
Concrete column failure
analysis using FDM
A FDM analysis of the bearing ca-
pacity of a conrete column in rela-
tion to the bearing distance
L.W. Bleker - 4452151

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

Contents

1 Introduction 1

2 Method 3
2.1 Model definition. 3
2.2 Discretisation . 3
2.3 Stress-distribution . 7

3 Results 9
3.1 Crack location. 9
3.2 Element size. 10
3.3 Load stress . 10
3.4 Bearing distance . 11
3.5 Load width. 12

3.5.1 Constant stress . 12
3.5.2 Constant force . 12

3.6 Practical case . 13

4 Conclusion 15

Bibliography 17

A Python code 19

iii

1
Introduction

Multiple different bearing systems exist for when a concrete column has to support a load. For some
of these bearing types, the load is applied at a certain distance from the column edge, the ”bearing
distance”. When this distance becomes too small a failure mechanism can occur where part of the top
corner of the concrete column breaks off where no reinforcement is present. As of writing this paper
no accurate model exists to describe this failure mechanism. The aim of this paper is to gain more
understanding of the influence of different variables on the capacity of the column head with regards
to this failure mechanism. The following research question has been formulated:

”+ow does the bearing capacity of a concrete column relate to the dimensioning and positioning of
the bearing"”

The preceding paper to this tried to answer a similar research question with the use of equilibrium
conditions. The conclusion was however that too many assumptions had to be made to make the
model feasible [1]. This is why for this paper a different approach is chosen, namely a finite difference
discretisation.

The structure of this paper is as follows. Chapter 2 will discuss the method used and the way in
which it is implemented. Chapter 3 contains the results. Finally, a conclusion is made in chapter 4.

1

2
Method

2.1. Model definition
To make the problem easier to solve and simpler to analyse, the 3-dimensional problem is reduced to a
2-dimensional one. This is done by taking a vertical cross-section of the column along the width of the
bearing. For this reduction in dimension the simplification has to be made that the column stretches
to infinity in both directions perpendicular to the cross-section, which is of course not the case. It is
assumed however that this difference with the 3-dimensional problem is very small and therefore does
not have a significant impact on the results. In Figure 2.1 the bearing load is shown.

Figure 2.1: Model representing the bearing load

The load has been placed symmetrically on the column so that any bending moments are avoided.
This way the failure mechanism of interest is isolated as much as possible. Along the entire width of
the base of the column vertical and horizontal forces are resisted to simulate a clamped column.

2.2. Discretisation
Because it is unknown where in the cross-section exactly the first crack appears it is very useful to get
an image of the stress-distribution. For this, a discretisation method is very well suited. The problem

3

4 2. Method

is simple in the sense that the geometric form of the cross-section is always rectangular. Therefore
the finite difference method should suffice and is even preferred over the inherently more complicated
finite element method (which does allow for more complicated shapes).

The starting point for the discretisation are the following differntial equations [2]:

−𝐸𝑡(𝜕
ኼ𝑢፱
𝜕𝑥ኼ +

1
2
𝜕ኼ𝑢፱
𝜕𝑦ኼ +

1
2
𝜕ኼ𝑢፲
𝜕𝑥𝜕𝑦) = 𝑝፱

−𝐸𝑡(
𝜕ኼ𝑢፲
𝜕𝑦ኼ +

1
2
𝜕ኼ𝑢፲
𝜕𝑥ኼ + 12

𝜕ኼ𝑢፱
𝜕𝑥𝜕𝑦) = 𝑝፲

These equations are the result of substituting the kinematic, constitutive and equilibrium equations
into one another. It describes the displacement field of a cross-section in terms of the external load 𝑝
applied per unit area in both x and y direction. The Poison ratio has been set to zero in these equations
to keep the discretisation as simple as possible.

To solve these equations the continuous displacement field of the cross-section is discretised into a
finite number of displacements in x and y direction as seen in Figure 2.2.

Figure 2.2: Displacement discretisation inside the cross-section

With the use of a central difference method the displacement derivatives can be written in terms of
different displacements. Substitution leads to the following equation for the area force in x direction
(for a more extensive derivation, see [3]):

𝐸𝑡
𝑎ኼ (−

1
2𝑢ፚ −

1
2𝑢 +

1
2𝑢 − 𝑢፝ + 3𝑢፞ − 𝑢፟ +

1
2𝑢፠ −

1
2𝑢፡ −

1
2𝑢።) = 𝑝፱

A graphical way of representing this equation is given in Figure 2.3. The number for each displace-
ments represents the factor by which it has to be multiplied in the equation.

2.2. Discretisation 5

Figure 2.3: Molecule for displacement in x-direction

From Figure 2.3 it becomes apparent that near the borders this equation is not applicable because
some of the neighboring displacements will be outside of the material. To overcome this, different
molecules have to be derived for the edges and corners of the material. The way these molecules are
derived, is by interpreting the displacements shown in Figure 2.2 as different springs and shear panels
instead of applying the central difference theorem.

For the lower boundary of the column the displacement in both x and y direction is fixed over the
entire length of the border. For these displacements the same molecule as shown in Figure 2.3 can
be used, however 𝑢፠, 𝑢፡ and 𝑢። are all set to zero. Deriving the upper boundary molecules where the
load is applied on the column would be slightly more complicated. To avoid this complication the load
on top of the column is approximated as an area load on the cross-section in y direction (𝑝፲) along the
most upper row of molecules. By replacing the boundary load with an area load the same molecule for
the free edges can be used for the edges where the load is present.

When every displacement (unknown) in the system has an accompanying molecule (equation),
a square matrix can be created because there is an equal number of unknowns and equations. An
example of such a matrix is given in Figure 2.4, which is the matrix for the discretisation shown in
Figure 2.5. Every displacement in Figure 2.5 has a number which corresponds with the row number in
Figure 2.4. The molecule of Figure 2.3, for example, is used in rows 11, 12, 20 and 21.

Figure 2.4: Stiffness matrix for the discretisation in 2.5

6 2. Method

Figure 2.5: Example of a discretisation for a column with a width greater than its height

The matrix is created in a python program (see Appendix A) and stored as a sparse matrix, because
of its diagonal nature. When the system is solved the result is one vector containing the different
displacements of the discretisation. In Figure 2.6 the deformation of the boundary of a solved system
is shown.

Figure 2.6: Example of a column deformation with an area load centrally applied on top with a gridsize of 400 by 600. (Red =
Original, Black = Deformed)

2.3. Stress-distribution 7

2.3. Stress-distribution
From the deformation-field it is possible to derive the stress-distributions 𝜎፱፱, 𝜎፲፲ and 𝜎፱፲ with the
following equations:

𝜎፱፱ = 𝐸
𝜕𝑢፱
𝜕𝑥

𝜎፲፲ = 𝐸
𝜕𝑢፲
𝜕𝑦

𝜎፱፲ =
𝐸
2 (
𝜕𝑢፱
𝜕𝑦 +

𝜕𝑢፲
𝜕𝑥)

Again the central difference theorem is used to approximate the displacement derivatives. The
stress distributions derived from the displacement field in Figure 2.6 are shown in Figure 2.7

Figure 2.7: Stress distribution derived from the deformation in Figure 2.6

According to Mohr’s circle the three different stress-distributions can be reduced to the two principal
stresses with these equations:

𝜎ኻ,ኼ =
𝜎፱፱ + 𝜎፲፲

2 ± √(
𝜎፱፱ − 𝜎፲፲

2)ኼ + 𝜎ኼ፱፲

The angle under which 𝜎ኻ and 𝜎ኼ act can be calculated according to the equations:

𝛼ኻ =
arctan ኼᑩᑪᑩᑩ

2

𝛼ኼ =
arctan ኼᑩᑪᑩᑩ

2 + 1
2𝜋

In Figure 2.8 the stress distributions of Figure 2.7 have been converted to the two principal stress
distributions. Figure 2.9 shows the principal stress trajectories belonging to the stress distributions in
Figure 2.8.

8 2. Method

Figure 2.8: Principal stress-distributions derived from the stress-distributions in Figure 2.7

Figure 2.9: Principal stress trajectories for the principal stresses in Figure 2.8

3
Results

In this chapter the location in the column where the first crack appears is examined. Furthermore
several variables of the model are studied one by one to see how they influence the magnitude of the
maximum occurring internal stress levels. The variables to be studied are the element size, the bearing
distance, the load magnitude as well as the load width.

3.1. Crack location
In Figure 3.1 the principal stress-distributions of a certain load case are shown. The colors are scaled
in such a way that only tensile forces are shown and all compressive forces are blue.

Figure 3.1: Principal stress-distributions scaled to only show tensile forces

From Figure 3.1 it becomes clear tensile forces only occur in 𝜎ኻ and not in 𝜎ኼ. There are five tensile
areas within the cross-section. The first area is a tensile tie at the center of the column. This tie is
caused by the redistribution of the more concentrated compressive stress at the top of the column to
an even distribution at the base of the column. In this area reinforcement is usually applied applied
and therefore any cracks in the concrete do not cause any damage. The other 4 tensile areas are
located near the corners of the column. The tensile forces at the top border are greater than those on

9

10 3. Results

the side, therefore this is where the first crack appears. The single element with the highest tensile
force is located on the uppermost row, on the edge of the concrete. Because this is a free edge 𝜎፲𝑦
is per definition equal to zero. Therefore the crack tensile force is in x direction and thus the crack
forms perpendicular to the tensile force, straight down in y-direction. It is however likely the crack will
quickly bend towards the side of the column since that is where more tensile forces are present, as can
be seen in Figure 3.1. This would also correspond with real-life damage cases, where the top corners
of the column break off.

3.2. Element size
Figure 3.2 displays a fit through several data points of different element sizes with corresponding
maxima in the internal stress.

Figure 3.2

From Figure 3.2 it is immediately apparent smaller element sizes significantly increase the maximum
occurring stress level. It should also be noted the second smallest element size (0.0002 m) takes around
10 minutes to compute, whilst the single smallest element size (0.000125 m) takes approximately 90
minutes to compute. This drastic increase in computation time makes this simulation unfit to compute
models with smaller time steps.

The difference between the stress level of the smallest element size and the second smallest element
size is too large to be able to predict the actual stress level. Because of this fact all further analyses
in this chapter will only present relative changes in stress levels and no absolute cracking force will be
discussed.

3.3. Load stress
Figure 3.3 shows a graph of the maximum internal stress versus the external load pressure. All data
points have been generated with the same element size, load with and bearing distance.

3.4. Bearing distance 11

Figure 3.3

The graph shows a linear relationship between the maximum internal stress and the external pres-
sure. This result is to be expected because of the simulation is entirely linear elastic.

3.4. Bearing distance
Figure 3.4 presents multiple data points where for each simulation the bearing distance is changed
while keeping the load width and magnitude the same. Because the bearing distance changes and
the load width stays constant, this implies that the entire width of the column for each simulation is
different. The unit of the bearing distance (or edge distance), is given as how many times it is the
width of the load. For example a bearing distance of 0.5 would mean the bearing distance is equal to
half the width of the load.

Figure 3.4

12 3. Results

For large bearing distances, there is a linear relationship between the internal stress and the bearing
distance. As the bearing distance becomes smaller the increase in stress decreases, and eventually
reaches a maximum. For even closer bearing distances the stress quickly drops off to zero, as would be
expected (when the bearing distance is zero, the entire column is under uniform pressure). For what
bearing distance the maximum internal stress is reached, is however very dependant on the chosen
element size. For smaller element sizes, the maximum is closer to a bearing distance of zero.

3.5. Load width
In this section two ways of changing the load width are discussed. First a case where as the load gets
wider, the load pressure stays the same. Because the load pressure is constant and the load gets wider,
the total force becomes larger. The second case is where as the load gets wider, the total force is kept
constant. This implies that for wider load cases, the load pressure is lower. For both cases the change
in load width and the constant bearing distance implies the total column width also changes between
the simulations.

3.5.1. Constant stress
Figure 3.5 shows the load width with a constant load pressure plotted against the maximum internal
stress.

Figure 3.5

The Figure shows that for an increase in load width the maximum observed internal stress also
increases. The increase decreases as the width gets larger. This can be explained with the theory that
parts of the load close to the edge have a large contribution to the maximum internal stress, and loads
farther away from the edge have less of an impact. As the load gets wider the maximum internal stress
nears a limit as newly added loads are too far away from the edge to have any significant impact.

3.5.2. Constant force
Figure 3.6 is similar to Figure 3.5 with the major difference being that the load pressure decreases as
the load width gets larger to retain a constant total force.

3.6. Practical case 13

Figure 3.6

The graph shows a decrease in internal stress for a wider, more spread out load. This is in accor-
dance to the previously made theory that loads closer to the edge have a larger impact on the internal
stress than load farther away from the edge.

3.6. Practical case
The previous analyses isolated one variable to create an image of how only that variable influences
the internal stress. The consequence of this is that the total width of the column changes in between
simulations. When designing a bearing for a fixed size column those results are however not very
practical. Figure 3.7 shows a more practical analysis where the column width as well as the total force
stays constant.

Figure 3.7: Column width = 0.2 m

It should be obvious the internal stress is zero when the load width is equal to the column width

14 3. Results

(0.2 m). When the load width decreases the internal stress increases in a non-linear fashion. It should
be noted however that when the load gets farther away from the column edge than the concrete cover
is thick, these high stresses pose much less of a risk. When the concrete cracks farther away than the
concrete cover, the crack would go through the reinforcement, and so the tensile forces resisted by the
reinforcement.

4
Conclusion

The main research question to be answered in this paper was as follows:

”+ow does the bearing capacity of a concrete column relate to the dimensioning and positioning of
the bearing"”

The magnitude of the tensile forces present in the cross-section are in the range of the tensile
capacity of commonly used concrete types [4], so it is very much possible the column gets damaged
due to the observed tensile forces. An increase in maximum observed tensile stress, therefore implies
a decrease in the bearing capacity of the column. From the different parameter studies in chapter 3
the following design recommendation can be made to maximize the column bearing capacity.

• The bearing distance should either be (almost) equal to zero, or be made as large as possible.

• The bearing plate should have a big contact area with the column in order to spread the force in
the column as even as possible.

• When a compromise has to be made between creating a larger bearing area or increasing the
bearing distance, a larger bearing area is preferred. An exception to this is when the increase in
bearing distance is large enough that the crack formation is far away enough from the concrete
cover that that the crack would have to go though the reinforcement.

The created simulation is only useful for relative changes in the stress levels and not for calculating
the maximum capacity. This is because of the large change in results for different element sizes. Per-
haps a FEM model instead of the used FDM model would create more accurate results. An shortcoming
of the simulation is the fact that when the tensile capacity of concrete is reached failure is immediately
assumed, while it could be the case that only a small crack appears after which a new equilibrium is
found. A way to be able to overcome this problem would be with a non-linear analysis instead.

15

Bibliography

[1] M. D. Klomp, Concrete column support failure, TU Delft , 22.

[2] J. Blauwendraad, Plate analysis, theory and application volume 1, theory, TU Delft , 7 (2006).

[3] J. Blauwendraad, Plate analysis, theory and application volume 2, numerical methods, TU Delft ,
18 (2006).

[4] En 1992-1-1, (2004).

17

A
Python code

import numpy as np
import matp l o t l i b . pyp lo t as p l t
import numpy . l i n a l g as l g
import sc i py as sp
import sc i py . sparse
from sc i py . sparse . l i n a l g import spso lve
from matp l o t l i b import cm

def A_create (nx , ny , a , E , v , t) :
n = 2*nx*ny + nx + ny
d0 = (3 − v) * np . ones (n)
d0 [0] = 1
d0 [1: nx − 1] = 1.5
d0 [nx − 1:nx + 1] = 1
d0 [nx + 1:2*nx] = 2
d0[2*nx] = 1
d0[2*nx + 1] = 2
d0[3*nx] = 2
for i in range (ny − 2) :

d0[3*nx + 1 + i *(2*nx + 1)] = 1.5
d0[3*nx + nx + 1 + i *(2*nx + 1)] = 1.5
d0[3*nx + nx + 2 + i *(2*nx + 1)] = 2
d0[3*nx + 2*nx + 1 + i *(2*nx + 1)] = 2

d0[−(2*nx + 1)] = 1.5
d0[−(nx + 1)] = 1.5
d0[−(nx)] = 2
d0[−1] = 2

d1_U = 0 * np . ones (n − 1)
d1_U [0: nx − 1] = −0.5
d1_U[nx:2*nx] = −0.5
for i in range (ny − 1) :

d1_U[2*nx + 1 + i *(2*nx + 1):3*nx + i *(2*nx + 1)] = −1
d1_U[3*nx + 1 + i *(2*nx + 1):4*nx + 1 + i *(2*nx + 1)] = −0.5 + 0.5*v
d1_U[3*nx + 1 + i *(2*nx + 1)] = −0.5

d1_U[−(nx−1):] = −1

d2_U = (0.5 + 0.5*v) * np . ones (n − nx)
d2_U [0: nx] = 0.5

19

20 A. Python code

d2_U[nx + 1:2*nx + 2] = 0.5
for i in range (ny) :

d2_U[nx + i *(2*nx + 1)] = 0
for i in range (ny − 1) :

d2_U[2*nx + 1 + i *(2*nx + 1)] = 0.5
d2_U[3*nx + i *(2*nx + 1)] = 0.5
d2_U[4*nx + 1 + i *(2*nx + 1)] = 0.5

d3_U = (−0.5 − 0.5*v) * np . ones (n − (nx + 1))
d3_U[0:2*nx] = −0.5
for i in range (ny − 1) :

d3_U[2*nx + i *(2*nx + 1)] = 0
d3_U[2*nx + 1 + i *(2*nx + 1)] = −0.5
d3_U[3*nx + i *(2*nx + 1)] = −0.5
d3_U[3*nx + 1 + i *(2*nx + 1)] = −0.5

d4_U = (−0.5 + 0.5*v) * np . ones (n − (2*nx + 1))
d4_U [0: nx] = −0.5
for i in range (ny − 1) :

d4_U[nx + i *(2*nx + 1)] = −0.5
d4_U[nx + 1 + i *(2*nx + 1):2*nx + i *(2*nx + 1)] = −1
d4_U[2*nx + i *(2*nx + 1)] = −0.5
d4_U[2*nx + 1 + i *(2*nx + 1)] = −0.5
d4_U[3*nx + i *(2*nx + 1)] = −0.5

d1_L = 0 * np . ones (n − 1)
d1_L [0 : nx − 1] = −0.5
d1_L [nx:2*nx] = −0.5
for i in range (ny − 1) :

d1_L[2*nx + 1 + i *(2*nx + 1):3*nx + i *(2*nx + 1)] = −1
d1_L[3*nx + 1 + i *(2*nx + 1):4*nx + 1 + i *(2*nx + 1)] = −0.5 + 0.5*v
d1_L[4*nx + i *(2*nx + 1)] = −0.5

d1_L[−(nx−1):] = −1

d2_L = (0 .5 + 0.5*v) * np . ones (n − nx)
d2_L [0 : nx] = 0.5
d2_L [nx + 1] = 0.5
d2_L[2*nx] = 0.5
for i in range (ny) :

d2_L [nx + i *(2*nx + 1)] = 0
for i in range (ny − 1) :

d2_L[2*nx + 1 + i *(2*nx + 1)] = 0.5
d2_L[3*nx + 2 + i *(2*nx + 1)] = 0.5
d2_L[4*nx + 1 + i *(2*nx + 1)] = 0.5

d3_L = (−0.5 − 0.5*v) * np . ones (n − (nx + 1))
d3_L [0 : nx + 1] = −0.5
d3_L[2*nx − 1] = −0.5
for i in range (ny − 1) :

d3_L[2*nx + i *(2*nx + 1)] = 0
d3_L[3*nx + i *(2*nx + 1)] = −0.5
d3_L[3*nx + 1 + i *(2*nx + 1)] = −0.5
d3_L[4*nx + i *(2*nx + 1)] = −0.5

d4_L = (−0.5 + 0.5*v) * np . ones (n − (2*nx + 1))
d4_L [0] = −0.5

21

d4_L [nx − 1] = −0.5
for i in range (ny − 1) :

d4_L [nx + i *(2*nx + 1)] = −0.5
d4_L [nx + 1 + i *(2*nx + 1):2*nx + i *(2*nx + 1)] = −1
d4_L[2*nx + i *(2*nx + 1)] = −0.5
d4_L[2*nx + 1 + i *(2*nx + 1)] = −0.5
d4_L[3*nx + i *(2*nx + 1)] = −0.5

A = (E* t / ((1 − v**2)*(a**2)))*\
sp . sparse . d iags ([d0 , d1_U , d1_L , d2_U , d2_L ,d3_U , d3_L ,d4_U , d4_L] , \

[0 , 1 , −1, nx , −nx , nx + 1 , −(nx + 1) , 2*nx + 1 , −(2*nx + 1)] , \
shape = (n , n) , format = ’ csc ’)

return A

def B_create (nx , ny , a , t , q , q_d , q_h) :
n = 2*nx*ny + nx + ny
B = 0 * np . ones (n)
B[nx + int ((nx + 1)*q_h /b + 0 .5) : nx + int ((nx + 1)*(q_h + q_d) / b + 0 .5)] =\
q*q_d* t / ((a**2)*len (B[nx + int ((nx + 1)*q_h /b + 0 .5) : nx +\

int ((nx + 1)*(q_h + q_d) / b + 0 . 5)]))
return B

def so lve (nx , ny , a , E , v , t , q , q_d , q_h) :
A = A_create (nx , ny , a , E , v , t)
B = B_create (nx , ny , a , t , q , q_d , q_h)
y = sp . sparse . l i n a l g . spso lve (A , B)
return y

v = 0 � Poisson r a t i o
E = 37 * 10**6 � Modulus of e l a s t i c i t y [kN/mA2]
t = 0.001 � P la te th i ckness [m]

b = 0.2
h = 0.3
a = 0.0005
nx = int (b / a + 0.5)
ny = int (h / a + 0.5)
q_d = 0.1
q_h = 0.05
q = 19000

so l = so lve (nx , ny , a , E , v , t , q , q_d , q_h)
x = np . ar ray (l i s t (np . arange (0 , b , a)) + l i s t (b*np . ones (ny)) + l i s t (np . arange (b , 0 , −a)) \

+ l i s t (0*np . ones (ny)) + [0])
y = np . ar ray (l i s t (h*np . ones (nx)) + l i s t (np . arange (h , 0 , −a)) + l i s t (0*np . ones (nx)) +\

l i s t (np . arange (0 , h , a)) + [h])
dx = np . ar ray ([so l [0]] + l i s t (0.5* so l [0 : nx − 1] + 0.5* so l [1 : nx]) +\

l i s t (s o l [nx−1::2*nx + 1]) + \
l i s t (0.5* so l [−2:−(nx + 1):−1] + 0.5* so l [−1:−(nx):−1]) +\
l i s t (s o l [−nx::−(2*nx + 1)]))

dy = np . ar ray (l i s t (s o l [nx:2*nx + 1]) + l i s t (0.5* so l [4*nx + 1::2*nx + 1] +\
0.5* so l [2*nx:−(nx + 1):2*nx + 1]) + \
l i s t (s o l [−(nx + 1):−(2*nx + 2):−1]) + \
l i s t (0.5* so l [−(2*nx + 1) : nx:−(2*nx + 1)] +\

0.5* so l [−(4*nx + 2)::−(2*nx + 1)]) + [so l [nx]])
p l t . f i g u r e (f i g s i z e = (20 ,20))
p l t . p l o t (x , y , ’ r−− ’)

22 A. Python code

p l t . p l o t (x + 500*dx , y − 500*dy , ’ k ’)
p l t . a x i s (’ sca led ’) ;

def Sigma_Create (so l , nx , ny , a) :
Nxx = np . zeros ((nx − 1)*(ny − 1))
Nyy = np . zeros ((nx − 1)*(ny − 1))
Nxy = np . zeros ((nx − 1)*(ny − 1))
for i in range (len (Nxx)) :

Nu = so l [i + nx + 1 + int (i / (nx − 1))*(nx + 2)]
Su = so l [i + 3*nx + 2 + int (i / (nx − 1))*(nx + 2)]
Wu = so l [i + 2*nx + 1 + int (i / (nx − 1))*(nx + 2)]
Eu = so l [i + 2*nx + 2 + int (i / (nx − 1))*(nx + 2)]
NWu = so l [i + int (i / (nx − 1))*(nx + 2)]
NEu = so l [i + 1 + int (i / (nx − 1))*(nx + 2)]
ENu = so l [i + nx + 2 + int (i / (nx − 1))*(nx + 2)]
ESu = so l [i + 3*nx + 3 + int (i / (nx − 1))*(nx + 2)]
SWu = so l [i + 4*nx + 2 + int (i / (nx − 1))*(nx + 2)]
SEu = so l [i + 4*nx + 3 + int (i / (nx − 1))*(nx + 2)]
WNu = so l [i + nx + int (i / (nx − 1))*(nx + 2)]
WSu = so l [i + 3*nx + 1 + int (i / (nx − 1))*(nx + 2)]
Nxx [i] = (E /(1 − v**2))*((Eu − Wu) / a − v*(Su − Nu) / a)
Nyy [i] = (E /(1 − v**2))*((Su − Nu) / a − v*(Eu − Wu) / a)
Nxy [i] = (E/(2*(1 + v)))* (((SEu*0.5 + SWu*0.5) −\

(NEu*0.5 + NWu*0.5))/(2*a) + ((ENu*0.5 + ESu*0.5) −\
(WNu*0.5 + WSu*0.5))/(2*a))

Nxx_M = np . zeros ([ny − 1 , nx − 1])
Nyy_M = np . zeros ([ny − 1 , nx − 1])
Nxy_M = np . zeros ([ny − 1 , nx − 1])
P = 0
for i in range (ny − 1) :

for j in range (nx − 1) :
Nxx_M[i , j] = Nxx [P]*0.001
Nyy_M[i , j] = Nyy [P]*0.001
Nxy_M[i , j] = Nxy [P]*0.001
P += 1

return Nxx_M , Nyy_M , Nxy_M
Nxx_M , Nyy_M , Nxy_M = Sigma_Create (so l , nx , ny , a)
p l t . f i g u r e (f i g s i z e = (20 , 10))
p l t . subp lo t (131)
p l t . t i t l e (”$ \ sigma_{xx}$␣ [MPa] ” , f o n t s i z e = 15)
p l t .matshow(Nxx_M , fignum = 0 , cmap = ” Spec t r a l _ r ”)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;
p l t . subp lo t (132)
p l t . t i t l e (”$ \ sigma_{yy}$␣ [MPa] ” , f o n t s i z e = 15)
p l t .matshow(Nyy_M , fignum = 0 , cmap = ” Spec t r a l _ r ”)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;
p l t . subp lo t (133)
p l t . t i t l e (”$ \ sigma_{xy}$␣ [MPa] ” , f o n t s i z e = 15)
p l t .matshow(Nxy_M , fignum = 0 , cmap = ” Spec t r a l _ r ”)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;

23

def Create_Pr inc ipa l_S igma (Nxx_M , Nyy_M , Nxy_M) :
sigma1 = 0.5*Nxx_M + 0.5*Nyy_M + np . sq r t ((0.5*Nxx_M − 0.5*Nyy_M)**2 + Nxy_M**2)
sigma2 = 0.5*Nxx_M + 0.5*Nyy_M − np . sq r t ((0.5*Nxx_M − 0.5*Nyy_M)**2 + Nxy_M**2)
return sigma1 , sigma2

sigma1 , sigma2 = Create_Pr inc ipa l_S igma (Nxx_M , Nyy_M , Nxy_M)
p l t . f i g u r e (f i g s i z e = (20 , 10))
p l t . subp lo t (131)
p l t . t i t l e (”$ \ sigma_1$␣ [MPa] ” , f o n t s i z e = 15)
p l t .matshow(sigma1 , fignum = 0 , cmap = ” Spec t r a l _ r ”)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;
p l t . subp lo t (132)
p l t . t i t l e (”$ \ sigma_2$␣ [MPa] ” , f o n t s i z e = 15)
p l t .matshow(sigma2 , fignum = 0 , cmap = ” Spec t r a l _ r ”)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;

p l t . f i g u r e (f i g s i z e = (20 , 10))
p l t . subp lo t (131)
p l t . t i t l e (”$ \ sigma_1$␣ [MPa] ” , f o n t s i z e = 15)
sigma1 = 0.5*Nxx_M + 0.5*Nyy_M + np . sq r t ((0.5*Nxx_M − 0.5*Nyy_M)**2 + Nxy_M**2)
p l t .matshow(sigma1 , fignum = 0 , cmap = ” Spec t r a l _ r ” , vmin = 0)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;
p l t . subp lo t (132)
p l t . t i t l e (”$ \ sigma_2$␣ [MPa] ” , f o n t s i z e = 15)
sigma2 = 0.5*Nxx_M + 0.5*Nyy_M − np . sq r t ((0.5*Nxx_M − 0.5*Nyy_M)**2 + Nxy_M**2)
p l t .matshow(sigma2 , fignum = 0 , cmap = ” Spec t r a l _ r ” , vmin = 0)
p l t . x t i c k s ([] , [])
p l t . y t i c k s ([] , [])
p l t . co l o rba r () ;

def Master (b , h , a , q_d , q_h , q) :
nx = int (b / a + 0.5)
ny = int (h / a + 0.5)
v = 0 � Poisson r a t i o
E = 37 * 10**6 � Modulus of e l a s t i c i t y [kN/mA2]
t = 0.001 � P la te th i ckness [m]
so l = so lve (nx , ny , a , E , v , t , q , q_d , q_h)
Nxx_M , Nyy_M , Nxy_M = Sigma_Create (so l , nx , ny , a)
sigma1 , sigma2 = Create_Pr inc ipa l_S igma (Nxx_M , Nyy_M , Nxy_M)
r e s u l t = sigma1 [0] .max()
return r e s u l t

a = 0.0005
q_d = 0.1
q = 20000

x = np . arange (0 .01 , 0 .1 , 0.005)
R = np . zeros (len (x))
for i in range (len (x)) :

q_h = x [i]

24 A. Python code

b = 2*q_h + q_d
h = 1.5*b
R[i] = Master (b , h , a , q_d , q_h , q)

p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b) :

y = a*x + b
return y

popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1]) , ’ k ’) ;

p l t . f i g u r e (f i g s i z e = (7 .5 , 5))
x = np . arange (0 .1 , 1 , 0.05)
p l t . x t i c k s (np . arange (0 , 1 .1 , 0 . 1))
p l t . x l im (0 ,1)
p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b) :

y = a*x + b
return y

p l t . y l a be l (”$ \ sigma$␣ [MPa] ” , f o n t s i z e = 15)
p l t . x l a be l (”Edge␣ d i s tance ␣ [b] ” , f o n t s i z e = 15)
popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x [(R . argmax () + 2) :] , R [(R . argmax () + 2) :])
p l t . t i t l e (” I n t e r na l ␣ s t r e s s ␣vs␣Edge␣ d i s tance ” , f o n t s i z e = 15)
p l t . p l o t (x [(R . argmax () + 2) :] , func (x [(R . argmax () + 2) :] , popt [0] , popt [1]) , ’ k ’) ;

a = 0.001
q_d = 0.1
q_h = 0.05
q = 20000

x = np . arange (0 , 21000 , 1000)
R = np . zeros (len (x))
for i in range (len (x)) :

q = x [i]
b = 2*q_h + q_d
h = 1.5*b
R[i] = Master (b , h , a , q_d , q_h , q)

p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b) :

y = a*x + b
return y

popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1]) , ’ k ’) ;

p l t . f i g u r e (f i g s i z e = (7 .5 , 5))
x = np . arange (0 , 21 , 1)
p l t . x t i c k s (np . arange (0 , 21 , 2))
p l t . x l im (0 ,20)
p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b) :

y = a*x + b
return y

p l t . t i t l e (” I n t e r na l ␣ s t r e s s ␣vs␣Load␣ s t r e s s ” , f o n t s i z e = 15)
p l t . y l a be l (”$ \ sigma$␣ [MPa] ” , f o n t s i z e = 15)
p l t . x l a be l (”q␣ [MPa] ” , f o n t s i z e = 15)
popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1]) , ’ k ’) ;

25

b = 0.15
h = 1.5*b
a = 0.0005
q_d = 0.1
q_h = 0.05
q = 20000

x = np . arange (0 .1 , 0.32 , 0.02)
R = np . zeros (len (x))
for i in range (len (x)) :

q_d = x [i]
q = 1900/q_d
q_h = 0.05
b = 2*q_h + q_d
h = 1.5*b
R[i] = Master (b , h , a , q_d , q_h , q)

p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b) :

y = a*x + b
return y

popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1]) , ’ k ’) ;

p l t . f i g u r e (f i g s i z e = (7 .5 , 5))
x = np . arange (0 .1 , 0.32 , 0.02)
p l t . x t i c k s (x)
p l t . x l im (0 .1 , 0 . 3)
p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b , c) :

y = a*x**c + b
return y

p l t . y l a be l (”$ \ sigma$␣ [MPa] ” , f o n t s i z e = 15)
p l t . x l a be l (”b␣ [m] ” , f o n t s i z e = 15)
p l t . t i t l e (” I n t e r na l ␣ s t r e s s ␣vs␣Load␣width␣ (constant␣ f o r ce) ” , f o n t s i z e = 15)
popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R , maxfev = 8000)
p l t . p l o t (x , func (x , popt [0] , popt [1] , popt [2]) , ’ k ’) ;

a = 0.001
q_h = 0.05
q = 20000

x = np . arange (0 .1 , 0.32 , 0.02)
R = np . zeros (len (x))
for i in range (len (x)) :

q_d = x [i]
b = 2*q_h + q_d
h = 1.5*b
R[i] = Master (b , h , a , q_d , q_h , q)

p l t . p l o t (x , R , ’ r . ’) ;

p l t . f i g u r e (f i g s i z e = (7 .5 , 5))
x = np . arange (0 .1 , 0.32 , 0.02)
p l t . x t i c k s (x)
p l t . x l im (0 .1 , 0 . 3)
p l t . p l o t (x , R , ’ r . ’)

26 A. Python code

def func (x , a , b) :
y = a / x + b
return y

p l t . y l a be l (”$ \ sigma$␣ [MPa] ” , f o n t s i z e = 15)
p l t . x l a be l (”b␣ [m] ” , f o n t s i z e = 15)
p l t . t i t l e (” I n t e r na l ␣ s t r e s s ␣vs␣Load␣width␣ (constant␣ s t r e s s) ” , f o n t s i z e = 15)
popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1]) , ’ k ’) ;

�Width of load (constant fo r ce) (d i s tance = 0.1 , load = 19000)
b = 0.15
h = 1.5*b
a = 0.001
q_d = 0.1
q_h = 0.05
q = 19000

x = np . arange (0 .01 , 0 .2 , 0.01)
R = np . zeros (len (x))
for i in range (len (x)) :

q_d = x [i]
q = 0.1*1900/q_d
b = 0.2
q_h = 0.5*(b−q_d)
h = 1.5*b
print (b , h , a , q_d , q_h , q)
R[i] = Master (b , h , a , q_d , q_h , q)

p l t . p l o t (x , R , ’ r . ’) ;

p l t . f i g u r e (f i g s i z e = (7 .5 , 5))
x = np . arange (0 .01 , 0 .2 , 0.01)
p l t . x t i c k s (np . arange (0 , 0.21 , 0 .02))
p l t . x l im (0 , 0 .2)
p l t . p l o t (x , R , ’ r . ’)
def func (x , a , b , c) :

y = a*x**c + b
return y

p l t . y l a be l (”$ \ sigma$␣ [MPa] ” , f o n t s i z e = 15)
p l t . x l a be l (”b␣ [m] ” , f o n t s i z e = 15)
p l t . t i t l e (” I n t e r na l ␣ s t r e s s ␣vs␣Load␣width␣ (constant␣ f o r ce ␣and␣column␣width) ” , \

f o n t s i z e = 15)
popt , pcov = sp . opt im ize . c u r v e _ f i t (func , x , R)
p l t . p l o t (x , func (x , popt [0] , popt [1] , popt [2]) , ’ k ’) ;

	Introduction
	Method
	Model definition
	Discretisation
	Stress-distribution

	Results
	Crack location
	Element size
	Load stress
	Bearing distance
	Load width
	Constant stress
	Constant force

	Practical case

	Conclusion
	Bibliography
	Python code

