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PREFACE 

With the current, the results of the conducted research for the development of a formula to 

estimate the lowest natural frequency of anticlastic shells, are presented. The study entitled «Formula 

derivation for estimating natural frequency of anticlastic shells», was carried out in the Civil Engineering 

department of TU Delft during the period 17th of February, to 19th of May, 2017, and constituted the 

subject of my internship in the framework of my participation in Erasmus+ programme, as a student of 

the Civil Engineering department of the University of Patras. 

After a brief introduction, the description of the problem can be found in Chapter 1. Proceeding, 

a basic theoretical background regarding the shell structures of interest is reviewed in Chapter 2. In 

Chapter 3, the finite-element modelling used for the analysis, is depicted, and the reasoning behind the 

data acquisition is explained. Thereafter, the analysis of the collected data shall follow in Chapter 4, where 

useful observations will be made for the upcoming derivation of the formula seen in Chapter 5. Next, the 

results of the solution will be evaluated in Chapter 6, while the validity limits will also be defined in the 

same. Finally, Chapter 7 will be consisted of the conclusions of the study and some recommendations. 

I would like to thank my supervisor, Dr.ir. P.C.J. Hoogenboom, for his guidance during the 

project and for the opportunity he gave me to develop myself both academically and socially those 3 

months in Delft. It was a great pleasure cooperating and exchanging ideas with him. Last but not least, 

special thanks belong to my parents for supporting my choices and providing me with all the supplies to 

make my dreams come true. 

Nikolaos Bompotas 

Delft, May 2017 
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ABSTRACT 

In the herein study, the influence of various parameters on the natural frequency of saddle shaped 

shell structures is examined. The variables decided to be investigated are the length, the thickness and the 

curvature. The conducted research concentrates on thin, anticlastic curved panels made of steel and of 

equal length and curvature in both directions, in absence of twisting.  

For this purpose, a total number of 1396 finite-element models are generated in ANSYS and the 

acquired data are imported in MATLAB for their numerical analysis. A series of figures is, then, being 

deployed to explain the tendencies of the natural frequency for every variable. 

A notable observation is that frequency displays an analogous relation to thickness, 𝑡 ~ ƒ, whereby, 

increasing thickness results to increased frequency. This is not the case when the length is looked upon. 

As the length becomes larger, the lowest frequency shows irregularities with various local maxima to arise. 

What applies, though, in all the examined cases, is that length demonstrates a high effect on the frequency 

in minimal dimensions. On the contrary, curvature is found to have insignificant effect in the same region 

and until a certain point that depends on a combination of 𝑘 and ℓ. After this point, curvature has a main 

effect in frequency in an analogous manner as well. 

Great to notice is that all those variables of interest correlate to each other rather well and in 

recognisable patterns, which can be described with simple equations. Therefore, it is highly advantageous 

to find the proper dimensionless quantities to work with, that would include the influences of the 

variables altogether. 

These relations are discovered here and the final outcome is the derivation of a formula that can 

approximate the value of the lowest natural frequency for any given combination of length, thickness and 

curvature that comply with certain conditions.  

The formula produced, can be collectively expressed by: 

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
 + 𝑎√

 𝐸𝑘2

𝜌𝑣
   (5.12) 

where 

𝑎 = {

0    , 3.0725(𝑘𝑡)0.2726 > 𝑘ℓ

 ln 𝑏1 , 3.0725(𝑘𝑡)
0.2726 < 𝑘ℓ < 4.379(𝑘𝑡)0.2329

e𝑏2 , 4.379(𝑘𝑡)0.2329 < 𝑘ℓ

 (5.13) 

and 

{
𝑏1 = 1.1679 + 0.0028e

𝑘ℓ − 0.1719e𝑘𝑡           

𝑏2 = −2.7953 − 0.0686e
𝑘ℓ + 0.4674 ln(𝑘𝑡)

 (5.14) 

In the current, the limits of validity for this formula are also investigated, setting as a permissible 

margin of error the 10% value. This can be described by, 

1

100
> 𝑘𝑡 >

1

3300
 and 8.62(𝑘𝑡) ≤ 𝑘ℓ ≤ 2.0  (6.4) 

where both the expressions should be fulfilled simultaneously. The formula is also applicable for the 

whole range of the thin shells, (1/30) > 𝑘𝑡 > (1/4000), given that the condition for 𝑘ℓ is fulfilled, but with 

the reduced accuracy of about 15%. 
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1 INTRODUCTION 

1.1 Aim of study 

Thin shell structures need to be analysed for buckling. This analysis needs to include shape 

imperfections, nonlinear material behaviour such as yielding of steel, cracking of reinforced concrete and 

geometrical nonlinear behaviour. The analysis is time consuming and requires considerable expertise of 

the analyst. Subsequent design improvements are even more time consuming. 

Shell buckling often starts locally, for example, somewhere in a large free form shell. Suppose that 

a formula would exist that the predicts the load factor at which any shell part would buckle. A contour 

plot could be made of the buckling load factor over the surface of a shell. It would quickly give an 

overview of where and how a shell design needs to be improved. Unfortunately, this formula does not 

exist as yet. For specific shapes such as cylinders and spheres much literature is available but this cannot 

be generalised to a formula for any curvature. It is believed that it is possible to develop this formula from 

a large number of finite element analysis of thin shell structures. It is also believed that this formula will 

not be too large and will be reasonably accurate. 

The number of variables is very large. (length, thickness, curvature, Young’s modulus, Poisson’s 

ratio, surface loading, membrane forces, imperfections, etc.). These are too many variables to consider at 

the same time. In this project, the first three variables will only be considered. The buckling problem can 

be rewritten into a vibration problem, therefore, the effect of those variables on the natural frequency will 

be searched herein.  

1.2 Problem 

In previous projects a formula for the lowest natural frequency of curved panels which lies within 

a margin of error of 20% was developed: 

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
 + [(𝑘𝑥𝑥 + 𝑘𝑦𝑦)

2
 + 4𝑘𝑥𝑦

2]
𝐸

16𝜋2𝜌
  (1.1) 

This formula is suitable for various sizes, curvatures and loads. However, for the case of anticlastic shells, 

of opposite curvatures and without twist, this equation leads to  

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
    (1.2) 

The above expression does not include the curvature in it, which practically means that curvature does not 

contribute to the stiffness. Obviously, this is not in conformity with reality and leads to false estimations. 

Furthermore, the limits of the above formula are also not known. 

1.3 Objective 

Apparently, the current formula is not applicable for the case of saddle-shaped panels of interest. 

The main objective of the study is to come up with a correction to the existing formula, so that it can 

return sufficiently accurate estimations for the lowest natural frequency. The correction to be introduced 

should not be too complex, aiming for an appealing final result for the new formula. Once the formula is 

derived, an investigation in order to discover its validity limits, shall follow.  
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2 BACKGROUND/THEORY 

2.1 Shell structures and plates 

Before proceeding to any analysis and in order to be in a position to evaluate properly the results, 

some major remarks in the theory accompanied with shell structures have to be made. Shells are basically 

a generalized concept of plates. Plates can be defined as flat structures with their two lateral dimensions 

being many times larger than their third dimension, the normal to the plane of the plate. Plates can be 

described if their mid-surface, thickness and material properties are known. Shells are also defined by their 

middle plane, thickness and material properties. The difference between plates and shells is observed in 

their structural behavior. In-plane loads of plates generate in-plane membrane forces, and out-of-plane 

loads result to moments and transverse shear forces. Because of the middle surface of shells is curved, 

they can carry out-of-plane loads by in-plane membrane forces, which is not possible for plates. This 

behaviour is in accordance to the Membrane Theory.  

2.2 Membrane theory 

The membrane behaviour of shell structures, refers to the stress flow in a shell element that 

consists of in-plane normal and shear , which help transferring the loads to the supports. This is nicely 

illustrated in Figure 2.1. In thin shells, the component of a stress normal to the shell surface is negligible in 

comparison to the other internal stress components and, hence, can be neglected in the classical thin shell 

theories. 

The ability of carrying the load only by in-plane stresses is closely related to the way in which 

membranes carry their load. Because the flexural rigidity is much smaller than the extensional rigidity, a 

membrane under external load mainly produces in-plane stresses. In case of shells, the external load also 

causes stretching or contraction of the shell as a membrane, without producing significant bending or 

local curvature changes. This behavior of shells can, therefore, be described by the Membrane Theory. 

 

Figure 2.1 Membrane stresses of shell element, Hoefakker and Blaauwendraad 2003 

2.3 Classification of shells 

There are several ways the shells can be classified. Herein, only two of them will be discussed, as 

an attempt to demonstrate the basic characteristics of the curved panels of the current study. Those two 

classifications are referring to the thickness-curvature relation and the overall geometry of it. 



3 
 

2.3.1 Thickness-curvature relation 

Depending on the analogy between the radius of curvature and the thickness, there are 4 different 

types to describe a shell: 

 Very thick shell (𝑟/𝑡 < 5): which practically is not a shell due to its structural behaviour 

 Thick shell (5 < 𝑟/𝑡 < 30): which presents membrane forces as well as out of plane moments and 

out of plane shear forces 

 Thin shell (30 < 𝑟/𝑡 < 4000): which presents membrane forces as well as out of plane moments 

and out of plane shear forces, while, also, its bending stresses vary linearly over the thickness and 

the shear deformation can be neglected 

 Membrane (4000 < 𝑟/𝑡): in which, all the loading is carried by membrane forces, while the out of 

plane bending moments and compressive forces are negligible 

2.3.2 Gaussian curvature 

For shell structures, it is convenient to make a classification according the Gaussian curvature. 

The Gaussian curvature of a three-dimensional surface is the product of the principal curvatures, 𝑘1 & 𝑘2, 

which are defined as the maximum and minimum curvature of a certain surface. The principal curvatures 

can be found by intersecting a shell by an infinite number of planes normal to the shell surface at an 

arbitrary point and determining the two planes for which the secant with the surface has a maximum 

curvature and a minimum curvature. The principal curvatures are, by definition, orthogonal to each other. 

Because of this, it is convenient to take two axes of a local co-ordinate system on the surface along these 

principal sections. Taking a third axis normal to the surface at that point, yields an orthogonal three-

dimensional co-ordinate system. The product of the principal curvatures 

𝑘𝐺 = 𝑘1 ∙ 𝑘2  (2.1) 

provides the Gaussian curvature, which is either positive, zero or negative. Therefore, a classification 

depending on the Gaussian curvature means a classification in surfaces with positive Gaussian curvature 

(synclastic), zero Gaussian curvature (monoclastic) or negative Gaussian curvature (anticlastic), visualised 

in Figure 2.2. 

 

 

Figure 2.2 (a)Positive Gaussian curvature, (b) Zero Gaussian curvature and (c) Negative 

Gaussian curvature, Hoefakker and Blaauwendraad 2003 



4 
 

2.4 Anticlastic shells 

In the case of anticlastic shells, the two principal curvatures have opposite signs, which make the 

product negative. The characteristic feature of having a positive curvature in one direction and a negative 

curvature in the perpendicular direction, makes the shell act as a combination of a compression and 

tension arch when loaded perpendicular to its surface. 

Anticlastic shells are often called hypar structures, which is a short way to describe their 

hyperbolic paraboloid shape. The analytical expression for defining the geometry of a hypar shallow shell 

of rectangular plan is 

𝑓(𝑥, 𝑦) =  
1

2
𝑘1𝑥

2 −
1

2
𝑘2𝑦

2  (2.2) 

A magnificent example of such structures is the largest aquarium in Europe, shown in Figure 2.3, 

which was designed by Félix Candela. Candela posited that “of all the shapes we can give to the shell, the 

easiest and most practical to build is the hyperbolic paraboloid”. This derives from the property of their 

shape, which can be defined by straight lines. 

 

 

Figure 2.3 L'Oceanogràfic, Valencia, Spain 
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3 FINITE-ELEMENT MODELLING & DATA ACQUISITION 

3.1 Finite-element model 

According to the plan decided, the first step was to model different shells in a finite-element 

software and find the corresponding lowest natural frequency of each one. For this purpose, the ANSYS 

software was chosen to be used. Due to previous work and to the control someone can have over his 

model, the interface of the Mechanical APDL was selected, instead of the Workbench Mechanical. For 

purposes of easily modifying the values of the parameters, as well as of the frequency and the vibration 

mode shapes to be immediately displayed after the analysis, a script was used for the analysis. This was 

extremely efficient and led to saving precious time, which was eventually used for generating more 

models. The geometry input, the material used and the meshing were defined through this script which 

was read over and over again after the proper changes on the values of the variables. This script can be 

found in Appendix A. 

The defined material had the following properties: 

 Young’s modulus: 𝐸 =  210 GPa 

 Poisson’s ratio:  𝑣 = 0.33 

 Density:  𝜌  = 7850 kg/m3 

As far as the rest parameters used, the assumptions made for the focus area of this study, led to 

the introduction of: 

 ℓ𝑥 = ℓ𝑦 =  ℓ 

 𝑘𝑥𝑥 = − 𝑘𝑦𝑦 =  𝑘 > 0  and  𝑘𝑥𝑦 = 0 

Defining the model, it should be taken into account that an optimal selection for the meshing is 

of great significance. The elements used in the model, are of type shell181, which are suitable for the 

analysis of thin, to moderately thick shells. This type of elements is characterised by 4 nodes, each having 

6 DOF- 3 translations and 3 rotations about the 𝑥, 𝑦 and z axes. For the modelling, a mesh with 50 

elements in both the 𝑥 − and 𝑦 −directions has been selected in order to make the computations. This is 

already determined from the Bachelor Thesis of Ms. Greijmans [4], in which it was shown that an increase 

from 50 to 100 elements did not add considerable amount of accuracy. It was demonstrated that, for such 

a shaped panel, a number of 50 elements per direction, provided natural frequencies accurate enough to 

proceed. Besides, considering the total number of runs, an increase in the meshing density would be too 

time consuming. 

Having optimised the mesh, the system of axes is rotated in each node, so that a local coordinate 

system is created. As a result, the forces are now acting in the direction of the shell member. The 

boundary conditions are defined as simple supports at all edges, leaving no freedom for perpendicular 

translations and, thus, eliminating the influences of the edges. In Figure 3.1 & 3.2, two shell examples of 

different curvatures and common length, are visualised. 
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Figure 3.1 Shell FEM with 𝑘=0.2 m-1, ℓ=1.0 m 

 

Figure 3.2 Shell FEM with 𝑘=0.2 m-1, ℓ=10.0 m 

It must be pointed out that the solution is not taking into consideration non-linear phenomena. 

Interested in conducting modal analysis, the script is written in such a way, so that ANSYS will return the 

calculated natural frequency of the dominant vibration mode, immediately after the solution. It is also 

requested to examine the vibration mode shapes corresponding to the lowest frequency, thus, a contour 

plot of the z− deformation is deployed, indicating the number of concavities emerge. In Figures 3.3-3.6 

different vibration patterns are illustrated as displayed in ANSYS. 
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Figure 3.3 Vibration mode with 1 belly 

 

Figure 3.4 Vibration mode with 4 bellies 
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Figure 3.5 Vibration mode with 9 bellies 

 

Figure 3.6 Vibration mode with 16 bellies 
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3.2 Data acquisition 

Previous studies did not demonstrate a sufficient range of collected data, mainly due to the 

approach followed. Herein, the problem will be looked from a different standpoint. Instead of varying the 

values of the parameters without a specific syllogism, it was chosen to set boundaries according to certain 

assumptions. The concept behind the data acquisition was crucial for the final solution and the quality of 

the results and, therefore, it should be ascertained that the steps to the right direction were taken.  

The approach was based on the main objective of parametric studies, recognising the importance 

of working with parametric dimensions, generating various configurations and refining the parameters, 

until satisfied with the results. Also, it is of great importance to identify the ranges of the parameters and 

specify the design constraints. Going forward, the range of the data acquisition is first defined. The study 

focuses on thin shells, so every generated model should comply with 

30 < 𝑟/𝑡 < 4000  (3.1) 

or otherwise expressed, 

(1/4000) < 𝑘𝑡 < (1/30)  (3.2) 

As it can be observed, the panels shown in Figures 3.1 & 3.2, are two completely different cases 

despite having the same curvature value. This is because what matters the most is the analogy between the 

parameters. Trying to visualise how ‘curved’ a shell structure is, it is not enough to know only the 

curvature, but its combination with the length. For this reason, a relation correlating 𝑘 & ℓ is also 

introduced: 

0 < 𝑘ℓ ≤ 2.0  (3.3) 

The upper limit of this condition was arbitrarily set as a goal value, mainly because of the shape of a panel 

with a combination of 𝑘 and ℓ of such a value. A panel characterised by 𝑘ℓ = 2.0, can be seen in Figure 

3.2. 

As an attempt to obtain an organised set of data points, curvature was determined to vary in such 

a manner, that a realistic structure to exist. For example, if an extreme value 𝑘 = 5 m-1 was set, in order for 

the curvature to agree with the relations (3.2) & (3.3), the maximum value for the length variable would be 

ℓ = 0.40 m. while for the thickness would be 𝑡 = 0.0067 m, with the minimum reaching values 𝑡 = 5·10-5 

m. This is beyond the interests of this study, so the curvatures decided to be used were lying between 

0 < 𝑘 ≤ 1.0  (3.4) 

Since there was a tendency in literature to focus mainly on smaller curvatures and being keen to investigate 

a different and wider range, the attention was paid to larger values, in the region of 0.1 < 𝑘 ≤ 0.5, where 

more problems were arising. Other than that, data were collected for outlier values of the inequality (3.4), 

too. 

Of course, the combinations are limitless, so a decision had to be made about the number of the 

models to be examined. The length was determined to be the variable with more dense variations, while 

for curvature there were 7 distinct cases, each one consisting of 4 subcases with different thicknesses. This 

is not a statistical analysis, so the number of lengths in each different case of curvature do not have to 

meet a certain condition. Having said that, there is a deviation between the number of models used in the 

7 groups of data sets for the separate thicknesses. Overall, there were 1396 models analysed. 
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It has to be noticed, that the data acquisition was established in such a way, so that would assist 

the analysis followed. Looking ahead, the plan was to investigate the influence of every separate parameter 

on the natural frequency, isolated from the third variable each time. Consequently, in order for this to be 

achieved, and while thickness has numerous values that meet the condition (3.2), one common value can 

be observed in all the 7 different curvatures, corresponding to 𝑡 = 0.005 m. 

All the data acquired can be found in Appendix C. Summarising, all the above discussed models 

are presented in short in Table 3.1. 

Cases 1 2 3 4 5 6 7 

𝑘 0.05 0.10 0.20 0.30 0.40 0.50 1.00 

𝑡 

0.005 0.0025 0.0015 0.001 0.001 0.001 0.0005 

0.010 0.0050 0.0050 0.005 0.005 0.005 0.001 

0.020 0.0100 0.0100 0.010 0.010 0.010 0.005 

0.050 0.0500 0.0500 0.050 0.050 0.050 0.010 

Length 
Variations 

80 100 50 34 25 20 40 

 
Table 3.1 Summary of data acquisition 
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4 DATA ANALYSIS 

4.1 Introduction 

In order to find the correlation between all the variables, the analysis of the collected data from 

the finite-element models seen in the previous Chapter, shall follow herein. It was very important to come 

up with an efficient approach for processing the data, because of the number of the parameters and the 

need for a rather simple result at the end. Before proceeding to the numerical analysis, it would be highly 

beneficiary to take a look at the influence of each of the variables on the lowest natural frequency of the 

shells of interest and acquire a better understanding of their behaviour. This will be achieved by a series of 

figures, where the tendencies of each term will be examined and compared to the results of the base 

formula, which was used as a starting point. The analysis was carried out with the help of MATLAB 

software. 

4.2 Base formula 

As it is already mentioned when stating the problem of the study, the currently available formula, 

given by eq. (1.1), does not work in the case of the anticlastic shells of interest. That’s mainly because the 

curvature does not appear in it for the panels examined herein, something obviously wrong since it is seen 

to have significant effect in the frequency. Thus, the initial thought was to add a new term that would 

involve the missing curvature and maybe also the rest of the variables, length and thickness. As it was 

suggested in previous studies, this term should follow a parabolic trend which, indeed, sounded promising. 

Those recommendations, though, were not pointing to the right direction due to the fact they were 

focusing on small curvature values and on limited length and thickness variations. This led to conclusions 

useful only in a narrow spectrum, something that was in opposition to what was anticipated for the 

validity boundaries of the potential formula. 

Nonetheless, a part of the current formula was decided to be retained and be used as a base of the 

new formula. The withheld part is given by eq. (1.2) and corresponds to the formula provided by Blevins, 

for calculating the exact value of the natural frequency of rectangular plates. More precisely, Blevins came 

up with the solution, 

ƒ𝑖𝑗 =
𝜆𝑖𝑗
2

2𝜋a2
√

𝜋2𝐸ℎ3

12𝛾(1−𝑣2)
     (4.1) 

where for a simply supported plate on all edges, 

𝜆𝑖𝑗
2 = 𝜋2 [𝑖2 + 𝑗2 (

a

b
)
2
]   (4.2) 

and 

a = length of plate 

b = width of plate 

ℎ = thickness of plate 

𝑖 = number of half-waves in mode shape along horizontal axis 

𝑗 = number of half-waves in mode shape along vertical axis 

𝐸 = modulus of elasticity 

𝛾 = mass per unit area of plate (𝜌ℎ for a plate of a material with density 𝜌) 

𝑣 = Poisson’s ratio 
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This is a very promising starting point, especially if a closer look is taken at the general 

assumptions made in order to acquire the above expressions: 

-The plates are flat and have constant thickness. 

-The plates are composed of a homogenous, linear elastic, isotropic material. 

-The plates are thin. 

-The plates deform through flexural deformation. The deformations are small in comparison with 

the thickness of the plate. Normals to the midsurface of the undeformed plate remain straight and normal 

to the midplane during deformation. Rotary inertia and shear deformation are neglected. 

-The in-plane load on the plates is zero. 

Hence, many of the assumptions are in consonance with the herein research. It should be noted 

that, even though the study is not concentrating particularly on a vibration mode of one belly 

(corresponding to one half-wave along both the horizontal and vertical axes), the value used for the term 

𝜆𝑖𝑗 is given for 𝑖 = 1 and 𝑗 = 1, despite the actual mode shape. It was chosen to overcome any 

difference caused by this, with the help of the term to be introduced later into the base formula. 

4.3 Influence of length 

In Figure 4.1, illustrated is the accordance between the chosen base formula and the results 

obtained from ANSYS using the example of a shell panel with curvature 𝑘 = 0.10 m-1 and thickness 𝑡 = 

0.005 m. It can be noted that the selection of the Blevins’ formula is a very sufficient starting point as it 

results to a concave up, decreasing curve that almost follows the course of the collected data. 

 

Figure 4.1 Base formula vs ANSYS data 

At first glance, someone may think the base formula does not need significant corrections. This, 

of course, would only be a careless mistake. For acquiring a better sense of the actual correspondence 

between the accurate frequency provided by the modelling in ANSYS and the one of the base formula, 

the margin error of those two quantities was examined. As it can be seen in Figure 4.2, the accordance is 

in admissible margins for the very first values of length, while from a point onwards it is becoming utterly 

intolerable. This is a key conclusion going forward. 
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Figure 4.2 Error between base formula and ANSYS data 

The last observed frequency value to present an error lower than 5% associates to length ℓ = 3.6 

m. Focusing on the region where the error is greater than 5%, results in Figure 4.3, which demonstrates 

the problems occurred when scaling Figure 4.1 and ignoring the first range of frequency values, where the 

base formula is found to be sufficiently accurate. 

 

Figure 4.3 Base formula accordance with ANSYS data in later lengths 

It is clearly noticed that from this point onwards, the two curves diverge from each other. The 

peaks observed in the ANSYS data are completely normal and expected, standing for the points where a 

transition between different vibration patterns in the dominant vibration mode occurs. The first peak in 

the above Figure 4.3, represents a change in the first vibration mode shape, formerly constituting from 1 

belly, shifting to a primary vibration mode shape of 4 bellies, while the second corresponds to the 

transition from 4 to 9 bellies. There is a third transition point from 9 to 16 bellies, which cannot be clearly 
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seen in this graph, as it coincides with the very last collected frequency for this shell panel and there is no 

peak going along with it, in the sense that no local maximum can be found as in the other two. This is not 

because there are no further data plotted after this point, but due to the location of the intersection point 

of the parabolas formed by the two different vibration patterns. For better understanding of this 

phenomenon, there were some more data acquired, exhibited in Figure 4.4.  

 

Figure 4.4 Frequency curves of multiple vibration mode shapes 

Each curve in Figure 4.4, associates to a particular vibration mode shape and represents the 

natural frequency of this mode for the indicative shell panel used herein. Varying the length, it can be 

observed that, after certain values, the lowest frequency corresponds to different vibration mode shapes. 

Here, being interested in those modes that are present in this study, only the cases of 1,4, 9 and 16 bellies 

are displayed, but, of course, there is an infinite number of oscillation patterns. Attempting to estimate the 

lowest natural frequency and not the natural frequency which correlates to one particular vibration shape, 

results to the frequency curve that presents those tips. Moreover, there is another observation to be made 

on Figure 4.4, which will prove to be vital. The concavity of the parabolas shows a decreasing trend along 

with the change of the primary vibration mode shape, making it easier to approximate the curve of the 

lowest natural frequency in a simpler manner. 

Going forward, the difference, introduced as D, between the frequency obtained from the finite-

element model, from now on called ANSYS frequency, and the base formula, was examined: 

𝐷 = ƒ𝐴𝑁𝑆𝑌𝑆 −  ƒ𝑏  (4.3) 

Term D is expected to follow a 2-way trend in the focus area: increasing in the beginning and 

until the first peak occurs, whereby after this point, it should mainly descend, following, though, a 

compliant course to the ANSYS frequency curve. In the working example, the length for which the first 

transition between the vibration mode shapes emerges, is ℓ = 7.4 m. This results in two different areas of 

focus, presented visualised in the Figure 4.5 below. 
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Figure 4.5 Tendencies of term D explained 

Indeed, plotting the difference against the length, produces Figure 4.6, where the tendencies of 

term D can be seen for each part. Not to be mistaken, the higher values of term D appearing in the region 

where ℓ < 3.6 m, do not indicate less accurate estimations from the base formula. This can be seen in 

combination with Figure 4.2, where the error can be observed that is displaying small values along the 

whole region. 

 

Figure 4.6 Term D 

Avoiding confusions, in Figure 4.7, all terms of interest are plotted in one graph where all the 

above discussed details can be clearly seen, making it easier to comprehend how all those terms relate to 

each other and how the topic will be approached. 
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Figure 4.7 Base formula and ANSYS frequency, along with their difference and the error between them, combined 

4.4 Influence of thickness 

Interested in observing the variations in frequency provided by a change in the thickness variable, 

4 data sets have been obtained for different values of it. Their respective graphs can be found in Figure 

4.8. Evidently, the following safe conclusion can be drawn: 

𝑡 ~ ƒ  (4.4) 

Contrarily with length, thickness demonstrates an analogous relation with frequency. Increasing or 

decreasing thickness, results to higher or smaller frequency values, respectively. In every subcase 

examined, the curve produced for a larger value of thickness is at all times above its preceding. 

Conveniently, enough, this is also the case for the curve produced by the base formula, which follows the 

movement of the curves provided by the data acquired. 
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Figure 4.8 Influence of thickness on natural frequency 

What is also notable, is that along with the increase of thickness, the curves appear not only to 

rise, but move to the right side, too. This, has an inevitable consequence for the length for which the error 

becomes greater than 5% and the transition between the vibration mode shapes takes place, examined in 

the previous section. Figure 4.9, includes all those points for each separate curve, to illustrate their 

displacement in respect to thickness variance, and the tendency the latter shows. 

 

Figure 4.9 Points of separation from base formula’s curves and first peak occurence 



18 
 

Proceeding to investigate the error between ANSYS frequency and the base formula, a 

complication is revealed. Displayed in Figure 4.10, error presents unacceptable values also for smaller 

lengths. In section 4.2, with the help of the working example with thickness t = 0.005m, it was showcased 

that for smaller lengths the error of prediction remained in sufficient margins. The explanation lies within 

the assumptions made in the first place, during the derivation of the used base formula. As it is already 

mentioned, this formula is valid for thin, flat plates. The troublesome behaviour appears for the lengths 

ℓ = 0.020 m and ℓ = 0.040 m, related to a panel with thickness 𝑡 = 0.050 m. For this kind of lateral 

dimensions, such a panel is considered to be thick, since 𝑡 > ℓ/10 applies. Nevertheless, this will be 

further discussed in section 4.5. 

 

Figure 4.10 Error curves for different thicknesses 

Difference values are very useful to the approach followed, as they stand for the gap that needs to 

be covered so that the base formula can provide a sufficient approximation to the results of the finite-

element models. Therefore, it is vital to observe tendencies of term D in respect to the herein variables. As 

it can be seen in Figure 4.11, despite the varying thickness, the curves retain their shape. This is a normal 

outcome due to the similar trajectories of the frequency curves displayed in Figures 4.8 & 4.9. An 

observation of great significance, though, is that all curves are well aligned in the region until the first peak 

is reached, with the exemption of the problematic subcase with 𝑡 = 0.050 m. The part after the first peak 

is more complicated, constituting from several parabolic schemes in an interval manner which are not 

aligned, while at the same time, they are standing off a factor from each other. 
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Figure 4.11 Term D for different thicknesses 

4.5 Influence of curvature 

Until this point, the influence of only two of the variables of interest was discussed. In this 

section, the reliance of the lowest natural frequency on the curvature, will be demonstrated using the data 

in possession of a total of seven distinct cases. For gaining a better understanding of the results, it is 

advised to isolate the influence of one of the other two parameters. It was selected to retain thickness at 

the same value for all those different cases and, therefore, the value 𝑡 = 0.005 m is purposely common to 

all the data sets acquired. Figure 4.12, has its y-axis in logarithmic scale resulting to a convenient 

visualisation of the whole range of values without interfering in the analogy between the curves. It can be 

quickly noticed that, curves corresponding to higher curvature values are located above the ones of 

smaller curvatures, indicating greater frequencies. This is not always the case, though. 

 

Figure 4.12 Influence of curvature on natural frequency 
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Considering, for example, the case where ℓ = 0.2 m, demonstrated in Table 4.1 below, are the 

frequencies obtained from the finite-element models: 

𝑘 [m-1] 𝑓 [Hz] 
0.05 614.656 

0.1 614.599 

0.2 614.370 

0.3 613.988 

0.4 613.453 

0.5 612.768 

1.0 607.119 

 

Table 4.1 Influence of curvature on natural frequency for ℓ=0.2 m 

Clearly, frequencies are almost equal to each other, but they also appear to decrease as the 

curvature increases. This is in contradiction to what has been seen happening at larger lengths. 

Nevertheless, the minimal dimensions where frequency displays the opposite trend than the 

aforementioned, are beyond the object of this study. 

In the same graph, the curve of the base formula is also included. As curvature does not appear in 

this formula and thickness is not changing in the current section, only one curve transpires. What is of 

great significance, is that along the initial descending part of the curves, they all appear to substantially 

coincide. This basically means that, natural frequency is not significantly affected by curvature until a 

certain point and, therefore, can be accurately predicted by the base formula. For every case examined, the 

produced curve begins to separate from the one of the base formula when length exceeds a particular 

value, different for each case and depending on the curvature. 

Another conclusion to be drawn from Figure 4.12 is that there is a variation of the number of 

peaks emerging inside the common boundary, 𝑘ℓ ≤ 2.0, set for this study. Shells with larger curvatures are 

characterized by higher sensitivity to length change when it comes to their eigen shape, subjecting to 

transition between vibration mode shapes in a quicker manner. Nonetheless, focusing on the range of 

interest, this transition occurs fewer times for larger values of curvature than in the smaller ones, making it 

more difficult to approximate all those different tendencies. Favourably, leaving the number of the 

transition points aside, there is a very promising tendency displayed by the locations of the first peaks, 

seemingly moving to the left and upwards to a possible recognisable pattern. 

Concerning the error quantities, looking at Figure 4.13, there are no irregular incidences 

occurring, in the sense that they do not show any abnormalities as the one found in section 4.4. Based on 

the comment made therein, someone could argue that this is something unexpected, since the last case 

with k = 1.0 m-1 gives a sufficient prediction that lies within 8% margin of error even in the small lateral 

dimensions examined. This is definitely an indication that curvature should be taken into consideration 

along with the rest of the parameters before coming to any relevant conclusions. In fact, this will play an 

important role in deciding the final boundaries of the validity of the formula. What is also observed, is that 

the slope of error curves is steeper for larger curvatures, showing a proneness to immediately develop 

intolerable values and, thus, being more sensitive to length change. 
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Figure 4.13 Error curves for different curvature values 

This is verified by Figure 4.14, where the difference values are represented for each case of the 

varied curvature. The reader must keep in mind that not all the values are plotted in this graph, but only 

those above -10 Hz, in an attempt to remain readable and suitable for rapid observations. Besides, with 

reference to Figure 4.13, these values are not of major importance. Concentrating on the area that needs 

to be corrected, it can be noticed that the difference follows the same pattern as already seen, with a 

primary increasing part, and a secondary, characterized by fluctuations, but mostly following a downward 

trend. The steeper slopes for larger curvatures indicate a susceptibility to a change in length, but the 

overall behaviour and shape are analogous for every case. 

 

Figure 4.14 Term D for different curvatures 
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5 SOLUTION 

5.1 Introduction 

The conceptual idea is to add a new term to the base formula, hereafter called C, so that the new 

formula produced, can estimate sufficiently the lowest natural frequency of a wide range of steel shell 

structures. Introducing term C as an added quantity outside the square root of base formula, leads to: 

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
 + 𝐶  (5.1) 

Term C should not be too complex, as the formula would then lose its usability and is important 

to be easily manipulated further, helping the development of a shell buckling model. Also, C must be 

given in Hz units and be applicable to all cases. Due to the number of variables, this is better achievable 

working in dimensionless units. This provides various advantages, such as the inclusion of the influence of 

all the variables together, as well as the appliance of the valuable observations made in the previous 

chapter. The study will be consisted of the two upcoming parts: Phase 1, where an attempt will be made to 

approximate the values of the initial inclined part of the difference curves, starting from the point that 

presents error greater than 5% for the first time, and until the occurrence of the first peak, and Phase 2, 

where an estimation for the rest of the difference values after the first peak will be searched. 

5.2 Phase 1 

In the previous Chapter, a focus on the region where the error exceeds the positive 5% can be 

noted. This is a very satisfying starting point for the accuracy of the formula and was set as the condition 

for finding the points where the base formula requires a correction. Before this point, the accordance is 

adequate, except for some distinct values in extreme occasions, that fall out of the boundaries of the 

acceptable error in the negative side (over-prediction of base formula). This will be covered in Chapter 6, 

though. In Figure 4.9, it was demonstrated that the data points which present error amounts greater than 

5% for the first time, when thickness was varied and curvature was retained steady, follow a somewhat 

parabolic trend when plotted against length. This happens to be also the case when the curvature varies 

and thickness remains the same. This can be seen in Figure 4.12, identifying the points where error is 

becoming greater than 5% as the spots in which the curves start to separate from the curve provided by 

the base formula. It would be very convenient if all those points could be predicted really accurately with a 

simple equation, taking into consideration the effect of all the variables at once. Therefore, a pattern 

which would connect the influence of curvature and thickness to the length, for which the 

aforementioned phenomena are observed, will have to be discovered. This relation is further sought here.  

The key principle to find this relation, is hidden in the goal set in the beginning. There was a 

preference for the final formula to be valid for a wide range of structures that fulfil the assumptions made. 

For this purpose, it was decided that it would be highly advantageous to work with properly selected 

dimensionless quantities, instead of using the dimensional variables.  

Summarising the above, as an attempt to isolate the effects of the third variable each time, only 

either curvature or thickness was changing, and the value of the length, for which, error has for the first 

time a value greater than 5%, was looked upon. This led to the introduction of the recognisable 

combination, 𝑘𝑡, as the independent variable in the searched expression. Going back and recalling the 

limits set for the data acquisition, it can be seen that frequencies were collected inside a range of lengths, 

which was varying depending on the curvature, in respect to the relation 𝑘ℓ ≤2.0. This indicates that is 
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more reasonable to use the dimensionless quantity, 𝑘ℓ, as the dependent term of the function to be 

derived. 

A script that automatically finds all the errors meeting the condition error>5% for the first time, 

and stores the combination values of curvature-thickness, 𝑘𝑡, and the dimensionless length, 𝑘ℓ, for which 

they occur, was developed. Plotting the pairs of 𝑘ℓ & 𝑘𝑡 results in the scattered data in Figure 5.1. 

 

Figure 5.1 Predicting the length for which the error becomes greater than 5% for the first time 

In the above graph, the red curve represents the best fit to the data, which can be expressed as 

follows: 

𝑘ℓ =  3.0725(𝑘𝑡)0.2726  (5.2) 

This power model fits very well the scattered points and an appearing gap between some of those points 

and the fitted curve can also be justified with the simple fact that frequencies in the collected data were 

not returning exactly a value of 5%. Therefore, there is a variation appearing depending on the density of 

the data acquired for each case, with the values closer to 5% being better adjusted to this curve. An 

optimisation can be made to improve the model by acquiring more data close to this set limit, but it is not 

being done herein and it is not believed that will influence the final result significantly. The above 

expression, eq. (5.2), estimates for every combination of  𝑘 and 𝑡, the value of ℓ, for which the base 

formula exceeds the error of 5%. 

Interested in the ascending part of term D, it should now be examined where this incline 

discontinues. This point, corresponds to the location of the first peak in each curve, for all the different 

thicknesses and curvatures. An investigation was made of whether a simple equation could be derived, 

that would predict the ending point of the inclined difference part. 
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Following the same approach as earlier, a script was developed once again for locating the first 

peak, gathering the combination values of curvature-thickness, 𝑘𝑡, and the dimensionless length, 𝑘ℓ, for 

which they occur, as an attempt to relate all those points to each other. Plotting the obtained data, results 

to Figure 5.2. 

 

Figure 5.2 Predicting the length for which a peak occurs for the first time 

Conveniently, the data acquired display an also similar trend. The scattered points are fitted with 

the power model, given by: 

𝑘ℓ = 4.379(𝑘𝑡)0.2329  (5.3) 

This equation returns the value of ℓ, for which the upward tendency of the first examined part of 

difference term, D, ends, for every combination of  𝑘 and 𝑡. 

Based on the conclusions made in Chapter 4 regarding the analogy the difference curves are 

presenting, as well as the alignment they are displaying along the initial inclined part, an attempt of 

expressing term D for all cases in one, follows. Going forward, all D values for lengths that fall in the 

region hereafter called R1, defined by the eq. (5.2) & (5.3), are collected and plotted in Figure 5.3. This 

figure visualises all those different points in a 3-D scattered plot, as an attempt to demonstrate the need to 

work with properly selected quantities that would limit their dispersion. 
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Figure 5.3 Data points for term D that belong in region R1 

Starting from the difference D, it was chosen to be multiplied by a term q, 

𝑞 = √
ρv

𝐸𝑘2
  (5.4) 

resulting to the dimensionless difference value, 

𝐷0 = 𝐷𝑞  (5.5) 

This was done on the basis of transitioning from Hz units, to a dimensionless quantity, and trying to also 

include important parameters other than the curvature, that are characterising the shell structures of 

interest, despite being constant in the current study. For the rest of the axes, the dimensionless quantities 

𝑘ℓ & 𝑘𝑡, are introduced once again. Using the dimensionless quantities 𝑘ℓ, 𝑘𝑡 and D0, instead of ℓ, 𝑡 and 

D, respectively, leads to Figure 5.4. Clearly, it is managed to align all the points, but, still, their course 

along 𝑘ℓ axis is displaying a concavity. It is not to be forgotten, that the outcome of this case study should 

not be too complex in favour of the convenience an engineer should feel using this formula. Therefore, 

this course that the points are showing, is not sufficient just yet, as it would require a more complex 

equation to describe them. 

 

Figure 5.4 Data points for term D in region R1, plotted in dimensionless quantities 
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Having found the dimensionless quantities to work with, a proper scale should be discovered, so 

that this concavity can be reduced. For this purpose, the use of the exponential function is deployed. Data 

are being plotted again in Figure 5.5, with the help of the exponents of the discovered quantities. Their 

course can now be expressed by the equation of a flat linear surface that fits very accurately to them. This 

surface represents an estimation of the difference occurring between the ANSYS frequency and the base 

formula frequency, depending on length, thickness and curvature of the investigated panel. Consequently, 

the fitted surface relates to the searched term C, as it will be further demonstrated later 

 

 

Figure 5.5 Surface fit in region R1, displayed from different perspectives 

The equation of this surface is given by: 

𝑏1 = e
𝐷0̅̅̅̅ = 1.1117 + 0.0026e𝑘ℓ − 0.1154e𝑘𝑡  (5.6) 

where 𝐷0̅̅ ̅ represents the approximated dimensionless difference. The homogeneity and the convenient 

values of the coefficients of this equation are mainly the reason why an exponential term was introduced 

to all the variables. An exponential term for the quantity 𝑘ℓ, would be enough in the particular case, as the 

goal was to decrease the concavity, which appears along this axis. 
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5.3 Phase 2 

Moving forward, the second part of the difference curves will be analysed. As it was previously 

distinguished, this part consists of the remaining of the difference values, located beyond the first peak. 

Derived in section 5.2, the expression that predict these peaks, already exists. Using eq. (5.3) and 

considering only the data points inside the limit 𝑘ℓ ≤ 2.0, the region R2 is defined. In the same manner 

previously, all the D values are plotted for this region in Figure 5.6. 

 

Figure 5.6 Data points for term D in region R2 

The approach, as well as the dimensionless quantities used, remain the same. Using the 

dimensionless quantities 𝑘ℓ, 𝑘𝑡 and D0, provided by eq. (5.5), in place of the respective ℓ, 𝑡 and D, leads to 

Figure 5.7. This is obviously a far more difficult pattern to be described when compared to the Figure 5.4, 

shown in the previous section. This was expected, though, due to the observations made in Chapter 4, 

where it was noticed that the inclined parts were demonstrating the advantage of being almost aligned, in 

contrast to the current examined part. 

 

Figure 5.7 Data points for term D plotted in a dimensionless space 
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Nevertheless, it has been remarked for all the remaining parts analysed here, that they are shifting 

either upwards and to the left or upwards and to the right, with the increase of curvature and thickness, 

respectively. This, reveals a close relation between 𝑘, 𝑡 and D. Along with the distribution of the data 

points in Figure 5.7, the conclusion that these tendencies should be normalized in a different way than 

before came up. A smoother transition between the various cases is wanted here. This was achieved by 

modifying the axes 𝑘𝑡 and D0 in a similar way using natural logarithms, while axis 𝑘ℓ  was treated in the 

opposite way, with the help of the exponential term. As shown in Figure 5.8, the discrepancies were 

limited enough, so that a flat linear surface can once again be fitted sufficiently to all the data points. 

 

 

Figure 5.8 Surface fit in region R2, displayed from different perspectives 

This surface is described by the equation: 

𝑏2 = ln (𝐷0̅̅ ̅) =  −2.7656 − 0.0706e
𝑘ℓ + 0.4702 ln(𝑘𝑡)  (5.7) 

The above expression can be also interpreted as the value C that needs to be added in eq. (5.1) 

after properly transferring in the dimensions space, to return in Hz units. Conveniently, eq. (5.7) is quite 

similar to eq. (5.6), despite the various abnormalities this second part of the analysis was containing.  
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5.4 Derived formula 

 The equations derived previously in this Chapter, are combined herein to extract the final 

formula required. Regardless the regions mentioned, the starting point is common: 

ƒ = √
𝜋2𝐸𝑡2

12(1 − 𝑣2)𝜌ℓ4
 + 𝐶 

Term C is dependent on the region the investigated panel belongs. For a given combination of 

curvature and thickness, there is a region, R0, inside which, the base formula is still applicable. If the shell 

structure of interest has length smaller than a certain value, term C is zero, and the prediction can be made 

by the base formula alone. The limit value for the length arises from eq. (5.2), and can be expressed as 

𝑘ℓ < 3.0725(𝑘𝑡)0.2726 

If the above condition is not fulfilled, there are two other regions the shell could belong, R1 & R2. 

Region R1 is defined by the boundaries  

3.0725(𝑘𝑡)0.2726 ≤ 𝑘ℓ ≤ 4.379(𝑘𝑡)0.2329  (5.8) 

where the right part came up due to eq. (5.3). For this case, Term C, can be obtained from eq. (5.6), 

recapped also here for convenience: 

𝑏1 = e
𝐷0̅̅̅̅ = 1.1117 + 0.0026e𝑘ℓ − 0.1154e𝑘𝑡  (5.6) 

This equation returns the exponential value of the approximated dimensionless difference, 𝐷0̅̅ ̅. For finding 

the estimated difference, 𝐷̅, and return to Hz units, analogously to eq. (5.5), applies: 

𝐷̅ =
𝐷0̅̅̅̅

𝑞
  (5.9) 

where 

𝑞 = √
𝜌𝑣

𝐸𝑘2
  (5.4) 

Term C must cover the difference between the base formula and the ANSYS frequency and should also 

be expressed in Hz units. Therefore, C = 𝐷̅ is wanted. For this purpose, taking the natural logarithm of 

𝑏1, and dividing it by q, leads to:  

ln 𝑏1

𝑞
=
𝐷0̅̅̅̅

𝑞
= 𝐷̅     

𝑒𝑞.(5.4 )
⇒        𝐶 = ln 𝑏1√

𝐸𝑘2

𝜌𝑣
  (5.10) 

Proceeding to the next and last region, R2, the boundaries found in a previous segment are shown 

here: 

4.379(𝑘𝑡)0.2329 < 𝑘ℓ ≤ 2.0 

Following the same approach as before, term C will result from the proper modification of eq. (5.7): 

𝑏2 = ln (𝐷0̅̅ ̅) =  −2.7656 − 0.0706e
𝑘ℓ + 0.4702 ln(𝑘𝑡)  (5.7) 

This time, the exponential function is deployed for transposing 𝑏2, while dividing it once again by term q. 

Thus, in this region, term C is provided by: 
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e𝑏2

𝑞
=
𝐷0̅̅̅̅

𝑞
= 𝐷̅     

𝑒𝑞.( 5.4)
⇒        𝐶 = e𝑏2√

𝐸𝑘2

𝜌𝑣
  (5.11) 

Summarising the above limits and all C terms for the different regions, into a more appealing and 

collective manner, results to the final formula developed: 

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
 + 𝑎√

 𝐸𝑘2

𝜌𝑣
   (5.12) 

where 

𝑎 = {

0    , 3.0725(𝑘𝑡)0.2726 > 𝑘ℓ

 ln 𝑏1 , 3.0725(𝑘𝑡)
0.2726 < 𝑘ℓ < 4.379(𝑘𝑡)0.2329

e𝑏2 , 4.379(𝑘𝑡)0.2329 < 𝑘ℓ

 (5.13) 

and 

{
𝑏1 = 1.1679 + 0.0028e

𝑘ℓ − 0.1719e𝑘𝑡           

𝑏2 = −2.7953 − 0.0686e
𝑘ℓ + 0.4674 ln(𝑘𝑡)

 (5.14) 

The reader should take notice that the above expressions are very sensitive to changes in decimal 

values and it is not advised to round up any of the values. 
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6 EVALUATION OF THE RESULTS & VALIDITY LIMITS 

6.1 Visualisation of the result 

In an attempt to visualise the outcome of the approximation made with the new formula, the case 

for a panel with 𝑘=0.1 m-1 and 𝑡=0.005 m, originally examined in section 4.2, is replotted here in Figure 

6.1. Focusing once again on the area the curve of ANSYS frequency was starting to separate from the one 

of the base formula, the difference in the agreement between region R1 and R2 is clearly noticeable. 

Besides, this was predicted already based on the observations in Chapter 4. Nevertheless, the peaks could 

not be approximated better without a more complicated term coming in, or perhaps without splitting the 

introduced regions in more parts. 

 

Figure 6.1 Accordance of derived formula with ANSYS data, for Case 2 with 𝑡=0.005m (scaled) 

Proceeding, the new formula is examined in respect to the curvature variation. In section 4.5 and 

especially in Figure 4.12, a significant relocation was observed in between curves, due to 𝑘 values. It was 

also seen that base formula was resulting to only one curve. All the fitted curves for each of the seven 

cases of the curvatures, provided by the appropriate introduced terms depending on the distinguished 

regions, are displayed in Figure 6.2. 
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Figure 6.2 Accordance of the derived formula with ANSYS data, for all cases with 𝑡=0.005m 

6.2 Error assessment 

The approach followed to evaluate the formula derived in the previous Chapter, is to apply it for 

all the models created when the data were collected and investigate the new margin of error that arises. 

The process was automated by a MATLAB script which inputs the various values of length, curvature and 

thickness to the formula, determines the region the shell belongs, as well as the value of 𝑎, and returns the 

prediction. Afterwards, the script compares the estimation to the ANSYS frequency and all the error 

values that are above the desirable condition set, are stored, indicating simultaneously the combination 𝑘ℓ 

and 𝑘𝑡 for which they occur.  

Previous studies were aiming to achieve a margin of error of 20%. Setting this condition initially, 

the developed script returned a total of 6 cases that exceeded this limit. The number of models checked 

were 1396. Investigating the properties of those cases, it is noticed that they are all referring to a model 

that belong in the region R0, where no corrections were made to the base formula. However, trying to 

visualise those shells, it can be seen that they are not corresponding to reality, as they have minimal lateral 

dimensions when comparing to their thickness. This was also discussed in section 4.4 & 4.5 and will be 

avoided with the boundaries to be set for the validity of the formula. Therefore, the aforesaid extreme 

cases are not a problem and the formula works perfectly for the whole range examined. 

Trying to identify the quality of the resulted formula, the error values that are greater than 15% 

are now searched. This, results to 3 adding cases other than the previously derived. Those errors are just 

above 15% and emerge for a model which is characterized by either 𝑟/𝑡 = 4000, or 𝑟/𝑡 = 40, where 𝑟 is 

the radius of the curvature. Obviously, these values are poles apart and they are basically constituting the 

boundaries for a shell to be considered as thin, and also the boundaries for the data acquisition of this 
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study. The appearance of those errors, underlies that, an attempt to enclose the disparities in the 

behaviour for such different types of panels might cause a reduction in the accuracy of the formula. 

Next, the condition for an even lower margin of error was set. The shells appearing an error more 

than 10% were found, amounting to 37 (including the above 9). Those 28 models were investigated 

further to find if there was a relation between them or were randomly distributed. Indeed, all the cases 

showed something in common. As before, these shells were correlating to each other with the help of the 

quantity 𝑘𝑡, here expressed as 𝑟/𝑡. The correspondence between all the occurred errors is that they appear 

for curved panels with ratios 𝑟/𝑡 ≤ 100, or 𝑟/𝑡 ≥ 3333.33. 

6.3 Validity limits of the derived formula 

 After examining the errors, two options are arising regarding the application limits of the 

new formula: the one is to sacrifice the accuracy in pursuing of wider limits, while the other is to establish 

a narrower spectrum of validity and thus, assure higher quality estimations. It is chosen to adopt the 

second viewpoint. Besides, the restrains applied in order to achieve this, are not considered to be of major 

significance. 

 Beginning from the quantity, 𝑘𝑡, and taking into a consideration the instances of error 

seen to transcend the 10% mark, led to the following limit: 

1

100
> 𝑘𝑡 >

1

3300
 (6.1) 

Concerning the length, an upper limit already exists as arises from the data acquisition. A lower 

limit needs to be introduced, due to the abnormalities shown in very small dimensions and the limited 

research in this region. As mentioned in section 4.5, before coming to any conclusion about whether the 

error exceeds the desirable margin in this area, the influence of curvature should be looked upon. It was 

noted that, it was not sufficient to explain the behaviour of the natural frequency based only on the 

assumptions made by Blevins. For this reason, the cases presenting these errors are further investigated 

here. Due to their limited number, it is easy to come up with some conclusions regarding their correlation. 

All the values, except one, have something in common in groups. That is, the values themselves. They can 

be assembled as one group that has values around -11% and another that has values of about -28%. These 

values are plotted in Figure 6.3 to distinguish their correlation. Evidently, the points plotted are following 

a rather weak quadratic trend, which could potentially be described sufficiently with a simple linear 

equation.  
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Figure 6.3 Data points for minimal lengths in region R0 that exceed the 10% error mark  

It has to be remarked that, in Figure 6.3, there are also values of 𝑘𝑡 displayed, that fall out of the 

defined range in respect to the expression (6.1). Neglecting the points that belong to this region, more 

data need to be obtained in order to find a relation as a restriction to the accuracy boundaries of the new 

formula. The data were collected, on the basis of resulting to an error close to the 10% value set as a goal 

herein. Acquiring the natural frequency of some more models and comparing it with the base formula, a 

homogenous set of points that had values of almost -10%, was possessed. Similarly to above, where all the 

examined data had common values of error in groups, an aligned trend is also expected. Given the fact 

that the range of 𝑘𝑡 is narrower, an even more reduced concave shape is expected. Indeed, in Figure 6.4, 

the correlation between the points is utterly perfect and conveniently, easily described. 

 

Figure 6.4 Alignment of data points in region R0 with error about -10% 
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The best possible fitted line is given by, 

𝑘ℓ = 8.6194(𝑘𝑡) − 2.1 ∙ 10−4  (6.2) 

which for simplicity, without significant accuracy loss, and being also on the safe side, can be written as 

𝑘ℓ = 8.62(𝑘𝑡)  (6.3) 

where 𝑘ℓ is the limit value, above which, the formula of the study is applicable. 

 Altogether, the validity limits of the derived formula for the prediction of the natural 

frequency of the anticlastic shells of study, within a margin of error of 10%, are constituted as stated 

below: 

1

100
> 𝑘𝑡 >

1

3300
 and 8.62(𝑘𝑡) ≤ 𝑘ℓ ≤ 2.0  (6.4) 
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7 CONCLUSIONS AND RECOMMENDATIONS 

In the current study, a total of 1396 finite-element models were generated and analysed, to 

investigate the influence of various parameters on anticlastic curved panels made of steel. The focus of the 

study was to examine the effect of length, thickness and curvature, on the lowest natural frequency of 

simply supported thin shell structures and to, finally, derive a formula that would accurately estimate its 

values. 

The formula developed is  

ƒ = √
𝜋2𝐸𝑡2

12(1−𝑣2)𝜌ℓ4
 + 𝑎√

 𝐸𝑘2

𝜌𝑣
  (5.12) 

where 

𝑎 = {

0    , 3.0725(𝑘𝑡)0.2726 > 𝑘ℓ

 ln 𝑏1 , 3.0725(𝑘𝑡)
0.2726 < 𝑘ℓ < 4.379(𝑘𝑡)0.2329

e𝑏2 , 4.379(𝑘𝑡)0.2329 < 𝑘ℓ

 (5.13) 

and 

{
𝑏1 = 1.1679 + 0.0028e

𝑘ℓ − 0.1719e𝑘𝑡           

𝑏2 = −2.7953 − 0.0686e
𝑘ℓ + 0.4674 ln(𝑘𝑡)

 (5.14) 

It was shown that it is impossible to approximate perfectly all the tendencies of the lowest natural 

frequency with one universal formula, due to the irregular shape occurring when transitioning between the 

dominant vibration mode shapes. Thus, the formulation carried out in parts. The study leaves promises 

for a perfect correspondence between the actual frequency and the estimation by attempting to divide the 

problem in more parts. This can be further researched if better accuracy is sought. 

Important to notice is that curvature was found to not affect significantly the natural frequency in 

small lengths, while in minimal dimensions appeared to be an inverse relation to what seen in later lengths. 

This was discussed in section 4.5 and is worth mentioned to be further investigated. 

The limits of the formula were established on the basis of the preference the new formula to 

return estimations within a margin of error 10%. The validity range of the formula is decided by, 

1

100
> 𝑘𝑡 >

1

3300
 and 8.62(𝑘𝑡) ≤ 𝑘ℓ ≤ 2.0 (6.4) 

These conditions can be modified according to the accuracy desired. It is believed that the formula is also 

valid within a margin of error of 10%, for a wider range than the one constrained by 𝑘ℓ ≤ 2.0. This would 

expand even more the applicability of the formula and is advised to be looked upon. 

Despite the wide range achieved to be approximated, this formula is valid only for shells that 

satisfy a series of assumptions: the curved panel has no twist, length and curvatures along both the axis 

have the same absolute values, is simply supported, and Young’s modulus, Poisson’s ratio and density 

remain constant in all the cases examined. Therefore, a further step, could be to investigate the influence 

of those rest parameters. 

Ultimately, it is believed that this formula can lead to the development of a shell buckling model, 

which is of dominant significance in designing thin shells. For specific shapes, such as cylinders and 

spheres, much literature is available. The current study, could prove to be a valuable asset to this literature.  
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APPENDIX A 

This appendix contains the script used for generating and analysing the finite-element models in ANSYS. 

It is written in APDL and is also suitable for shells with twist and inequal lengths and curvatures. The 

fields ‘(…input…)’ are not part of the scripting language. They simply represent the values given to the 

variables for each model. 

!--------------------------- input data ---------------------------- 

l = (…input…)! (m)   set value for length 

lx = l  ! (m)   length of shell panel in the x-direction 

ly = l  ! (m)    length of shell panel in the y-direction 

t = (…input…)! (m)    set value for thickness 

k = (…input…)! (1/m)  set value for curvature 

kxx = -0.1 ! (1/m)   curvature along the xx axis 

kyy = 0.1 ! (1/m)   curvature along the yy axis 

kxy = 0.00 ! (1/m)   twisting 

E = 2.1e11 ! (N/m^2)  Young's elastic modulus 

nu = 0.33 ! (-)    Poisson's ratio 

rho = 7850 ! (kg/m^3)   mass density 

!----------------------------- end --------------------------------- 

 

/PREP7     ! Enters the model creation pre-processor. 

 

!---------- define material, element type and thickness ------------ 

/PREP7 

MPTEMP,,,,,,,,    ! isotropic material 

MPTEMP,1,0    !  »  » 

MPDATA,EX,1,,E   ! »  » 

MPDATA,PRXY,1,,nu   ! »  » 

MPDATA,DENS,1,,rho   ! »  » 

ET,1,SHELL181     ! 4-node structural shell 

R,1,t,t,t,t, , ,   ! thickness as of above 

!----------------------------- end --------------------------------- 

 

!------------------------ generate nodes --------------------------- 

*DO,i,0,n   

*DO,j,0,n 

x=lx/n*i-lx/2 

y=ly/n*j-ly/2 

z1=0.5*x*x*kxx 

z2=x*y*kxy 

z3=0.5*y*y*kyy 

z=z1+z2+z3 

N,,x,y,z,,, 

*ENDDO 

*ENDDO 

!----------------------------- end --------------------------------- 

 

!----------------------- generate elements ------------------------- 

*DO,i,1,n   

*DO,j,1,n 

  k=i+(j-1)*(n+1) 

E,k,k+1,k+n+2,k+n+1 

*ENDDO 

*ENDDO 

!----------------------------- end --------------------------------- 

 

!------------------- rotate the CS of all nodes -------------------- 

*DO,i,1,(n+1)*(n+1)  

xx=1 

xy=0 

xz=NX(i)*kxx+NY(i)*kxy 

lx=SQRT(1+xz*xz) 

zx=-NX(i)*kxx-NY(i)*kxy 

zy=-NX(i)*kxy-NY(i)*kyy 

zz=1 

lz=SQRT(zx*zx+zy*zy+1) 

NANG,i,xx/lx,xy/lx,xz/lx,,,,zx/lz,zy/lz,zz/lz 

*ENDDO 

!----------------------------- end ---------------------------------  
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!-------- rotate the CS of the nodes in the edge x = - lx/2 -------- 

*DO,i,2,n  

yx=0 

yy=1 

yz=NX(i)*kxy+NY(i)*kyy 

ly=SQRT(1+yz*yz) 

zx=-NX(i)*kxx-NY(i)*kxy 

zy=-NX(i)*kxy-NY(i)*kyy 

zz=1 

lz=SQRT(zx*zx+zy*zy+1) 

NANG,i,,,,yx/ly,yy/ly,yz/ly,zx/lz,zy/lz,zz/lz 

*ENDDO 

!----------------------------- end --------------------------------- 

 

!--------- rotate the CS of the nodes in the edge x = lx/2 --------- 

*DO,i,2,n  

j=n*(n+1)+I 

yx=0 

yy=1 

yz=NX(j)*kxy+NY(j)*kyy 

ly=SQRT(1+yz*yz) 

zx=-NX(j)*kxx-NY(j)*kxy 

zy=-NX(j)*kxy-NY(j)*kyy 

zz=1 

lz=SQRT(zx*zx+zy*zy+1) 

NANG,j,,,,yx/ly,yy/ly,yz/ly,zx/lz,zy/lz,zz/lz 

*ENDDO 

!----------------------------- end --------------------------------- 

 

!--------- BC: no displacement perpendicular to the plane ---------- 

*DO,i,1,n  

j=i 

D,j,UZ,0 

j=i*(n+1) 

D,j,UZ,0 

j=i+n*(n+1)+1 

D,j,UZ,0 

j=i*(n+1)+1 

D,j,UZ,0 

*ENDDO 

!----------------------------- end --------------------------------- 

 

!------- BC: no displacement in the directions of the edges -------- 

*DO,i,1,n+1  

D,i,UY,0 

*ENDDO 

*DO,i,n*(n+1)+1,(n+1)*(n+1) 

D,i,UY,0 

*ENDDO 

*DO,i,1,n*(n+1)+1,n+1 

D,i,UX,0 

*ENDDO 

*DO,i,n+1,(n+1)*(n+1),n+1 

D,i,UX,0 

*ENDDO 

!----------------------------- end --------------------------------- 

 

FINISH     ! Exits normally from the pre-processor. 

 

/SOLU     ! Enters the solution processor. 

 

ANTYPE, 0    ! Specifies the analysis type as static. 

 

/STATUS,SOLU    ! Provides a solution status summary. 

 

SOLVE     ! Starts the solution. 

 

FINISH     ! Exits normally from the solution 

! processor. 

 

/SOLU     ! Enters the solution processor. 

 

ANTYPE,MODAL    ! Specifies the analysis type as modal. 

 

MODOPT, LANB, 10,,,   ! Block Lanczos, 10 modes to extract. 

 

MXPAND,10    ! Expand & write 10 modes to the results 

     ! file.  
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PSTRES,ON    ! Prestress effects are calculated. 

 

SOLVE     ! Starts the solution. 

 

FINISH     ! Exits normally from the solution 

! processor. 

 

/POST1     ! Enters the database results 

       postprocessor. 

 

/SHOW,WIN32C    ! Specifies the device for graphics 

! displays. 

 

SET,FIRST    ! Read the first data set from the results 

     ! file. 

 

/PLOPTS,INFO,3   ! Graphics : switch to Multi-legend mode. 

 

/CONTOUR,ALL,18   ! Specifies the uniform contour values on 

! stress displays as 18 in ALL windows. 

 

/PNUM,MAT,1    ! Turns ON numbering/coloring for MAT 

     ! label. 

 

/NUMBER,1    ! Color the numbered items. Do not show 

     ! the numbers. 

 

/REPLOT,RESIZE   ! Automatically reissues the last display 

     ! command for convenience. 

 

PLNSOL,U,Z    ! Displays results as continuous contours 

! for Z-axis structural displacement. 

 

SET,,,,,,,1    ! Read data set number 1.  
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APPENDIX B 

This appendix encloses the script composed for deriving the formula. 

%import data f and L 
%***ATTENTION!**** Use "numeric matrix" format, replacing the... 
%...unimportable cells with '0' value! 

  
clearvars -except f L 

 
%-------------BLOCK 1_DEFINE MATERIAL PROPERTIES AND VARIABLES------------- 

E = 2.1e11; 
rho = 7850; 
v = 0.33; 

  
t = [0.005 0.01 0.02 0.05... 
    0.0025 0.005 0.010 0.050... 
    0.0015 0.005 0.010 0.050... 
    0.001 0.005 0.010 0.050... 
    0.001 0.005 0.010 0.050... 
    0.001 0.005 0.010 0.050... 
    0.0005 0.001 0.005 0.010]; 

  
k = [0.05 0.1 0.2 0.3 0.4 0.5 1.00]; 
%-------------------------------end BLOCK 2-------------------------------- 

 

%---------------- BLOCK 2_BASE FORMULA vs ANSYS FREQUENCY------------------ 
%Preallocate memory 
fb = zeros(size(f,1),size(f,2)); diff = fb; error = fb; C = fb; 
fnew = fb; diffnew = fb; errornew = fb; 
 

tpc = size(f,2)/size(L,2);      %thicknesses per case 

 

ind = 1; 
for j = 1:size(f,2) 
    for i = 1:nnz(L(:,ind)) 
        % freqeuncy estimation of the base formula: 
        fb(i,j) = sqrt((pi^2*E*t(j).^2)/(12*(1-v^2)*rho*L(i,ind).^4)); 
        % difference between frequency from ANSYS and the base formula: 
        diff(i,j) = f(i,j) - fb(i,j); 
        %margin of error ('%' value) between frequency from ANSYS and the 

base formula: 
        error(i,j) = 100*diff(i,j)/f(i,j); 
    end 
    if (j/tpc == ind) %condition to identify the correct corresponding... 
        ind = ind + 1; %...values of 'k' and 'L' to be used in each loop  
    end 
end 
%-------------------------------end BLOCK 2-------------------------------- 

 
%---------------------------BLOCK 3_DEFINE REGIONS------------------------- 
%preallocate memory 
erL = zeros(1,size(f,2)); erkt = erL; erkL = erL; errorstart = erL; 
spo = zeros(1,size(f,2)); kLspo = spo; ktspo = spo; 
difftemp = zeros(size(f,1),size(f,2)); kLtemp = difftemp; 

  
%----------------------R1 lower limit:error over 5------------------------- 
%{ 
%find a relation between the curvature, length and thickness that... 
%...describes the point where the margin of error becomes over 5 percent: 
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%} 
ind=1; 
for j = 1:size(f,2) 
    logic = 0;                              %logical index 
    for i = 1:size(f,1) 
        if (error(i,j) > 5) && (logic == 0) %find only the first length... 
            logic = 1;                      %...value for which error>5%                       
            erL(j) = L(i,ind);              %store this length 

            erkL(j) = k(ind).*erL(j);       %introduce dim/less quantity k*L 
            erkt(j) = k(ind).*t(j);         %introduce dim/less quantity k*t 
            errorstart(j) = i;              %row in which error exceeds 5% 
        end 
    end 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 

%{ 
%row vector 'erkL' contains the value 'kL' corresponding to each... 
%... respective 'kt' combination, for which the error is greater than... 

%...5 percent for the first time. 
%The relation between the above 'kL' & 'kt' values can be described by... 
%... a power model "y=ax^b" where x->erkt & y->erkL: 
%} 

[errorover5,ergof] = fit(erkt',erkL','power1');     %find the function &... 

%...goodness of the fit 

 
coeferr = coeffvalues(errorover5)';  %store the coefficients of this... 

%...function 
clear erL erkt erkL logic 
%-----------------------------end error over 5----------------------------- 

 

 
%-------------------------R1 upper limit:first peak------------------------ 
%{ 
%find a relation between the curvature, length and thickness that describes 

the point where... 
%...first peak of the difference between frequency from ANSYS and the 

'base' formula occurs: 
%} 
ind=1; 
for j = 1:size(f,2) 
    [~,locsD] = findpeaks(diff(:,j));   %locate all the peaks 
    temp(:,j) = locsD;                  %store their locations in a matrix 
    spo(j) = temp(1,j);                 %keep only the location of 1st peak 
    kLspo(j) = k(ind).*L(spo(j),ind);   %introduce dim/less quantity k*L 
    ktspo(j) = k(ind).*t(j);            %introduce dim/less quantity k*t 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 

 

%{ 
%Row vector 'kLspo' contains the value 'kL' corresponding to each 

respective... 
%...'kt' combination, for which the first peak of the difference between 

frequency... 
%... from ANSYS and the 'base' formula occurs. The data can be described... 
%...by a power model y=ax^b where x->ktspo & y->kLspo: 
%} 
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[peak,peakgof] = fit(ktspo',kLspo','power1');   %find the function &... 

%...goodness of the fit 

coefpeak = coeffvalues(peak)'; %store the coefficients of this... 

%...function 

clear locsD temp 
%-------------------------------end first peak----------------------------- 

 

  
%-------------------------BLOCK 4_FITTING SURFACES------------------------- 
%{ 
%find the surface that fits through the non-dimensionalized difference... 

%...values, when plotted against the also dimensionless quantities... 
%...'kL' & 'kt'. This is done in two parts: 
%Part 1: Surface for a range of 'kL' falling inside R1 region... 
%Part 2: Surface for a range of 'kL' beyond the upper limit of R1 and... 

%...until the limit of 'kL<2.0'. This is defined as R2 region. 
%} 
%PART 1: inside R1 
ind=1; 
count = 0; 
for j = 1:size(f,2) 
    for i = 1:size(f,1) 
        %define conditions and ignore the zero values earlier imported: 
        if errorover5(k(ind).*t(j))/k(ind) < L(i,ind) && diff(i,j) ~= 0... 
                && peak(k(ind).*t(j))/k(ind) > L(i,ind) 
            %{ 
            %create vectors with the proper dim/less quantities... 
            %...of difference, length and thickness that belong in the... 

            %...above mentioned range. The expressions are such, so that... 
            %...the fit surface can be described by a simple equation 
            %} 
            count = count + 1; 
            diffbp(count) = exp(diff(i,j).*sqrt(rho*v/E)./k(ind)); 
            kLbp(count) = exp(L(i,ind).*k(ind)); 
            ktbp(count) = exp(k(ind).*t(j)); 
        end 
    end 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 

%{ 
%selecting the proper expressions for the difference,length and... 

%...thickness values, results to a flat fitted surface which has a simpler 

%...and shorter equation. Therefore,the relation of the variables is of... 

%...the form: g(x,y) = a + b*x + c*y, where x->kLbp, y->ktbp, g->diffbp 
%} 
[sfbp,gofbp] = fit([kLbp',ktbp'],diffbp','poly11'); %find the function &... 

%the goodness of fit  
 

coefbp = coeffvalues(sfbp)';  %store the coefficients of this function  

 

 
%PART 2: inside R2 
ind=1; 
count = 0; 
for j = 1:size(f,2) 
    for i = 1:size(f,1) 
        %define conditions and ignore the zero values earlier imported: 

        if (peak(k(ind).*t(j))/k(ind) < L(i,ind)) ... 
                && (diff(i,j) ~= 0) 
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            %{ 
            %create vectors with the proper non-dimensionalized... 

%...quantities of difference, length and thickness that... 
%...belong in the above mentioned range. The expressions are... 

%...such, so that the fit surface can be described by the... 

%...simplest possible equation 
            %} 
            count = count + 1; 
            diffap(count) = log((diff(i,j)).*sqrt(rho*v/E)./k(ind)); 
            kLap(count) = exp(L(i,ind).*k(ind)); 
            ktap(count) = log(k(ind).*t(j)); 
        end 
    end 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 
%{ 
%selecting the proper expressions for the difference,length and... 

%...thickness values, results to a flat fitted surface which has a... 

%...simpler and shorter equation. Therefore,the relation of the... 

%...variables, is of the form: g(x,y) = a + b*x + c*y, where x->kLap,... 

%...y->ktap, g->diffap 

%} 
[sfap,gofap] = fit([kLap',ktap'],diffap','poly11'); %find the function... 

%...and the goodness of fit 

 

coefap = coeffvalues(sfap)';  %store the coefficients of this function 
%-------------------------------end BLOCK_4-------------------------------- 

 
%----------------------BLOCK_5 FORMULA DEVELOPMENT------------------------- 
ind = 1; 
for j = 1:size(f,2) 
    for i = 1:nnz(L(:,ind)) 
        %added term, which will cover the difference, introduced as 'C': 
        if (errorover5(k(ind).*t(j))/k(ind) < L(i,ind))... 

&& (peak(k(ind).*t(j))/k(ind) > L(i,ind)) 
            C(i,j)=log(sfbp(exp(k(ind).*L(i,ind)),exp(k(ind).*t(j))))./... 

sqrt(rho*v/E).*k(ind); 
        elseif (peak(k(ind).*t(j))/k(ind) < L(i,ind)) 

            C(i,j)=exp(sfap(exp(k(ind).*L(i,ind)),log(k(ind).*t(j))))./... 

sqrt(rho*v/E).*k(ind); 
        else 
            C(i,j) = 0; 
        end 
        %new formula: 
        fnew(i,j).=.sqrt((pi.^2*E*t(j).^2)/(12*(1-v^2)*rho*L(i,ind).^4))... 

  + C(i,j); 
        % difference between frequency from ANSYS and the new formula: 
        diffnew(i,j) = f(i,j) - fnew(i,j); 
        %margin of error between frequency from ANSYS and the new formula: 
        errornew(i,j) = 100*diffnew(i,j)/f(i,j); 
    end 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 
%----------------------BLOCK_5 FORMULA DEVELOPMENT------------------------- 
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%----------------------BLOCK_5 ERROR ASSESSMENT------------------------- 
%find the number of occasions and the locations where error is greater than 

'10%': 
ind=1; 
num = 1; 
errorcheck(num,:) = {'value','column','row','kt','kL'}; 
for j = 1:size(f,2) 
    for i = 1:size(f,1) 
        if (errornew(i,j) > 10) || (errornew(i,j)) < -10 
            num = num + 1; 
            kttemp = k(ind).*t(j); 
            kLtemp = k(ind).*L(i,ind); 
            errorcheck(num,:) = {errornew(i,j),j,i,kttemp,kLtemp}; 
        end 
    end 
    if (j/tpc == ind) 
        ind = ind + 1; 
    end 
end 
clear ind i j kttemp kLtemp 
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APPENDIX C 

Table C1 Comparison of ANSYS and formula frequencies for Case 1. 

 𝑘 = 0,05 [m-1] 

𝑡 = 0,005 [m] 𝑡 = 0,010 [m] 𝑡 = 0,020 [m] 𝑡 = 0,050 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,5 99,158 99,380 -0,224 197,267 198,761 -0,757 389,308 397,522 -2,110 923,686 993,804 -7,591 

1,0 24,819 24,845 -0,107 49,550 49,690 -0,283 98,576 99,380 -0,816 241,358 248,451 -2,939 

1,5 11,024 11,042 -0,168 22,029 22,085 -0,253 43,932 44,169 -0,539 108,483 110,423 -1,788 

2,0 6,193 6,211 -0,290 12,380 12,423 -0,340 24,717 24,845 -0,517 61,277 62,113 -1,364 

2,5 3,958 3,975 -0,448 7,912 7,950 -0,490 15,804 15,901 -0,610 39,270 39,752 -1,227 

3,0 2,743 2,761 -0,626 5,484 5,521 -0,679 10,957 11,042 -0,775 27,266 27,606 -1,246 

3,5 2,012 2,028 -0,784 4,021 4,056 -0,892 8,033 8,113 -0,988 20,008 20,282 -1,368 

4,0 1,540 1,553 -0,859 3,072 3,106 -1,101 6,135 6,211 -1,235 15,289 15,528 -1,564 

4,5 1,218 1,227 -0,732 2,423 2,454 -1,264 4,835 4,908 -1,496 12,050 12,269 -1,817 

5,0 0,992 0,994 -0,222 1,962 1,988 -1,316 3,907 3,975 -1,744 9,732 9,938 -2,113 

5,5 0,829 0,821 0,902 1,624 1,643 -1,155 3,223 3,285 -1,941 8,018 8,213 -2,436 

6,0 0,711 0,690 2,958 1,372 1,380 -0,631 2,706 2,761 -2,030 6,716 6,901 -2,768 

6,5 0,627 0,529 15,600 1,181 1,176 0,423 2,308 2,352 -1,935 5,704 5,880 -3,086 

7,0 0,569 0,489 14,027 1,037 1,014 2,224 1,997 2,028 -1,555 4,906 5,070 -3,359 

7,5 0,532 0,466 12,379 0,929 0,883 4,951 1,753 1,767 -0,767 4,266 4,417 -3,547 

8,0 0,511 0,456 10,844 0,851 0,831 2,330 1,562 1,553 0,562 3,747 3,882 -3,600 

8,5 0,503 0,456 9,506 0,796 0,786 1,165 1,412 1,376 2,564 3,324 3,439 -3,456 

9,0 0,506 0,464 8,329 0,760 0,757 0,370 1,296 1,227 5,341 2,977 3,067 -3,041 

9,5 0,516 0,479 7,243 0,741 0,741 -0,030 1,209 1,266 -4,667 2,692 2,753 -2,277 

10,0 0,532 0,500 6,162 0,734 0,735 -0,109 1,146 1,206 -5,200 2,458 2,485 -1,084 

10,5 0,553 0,525 4,988 0,738 0,738 0,041 1,104 1,162 -5,320 2,267 2,254 0,612 

11,0 0,577 0,555 3,685 0,750 0,748 0,277 1,078 1,132 -5,049 2,114 2,053 2,861 

11,5 0,603 0,589 2,239 0,768 0,764 0,496 1,066 1,114 -4,462 1,992 1,879 5,686 

12,0 0,630 0,626 0,621 0,791 0,786 0,589 1,066 1,105 -3,668 1,897 1,725 9,067 

12,5 0,659 0,667 -1,136 0,817 0,813 0,524 1,075 1,105 -2,779 1,827 1,981 -8,452 

13,0 0,645 0,648 -0,413 0,846 0,844 0,251 1,091 1,112 -1,900 1,776 1,916 -7,895 

13,5 0,617 0,636 -3,025 0,877 0,879 -0,232 1,114 1,126 -1,112 1,743 1,866 -7,064 

14,0 0,594 0,624 -5,092 0,910 0,918 -0,917 1,141 1,146 -0,476 1,725 1,829 -6,027 

14,5 0,576 0,614 -6,592 0,944 0,961 -1,813 1,171 1,171 -0,029 1,719 1,802 -4,862 

15,0 0,562 0,604 -7,525 0,941 0,905 3,858 1,204 1,201 0,210 1,723 1,786 -3,648 

15,5 0,552 0,596 -7,904 0,902 0,889 1,448 1,239 1,236 0,233 1,736 1,778 -2,454 

16,0 0,545 0,587 -7,813 0,868 0,873 -0,608 1,275 1,275 0,039 1,756 1,779 -1,339 

16,5 0,540 0,580 -7,298 0,840 0,859 -2,299 1,312 1,317 -0,365 1,781 1,787 -0,348 

17,0 0,538 0,572 -6,424 0,816 0,846 -3,608 1,350 1,364 -0,971 1,810 1,801 0,486 

17,5 0,537 0,565 -5,263 0,797 0,833 -4,552 1,344 1,413 -5,186 1,843 1,822 1,143 

18,0 0,538 0,559 -3,876 0,781 0,821 -5,136 1,291 1,232 4,563 1,879 1,849 1,611 

18,5 0,540 0,553 -2,304 0,769 0,810 -5,386 1,245 1,212 2,659 1,917 1,881 1,884 

19,0 0,543 0,547 -0,629 0,759 0,800 -5,349 1,204 1,192 0,988 1,956 1,917 1,961 

19,5 0,547 0,541 1,127 0,752 0,790 -5,035 1,169 1,174 -0,443 1,996 1,959 1,847 

20,0 0,552 0,536 2,926 0,746 0,780 -4,501 1,138 1,157 -1,630 2,036 2,005 1,545 

20,5 0,557 0,530 4,731 0,743 0,771 -3,768 1,112 1,141 -2,579 2,077 2,055 1,061 

21,0 0,562 0,525 6,508 0,741 0,762 -2,878 1,089 1,125 -3,295 2,118 2,110 0,402 

21,5 0,559 0,520 6,913 0,740 0,754 -1,861 1,070 1,110 -3,791 2,113 2,168 -2,626 

22,0 0,549 0,515 6,084 0,740 0,745 -0,746 1,053 1,096 -4,080 2,037 1,883 7,561 

22,5 0,534 0,511 4,471 0,741 0,737 0,441 1,039 1,082 -4,181 1,969 1,853 5,856 

23,0 0,524 0,506 3,522 0,742 0,730 1,677 1,026 1,069 -4,111 1,906 1,825 4,275 

23,5 0,516 0,501 2,741 0,744 0,722 2,943 1,016 1,056 -3,888 1,850 1,797 2,821 

24,0 0,508 0,497 2,111 0,746 0,715 4,222 1,008 1,043 -3,532 1,798 1,771 1,498 

24,5 0,506 0,492 2,580 0,749 0,708 5,501 1,001 1,031 -3,061 1,751 1,746 0,308 

25,0 0,494 0,488 1,258 0,751 0,701 6,767 0,995 1,019 -2,491 1,708 1,721 -0,747 

25,5 0,489 0,484 1,033 0,754 0,694 8,010 0,990 1,008 -1,840 1,670 1,698 -1,670 
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 𝑘 = 0,05 [m-1] 

𝑡 = 0,005 [m] 𝑡 = 0,010 [m] 𝑡 = 0,020 [m] 𝑡 = 0,050 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

26,0 0,484 0,479 0,899 0,737 0,687 6,784 0,986 0,997 -1,121 1,634 1,675 -2,463 

26,5 0,479 0,475 0,879 0,721 0,680 5,648 0,982 0,986 -0,349 1,602 1,652 -3,129 

27,0 0,475 0,471 0,917 0,706 0,673 4,624 0,979 0,975 0,466 1,573 1,631 -3,675 

27,5 0,472 0,467 1,037 0,692 0,667 3,706 0,977 0,964 1,311 1,546 1,610 -4,104 

28,0 0,468 0,462 1,219 0,680 0,660 2,893 0,975 0,953 2,178 1,522 1,589 -4,423 

28,5 0,465 0,458 1,445 0,668 0,654 2,178 0,973 0,943 3,059 1,499 1,569 -4,639 

29,0 0,462 0,454 1,717 0,657 0,647 1,559 0,971 0,933 3,946 1,478 1,549 -4,760 

29,5 0,459 0,450 1,993 0,647 0,641 1,029 0,970 0,923 4,833 1,459 1,529 -4,791 

30,0 0,456 0,446 2,317 0,638 0,634 0,583 0,968 0,913 5,714 1,442 1,510 -4,741 

30,5 0,453 0,441 2,626 0,629 0,628 0,215 0,966 0,903 6,583 1,426 1,491 -4,615 

31,0 0,450 0,437 2,942 0,621 0,621 -0,079 0,962 0,893 7,248 1,411 1,473 -4,421 

31,5 0,447 0,433 3,244 0,613 0,615 -0,306 0,941 0,883 6,203 1,396 1,455 -4,166 

32,0 0,439 0,429 2,412 0,606 0,609 -0,471 0,921 0,873 5,230 1,383 1,436 -3,854 

32,5 0,431 0,424 1,600 0,599 0,602 -0,579 0,902 0,863 4,329 1,371 1,419 -3,492 

33,0 0,424 0,420 0,880 0,592 0,596 -0,635 0,884 0,853 3,499 1,359 1,401 -3,086 

33,5 0,417 0,416 0,212 0,586 0,589 -0,644 0,867 0,844 2,738 1,348 1,383 -2,639 

34,0 0,410 0,411 -0,399 0,579 0,583 -0,612 0,851 0,834 2,047 1,337 1,366 -2,156 

34,5 0,403 0,407 -0,948 0,573 0,576 -0,542 0,836 0,824 1,423 1,327 1,348 -1,641 

35,0 0,397 0,402 -1,431 0,567 0,570 -0,438 0,821 0,814 0,864 1,317 1,331 -1,099 

35,5 0,391 0,398 -1,869 0,562 0,563 -0,306 0,808 0,805 0,370 1,307 1,314 -0,532 

36,0 0,385 0,393 -2,259 0,556 0,557 -0,148 0,794 0,795 -0,062 1,297 1,297 0,057 

36,5 0,379 0,389 -2,597 0,550 0,550 0,031 0,782 0,785 -0,433 1,288 1,280 0,665 

37,0 0,374 0,384 -2,881 0,545 0,543 0,228 0,769 0,775 -0,746 1,279 1,262 1,289 

37,5 0,368 0,380 -3,108 0,539 0,537 0,439 0,758 0,765 -1,001 1,270 1,245 1,928 

38,0 0,363 0,375 -3,302 0,534 0,530 0,662 0,746 0,755 -1,202 1,261 1,228 2,580 

38,5 0,358 0,370 -3,463 0,528 0,523 0,892 0,736 0,745 -1,349 1,252 1,211 3,242 

39,0 0,353 0,366 -3,588 0,522 0,516 1,128 0,725 0,736 -1,444 1,243 1,194 3,914 

39,5 0,348 0,361 -3,675 0,517 0,510 1,366 0,715 0,726 -1,490 1,234 1,177 4,593 

40,0 0,343 0,356 -3,730 0,508 0,503 1,125 0,705 0,715 -1,487 1,225 1,160 5,279 
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Table C2 Comparison of ANSYS and formula frequencies for Case 2. 

 𝑘 = 0,10 [m-1] 

𝑡 = 0,0025 [m] 𝑡 = 0,0050 [m] 𝑡 = 0,0100 [m] 𝑡 = 0,0500 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,2 309,531 310,564 -0,33 614,599 621,128 -1,06 1207,57 1242,26 -2,87 4839,54 6211,28 -28,34 

0,4 77,553 77,641 -0,11 154,708 155,282 -0,37 307,185 310,564 -1,10 1405,58 1552,82 -10,48 

0,6 34,465 34,507 -0,12 68,843 69,014 -0,25 137,130 138,028 -0,66 651,301 690,142 -5,96 

0,8 19,374 19,410 -0,19 38,718 38,820 -0,26 77,239 77,641 -0,52 372,879 388,205 -4,11 

1,0 12,387 12,423 -0,29 24,761 24,845 -0,34 49,435 49,690 -0,52 240,798 248,451 -3,18 

1,2 8,591 8,627 -0,41 17,175 17,254 -0,46 34,306 34,507 -0,59 168,047 172,535 -2,67 

1,4 6,303 6,338 -0,55 12,601 12,676 -0,60 25,175 25,352 -0,70 123,792 126,761 -2,40 

1,6 4,819 4,853 -0,69 9,632 9,705 -0,76 19,246 19,410 -0,86 94,893 97,051 -2,27 

1,8 3,803 3,834 -0,81 7,597 7,668 -0,94 15,179 15,336 -1,04 74,994 76,682 -2,25 

2,0 3,079 3,106 -0,86 6,144 6,211 -1,10 12,271 12,423 -1,24 60,712 62,113 -2,31 

2,2 2,547 2,567 -0,78 5,071 5,133 -1,24 10,121 10,267 -1,44 50,118 51,333 -2,42 

2,4 2,146 2,157 -0,49 4,257 4,313 -1,32 8,487 8,627 -1,65 42,045 43,134 -2,59 

2,6 1,840 1,838 0,13 3,629 3,675 -1,28 7,218 7,351 -1,83 35,754 36,753 -2,79 

2,8 1,604 1,585 1,23 3,135 3,169 -1,08 6,216 6,338 -1,97 30,756 31,690 -3,04 

3,0 1,422 1,380 2,96 2,743 2,761 -0,63 5,411 5,521 -2,03 26,721 27,606 -3,31 

3,2 1,283 1,213 5,47 2,430 2,426 0,16 4,759 4,853 -1,97 23,418 24,263 -3,61 

3,4 1,179 1,006 14,68 2,180 2,149 1,40 4,225 4,298 -1,75 20,682 21,492 -3,92 

3,6 1,104 0,957 13,36 1,980 1,917 3,19 3,785 3,834 -1,30 18,392 19,171 -4,23 

3,8 1,053 0,926 12,05 1,823 1,721 5,62 3,422 3,441 -0,55 16,457 17,206 -4,55 

4,0 1,022 0,911 10,84 1,701 1,662 2,33 3,123 3,106 0,56 14,810 15,528 -4,85 

4,2 1,008 0,910 9,75 1,610 1,588 1,38 2,878 2,817 2,11 13,398 14,085 -5,12 

4,4 1,008 0,919 8,78 1,545 1,535 0,64 2,677 2,567 4,13 12,182 12,833 -5,35 

4,6 1,018 0,938 7,89 1,501 1,499 0,16 2,516 2,348 6,68 11,128 11,742 -5,51 

4,8 1,038 0,965 7,03 1,477 1,478 -0,07 2,390 2,504 -4,81 10,213 10,783 -5,59 

5,0 1,065 0,999 6,16 1,468 1,470 -0,11 2,293 2,412 -5,20 9,415 9,938 -5,56 

5,2 1,097 1,039 5,23 1,473 1,473 0,00 2,221 2,340 -5,33 8,718 9,188 -5,39 

5,4 1,133 1,086 4,22 1,488 1,486 0,18 2,173 2,286 -5,20 8,110 8,520 -5,06 

5,6 1,173 1,137 3,12 1,513 1,507 0,37 2,143 2,247 -4,85 7,579 7,923 -4,53 

5,8 1,216 1,193 1,92 1,544 1,536 0,52 2,131 2,223 -4,31 7,116 7,386 -3,79 

6,0 1,261 1,253 0,62 1,581 1,572 0,59 2,132 2,210 -3,67 6,714 6,901 -2,79 

6,2 1,307 1,317 -0,77 1,623 1,614 0,55 2,145 2,209 -2,96 6,366 6,463 -1,53 

6,4 1,317 1,307 0,78 1,669 1,662 0,38 2,168 2,217 -2,24 6,066 6,066 0,01 

6,6 1,267 1,286 -1,52 1,717 1,716 0,08 2,200 2,234 -1,57 5,810 5,704 1,84 

6,8 1,224 1,267 -3,49 1,768 1,774 -0,35 2,238 2,259 -0,97 5,594 5,373 3,95 

7,0 1,188 1,249 -5,10 1,820 1,837 -0,92 2,281 2,292 -0,48 5,413 5,070 6,33 

7,2 1,159 1,232 -6,34 1,874 1,904 -1,61 2,329 2,331 -0,10 5,264 4,793 8,96 

7,4 1,134 1,216 -7,21 1,919 1,976 -2,97 2,381 2,377 0,14 5,144 5,591 -8,68 

7,6 1,115 1,202 -7,74 1,850 1,797 2,85 2,435 2,429 0,25 5,050 5,454 -8,00 

7,8 1,100 1,188 -7,93 1,789 1,771 1,01 2,492 2,487 0,21 4,978 5,337 -7,21 

8,0 1,089 1,175 -7,82 1,736 1,746 -0,61 2,550 2,549 0,04 4,927 5,239 -6,32 

8,2 1,082 1,162 -7,44 1,690 1,723 -1,99 2,610 2,617 -0,27 4,894 5,157 -5,37 

8,4 1,077 1,150 -6,82 1,650 1,702 -3,13 2,670 2,689 -0,70 4,877 5,090 -4,38 

8,6 1,074 1,139 -6,00 1,616 1,681 -4,03 2,732 2,766 -1,27 4,873 5,038 -3,38 

8,8 1,074 1,128 -5,00 1,587 1,661 -4,70 2,665 2,499 6,25 4,881 4,998 -2,39 

9,0 1,076 1,118 -3,87 1,562 1,643 -5,14 2,582 2,464 4,56 4,900 4,971 -1,45 

9,2 1,079 1,108 -2,63 1,542 1,625 -5,37 2,507 2,431 3,02 4,927 4,955 -0,56 

9,4 1,084 1,098 -1,31 1,525 1,608 -5,40 2,440 2,400 1,63 4,962 4,950 0,25 

9,6 1,090 1,089 0,06 1,512 1,591 -5,25 2,379 2,370 0,39 5,003 4,955 0,97 

9,8 1,096 1,080 1,48 1,501 1,575 -4,95 2,325 2,341 -0,70 5,050 4,969 1,60 

10,0 1,103 1,071 2,92 1,493 1,560 -4,50 2,277 2,314 -1,63 5,101 4,992 2,13 

10,2 1,111 1,063 4,36 1,487 1,545 -3,93 2,234 2,288 -2,41 5,155 5,024 2,55 
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 𝑘 = 0,10 [m-1] 

𝑡 = 0,0025 [m] 𝑡 = 0,0050 [m] 𝑡 = 0,0100 [m] 𝑡 = 0,0500 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

10,4 1,119 1,054 5,80 1,483 1,531 -3,25 2,196 2,262 -3,04 5,213 5,064 2,86 

10,6 1,128 1,046 7,22 1,481 1,517 -2,48 2,162 2,238 -3,52 5,272 5,111 3,06 

10,8 1,112 1,038 6,63 1,480 1,504 -1,64 2,132 2,214 -3,86 5,334 5,166 3,15 

11,0 1,092 1,031 5,60 1,480 1,491 -0,75 2,106 2,191 -4,08 5,397 5,228 3,12 

11,2 1,073 1,023 4,68 1,481 1,478 0,20 2,082 2,169 -4,18 5,460 5,297 2,99 

11,4 1,057 1,016 3,88 1,483 1,466 1,18 2,062 2,148 -4,16 5,524 5,373 2,75 

11,6 1,041 1,008 3,18 1,486 1,453 2,18 2,044 2,127 -4,04 5,589 5,454 2,40 

11,8 1,028 1,001 2,59 1,489 1,441 3,20 2,029 2,107 -3,83 5,653 5,543 1,95 

12,0 1,015 0,994 2,10 1,493 1,430 4,22 2,015 2,087 -3,53 5,717 5,637 1,40 

12,2 1,004 0,987 1,70 1,497 1,418 5,25 2,004 2,067 -3,16 5,780 5,737 0,75 

12,4 0,993 0,980 1,39 1,501 1,407 6,26 1,994 2,048 -2,73 5,843 5,843 0,00 

12,6 0,984 0,973 1,16 1,505 1,396 7,27 1,985 2,029 -2,24 5,842 5,955 -1,93 

12,8 0,975 0,966 1,00 1,501 1,384 7,77 1,978 2,011 -1,70 5,685 5,157 9,30 

13,0 0,968 0,959 0,90 1,474 1,374 6,78 1,971 1,993 -1,12 5,538 5,092 8,06 

13,2 0,960 0,952 0,87 1,448 1,363 5,87 1,965 1,975 -0,51 5,399 5,028 6,86 

13,4 0,954 0,945 0,89 1,423 1,352 5,02 1,961 1,958 0,14 5,268 4,967 5,71 

13,6 0,948 0,938 0,96 1,401 1,341 4,24 1,956 1,941 0,80 5,144 4,907 4,61 

13,8 0,942 0,932 1,07 1,380 1,331 3,54 1,953 1,924 1,48 5,028 4,849 3,56 

14,0 0,936 0,925 1,22 1,360 1,320 2,89 1,949 1,907 2,18 4,918 4,792 2,56 

14,2 0,931 0,918 1,40 1,341 1,310 2,31 1,946 1,890 2,88 4,814 4,736 1,62 

14,4 0,926 0,912 1,60 1,323 1,300 1,80 1,944 1,874 3,59 4,716 4,681 0,74 

14,6 0,922 0,905 1,82 1,307 1,289 1,34 1,941 1,858 4,30 4,624 4,628 -0,09 

14,8 0,917 0,898 2,06 1,291 1,279 0,93 1,938 1,841 5,01 4,536 4,575 -0,87 

15,0 0,912 0,891 2,31 1,276 1,269 0,58 1,936 1,825 5,71 4,453 4,524 -1,59 

15,2 0,908 0,884 2,56 1,262 1,258 0,28 1,933 1,809 6,41 4,375 4,473 -2,25 

15,4 0,903 0,878 2,81 1,248 1,248 0,03 1,930 1,793 7,10 4,300 4,423 -2,86 

15,6 0,898 0,871 3,06 1,236 1,238 -0,18 1,908 1,778 6,82 4,230 4,374 -3,42 

15,8 0,892 0,864 3,09 1,223 1,228 -0,34 1,874 1,762 6,00 4,163 4,326 -3,92 

16,0 0,878 0,857 2,40 1,212 1,217 -0,47 1,842 1,746 5,23 4,099 4,278 -4,37 

16,2 0,866 0,850 1,76 1,200 1,207 -0,56 1,812 1,730 4,50 4,039 4,231 -4,76 

16,4 0,853 0,843 1,15 1,189 1,197 -0,62 1,783 1,715 3,82 3,981 4,185 -5,11 

16,6 0,841 0,836 0,59 1,179 1,186 -0,64 1,755 1,699 3,19 3,926 4,139 -5,41 

16,8 0,830 0,829 0,07 1,169 1,176 -0,64 1,728 1,683 2,59 3,874 4,093 -5,66 

17,0 0,819 0,822 -0,41 1,159 1,166 -0,61 1,703 1,668 2,05 3,824 4,048 -5,86 

17,2 0,809 0,815 -0,85 1,149 1,155 -0,56 1,678 1,652 1,54 3,776 4,003 -6,02 

17,4 0,798 0,808 -1,25 1,139 1,145 -0,48 1,654 1,637 1,08 3,730 3,959 -6,14 

17,6 0,788 0,801 -1,62 1,130 1,135 -0,39 1,632 1,621 0,66 3,686 3,915 -6,21 

17,8 0,779 0,794 -1,96 1,121 1,124 -0,28 1,610 1,605 0,28 3,644 3,871 -6,24 

18,0 0,769 0,787 -2,26 1,112 1,113 -0,15 1,589 1,590 -0,06 3,603 3,828 -6,24 

18,2 0,760 0,780 -2,53 1,103 1,103 -0,01 1,568 1,574 -0,36 3,564 3,785 -6,19 

18,4 0,751 0,772 -2,77 1,094 1,092 0,15 1,549 1,558 -0,63 3,527 3,742 -6,11 

18,6 0,743 0,765 -2,98 1,085 1,082 0,31 1,529 1,542 -0,85 3,490 3,700 -6,00 

18,8 0,734 0,757 -3,16 1,076 1,071 0,48 1,511 1,527 -1,05 3,455 3,657 -5,85 

19,0 0,726 0,750 -3,31 1,067 1,060 0,66 1,493 1,511 -1,20 3,421 3,615 -5,67 

19,2 0,718 0,742 -3,44 1,058 1,049 0,85 1,475 1,495 -1,32 3,388 3,573 -5,46 

19,4 0,710 0,735 -3,55 1,049 1,038 1,03 1,458 1,479 -1,41 3,356 3,531 -5,21 

19,6 0,702 0,727 -3,63 1,040 1,027 1,22 1,442 1,463 -1,47 3,325 3,489 -4,94 

19,8 0,694 0,720 -3,69 1,031 1,016 1,41 1,426 1,447 -1,49 3,295 3,448 -4,65 

20,0 0,686 0,712 -3,73 1,017 1,005 1,12 1,410 1,431 -1,49 3,265 3,406 -4,32 
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Table C3 Comparison of ANSYS and formula frequencies for Case 3. 

 𝑘 = 0,20 [m-1] 

𝑡 = 0,0015 [m] 𝑡 = 0,0050 [m] 𝑡 = 0,0100 [m] 𝑡 = 0,0500 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,2 186,049 186,338 -0,16 614,370 621,128 -1,10 1207,12 1242,26 -2,91 4837,67 6211,28 -28,39 

0,4 46,492 46,585 -0,20 154,477 155,282 -0,52 306,727 310,564 -1,25 1403,49 1552,82 -10,64 

0,6 20,617 20,704 -0,42 68,613 69,014 -0,59 136,671 138,028 -0,99 649,134 690,142 -6,32 

0,8 11,564 11,646 -0,71 38,491 38,820 -0,86 76,781 77,641 -1,12 370,677 388,205 -4,73 

1,0 7,384 7,454 -0,94 24,542 24,845 -1,24 48,983 49,690 -1,44 238,582 248,451 -4,14 

1,2 5,136 5,176 -0,79 16,974 17,254 -1,65 33,868 34,507 -1,89 165,830 172,535 -4,04 

1,4 3,818 3,803 0,40 12,431 12,676 -1,97 24,762 25,352 -2,38 121,585 126,761 -4,26 

1,6 3,021 2,912 3,61 9,517 9,705 -1,97 18,874 19,410 -2,84 92,708 97,051 -4,68 

1,8 2,552 2,286 10,42 7,570 7,668 -1,30 14,873 15,336 -3,12 72,844 76,682 -5,27 

2,0 2,309 2,123 8,08 6,246 6,211 0,56 12,063 12,423 -2,98 58,617 62,113 -5,96 

2,2 2,226 2,084 6,36 5,355 5,133 4,13 10,053 10,267 -2,12 48,102 51,333 -6,72 

2,4 2,252 2,135 5,19 4,779 5,009 -4,80 8,611 8,627 -0,18 40,136 43,134 -7,47 

2,6 2,350 2,252 4,14 4,443 4,680 -5,33 7,592 7,351 3,18 33,994 36,753 -8,12 

2,8 2,493 2,422 2,86 4,287 4,494 -4,85 6,898 6,338 8,12 29,185 31,690 -8,58 

3,0 2,664 2,633 1,16 4,264 4,420 -3,67 6,459 6,973 -7,95 25,390 27,606 -8,73 

3,2 2,852 2,881 -0,99 4,336 4,434 -2,24 6,219 6,652 -6,96 22,385 24,263 -8,39 

3,4 2,825 2,819 0,21 4,475 4,519 -0,97 6,131 6,460 -5,37 20,010 21,492 -7,41 

3,6 2,645 2,737 -3,50 4,658 4,663 -0,10 6,156 6,372 -3,51 18,147 19,171 -5,64 

3,8 2,517 2,666 -5,91 4,870 4,858 0,25 6,264 6,371 -1,71 16,706 17,206 -2,99 

4,0 2,431 2,602 -7,03 5,101 5,098 0,04 6,431 6,444 -0,20 15,616 15,528 0,56 

4,2 2,378 2,545 -7,01 5,341 5,378 -0,70 6,636 6,579 0,86 14,817 14,085 4,94 

4,4 2,351 2,494 -6,05 5,330 4,997 6,25 6,868 6,771 1,42 14,258 15,368 -7,78 

4,6 2,344 2,446 -4,38 5,014 4,862 3,02 7,117 7,012 1,47 13,895 14,736 -6,05 

4,8 2,350 2,402 -2,22 4,759 4,740 0,39 7,373 7,298 1,02 13,689 14,257 -4,15 

5,0 2,367 2,361 0,24 4,554 4,628 -1,63 7,633 7,627 0,09 13,607 13,909 -2,22 

5,2 2,391 2,323 2,85 4,392 4,525 -3,03 7,385 6,833 7,47 13,620 13,678 -0,42 

5,4 2,419 2,286 5,50 4,264 4,429 -3,86 6,985 6,659 4,67 13,706 13,549 1,14 

5,6 2,433 2,251 7,49 4,165 4,339 -4,18 6,646 6,497 2,24 13,845 13,512 2,40 

5,8 2,345 2,217 5,46 4,089 4,254 -4,04 6,360 6,347 0,20 14,022 13,559 3,30 

6,0 2,271 2,184 3,83 4,031 4,173 -3,53 6,117 6,205 -1,44 14,224 13,682 3,81 

6,2 2,209 2,153 2,58 3,987 4,096 -2,73 5,912 6,072 -2,70 14,444 13,876 3,93 

6,4 2,157 2,121 1,67 3,955 4,022 -1,70 5,739 5,945 -3,59 14,672 14,136 3,65 

6,6 2,113 2,090 1,06 3,931 3,951 -0,51 5,592 5,824 -4,15 14,903 14,457 2,99 

6,8 2,075 2,060 0,72 3,913 3,882 0,80 5,467 5,707 -4,40 15,132 14,839 1,94 

7,0 2,042 2,030 0,60 3,899 3,814 2,18 5,360 5,595 -4,38 15,357 15,276 0,52 

7,2 2,013 1,999 0,66 3,887 3,748 3,59 5,268 5,486 -4,14 15,573 15,769 -1,25 

7,4 1,986 1,969 0,85 3,877 3,683 5,01 5,188 5,381 -3,71 15,780 16,315 -3,39 

7,6 1,962 1,939 1,16 3,866 3,619 6,41 5,118 5,277 -3,11 15,100 13,715 9,17 

7,8 1,939 1,909 1,53 3,815 3,555 6,82 5,055 5,176 -2,39 14,398 13,374 7,11 

8,0 1,916 1,879 1,94 3,685 3,492 5,23 4,998 5,076 -1,56 13,759 13,046 5,18 

8,2 1,893 1,848 2,36 3,566 3,429 3,82 4,946 4,978 -0,65 13,176 12,729 3,39 

8,4 1,859 1,817 2,26 3,456 3,367 2,59 4,897 4,881 0,33 12,642 12,422 1,74 

8,6 1,805 1,786 1,06 3,356 3,304 1,54 4,850 4,784 1,35 12,154 12,124 0,25 

8,8 1,755 1,755 0,01 3,263 3,242 0,66 4,804 4,688 2,40 11,705 11,833 -1,09 

9,0 1,708 1,723 -0,88 3,177 3,179 -0,06 4,758 4,593 3,48 11,292 11,549 -2,28 

9,2 1,664 1,691 -1,63 3,097 3,116 -0,63 4,713 4,498 4,57 10,911 11,270 -3,30 

9,4 1,622 1,658 -2,25 3,022 3,053 -1,05 4,667 4,403 5,66 10,558 10,997 -4,16 

9,6 1,582 1,625 -2,73 2,951 2,990 -1,32 4,607 4,308 6,50 10,231 10,728 -4,86 

9,8 1,544 1,592 -3,09 2,884 2,926 -1,47 4,455 4,213 5,44 9,927 10,463 -5,40 

10,0 1,508 1,558 -3,34 2,820 2,862 -1,49 4,312 4,117 4,53 9,643 10,201 -5,78 
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Table C4 Comparison of ANSYS and formula frequencies for Case 4. 

 𝑘 = 0,30 [m-1] 

𝑡 = 0,001 [m] 𝑡 = 0,005 [m] 𝑡 = 0,010 [m] 𝑡 = 0,050 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,2 124,050 124,226 -0,14 613,988 621,128 -1,16 1206,38 1242,26 -2,97 4834,54 6211,28 -28,48 

0,4 30,926 31,056 -0,42 154,094 155,282 -0,77 305,966 310,564 -1,50 1400,03 1552,82 -10,91 

0,6 13,686 13,803 -0,85 68,237 69,014 -1,14 135,915 138,028 -1,55 645,550 690,142 -6,91 

0,8 7,703 7,764 -0,79 38,141 38,820 -1,78 76,044 77,641 -2,10 367,059 388,205 -5,76 

1,0 5,054 4,969 1,68 24,257 24,845 -2,42 48,296 49,690 -2,89 234,977 248,451 -5,73 

1,2 3,828 3,429 10,42 16,825 17,254 -2,55 33,284 34,507 -3,67 162,281 172,535 -6,32 

1,4 3,377 3,136 7,13 12,530 12,676 -1,16 24,367 25,352 -4,04 118,143 126,761 -7,29 

1,6 3,378 3,203 5,19 10,016 9,705 3,10 18,792 19,410 -3,29 89,446 97,051 -8,50 

1,8 3,625 3,497 3,54 8,638 9,257 -7,17 15,264 15,336 -0,48 69,858 76,682 -9,77 

2,0 3,996 3,950 1,16 8,026 8,545 -6,46 13,105 12,423 5,21 56,036 62,113 -10,84 

2,2 4,409 4,525 -2,63 7,923 8,257 -4,21 11,910 12,922 -8,50 46,085 51,333 -11,39 

2,4 3,967 4,106 -3,50 8,140 8,276 -1,67 11,394 12,122 -6,39 38,871 43,134 -10,97 

2,6 3,704 3,950 -6,63 8,545 8,529 0,19 11,340 11,737 -3,50 33,679 36,753 -9,13 

2,8 3,568 3,818 -7,01 9,052 8,968 0,93 11,584 11,670 -0,74 30,011 31,690 -5,59 

3,0 3,518 3,704 -5,29 9,609 9,563 0,48 12,008 11,857 1,26 27,525 27,606 -0,29 

3,2 3,525 3,604 -2,22 9,848 10,294 -4,53 12,533 12,253 2,23 25,944 24,263 6,48 

3,4 3,568 3,513 1,54 9,029 8,720 3,43 13,107 12,830 2,11 25,044 26,259 -4,85 

3,6 3,629 3,429 5,50 8,410 8,409 0,01 13,697 13,566 0,96 24,639 25,139 -2,03 

3,8 3,581 3,351 6,43 7,943 8,129 -2,34 13,447 12,319 8,38 24,582 24,450 0,54 

4,0 3,407 3,277 3,83 7,595 7,875 -3,68 12,425 11,863 4,52 24,757 24,126 2,55 

4,2 3,273 3,205 2,08 7,336 7,639 -4,14 11,600 11,449 1,30 25,079 24,119 3,83 

4,4 3,169 3,136 1,06 7,142 7,419 -3,88 10,931 11,067 -1,24 25,488 24,393 4,29 

4,6 3,087 3,067 0,63 6,997 7,211 -3,06 10,388 10,711 -3,10 25,938 24,920 3,93 

4,8 3,019 2,999 0,65 6,884 7,011 -1,84 9,944 10,375 -4,33 26,398 25,679 2,73 

5,0 2,961 2,931 0,99 6,793 6,818 -0,36 9,578 10,056 -4,99 26,847 26,655 0,71 

5,2 2,908 2,863 1,53 6,717 6,630 1,29 9,271 9,750 -5,16 27,270 27,839 -2,09 

5,4 2,856 2,795 2,15 6,647 6,446 3,02 9,010 9,453 -4,92 27,656 29,223 -5,66 

5,6 2,789 2,726 2,27 6,579 6,264 4,78 8,785 9,165 -4,33 26,531 24,079 9,24 

5,8 2,670 2,656 0,52 6,509 6,084 6,53 8,585 8,882 -3,46 24,800 23,168 6,58 

6,0 2,562 2,584 -0,88 6,215 5,904 5,00 8,404 8,603 -2,37 23,267 22,296 4,17 

6,2 2,464 2,512 -1,96 5,920 5,724 3,31 8,236 8,327 -1,11 21,904 21,457 2,04 

6,4 2,373 2,438 -2,73 5,655 5,544 1,97 8,078 8,053 0,30 20,688 20,644 0,21 

6,6 2,289 2,363 -3,23 5,415 5,363 0,96 7,925 7,780 1,82 19,598 19,854 -1,31 

6,8 2,209 2,286 -3,47 5,196 5,181 0,29 7,775 7,507 3,44 18,617 19,083 -2,51 

 

  



52 
 

Table C5 Comparison of ANSYS and formula frequencies for Case 5. 

 𝑘 = 0,40 [m-1] 

𝑡 = 0,001 [m] 𝑡 = 0,005 [m] 𝑡 = 0,010 [m] 𝑡 = 0,050 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,2 123,942 124,226 -0,23 613,453 621,128 -1,25 1205,33 1242,26 -3,06 4830,17 6211,28 -28,59 

0,4 30,828 31,056 -0,74 153,563 155,282 -1,12 304,908 310,564 -1,85 1395,20 1552,82 -11,30 

0,6 13,649 13,803 -1,13 67,736 69,014 -1,89 134,881 138,028 -2,33 640,592 690,142 -7,74 

0,8 7,874 7,764 1,40 37,747 38,820 -2,84 75,091 77,641 -3,40 362,108 388,205 -7,21 

1,0 5,701 5,446 4,47 24,126 24,845 -2,98 47,545 49,690 -4,51 230,138 248,451 -7,96 

1,2 5,204 5,091 2,16 17,223 17,254 -0,18 32,944 34,507 -4,74 157,683 172,535 -9,42 

1,4 5,531 5,435 1,73 13,797 12,676 8,12 24,744 25,352 -2,46 113,971 126,761 -11,22 

1,6 6,216 6,205 0,17 12,438 13,304 -6,96 20,247 19,410 4,13 85,962 97,051 -12,90 

1,8 6,627 6,485 2,15 12,313 12,744 -3,51 18,102 19,580 -8,17 67,408 76,682 -13,76 

2,0 5,892 6,134 -4,11 12,861 12,887 -0,20 17,454 18,266 -4,65 55,021 62,113 -12,89 

2,2 5,519 5,855 -6,09 13,737 13,541 1,42 17,698 17,843 -0,82 46,907 51,333 -9,44 

2,4 5,374 5,623 -4,62 14,747 14,597 1,02 18,424 18,079 1,87 41,856 43,134 -3,05 

2,6 5,365 5,422 -1,08 14,770 13,666 7,47 19,378 18,833 2,81 38,979 36,753 5,71 

2,8 5,426 5,244 3,35 13,293 12,995 2,24 20,414 20,019 1,93 37,598 38,661 -2,83 

3,0 5,516 5,080 7,90 12,235 12,411 -1,44 21,001 21,583 -2,77 37,195 36,961 0,63 

3,2 5,151 4,925 4,38 11,478 11,890 -3,59 18,913 17,963 5,03 37,388 36,200 3,18 

3,4 4,871 4,777 1,93 10,934 11,415 -4,40 17,297 17,134 0,94 37,912 36,224 4,45 

3,6 4,658 4,632 0,54 10,536 10,973 -4,14 16,035 16,379 -2,14 38,593 36,927 4,32 

3,8 4,488 4,489 -0,01 10,236 10,554 -3,11 15,042 15,679 -4,23 39,317 38,236 2,75 

4,0 4,347 4,345 0,04 9,997 10,152 -1,56 14,247 15,018 -5,42 40,014 40,102 -0,22 

4,2 4,221 4,201 0,48 9,793 9,761 0,33 13,598 14,388 -5,81 40,639 42,493 -4,56 

4,4 4,100 4,054 1,12 9,608 9,377 2,40 13,056 13,778 -5,53 41,166 45,391 -10,26 

4,6 3,968 3,904 1,61 9,426 8,995 4,57 12,591 13,183 -4,71 37,883 34,834 8,05 

4,8 3,744 3,752 -0,22 9,214 8,615 6,50 12,179 12,598 -3,44 34,833 33,037 5,16 

5,0 3,543 3,596 -1,49 8,625 8,234 4,53 11,805 12,018 -1,80 32,194 31,317 2,73 
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Table C6 Comparison of ANSYS and formula frequencies for Case 6. 

 𝑘 = 0,50 [m-1] 

𝑡 = 0,0005 [m] 𝑡 = 0,0010 [m] 𝑡 = 0,0050 [m] 𝑡 = 0,0100 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,2 123,804 124,226 -0,34 612,768 621,128 -1,36 1203,99 1242,26 -3,18 4824,56 6211,28 -28,74 

0,4 30,718 31,056 -1,10 152,890 155,282 -1,56 303,560 310,564 -2,31 1389,04 1552,82 -11,79 

0,6 13,716 13,803 -0,63 67,155 69,014 -2,77 133,605 138,028 -3,31 634,320 690,142 -8,80 

0,8 8,507 8,309 2,33 37,471 38,820 -3,60 74,050 77,641 -4,85 355,951 388,205 -9,06 

1,0 7,342 7,350 -0,11 24,579 24,845 -1,08 47,074 49,690 -5,56 224,323 248,451 -10,76 

1,2 7,906 7,859 0,59 18,974 17,254 9,07 33,570 34,507 -2,79 152,535 172,535 -13,11 

1,4 9,101 9,184 -0,92 17,246 18,286 -6,03 27,066 25,352 6,33 109,978 126,761 -15,26 

1,6 8,679 8,732 -0,61 17,555 17,790 -1,34 24,636 26,194 -6,32 83,766 97,051 -15,86 

1,8 7,812 8,213 -5,14 18,790 18,487 1,61 24,500 24,855 -1,45 67,706 76,682 -13,26 

2,0 7,465 7,801 -4,50 20,364 20,050 1,54 25,504 24,961 2,13 58,368 62,113 -6,42 

2,2 7,399 7,454 -0,75 20,373 18,833 7,56 26,983 26,141 3,12 53,509 51,333 4,07 

2,4 7,464 7,148 4,22 17,980 17,711 1,50 28,585 28,185 1,40 51,503 52,178 -1,31 

2,6 7,368 6,868 6,78 16,344 16,746 -2,46 27,689 25,458 8,06 51,154 49,874 2,50 

2,8 6,798 6,602 2,89 15,216 15,889 -4,42 24,589 23,959 2,56 51,678 49,312 4,58 

3,0 6,380 6,343 0,58 14,419 15,103 -4,74 22,266 22,619 -1,59 52,587 50,198 4,54 

3,2 6,058 6,087 -0,47 13,832 14,365 -3,85 20,496 21,391 -4,37 53,589 52,341 2,33 

3,4 5,794 5,829 -0,61 13,368 13,657 -2,16 19,119 20,240 -5,86 54,519 55,625 -2,03 

3,6 5,559 5,567 -0,15 12,974 12,966 0,06 18,017 19,140 -6,24 55,285 59,986 -8,50 

3,8 5,336 5,300 0,66 12,610 12,284 2,58 17,105 18,075 -5,67 53,834 48,396 10,10 

4,0 5,084 5,027 1,13 12,252 11,605 5,28 16,326 17,031 -4,32 48,472 45,208 6,73 
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Table C7 Comparison of ANSYS and formula frequencies for Case 7. 

 𝑘 = 1,00 [m-1] 

𝑡 = 0,001 [m] 𝑡 = 0,005 [m] 𝑡 = 0,010 [m] 𝑡 = 0,050 [m] 

L 
[m] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

𝑓ANSYS 

[Hz] 
𝑓FORMULA 

[Hz] 
ERROR 

[%] 

0,05 991,003 993,804 -0,28 1971,53 1987,61 -0,82 9231,51 9938,04 -7,65 16474,6 19876,1 -20,65 

0,10 247,609 248,451 -0,34 494,347 496,902 -0,52 2407,98 2484,51 -3,18 4605,08 4969,02 -7,90 

0,15 109,678 110,423 -0,68 219,147 220,845 -0,77 1079,18 1104,23 -2,32 2103,30 2208,45 -5,00 

0,20 61,436 62,113 -1,10 122,710 124,226 -1,24 607,119 621,128 -2,31 1192,91 1242,26 -4,14 

0,25 39,236 39,752 -1,32 78,141 79,504 -1,74 387,126 397,522 -2,69 763,929 795,043 -4,07 

0,30 27,433 27,606 -0,63 54,113 55,211 -2,03 267,210 276,057 -3,31 528,601 552,113 -4,45 

0,35 20,743 20,282 2,22 39,943 40,563 -1,55 194,876 202,817 -4,07 385,912 405,634 -5,11 

0,40 17,014 16,618 2,33 31,232 31,056 0,56 148,100 155,282 -4,85 293,086 310,564 -5,96 

0,45 15,205 15,149 0,37 25,923 24,538 5,34 116,362 122,692 -5,44 229,526 245,384 -6,91 

0,50 14,683 14,699 -0,11 22,926 24,118 -5,20 94,147 99,380 -5,56 184,377 198,761 -7,80 

0,55 14,994 14,952 0,28 21,557 22,646 -5,05 78,354 82,133 -4,82 151,406 164,265 -8,49 

0,60 15,812 15,719 0,59 21,319 22,101 -3,67 67,139 69,014 -2,79 126,949 138,028 -8,73 

0,65 16,925 16,882 0,25 21,829 22,244 -1,90 59,332 58,805 0,89 108,680 117,610 -8,22 

0,70 18,202 18,368 -0,92 22,811 22,920 -0,48 54,132 50,704 6,33 95,104 101,409 -6,63 

0,75 18,829 18,103 3,86 24,076 24,026 0,21 50,940 55,199 -8,36 85,156 88,338 -3,74 

0,80 17,358 17,464 -0,61 25,502 25,492 0,04 49,273 52,387 -6,32 78,080 77,641 0,56 

0,85 16,323 16,911 -3,61 27,009 27,271 -0,97 48,733 50,621 -3,88 73,283 68,775 6,15 

0,90 15,624 16,426 -5,14 25,819 24,641 4,56 48,999 49,709 -1,45 70,273 75,158 -6,95 

0,95 15,182 15,994 -5,35 24,086 23,848 0,99 49,820 49,511 0,62 68,638 71,817 -4,63 

1,00 14,930 15,602 -4,50 22,769 23,140 -1,63 51,008 49,922 2,13 68,033 69,546 -2,22 

1,05 14,816 15,242 -2,88 21,783 22,500 -3,29 52,424 50,865 2,97 68,177 68,181 -0,01 

1,10 14,798 14,908 -0,75 21,056 21,915 -4,08 53,967 52,281 3,12 68,847 67,597 1,82 

1,15 14,844 14,595 1,68 20,529 21,373 -4,11 55,566 54,127 2,59 69,872 67,698 3,11 

1,20 14,927 14,297 4,22 20,154 20,866 -3,53 57,170 56,369 1,40 71,122 68,410 3,81 

1,25 15,029 14,011 6,77 19,892 20,388 -2,49 58,742 58,983 -0,41 72,500 69,673 3,90 

1,30 14,735 13,736 6,78 19,711 19,932 -1,12 55,377 50,916 8,06 73,936 71,445 3,37 

1,35 14,120 13,467 4,62 19,585 19,494 0,47 52,050 49,369 5,15 75,377 73,689 2,24 

1,40 13,597 13,203 2,89 19,495 19,070 2,18 49,179 47,917 2,56 76,784 76,381 0,52 

1,45 13,149 12,944 1,56 19,424 18,657 3,95 46,692 46,545 0,32 78,130 79,502 -1,75 

1,50 12,760 12,686 0,58 19,359 18,253 5,71 44,531 45,238 -1,59 77,385 69,456 10,25 

1,55 12,420 12,430 -0,08 19,250 17,854 7,25 42,645 43,987 -3,15 72,838 67,292 7,61 

1,60 12,116 12,173 -0,47 18,424 17,460 5,23 40,992 42,782 -4,37 68,795 65,232 5,18 

1,65 11,841 11,916 -0,63 17,687 17,069 3,50 39,533 41,615 -5,27 65,190 63,259 2,96 

1,70 11,587 11,658 -0,61 17,027 16,678 2,05 38,237 40,479 -5,86 61,964 61,361 0,97 

1,75 11,348 11,398 -0,44 16,430 16,288 0,86 37,078 39,370 -6,18 59,068 59,526 -0,77 

1,80 11,119 11,135 -0,15 15,887 15,897 -0,06 36,033 38,281 -6,24 56,459 57,744 -2,28 

1,85 10,894 10,869 0,23 15,389 15,504 -0,75 35,083 37,209 -6,06 54,100 56,008 -3,53 

1,90 10,672 10,601 0,66 14,929 15,109 -1,20 34,211 36,150 -5,67 51,958 54,309 -4,53 

1,95 10,447 10,329 1,13 14,501 14,710 -1,44 33,404 35,102 -5,08 50,005 52,643 -5,28 

2,00 10,168 10,054 1,12 14,100 14,309 -1,49 32,651 34,062 -4,32 48,217 51,004 -5,78 

 


