness t . The value of 
the stiffness is already quite good for relatively small numbers of elements. The stresses 
follow the slope of the 

GI

φ -bubble. In a triangle both slopes , yφ  and , zφ  are constant over the 
entire element. The single value per element calculated for xyσ  and xzσ  is considered to be 
present in the centre of gravity of the element. In a rectangular element, each of the two slopes 
of φ  is constant in one direction and linear in the other direction. This delivers two values for 
each of the stresses xyσ  and xzσ . In an arbitrary quadrilateral the slopes vary in both 
directions and four values for xyσ  and xzσ  can be computed (see Fig. 6.36).  
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Fig. 6.36: Stress distributions in the elements. 

Increasing refinement of the mesh leads to better approximations approaching the exact 
solution. In Fig 6.37 this is demonstrated for a rectangular cross-section with a height-width 
ration of 2. When the number of elements 2N N×  increases, the ratio of the approximated 
and exact torsional stiffness tGI  approaches unity. This also holds for the maximum shear 
stress σ , provided it is evaluated halfway an elemental edge. When after a number of 
numerical tests it has become clear how fine the mesh should be for a particular accuracy, the 
calculation can be repeated for different height-width ratios. Then a table can be created as 
shown in Fig. 6.38. When b , the cross-section degenerates into a strip and for both tGI  
and the maximum shear stress 

t
σ  the coefficient 1 3 is calculated, previously found in (6.40) 

and (6.42).       
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Fig. 6.37: Mesh refinement leads to convergence. 
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Fig. 6.38: Stiffness and maximum stress for a rectangular cross-section. 

b

t
σ

6.8 Cross-section with holes 

When the cross-section of the bar contains one or more cavities, the discussed theory requires 
some addition. First the case will be discussed with a single hole in the cross-section (see Fig. 
6.39). Along the edge of the hole a coordinate system is attached. The positive direction 
of  points into the hole. On the edge of the hole, no shear stress 

n-s
n xnσ  different from zero can 

be present. Therefore it holds that: 

 , 0sφ =  (6.44)  

Fig. 6.39: Cross-section with one hole. 

n

s y

z
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This means that φ  is constant along the circumference of the hole. However in this case the 
value of φ  cannot be set to zero, because this already has been done at the outer 
circumference. The unknown value is indicated by hφ  and is an undetermined degree of 
freedom of the problem. 
The question arises which boundary condition for ( , )y zφ  has to be prescribed at the edge of 
the hole. The harmonic equation for φ  is a second-order differential equation of the elliptic 
type, in which case generally only one boundary condition can be formulated on the edge. 
When this is the value of φ  itself, one speaks about a Dirichlet problem as previously 
discussed. When the derivative ,nφ  is prescribed the problem is of the Neumann type. Since at 
the outer circumference the value of φ  was set to zero, at the edge of the hole φ  is free and 
undetermined. Therefore, at that position the value of ,nφ  has to be prescribed. Thus, the hole 
creates an extra unknown hφ , which means that only one extra condition ,nφ  has to be 
formulated along the edge of the hole, although ,nφ  may vary itself along the circumference of 
the hole. It now will be investigated which condition this is. This will be done in two steps. 
First a special case is considered, for which the condition can be identified easily. After that it 
will be shown that this condition is generally valid. 

Special case 
Again the φ -bubble is considered occurring on a solid cross-section. In the left part of Fig. 
6.40, the contour lines of the φ -bubble are indicated, i.e. the lines of constant φ . Along such 
a line the value of ,sφ  is zero, which means that xnσ  is zero as well. This means that the part 

of the bar inside the contour does not exert any force on the part outside the contour. 
Therefore, the inner part (with area ) can be removed without affecting the stress 
distribution outside the contour (with area ). This situation is depicted in the right part of 
Fig. 6.40. It also has been indicated how this affects the 

hA
A

φ -bubble. For the solid cross-section 
a cut is made through the φ -bubble at the line 0z = . The contour line, inside which the hole 
will be created, intersects the curve twice with the same value for φ , namely hφ . 

y

z

ns

y

φ

y

z

ns

y

φ

AhA

hφ

φ -bubble of  
removed inner part
 
φ -bubble of  
hollow bar 

Fig. 6.40: Clarification on the φ -bubble of a cross-section with a hole. 

In this case, the torsional stiffness  for the hollow cross-section is equal to the difference 
of the torsional stiffness of the solid cross-section minus the torsional stiffness of the removed 
inner part. The cut-off cap of the 

tGI

φ -bubble represents the torsional stiffness of the removed 
part. It can be seen that for the φ -bubble of the hollow cross-section the hole continues to 
provide a contribution, but now with a constant value hφ  over the whole cavity. So, the 
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torsional stiffness is twice the volume of the truncated φ -bubble for 1θ = , including the part 
above the hole. The formula reads: 

  2 d 2 for 1t h h

A

GI A Aφ φ θ= + =∫∫  (6.45) 

For further interpretation it make sense to investigate what impact above explanation has on 
the membrane analogy (see Fig. 6.41). This analogy still can be used if a small adaptation is 
included. Again the membrane is fixed at the outer circumference and spans the cross-section. 

On the edge of the hole the membrane is imaginarily fixed to a thin rigid weightless plate. 
This plate must be able to move freely. When a pressure p  pressurises the membrane, it will 
load not only area  of the membrane with but also area h  of the thin plate. Therefore, the 
weightless plate will be displaced parallel with respect to itself. The displacement of the 
membrane along the edge of the plate is the same and the slope with the plate is ,n . The 
membrane analogy assists in finding the boundary condition for ,n

A A

w
φ  along the circumference 

of the hole. For that purpose the equilibrium of the weightless plate is considered. 

s y

z

hp A

v

              S S

w
,nw

wvv

                n n

Fig. 6.41: The membrane analogy assists in finding the boundary condition 
 for ,nφ  along the hole. 

 

The weightless plate is subjected to a distributed load p  over its surface and to the lateral 
membrane load v  along the circumference. This lateral load has the value ,n  (  is positive 
if it points inside the hole). For the equilibrium of the weightless plate in -direction it then 
can be written: 

S w n
w

     ,h nv ds p A S w ds p A= → =∫ ∫ h

When this result is reformulated in terms of the torsional problem ( 2p θ= , 1S G=  and 
w φ= ), the required condition for ,nφ  at the edge of the hole is found: 
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 ,
1 2n ds A
G hφ θ=∫  (6.46) 

General case 
Now the idea is abandoned that a hole is created by removing material from a solid cross-
section just inside a contour of theφ -bubble. In this case the hole is created arbitrarily and 
again a  coordinate system is attached along its circumference. Also the same boundary 
condition (6.44) holds and 

-s n
φ  must have a constant value hφ . In this case φ -contours are 

generated that generally do not correspond with those of the solid cross-section. This means 
that compared to the solid cross-section the stress distribution will be different. Therefore, it 
has to be proved separately that condition (6.46) holds for this case too. If so, the analogy of 
the weightless plate for the determination of the φ -bubble can be generalised. It also has to be 
shown that formula (6.45) for the determination of  is generally valid. t

Since 
GI

,nφ  is equal to xsσ−  and xs xsGσ γ= , condition (6.46) can be rewritten as: 

 2xs hds Aγ− =∫ θ  (6.47) 

 In order to prove whether this contour integral is generally valid, it is investigated how xsγ  is 
expressed in the three-dimensional displacement field. This displacement field reads: 

 ( , ) ( , ) ; ( , ) ; ( , )x y zu y z y z u y z x z u y z x yψ θ θ= = − θ=  (6.48) 

The shear angle xsγ  is defined by: 

 , ,xs x s s xu uγ = +  

which means that the derivative in x -direction of the displacement  has to be 
determined. This displacement can be expressed in  and  as shown in Fig. 6.12: 

( , )su y z
yu zu

 sin coss y zu u uα α= − +    

Then the required relation between xsγ  and the displacement field is found: 

 , ,sin cosxs x s y x z xu u ,uγ α α= − +   

Substitution of (6.48) changes this result into: 

 { }, ( , ) sin cosxs s y z z yγ ψ α= + + α θ

θ

 

So, the contour integral under investigation becomes: 

  , sin cosxs sds ds z ds y dzγ ψ α α
⎧ ⎫

− = − − −⎨ ⎬
⎭⎩∫ ∫ ∫ ∫
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Since sin dsα−  is just equal to  and dy cos dsα  is just equal to  this relation transforms 
into: 

dz

                        xsdsγ− =∫ ,s dsψ
⎧

−⎨
⎩ ∫ θ

⎫
⎬
⎭

       (6.49) ∫z dy+∫ − y dz

The three contour integrals in the right-hand side will be determined separately. The first one 
can be written as: 

  ,s dsψ =∫ 0dψ =∫
The value has to be zero because of the uniqueness of the warping displacement ψ  along the 
circumference. The second integral equals: 

  hz dy A=∫
This result can easily be understood by splitting the integral into two parts. In the left part of 
Fig. 6.42 the contour integral is split into a part from  to A B  through the region with positive 

-values and in a part from z B  to  with negative -values. For the first part  is positive 

if  increases in positive direction and  is also positive in this area. Therefore, the integral 
over this part becomes: 

A z dy

s z

s

s

dz

dz

A

z

y
y

y

B

s

s

dy

dy

z

z

z
y

A B

ds
                                                  h hz dy A y dz A= + = −∫ ∫

Fig. 6.42: Integrations of ∫ ∫ .z dy and ydz  

   0
down

z dy Area of the part of the hole for which z= ≥∫
In the second part of the contour integral  is negative if  increases in positive direction, 
but  is negative as well, so that  still is positive. Consequently, the integral over this 
part equals: 

dy s
z z dy
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    0
up

z dy Area of the part of the hole for which z= <∫
The summation of both integrals just delivers the total area of the hole: 

  z dy∫ h

up

z dy A+ =∫
down

z dy= ∫
Likewise, in the right part of Fig. 6.42 the area is split up into two parts for the third contour 
integral, a region where  and a region where 0y ≥ 0y < . In a similar manner for the third 
contour integral it is found: 

  y dz∫
right

y dz= ∫ h

left

y dz A+ = −∫
With these results for the three contour integrals, relation (6.49) transforms into: 

  xs dsγ−∫ 2 hA θ=

This is the same condition as found in (6.47) for the special case of a hole the edge of which 
coincides with a contour line of a solid cross-section. This means that it has been shown that 
this condition is valid too for an arbitrary position of the hole. So, the membrane analogy can 
also be applied for the determination of the φ -bubble. Only the plate will not automatically 
displace itself parallel to its original position and some sort of guide is required. 
 
The only remaining aspect is to show that formula (6.45) retains its validity for the 
determination of the torsional stiffness  from the tGI φ -bubble. For the solid cross-section, 
the following relation was used: 

 ( )t xz xy

A

GI y z dAσ σ= −∫∫ (for 1)θ =  

or by expressing the stresses in φ : 

 t

A

GI y z dA
y z
φ φ⎛ ⎞∂ ∂

= − −⎜ ⎟∂ ∂⎝ ⎠∫∫ (for 1)θ =  

For the solid section, the integral over the area  was calculated in two parts. This will be 
done again, but now only that part of the area will be considered where material can be found 
(see Fig. 6.43). 

A

The first integral can be worked out as follows: 
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Fig. 6.43: Determination of the resulting moment for a cross-section with a hole. 

 
2 4

1 3

  

y y

y yA

y dA y d y d d
y
φ φ φ

⎛ ⎞
∂ ⎜ ⎟− = − + −⎜ ⎟∂ ⎜ ⎟

⎝ ⎠
∫∫ ∫ ∫ ∫ z   

Integration by parts with respect to  changes this relation into: y

  ( ) ( )
2 4

1 3

2 2 1 1 4 4 3 3

y y

y y

dy y y dy y y dzφ φ φ φ φ φ
⎛ ⎞
⎜ ⎟− − + − −⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
On the outer circumference, 1φ  and 4φ  are zero, while 2φ  and 3φ  have the same value hφ  at 
the circumference of the hole. This reduces the integral to: 

  ( )
2 4

1 3

3 2h

y y

y y

dy y y dy dzφ φ φ
⎛ ⎞
⎜ ⎟− − +⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
The term between square brackets is just the area of the cross-section of the φ -bubble, 
including the part of the φ -bubble above the hole. Consequently it is found: 

 h h

A A

y dA dA A
y
φ φ φ∂

− = +
∂∫∫ ∫∫  

Similarly it can be derived: 

 h h

A A

z dA dA A
z
φ φ φ∂

− = +
∂∫∫ ∫∫  

For a cross-section with a hole it remains valid that the vertical and horizontal stresses 
contribute equally. Putting all results together it can be written: 
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  2 2 2 (for

h

t h h

A A A

GI dA A dAφ φ φ θ

+

= + =∫∫ ∫∫  1)=

This completes the proof that for any arbitrary position of the hole the torsional stiffness is 
equal to twice the volume of the φ -bubble, for 1θ = . 

Cross-section with a number of holes 
It simply can be indicated how the calculation should be performed for more than one hole in 
the cross-section. In that case, the amount of unknown hφ ’s is the same as the number of 
holes, and all these hφ ’s may have a different value.  
For the membrane analogy this means that above each hole a weightless plate is present, and 
that for each plate an equilibrium equation has to be formulated. When the shape of the 
membrane has been determined in this manner and the conversion of the torsional problem is 
carried out, the torsional stiffness can be determined from: 

 
all holes

2 2tGI dA Aφ φ= + ∑∫∫ h h  (6.50)  

6.9 Thin-walled tubes with one cell 

A special case of a cross-section with holes is a tube with a relatively small wall thickness. 
The circumference of the tube is C  and it wall thickness , such that . Further it is 
assumed that the cross-sectional area inside the tube is equal to . 

t t C
hA

t

t

w

Fig. 6.44: Membrane for thin-walled tube. 

According to the membrane analogy, the membrane and plate adjust themselves such that the 
plate elevates to a certain height  (see Fig. 6.44). Because t  is very small, with a good 
approximation it can be assumed that the displacement of the membrane varies linearly from 
zero to  over the distance t . For the slope  it then holds: 

w

w ,nw

 ,n
ww
t

=   
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The equilibrium of the weightless plate is described by: 

  ,n hS w ds p A=∫
so that: 

 h
h

w pS C p A w
t S

= → =
t A
C

 

By substitution of 2p θ=  and 1S G= , the displacement  can be replaced by w hφ , i.e.: 

 2 h
h

t AG
C

φ θ=  

The torsional moment is twice the volume of the φ -bubble: 

 2 2t h h

A

M dA Aφ φ= +∫∫   

In this case, the area  of the material is equal to . For thin-walled tubes this area can be 
neglected with respect to the area of the hole . The moment then becomes: 

A t C
hA

 
242 h

t h h t
t AM A M G
C

φ θ= → =   

Therefore, the torsional moment of inertia becomes: 

 
24 h

t
t AI
C

=  

This formula is valid for a constant wall thickness . When t  varies along the circumference, 
the more general so-called 2nd formula of Bredt holds: 

t

 
24 h

t
AI
ds
t

=

∫
 (6.51) 

This formula follows from the equilibrium of the weightless plate. When t  is constant, 
application of the formula leads to the above-derived relation for tI . The shear stresses xsσ  
are approximately constant across the thickness. Apart from the sign, it holds: 

 2h h
xs

AG
t C

φσ θ= =  

or expressed in the torsional moment: 

 194



 
2

t
xs

h

M
t A

σ =  (6.52) 

This relation is called the 1st formula of Bredt. 

Remarks 
1. The assumption that the membrane varies linearly over the wall thickness is an 

approximation. In reality a weak parabolic variation has to be added to the linear profile as 
shown in Fig. 6.45. This parabolic contribution represents the torsional moment of inertia 

31
3 Ct  of the wall itself, considered as a strip. However, compared to the torsional moment 
of the entire closed tube as a whole, the contribution of the wall can be neglected.    

 

w

t
Fig. 6.45: Weakly curved membrane. 

2. It is instructive to compare the results of a closed tube and an open tube (see Fig. 6.46). 

The ratio of the stiffnesses is: 

closed tube                                 open tube

R

t
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t

3 3

max max2 2

22
3
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2 3 2

t t

t t

I R t I R t
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σ σ
π π
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= =

Fig. 6.46: Torsional stiffness of closed and open tubes. 
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The ratio of the stresses for the same moment equals: 

 3closed tube

open tube

t
R

σ
σ

⎛ ⎞= ⎜ ⎟
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It can be seen that the stresses for the transmission of the same moment in the closed tube 
are an order t R  smaller than in the open tube, while the stiffness of the closed tube is 
much larger. This is caused by the fact that the “round-going” shear stresses in the closed 
tube have a large arm ( 2R ), while this arm in the open tube is equal or smaller than . 
This means that for the transmission of the same moment, in the last case the shear 
stresses are much larger. 

t

6.10 Thin-walled tubes with multiple cells 

In the building practice, it may be necessary to calculate the torsional stiffness of box-girders 
with more cells. An example with two cells is depicted in Fig. 6.47. The traffic arrangement 
on the upper deck of a bridge may be the cause that the vertical partitioning wall is applied 

eccentrically. In this example, the thickness ( 2t ) of the upper deck is half the one ( ) of the 
webs and the lower plate. Since , the centre-to-centre distance (  and 2 ) of the box-
girder walls can be used. This means that the contribution of the walls itself can be neglected. 
For the same reason, the flanges of the box-girder can be ignored as well. 

t
t a a a

t

2a a

at t

t t

1
2 t 1

2 t

t a

Fig. 6.47: Box-girder with two cells. 

Fig. 6.48 shows a cross-section of the membrane and the two weightless plates appearing in 
the membrane analogy. The left and right plate displace  and , respectively. In the 
drawing  is chosen larger than , which is consequently applied in the calculations as 

1w 2w
2w 1w

2w
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v′′′
v′′′′

v′′

v′′′′2
1

v′′′′
v′′′′

equilibrium of the two
weightless plates

membrane

section with two cells

Fig. 6.48: Membrane and equilibrium of the plates. 

 196



well. The answers will reveal whether this assumption was correct. For the equilibrium of the 
two plates membrane shear forces of different magnitude play a role. When 2  is larger than 

, the shear forces as drawn in Fig. 6.48 will have a positive value. They are: 
w

1w

 1 1 2 2 2
1 1
2 2

; ; ; ;w w w w wv S v S v S v S v
t t t t

1w S
t
−′ ′′ ′′′ ′′′′= = = = =  

The first four shear forces  and , ,v v v′ ′′ v′′′  are applied in downward direction on the plates. 
The last force  acts upward on plate 1 and downward on plate 2 (for the case of  being 
larger than  this is the other way round). The vertical equilibrium of the plates is: 

v′′′′ 1w
2w

 
2 2 2 (

( 2
v a v a v a v a p a a         plate 
v a v a v a v a p a a         plate 

1)
)

′ ′′′′∗ + ∗ + ∗ − ∗ = ∗ ∗
′′ ′′ ′′′ ′′′′∗ + ∗ + ∗ + ∗ = ∗ ∗

      

Substitution of the forces provides: 
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1
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t t t t
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−
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−
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Division by  changes this into: a

 
1 2

1 2

8 2 (

5 (

S Sw w p a         plate 
t t
S Sw w p a plate 
t t

− =

− + =

1)

2)
 

Solution of the two equations provides: 

 1 2
11 10;
39 39

p pw at w
S S

= = at  

The displacement 2  is smaller than . Therefore, the shear force w 1w v′′′′  is pointing in the 
opposite direction than it is drawn. 
Now the transition is made to the φ -bubble by the introduction of 2p θ=  and 1S G= . This 
delivers: 

 1 2
22 20;
39 39

G a t G a tφ θ φ= = θ  

The torsional moment is twice the volume of the φ -bubble: 

 3
1 2

1282 2 2
39t tM a a a a M G a tφ φ θ= ∗ ∗ + ∗ ∗ → =  

Obviously the torsional moment of inertia equals: 
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 3128
39tI a t=   

Expressing 1φ  and 2φ  in the moment provides: 

 1 22 2

11 10;
64 64

t tM M
a a

φ φ= =  

For the stresses it then can be derived (see Fig. 6.49): 

 

1 1 2
2 21
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2 1 2
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M M
t ta t ta

2
tMφ φ φσ σ σ

φ φ φσ σ

′ ′′= = = = = =

−′′′ ′′′′= = = =
 

Fig. 6.49 indicates the proper directions of the shear stresses. The first one can be chosen, and 
considering the slope of the membrane the other ones can be indicated. The partitioning has 
the same slope as the right web, which means that σ ′′′′  points in the same direction as σ ′′ . 

1φ
2φ

σ

2a a

a

σ

σ ′

σ ′′′′ σ ′′

σ ′′′

σ ′′

Fig. 6.49: φ -distribution and shear stresses in a section with two cells. 

Exercises 
1. Confirm that the resulting horizontal and vertical shear forces are zero in the discussed 

box-girder with two cells. 
2. Check if the calculated vertical stresses deliver a torsional moment of 2tM . Repeat the 

same exercise for the horizontal stresses. 
3. Calculate with the formula of Bredt the torsional moment of inertia tI  and the stresses σ  

when the partitioning is left out of the structure. Compute the ratio of the tI ’s and the 
maximum σ ’s for the situation with and without partitioning. What can be concluded? 

6.11 Cross-section built up out of different materials 

A cross-section composed out of two different materials  and A B  is considered as shown in 
Fig. 6.50. For these materials the respective shear moduli A  and BG  are applicable. A 

coordinate system is attached to the joining line, of which the -coordinate is following 
the line and the -coordinate is perpendicular to it. Now the boundary conditions along the 

G
-n s s

n
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A

B
n

s

1

2
Fig. 6.50: Cross-section with two different materials  and A B . 

joining line are investigated. In Fig. 6.51 the -direction is considered. The stress n xnσ  has to 
be continuous across the joining line, because the stress xnσ  is transmitted from one material 
to the other. For the φ -bubble this means that the derivative sφ∂ ∂  has to be continuous. In 
both materials  and A B , φ  starts with zero value in edge point 1. Therefore, φ  has to be 
continuous along the entire joining line. 

A

B
xnσ

s

1

2

1

2

s
φ

   CONTINUOUS   CONTINUOUS A Bxn xn
s
φσ σ φ∂= ⇒ = ⇒ =

∂

Fig. 6.51: Stress condition perpendicular to a connection line of two materials.  

In Fig. 6.52 the -direction is considered. In that direction the deformation condition holds 
that the shear strain xs

s
γ  on the joining line is the same for both materials. Consequently, the 

stress xsσ  is discontinuous across the joining line (because the shear moduli A  and BG  are 
different), this means that the slope 

G
,nφ  of the φ -bubble is discontinuous too. Therefore the 

φ -bubble contains a kink.  
In the membrane analogy, the same procedure as described before can be followed. Only the 
tensile force for both materials is different. So, distinction has to be made between  and AS

   DISCONTINUOUS  = DISCONTINUOUS A Bxs xs xs n
φγγ σ ∂= ⇒ = ⇒

∂

A

Bn

xsσ

1

2

n

φ

Fig. 6.52: Strain condition in the direction of a connection line of two materials. 
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BS . This implicates again that a kink is created in the membrane. The shear force nv  must be 
continuous and because it holds that ,nv S w n=  the slope  will be discontinuous for 

. 
,nw

A BS S≠

Cross-section with hole as a special case 
 A cross-section with a hole can be regarded as a special case of a cross-section composed out 
of two materials. The hole is considered to be a special material with G  equal to zero. Then 

in the membrane analogy the tensile force  above this hole is infinitely large. Therefore, this 
part of the membrane remains flat (see Fig. 6.53). Making further use of the knowledge that: 

S

infinite
finite 

S
S

=
=φ

Fig. 6.53: Cross-section with a hole considered as a special case of two materials. 

 ,0 0 constant
A Bxn xn s hσ σ φ φ= = → = → =    

Additionally it can be concluded that this flat part of the membrane remains horizontal. So, 
exactly the same goal is achieved as with the concept of a weightless plate! 

6.12 Torsion with prevented warping 

Up to now it has been assumed continuously that the ends of the bar were loaded in such a 
manner that no axial normal stresses xxσ  could be generated. An eventual warping of the 
cross-section could take place without any hindrance. However, if the warping at the end is 
prevented, for example by bonding the end to an undeformable body, a kinematic boundary 
condition is prescribed. Then it is not possible to prescribe zero stress values. So, generally 
normal stresses xxσ  will be generated. The influence of the prevented warping can be 
considerable. Especially the stiffness can be increased strongly. This can be demonstrated for 
example by the torsion of an I-section. When an I-section is subjected to torsion, the cross-

x

y

tM
h

tM

y

b
z

Fig. 6.54: Torsion of an I-section. 
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section warps. In each cross-section, the upper and lower flanges have opposite rotation 
directions as shown in Fig. 6.54. The right part of the section is drawn again in Fig. 6.55, but 
rotated over an angle of 900. At the left sketch the warping is free at the right sketch it is 
prevented. The prevention of the warping can be achieved by subjecting the top flange to a 
moment about the -axis, while at the same time the bottom flange experiences a moment of 
the same magnitude but opposite direction. In both flanges this moment disappears gradually 
as the distance from the fixed end increases. These moments go together with shear forces V  
in -direction in the flanges.  
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tM

x
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tM
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w

ϕ

1
2 h

1
2 hb

y

x

,xM M dx+

,xV V dx+

M
V

dx

Fig. 6.55: I-section the warping of which is prevented. 

The total torsional moment tM  is not only taken up by a “round-going” shear stream 
according to De Saint-Venant, but can partly be attributed to these shear forces V too (see 
Fig. 6.56). At the clamped end ( ), the warping is completely prevented. At that position, 0x =
θ  is zero and the moment is completely determined by V h . For sufficiently large x  it can be 
expected that V  damps out to zero value and that θ  has developed completely, so that at that 
position the torsional moment is resisted just as in the case of free warping (G Itθ ). 
 
The expected picture will now be worked out quantitatively. The rotation of the cross-section 
is equal to ϕ  and the displacement of the top flange in -direction is called . The moment y w
M  and shear force V  in this flange as drawn in Fig. 6.55 are considered positive. The 
following relations are valid: 
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  t tM GI V hθ= +

Fig. 6.56: Shear forces V due to prevented warping. 
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where  is the bending stiffness of a flange for bending in the plane of the flange. For the 
torsional moment it then follows: 

fEI

 
2

2
2

1
2t t t t f

dM GI V h M GI h EI
dx

θθ θ= + → = −   

This is a differential equation in the unknown θ . After division by  and the introduction 
of the characteristic length 

tGI
λ  and the specific torsion angle svθ  according to De Saint-Venant 

given by: 

 
2

2 ;
2

f t
sv

t t

h EI M
GI GI

λ θ= =  

the differential equation becomes: 

 
2

2
2 sv

d
dx

θθ λ θ− =  

The solution consists out of a particular and a homogeneous part: 

 
1 2

( ) ( )
( ) ( )

sv
x x

x     particular part
x C e C e     homogeneous partλ λ

θ θ
θ −

=
= +

 

The total solution is: 
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 1 2( ) x x
svx C e C eλ λθ θ −= + +  

The coefficient  has to be zero, because the specific torsional angle 1C ( )xθ  has to approach 
the value svθ  for x → ∞ . Then the influence of the bonded end should not be felt anymore. 
The constant  can be found from the condition that 2C θ  is zero for 0x = , i.e.: 

 1 2: 0 ; 0 : svx C x C θ→ ∞ = = = −  

Therefore, the solution becomes: 

 ( )( ) 1 x
svx e λθ θ−= −  

On basis of this solution all desired stresses can be calculated. In Fig. 6.57 it can be seen that 
the influence of the fixed end is practically damped out at a distance of 2λ  to 3λ . 

0        1        2        3       4        5       6 x λ

1

( )

sv

xθ
θ

Fig. 6.57: Influence of the clamped end. 

Example 
For the sake of simplicity, Poisson’s ratio υ  is set to zero, so that 2G E= . 
For an I-section with the same thickness for the web and the flanges it holds: 

 ( )3 31 1; 2
12 3f tI t b I h b t= = +     

where b  is the width of the flange. It then follows: 

 
2 2
b b

h t h
λ

=
+ b

 

For more or less equal b  and , this relation becomes: h

 1
2 3

b
h t
λ

≈  

When  is much larger than , then b t λ  is much larger than . The influence of the 
disturbance by the bonded end is noticeable up to a distance (about 3

h
λ ), which is much larger 

than the size ( ) of the disturbed cross-section. In this case, the principle of de Saint-Venant 
appears not to be applicable. This means that the principle has no general validity. 

h
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A practical example of disturbed warping occurs in the case of viaducts built up out of pre-
stressed beams, on which a high-lying deck is cast (see Fig. 6.58). The disturbance occurs at 
the end cross-members and eventual intermediate cross-members. Both b  and  are of the 

order of magnitude of 1 m, while  is in the order of 0.20 m. With 

h

t 5b t =  the characteristic 
length becomes: 

Fig. 6.58: Pre-stressed beam for viaduct. 

 5 1.5 m
2 3

λ = ≈    

a damping length of about 3λ  provides more than 4 m. Compared to a span of 30 to 40 m this 
is a small part of the entire span. This means that the torsional stiffness of such a viaduct 
obtained through De Saint-Venant is sufficiently accurate, in case only end cross-members 
are applied. When intermediate cross-members are applied as well, the actual stiffness will be 
larger. 
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