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ABSTRACT 
 
A commonly used material model for reinforced concrete walls is the 
modified compression field theory. In this paper it is shown that this 
model predicts a too high strength for low reinforcement ratios. A 
modification is proposed to improve the material model. The accuracy 
of the solution is shown and size effects are demonstrated. 
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INTRODUCTION 
 
The ultimate load of concrete elements without reinforcement strongly 
depends on the tensile strength of the material. Typically, the tensile 
strength of concrete has a small average and a large standard deviation. 
Moreover, concrete fracture shows a strong size effect because large 
members fail at smaller stresses than small members. In reinforced 
concrete these disadvantages are partly compensated by the properties 
of the reinforcing steel. However, for low reinforcement ratios the 
tensile properties of concrete dominate the member behaviour. 
 
Despite the poor properties, practitioners want to apply reinforced 
concrete with low reinforcement ratios in situations where they feel that 
reinforcement is almost redundant. Also, codes of practice allow low 
reinforcement ratios in some situations. In the context of performance-
based design the low reinforcement ratios are not prohibited, instead 
the structural consequences are shown.  
 
In the following Section the mathematical formulation of the MCFT is 
explained. In the third and fourth Section the equilibrium check of the 
MCFT and the formulation of crack widths are presented which are 
particularly important for low reinforcement ratios and size effect. In 
the fifth Sections the computational algorithm is explained. In the sixth 
Section size effects in the MCFT are investigated. In the seventh 
Section the MCFT is applied to predict the behaviour of panels with 
low reinforcement ratios. An improvement to the MCFT is proposed 
and it is shown that the improved material model provides a better 

agreement with experimental results. 
 
MATERIAL MODEL 
 
The modified compression field theory (MCFT) is a constitutive model 
for reinforced concrete subjected to plane stress static loading. In this 
paper the theory is formulated such that it can correctly handle tension 
and cracking in two directions, both positive and negative shear 
loading. 
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 Figure 1. Structure of the MCFT 
 
Input of the MCFT consists of the strains εxx , andε yy γxy

1ε

(Fig 1.). The 

elementary length over which the strains are computed is approx-
imately equal to the crack distance (Fig. 2). As a consequence the local 
deformation in the cracks is evenly distributed over the surface. In step 
1 the strains are used to compute the principle strains and and the 
principle strain direction θ. The equations follow from Mohr’s Circle. 
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The reinforcing bars are directed in the x and y directions. In step 2 the 
stresses in the reinforcement are computed (Fig. 3). These stresses can 



be interpreted as an average over the length of the bars. Hardening, 
breaking and buckling of the bars are not modelled. max 0.8 170
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where is the concrete Yong’s modulus,cE 'cf is the compressive 
strength (negative value), crf is the tensile strength and tε is the strain 
in the lateral direction. 

 

crε ε

cf
crf'cε

0.004

0.002

0.0tε =
'cf

crε ε

cf
crf'cε

0.004

0.002

0.0tε =
'cf

 

where y
y

s

f
E

ε = , sE is the steel Yong’s modulus and yf is the steel yield 

stress. 

εyy

εxx
1ε

2ε

θ

y

x

 

 Figure 4. Stress-strain diagram of concrete in de MCFT 
 
In step 4, equilibrium in the cracks is checked. When necessary the 
average concrete stress 1cf  is reduced. This is explained in the next 
section. Subsequently, the concrete stresses are rotated to the x-y 
reference frame using Mohr’s circle. 

 
 Figure 2. Strains in Reinforced Concrete 
 

ε

sf

yf

sE

1
yε

y−ε

yf−

ε

sf

yf

sE

1
yε

y−ε

yf−
 

 
1

1 22
1

1 222

2θ ( )
2θ

( )
θ

cx c c
cy

c c
c

f a bcos a f f
f a bcos

b f f
v b sin

= − = +
= +

= −
=

              (5) 

 
Finally the stresses in the concrete and steel are averaged. 
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Figure 3. Stress-strain diagram of reinforcing steel in the MCFT 

  
 In step 3 the principle stresses in the concrete are computed (Fig. 4.). 

These equations have been derived from experiments on 30 reinforced 
concrete panels (Vecchio 1986). The behaviour of the compressed 
concrete is modelled by a parabola. The compressive strength is 
reduced by the strain in the lateral direction. The behaviour of the 
tensioned concrete is linear until it cracks. The concrete between the 
cracks is tensioned because it is extended by the enclosed 
reinforcement (tension-stiffening). Therefore also after cracking an 
average concrete stress occurs. The principle stress direction equals the 
principle strain direction (co-axiality). 

maxcf
εt

EQUILIBRIUM IN A CRACK 
 
An essential part of the modified compression field theory (MCFT) is 
an equilibrium check of the stresses in the cracks. When the computed 
stresses cannot be carried trough the cracks the concrete stress 1cf is 
reduced. Unfortunately, the MCFT is not clear on how this equilibrium 
check should be carried out. Many algorithms are used next to each 
other. In this paper we adopted a systematic approach using the lower 
bound theorem of plasticity theory. According to this theorem every 
statically admissible equilibrium system gives a safe approximation of 
the strength. The algorithm selects the equilibrium system that provides 
the largest concrete stress 1cf . 
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In a crack the following stresses occur (Fig. 5.). 

sxcrf  normal stress in the reinforcing bars in the x-direction in a crack  

sycrf  normal stress in the reinforcing bars in the y-direction in a crack  

civ  shear stress in a crack  

cif  compression stress in a crack 
 

 The maximum value of the shear stress is (Walraven 1981) 
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where w is the crack width, a the diameter of the largest aggregate in 
mm and 'cf  the compressive strength of the concrete in MPa. The 

compressive stress cif  in a crack follows from the shear stress v . ci
 

( )max max max

max

1 1.22 (1 / ) if 0.180

0 if

ci ci ci ci ci
ci

ci ci

v v v v
f

v v

 − − ≥= 
< 0.180

v
    (8) 

 
The stresses in Figure 5 are averages over the surface of the panel. 
These are computed using the constitutive equations. The stresses in 
Figure 6 occur in a crack. The average stresses and stresses in the crack 
need to be in equilibrium. Two equilibrium equations can be 
formulated, for the x direction and the y direction. 
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 Figure 5. Average Stresses in a Section (Vecchio 1986) 
 
 

  
 Figure 6. Stresses in a Crack (Vecchio 1986) 
 
Equilibrium System 1 
 
In equilibrium system 1, it is assumed that the reinforcement yields in 
both directions. Therefore sxcr yxf f= and sycr yyf f= . The equilibrium 

equations can be used to derive the shear stress in the crack and the 
average concrete stress
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If the computed shear stress civ is larger than the maximum shear 

stress this equilibrium system cannot occur. maxciv
 
Equilibrium System 2 
 
In equilibrium system 2, it is assumed that the reinforcing bars in the x 
direction yield and the crack starts to crush. 
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Equilibrium System 3 
 
In equilibrium system 3, it is assumed that the reinforcing bars in the x 
direction yield and the crack starts to crush due to shear in the opposite 
direction as in equilibrium system 2. 
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Equilibrium System 4 
 
In equilibrium system 4, it is assumed that the reinforcement in the y 
direction yields and the crack starts to crush. 
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Equilibrium System 5 
 
In equilibrium system 5, it is assumed that the reinforcement in the y 
direction yields and the crack starts to crush due to shear in the opposite 
direction as equilibrium system 4. 
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COMPUTATION OF CRACK WIDTHS 
 

 In case of a distributed crack pattern the crack spacing xs for loading in 
the x direction only is (ENV 1992) This algorithm proves to be very robust and sufficiently fast for real-

time computations. The iterations start from zero strain and continue 
until sufficient convergence. The following termination criterion has 
been implemented. 
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where xd is the bar diameter and xρ the reinforcement ratio. The crack 
spacing xs  for a loading in the y direction only is 
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If 10000 iterations have occurred without satisfying the termination 
criterion the panel is assumed to have failed.  
 The crack spacing in the x and y direction have a maximum value of 

half the panel width and height. If the reinforcement ratio is smaller 
than the critical ratio than the crack distance is half the panel width. 
The crack spacing s perpendicular to the crack direction θ is 

It was found that when a panel is loaded in two-way tension the 
algorithm computes perpendicular cracks that occur in the 
reinforcement directions (Fig. 7). However, due to an additional very 
small shear stress inclined cracks in only one direction occur. The 
inclination depends on the sign of the applied very small shear stress. 
Though experimental observations are not available, it is not probable 
that real panel behaviour would depend this strongly on a very small 
difference in loading. The conclusion is that the crack direction is not 
unique when a panel is loaded in two-way tension. The principal 
directions of the stresses and strains are either aligned or are very 
different. 
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The crack width w is 
 

 
1= εw s ,                  (18) 

 

 
where 1ε  is the largest principle strain. 
 
 
COMPUTATIONAL ALGORITHM 
 
The constitutive model provides the stresses , ,xx yy xyσσ σ that result 

from the strains , ,ε ε γxx yy xy . However, often engineers want to 

inverse this relation and compute the strains from imposed stresses. To 
this end the modified Newton-Raphson algorithm is very suitable. 

 
Figure 7. Possible crack solutions for a two-way tension loaded panel 
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The Newton-Raphson procedure finds the perpendicular crack solution 
when the starting strain values are . It finds either 

of the inclined crack solutions when the starting strain values are 
0xx yy xyε = ε = γ =

0, 0.0001xx yy xyε = ε = γ =  or 0,xx yyε = ε = γxy =  0.0001− . 
The inclined solutions have the largest crack widths and therefore are 
most interesting for engineering design. 
  
Alternatively, the Newton-Raphson procedure finds one of the inclined 
solutions when a small anomaly is introduced in the secant stiffness 
matrix. 

For every iteration the inverse of the initial stiffness matrix K is used, 
which can be derived as 
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SIZE EFFECTS 
 
Size effect in reinforced concrete is caused by the cracks. This is easily 
explained by the following thought experiment. Consider a concrete 
beam that is loaded and cracked. Suppose that a photo is made of this 
beam and that the photo is enlarged by a factor two compared to the 
original beam. The strains in the material of the enlarged photo will be 
the same as those in the original beam. The crack widths in the photo, 
however, will be twice as large. A wide crack has little aggregate 
interlock and little dowel action. Therefore, the stresses in the material 
of the photo would be the same but the stresses in the cracks of the 
photo would be smaller than the real beam. The stresses in the beam of 
the photo are not in equilibrium and need to redistribute. Consequently, 
the load platen of the photo carry less stress than the platen of the 
original beam. 

Figure 9. Ultimate load factor λ̂ as a function of the aggregate size a 
 
 
LOW REINFORCEMENT RATIOS 
 
It was noticed that the MCFT is inaccurate for panels with low 
reinforcement ratios (Hoogenboom 2004). For example the MCFT 
predicts 38% more strength for panel PV2 of the experimental program 
of Vecchio (1986) (Table 1). This is probably caused by the high 
variability of the concrete tensile strength. A small specimen shows a 
substantially larger tensile strength because the chance on a week spot 
is smaller than in a large panel (Weibull type size effect). However, the 
problem is alleviated because before any large loading occurs on a 
structure the concrete is already cracked due to shrinkage, drying and 
temperature changes.  

 
Figure 8 shows ultimate load of a panel as a function of its size. All 
dimensions are factored by α. The panel size is α600 mm, the panel 
thickness is α180 mm, the bar diameters are α15 and α16 mm, the bar 
spacings are α120 and α220 mm of the x bars and y bars respectively. 
The aggregate size is α30 mm. The x bars are applied in 3 layers while 
the y bars are applied in 2 layers. The concrete compressive and tensile 
strength are –35.0 and 3.0 MPa respectively. Young’s moduli of 
concrete and steel are 30000 and 210000 MPa respectively. The 
loading is factored by λ. The normal stresses are λ2.0 and λ2.2 MPa in 
the x and y direction respectively. The shear stress is λ4.75 MPa. As 
Figure 8 shows a small size effect of 2.5% occurs. 

 
The original MCFT first checks whether the average tensile stress is 
larger than the concrete tensile stress and subsequently the stress in the 
cracks is checked and reduced if necessary. In this paper it is proposed 
to check potential cracks already when the concrete is merely 
tensioned. Figure 10 shows the consequences for an uniaxial tensile test 
with a low reinforcement ratio. The left graph shows the result of the 
original MCFT and the right-hand graph shows the consequences of the 
proposed improvement. 
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Figure 10. Stress-strain curves of reinforced concrete bars 
Figure 8. Ultimate load factor λ as a function of the size factor α ˆ  
 Table 1 shows the experimental results of a number of panels with 

small reinforcement ratios. The panels are 70 mm thick and 890 mm 
wide in both directions. Young’s moduli of the reinforcing bars are 
210000 MPa. The bar diameters dx, dy and the bar spacings sbx, sby are 
included in the table. The bars form two nets in the panels. Columns 11 
to 13 contain the loading ratios. Column 14 contains the experimental 
ultimate load factor. Column 15 and 16 contain the ultimate load factor 
according to the original MCFT and the MCFT including the proposed 
improvement respectively. The table shows that the proposed 
improvement has an effect on PV2 only. The original MCFT predicted 
38% too much strength. Including the proposed improvement 34% too 
little strength is predicted. The latter is considered an improvement for 
two reasons; 1) it is a conservative prediction of the panel strength 
while the original MCFT overestimates the panel ultimate load strongly 

Figure 9. Shows the ultimate load as a function of the aggregate size 
only (ceteris paribus). The previous panel dimensions are adopted and 
α = 1. A size effect of 7.5% occurs. 
 
It can be shown that changes only in the height h of the previous panel 
do not change the ultimate loading (ceteris paribus). For small values of 
h the crack widths w are strongly reduced, up to 71%. 
 
It can be concluded that the MCFT includes size effect because the 
stresses in the materials depend on the stresses in the cracks, which 
depend on the crack width, which in turn depends on the dimensions of 
a panel and reinforcing bars. 
 



and 2) in real structures less strength will be found than in laboratory 
conditions due to the pre-cracking that will occur in time. 
 
The critical reinforcement ratio is defined as 
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f
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where tf is the concrete tensile strength and yf is the reinforcement 

yield strength. Panel PV2, PV13 and PV18 have reinforcement ratios 
less than the critical ratio in one or more directions (Table 2). In this 
situation just one crack can be expected in the panel. Despite an 
extensive search the authors did not find more experimental data on 
panels with a reinforcement ratio less than the critical ratio. 
 
Size effects were not found in the strength of concrete panels with less 
than the critical reinforcement ratio. Despite an extensive parameter 
study it was not found using the original MCFT and not using the 
MCFT with the proposed improvement. 
 

Table 2. Reinforcement ratios of the experiments 
 

 ρx ρy ρcrx ρcry 
PV2 
PV3 

PV13 
PV16 
PV17 
PV18 
PV19 
PV20 
PV29 

0.0018 
0.0048 
0.0179 
0.0074 
0.0074 
0.0179 
0.0179 
0.0179 
0.0179 

0.0018 
0.0048 
0.0000 
0.0074 
0.0074 
0.0032 
0.0071 
0.0089 
0.0089 

0.0037 
0.0025 
0.0056 
0.0060 
0.0056 
0.0034 
0.0031 
0.0032 
0.0035 

0.0037 
0.0025 

 
0.0060 
0.0056 
0.0035 
0.0048 
0.0049 
0.0048 

 
 
CONCLUSIONS AND RECOMMENDATIONS 
 
In analysis of reinforced concrete structures the material model should 
assume that the concrete is already cracked before the loading is 
applied. This prevents that unrealistic high strengths are found for 
structures with small reinforcement ratios. The assumed cracking 

represents loading due to drying shrinkage and temperature changes 
which are almost always ignored in the structural analyses. 
 
The modified compression field theory (MCFT) predicts a small size 
effect in the strength of some reinforced concrete panels loaded in 
plane stress. This size effect results from the behaviour of the cracks. 
Apparently, size effect can already be described by using an elementary 
material model as the MCFT. In the considered panels the predicted 
size effect is too small for experimental validation. More research is 
needed to determine whether the MCFT can predict size effects in 
reinforced concrete walls accurately. 
 
If a panel is loaded in two-way tension the MCFT predicts that three 
different cracking solutions are possible. There are no experiments 
available that show which of the solutions is the correct one. For 
engineering design the solution with the largest crack widths are most 
interesting. The software finds this solution when a small anomaly is 
introduced in the stiffness matrix of the Newton-Raphson procedure. 
 
There is a need for experiments on panels with less reinforcement than 
the critical ratio. Especially, data on crack widths is needed to validate 
commonly used material models for reinforced concrete. 
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Table 1. Comparison of experimental and predicted strengths 
 
 dx 

mm 
sbx 
mm 

dy 
mm 

sby 
mm 

f’c 
MPa 

ft 
MPa 

Ec 
MPa 

fyx 
MPa 

fyy 
MPa 

σxy σxx σyy Test 
MPa 

MCFT 
MPa 

MCFT+ 
MPa 

MCFT+ 
/ Test 

PV2 
PV3 
PV13 
PV16 
PV17 
PV18 
PV19 
PV20 
PV29 

2.1 
2.1 
4.5 
2.1 
2.1 
4.5 
4.5 
4.5 
4.5 

55.0 
20.6 
25.4 
13.4 
13.4 
25.4 
25.4 
25.4 
25.4 

2.1 
2.1 
0 
2.1 
2.1 
2.1 
2.1 
2.1 
2.1 

55.0 
20.6 
 
13.4 
13.4 
31.0 
13.9 
11.1 
11.1 

-23.5 
-26.6 
-18.2 
-21.7 
-18.6 
-19.5 
-19.0 
-19.6 
-21.7 

1.60 
1.70 
1.41 
1.54 
1.42 
1.46 
1.44 
1.46 
1.54 

20400 
23100 
13500 
21700 
18600 
17700 
17300 
21800 
24100 

428 
662 
248 
255 
255 
431 
458 
460 
441 

428 
662 
 
255 
255 
412 
299 
297 
324 

1 
1 
1 
1 
0 
1 
1 
1 
1 

0 
0 
0 
0 
-1 
0 
0 
0 
-0.29 

0 
0 
0 
0 
0 
0 
0 
0 
-0.29 

1.16 
3.07 
2.01 
4.12 
21.30 
>3.04 
3.95 
4.26 
5.87 

1.60 
2.94 
1.41 
1.88 
20.48 
2.98 
3.80 
4.30 
6.58 

0.77 
2.94 
1.41 
1.88 
20.48 
2.98 
3.80 
4.30 
6.58 

0.66 
0.96 
0.70 
0.46 
0.96 
0.98 
1.09 
1.01 
1.12 
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