Shell response derived from a scale model

dr.ir. P.C.J. Hoogenboom, 16 November 2023

This text gives the relation between the response of a shell structure and that of a scaled down model of the shell structure.

Innut

	real shell	scaled-down r	model
span	1	1/α	m
radius of curvature	а	α / α	m
thickness	t	t/α	m
reinforcement diameter	d	d / α	m
reinforcement spacing	S	s/α	m
imperfection length	1	1/α	m
imperfection amplitude	a	a / α	m
Young's modulus	E	E	N/mm ²
Poisson's ratio	ν	ν	_
yield strength	f	f	N/mm ²
mass density *	ρ	ρ	kg/m ³
damping	٤	٤	_
line support stiffness	k	k	kN/m ²
distributed load	p	p	kN/m ²
line load	q	q / α	kN/m
point load	Р	P/α^2	kN

* This mass density is the inertia in dynamic calculations. Self-weight is applied as a distributed load on the shell model.

Calculations

File Edit View Inset Format Evaluate Tools Window Hep File Edit View Inset Format Evaluate Tools Window Hep $\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	🐝 C:\Pierre's data\www\B&B_schaal_scaling_rules.mw* - [Server 1] - Maple 2024	– ¤ ×
$\begin{bmatrix} \text{Text} & \text{Nonesecutable Math} & \text{Math} & \mathbb{C} \text{ 2D Input} & \mathbb{V} & \text{Tmes New Roman} & \mathbb{I2} & \mathbb{B} I \ U \ e = \mathbb{I} = \mathbb{I} \land \mathbb{A} if i$	File Edit View Insert Format Evaluate Tools Window Help	🎝 Sign in 🕂 🄻
$ \begin{array}{l} \hline \begin{array}{l} \label{eq:linear_states} \hline \\ \label{eq:linear_states} \\ \label{eq:linear_states} \hline \\ \label{eq:linear_states} \\ \label{eq:linear_states} \hline \\ \label{eq:linear_states} \\ $	□ □ □ □ □ □ □ □ □ □ ☆ ○ ○ □ ☆ ○ ○ □ ○ ○ ○ ○	
$\begin{vmatrix} hm := \frac{l}{alpha} : am := \frac{a}{alpha} : tm := \frac{t}{alpha} : dm := \frac{d}{alpha} : Em := E : vm := v : fm := f : rhom := rho : pm := p : qm := \frac{q}{alpha} : Pm := \frac{P}{\alpha^2} : \\ \Rightarrow \# Deflection due to distributed load [1, p. 50, pipe] \\ > uz := \frac{p \cdot t^2}{a^2 \cdot E \cdot t} \cdot \left(\frac{5}{192} + \frac{(v + 4)}{8} \cdot \frac{a^2}{t^2} + \frac{4}{t^4}\right) : uzm := \frac{pm \cdot lm^4}{am^2 \cdot Em \cdot tm} \cdot \left(\frac{5}{192} + \frac{(vm + 4)}{8} \cdot \frac{am^2}{lm^2} + \frac{am^4}{lm^4}\right) : \frac{uz}{uzm}; \\ \alpha & (1) \\ \Rightarrow \# Deflection due to a point load [1, p. 118, long cylinder] \\ > uz := 0.80 \cdot \frac{P}{E \cdot t} \cdot \left(\frac{a}{t} \cdot \operatorname{sqrt}(1 - v^2)\right)^{\frac{3}{2}} : uzm := 0.80 \cdot \frac{Pm}{E \cdot tm} \cdot \left(\frac{am}{tm} \cdot \operatorname{sqrt}(1 - vm^2)\right)^{\frac{3}{2}} : \frac{uz}{uzm}; \\ 1.000000000 \alpha & (2) \\ \Rightarrow \# Stresses [1 p. 39 dome] \\ > n := -p \cdot a : nm := -pm \cdot am : sigma := \frac{n}{t} : sigma m := \frac{nm}{tm} : \frac{sigma}{sigmam}; \\ 1 & (3) \\ \Rightarrow \# Buckling load [1, p. 139, cylinder] \\ > ncr := -0.6 \cdot \frac{E \cdot t^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm}; \end{cases}$	Text Nonexecutable Math Math C 2D Input 🔹 Times New Roman 🔹 12 🔹 B I U 📑 = = I 🖉 🖽 🗄	*
$ \begin{array}{l} \begin{array}{l} \begin{array}{l} & 1 \\ \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ \end{array} \\ & \begin{array}{l} & \\ \end{array} \\ & \begin{array}{l} & \\ \end{array} \\ & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \begin{array}{l} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ \\$	> restart :	^
$ \begin{aligned} & uz := \frac{p \cdot t^4}{a^2 \cdot E \cdot t} \cdot \left(\frac{5}{192} + \frac{(v+4)}{8} \cdot \frac{a^2}{t^2} + \frac{a^4}{t^4}\right) : uzm := \frac{pm \cdot lm^4}{am^2 \cdot Em \cdot tm} \cdot \left(\frac{5}{192} + \frac{(vm+4)}{8} \cdot \frac{am^2}{lm^2} + \frac{am^4}{lm^4}\right) : \frac{uz}{uzm}; \\ & \alpha \end{aligned} $ (1) $ & z := 0.80 \cdot \frac{P}{E \cdot t} \cdot \left(\frac{a}{t} \cdot \operatorname{sqrt}(1 - v^2)\right)^{\frac{3}{2}} : uzm := 0.80 \cdot \frac{Pm}{E \cdot tm} \cdot \left(\frac{am}{tm} \cdot \operatorname{sqrt}(1 - vm^2)\right)^{\frac{3}{2}} : \frac{uz}{uzm}; \\ & 1.000000000 \alpha \end{aligned} $ (2) $ & z := -p \cdot a : nm := -pm \cdot am : \operatorname{sigma} := \frac{n}{t} : \operatorname{sigmam} := \frac{mm}{tm} : \frac{\operatorname{sigmam}}{s \operatorname{sigmam}}; \\ & z := 0.60 \cdot \frac{E \cdot t^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{pm}{tm}; \end{aligned} $	$ \sum_{n=1}^{\infty} lm := \frac{l}{alpha} : am := \frac{a}{alpha} : tm := \frac{t}{alpha} : dm := \frac{d}{alpha} : Em := E : vm := v : fm := f : rhom := rho : pm := p : qm := \frac{q}{alpha} : Pm := \frac{P}{\alpha^2} : pm : p$	
$\alpha \qquad (1)$ $\Rightarrow \# Deflection due to a point load [1, p. 118, long cylinder]$ $> uz := 0.80 \cdot \frac{P}{E \cdot t} \cdot \left(\frac{a}{t} \cdot \operatorname{sqrt}(1 - v^2)\right)^{\frac{3}{2}} : uzm := 0.80 \cdot \frac{Pm}{E \cdot tm} \cdot \left(\frac{am}{tm} \cdot \operatorname{sqrt}(1 - vm^2)\right)^{\frac{3}{2}} : \frac{uz}{uzm};$ $1.000000000 \alpha \qquad (2)$ $\Rightarrow \# Stresses [1 p. 39 dome]$ $> n := -p \cdot a : nm := -pm \cdot am : \text{sigma} := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{\text{sigma}}{sigmam};$ $1 \qquad (3)$ $\Rightarrow \# Buckling load [1, p. 139, cylinder]$ $> ncr := -0.6 \cdot \frac{En \cdot tm^2}{a} : pr := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm};$	# Deflection due to distributed load [1, p. 50, pipe]	
$ = \# Deflection due to a point load [1, p. 118, long cylinder] $ $ = uz := 0.80 \cdot \frac{P}{E \cdot t} \cdot \left(\frac{a}{t} \cdot \operatorname{sqrt}(1 - v^2)\right)^{\frac{3}{2}} : uzm := 0.80 \cdot \frac{Pm}{E \cdot tm} \cdot \left(\frac{am}{tm} \cdot \operatorname{sqrt}(1 - vm^2)\right)^{\frac{3}{2}} : \frac{uz}{uzm}; $ $ = 1.000000000 \alpha $ $ = 1.0000000000 \alpha $ $ = 1.000000000 \alpha $ $ = 1.0000000000 \alpha $ $ = 1.0000000000 \alpha $ $ = 1.0000000000 \alpha $ $ = 1.00000000000 \alpha $ $ = 1.00000000000000 $ $ = 1.00000000000000000000000000000000000$	$> uz := \frac{p \cdot l^4}{a^2 \cdot E \cdot t} \cdot \left(\frac{5}{192} + \frac{(v+4)}{8} \cdot \frac{a^2}{l^2} + \frac{a^4}{l^4}\right) : uzm := \frac{pm \cdot lm^4}{am^2 \cdot Em \cdot tm} \cdot \left(\frac{5}{192} + \frac{(vm+4)}{8} \cdot \frac{am^2}{lm^2} + \frac{am^4}{lm^4}\right) : \frac{uz}{uzm};$	
$\begin{vmatrix} uz := 0.80 \cdot \frac{P}{E \cdot t} \cdot \left(\frac{a}{t} \cdot \operatorname{sqrt}(1 - v^2)\right)^{\frac{3}{2}} : uzm := 0.80 \cdot \frac{Pm}{E \cdot tm} \cdot \left(\frac{am}{tm} \cdot \operatorname{sqrt}(1 - vm^2)\right)^{\frac{3}{2}} : \frac{uz}{uzm}; \\ 1.000000000 \alpha \qquad (2) \\ \Rightarrow \# Stresses [1 p. 39 dome] \\> n := -p \cdot a : nm := -pm \cdot am : \text{sigma} := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{\text{sigma}}{sigmam}; \\ 1 \qquad (3) \\\Rightarrow \# Buckling load [1, p. 139, cylinder] \\> ncr := -0.6 \cdot \frac{E \cdot t^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm}; \end{aligned}$	α	(1)
$1.00000000 \alpha $ (2) $\Rightarrow \# Stresses [1 p. 39 dome]$ $> n := -p \cdot a : nm := -pm \cdot am : sigma := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{sigma}{sigmam};$ 1 $\Rightarrow \# Buckling load [1, p. 139, cylinder]$ $> ncr := -0.6 \cdot \frac{E \cdot t^{2}}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^{2}}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm};$	> # Deflection due to a point load [1, p. 118, long cylinder]	
$ = \# Stresses [1 p. 39 dome] $ $ = n := -p \cdot a : nm := -pm \cdot am : sigma := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{sigma}{sigmam}; $ $ = 1 $ $ = Buckling load [1, p. 139, cylinder] $ $ = ncr := -0.6 \cdot \frac{E \cdot t^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm}; $ $ = \frac{1}{2} \cdot \frac{ncrm}{am} : \frac{p}{pm}; $		
$ n := -p \cdot a : nm := -pm \cdot am : \text{sigma} := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{\text{sigma}}{sigmam}; $ $ F = Buckling load [1, p. 139, cylinder] $ $ ncr := -0.6 \cdot \frac{Er \cdot r^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm}; $ $ (3)$	1.00000000 α	(2)
$ = \frac{1}{1} $	> # Stresses [1 p. 39 dome]	
$ = \# Buckling \ load \ [1, p. 139, cylinder] $ $ = ncr := -0.6 \cdot \frac{E \cdot t^2}{a} : ncrm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ncr}{a} : pm := 2 \cdot \frac{ncrm}{am} : \frac{p}{pm}; $	> $n := -p \cdot a : nm := -pm \cdot am : sigma := \frac{n}{t} : sigmam := \frac{nm}{tm} : \frac{sigma}{sigmam};$	
$ rer := -0.6 \cdot \frac{E \cdot t^2}{a} : nerm := -0.6 \cdot \frac{Em \cdot tm^2}{am} : p := 2 \cdot \frac{ner}{a} : pm := 2 \cdot \frac{nerm}{am} : \frac{p}{pm}; $	1	(3)
	> # Buckling load [1, p. 139, cylinder]	
	$E \cdot t^2$ $p \in Em \cdot tm^2$ $p = ner$ p	
	$p := 2 \cdot \frac{1}{am} : pr := 2 \cdot \frac{1}{am} : \frac{1}{pm} : p := 2 \cdot \frac{1}{am} : \frac{1}{pm} : \frac{1}{am} : \frac{1}{pm} : \frac{1}{am} : \frac{1}{pm} : \frac{1}{am} : \frac{1}{pm} : 1$	
		(4)

$$\begin{array}{l} > \# Buckling length [1, p. 139, cylinder] \\ > lcr := 1.7 \cdot \operatorname{sqrt}(a \cdot t) : lcrm := 1.7 \cdot \operatorname{sqrt}(am \cdot tm) : \frac{lcr}{lcrm}; \\ & \frac{1.00000000 \sqrt{at}}{\sqrt{\frac{at}{\alpha^2}}} \\ > \# Vibration [1, p. 163, curved plate] \\ > fn := \operatorname{sqrt}\left(\frac{\operatorname{Pi}^2}{12 \cdot (1 - \operatorname{v}^2)} \cdot \frac{E \cdot t^2}{\operatorname{rho} \cdot t^4}\right) : fnm := \operatorname{sqrt}\left(\frac{\operatorname{Pi}^2}{12 \cdot (1 - \operatorname{vm}^2)} \cdot \frac{Em \cdot tm^2}{rhom \cdot lm^4}\right) : \frac{fn}{fnm}; \\ & \sqrt{\frac{Et^2}{(-12 \cdot v^2 + 12) \rho t^4}} \\ & \sqrt{\frac{Et^2 \alpha^2}{(-12 \cdot v^2 + 12) \rho t^4}} \end{array}$$

(5)

(6)

Output

	real shell	scaled-down model	
deflection	u	u/α	mm
stresses	σ	σ	N/mm ²
membrane force	n	n/α	kN/m
moment	т	m/α^2	kNm/m
collapse load factor (plastic mechanism)	λ	λ	_
buckling load factor	λ	λ	_
buckling length	1	1/α	m
natural frequencies	f	αf	Hz

Comments

The formulas in the calculations are for specific shell shapes, small displacements and linear elastic material behaviour. However, it is believed that the conclusions can be generalized to any shell shape. A mathematical proof is not part of this text.

The rules have been verified in a bachelor end project [2]. In this project finite element models of large and small structures have been compared in linear, geometrically nonlinear and physically nonlinear behaviour. The result was that no deviations from the rules were found.

Size effect

Some materials break in a brittle way, for example, glass, unreinforced concrete and masonry. It is known that structures made of these materials fail at a stress that depends on the size of the structure. Large structures fail at a smaller stress than small structures. This is called the *size effect* of structural strength [3].

Size effect is caused by the internal structure of the material, for example, the bricks in a masonry beam. Head joints in masonry are not strong and failure starts by fracture of the brick above the bottom middle head joint (Fig. 1). If we calculate the stresses in both beams linear elastically, the large beam fails at a smaller stress.

Exercise: Derive a formula for the beam linear elastic failure stress as function of the beam depth, brick height and material fracture stress.

Consequently, when we build a scaled-down masonry shell model, we need to use scaled-down bricks too.

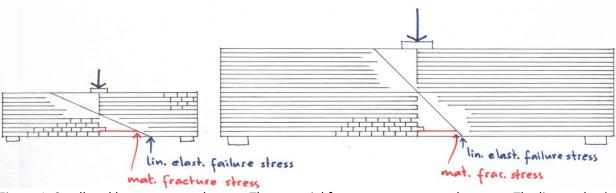


Figure 1. Small and large masonry beams. The material fracture stresses are the same. The linear elastic failure stresses are different.

Literature

- 1. P.C.J. Hoogenboom, Notes on Shell Structures, Reader CIEM5301 Delft University of Technology, Civil Engineering and Geosciences, 2023, online: http://phoogenboom.nl/b17_schedule.html
- 2. A. Alami, Finite element analysis of structures; Comparing large and small-scale structures in linear and non-linear behaviour, Bachelor end project, Delft University of Technology, Faculty of Civil Engineering and Geosciences, June 2024, online: https://phoogenboom.nl/BSc_projects/eindrapport_alami.pdf
- 3. Z.P. Bazant, Size effect on structural strength, Wikipedia, retrieved 3 July 2024