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Stringer Panel Model for Structural Concrete Design

by Johan Blaauwendraad and Pierre C. J. Hoogenboom

A large number of concrete structures can be treated as two-dimensional
plate problems. Both the load and the support reactions have lines of action
that coincide with the plane of the structure. This is how beams, walls,
dapped beams, corbels, etc., are analyzed.

In practical design, two prominent methods of analysis exist: the strut-
and-tie method and the finite element method. First, we will briefly discuss
the advantages and disadvantages of these two methods, and subsequently
introduce a new method called the stringer panel model for the design of
economic and rational reinforcement. This approach takes into account
both equilibrium and compatibility and has the advantage of being highly
design-oriented. An additional advantage of this method is that an estima-
tion of the crack width in the serviceability limit state is part of the result.

Keywords: crack width and spacing; deep beams; finite element method;
plates (structural members); reinforced concrete; structural design.

RESEARCH SIGNIFICANCE

In current design practice, reinforcement is based on
stresses calculated with linear elastic models. In this way we
do not use the possibility of stress redistribution in statically
indeterminate structures. The amount of reinforcement can
be reduced when nonlinearities are taken into account, but
the nonlinear finite element method can only be used for
checking a final design because it is time-consuming and re-
quires specialists in computational mechanics.

This paper presents a design model for structural con-
crete plates loaded in plane. It can be used for quickly ana-
lyzing the global nonlinear behavior of structures like deep
beams, box-girder bridges, and caisson foundations. The
model is based on a design concept that integrates the
knowledge and experience of the designer with the ease of
computational methods.

STRUT-AND-TIE METHOD

A widely used approach in designing and dimensioning
concrete structures is the strut-and-tie method (STM), also
known as “truss analogy.” The strut-and-tie method has a big
advantage. The designer has to carefully consider the forces
in the structure and choose an equilibrium system in which
the load “flows™ to the supports in a recognizable way. In
this way the designer is able to insure that the specifications
of the design are correct.
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In spite of this some questions remain. Originally, the
strut-and-tie method was based on the theory of plasticity.
This theory guarantees safety when the structure is in equi-
librium at all points. But the required redistribution of stress
must be able to occur unrestrictedly; consequently, the struc-
ture needs to have sufficient deformation capacity. Herein
lies the doubt. Is the structure as ductile as it is supposed to
be? And if more than one equilibrium system is possible,
which one is the best? These doubts are the reason that ex-
perimental verification of this method still continues. A good
remedy can be to introduce in the analysis additional stiff-
ness considerations. Such research is in progress. Another
often recurring objection is that the redistribution of stress is
accompanied by cracking and that the extent of deformation
in a plasticity design is indeterminate. Thus, crack width pre-
diction is not possible. According to the codes, the strut-and-
tie method can only be applied in practice for the ultimate
limit state (ULS) and not for the serviceability limit state
(SLS). And if you do want to use the strut-and-tie method in
the serviceability limit state, you must insure that the extent
of cracking remains under control. One way to do this is to
determine the elastic stress distribution and subsequently
link up to that as closely as possible with the position of the
struts and ties.

FINITE ELEMENT METHOD

Finite element analysis (FEA) is a competitor to the strut-
and-tie method. For the FEA approach, which is developed
for computers, a number of programs are available, some of
which are user-friendly. Such programs generate their own
element grid and provide agreeable graphical output, all at
an acceptable speed. Since computation times are no longer
excessive, the designer can use fine meshes that will show
every local stress peak. Some programs also offer a post-
process option to translate the computed stresses into rein-

ACI Structural Journal, V. 93, No. 3, May-June 1996.

Received Apr. 27, 1994, and reviewed under Institute publication policies. Copy-
right © 1996, American Concrete Institute. All rights reserved, including the making
of copies unless permission is obtained from the copyright proprietors. Pertinent dis-
cussion will be published in the March-April 1997 ACI Structural Journal if received
by Nov. 1, 1996.

295




Johan Blaauwendraad is a professor of civil engineering at the Delft University of
Technology, Delft, the Netherlands. He is active in IABSE Working Commissions. His
research interests include computational methods for structural concrete.

Pierre C. J. Hoogenboom is a doctoral student at the Delft University of Technology,
where he earned his MSc degree. He is currently developing the stringer panel model
in a doctoral thesis study.

AR SN TS TS

Fig. 1—Stylized model of airplane wing in old-time application
of finite element method, stringers account for normal forces,
rectangular panels transfer shear forces

forcement. Thus, a minimum effort provides the designer
with a ready-to-use design. Little is left but to make the re-
sulting reinforcement grid somewhat more practical.

Yet even with FEA some questions remain. The first con-
cerns the ease offered by this method. The designer is hardly
forced to think or develop a feel for the structural problem.
This approach holds dangers of insufficiently considered and
therefore dangerous details. The collapse of the Sleipner
platform in 1991 clearly demonstrates this.! In this Norwe-
gian offshore structure, failure is believed to have been
caused by an uncritical choice of transverse shear reinforce-
ment based on incorrect elastic stresses that resulted from a
finite element analysis.

Another question concerns economy. Available post-
processors determine the reinforcement per element or per
so-called integration point of an element from the stresses at
that position. So the reinforcement follows the distribution
of the elastic tensile stresses. This can lead to uneconomic
reinforcement. For example, in the case of a slender beam
loaded in bending, the elastic stress distribution is linear over
the depth, and the lever arm between the resultant of the ten-
sile stresses and the resultant of the compressive stresses is
two-thirds of the height, or 0.67 /. A standard postprocessor
will base the reinforcement on this information. In reality, a
designer will position all tensile reinforcement as far out-
ward as possible, employing a bigger lever arm of about 0.9 A.
This results in a 25 percent reduction in reinforcement. From
this point of view, postprocessors do not always give the best
results. Control of crack width may be guaranteed, but there
is a price to be paid.

AN ALTERNATIVE: SPM
This article introduces an alternative that, in a way, com-
bines the big advantage of the strut-and-tie method and the
merits of the finite element method. As yet, this alternative has
been developed for only orthogonal geometries where the
edges of the considered structure are horizontal or vertical. An
extension to random shapes is of later concern. Before going
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into details, the three considerations that have lead to this al-
ternative will be discussed.

Distributed reinforcement

The first consideration is more the recognition of a fact.
Although many plates are analyzed with struts and ties, the
struts and ties are usually not recognizable as such in the re-
sulting reinforcement. Generally, reinforcement consists of
one or more concentrated tension bands situated near the
edges, with intermediate reinforcement evenly distributed
over the plate (or over large parts of it), often applied in two
orthogonal directions.

Behavior as shear panel

The second consideration is the results of tests carried out
on uniformly reinforced panels. A lot of experimental re-
search has been executed into the functioning of shear panels
with distributed reinforcement either in one or both direc-
tions. Such panels appear to behave as a homogeneous con-
tinuum. A well-distributed pattern of cracks develops and
the panels are still capable of transmitting shear stresses. The
“modified compression field theory” and comparable other
theories are available to determine the shear stiffness of the
cracked reinforced panels loaded in shear.” So concrete
plates with evenly distributed reinforcing could indeed be
considered as shear panels.

Remembering early times of FEM

The third consideration concerns developments of the fi-
nite element method in time. Presently, we are able to use the
stiffness method for the analysis of very fine meshes. With
the help of the computer thousands of equations can be
solved quickly. But that was not always the case. During the
end of the fifties and the beginning of the sixties, it was vital
to work with as few unknowns as possible.

An effective means to limit the number of equations to be
solved was the use of the force method. In this method, an
equilibrium system was chosen along with a number of re-
dundant stress parameters. Subsequently, the redundant
stress parameters were calculated on the basis of deforma-
tion compatibility considerations. This force method has in-
deed been applied by, among others, aircraft companies to
calculate airplane bodies and wings.® These airplane struc-
tures are “plate” structures consisting of regularly distributed
stringers with thin skin plates (panels) attached in between.
The essence of the early force method approach was to have
the stringers transfer all normal forces and to assume that the
panels could only transfer shear forces. Insofar as the panels
also had stiffness against normal forces, this was (as a coop-
erative flange) attributed to the stringers. Fig. 1 shows a styl-
ized example of such a wing.

The automatic choice of the correct redundant stress pa-
rameters appeared to be difficult and computation time-
consuming, so the force method eventually had to give in to
the stiffness method, which had been developed meanwhile,
because the latter could far more easily be programmed into
general purpose software.
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Fig. 2—Example of beam with I-shaped cross section mod-
eled with stringers and panels; positions of stringers obvious

Alternative

By now, the connection should be recognizable. Experi-
mental research has established the shear capacity of rein-
forced concrete panels, and this shear panel concept fits
well with the described force method approach for plates.
Moreover, we know by now how to transform the force
method into a stiffness method approach, as Blaauwen-
draad has shown.*

The proposed alternative is based on the idea that a struc-
tural concrete plate can be modeled into a system of linear
horizontal and vertical stringers for the transfer of normal
forces, whereas the rectangular fields in between can be
filled with panels for the transfer of shear forces. The fore-
going is called the stringer panel model (SPM).

Horizontal stringers can be easily indicated in beams with
an upper and a lower flange (see Fig. 2). In these types of
beams, vertical stringers always occur at the supports and
where concentrated loads are applied.

When a structure has no flanges, the position of the string-
ers has to be judiciously estimated to take into consideration
the center of the pressure zone and the place where the ten-
sile reinforcement will be concentrated; Fig. 3 shows an ex-
ample.

Quite another aspect is the width and the stiffness to be at-
tributed to each of the stringers. Whether the structure still
behaves elastically or has developed cracks determines
which width should be assigned to each stringer. Axial stiff-
ness for tensile members is derived from standard concrete
mechanics knowledge. As for compression members, it is
safe to assume relatively small widths, since the compres-
sion zone contracts heavily even in wall-type structures.

EQUILIBRIUM SYSTEM OF SPM

Only a shear force occurs in the shear panel, and it has the
same value v per unit length at all positions in the panel. This
shear force v also works at the interface between the shear
panel and the stringers bordering the panel. Then, according
to equilibrium considerations, the normal force in a stringer
increases or decreases linearly. Fig. 4 shows a drawing of
this phenomenon for two horizontal stringers.

Two examples will now be discussed. The force distribu-
tion in the I-shaped beam in Fig. 2 is statically determinate,
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Fig. 3—Wall-type deep beam modeled with stringers and
panels; position of stringers and panels must be judiciously
determined
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Fig. 4—O0n basis of equilibrium, normal force N in stringers
develops linearly at constant shear force V per unit length at
interface of panel and stringer

both externally and internally. In this case, the force distribu-
tion can be directly and uniquely derived from equilibrium.
Fig. 5 shows the result. In all stringers, both horizontal and
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Fig. 5—Force distribution in beam of Fig. 2 can be uniquely
derived from equilibrium
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Fig. 6—Force distribution in deep beam of Fig. 3, supposing all
shear force in middle part of deep beam carried by lower panels
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Fig. 7—Force distribution in deep beam of Fig. 3, supposing
upper and lower panels contribute equally to transmission of
shear force in middle part of beam

vertical, the normal force develops linearly from zero to a
maximum value (either positive or negative). In this simple
example, the normal force in horizontal stringers follows the
development of the external bending moments. The normal
forces in the vertical stringers appear as new aspects in rela-
tion to the classic beam theory. The constant shear force fol-
lows directly from the transverse shear force.

In the example of the wall in Fig. 3, the situation is less
clear. Cross Section BB does not create any problems. The
one panel in that cross section has to transmit all transverse
shear force so that the shear force in the panel is fixed. But
in Cross Section AA innumerable possibilities to spread the
transverse shear force over the two panels in that cross sec-
tion are available. An extreme supposition would be to as-
sume that the lower panel does not carry anything. In that
case, the problem can be compared to the problem in Fig. 2,
and the stringers in the lower one-half of the wall will all re-
main without stress.

Another extreme supposition is that the lower panels
carry all transverse shear force. This includes the stringer
forces in Fig. 6. At midspan a maximum lever arm for the mo-
ment is present. Then the horizontal tensile force to be transmit-
ted is F.

Fig. 7 shows the result of the intermediate situation when
the transverse tensile force is uniformly distributed over the
upper and lower panel. The sum of the horizontal tensile
forces at midspan is now 1.5 F. Fig. 8 shows the distribution
of the horizontal stringer forces in the middle cross section.

On the basis of an equilibrium consideration alone, it is impos-
sible to say which distribution is most probable. To be able to do
that, the deformations also have to be taken into account.
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Fig. 8—At midspan, moment transmitted through normal
Jorces in stringers; happens differently for various supposi-
tions with regard to shear force

ELASTIC STIFFNESS MATRIXES
This section has been included for the benefit of readers
who are interested in the details of the finite element formu-
lation of SPM. It can be passed over by readers who are just
interested in the results of the new design method.

Elastic analysis can be done using a stiffness method ap-
proach,’ although in reality an equilibrium stress state is used.
The shear panel is given four degrees of freedom, as shown in
Fig. 9. For a constant shear state, each edge will displace in its
own direction and the displacement is the same for all positions
on one edge. Four degrees of freedom are necessary, for the
panel has three independent degrees for rigid body displace-
ments. This results in one generalized deformation parameter
that is related to the constant shear stress.

Three degrees of freedom are assigned to each stringer
(see Fig. 9). These are the axial displacements at the two
ends and an extra displacement in axial direction along the
length of the stringer. This degree of freedom is associated
with the interface force between the shear panel and the
stringer. Formally speaking, this interface displacement is a
Lagrange multiplier in the underlying variational principle.
Three degrees of freedom are necessary to yield the desired
linear distribution of the normal force, for the stringer has
one rigid body displacement resulting in two generalized de-
formations that are associated with two parameters for the
normal force.

Panel

The shear panel has lengths @ and b in the x- and y-direc-
tions, respectively. The thickness is ¢ and the shear modulus
G. Stiffness matrix K of the shear panel is derived from

K = B'DB (1)

Matrix B is the kinematic relation between generalized
deformation e and displacement vector u, and D is the rigid-
ity matrix connecting generalized deformation ¢ and shear
force v per unit length.

The one-half product of e and v is the total strain energy
stored in the panel. From this we derive the relation between
e and shear strain y

e = Yab (2)
Starting from the choice for vector u
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Fig. 9—Degrees of freedom in stringers and panels

u = {uuuu,} d (3)
we find
B = [-aa-bb]
“
p=%
ab
Stringer

The stringer has length £ and axial stiffness EA. This stiff-
ness may vary along length £, so we write EA(x) in which the
coordinate x origin is at the left end of the stringer. Again, the
stiffness matrix will be derived in the form

K = B'DB 5)

Kinematic matrix B and rigidity matrix D are now derived
applying the principle of minimum complementary energy

L g
_ LN
compl — 2JEA (x)
0

dx—Fiu; — Fyu,— Fiu, (6)

This energy expression will be minimized with respect to the
two stress parameters N; and N,, which are the values of N(x)
at both stringer ends. So we find the interpolation for N(x)

X

N(x) = (1-§)Nl+£N2 (7

and from equilibrium considerations we know

-N
N
N
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It is convenient to introduce vectors ¢ and f

6= {NN}"
f= {F\FF3}"

T
u = {uu,us}t

and matrixes P(x), B, and C(x)

X X
P =1 3
-1 10
=0y ]
0-11
_ 1
Gl = [EA (x)]
Using the contractions, we can write

N(x) =P(x)o

f=Bo
Eq. (6) for E,, can be written as

1 7 T
compl = 5O Fo-o Bu

E

in which flexibility matrix [ is

e

F= jPT(x)C(x)P(x)dr

0

Minimizing E,,,,, with respect to ¢ yields

aEcom 1
—_compl — Fo—Bu=0
Jc

©)

(10)

(11)

(12)

13)

(14)

(15)

(16)

(17)

In Eq. (17), both Bu and F G can be interpreted as vector e

of the generalized deformations

e = Fo and e = Bu

(18)

The condition of stationary complementary energy requires

o = DBu

in which rigidity matrix D is equal to F~'.

19

Substitution of Eq. (19) for ¢ in Eq. (14) between fand ¢

results in

f=Ku
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(20)

with the wanted stiffness matrix

K = B'DB Q@

Elaboration of F in Eq. (16) results in

(), U

& o O_EA(—x) OW (22)
J(1-2F ¢ (2)
L (EA(gx}dx J E(:(Jx)"" _

In the case of constant axial stiffness EA, the flexibility and
rigidity matrix become

1 1
e 13 6 EA 4—2]
F=—/— D=— 23
EA 11 L [_2 il &
6 3

In the case of a nonconstant EA(x), the integrations have to
be done numerically. The Simpson rule is chosen, which
produces exact results in the limit case of constant stiffness.

DESIGN OF REINFORCEMENT

In the horizontal and the vertical stringers, either com-
pressive or tensile forces occur. Also, the transition from com-
pression to tension may occur within a stringer. For
compressive forces, compressive stress can be computed that
will have to meet the requirements valid in the strut-and-tie
method. The required reinforcement follows from the tensile
forces. It will be concentrated in a narrow tension band.

The stress situation in the panels determines whether or not
distributed structural wall reinforcement is required. This
stress situation is established in the middle of the panel and the
result is taken to be representative for the entire panel. What
has to be determined is a membrane force n,, in the horizontal
direction, a membrane force My in the vertical direction, and a
shear force v,,. The units for these three parameters are kN/m
or kips/in. They can be derived by the modified compression
field theory from strains €,,, €,,, and ¥,, in the center of the
panel.

With Mohr's stress circle, the main directions n; and n, of
the membrane forces can be determined together with their di-
rection. In case of tension, the cracking direction is also
clearly perpendicular to the tensile stress.

A number of methods exist to design the distributed two-
way net reinforcement from the panel forces n,,, n,,, and
V,,-The question can be raised as to whether or not forces n,,
and n,, have to be included in the consideration. In physical
reality they are present, but in the analysis model they do not
appear in the panel. This can be addressed in one of two
ways. One way is to reinforce stringer elements for all nor-
mal forces N and panel elements just for shear forces v,,. The
normal force N in the stringer element results in concentrated
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reinforcement and the shear force v,, in the panel results in
distributed reinforcement in two directions.

In the second way, we design the two-way panel reinforce-
ment considering both shear force v,, and normal forces n,,
and ny,. In this case the concentrated reinforcement in the
stringers can be reduced in proportion. Should the computa-
tion not lead to distributed reinforcement, often a minimum
reinforcement, as indicated in the codes, will be applied.

INFLUENCE OF CRACKING AND MODIFICATION
OF REINFORCEMENT

The real axial stiffness of cracked reinforced tensile mem-
bers will differ from the elastic stiffness. The same holds for
the shear stiffness of the reinforced panels. Due to this, redis-
tribution of stresses can take place in statically indeterminate
structures after cracking. A computer program can take into
account the change of stiffness by repeating the analyses
with better approximations for the stiffnesses. A number of
iteration steps may be needed per load level. When the load
level is increased gradually, a complete load-displacement
diagram can be computed for the structure and the failure
load is determined. Either a compression stringer, a tension
stringer, or a panel fails.

Cracked stringer stiffness can be determined by taking
into account tension stiffening, as proposed in the Eurocode®
(see Fig. 10). In the computer program, at the start of the
analysis, the elastic EA is used. As a result, the linear distri-
bution of N(x) along each stringer is found. At each cross
section, the normal force N(x) determines the secant stiffness
EA(x) that is a better approximation for the stiffness in the
next iteration step. In the cracked state EA(x) will be a non-
constant distribution, so the integrations in Eq. (22) must be
done numerically. From this new flexibility matrix the
stringer stiffness matrix in the cracked state is computed.

Shear stiffness is only computed in the center of the pan-
el. At the end of each iteration step the strains &€,,, €,,, and
Y,y are known. The shear strain is an immediate result of the
analysis and the normal strains are derived as the average
of the adjacent stringers. Modified compression field theo-
ry tells us which forces n,,, n,,, and v,, are active in the
panel at specified strains €,,, €,,, and y,,. So the relation be-
tween n,, and v,, is derived for given values of €,, and ¢,,
(see Fig. 10). The ratio of v, and y,, is the new approximation
for secant shear stiffness G in the next iteration step. From
this shear stiffness the panel stiffness matrix in the cracked
state is computed.

At the end of the analysis an ultimate load is found. If this
load is sufficiently high, the design procedure is completed.
Otherwise, we adapt the reinforcement adequately and re-
start the analysis. Experience indicates that the redistribution
of stresses is small in wall-type structures, with the needed
changes in reinforcement rather modest. Thus, the rein-
forcement that is based on the elastic stress distribution in
the stringer panel model is a practical choice.

CRACK WIDTH
Analysis produces average strains in stringers and panels,
allowing determination of crack widths w

w = cag (24)
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Fig. 10—After cracking, axial stiffness of stringers and shear
stiffness of panels reduces

in which a is the crack spacing, € is the average strain, and ¢
is a factor to account for the occurrence of small cracks be-
side the main crack (apply 0.74 for this factor). For average
crack spacing, the Eurocode formula provides®

i G 0.25% (it} (25)

in which d is the average reinforcing bar diameter (mm) and
p is the ratio of steel area and concrete area.

VALIDATION OF MODEL
Results of the stringer panel model have been compared

with test results for a series of slender beams in which bend-
ing is dominant, and a series of deep beams in which sub-
stantial shear deformation occurs.” The validation done so
far shows that SPM predicts nonlinear load-displacement di-
agrams satisfactorily. Ultimate load, which is controlled by
tension failure in the concentrated reinforcement due to
yielding of steel, is also predicted accurately. It is not yet
completely clear, however, if failure in the panel itself is ad-
equately modeled. The authors will pay some more attention
to this specific point.

Crack widths in the serviceability limit state are predicted
well, provided that the structure has been properly rein-
forced; that is, with distributed reinforcement applied over
the whole area of the wall or beam, accompanied by concen-
trated reinforcement as the main carrier of tensile forces.

WHICH SAFETY CONCEPT?
Normal design practice for the strut-and-tie method is to

apply a load factor , to the nominal load and a partial safe-
ty factor ¢,, to the ultimate strength of the material. The
nominal load is multiplied by v, and the strut-and-tie forces
are determined on the basis of equilibrium for this ultimate
load; 7y, = 1.5 is adopted. The reinforcement area in the ties
is computed from the tie forces found on the basis of a ficti-
tious yield stress that is ¢, times the characteristic yield
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strength of steel. The struts are checked against a fictitious
compressive strength that is ¢, times the characteristic con-
crete compression strength. For the ties ¢, = 0.87 and for the
struts ¢, = 0.83.

In the stringer panel method, redistribution of stresses is
possible and the method aims to take account of such effects.
Consequently, average strengths and stiffnesses must be
used instead of fictitious smaller values due to application of
,,-2 Therefore, the iterative design procedure is executed for
realistic values of strength and stiffness by applying the
characteristic values for concrete in compression and steel in
tension and a mean value for the tensile strength of concrete.
The ultimate load at failure must be y times larger than the
nominal load. If failure is due to yielding of reinforcement, then

Y=v/%, = 15/087 = 1.725

If failure is due to compression in concrete, then

Y=7v/9, .= 15/083 = 1.8

If the reinforcement is chosen on the basis of the elastic
stress distribution, no substantial redistribution is expected
to occur. if the strength is reduced by ¢,,,, then no large errors
are made. In that case, the ultimate load has to be 7, times the
nominal load.

One may expect that the same amount of reinforcement will
be found in both approaches. However, a substantial differ-
ence will occur in the computed crack widths. These will be
smaller if realistic (higher) strengths and stiffnesses are used.

APPLICATION

To demonstrate the potential of the stringer panel method,
it is applied to a nontrivial structure. A wall with an opening
is chosen that had been designed earlier with the strut-and-
tie method and was published by J. Schlaich et al.? The struc-
ture, shown in the upper part of Fig. 11, is statically indeter-
minate. Schlaich et al. coped with this fact by considering
two completely different truss models, assuming that each of
them would carry one-half the load. They arrived at the rein-
forcement scheme shown in the lower part of Fig. 11.

The wall example of Fig. 3 bears parallels to this prob-
lem. The chosen stringer panel model is shown in Fig. 12.
The panels have numbers 1 to 5. Nominal load F is 2000 kN
(450 kips). At this load level y, = 1.

An elastic analysis in which the width of each stringer is cal-
culated from each one-half-panel dimension adjacent to the
stringer gives the elastic stress distribution shown in Fig. 13.
Normal force diagrams are given for each stringer. The value
of the panel shear forces are listed beside the figure (see Fig. 12
for panel numbers). These shear forces V are calculated as
the product of v,, in the panel and the height of the panel.
Both stringer forces and panel forces are nondimensional-
ized by dividing them by 7y, F".

On the basis of these elastic stringer and panel forces the
reinforcement has been chosen. The tensile stringer forces
determine the concentrated reinforcement, and the shear
forces form the basis of distributed two-way reinforcement.
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The reinforcement areas are computed in the same way as
STM. The nominal load is multiplied by vy, = 1.5 and the
real yield stress is reduced by a factor ¢,, = 0.87. The rein-
forcement found in this way is shown in Fig. 14. Please
note the strong reduction of the horizontal concentrated re-
inforcing bars from 7 to 3 in the center of the deep part of
the wall.

Two nonlinear analyses are then carried out to compare
against the elastic analysis and to determine crack widths.
The first nonlinear analysis applies a reduced strength and
stiffness that follows from the application of ¢,, .= 0.87, ¢,, . =
0.83 (compression), and ¢,, . = 0.71 (tension), although we
think that this traditional approach is questionable. In this
scenario, load factor y, must be increased to 1.5. As a conse-
quence, the following data are used in this analysis:

Steel
fys =434 MPa (62.9 ksi)

E, = 200,000 MPa (29,000 ksi)

Concrete
fi =17 MPa (2.47 ksi)

for =2 MPa (0.29 ksi)
E,.=30,000 MPa (4350 ksi)

The resulting stress distribution is presented in Fig. 15.
The upper part of the figure shows the distribution at nomi-
nal load (y, = 1.0) and the lower part shows the ultimate load
(Y, = 1.48). Failure at y, = 1.48 is due to yielding in the hori-
zontal reinforcing bar bundle on top of the hole.

Redistribution due to cracking is very minimal. The force
distributions at y, = 1.0 and 7y, = 1.48 do not differ noticeably
from each other, nor from the elastic state. The reinforce-
ment needs no further adaptation.

Maximum crack width at the wall center is 0.43 mm
(0.017 in.) for the serviceability limit state and occurs at the
horizontal bundle with three reinforcing bars.

The second nonlinear analysis repeats the process using
the more realistic mean strength and stiffness:

Steel
£y =500 MPa (72.5 ksi)

E, = 200,000 MPa (29,000 ksi)

Concrete

[+ =20.4 MPa (2.96 ksi)

for =4 MPa (0.58 ksi)

E. = 30,000 MPa (4350 ksi)

Again, the reinforcement that follows from the elastic dis-
tribution of forces is applied. In this scenario the load factor
v, must be incremented to 1.725 if failure is due to steel or to
1.8 if failure is due to concrete. The computed force distri-
butions for y, = 1.0 in the serviceability limit state and v, =
1.69 in the ultimate limit state are shown in Fig. 16. Again,
the differences with the elastic distribution are small. Factor
1.69 is surprisingly close to the quotient of the previously
found 7y, = 1.48 and ¢,, ; = 0.87.

Thus, for the example under consideration, the application
of real strength and stiffness does not influence ultimate ca-
pacity. However, it does make a difference for the crack
width. Now the maximum is 0.14 mm (0.006 in.), which is
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one-third of the previously found value of 0.43 mm (0.017
in.). This lower value is a far more realistic expectation for
the crack width.

To better display this, Fig. 17 shows the N-g diagram for a
stringer that is loaded in tension for both realistic and re-
duced strengths and stiffnesses. Large differences in secant
stiffness occur in the domain N > 300 kN (67 kips).

For completeness, the load displacement diagrams for the
structure are shown in Fig. 18. The choice of the more real-
istic average strength and stiffness yields a stiffer structure,
which once more confirms the smaller crack widths.

Finally, the mass of reinforcement steel required by the
scheme in Fig. 14 is 260 kg (580 1b) for the concentrated rein-
forcing bar and 410 kg (900 1b) for the distributed reinforcing
bar, giving a total of 670 kg (1480 1b) for the SPM approach.

For comparison, the steel required by the STM approach
was calculated based on the scheme shown in Fig. 11. For
the distributed reinforcement, the same considerations for
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minimum reinforcement ratios as applied to the SPM ap-
proach were used. Based on this, the STM approach re-
quires 410 kg (900 1b) for the concentrated reinforcement
and 280 kg (620 1b) for the distributed reinforcement, giv-
ing a total of 690 kg (1520 1b). Although this is of the same
order of magnitude as the 670 kg (1480 1b) for SPM, the di-
vision between concentrated and distributed reinforcing
bars is completely different. In SPM the major part consists of
distributed reinforcement. In STM the major part is concen-
trated reinforcement. Another difference is the length of the
concentrated reinforcement at the top of the hole. The SPM
approach recommends a much longer bundle than STM.

CONCLUSION AND REFLECTION

The stringer panel model has potential to develop into a
useful design tool for structural concrete. The method can be
applied in parallel to the strut-and-tie method and to the de-
sign approach in which a postprocessor determines steel ra-
tios based on a standard elastic fine mesh finite element
analysis. It has special merits for nontrivial, statically inde-
terminate structures in which compatibility conditions are
important. SPM takes an intermediate position between
STM and FEA. The aim of SPM is a practical integration of
structural design and computational modeling. As is the case
with STM, the applicant of SPM has to behave as a designer.
The designer makes decisions as to where to position the
stringers and panels. The method can be made suitable for
designing in a PC environment. The designer will no longer
be troubled by the problem of which equilibrium system to
choose (a difficulty encountered in applying STM to nontriv-
ial structures), since an equilibrium system is found that
meets the deformation constraints. Redistribution after
cracking can occur, and the SPM model provides a useful in-
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dication about the crack width in the serviceability limit
state. The expectation for an elaboration of SPM is positive.
The modeling of the behavior of stringers under tension and
compression can be done quite well, with stiffness and ulti-
mate capacity determined accurately. Similar progress for
the shear panel is made. Nodes and compression stringers in
SPM have to be inspected in a way that can be compared
with STM.

The question of which category of reinforced concrete
structures the proposed SPM is most suitable for is a valid
one. It is best suited to wall-type structures. Also, spatial
structures that are an assemblage of walls (such as caissons
and box-shaped pier foundations) should lend themselves
well to SPM analysis. Results so far show that SPM can also
be used for beams and corbels, with and without flanges. It
is felt that SPM will be an attractive method, next to STM
and FEA, for a specific class of structural problems.

FUTURE WORK
Further developments of the SPM concept are in progress.

Two parallel tracks must be followed to improve the theory
and to develop a design-oriented tool. The improvement of
the theory means that gaps in knowledge must be filled in;
among these is the prediction of failure in panels. To orient
the method to structural designers, it must be offered to
them as a design tool with a low level of complexity. Plans
are to develop a computer-aided environment that facilitates
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design by drawing and analyzing in succession in an interac-
tive way. The designer has the lead and makes decisions; the
PC computes the consequences of these decisions and visu-
alizes new results in a way familiar to the structural engineer.
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