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Summary

The use of computers in engineering started in 1960. Before 1960, engineers used physical models to
check the results of complex structures. Recently, these physical models have been used for education
purposes, namely, in the minor Bend and Break. Conversion from small-scale structures to real-sized
structures was taught in this minor (P. C. J. Hoogenboom, n.d.). Therefore, This research aims to find
a relation between small-scale and real-sized structures. Namely, the conversion of internal forces and
displacements from a small-scale structure to a real-sized structure in both linear and non-linear mate-
rial behaviour. A linear calculation yields a linear relation between the results and the applied force on
the structure, unlike a non-linear calculation. The conversion rules apply to linear material behaviour.
However, whether they also apply to physical and geometrical non-linear material behaviour is uncer-
tain. This uncertainty yields the following research question:

“There are conversion rules for deflection and stresses from small-scale structures to real-sized
structures. Do these apply to non-linear behaviour too?”

Multiple structures were analysed. A small-scale and real-sizedmodel of these structures wasmodelled
in the finite element program SCIA Engineer (SCIA, 2024). The geometrical properties of the small-
scale structures were 10 times smaller than the geometrical properties of the real-sized structures. The
type of structures is itemized below:

• A steel truss (with and without bending stiffness)
• A steel beam (statically determinate and statically indeterminate)
• A steel Vierendeel girder
• A concrete two-way slab
• A concrete shell roof

Geometrical and physical non-linear calculations were done. The geometrical non-linearity focused on
local and global buckling, which yields large displacements while physical non-linearity focused on the
plasticity of hinges and elastoplastic stress-strain diagrams. Relevant forces in the structures’ mem-
bers and nodes were computed with linear and non-linear calculations. Additionally, displacement and
deformations of relevant members or nodes were analysed. Furthermore, the applied loads are point
loads, line loads or distributed loads, which had their conversion rules from small-scale to real-sized
structures. Namely, the real-sized point load is 100 times larger than the small-scale point load. The
real-sized line load is 10 times larger than the small-scale line load and distributed loads are identical
in both structures. This yields identical stresses in the small-scale and real-sized structures. Displace-
ments differ by a factor of 10 and internal forces by a factor of 100 or 1000, depending on the type of
applied load.

The steel trusses, the statically determinate beam, the Vierendeel girder and the concrete shell roof
were all analysed with a geometrical non-linear calculation. All linear analyses followed the conversion
rules perfectly. The relevant displacements in the small-scale structures differed by a factor of 10 from
the displacements in the real-sized structures. The internal forces differed by a factor of 100 or 1000.
Similarly, in the geometrical non-linear calculation, the displacements differed by a factor of 10 and
the internal forces by a factor of 100 or 1000. However, there were small numerical errors in the non-
linear calculation. This happens when SCIA Engineer makes a non-linear calculation due to its iterative
calculation method. The statically indeterminate beam and the concrete two-way slab were analysed
with a physical non-linear calculation in addition to geometrical non-linearity. The plasticity of hinges
was tested in the statically indeterminate beam and the elastic stress-strain curve of the two-way slab
model was changed to an elastoplastic stress-strain curve which yields large displacements. Again,
the internal forces differed by a factor of 100 or 1000, depending on the type of applied load. The
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displacements differed by a factor of 10, which is in line with the existing conversion rules.

In conclusion, for the analysed structures, the conversion rules apply to both geometrical and physical
non-linear material behaviour.
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1
Introduction

In Civil and Structural Engineering, we design large complex structures in which structural safety is
the most important aspect. In general, a design starts with a well-elaborated plan. The position and
orientation of columns and beams are planned and building materials are chosen (Mishra, 2024). In this
phase, all geometrical andmaterial properties are designed. Subsequently, the permanent and variable
loads and their combinations acting on the structure are computed, followed by the internal reaction
forces, stresses and displacements. An interesting way to estimate these forces and displacements
is by designing a scaled version of the corresponding structure. Subsequently, the displacements are
measured and the applied forces are computed. Rescaling the structure to its original dimensions
yields results applicable to the real-sized structure. The applied forces and displacements in the real-
sized structure can be computed by scaling these applied forces and displacements of the small-scale
structures with a set of conversion rules.

It is unknownwhether the conversionmethod works for non-linear material behaviour. Imperfections
of members, materials and connections are not taken into account in a model computed with a linear
calculation. Subjecting the structure to non-linear material behaviour or imperfections can change the
conversion rules from scaled to real-sized structures. This uncertainty can be problematic for the use
of this method because the obtained results for the real-sized structure could become inaccurate when
using conversion rules for linear material properties without knowing if these conversion rules apply to
non-linear material properties.

The goal of this research is to find out whether small-scale structures subjected to forces that yield
non-linear material behaviour can be converted into real-sized structures with a set of conversion rules.
The following research question is answered:

“There are conversion rules for deflection and stresses from small-scale structures to real-sized
structures. Do these apply to non-linear material behaviour too?”

The research is limited to finite element models of a set of structures, focusing on steel and concrete.
This selection consists of a steel truss, a concrete slab (floor), a concrete shell roof and a steel Vieren-
deel girder.

The structure of the report is as follows. Chapter 2 dives into the theoretical background of Finite
element analysis, a powerful numerical tool to compute all relevant quantities. Furthermore, it gives an
elaborate explanation of linear and non-linear material behaviour and their distinctions. The selection of
structures and the general conversion rules follow in Chapter 3. In Chapters 4, 5, 8, 7 and 6 the selection
of structures is tested on linear and non-linear material behaviour in the Finite element Analysis (FEA)
program SCIA Engineer (SCIA, 2024). All structures, small-scale and real-sized are modelled in this
software-packet. Finally, a conclusion to the research question is formed in Chapter 9.

1



2
Theoretical framework

As mentioned in the introduction, finite element analysis is a powerful numerical method developed to
analyse the mechanical behaviour of complex engineering structures. Its concept originates from the
time of Archimedes, who tried to compute areas of complex shapes by dividing them into multiple trian-
gles. This is very similar to finite element analysis. Namely, when performing a finite element analysis
on a structure, it is divided into small elements for which the forces, stresses and displacements are
approximated (Sabat & Kundu, 2020).

This chapter, explains the fundamentals of finite element analysis and gives a simple example. Addi-
tionally, linear and non-linear material behaviour are explained.

2.1. Fundamentals of Finite Element Analysis
The process of finite element analysis can be subdivided into three processes. First, a structure needs
to be modelled in a FEA (finite element analysis) program. The structure consists of a discrete amount
of nodes and members, for which applied loads or displacements are chosen. Second, the FEA pro-
gram constructs and solves a system of either linear or non-linear equations. A general expression of
the constructed matrices follows Hooke’s Law (Cantor, 2020) and is shown in Equation 2.1

Ku = f, (2.1)

where u is the displacement vector and f is the applied force vector on each finite element. The K
matrix usually consists of the stiffnesses of the individual elements, but it changes according to the type
of the assessed structure. Finally, the obtained results are graphed or tabulated (Roylance, 2001).

A brief example of a finite element model is shown. Suppose there is a simply supported 1D beam,
depicted in Figure 2.1 with an external point load F at the midspan. The degrees of freedom are rotation
around the y-axis and displacement in the z-axis. The reaction forces are moments, shear forces and
normal forces.

Figure 2.1: A simply supported beam subjected to a force at midspan. An example of finite element analysis is shown using
this structure.

The beam has a Young’s Modulus E (Çopuroğlu, 2018), a moment of inertia in the direction of loading
I and a cross-sectional area A. To simplify this example, the finite element model is reduced to one
member and two nodes. At the supports, the rotations around the y-axis θ1 (left support) and θ2 (right
support) are non-zero. θ3 at the midspan is zero due to the symmetry of loading. Furthermore, the
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2.2. Linear and non-linear material behaviour 3

displacement of both supports is zero and the displacement is maximum at midspan. Thus, there are
four unknown parameters in the element stiffness matrices K1 and K2 and six in the global stiffness
matrix Kglobal. This example only shows the final expressions of both element stiffness matrices and
the global stiffness matrix. The element stiffness matrices1 and displacement/rotation vector for
elements 1 and 2 are shown in Equation 2.2 and Equation 2.3 depicts the global stiffness matrix and
the global displacement vector.

K1u1 =
8EI
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3l l2 −3 1

2 l
2
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The global stiffness matrix already becomes large when the structure is divided into two elements.
This model is limited to computing displacements and rotations only at the supports and the midspan,
whereas a finite element model on a computer provides results at numerous locations throughout the
beam. The computer divides the beam into more elements, which means that the global stiffness matrix
is much larger. Namely, a simply supported beam divided into 10 elements yields a global stiffness
matrix of 22 by 22 instead of the 6 by 6 matrix in this example.

2.2. Linear and non-linear material behaviour
This section explains two types of material behaviour, namely, linear and non-linear material behaviour.

2.2.1. Linear material behaviour
Linear analysis is defined as any analysis where linear extrapolation of stress, load and deflection is
valid (Chan, 2001). This statement holds for the linear part of a σ − ϵ diagram. A σ − ϵ diagram for
construction steel is shown in Figure 2.2.

Figure 2.2: σ − ϵ diagram for construction steel, (Alsayed, 2021).

1The element stiffness matrices were made by following a finite element method lecture on YouTube. The link to the video is:
https://www.youtube.com/watch?v=KWmsolAmEn4&ab_channel=MechanicalEngineeringE-Learning
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This linear part can be described by Hooke’s Law (Cantor, 2020). The tangent of the stress-strain re-
lation is the Young’s modulus (Çopuroğlu, 2018). It is constant in this linear part. However, for stress
values higher than the yield strength, it reaches its ultimate strength and subsequently the material
fractures.

The stress-strain diagram illustrated in Figure 2.2 is obtained by applying an increasing tensile force
on a steel bar. Then, its elongation is measured and converted to strain. The forces are converted to
stresses. The stresses and strains can be computed as described in Equations 2.4 and 2.5

σ =
F

A0
, (2.4)

ϵ =
∆l

l0
, (2.5)

whereF is the increasing tensile force,A0 is the initial cross-sectional area of the rod,∆l is its elongation
and l0 is its initial length (Davis, 2004). When performing a compression test on a steel rod, the buckling
resistance is eventually reached. Figure 2.3 shows a force-displacement diagram for a compressive
test.

Figure 2.3: Force-Displacement diagram of a compression test on a steel member, (Ahmadpour et al., 2017).

This diagram starts as a linear relation between the applied compressive force and displacement. The
relation changes for values close to the buckling resistance.

2.2.2. Non-linear material behaviour
“Non-linear analysis can be defined as any analysis when linear extrapolation of stress, load and deflec-
tion is invalid (Chan, 2001, p. 1218).” There are different types of non-linear material behaviour. For
example, the moment steel starts to yield, the stress-strain relation becomes non-linear. This can be
seen in Figure 2.2. Figure 2.3 also shows that the curve becomes non-linear as the buckling resistance
is reached.
Another way to look at non-linear material behaviour is by testing the geometry of the structure. Ge-
ometrical non-linearity occurs when the displacements become large enough that they will affect the
response of the structure. For example, when the point load F on the simply supported beam in Fig-
ure 2.1 becomes too large, additional horizontal tensile forces form at the supports. These horizontal
forces would not occur for small displacements. These extra tensile forces and displacements are
called second-order effects.



3
Methodology

This chapter gives a brief explanation of the selection of tested structures. Second, the conversion
rules, that are proven for linear material behaviour, are presented.

3.1. Selection of tested structures
A selection of structures is chosen to be modelled in SCIA Engineer (SCIA, 2024). For each selection,
two versions are modelled, a small-scale version and a real-sized version. The selected structures are
the following:

• A steel truss.
• The critical buckling beam in the steel truss.
• A steel Vierendeel Girder.
• A concrete shell roof.
• A concrete one-way slab.

These structures are all analysed similarly. First, a calculation following linear material behaviour is
done, in which the structures are subjected to a variety of loads increasing with a constant step size.
Subsequently, either a geometrical non-linear calculation or a physical non-linear calculation is per-
formed. The main objective for the geometrical non-linear calculation is the buckling of the structure.
The scope of the physical non-linearity is the plasticity of hinges and large displacements due to the
yielding of material.

Steel truss
Trusses are widely used in civil and structural engineering (Machacek & Cudejko, 2011). Therefore, this
is the first structure that is assessed. The self-weight is neglected when computing the internal forces
and displacement in the SCIA Engineer simulation because the conversion rules do not apply when
this is considered. This structure is subjected to point loads on the nodes to avoid bending moments
in members of the truss because, in practice, trusses are rarely loaded in the members but at inter-
sections between members (Saliklis, 2020). Furthermore, this truss is modelled in a 2D environment
(xz-plane) in SCIA Engineer. There are no rotations around the x-axis and z-axis. Displacements and
rotation only take place in this xz-plane.

Critical buckling beam in the steel truss
As mentioned in Chapter 2, a buckling graph consists of a linear and non-linear part. Therefore, the
critical buckling beam in the truss is modelled. It is a simply supported beam with a buckling length
equal to the system’s length. This beam is also modelled in the xz-planes and similar conditions for
rotation and displacement apply. Self-weight is again neglected.

Steel Vierendeel Girder
A Vierendeel girder is a structure named after Jules Arthur Vierendeel (Pons-Poblet, 2019). It looks
very similar to a truss. However, it does not have inclined members. This structure is subjected to point
loads on all upper nodes. It is modelled in 2D and there are only rotations and displacements in the
xz-plane.
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3.2. Conversion rules 6

Concrete two-way slab
A practical example of a concrete two-way slab is a floor. The chosen concrete strength class for the
two-way is C30/37. In contrast with the shell roof, a slab is not prone to buckling as it transfers the
loads by bending. Therefore, the concrete shell roof is assessed by changing the material behaviour
from elastic to elastoplastic following Von-Mises’ yield criterion (Kavoura et al., 2022). This results in
large displacements as the material behaviour changes as the stresses become higher. The large dis-
placements can be described as geometrical non-linear behaviour, which is the scope of this research.

Concrete shell roof
Another widely used building material is concrete. It is composed of three main ingredients. Namely,
cement, aggregates and water (Neville, 2001). It can only withstand compressive forces and its tensile
strength is negligible. Therefore, all concrete structures are reinforced for additional tensile capacity
or prestressed for additional compressive stress. Therefore a higher tensile force is needed to pull on
the concrete. The concrete shell roof was chosen because shell roofs are efficient civil engineering
structures (Ramm, 2004).

A summary of the type of applied loads and the scaling factors α on all structures is depicted in Table
3.1:

Table 3.1: The type of loading and the scaling factors of the selected structures.

Structure Type of loading Scaling factor α
Steel truss Point loads on all upper nodes in the z-direction 10
Critical steel beam Compressive force in the beam’s direction 10
Steel Vierendeel girder Point loads on all upper nodes in the z-direction 10
Concrete two-way slab Distributed load over the whole structure 10
Concrete shell roof Distributed load over the whole structure 10

3.2. Conversion rules
This section is based on the conversion rules of P. Hoogenboom (2023). The conversion rules for
modelling the small-scale and real-sized structures can be divided into three parts:

1. Conversion of dimensions
2. Conversion of material properties and supports
3. Conversion of loads

Conversion of dimensions
In this project, all small-scale structures are one-tenth of the size of the real-sized structure. The scaling
factor α is left as a variable to obtain conversion rules applicable to all scaling factors. The conversion
rules for the dimensions of a concrete shell are shown in Table 3.2.

Table 3.2: Converion rules for shell structures. All variables of the real-sized structure are a factor α larger than those in the
small-scale structure.

Dimensions Real-sized Small-scale
Span l l/α

Radius of curvature a a/α
Thickness t t/α

Reinforcement diameter d d/α

For columns and beams, similar conversion rules apply. Table 3.3 shows the conversion rules for
columns and beams.
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Table 3.3: Conversion rules for columns and beams. All variables of the real-sized structure are a factor α larger than those in
the small-scale structure.

Dimensions Real-sized Small-scale
Length l l/α

Width of cross-section w w/α
Height of cross-section h h/α

Conversion of material properties and supports
The relevant material properties are the following:

• The Young’s modulus (E)
• The Poisson’s ratio (ν)
• The yield strength (f )
• The mass density (ρ)

All these material properties are identical for both structures. Additionally, the damping of the real-sized
structure and the stiffnesses do not change.

Conversion of loads
There are three types of loads: a distributed load p in kN/m2, a line load q in kN/m and a point load P
in kN . A distributed load does not change for the small-scale structure. A line load on the small-scale
structure differs by a factor of 1/α with the real-sized structure and a point load differs by a factor of
1/α2. The gravitational acceleration stays the same in both structures.

Conclusions
The conversion rules follow general structural mechanics and the following can be concluded:

• The deflection in the real-sized structure is α times the small-scale structure.
• The stresses in both the small-scale and the real-sized structures are identical.
• The buckling length of the real-sized structure is α times the buckling length of the small-scale
structure.

• The internal forces in beams and columns in the real-sized structure are α2 times the forces in
the small-scale structure.



4
Analysis of a Steel Truss

Steel trusses are used widely in civil engineering structures (Machacek & Cudejko, 2011). All forces
are transferred by normal forces, which makes the beams susceptible to buckling. In the non-linear
calculation, the focus is set on the imperfections of beams because buckling resistance decreases sig-
nificantly when an imperfection is added to the beam.

There are two different models for both the small-scale and real-sized trusses. The first model has
members with a bending stiffness and rigid connections. This model is prone to local buckling. The
second model does not have any bending stiffness and can only buckle globally. There will be no
bending in this truss. Both trusses are loaded with point loads on the upper nodes and have identical
material en geometrical properties. The following common properties were chosen for the real-sized
truss. The entire truss is made of S355 construction steel with a yield strength of 355 N/mm2. All
beams have a circular cross-sectional area with a diameter of 2.5 in (This particular cross-section was
selected because, among the limited choices available to SCIA engineers, there was a small-scale
diameter of 0.25 in, which is exactly 10 times smaller). Furthermore, the structure has a length of 6 m
and a height of 1 m. In Figure 4.1, the model of the truss is depicted.

Figure 4.1: SCIA Engineer model of the steel truss with all members’ names and node names.

The small-scaled truss has the same material properties as the real-sized one. However, its diameter
is 0.25 in and its length and height are 0.6 m and 0.1 m respectively.

4.1. Steel truss with bending stiffness
This first model of the steel truss was subjected to point loads on all upper nodes ranging from 1 kN
to 8 kN and 100 kN to 800 kN . First, a linear analysis was done. Second, a non-linear analysis was
done with bow imperfections following the buckling data.

4.1.1. Moments and displacements with a linear calculation
To see how the structure would buckle, a linear stability analysis was done by SCIA Engineer. The
applied point loads were 1 kN and 100 kN . Figures 4.2 and 4.3 show the linear buckling analysis for
the small-scale and real-sized steel truss.
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4.1. Steel truss with bending stiffness 9

Figure 4.2: Linear stability analysis of the small-scale truss with bending stiffness when subjected to point loads of 1 kN .

Figure 4.3: Linear stability analysis of the real-sized truss with bending stiffness when subjected to point loads of 100 kN .

The members in these trusses bend because the structure has a bending stiffness EI. Almost all
members in the truss buckle. In this chapter, the focus is on member B10, because this is one of the
longer beams in the truss and will buckle earlier according to Euler’s buckling theory (Mukuvare, 2013).
For the bending moments, node N4 will be the focus. This is in the middle of the truss. The moments
are at a maximum here. Figure 4.4 shows the total displacement at the midspan of member B10 when
subjected to loads ranging from 1 kN to 8 kN and 100 kN to 800 kN .

(a) Force-Displacement diagram of member B10 for the
small-scale structure.

(b) Force-displacement diagram of member B10 for the
real-sized structure.

Figure 4.4: Linear force-displacement graph of both the small-scale and real-sized truss. The displacement at the midspan of
member B10 is depicted when subjected to point load ranging from 1 kN to 8 kN and 100 kN to 800 kN .

The displacements are all 10 times larger in the real-sized truss which is in line with the conversion
rules. For visualisation purposes, Figures 4.5 and 4.6 show the displacement of the entire structures
when subjected to loads of 8 kN and 800 kN .



4.1. Steel truss with bending stiffness 10

Figure 4.5: Linear deformation of the small-scale truss when subjected to point loads of 8 kN .

Figure 4.6: Linear deformation of the real-sized truss when subjected to point loads of 800 kN .

The maximum displacement of the real-sized truss is 60.44 mm and the small-scale truss deforms at
a maximum of 6.04 mm, which is 10 times smaller than the deformation of the real-sized truss. This
reaffirms the conversion rules for linear material behaviour. The moments at node N4 are analysed
in addition to the displacements of member B10. The moments in the real-sized truss are 1000 times
larger than the moments in the small-scale truss because the structure is subjected to point loads
instead of a distributed load or line load. Figure 4.7 illustrates the moments of both structures when
subjected to loads ranging from 1 kN to 8 kN and 100 kN to 800 kN .

(a) Force-Moment diagram of node N4 for the small-scale
structure.

(b) Force-Moment diagram of node N4 for the real-sized
structure.

Figure 4.7: Linear force-moment diagram of both the small-scale and real-sized truss. The moment at node N4 is depicted
when subjected to point load ranging from 1 k to 8 kN and 100 kN to 800 kN .

The moments in the real-sized truss differ by a factor of 1000 from the moments in the small-scale truss.
Therefore, the conversion rule also applies to moments.
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4.1.2. Moments and displacements with a non-linear calculation
For the non-linear calculation, a bow imperfection was added to all beams in the truss, following the
linear buckling data. Again, member B10 and node N4 were analysed to make a comparison between
the linear and non-linear calculations. First, the non-linear displacements at midspan of member B10
are depicted in Figure 4.8 for both structures.

(a) Non-linear Force-Displacement diagram of member B10
for the small-scale structure.

(b) Non-linear Force-displacement diagram of member B10
for the real-sized structure.

Figure 4.8: Non-linear force-displacement graph of both the small-scale and real-sized truss. The displacement at midspan of
member B10 is depicted when subjected to point load ranging from 1 k to 8 kN and 100 kN to 800 kN .

All non-linear deformations follow the conversion rules. The non-linear deformations in the small-scale
truss are 10 times smaller than the deformations in the real-sized truss. The non-linear calculation
also differs significantly from the linear calculation when the load increases. This shows the larger
deformations as the structure is loaded more. Figures 4.9 and 4.10 illustrate the non-linear deformation
of both structures when subjected to a load of 8 kN and 800 kN , respectively.

Figure 4.9: Non-linear displacement of the small-scale truss when subjected to a load of 8 kN .
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Figure 4.10: Non-linear displacement of the real-sized truss when subjected to a load of 800 kN .

Member B10 buckles in both structures and has the largest deformation. The maximum deformation of
member B10 in the small-scale truss is 9.86 mm and the deformation of member B10 in the real-sized
truss is 98.52 mm. The displacement in the real-sized truss is approximately 10 times larger than the
displacement in the small-scale truss. The small difference is a numerical error SCIA Engineer makes
in a non-linear calculation.

Similarly, the non-linear moments are analysed. Figure 4.11 illustrates the linear and non-linear mo-
ments of node N4 for both the small-scale and real-sized truss.

(a) Non-linear force-moment diagram of node N4 for the
small-scale structure.

(b) Non-linear force-moment diagram of node N4 for the
real-sized structure.

Figure 4.11: Non-linear force-moment diagram of both the small-scale and real-sized truss. The moment at node N4 is
depicted when subjected to point load ranging from 1 kN to 8 kN and 100 kN to 800 kN .

The moments in the real-sized structure differ by a factor of 1000 from the moments in the small-scale
structure. Therefore, the conversion rules still apply for moments when computed with a non-linear
calculation.

4.2. Steel truss without bending stiffness
The second model of the steel truss is modelled without taking bending stiffness into account. There-
fore, the members cannot bend. They can only elongate or shrink, which means that the only internal
forces are normal forces. This section will therefore focus on normal forces and nodal displacements.
Nodal displacements are chosen because the displacement is not a function of the length of the beam.
Furthermore, this system has global buckling. Therefore, there are not any buckling imperfections in
the non-linear calculation, but rather global buckling imperfections following a linear stability analysis.

4.2.1. Normal forces and displacements with a linear calculation
First, the normal forces in all members are tabulated when subjected to point loads of 210 kN and
21000 kN on the upper nodes of the truss. Similarly, the displacements of all nodes are tabulated.
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Second, normal forces in member B10 and displacements of node N4 are plotted when subjected to
point loads ranging from 100 kN to 210 kN and 1000 kN to 21000 kN . Table 4.1 depicts the normal
forces computed with a linear calculation for both structures. The applied loads are 210 kN and 21000
kN .

Table 4.1: Linear normal forces for all members in the structures when subjected to point loads of 210 kN and 21000 kN . The
factor between the point loads is also depicted.

Name N [kN ]
Small-scale Real-sized Factor

B1 525 52500 100
B2 0 0 -
B3 -210 -21000 100
B4 315 31500 100
B5 105 10500 100
B6 0 0 -
B7 105 10500 100
B8 315 31500 100
B9 -210 -21000 100
B10 -742 -74246 100
B11 -445 -44548 100
B12 -148 -14849 100
B13 -148 -14849 100
B14 -445 -44548 100
B15 -742 -74246 100

The normal forces differ by a factor of 100 in all members of the truss, which is in line with the conversion
rules. The nodal displacements of all members are depicted in Table 4.2.

Table 4.2: Horizontal, vertical and total displacements of all nodes of both structures when subjected to point loads of 210 kN
and 21000 kN computed with a linear calculation.

Name ux [mm] uz [mm] Factors
Small-scale Real-sized Small-scale Real-sized Small-scale ux uz

N1 0.000000 0.00000 -0.000008 -0.000080 - 10.0000
N2 7.886435 78.94156 -82.243122 -823.236290 10.0098 10.0098
N3 20.504730 205.24800 -136.636302 -1367.701100 10.0098 10.0098
N4 34.700319 347.34279 -155.293107 -1554.451900 10.0098 10.0098
N5 48.895899 489.43761 -136.636302 -1367.701100 10.0098 10.0098
N6 61.514199 615.74411 -82.243122 -823.236290 10.0098 10.0098
N7 69.400631 694.68570 -0.000008 -0.000080 10.0098 10.0000
N8 55.205051 552.59091 -3.154582 -31.576700 10.0098 10.0098
N9 55.205051 552.59091 -77.511273 -775.871400 10.0098 10.0098
N10 47.318611 473.64929 -135.058999 -1351.912000 10.0098 10.0098
N11 34.700319 347.34279 -155.293107 -1554.451900 10.0098 10.0098
N12 22.082020 221.03640 -135.058999 -1351.912000 10.0098 10.0098
N13 14.195580 142.09481 -77.511273 -775.871400 10.0098 10.0098
N14 14.195580 142.09481 -3.154582 -31.576700 10.0098 10.0098

The displacements differ by a factor 10, which is in line with the conversion rules. For visualisation
purposes, the deformation of both structures is illustrated in Figures 4.12 and 4.13 when subjected to
point loads of 210 kN and 21000 kN .
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Figure 4.12: Linear deformation of the small-scale truss when subjected to point loads of 210 kN .

Figure 4.13: Linear deformation of the real-sized truss when subjected to point loads of 21000 kN .

Figures 4.12 and 4.13 illustrate the absence of bending stiffness in this second model. The beams
do not bend. They are only translated and rotated. For the global buckling shape, a linear buckling
analysis was done. Figures 4.14 and 4.15 illustrate the buckling shape of the small-scale and real-sized
structures, respectively. The applied point loads are 10 kN for the small-scale truss and 1000 kN for
the real-sized truss.

Figure 4.14: Linear buckling analysis of the small-scale structure when subjected to point loads of 10 kN .
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Figure 4.15: Linear buckling analysis of the real-sized structure when subjected to point loads of 1000 kN .

The stability analysis shows that the beams will not buckle. Only the global systems buckle. Further-
more, figures 4.16 and 4.17 illustrate the displacements of node N4 and the normal force in member
B10 respectively. The applied point loads range from 10 kN to 210 kN and 1000 kN to 21000 kN .

(a) Normal forces in member B10 of the small-scale structure. (b) Normal forces in member B10 of the real-sized structure.

Figure 4.16: Applied point loads vs normal forces at member B10 of both the small-scale and real-sized structure. The applied
point loads range from 10 kN to 210 kN and 1000 kN to 21000 kN .

(a) Displacement of node N4 of the small-scale structure. (b) Displacement of node N4 of the real-sized structure.

Figure 4.17: Applied point loads vs displacements at node N4 of both the small-scale and real-sized structure. The applied
point loads range from 10 kN to 210 kN and 1000 kN to 21000 kN .

Figures 4.16 and 4.17 reaffirm the conversion rules for the other applied point loads. Namely, the
moments differ by a factor of 100 and the displacements by a factor of 10.
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4.2.2. Normal forces and displacements with a non-linear calculation
The non-linear calculations in the steel truss without bending stiffness were done with a global imperfec-
tion. This global imperfection is an additional displacement of 10 mm on the members of the real-sized
structure and 1 mm on the members of the small-scale structure. Again, the focus lies on the normal
forces in member B10 and the displacement of node N4. Table 4.3 depicts the non-linear normal forces
in all members when the applied point loads are 210 kN and 21000 kN respectively.

Table 4.3: Non-linear normal forces in both the small-scale and real-sized trusses when subjected to point loads of 210 kN
and 21000 kN .

Name N [kN ]
Small-scale Real-sized Factor

B1 641.97 64202.43 100.01
B2 -90.19 -9020.80 100.02
B3 -145.2 -14521.49 99.98
B4 155.13 15514.04 100.01
B5 -200.4 -20043.29 100.04
B6 -405.8 -40614.00 100.09
B7 -200.4 -20043.29 100.04
B8 155.13 15514.04 100.01
B9 -145.2 -14521.49 99.98
B10 -469.3 -46930.13 100.00
B11 -368.2 -36806.79 99.96
B12 -192.2 -19225.43 100.05
B13 -192.2 -19225.43 100.05
B14 -368.2 -36806.79 99.96
B15 -469.3 -46930.13 100.00

The factors are all around 100, which means that the conversion rule applies. The small numerical
errors are negligible. Similarly, the displacements for these load cases are depicted in Table 4.4.

Table 4.4: Non-linear nodal displacements in both the small-scale and real-sized trusses when subjected to point loads of 210
kN and 21000 kN .

Name ux [mm] uz [mm] Factors
Small-scale Small-scale Real-sized Small-scale Real-sized ux uz

N1 0.00000 0.000000 -0.000008 -0.00008 - 10.0000
N2 10.05721 100.679400 -81.826121 -819.09442 10.0107 10.0102
N3 24.56034 245.845200 -137.322610 -1374.58301 10.0098 10.0099
N4 42.40226 424.468100 -154.798810 -1549.51799 10.0105 10.0099
N5 60.24417 603.091000 -137.322610 -1374.58301 10.0108 10.0099
N6 74.74730 748.256800 -81.826121 -819.09442 10.0105 10.0102
N7 84.80452 848.936200 -0.000008 -0.00008 10.0105 10.0000
N8 66.87737 669.460770 -1.802039 -18.03437 10.0103 10.0078
N9 65.94274 660.103080 -79.260588 -793.41179 10.0102 10.0102
N10 57.80629 578.670620 -140.260400 -1404.00195 10.0105 10.0100
N11 42.40226 424.468100 -160.895900 -1610.60596 10.0105 10.0102
N12 26.99822 270.265610 -140.260400 -1404.00195 10.0105 10.0100
N13 18.86177 188.833000 -79.260588 -793.41179 10.0114 10.0102
N14 17.92714 179.475290 -1.802039 -18.03437 10.0114 10.0078

The displacements in the small-scale structure are 10 times smaller than the displacements in the real-
sized structure, which is in line with the conversion rules. Additionally, Figures 4.18 and 4.19 illustrate
the deformed structures when subjected to point loads of 210 kN and 21000 kN computed with a
non-linear calculation.
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Figure 4.18: Non-linear deformation of the small-scale truss when subjected to point loads of 210 kN .

Figure 4.19: Non-linear deformation of the real-sized truss when subjected to point loads of 21000 kN .

Figures 4.18 and 4.19 reaffirm the conversion rule for displacements. The maximum displacement in
the small-scale truss is 166.4 mm and the maximum displacement in the real-sized truss is 1665.6 mm.

In comparison with the linear analysis, point loads ranging from 10 kN to 210 kN and 1000 kN to
21000 kN were analysed with a non-linear calculation. Again, the normal forces and displacements
were computed. Figures 4.20 and 4.21 illustrate the normal forces in member B10 and displacements
of node N4 respectively.

(a) Normal forces in member B10 of the small-scale structure. (b) Normal forces in member B10 of the real-sized structure.

Figure 4.20: Applied point loads vs normal forces in member B10 of the small-scale and real-sized structure. The applied point
loads range from 10 kN to 210 kN and 1000 kN to 21000 kN .
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(a) Non-linear displacement of node N4 of the small-scale
structure.

(b) Non-linear displacement of node N4 of the real-sized
structure.

Figure 4.21: Applied point loads vs displacements of node N4 of both the small-scale and real-sized structure. The applied
point loads range from 10 kN to 210 kN and 1000 kN to 21000 kN .

The non-linear normal forces in member B10 are larger than the linear normal forces. The irregularity
in the non-linear forces happens because the structure divides the forces over the members differently
per applied load. Namely, the structures have relatively large displacements. The members on the
bottom of the truss will have large tensile forces. Therefore, the horizontal component of the force
in member B10 will decrease. This is exactly what is seen in Figure 4.20. However, the same irreg-
ularity is seen in both structures, which means that the conversion rules apply. Namely, the normal
forces in the real-sized structure are 100 times larger than the normal forces in the small-scale structure.

Furthermore, the non-linear displacements of node N4 do not differ much from the linear displace-
ments. This happens because the structure is only subjected to global buckling instead of local buck-
ling. However, the non-linear displacements in the small-scale structure are 10 times smaller than the
displacements in the real-sized structure, which is in line with the conversion rule for displacements.



5
Analysis of a Steel Beam

In practice, all structures have initial geometrical imperfections. Therefore, these imperfections are
modelled in SCIA Engineer for the critical beam of the steel truss in Chapter 4. For both the small-
scaled and real-sized structures, the members have an imperfection following the buckling pattern.
The pattern follows a sinusoidal pattern and was discovered by the mathematician Leonhard Euler. His
formula for the buckling force follows in Equation 5.1:

Fbuc =
π2EI

l2buc
, (5.1)

where EI is the bending stiffness in KNm2 and lbuc is the buckling length which depends on the
boundary conditions of the member (Mukuvare, 2013). These imperfections decrease the maximal
allowable buckling force significantly. Therefore, columns will always have a safety factor for buckling
forces defined by the Eurocode (Welleman, n.d.). Chapter 5 is subdivided into the following three parts
to analyse the non-linear material behaviour extensively:

• Finding the critical beam in the truss for the buckling force using the method described in the
Eurocode (Welleman, n.d.).

• Modelling this beam in SCIA engineer and then subjecting it to buckling imperfections.
• Computing nodal moments and moments at midspan for a statically indeterminate beam using
the method described in the Eurocode and SCIA Engineer.

5.1. Maximum buckling force for the critical beam using the Eu-
rocode

The critical beams for buckling are the inclined members in the truss. Equation 5.1 demonstrates that
the inclined members will have reduced resistance to buckling because of their greater length. The
other variables are identical for all members. The method that will be used to compute their buckling
strength is described in Eurocode 1993-1-1 (Welleman, n.d.). An elaborate explanation of the method
is shown in Appendix B. Furthermore, λ̄ is the relative slenderness. It is a unitless parameter. ϕ and χ
are safety factors. All relevant safety factors and the final buckling resistances of both structures are
depicted in Table 5.1.

Table 5.1: All relevant buckling data and the final buckling resistance of both structures according to Eurocode 1993-1-1. The
buckling resistance is compared and is depicted in the last row.

Parameter Small-scaled structure Real-sized structure
A [mm2] 31.66921744 3166.922
λ̄ [−] 1.165885552 1.165886
ϕ [−] 1.41628652 1.416287
χ [−] 0.450371838 0.450372

NbRd [kN] 5.063337903 506.3338

The buckling resistance of the small-scaled structure is exactly one-tenth of the real-sized structure.
Therefore, it can be concluded that the Eurocode adheres to conversion rules when determining the
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buckling resistance of a column. This is apparent as the Eurocode employs a safety factor based on
the material’s strength, which, in this instance, was S355 construction steel for both materials.

5.2. Maximum buckling force for the critical beam with finite ele-
ment analysis

The critical beams in the structures are modelled separately in SCIA engineer. These beams have the
same cross-sectional and material properties as the steel truss. The model is illustrated in Figure 5.1.

Figure 5.1: Modelled beam in SCIA engineer. This is one of the inclined members in the truss and has the critical buckling
resistance

Both the small-scaled beam and the real-sized beam will be subjected to their maximum allowable
buckling force. This force is computed with Equation 5.1 and is 8.27 kN and 827 kN respectively.
To observe non-linear results, both structures will be subjected to this critical buckling force. Then, a
non-linear calculation is performed and the results are shown in Table 5.2.

Table 5.2: Displacements at midspan of both the small-scaled structure and the real-sized structure when subjected to their
maximal buckling force.

ux [mm] uz [mm] Utotal [mm]
Small-scale beam -0.08791 2.82686 2.82822
Real-sized beam -0.87946 28.25405 28.26773

Factor 10.00 9.995 9.995

When both beams are subjected to their critical buckling force, the conversion rules do apply in this
case. The force applied on the real-sized is one-hundredth of the force applied on the small-scale
structure. As a result, the displacements in the x- and y-directions differ by a factor of 10.

A second method involves applying a force equivalent to 90% of the buckling resistance. This is done
because this force will likely be in the non-linear curve of the buckling force curve which might give
different results as expected. The forces applied to the structures will be 744.3 kN and 7.443 kN . The
displacements at midspan as a result of these forces are depicted in Table 5.3.

Table 5.3: Displacements at midspan for both the small-scaled structure as the real-sized structure when subjected to a force
of 7.443 kN and 744.3 kN respectively. This force is 90% of the critical buckling force.

ux [mm] uz [mm] Utotal [mm]
Small-scale beam -0.079 1.67933 1.6812
Real-sized beam -0.791 16.78898 16.8076

Factor 10.01 9.997 9.997

It can be concluded again that the displacements in the small-scaled structure are one-tenth of the
real-sized structure. There are only marginal errors which can be explained by computational errors of
the finite element analysis.

The results obtained in Tables 5.2 and 5.3 are not sufficient to make a Force-displacement diagram.
Therefore, more forces are applied to the structure and the resultant Force-Displacement diagram is
illustrated in Figure 5.2.
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(a) Force-Displacement diagram of the small-scale beam. (b) Force-Displacement diagram of the real-sized beam.

Figure 5.2: Force-displacement diagram for both the small-scale beam 5.2a and the real-sized beam 5.2b. The red dot shows
the buckling force and the corresponding displacement. All data was retrieved from a non-linear SCIA Engineer calculation.

The Euler buckling force is illustrated in red in Subfigures 5.2a and 5.2b. For forces lower than this
buckling resistance, both diagrams behave linearly. Forces larger than the buckling resistance result in
very large displacements, thus geometric nonlinear material behaviour. However, the conversion rules
still apply. Both graphs have the same shape and all factors differ by a factor of 100. The numerical
values of these plots are depicted in Appendix A. Figures 5.3 and 5.3 show the displacement of the
small-scale and real-sized beam when subjected to a compressive force of 9.924 kN and 992.4 kN ,
respectively.

Figure 5.3: Deformation of the small-scale beam with a non-linear calculation when subjected to a compressive force of 9.924
kN .

Figure 5.4: Deformation of the real-sized beam with a non-linear calculation when subjected to a compressive force of 992.4
kN .
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The maximum displacement occurs at the midspan, which is 49.88 mm for the small-scale beam and
493.72 mm for the real-sized beam, which is in line with the conversion rules.

5.3. Physical non-linearity of a statically indeterminate beam
A statically indeterminate structure hasmore unknown reaction forces than equilibrium equations, which
means that the structure’s stiffness will be a variable in the problem (Zavatsky, n.d.). The boundary
conditions of the structure in Figure 5.1 change to fixed supports, which will result in moments and no
rotation in the supports. Furthermore, this beam has the same geometrical properties as the beam
illustrated in Figure 5.1. Figure 5.5 illustrates the new boundary conditions of this critical beam.

Figure 5.5: Statically indeterminate beam. The boundary conditions of the critical buckling beam have been changed to two
fixed supports, which restrain rotation and displacement of the nodes.

Physical non-linearity is explained in Subsection 2.2.2. A structure exhibits physical non-linear material
behaviour when it is subjected to a force yielding higher stresses than the yield strength. The structure
has a relatively large buckling resistance due to the stiffer boundary conditions. Therefore, it is not
interesting to apply a compressive force on the nodes, but rather apply a line load q in kN/m on the
entire member. First, the moment at midspan and the nodal moments are computed with a hand
calculation. This is done for both the small-scale and the real-sized statically indeterminate beam.
Second, the structures are assessed by SCIA Engineer and finally, a conclusion is drawn.

5.3.1. Physical non-linear hand calculation using Eurocode 3
This statically indeterminate beam can be assessed in two ways. First, the general fourth-order dif-
ferential equation, described in Equation 5.2, can be used, or an easier approach using the so-called
force method (Hartsuijker, 2013). The fourth-order differential equation is as follows:

EI
d4w

dx4
= q, (5.2)

where EI is the bending stiffness, w is the displacement, x is the axis along the length of the beam
and q is the applied line load. Integrating Equation 5.2 gives expressions for the moment, shear force,
rotation and curvature. However, an easier method can be used involving boundary conditions. Nodes
N1 and N2 cannot rotate and symmetry shows that the moment in node N1 is identical to the moment
in N2. The force method uses these boundary conditions as follows:

1. Add a hinge to the fixed support. Allow rotation around the y-axis in this case.
2. Compute the rotation using simple forget-me-nots (Welleman, n.d.). These are simple examples

which have been computed using the fourth-order differential equation in Equation 5.2.
3. The rotations are zero, so the equation to solve for becomes ϕ = 0. This will give the nodal

moments

The statically indeterminate beam is reduced to a simply supported beam with two acting moments in
the nodes M1 and M2. The rotation of node N1 follows in Equation 5.3:
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ϕ =
M1l

3EI
+

M2l

6EI
− ql3

24EI
(5.3)

As was mentioned before, The momentsM1 andM2 are identical. The expression in Equation 5.3 can
be reduced and set equal to zero. This follows in Equation 5.4:

ϕ =
Ml

2EI
− ql3

24EI
= 0

⇒ M =
1

12
ql2

(5.4)

The moments at midspan can then be computed using the superposition of the moment due to the
applied point load. This moment isMmid = 1

24ql
2. The moment line of this beam is illustrated in Figure

5.6. The chosen line load for this plot has a magnitude of 50 kN/m.

Figure 5.6: The moment diagram of the statically indeterminate beam. The chosen load was 50 kN/m2.

The moments in the boundary conditions cannot become higher than the plastic moment capacity. The
boundary condition will lose stiffness when this happens and the structure can become a mechanism.
This plastic moment capacity can be computed using Eurocode 3. The formula for the plastic moment
capacity is described in Equation 5.5

Mpl,y,d =
Wpl,yfy
γM0

(5.5)

whereWpl,y is the section modulus in mm3, fy is the yield strength in N/mm2 and γM0 is a safety factor
of 1 (Nemetschek Scia, 2014). The plastic moment capacities for the small-scale and real-sized truss
follow in Equation 5.6:

Mpl,y,d,RS =
42675 · 355

1 · 106
= 15.15 kNm

Mpl,y,d,SS =
42.675 · 355

1 · 106
= 0.0152 kNm

(5.6)

The real-sized and small-scale beams are subjected to relatively large line loads of 250 kN/m and
25 kN/m respectively. The moments at the hinges of both structures cannot exceed 15.15 kNm and
0.0152 kNm. The failure load of the statically indeterminate beam is computed as follows:

1. Compute the plastic moment capacity of the structure
2. Place hinges at the supports and midspan. Three hinges result in a mechanism.
3. Apply a virtual displacement or rotation
4. Compute the magnitude of the line load using the virtual work principle.

The derivation of this method is depicted in Appendix C. However, this is the total failure of the mech-
anism. The hinges at the supports fail earlier, namely at a failure load of 12Mpl

l2 instead of 16Mpl

l2 . The
failure loads of the small-scale and real-sized structures are depicted in Table 5.4.

Table 5.4: Failure load for the real-sized and small-scale statically indeterminate beam.

Failure load of the supports [kN/m] Final failure load [kN/m]
Real-sized structure 90.90 121.2
Small-scale structure 9.09 12.1
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The conversion rules apply to this physical non-linear method. The plastic moment is reached at both
nodes and midspan. Increasing the load further results in a mechanism and the moment at midspan
will increase and the nodal moments will decrease.

5.3.2. Physical non-linear calculation using SCIA Engineer
The chosen physical non-linearity is the plasticity of the hinges. The small-scale and real-sized beams
were subjected to line loads ranging from 2 kN/m to 20 kN/m and 20 kN/m to 200 kN/m with
stepsizes of 2 kN/m and 20 kN/m. Additionally, the failure loads of 12.1 kN/m and 121.2 kN/m
were analysed. The moments at midspan of the small-scale and real-sized structure are illustrated in
Figure 5.7. Both linear and non-linear calculations were done. The failure load is also depicted.

(a) Force-Moment diagram of the small-scale beam. (b) Force-Moment diagram of the real-sized beam.

Figure 5.7: Force-Moment diagram for both the small-scale beam 5.7a and the real-sized beam 5.7b. Both the linear and
non-linear calculation are depicted.

The behaviour of both structures changes when the failure load is reached. Themoment at midspan will
then increase at a lower rate. However, the second part of the curve still looks linear, which means that
there is a bi-linear relation between the moment at midspan and the applied line load. The conversion
rules do apply as Figure 5.7 shows. In addition, the nodal moments are assessed and similar diagrams
follow in Figure 5.8.

(a) Force-Moment diagram of the small-scale beam. (b) Force-Moment diagram of the real-sized beam.

Figure 5.8: Force-Moment diagram for the nodal moment of both the small-scale beam 5.8a and the real-sized beam 5.8b.
Both the linear and non-linear calculations are depicted.

The nodal moment becomes constant when the plastic moment capacity of the hinges is reached. It
cannot take any more loading and the fixed supports become hinges. This is depicted in Figure 5.8.
The linear calculation stays linear infinitely. The conversion rules do apply here too. The moments in
the small-scale structure are one-hundredth of the real-sized structure for both the linear and non-linear
calculations. Furthermore, it is known that for this system the nodal moments have a magnitude twice
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as large as the moments at midspan. This is true for the linear calculation and partially true for the non-
linear calculation. Figure 5.9 illustrates the relation between the absolute value of the nodal moment
and the moment at midspan for both structures.

(a) Relation between Msupport and Mmid for the small-scale
beam.

(b) Relation between Msupport and Mmid for the real-sized
beam.

Figure 5.9: Relation between Msupport and Mmid for both structures when subjected to the physical non-linear calculation.
The initial factor is 2, but this changes as the applied load increases.

The relation between the nodal moment and the moment at midspan follows general structural me-
chanics for the first four loads which range from 2 kN/m to 8 kN/m and 20 kN/m to 80 kN/m. The
moment at midspan keeps increasing after this point, but the nodal moment stays constant. This can
also be derived from Figures 5.7 and 5.8 where the first four points show linear behaviour in the non-
linear calculation.

The line load is plotted against the deformation to see the development of the failure mechanism. the
structure has failed when the displacements go to infinity. Figure 5.10 illustrates these diagrams.

(a) Force-displacement diagram of the small-scale beam (b) Force-displacement diagram of the real-sized beam

Figure 5.10: Force displacement diagram for the statically indeterminate beams. The structure fails when the final final failure
load is reached

SCIA Engineer does not allow plastic behaviour of 1D beams. The displacement therefore increases
even after the final failure load is reached. However, the structure becomes a mechanism when the
final failure load is reached. This is shown with the black lines in Figure 5.10. At the initial failure load,
the two fixed supports become hinges and the structure is still kinematically determined.

Non-linear moment diagrams for both the small-scale structure and the real-sized structure for the
failure load are depicted in Figure 5.11. The nodal moments and the moment at midspan are only
identical in this instance.
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(a) Moment diagram of the small-scale beam (b) Moment diagram of the real-sized beam

Figure 5.11: Moment diagram of the small-scale and real-sized statically indeterminate beams when subjected to their failure
load. These were retrieved from SCIA Engineer.

In conclusion, the statically indeterminate beam follows the conversion rules. All moments in the small-
scale structure are one-hundredth of the real-sized structure and the applied loads on the small-scale
structure were one-tenth of the real-sized structure.



6
Analysis of a steel Vierendeel girder

The steel Vierendeel girder (Pons-Poblet, 2019) is similar to the steel truss. However, a Vierendeel
girder does not have inclined members. Unlike the steel truss, the Vierendeel girder has rigid connec-
tions and fixed supports. Node N7 can still move horizontally, but it cannot rotate. Furthermore, the
other geometrical properties are similar to the truss. The real-sized girder is 6 m long and 1 m tall and
the small-scaled girder is 0.6 m long and 0.1 m tall. Finally, the steel strength is S355. Figure 6.1
illustrates this Vierendeel girder with all its node and member labels.

Figure 6.1: SCIA Engineer model of the Vierendeel girder.

The small-scale and real-sized structures will be tested on linearity and geometrical non-linearity. The
focus will be on node N8 because this node will have large horizontal deformations due to the buckling
shape of the structure.

6.1. Moments and displacements with a linear calculation
This Vierendeel girder is prone to buckling. Therefore, a linear stability calculation was done in SCIA
Engineer, with an applied load of 1 kN on all upper nodes of the small-scale structure and with an
applied load of 100 kN on all upper nodes of the real-sized structure. Figures 6.2 and 6.3 illustrate
the buckling shape of the first buckling mode of both the small-scale and real-sized Vierdendeel girder
respectively.

Figure 6.2: Linear stability analysis of the small-scale structure. 7 point loads of 1 kN each were applied on the upper nodes.
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Figure 6.3: Linear stability analysis of the real-sized Vierendeel girder. 7 point loads of 1 kN each were applied on the upper
nodes.

The buckling factor of the small-scale Vierendeel girder is 11.58 and it is 11.59 for the real-sized struc-
ture. The difference is negligible. The critical beam will buckle when the normal force in the critical
beam is around 11.6 times higher than it is in the stability analysis. Therefore, the tested loads range
from 1 kN to 9 kN for the small-scale structure and 100 kN to 900 kN for the real-sized structure.
Forces larger than these give errors. Node N8 has large horizontal deformation because the structure
is unbraced. Figure 6.4 illustrates the displacement of node N8 computed with a linear calculation for
both the small-scale and real-sized Vierendeel girder.

(a) Applied load vs linear deformation of node N8 of the
small-scale Vierendeel girder.

(b) Applied load vs linear deformation of node N8 of the
real-sized Vierendeel girder.

Figure 6.4: Linear displacement of node N8 of both the small-scale and real-sized Vierendeel girders. The applied point loads
range from 1 kN to 9 kN and 100 kN to 900 kN .

Figures 6.5 and 6.6 visualize the small-scale and real-sized displacements of the entire structures. The
applied load in these cases was 9 kN and 900 kN .

Figure 6.5: Linear deformation of the small-scale deformation when subjected to point loads of 9 kN on the upper nodes.
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Figure 6.6: Linear deformation of the real-sized deformation when subjected to point loads of 900 kN on the upper nodes.

The small-scale displacements are a factor of 10 smaller than the real-sized. displacements. The
conversion rules do apply to a linear material behaviour calculation. The moments in node N8 are
computed in addition to the horizontal displacement. Figure 6.7 illustrates these diagrams.

(a) Applied load vs linear moment of node N8 of the
small-scale Vierendeel girder.

(b) Applied load vs linear moment of node N8 of the real-sized
Vierendeel girder.

Figure 6.7: Linear moment of node N8 of both the small-scale and real-sized Vierendeel girders. The applied point loads
range from 1 kN to 9 kN and 100 kN to 900 kN .

The moments also follow the conversion rules. The moments in the real-sized structure are 100 times
larger than the small-scale structure.

6.2. Moments and displacements with a non-linear calculation
For the geometrical non-linear analysis, both structures had initial buckling imperfections of 1 mm for
the small-scale structure and 10mm for the real-sized structure. In comparison to the linear calculation,
the horizontal deformation of node N8 is computed with a geometrical non-linear calculation. Figure
6.8 illustrates the deformation of node N8 vs the applied point loads. The deformation computed with
the linear calculation is also illustrated in Figure 6.8.
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(a) Applied load vs non-linear deformation of node N8 of the
small-scale Vierendeel girder.

(b) Applied load vs non-linear deformation of node N8 of the
real-sized Vierendeel girder.

Figure 6.8: Non-linear displacement of node N8 of both the small-scale and real-sized Vierendeel girders. The applied point
loads range from 1 kN to 9 kN and 100 kN to 900 kN .

The non-linear deformations are significantly larger than the linear deformations. Furthermore, the non-
linear horizontal displacements in the small-scale Vierendeel girder are 10 times smaller than in the
real-sized Vierendeel girder, which means that the conversion rules apply. For visualisation purposes,
the non-linear deformations of both Vierendeel girders when subjected to point loads of 9 kN and 900
kN are illustrated in Figures 6.9 and 6.10.

Figure 6.9: Non-linear deformation of the small-scale deformation when subjected to point loads of 9 kN on the upper nodes.

Figure 6.10: Non-linear deformation of the real-sized deformation when subjected to point loads of 900 kN on the upper nodes.

The maximum deformation in the small-scale Vierendeel girder is 244.67mm and the real-sized Vieren-
deel girder’s maximum deformation is 2446.47mm, which is 10 times larger than the small-scale maxi-
mum deformation. This reaffirms the conversion rules. Finally, themoments computed with a non-linear
calculation are illustrated in Figure 6.11.
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(a) Applied load vs non-linear moment of node N8 of the
small-scale Vierendeel girder.

(b) Applied load vs non-linear moment of node N8 of the
real-sized Vierendeel girder.

Figure 6.11: Non-linear moment of node N8 of both the small-scale and real-sized Vierendeel girders. The applied point loads
range from 1 kN to 9 kN and 100 kN to 900 kN .

The non-linear moments are slightly larger than the linear moments. Furthermore, the moments at
node N8 in the real-sized Vierendeel girder are 100 times larger than the moments in the small-scale
Vierendeel girder, which is in line with the conversion rules.



7
Analysis of a Concrete Two-way Slab

A concrete two-way slab is one in which the forces are transferred in two directions. Therefore, a rect-
angular two-way slab has four rigid line supports (Lukovic, 2023). Two rectangular slabs are modelled
in SCIA Engineer. The small-scale slab has a length of 1 m and its width is 0.5 m. Its thickness is
10 mm and it is supported on its four sides with rigid line supports in which one of the rigid line sup-
ports is hinged. Otherwise, the structure would be kinematically indeterminate. The dimensions of the
real-sized two-way slab are a factor of 10 larger than the small-scale slab. Figure 7.1 illustrates this
two-way slab.

Figure 7.1: SCIA Engineer model of the concrete two-way slab.

This chapter is divided into two parts. First, the structure will be analysed on its linear material behaviour.
Second, it will be analysed on its geometrical non-linear material behaviour. The material behaviour of
concrete is changed in SCIA Engineer to elastic following the Von-Mises criterion (Kavoura et al., 2022)
to obtain large displacements in the structure. The structure is subjected to a distributed load in the
z-direction. Therefore, it is not prone to buckling. To achieve buckling a member should be loaded in
compression and not in bending. Finally, the chosen concrete strength class is C30/37, which means
that the compressive strength of this type of concrete ranges between 30 MPa and 37 MPa. 30 stands
for its compressive strength tested on a cylindrical block and 37 is tested on a cubic block (Pancar,
2016).

7.1. 3D stresses and displacements with a linear calculation
This section delves into the linear response of the structure, testing both the stresses and displacements
in the middle of this two-way slab. Both structures are subjected to loads ranging from 1 kN/m2 to 14
kN/m2. Figure 7.2 shows the 3D stresses against the distributed load for both structures. The stress
distribution is linear and equals zero in the middle of the cross-section. There is a compressive stress
in the top fibre and a tensile stress in the bottom fibre of the slab. The absolute values of these stresses
are identical. Therefore only the maximum (positive) tensile stress is plotted.
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(a) Distributed load vs 3D linear stresses in the small-scale
structure.

(b) Distributed load vs 3D linear stresses in the real-sized
structure.

Figure 7.2: A plot of the distributed load vs the 3D stresses in both the small-scale and real-sized concrete two-way slab.

The stresses in both structures are identical, which is in line with the conversion rules. The same can
be said for the displacement in the middle of the slab computed with a linear calculation. Figure 7.3
shows these displacements vs an increasing distributed load.

(a) Distributed load vs linear displacements in the small-scale
structure.

(b) Distributed load vs linear displacements in the real-sized
structure.

Figure 7.3: A plot of the distributed load vs the displacements in the middle of both the small-scale and real-sized concrete
two-way slab.

Figures 7.4 and 7.5 show the displacement of the structures when subjected to a load of 14 kN/m2.
The displacements in the real-sized structure are 10 times larger than the small-scale structure.

Figure 7.4: Linear displacement of the small-scale two-way slab when subjected to a distributed load of 14 kN/m2.
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Figure 7.5: Linear displacement of the real-sized two-way slab when subjected to a distributed load of 14 kN/m2.

The maximum displacement in the small-scale two-way slab is 49.87 mm and this displacement is
498.7 mm in the real-sized two-way slab. Therefore, the conversion rules do apply to linear material
behaviour. The displacements in the real-sized two-way slab are 10 times larger than in the small-scale
two-way slab and the stresses are identical in both slabs.

7.2. 3D stresses and displacements with a non-linear calculation
The material behaviour of the concrete slab is changed to elastoplastic to obtain large displacements in
the non-linear calculation. The stresses should change when the compressive strength of concrete is
reached. The 3D non-linear maximum stresses are plotted for both structures when subjected to loads
ranging from 1 kN/m2 to 14 kN/m2. Figure 7.6 illustrates this for both the small-scale and real-sized
slab.

(a) Distributed load vs non-linear 3D stresses in the
small-scale structure.

(b) Distributed load vs non-linear 3D stresses in the real-sized
structure.

Figure 7.6: A plot of the distributed load vs the non-linear 3D stresses in both the small-scale and real-sized concrete two-way
slab.

The stresses do not increase for a while when 35 MPa is reached. However, after exceeding 35 MPa,
the stresses become too large and the structure fails. A load of 15 kN/m2 failed both slabs. However,
both structures acted similarly. The stresses do not differ. therefore, the stress conversion rule applies.
Similarly, the non-linear maximum displacements are plotted for both structures. Figure 7.7 depicts
these displacements for both structures.
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(a) Distributed load vs non-linear displacements in the
small-scale structure.

(b) Distributed load vs non-linear displacements in the
real-sized structure.

Figure 7.7: A plot of the distributed load vs non-linear displacements in the middle of both the small-scale and real-sized
concrete two-way slab.

There are significant differences between the displacements computed with a linear calculation and the
displacements computed with a non-linear calculation. The difference becomes significant when the
structures are subjected to a load of 12 kN/m2. Furthermore, the conversion rules for displacements
apply because the displacements in the real-sized structure are 10 times larger than the small-scale
structure. Figures 7.8 and 7.9 show the non-linear displacements of both structures outputted by SCIA
Engineer when subjected to a load of 14 kN/m2. The displacements in Figures 7.4 and 7.5 are rel-
atively small compared to the displacements in Figures 7.8 and 7.9. This difference reaffirms the
presence of non-linearity.

Figure 7.8: Non-linear displacement of the small-scale two-way slab when subjected to a distributed load of 14 kN/m2.

Figure 7.9: Non-linear displacement of the real-sized two-way slab when subjected to a distributed load of 14 kN/m2.

In conclusion, the concrete two-way slab does follow the conversion rules from small-scale structures
to real-sized structures, even when changing the material behaviour to elastoplastic.
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Analysis of a Concrete Shell Roof

Shell roofs are civil engineering structures with an efficient design (Ramm, 2004). Therefore, two shell
roofs are modelled in SCIA Engineer. The geometrical properties of both structures are chosen. The
thicknesses are 20 mm and 200 mm. They cover a squared area of 10 m by 10 m and 1 m by 1 m.
The heights of node N5 are 5 m and 0.5 m and node N6 are 2.5 and 0.25 m. The bows from N1 to N2
and N3 to N4 have radii of 5/0.5 m and 2.5/0.25 m respectively. Finally, the chosen concrete class is
C30/37. Figure 8.1 shows the SCIA Engineer model of the concrete shell roof.

Figure 8.1: A shell roof modelled in SCIA Engineer.

8.1. 3D stresses and displacements with a linear calculation
Both structures were subjected to several distributed loads ranging from 250 to 2750 kN/m2 with a
stepsize of 250 kN/m2. This range was chosen because the critical buckling load according to a linear
calculation is 2657.1 kN/m2. This is done by performing a linear stability analysis in SCIA Engineer
with a distributed load of 5 kN/m2. The program then outputs a load factor α of 531.42. The formula
for the critical buckling force follows in Equation 8.1:

pbuc = α · papplied = 531.42 · 5 = 2657.1kN/m2, (8.1)
where α is the buckling factor and papplied is the applied distributed load. This linear buckling analysis
is done for both structures, which yields the same critical buckling force. Figure 8.2 shows this buckling
mode.
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Figure 8.2: Deformation in the real-sized shell roof when performing linear stability analysis with a distributed load of 5 kN/m2.
In the upper-left part of the figure, we see the buckling factor corresponding to this distributed load which is highlighted in blue.

As Figure 8.2 shows, the bow connecting N2, N3 and N6 buckle. To analyse the behaviour in this
bow, the displacements of N6 are computed with the loads ranging from 250 kN/m2 to 2752 kN/m2

including the buckling force of 2657.1 kN/m2. Figure 8.3 shows the magnitude of deformation of N6
against the increasing distributed load.

(a) Force-displacement diagram of the small-scale shell-roof. (b) Force-displacement diagram of the real-sized shell-roof.

Figure 8.3: Force-displacement diagrams of both the small-scale and the real-sized shell roof when computed with a linear
calculation in SCIA Engineer.

As expected, the nodal displacements in the small-scale structure are exactly one-tenth of the real-
sized structure. Additionally, the displacements are increasing linearly with the force, which is also
expected.

Second, the stresses in both structures can be compared. The stresses are compared for an applied
load of 2750 kN/m2. Figures 8.4 and 8.5 show the 3D stresses of the small-scale and real-sized
structures respectively.
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Figure 8.4: 3D stresses of the small-scale shell roof when subjected to a distributed load of 2750 kN/m2 computed with a
linear calculation.

Figure 8.5: 3D stresses of the real-sized shell roof when subjected to a distributed load of 2750 kN/m2 computed with a
linear calculation.

According to the conversion rules, the stresses in the small-scale structure should be identical to the
stresses in the real-sized structure. We can see this in Figures 8.4 and 8.5. The stresses range from
-338.6 MPa to 247.1 MPa in both structures.

8.2. 3D stresses and displacements with a non-linear calculation
In this section, two kinds of geometrical non-linearity will be tested. First, a non-linear calculation follows
with bow imperfections that follow buckling data. Second, the structure is computed with a non-linear
calculation using a simple curvature as the bow imperfection.

8.2.1. Non-linearity with buckling curve imperfections
In the non-linear calculation, the shell roof has an imperfection following the buckling curve. Again,
the deformation of Node N6 is computed for both the small-scale and real-sized structures. Figure 8.6
shows the non-linear and linear deformation of node N6.
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(a) Force-displacement diagram of the small-scale shell-roof. (b) Force-displacement diagram of the real-sized shell-roof.

Figure 8.6: Force-displacement diagrams of both the small-scale and the real-sized shell roof when computed with a
non-linear calculation in SCIA Engineer.

The linear calculations were also illustrated in Figure 8.3. As we can see, the non-linear calculation
yields higher displacements with a much smaller force. The buckling force, computed with the linear
stability analysis cannot be reached because the structure has already become a mechanism. How-
ever, the conversion from small-scale to real-sized is accurate, as the displacements in the small-scale
structure are one-tenth of the real-sized structure. Additionally, a non-linear stability calculation was
done to compare the results with the linear calculation. The deformation and the load factor for a load
of 5 kN/m2 are shown in Figure 8.7. Both structures have identical buckling factors.

Figure 8.7: Non-linear stability calculation computed with an applied load of 5 kN/m2 on the real-sized structure. The
buckling factor is 530.66 which makes the non-linear buckling force 2653.3 kN/m2.

The buckling factor is 530.66 which gives a critical non-linear buckling load of 2653.3 kN/m2. The load
in Figure 8.6 does not reach 2653.3 kN/m2 for the non-linear calculation. This happens because the
displacements become too large at a lower load and go to infinity. Therefore, they will never reach the
buckling load.

A second important comparison is the stresses in the structures. These should be identical to be in line
with the conversion rules. We do not have the results with the applied load of 2750 kN/m2 because
the structure has already become a mechanism by then. We do have the stresses for an applied load
of 2000 kN/m2. Figures 8.8 and 8.9 show the non-linear stresses for both structures for an applied
load of 2000 kN/m2.
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Figure 8.8: 3D stresses in the small-scale structure computed with a non-linear calculation with an applied load of 2000
kN/m2.

Figure 8.9: 3D stresses in the real-sized structure computed with a non-linear calculation with an applied load of 2000 kN/m2.

The internal stresses are identical. The stresses in the small-scale structure range from -718.1 kN/m2

to 619.7 kN/m2 and in the real-sized structure from -718.2 kN/m2 to 619.7 kN/m2. The differences
are small enough to be interpreted as numerical errors.

8.2.2. Non-linearity with an applied displacement following the buckling shape
In this case, a displacement of 1mm and 10mm was applied to the structures. This buckling shape of
the first buckling mode is integrated into this applied displacement. Similar to Figure 8.6, the displace-
ments of node N6 computed with this non-linear calculation are illustrated in Figure 8.10.
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(a) Force-displacement diagram of the small-scale shell-roof. (b) Force-displacement diagram of the real-sized shell-roof.

Figure 8.10: Force-displacement diagrams of both the small-scale and the real-sized shell roof when computed with a
non-linear calculation and an applied displacement in SCIA Engineer.

The nodal displacement of N6 can be computed with the existing conversion rules. We see small differ-
ences between the non-linear calculation with an applied displacement and the non-linear calculation
with a bow imperfection that follows the buckling data. However, the non-linear calculation with this
applied displacement also follows the conversion rules. We can confirm this by showing the stresses
for both structures when subjected to a distributed load of 2000 kN/m2. Figures 8.11 and 8.12 show
these stresses for the small-scale and real-sized structures respectively.

Figure 8.11: 3D stresses in the small-scale structure computed with a non-linear calculation with an applied load of 2000
kN/m2. The nonlinearity comes from an applied displacement following the buckling shape.

Figure 8.12: 3D stresses in the real-sized structure computed with a non-linear calculation with an applied load of 2000
kN/m2. The nonlinearity comes from an applied displacement following the buckling shape.
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The 3D non-linear stresses in the small-scale structure range from -718.9 kN/m2 to 620.3 kN/m2 and
from -718.9 kN/m2 to 620.3 kN/m2. Again, the differences are small enough to be interpreted as
numerical errors.

In conclusion, the conversion rules do apply to a concrete shell roof. We see that there is a significant dif-
ference between the linear and non-linear displacements. This means that we are testing non-linearity
instead of linearity.



9
Conclusion

This research analysed five types of structures on linear and non-linear material behaviour. The goal
was to analyse whether the conversion rules from small-scale to real-sized structures also work for
physical and geometrical non-linear material behaviour.

Geometrical non-linearity
The geometrical non-linear analysis was done for the steel truss, Vierendeel girder, the statically deter-
minate beam, and the concrete shell roof. The conversion rules for linear material behaviour worked for
all structures. There were marginal errors in the conversion, but SCIA Engineer makes these numerical
errors when doing an iterative calculation. Namely, geometrical non-linear calculations are iterative. All
numerical values of the figures used in these analyses are listed in Appendix A.

Physical non-linearity
The physical non-linear analysis was done for the steel statically indeterminate beam and the concrete
plate. However, this was done in addition to geometrical non-linearity. Both structures were subjected
to large displacements which yield additional internal forces. The plate was analysed with an elasto-
plastic stress-strain curve following the Von Mises yield criterion (Kavoura et al., 2022) and the statically
indeterminate beam was tested with the plasticity of hinges. Again, the conversion rules for these types
of non-linearity worked. There were some marginal errors, but these are negligible.

Finally, the following research question is answered: “There are conversion rules for deflection and
stresses from small-scale structures to real-sized structures. Do these apply to non-linear behaviour
too?” After extensive analysis of multiple different structures, it can be concluded that the conversion
rules from the studied small-scale to real-sized structures also apply to physical and geometrical non-
linear material behaviour.

Future work
This research only looked at structures with symmetrical and homogeneous cross-sections. Namely,
circular steel cross-sections for the trusses and beams and rectangular cross-sections for the concrete
two-way slab and shell roof. However, composite or asymmetrical cross-sections have not been re-
searched. Asymmetrical cross-sections yield forces in both x- and y-direction, even when they are
loaded in one direction. Composite cross-sections are prone to slipping at the intersection between
the two materials. For future work, structures with asymmetrical and composite cross-sections can be
analysed.
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A
Numerical values of the plotted figures

This appendix shows all numerical values used in the plots in this report. A brief explanation is added
when needed.

A.1. Numerical values of plots of the steel truss
Tables A.1 and A.2 depict the moments in the steel truss with bending stiffness.

Table A.1: Numerical data of the linear and non-linear displacements of member B10 of the small-scale steel truss with
bending stiffness of Figures 4.4 and 4.8.

Load [kN ] Linear utot B10 [mm] Non-linear utot B10 [mm]
1 0.23403 0.29099
2 0.46802 0.60586
3 0.70199 0.95863
4 0.93592 1.37648
5 1.16982 1.91904
6 1.4037 2.74166
7 1.63754 4.37779
8 1.87135 9.86328

Table A.2: Numerical data of the linear and non-linear displacements of member B10 of the real-sized steel truss with bending
stiffness of Figures 4.4 and 4.8.

Load [kN ] Linear utot B10 [mm] Non-linear utot B10 [mm]
100 2.343 2.91271
200 4.68569 6.06402
300 7.02807 9.59299
400 9.37014 13.7696
500 11.71191 19.184
600 14.05337 27.36856
700 16.39452 43.56216
800 18.73536 98.52176

Tables A.3 and A.4 depict the numerical data of the plots of the linear and non-linear moments of node
N4 of the truss with bending stiffness.
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Table A.3: Numerical data of linear and non-linear moments of node N4 of the small-scale truss with bending stiffness. The
plots are in Figures 4.7 and 4.11.

Load [kN ] Linear moment N4 [kNm] Non-linear moment N4 [kNm]
1 0.00038 0.00042
2 0.00076 0.00097
3 0.00115 0.00164
4 0.00153 0.00244
5 0.00191 0.00337
6 0.00229 0.00444
7 0.00268 0.00565
8 0.00306 0.00705

Table A.4: Numerical data of linear and non-linear moments of node N4 of the real-sized truss with bending stiffness. The plots
are in Figures 4.7 and 4.11.

Load [kN ] Linear moment N4 [kNm] Non-linear moment N4 [kNm]
100 0.38276 0.42288
200 0.76552 0.96917
300 1.14827 1.64125
400 1.53103 2.44165
500 1.91379 3.3735
600 2.29655 4.44157
700 2.6793 5.6561
800 3.06206 7.05471

Tables A.5 and A.6 depict the numerical data of the linear and non-linear moments of member B10 of
the steel truss without bending stiffness.

Table A.5: Numerical data of normal forces of the small-scale truss without bending stiffness. The plots are in Figures 4.16 and
4.20.

Load [kN ] Linear normal force B10 [kN ] Non-linear normal force B10 [kN ]
10 -35.35534 -35.0462
20 -70.71068 -69.31846
30 -106.066 -102.5434
40 -141.42141 -134.64159
50 -176.7767 -165.2098
60 -212.132 -194.5758
70 -247.48741 -222.19491
80 -282.84269 -248.2765
90 -318.19809 -272.93731
100 -353.55341 -296.38731
110 -388.90869 -318.93059
120 -424.26409 -340.96141
130 -459.61941 -347.43181
140 -494.97481 -361.0675
150 -530.33012 -372.14719
160 -565.6855 -398.21159
170 -601.04081 -413.61469
180 -636.39612 -408.79981
190 -671.7515 -412.593
200 -707.10681 -449.94281
210 -742.46213 -469.30109
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Table A.6: Numerical data of normal forces of the real-sized truss without bending stiffness. The plots are in Figures 4.16 and
4.20.

Load [kN ] Linear normal force B10 [kN ] Non-linear normal force B10 [kN ]
1000 -3535.53 -3504.587
2000 -7071.07 -6931.677
3000 -10606.6 -10253.88
4000 -14142.1 -13463.25
5000 -17677.7 -16519.38
6000 -21213.2 -19455.22
7000 -24748.7 -22216.13
8000 -28284.3 -24823.2
9000 -31819.8 -27288.17
10000 -35355.3 -29632.17
11000 -38890.9 -31885.76
12000 -42426.4 -34088.528
13000 -45961.9 -34728.032
14000 -49497.5 -36088.4
15000 -53033 -37192.512
16000 -56568.6 -39806
17000 -60104.1 -41347.208
18000 -63639.6 -40850.008
19000 -67175.2 -41221.94
20000 -70710.7 -44983.58
21000 -74246.2 -46930.128

Tables A.7 and A.8 depict the linear and non-linear displacement of node N4 of the steel trusses without
bending stiffness.

Table A.7: Numerical data of linear and non-linear displacement of node N4 of the small-scale steel truss without bending
stiffness as is shown in Figures 4.17 and 4.21.

Load [kN ] Linear utot N4 [mm] Non-linear disp N4 [mm]
10 7.577278 7.621662
20 15.154551 15.378309
30 22.731827 23.242449
40 30.309113 31.17923
50 37.886388 39.154665
60 45.463664 47.205119
70 53.040939 55.226931
80 60.618216 63.233921
90 68.195501 71.218395
100 75.772777 79.18302
110 83.350053 87.142101
120 90.927328 95.122383
130 98.504611 101.596891
140 106.081917 108.77118
150 113.659184 115.668644
160 121.236453 123.84603
170 128.813713 130.924207
180 136.390989 137.749514
190 143.96825 144.360457
200 151.54551 152.941294
210 159.122787 160.501159
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Table A.8: Numerical data of linear and non-linear displacement of node N4 of the real-sized steel truss without bending
stiffness as is shown in Figures 4.17 and 4.21.

Load [kN ] Linear utot N4 [mm] Non-linear disp N4 [mm]
1000 75.84695 76.29191
2000 151.69389 153.98307
3000 227.54082 232.65665
4000 303.38778 312.10413
5000 379.23471 391.93729
6000 455.08164 472.52253
7000 530.92859 552.81858
8000 606.77562 632.96535
9000 682.62246 712.88647
10000 758.46941 792.60924
11000 834.31638 872.27845
12000 910.16327 952.16408
13000 986.01036 1016.89661
14000 1061.8572 1088.67746
15000 1137.70456 1157.67573
16000 1213.55113 1239.57779
17000 1289.39848 1310.41068
18000 1365.24491 1378.681
19000 1441.09241 1444.80897
20000 1516.93884 1530.8632
21000 1592.78619 1606.60486

A.2. Numerical values of plots of the steel beam
The numerical values of the forces and displacements in Figure 5.2 are shown in Table A.9. The
buckling resistances are 8.27 kN and 827 kN . The other forces are factors of this buckling resistance.
The used factors are 0.8, 0.9, 1.1, 1.12, 1.14, 1.16, 1.18 and 1.2.

Table A.9: Numerical values of Force-Displacement diagram in Figure 5.2.

F [kN ] small-scaled F [kN ] real-sized uz [mm] small-scale uz [mm] real-sized
6.616 661.6 1.09829 10.98156
7.443 744.3 1.67933 16.78898
8.27 827 2.82686 28.25405
9.097 909.7 6.00543 59.98294
9.2624 926.24 7.4473 74.3619
9.4278 942.78 9.654 96.3515
9.5932 959.32 13.44789 134.11
9.7586 975.86 21.48799 213.9328
9.924 992.4 49.8826 493.71839

Tables A.10 and A.11 depict the linear and non-linearmoments at midspan of the statically indeterminate
beam.
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Table A.10: Numerical data of the linear and non-linear moment at midspan of the small-scale statically indeterminate beam as
shown in Figure 5.7.

Load[kN/m] Linear moment midspan [kNm] Non-linear moment midspan [kNm]
2 0.00167 0.00167
4 0.00333 0.00333
6 0.005 0.005
8 0.00666 0.00666

9.09 0.00757 0.00757
10 0.00833 0.01005
12 0.01 0.01485
12.1 0.01012 0.01522
14 0.01166 0.01984
16 0.01333 0.02484
18 0.015 0.02984
20 0.01666 0.03484

Table A.11: Numerical data of the linear and non-linear moment at midspan of the real-sized statically indeterminate beam as
shown in Figure 5.7.

Load[kN/m] Linear moment midspan [kNm] Non-linear moment midspan [kNm]
20 1.66664 1.66664
40 3.33327 3.33327
60 4.9999 4.9999
80 6.66654 6.66654
90.9 7.57486 7.57486
100 8.33317 9.9013
120 9.99981 14.85442
121.2 10.0981 15.1566
140 11.66644 19.84865
160 13.33308 24.84899
180 14.99971 29.8496
200 16.66635 34.85576

Tables A.12 and A.13 depict the linear and non-linear nodal moments of the statically indeterminate
beam.

Table A.12: Numerical values of the linear and non-linear nodal moments of the small-scale statically indeterminate beam as
shown in Figure 5.8.

Load [kN/m] Linear nodal moment [kNm] Non-linear nodal moment [kNm]
2 -0.00334 -0.00333
4 -0.00666 -0.00666
6 -0.01 -0.01
8 -0.01332 -0.01333

9.09 -0.01515 -0.01515
10 -0.01666 -0.01495
12 -0.02 -0.01514
12.1 -0.02024 -0.01514
14 -0.02332 -0.01515
16 -0.02666 -0.01515
18 -0.03 -0.01515
20 -0.03332 -0.01515
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Table A.13: Numerical values of the linear and non-linear nodal moments of the real-sized statically indeterminate beam as
shown in Figure 5.8.

Load [kN/m] Linear nodal moment [kNm] Non-linear nodal moment [kNm]
20 -3.33327 -3.33327
40 -6.66654 -6.66654
60 -9.9998 -9.99981
80 -13.33308 -13.33308
90.9 -15.14971 -15.14971
100 -16.66634 -15.09822
120 -19.99962 -15.14501
121.2 -20.1962 -15.14282
140 -23.33288 -15.15068
160 -26.66616 -15.15024
180 -29.99942 -15.14954
200 -33.3327 -15.14328

Table A.14 depicts the maximum displacement of both the small-scale and the real-sized statically
indeterminate beam.

Table A.14: Non-linear deformation of the small-scale and real-sized statically indeterminate beam as shown in Figure 5.10.

Small-scale structure Real-sized structure
Load [kN/m] umax [mm] Load [kN/m] umax [mm]

2 0.12652 20 1.26577
4 0.25304 40 2.53154
6 0.37956 60 3.79731
8 0.50608 80 5.06307

9.09 0.57504 90.9 5.75292
10 0.88851 100 8.60353
12 1.4829 120 14.83569

12.15 1.52934 121.5 15.21322
14 2.10559 140 21.06488
16 2.72912 160 27.30317
18 3.35198 180 35.54186
20 3.97558 200 39.78884

A.3. Numerical values of plots of the steel Vierendeel girder
Tables A.15 and A.16 depict linear and non-linear horizontal displacements of node N8 of the steel
Vierendeel girder.

Table A.15: Numerical values of linear and non-linear horizontal displacement of node N8 of the small-scale Vierendeel girder
as shown in Figures 6.4 and 6.8.

Load [kN ] linear ux of node N8 [mm] non-linear ux of node N8
1 0.19561 0.27739
2 0.39121 0.56933
3 0.58682 0.88061
4 0.78243 1.21808
5 0.97804 1.59291
6 1.17364 2.02412
7 1.36925 2.54667
8 1.56486 3.23232
9 1.76047 4.25539
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Table A.16: Numerical values of linear and non-linear horizontal displacement of node N8 of the real-sized Vierendeel girder
as shown in Figures 6.4 and 6.8.

Load [kN ] linear ux of node N8 [mm] non-linear ux of node N8
100 1.95796 2.77468
200 3.91593 5.69682
300 5.87389 8.81134
400 7.83186 12.18762
500 9.78982 15.94362
600 11.74779 20.25349
700 13.70575 25.47651
800 15.66372 32.33211
900 17.62168 42.55822

Tables A.17 and A.18 depict the linear and non-linear moments at node N8 of both the small-scale
and real-sized Vierendeel girder.

Table A.17: Numerical values of linear and non-linear moments at node N8 of the small-scale structure as shown in Figures
6.7 and 6.11.

Load [kN ] linear moment node N8 [kNm] non-linear moment node N8 [kNm]
1 -0.04824 -0.04686
2 -0.09648 -0.09196
3 -0.14472 -0.13536
4 -0.19297 -0.17729
5 -0.24121 -0.21796
6 -0.28945 -0.25764
7 -0.33769 -0.29655
8 -0.38593 -0.33483
9 -0.43417 -0.37088

Table A.18: Numerical values of linear and non-linear moments at node N8 of the real-sized structure as shown in Figures 6.7
and 6.11.

Load [kN ] linear moment node N8 [kNm] non-linear moment node N8 [kNm]
100 -48.24069 -46.88775
200 -96.48138 -91.95774
300 -144.72209 -135.35909
400 -192.9627 -177.2848
500 -241.20341 -217.7493
600 -289.44409 -257.4767
700 -337.68481 -296.54869
800 -385.9255 -334.82859
900 -434.16619 -370.88409

A.4. Numerical values of plots of the concrete two-way slab
Tables A.19 and A.20 depict the linear and non-linear stresses in the concrete two-way slab.
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Table A.19: Numerical values of linear and non-linear 3D stresses of the small-scale two-way slab as shown in Figures 7.2 and
7.6.

Load [kN/m2] Linear 3D stresses [N/mm2] Non-linear 3D stresses [N/mm2]
1 6 6
2 12 12
3 18 18
4 24 24
5 30.1 30
6 36.1 34.4
7 42.1 34.6
8 48.1 34.6
9 54.1 34.6
10 60.1 34.6
11 66.1 34.6
12 72.1 34.7
13 78.1 35.2
14 84.1 36.6

Table A.20: Numerical values of linear and non-linear 3D stresses of the real-sized two-way slab as shown in Figures 7.2 and
7.6.

Load [kN/m2] Linear 3D stresses [N/mm2] Non-linear 3D stresses [N/mm2]
1 6 6
2 12 12
3 18 18
4 24 24
5 30.1 30
6 36.1 34.4
7 42.1 34.6
8 48.1 34.6
9 54.1 34.6
10 60.1 34.6
11 66.1 34.6
12 72.1 34.7
13 78.1 35.2
14 84.1 36.6

Tables A.21 and A.22 depict the linear and non-linear maximum deformation of the concrete one-way
slab.
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Table A.21: Numerical values of linear and non-linear maximum deformation of the small-scale two-way slab as shown in
Figures 7.3 and 7.7.

Load [kN] Linear umax [mm] Non-linear umax [mm]
1 3.56213 3.56208
2 7.12427 7.12415
3 10.6864 10.68623
4 14.24853 14.24831
5 17.81067 17.81039
6 21.3728 21.38148
7 24.93493 25.28932
8 28.49707 30.18419
9 32.0592 38.13193
10 35.62133 54.50276
11 39.18347 106.7572
12 42.7456 349.19029
13 46.30773 1354.17295
14 49.86987 5041.27312

Table A.22: Numerical values of linear and non-linear maximum deformation of the real-sized two-way slab as shown in
Figures 7.3 and 7.7.

Load [kN] Linear umax [mm] Non-linear umax [mm]
1 35.62133 35.62077
2 71.24266 71.24155
3 106.864 106.8623
4 142.4853 142.4831
5 178.1067 178.1039
6 213.728 213.8148
7 249.3493 252.8932
8 284.9707 301.8419
9 320.592 381.3193
10 356.2133 545.0276
11 391.8347 1067.572
12 427.456 3491.903
13 463.0773 13541.73
14 498.6987 50412.73

A.5. Numerical values of plots of the concrete shell roof
Tables A.23 and A.24 depict the linear and non-linear displacement of node N6 of the concrete shell
roof. The shell roof has an imperfection following the buckling curve.



A.5. Numerical values of plots of the concrete shell roof 55

Table A.23: Numerical values of linear and non-linear displacements of node N6 of the small-scale shell roof following buckling
data imperfections as shown in Figures 8.3 and 8.6.

Load [kN/m2] Linear utot node N6 [mm] Non-linear utot node N6 [mm]
250 0.95318 1.02026
500 1.90637 2.20041
750 2.85955 3.59167
1000 3.81273 5.26989
1250 4.76592 7.35442
1500 5.7191 10.04661
1750 6.67228 13.72645
2000 7.62547 19.26502
2250 8.57865 -
2500 9.53183 -

2657.15 10.131 -
2750 10.48502 -

Table A.24: Numerical values of linear and non-linear displacements of node N6 of the real-sized shell roof following buckling
data imperfections as shown in Figures 8.3 and 8.6.

Load [kN/m2] Linear utot node N6 [mm] Non-linear utot node N6 [mm]
250 9.53183 10.20263
500 19.06367 22.00456
750 28.5955 35.91675
1000 38.12733 52.69925
1250 47.65916 73.54455
1500 57.19099 100.46611
1750 66.72283 137.26458
2000 76.25467 192.65025
2250 85.78649 -
2500 95.31833 -

2657.15 101.31003 -
2750 104.85016 -

Table A.25 depicts the non-linear deformation of node N6 of the concrete shell roof when the load has
a global buckling imperfection. The buckling imperfections are 1 mm and 10 mm for the small-scale
and real-sized shell roofs respectively.

Table A.25: Numerical values of non-linear displacement of node N6 of both the small-scale and real-sized concrete shell roofs
as shown in Figure 8.10.

Load [kN ] Non-linear small-scale utot N6 [mm] Non-linear real-sized utot N6 [mm]
250 1.02286 10.22858
500 2.20644 22.06486
750 3.60242 36.02429
1000 5.28754 52.87544
1250 7.38283 73.82834
1500 10.09404 100.94045
1750 13.81554 138.15549
2000 19.50216 195.02157



B
Explanation of Buckling Resistance

Calculation in Eurocode 1993-1-1

The computation of the buckling resistance according to Eurocode 1993-1-1 is done with the following
formulas (Welleman, n.d.). The relative slenderness is depicted in Equation B.1:

λ̄ =
Npl

NEuler
=

fy ·A
π2EI
l2buc

(B.1)

The relative slenderness is the relation between the plastic normal force resistance and Euler buckling.
This relative slenderness is then used in an empiric Equation. The Φ-factor is computed in Equation
B.2:

Φ =
1

2
(1 + α(λ̄− 0.2) + λ̄2) (B.2)

Where α is an imperfection factor depending on the material properties. The reduction factor χ follows
in Equation B.3:

χ =
1

Φ +
√
Φ2 − λ̄2

(B.3)

Finally, this reduction factor has to be multiplied by the cross-sectional area and the yield strength to
obtain the buckling resistance according to Eurocode 1993-1-1. It is also divided by a safety factor γM1.
However, this is equal to 1 and does not change the outcome. This is shown in Equation B.4:

NbRd =
χAfy
γM1

(B.4)

The Python script used to compute the buckling resistance of the beam in Section 5.1 is shown in
Listing B.1.

Listing B.1: Python script used to compute the buckling resistance of the steel beam according to Eurocode 1993-1-1.
1 import numpy as np
2

3 def relative_slenderness(fy, A, l_b, E, I):
4 Npl = fy * A
5 N_eul = (np.pi**2 * E * I) / l_b**2
6 lab = np.sqrt(Npl / (N_eul))
7 return lab
8

9 def phi(lab, alpha):
10 return 0.5 * (1 + alpha * (lab - 0.2) + lab**2)
11

12 def reduction_factor(phi, lab):
13 return 1 / (phi + np.sqrt(phi**2 - lab**2))
14

15 def buckling_capacity(X, A, fy, gam1):
16 return (X * A * fy) / (gam1 * 1000)
17

18 # general data
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19 fy, E, gamma_1 = 355, 210000, 1
20

21 # Small-scaled structure
22

23 D_ss = 6.35 # mm
24 A_ss, l_b_ss = 0.25 * np.pi*D_ss**2, np.sqrt(200)
25

26 # moment of inertia
27 I_ss = 0.25 * np.pi * (0.5 * D_ss)**4
28

29 # The imperfection factor is c=0.49, this is the case for both cross-sections because both
structures are modelled with S355 construction steel.

30 alpha = 0.49
31

32 # Relative slenderness
33 lab_ss = relative_slenderness(fy, A_ss, l_b_ss, E, I_ss)
34

35 # reduction factor
36 phi_ss = phi(lab_ss, alpha)
37 X_ss = reduction_factor(phi_ss, lab_ss)
38

39 # Buckling capacity
40 N_brd_ss = buckling_capacity(X_ss, A_ss, fy, gamma_1)
41

42 D_rs = 63.5 # mm
43 A_rs, l_b_rs = 0.25 * np.pi*D_rs**2, np.sqrt(2000)
44

45 # moment of inertia
46 I_rs = 0.25 * np.pi * (0.5 * D_rs)**4
47

48 # The imperfection factor is c=0.49, this is the case for both cross-sections because both
structures are modelled with S355 construction steel.

49 alpha = 0.49
50

51 # Relative slenderness
52 lab_rs = relative_slenderness(fy, A_rs, l_b_rs, E, I_rs)
53

54 # reduction factor
55 phi_rs = phi(lab_rs, alpha)
56 X_rs = reduction_factor(phi_rs, lab_rs)
57

58 # Buckling capacity
59 N_brd_rs = buckling_capacity(X_rs, A_rs, fy, gamma_1)



C
Derivation of failure load of the
statically indeterminate beam

A schematic representation of the beam is illustrated in Figure C.1.

Figure C.1: Schematic model of the statically indeterminate beam.

The first failure load follows from the fact that the moment at the supports is − 1
12ql

2 and the moment
at midspan is 1

24ql
2. The moments at the support will reach the plastic limit earlier because they are

larger. By solving Equation C.1 we obtain the final failure load.

1

12
ql2 = Mpl

q =
12Mpl

l2

(C.1)

The final failure load is computed with failure a failure mechanism. Hinges will be applied on the two
supports and at midspan. Then a virtual displacement is applied. The schematic representation of the
displaced structure is illustrated in Figure C.2.

Figure C.2: Virtual work model for the statically indeterminate beam.

The principle of virtual work is shown in Equation C.2:

∂A = 0 (C.2)
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The virtual work of this structure is derived in Equation C.3.

∂A = −Mpl ·
∂w
1
2 l

+ q · 1
2
l · ∂w

2
−Mpl ·

∂w
1
2 l

−Mpl ·
∂w
1
2 l

q · 1
2
l · ∂w

2
= 0 (C.3)

By making q free we obtain the relation between the failure load and the plastic moment capacity. This
is illustrated in Equation C.4:

q =
4 ·Mpl

1
4 l

2
=

16Mpl

l2
(C.4)
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