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Summary

Due to the war in Ukraine, the threat of war with Russia has increased significantly.
This thread has led to the question if the basement of the CEG faculty building can
be used as a bomb shelter.

Before the basement of the CEG building can be used as a bomb shelter, practi-
cal requirements need to be met. Mainly, facilities as water and toilets need to be
present to ensure a certain comfort when in use. Also, plans for the fastest route to
the basement need to be present throughout the building in addition to the evacua-
tion plans.

The ground floor of the building acts as the ceiling for the basement, this struc-
tural element will be tested for its resistance against explosive munitions. It is a
reinforced concrete plate, with reinforcement bars orientated in two directions. To
limit complexity, these orientations are considered separately.

The explosion of a munition produces a shock-wave that induces a load onto the
reinforced concrete plate. The force exerted by this shock-wave is determined using
an empirical graph and the Friedlander equation. Different explosive munitions em-
ployed by Russia are identified and the explosive properties determined.

The reinforced concrete plate can be modelled as a single-degree-of-freedom mass-
spring system, for which an Ordinary differential equation is set up. The stiffness
of the system is determined by analyzing the structural properties of the reinforced
concrete plate. The plastic moment capacity is determined for 3 different locations,
at which the beam is likely to break due to excessive loading. The plastic moment ca-
pacity of these points leads to the deflection and the corresponding load, from which
the stiffness is determined. The beam undergoes three different stages of failure, for
each stage a stiffness is determined. In combination with the load due to the shock
wave, the ordinary differential equation can be solved. This is done with the Runge-
Kutta method.

Results for the different explosive munitions show that the model is not sensitive
for load due to a shock-wave, this is because of the high inertia of the system and
the characteristic that the load is only applied for a very short amount of time. It is
concluded that a mass-spring system is not suited model, when a reinforced concrete
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plate is tested for explosive loads. Further research is needed which incorporates more
locally orientated models.
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Chapter 1

Introduction

For the past two years, Ukraine has been under attack by Russia, which seeks to ex-
pand its zone of influence. Since the collapse of the Soviet Union, a major conflict on
the European continent was deemed very unlikely, but the western world was proven
wrong. NATO and Europe feel the threat of the Russian aggression and military
leadership urges countries and people to take this threat seriously!. Although an
attack against NATO and in particular The Netherlands would is still very unlikely,
precautions are always valuable.

In conventional armed conflicts, the main battle is fought on the front line, but also
behind the front line attacks are frequent. These attacks are mainly carried out by
rockets, artillery shells and drones. Hiding in buildings is often not sufficient, because
these suffer major damage and offer little protection when hit. The addition of bomb
shelters would thus be very beneficial in certain densely populated areas behind the
front line.

The campus of the TU Delft is such a place, where many people study and work
daily. In the event of fighting on or near Dutch soil with an accompanying threat
of attacks behind the front line, the presence of bomb shelters will be very valuable.
This very much so the case for the TU Delft campus. A possible location for a bomb
shelter in case of a thread is the basement of the faculty building of Civil Engineer-
ing and Geosciences (CEG). The faculty has a large basement, where many people
could possibly take shelter when a thread is present. This possibility will be explored
further in this report.

1.1 Research

This report will explore the possibility for the use of the CEG building as a bomb
shelter. By analyzing the structure of the CEG building, in particular the basement,
practical, spatial and structural properties are obtained.

Practical and spatial properties will determine the current state and use of the base-
ment. On the basis of this information, alterations and additions for the practical use

!Telegraaf online: ‘Dit zijn tekenen van groot Russisch offensief’, 22 maart
2024, Interview met oud-commandant der Landstrijdkrachten, Mart de Kruif, online:
https://www.telegraaf.nl/video /566840997 /dit-zijn-tekenen-van-groot-russisch-offensief



as a bomb shelter will be explored.

Another aim is to determine the impact resistance of the CEG building, in particular
the structure of ground floor. The resistance to the impact of explosive munitions is
a decisive factor in determining the possibility for the use of a bomb shelter.

This research focuses solely on the impact of a shock-wave produced by an explosive
munition. The impact of an explosive munition may however contribute to other
excessive loads placed on the structure of the ground floor. Parallel research is done
by Feras Saab, focused on determining the loads placed on the floor plate due to the
collapse of certain parts of the building (Saab, 2023).

1.2 Research question
The research can be summarized into the following research question.
Can the basement of CEG be used as a bomb shelter in wartime?

This question can be subdivided into multiple more confined questions to manage
the scope of the research, while presenting it in a well-ordered way. These sub ques-
tions are listed below.

e What are the spatial properties of the CEG basement?

e What facilities must be present in a bomb shelter?

e What explosives are used, and how much load can they transfer onto the ground
floor structure?

e How are is the basement of CEG constructed, and what are the load-baring
elements?

e How can the ground floor structure be modelled as a mass-spring system?

e How can this model determine the failure load of the construction?

e Can the CEG basement resist the blast load of explosive munitions?

1.3 Structure

Chapter 2 delves into the practical considerations and requirements for the use as a
bomb shelter, covering accessibility, exits and essential supplies. Chapter 3 examines
the structural properties of the reinforced concrete plate. This includes an analysis
of the used materials and design features. Chapter 4 focuses on the impact forces a
bomb shelter faces, including blast wave propagation and the calculation of pressure
on shelter surfaces. Frequently used explosive munitions are also listed and described.
Chapter 5 introduces the mass-spring model as a theoretical approach to simulate the
behavior of a reinforced concrete plate under impact forces. On the basis of struc-
tural mechanics, the strength of the construction is calculated. Subsequently, the
Parameter values for the mass and stiffness of the model can be determined. Chapter



6 presents the numerical Runge-Kutta method for solving the ordinary differential
equation of the mass-spring system equations of the mass-spring model. Different
impacts are modelled and tests are done to determine the dynamic response of the
model. Chapter 7 Evaluates the results, describing the dynamic response and pre-
senting possible explanations. Finally, Chapter 8 draws conclusions, highlighting the
main findings and their significance. It presents recommendations for future research
and potential improvements in the model.



Chapter 2

Practical use as bomb shelter

Before a certain location can be used as a bomb shelter, different properties need to
be known and requirements need to be met. This is to ensure the safety when in use.

2.1 Exits

Multiple exits are a requirement for shelters, due to unforeseen circumstances exits
can get blocked. Changes for one exit to be blocked are low, but for multiple exits to
be blocked, the changes are nearly negligible. More exits thus correspond to a safer
bomb shelter.

The basement of the CEG faculty has an elongated shape, just as the building. The
basement can be entered and left via multiple stairways and different other exits,
such as a bicycle ramp. In the case of failure of the structure due to a blast load, it
is likely this failure will be locally and will not affect the rest of the basement. It is
thus very likely that there is an exit that can be used.

In the CEG building escape plans are already present, also in the basement escape
plans are placed. In case the basement may be used as a bomb shelter, alternate plans
need to be made and placed within the building. These plans display the protocol for
an imminent threat and graphically give instructions on how to reach the basement
safely.

2.2 Basic facilities

In the basement of the CEG faculty there are no toilets present. When the shelter
is in use for a longer period of time, toilets are essential to ensure a certain comfort
and dignity. A possible solution for this is to set up portable toilets when a threat is
present.

Basic medical equipment is also needed in bomb shelters, in case of an accident
or injury, it must be possible to perform basic medical procedures. These procedures
can be performed by trained BHV personnel, of which multiple people are mandatory



to be present in a building.

The basement is ventilated by vent on both ends of the shelter. This might not
be enough when many people take shelter. In the basement however, large ventila-
tion devices are placed, which supply part of the building with air. When needed,
these can be used for supplying the basement with air.

Water is a basic necessity in bomb shelters. When for any reason people are present
for a longer period, water is essential for survival. Furthermore, it serves as a psy-
chological comfort, in emergency situations access to water can help maintain a sense
of control. In addition to water, the presence of other items such as blankets can
comfort people taking shelter. When there is a possibility that shelter must be used,
these facilities need to be present.

2.3 Current use of the basement

Currently much of the basement is used for storage. This includes several large objects
as research equipment, and large trash bins. To ensure as much people can find
shelter in the basement, these large objects must be moved. This means strategically
relocating these object to other places in the basement.

Another part of the basement is used as a locked bicycle parking area, which takes
up a significant part of the basement. During times of high threat, it is wise to
close this area to bicycles, subsequently opening up more space for people. Moreover,
the entrance to the bicycle area is accessible via a large open air ramp, this poses
a dangerous situation if people take shelter in the basement. Explosive munitions
might hit near this ramp, possibly causing a direct explosion in the basement. For
use as a bomb shelter, this opening must be sealed off from the open air, to ensure
the safety of the basement area.



Chapter 3

Structural properties

The CEG building was designed and constructed in the 1960s. Building materials
and methods used at that period differ current from standards. To properly represent
the strength of the construction elements in the model, the construction standards
and material properties need to be known. On the basis of the blueprints of the CEG
building shown in appendix B, these properties are determined.

3.1 Materials

Material properties have a large impact on the strength of a structural element. In the
construction of the CEG building concrete class K-300 was used, in today’s standards
this would be class C19/22. This means that the characteristic strength for a concrete
cylinder( f.;.) after 28 days of hardening is 19 N/mm?. With the current technology
concrete classes go up to C100/110. The concrete used in the CEG building is thus
not very strong in today’s standards.

The steel used for reinforcement in 1968 was also less strong then it is nowadays.
The reinforcement steel used has a yield stress (f,;) of 410 MPa. Compared to the
500 MPa as the current standard, it varies less than the concrete but still forms a
significant difference.

To ensure that imperfections in these materials do not lead to premature failure,
safety factors are included in the model. For concrete a safety factor of 7. = 1.5
is applied, this leads to the following compressive strength, foq = fer/y. = 9/15 =
12.6 N/mm?. Steel has a safety factor of v, = 1.15, this leads to a tensile strength of
fya = Torfre = 410/115 = 356.5N/mm?.

3.2 Floor

Along the CEG building, the Ground floor is mostly constructed as a reinforced
concrete plate, that is cast in situ. The blueprint of this floor construction between
section 53 and 63 is shown in figure 3.1 and appendix B. The reinforcement of the
floor runs in two perpendicular directions, subsequently forming a reinforcement net.
However, the steel bars can only counteract loading forces, in one primary directions.
Because of this, the floor must be tested in these two primary directions, in which
the reinforcement is orientated.
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Figure 3.1: blueprint of floor construction between section 53 and 63, details of figure 3.2
in red. (Aronsohn, A. (Van den Broek & Bakema), 1968)

The structural properties of the floor can be determined using the blueprint. Figures
3.2(a) and 3.2(b) display the details for the floor properties between sections 59 and
61 of the CEG building. In figure 3.2(c), the notation used in the blueprints is shown.
These can be explained as follows: § 12 — 20 means that there are reinforcement bars
present with a diameter of 12 millimeters and a center line spacing of 20 centimeters
(5 reinforcement bars per meter). The triangles facing upwards or downwards (A V)
mean that the reinforcement is placed at the top and bottom of the cross-section re-
spectively. Left of these triangles, one or two lines define if the reinforcement is placed
in the first or second layer from the outside (see figure 3.2c). The placement in the
first or second layer has influence on the over of the reinforcement bars, see section
?77?. Figure 3.2a shows the reinforcement directions that are tested in the model. The
yellow section follows the reinforcement bars placed parallel to the building, the blue
section follows the reinforcement bars placed perpendicular to the building.

For the modelling of the reinforced concrete plate, the properties of the plate and
reinforcement steel are listed in table 3.1. The properties are determined at ap-
proximately the middle of this rectangular section. In the middle of the plate, the
reinforcement at the bottom of the cross-section is modelled. At the ends of the plate,
the reinforcement at the top of the cross-section is modelled. This is done, because
these reinforcement bars are loaded in tension, see section 5.4.



Table 3.1: Properties of reinforced concrete plate used in the model

Reinforcement Reinforcement
Parallel to building Perpendicular to building
Span (mm) 7200 6700
Width (mm) 3000 3600
Height (mm) 600 600
Ag 4 (mm?) 15x10 + 15x12 18x12
Ag g (mm?) 15x10 + 15x12 18x12 + 18x10
Ao (mm?) 30x14 18x12 + 18x14
Cover A,B (mm) 20 + 18 20
Cover C (mm) 20 + 14 20
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Figure 3.2: Details of floor plate between sections 59 and 61 (Aronsohn, A. (Van den
Broek & Bakema), 1968)



Chapter 4

Determining impact forces

When a bomb explodes, a chemical reaction creates an exothermic reaction, which
creates gasses that rapidly expand, subsequently forming a shock wave. This type
of load is called air shock. So-called high explosive munitions use a shock wave as
primary effect to cause damage to a target. To determine what damage an explosive
can do to the CEG building, the properties and energy transfer of the shock wave
need to be determined.

4.1 Explosive pressure

Explosives are the propelling power behind shock waves. It is therefore important
that these explosives can be quantified, this is usually done in TNT-equivalent weight.
Using equation 4.1 the TNT-equivalent weight of an explosive munition can be cal-
culated (Weggel, 2010).

Wp, o is the TNT-equivalent weight in kg, P is the relative explosive power of the
substance compared to TNT. W is the weight in kg of the explosive substance. Pryr
is the explosive power of TNT, and is equal to 1.0. The TNT-equivalent weight of
different munitions is calculated in section 4.3.

P
WPTNT = (PTNT) W (4'1)

The explosion can take place at a certain distance with respect to the beam. The
further away the explosion takes place, the lower the impact force of the shock wave
will be. The 'cube-root’ scaling law can be applied to account for this distance from
the explosion to the beam, Weggel (2010). Z is the scaled distance, R is the distance
from the explosion to the midpoint of the structure, in this case the center of the
beam. W is the TNT-equivalent weight of the explosive substance in the munition.
The scaled distances of different munitions and locations are calculated in4.3

Z = R/W/3 (4.2)



4.2 Impact pressure

Shock waves travelling trough air produce a force when encountering an object. Figure
4.1 can be used to determine the parameters necessary for the calculation of the shock
wave force. Using the scaled distance Z from equation 4.2, the time it takes for the
shock wave to reach the object is parameter t,. The pressure at this instant is P,
this pressure increase happens in only a few nanoseconds and is thus not included.
The third relevant parameter is the positive pressure phase duration of the shock
wave (tp). The data in the figure is empirically determined, this means that for every
scaled distance Z, the parameter values need to be read. The reading of the figure
must be precise, because small reading errors can have large parameter differences
due to the two logarithmic scales.
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Figure 4.1: Positive Phase Shock Wave Parameters for a Spherical TNT Explosion in Free
Air at Sea Level, Engineers of U.S. Army Corps (2008)

To determine what force is applied to the reinforced concrete plate, the previously
mentioned parameters can be applied to the Friedlander equation (4.3). This equation
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calculates the force applied by the shockwave as a function of time. The Friedlander
equation is a proven accurate approach of the pressure produced by an explosive
shock wave. By implementing small increments of At, the function is essentially
integrated, leading to the impulse produced by the shock wave (equation 4.4). The
duration of the positive pressure phase produced by the shock wave is ty, a graphical
representation of the pressure is given in figure 4.2.

Pi(t) = P, (1 - (t ;Ot")) (%) (4.3)

ta+to t—t
I, = / P(1- @) ) ety (4.4)
ta to

Figure 4.2: Blast pressure pulse (Karlos V. and Solomos G., 2013)

The explosion of a munition is usually triggered by hitting something. In this case that
is the facade of the CEG building. The impact of the munition be at different heights
with respect to the reinforced concrete floor plate of the ground floor. Furthermore,
the explosion has a different impact on the two reinforcement directions. This is shown
in figure 4.3a where the munition hits the facade, and figure 4.3b where the perspective
is rotated 90 degrees. The distributed load is not equal across the length of the plate
in both directions. To accommodate for this, the distributed load is simplified to be
uniform across the plate (figure 4.3c), the magnitude will be determined in section
5.3. This description of the load is only valid for this particular scenario.

4.3 Explosive projectiles

Different types of munitions are currently used by Russia in Ukraine. To determine
to what extent the basement of CEG can be used as a bomb shelter, these different
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munitions need to be identified. Furthermore, the properties of the munitions need
to be known, in particular the explosive power.

This shell also expels fragmentation of the casing, however little information is avail-
able of this. Determining the size and speed of these particles is difficult with little
information. In addition, it is likely that many fragments end up in the facade.

4.3.1 OF-462 High Explosive Artillery shell

The OF-462 is the smallest Artillery shell that will be tested. It has an explosive load
of 3460 grams of TNT and a diameter of 122 mm. (GICHD, 2022)

4.3.2 OF-45 High Explosive Artillery shell

A frequently used projectile in Ukraine is the Russian made OF-45 High Explosive
Artillery shell. This shell has a diameter of 152 mm and is loaded with 7650 grams
of A-IX-2, which is an explosive substance made in Russia (GICHD, 2022). It has a
TNT-equivalent explosive power of 1.54 (GICHD, 2017).

4.3.3 OF-43 High Explosive Artillery shell

Another artillery shell that is used in Russia is the OF-43 high explosive artillery shell.
It has a diameter of 203 mm and is loaded with 17800 grams of A-1X-2 (GICHD, 2022).
This shell has a lot more explosive power than the OF-45.

4.3.4 FAB-500 M62 High explosive aerial bomb

The FAB-500 M62 is a less accurate munition. However, it is heavily loaded, with
209000 gram of TNT (GICHD, 2022). When the munitions mentioned above do not
lead to failure of the structure, this aerial bomb will be tested to look for the limits
of the structure.

4.3.5 Iranian drones

Another way Russia targets Ukrainian targets is with the use of unmanned drones.
The Shahed models 136 and 136 are commonly used. These drones are manufactured
in Iran and have a relatively low cost. The Shahed 131 model has an explosive
warhead of approximately 10 to 15 kilograms (no information on the substance) and
a range of 900 kilometers (World Today News, 2023). These drones can thus be used
to attack targets far behind the front line. The 136 model is approximately twice as
big and can carry an explosive load of about 40 kilograms (RFE/RL, 2024).
Example OF-45 using equation 4.1:

P 1.54
o= ()0 (220 = 13t

12




Table 4.1: Explosive properties of explosive munitions

Explosive Weight (kg) Relative explosive TNT-equivalent

substance W power P weigh (kg) We,,,
OF-465 TNT 3.46 1.00 3.46
OF-45 A-1X-2 7.65 1.54 11.78
OF-43 A-TX-2 17.80 1.54 27.41
Shahed 131 TNT 15.00 1.00 15.00
Shahed 136 TNT 40 1.00 40.00
FAB-500 TNT 209.00 1.00 209.00
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Figure 4.3: Shock wave and subsequent loading onto a fixed plate
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Chapter 5

Defining the mass-spring model

To analyze the impact on the basement structure and subsequently determining the
reaction, a model is needed. This model will be a simplification of a reinforced
concrete plate, represented by a single mass spring system.

5.1 Equations for Single Mass Spring

The reinforced concrete plate can be modelled as a mass spring system with a single
degree of freedom, this is visualized in figure 5.1. The equation of motion (eq. 5.1)
describes the behavior of the system as a function of time ¢ in terms of acceleration
w, velocity w and deflection from the zero position w. The parameters m is the mass,
¢ is the damping coefficient which subtracts energy from the system and k is the
stiffness of the spring. Energy is added to the system by the function f(¢) which is a
force that is applied as a function of time ¢.

mi + ci + kw = f(t)  with {w ( t;"g};;’g)a @ (5.1)

The damping coefficient ¢ is neglected in the model, because this coefficient has little
effect on the deflection, when an RC beam is subjected to an explosive load (Baker
et al., 1983).
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cHl =k

" T

lf ()

Figure 5.1: Mass-spring-damper system
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5.2 Solving the ordinary differential equation

The equation of mass spring system is an ordinary differential equation (ODE), which
can be solved using numerical methods. The method used for solving this ODE is
the Runge-Kutta (RK4) method. This method is a higher order method, which has
attractive stability properties and results in large savings (Vuik et al., 2016). However,
for the RK4 method, four small increments are calculated for every time step, which
increases the computational power needed. For the scope of this model however, this
forms an arbitrary increase in computational time.

Equation 5.1 can be written in matrix and vector form, as shown in equation 5.2a,

with simplification for 5.2b for mathematical operations and y = ( )

o1 ()15 ol ()= () 620

[Aly + [Blj = F (5.2b)
The RK4 method approximates the solution at the next time step with by

Yirr = Ui + = (k'l + 2ko + 2k3 + ky) (5.3)

6
ky to k4 are estimators and are given by
ky = AtG (77, 1)
= 1 1
ko = AtG(y; + 5]{:1, t+ §At)

= 1 1

ky = MG (i, + ks, t + At)

G (4, t) is the function, acquired from the Euler forward method, as shown in equation
5.5

g=[A]"" (F = [Blg) = G(7.1) (5.5)

5.3 Reinforced concrete plate as a mass-spring sys-
tem

To represent the plate as a single degree of freedom system, adjustments and simpli-
fications need to be made. The plate has two directions in which the reinforcement is
placed. These directions will separately be modelled as a reinforced concrete beam,
to limit the complexity of the model. Based on the boundary conditions, different
factors are used. Firstly, the load-factor: the beam is loaded with a distributed load

15



g due to a shock wave. Not all load transferred onto the beam is represented in the
system, this is done by applying a load-factor. Secondly the mass-factor: In the rep-
resentation as a single-mass-spring system, not all mass of the beam will be present,
the mass-factor accounts for this (Engineers of U.S. Army Corps, 2008). The load
and mass factors can be combined into a single factor, the Load-Mass factor (K.
Furthermore, these factors differ for the elastic and plastic stage of the deformation.
To account for this, a factor for a combined ’elasto-plastic’ deformation is present.
Because the deformation of the RC beam includes both the elastic and plastic regions,
this factor will be used within the model. The different factors are displayed in table
5.1. The implementation of the Load-Mass factor in the ODE is displayed in equation
5.6.

Kpy - mid + ey + kw = f(t) (5.6)

Table 5.1: Transformation factors for beam, fixed on both sides (Engineers of U.S. Army
Corps, 2008)

Range Load factor Mass factor Load-Mass

Behavior kr, ks factor k,,
Elastic 0.53 0.41 0.77
FElasto-plastic 0.64 0.50 0.78
Plastic 0.50 0.33 0.66

5.4 Failure mechanism in the RC beam

When a fixed supported beam is loaded by a distributed load, the moment distribu-
tion shown in figure 5.2 is present in the beam. Due to the load, the material will
deflect and produce a counteracting force. When the applied force is bigger than the
maximum counteracting force the beam can produce, the beam fails. The counter-
acting force produced by the beam is the result of the materials and properties of the
beam. A failing beam means that the material has reached it maximum strength,
after which it yields and a plastic hinge forms. For the total failure of a fixed sup-
ported beam, three plastic hinges need to form. The locations at which these hinges
form is wherever in the beam the bending moment exceeds the moment capacity at
that location.

Before plastic hinges form the beam deflects, equation 5.7 describes this deflection
for a fixed supported beam (see figure 5.5 situation 1)

. 1 QQL4
- 384 Fl.
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Figure 5.2: Moment distribution for a beam fixed at both ends.
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Figure 5.3: Deflection of a fixed reinforced concrete beam before failure

5.4.1 Forming of plastic hinges in RC beam

At cross-sections A and B the bending moment due to the distributed load is the
highest. At these points, the first plastic hinges form.

When cross-sections A and B have different structural properties, the moment capac-
ities also differ. As a consequence, the cross-section with the lowest moment capacity
will fail first. For the perpendicular reinforcement, cross-section A has less steel and
thus a lower moment capacity (see table 3.1)

At a certain distributed load, the cross-section at A reaches its moment capacity
and a plastic hinge S4 forms. When a plastic hinge forms, this point cannot resist
a load increase and undergoes plastic deformation as is shown in figure 5.5, situation 2.

After the failure of point A, further increasing the load increases the bending moment
at cross-section B. Subsequently a hinge at point B begins to form, this is shown in
situation 3. When cross-section A and B have the structural properties, hinges A and
B form simultaneously.

For a total failure of the RC beam to occur, three plastic hinges need to form. The

third plastic hinge forms at cross-section C, after which a failure mechanism leads to
the total failure of the beam (situation 5).
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5.4.2 Moment capacity in a cross section

At a fixed supported beam three plastic hinges form at cross-sections A, B and C.
The reinforcement steel in tension in the cross-section is primarily responsible for the
moment capacity of a beam. In Cross-sections A, B and C, the reinforcement steel
in tension is located differently, this is shown in figure 5.4.

Cross-section A-A Cross-section C-C Cross-section B-B

<« g —_> < <« —_—>

e L €« —_— —_— D
Reinforcement Reinforcement Reinforcement

bars bars bars

Figure 5.4: Tensile and compressive forces in Cross-sections A, B and C

The moment capacity of a cross-section can be calculated with equations 5.8a and
5.8b (Braam and Lagendijk, 2011).

M=A; fya-(d—p-x,) (5.8a)
As : f yd
, = — 1Y .8b
x a-b- fu (5.8b)
with:
A, [mm?] Surface area of the reinforcement steel in tension.
d mm] Depth of the reinforcement steel
b mm| Width of the cross-section

[
[
[
fya  [N/mm?] Design yield strength of the reinforcement steel (= 356.5)
[
[
[

fea  [N/mm?] Design compressive strength of the concrete (= 12.6)
a -] Constant (= 0.75)
o] -] Constant (= %)

To determine the stiffness E'I of the reinforced concrete beam, the curvature of
the beam at the maximum moment capacity can be calculated by

e (5.9)

K =
Ty

With e, being the compression of the concrete at the maximum moment capacity
(= 3.5%0). Finally, the stiffness EI of the beam can be determined with

M,
El =2 (5.10)
K
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Given these equations and the properties at this cross-section, the moment capacity
can be calculated. First the surface area of the reinforcement steel can be calculated
(15 with diameter 10 and 15 bars with diameter 12).

1 1 1
Asa =g D? - bars = 1”'102 15 + 17?-122 - 15 = 2875 mm?

The depth of the reinforcement concrete is calculated with the height of the cross-
section (600 mm), the concrete cover and the diameter reinforcement bars.

1 1
d:h—cover—§-D87A:600—38—§-12:556mm
Given a width of 3000 mm, equations 5.8a and 5.8b can be filled in and calculated.

Ag- fya  2875-356.5

_ — 36.2
a-b-fu  0.75-3000 - 12.6 mm

Ty —

7
My = As + fya- (d— B-x,) = 2875-356.5 - (556 -5 36.2> = 5.55- 10 Nmm

e, 35-1073
= =" =968-10"°m*
S 36.2 m
M 5.55 - 108
EI =7 — — 5.74-1012 Nmm?>

Kk 9.68-107°
These calculations are also done for the other cross-sections, the values are listed in
table 5.2

Table 5.2: Parameters and calculated values of the moment capacity for every cross-section

Parallel Perpendicular
Reinforcement Reinforcement
Cross-section ‘ A B C ‘ A B C
A, [mm?] 2875 2875 3393 2035 3449 4806
d [m)] 556 556 560 573 573 573
2y [m] 36.2 36.2 42.7 21.3 36.2 50.4
b [m] 3000 3000 3000 3600 3600 3600
My [Nmm] | 5.55-108 5.55-10% 6.57-10% 4.01-108 6.88-108 9.49-108
K [m™1 9.68-10~° 9.68-10~° 8.20-107° | 16.40-107° 9.68-107° 6.95-107°
EI [Nmm? | 5.74-102 5.74-10"2 8.02-10'% | 2.50-10'2 7.10-10"2 13.65-10'2
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Figure 5.5: Failure mechanism for fixed beam

5.4.3 Calculation of the deflections and the failure loads

Assuming that the properties of cross-sections A and B are not identical, plastic
hinges A and B form separately. At first, a plastic hinge forms at point A (figure
5.5, situation 2). Using the boundary condition that the slope of the beam at both
fixed points is zero (64 = 0), the needed distributed load can be determined. Using
the forget-me-nots’ 7 and 9 from appendix C, equation 5.11 with Mp = M4, can
be solved, giving: ¢ = 12]‘5;‘”’[. The deflection at the midpoint C can be calculated

with equation 5.12 which is based also on "forget-me-nots’ 4 and 6.

1 q1L3 1MA,plL
48 EFle 4 Fl¢

04 = =0 (5.11)
1 gLt 1 Maul?
192l 32 Elc

For cross-section A of the perpendicular reinforcement, the following values can
be calculated:

we = (5.12)

12My,  12-4.01- 108
2 67002

Q= = 108N/mm
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1 qL* iMA,plLQ _ 1 108- 6700% 14.01- 10% - 67002

1 _ _ — 421
192 El, 32 El.  19213.65-102 32 13.65- 1072 i

W1

Equation 5.11 and 5.12 are based on the ’forget-me-nots’, however these standard
formulas assume a beam with a uniform FI, which is not the case in the RC beam.
To accommodate for this, the slope and deflection are based on the forces and EI
from that particular section of the beam. This should give a reasonable approach for
the slope and deflection of the beam at these points, but an error is present in the
calculations, which should be taken into account.

The forming of the second hinge (figure 5.5, situation 3) can be calculated by the
condition that g = 0. Given this condition and using ’forget-me-nots’ 4 and 6,
equation 5.13 is formed. By solving this equation for ¢o the following value is found
G = 8M5f'l + 4MLA§”Z. The deflection can now be determined by using the same

"forget-me-nots’ and is shown in equation 5.14

i(bL?’ I Mpul 1 Mapl 0

Or =
B=94El. 3 El. 6 El.

(5.13)

5 q2L4 1 MA,plL2 1 ]\4371751/2
YT 34 El. 16 Elc 16 El¢
Equations 5.13 and 5.14 are also based on the same assumptions as the previous
equations. An error is thus present, which must be taken into account.
For cross-section B of the perpendicular reinforcement, the following values can
be calculated:

(5.14)

M M 6.88 - 108 4.10 - 108
B,pl + 4 A,pl _ +
L? L? 67002 67002

G =8 = 159 N/mm

5! q2L4 1 MA,plL2 1 ]\4371751/2
We = —— _ — - —
384 FEle 16 FElc 16 FEl¢

5 159 -6700% 1 4.01-10%- 67002 1 6.88-10% - 67002 20.1
_ N - — = 80.1mm
38413.65-102 16 13.65-10'2 16  13.65-10%2

For the total failure of the beam a third plastic hinge must form. It is assumed that
this hinge forms at the middle of the beam, for which the distributed load can be
calculated by solving equation 5.15. Implementing the distributed load into equation
5.16, the deflection at which the beam fails is obtained.

ZT|C =—Map—Mep—qs -5 — <— g3 L) =0 (5.15)



5} Q3L4 1 MA’p1L2 1 ]\4371,51/2
We = — _ — - —
384 Elo 16 FEl¢ 16 FEl¢

The values of g3 and w¢, 3 for the perpendicular reinforcement can now be calcu-
lated.

(5.16)

L L 1 L
ZT|C:_MA,pZ_MC,pZ_q3 3 a (5'613 L) '3
6700 6700 1 6700
= —4.01-10%=9.49-10% — i (T — =
01-10°—9.49-10° — g3 5 1 (2 qs 6700) 5 0
— q3 = 242 N/mm
5 Q3L4 1 MA,plL2 1 MB,plL2
We = —— - — - —
384 Flo 16 Fl¢ 16 FEl¢
5 242-6700* 1 4.01-10%-67002 1 6.88-10%- 67002

— — = 239.7 mm

T 38413.65-10'2 16 13.65-10'2 16 13.65-102

Table 5.3: Distributed load and deflection at the forming of the hinges as cross-section A,
B and C

Parallel Perpendicular

reinforcement reinforcement
¢ [N/mm)] 129 108
q2 [N/mm)] 129 159
g3 [N/mm)] 187 242
we [mm) 112.3 40.2
we o [mm) 112.3 80.1
wes [mm)] 368.0 239.7

5.5 Stiffness k of the system

The deflection and distributed load for fixed supported beam is graphically repre-
sented in figure 5.6.

Given the values of the deflection and the magnitude of the distributed load, the
stiffness £ can be calculated by taking the slope between the forming of the hinges.

The distributed load is multiplied by the length of the beam to find the stiffness in
N/mm.

L — (Qz’+1 - Qi>
Weiv1 — Wey

(5.17)
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Figure 5.6: Forming of plastic hinges related to deflection and distributed load

After the formation of hinge 3, the slope is zero and the stiffness of the system is
subsequently also zero. This means that the resistance of reinforced concrete against

deformation is zero. For the perpendicular reinforcement, the following stiffnesses are
found.

o (@ =)L _ (108 —0) 6700
1 p—

- — 17187N
Wy — we 4210 fmm
(159 — 108) - 6700 (242 — 159) - 6700
Iy — — 3999 N oy — — 3484N
2 80.1 — 42.1 8992N/mm, Ky 2397 — 80.1 3484N /mm

Table 5.4: Stiffness of the system between the forming of hinges, till

Parallel Perpendicular
reinforcement reinforcement
ki [N/mm] 8271 17187
ko [N/mm] 8271 8992
ks [IN/mm] 1633 3484
ky [N/mm] 0 0

The stiffness k of the system can now be written as

k1, w < we,

b k2, wep < w < wep (5.18)
k3, wee <w <weg
0, w > wes
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5.6 Natural frequency

With the mass and the stiffness in the unbroken state known, the natural frequency
can be determined. using the following equation

Wo . k
- = th =/ — 1
f 5y Wi wo - (5.19)

with wp in rad/s, k£ in N/m and m in kg. For the parallel orientated reinforced beam,
this gives

m==b-h-L-p,=3000-600-7200 2650 - 10~? = 34344.0 kg

k 8271 -103
wo = 4/ \/ 343440 5.5 rad/s

Wo 15.5
= — = —=247TH
/ 2T 2T -

For the perpendicular orientated reinforced beam, this gives

m==b-h-L-p,=3200-600 6700 - 2650 - 10~? = 38350.8 kg

2 17187 - 103
Y Y
o m 38350.8 rad/s

21.2
F=20 _ 22 337

T o 2T
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Chapter 6

Solving the system

6.1 Initial conditions

All the parameters of the mass-spring system are now known and the system can be
solved. The starting position and velocity of the mass are determined first. The start-
ing velocity of the mass is zero, the starting deflection of the mass can be determined
for both the parallel and perpendicular reinforcement orientations using equation 5.7
and the mass of the beam per meter.

Parallel orientated Reinforcement

Go=b-h-p.-g=3000-6000-2650-9.81 10 = 45.2N/mm

1 gL* 1 45.2-72007
384 FI~, 384 8.02-1012

we = 39.4mm

Perpendicular orientated Reinforcement

Go="b-h-p.-g=3200-6000-2650-9.81-10"" = 49.9N/mm

wer — 1 oqL' 1 49.9-6700"

384 Elo 384 13.65 - 1012

These deflections are not the same, however they do occur at the same point in the

two-dimensional plane. This will be further discussed in the discussion of the results
(see chapter 7).

=19.2mm

6.2 Applied load due to shock-wave

The load applied to the system due to the shock-wave is dependent on the height of
the explosion (see figure 4.1 and equation 4.2). The height of the explosion above the
floor plate is 1 meter for the tests.

This gives the explosive munitions the following scaled distance to the center of
the beam (R =1m)
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Table 6.1: Calculated scaled distance, tg and Pgp for every munition at a height of 1

meter
TNT-equivalent scaled distance t, [ms/kg'/?] P, [kPa]
Weigh [kg] WPTNT Z [m]

OF-465 3.46 0.66 0.70 13000
OF-45 11.78 0.44 0.25 35000
OF-43 27.41 0.33 0.20 60000
Shahed 131 15.00 0.41 0.23 45000
Shahed 136 40.00 0.29 0.18 85000
FAB-500 209.00 0.17 0.19 200000

to ranges from 0.70 - 3.46 = 2.4 and 0.19 - 209 = 39.7 milliseconds, which is im-
portant when modelling the blast. To properly model the blast for every ¢, the time
step At must be small enough for the Friedlander equation to properly be applied
(see equation 4.4). It is determined that this At must be 1/100th of a millisecond, or

0.00001 seconds.

6.3 Results

All munitions are tested in the model. Figures 6.1 to 6.6 show the deflection of the
reinforced concrete plate, subjected to the explosive blasts of the munitions. The
figures are divided in the parallel and the perpendicular orientations of the reinforce

concrete plate.

Deflection for parallel reinforcement orientation

P 1 S
-50
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W,
= -150
E
E
5 =200
-250
-300
-350 .
-3

10

Deflection for perpendicular reinforcement orientation

u (mm)

Figure 6.1: Dynamic response of the OF-465 HE artillery shell, Wprnyr = 3.46 kg,

to = 1.1 ms, P, = 13000k Pa
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Figure 6.2: Dynamic response of the OF-45 HE artillery shell, Wprnt = 11.78 kg,

to = 0.5 ms, P, = 35000k Pa
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Figure 6.3: Dynamic response of the OF-43 HE artillery shell, Wprnt = 27.41 kg,

to = 0.6 ms, P, = 60000kPa
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Figure 6.4: Dynamic response of the Shahed 131 drone, Wprnt = 15.0 kg, tg = 0.06 ms,

P, = 45000k Pa
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Figure 6.5: Dynamic response of the Shahed 136 drone, Wprnt = 40.0 kg, ty = 0.06 ms,

P, = 85000k Pa

Deflection for parallel reinforcement orientation

-100 1 .

=150

-200

u (mm)

=250

350 W

tls)

Figure 6.6: Dynamic response of the FAB-500 aerial bomb, Wpryr = 209.0 kg, to =

1.1 ms, P, = 200000k Pa
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Chapter 7

Discussion

7.1 Results

Figures 6.1 to 6.4 show that no plastic hinge form in the reinforced concrete plate.
For these explosive munitions, the reinforced plate will thus not fail. However, for
the explosive load produced by the FAB-500 aerial bomb, two plastic hinges form
in both the parallel and perpendicular orientations of the reinforced concrete plate.
Figure 6.6 shows that the mass of the system will move back to the null-position after
two plastic hinges have formed, in reality this however will not happen, because the
plastic deformation is permanent.

For the total failure and subsequent collapse of the reinforced concrete plate, a third
hinge must form. In all situations, a third hinge does not form.

7.2 Mass-spring system

To determine if the reinforced concrete plate can withstand a blast from an explosive
projectile, simplifications were made to make the problem more commutable and
intuitive. Firstly, the deflection of the beam is represented as a single degree of
freedom mass spring system, in which a part of the beam forms the mass and the
bending stiffness forms the spring stiffness. This is a simplification to approximate
the complex system, which consists of many more variables and conditions.

7.3 Reinforced concrete plate

The reinforced concrete plate is divided in two reinforcement orientations, which are
both modelled as separate reinforced concrete beams. This however takes away the
added structural benefits that this orientation has. Moreover, because of complexity,
the corners of the reinforced concrete plate are not considered and modelled.

7.4 Blast load

The blast load that is modelled assumes that the load is instantaneously evenly spread
on the plate. However, the main characteristic of a shock wave is that travels and the
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pressure decreases as the moves away from its origin. The load will thus not spread
evenly, furthermore the load will not arrive at every location on the plate at the same
time, which may induce other dynamic responses.

The explosion, assumed in this research, originates from the facade of the build-
ing. Due to a shock wave, the middle of the beam is loaded, however in reality the
blast can originate from an off center position as well.

The blast from the munition is initiated by hitting something, in this case the fa-
cade of the CEG building. Some of the explosive energy will also be transferred to
the object that is hit by the munition. However, in the model it is assumed that the
explosion takes place in an open space near the beam. The blast load will thus likely
by greater than when actually hitting the facade of the CEG building.
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Chapter 8

Conclusion

8.1 Answering research question

For the reinforced concrete plate of the ground floor of the CEG building, modeled as
a mass-spring system and subjected to an evenly spread explosive load, the structure
does not collapse for the tested explosive munitions.

For the basement to be able to be used as a bomb shelter, the current spatial layout
and use must be altered to accommodate more people. Also basic facilities must be
present in the basement, such as water, temporary toilets and medical equipment.
The open air bicycle creates a dangerous situation, and must be shielded in some
way.

8.2 future research

In the mass-spring system, the mass, stiffness and explosive loads are assumed to be
global parameters. Further research can be done on local response in the reinforced
concrete plate. An example of a locally orientated model is the finite element method.
This method determines the stiffness, deflection and explosive load, for small sections
across the plate and what influence they have on each other. This could give valuable
insights in the dynamic response of the ground floor structure.

Part of the ground floor structure which covers the basement is not located between
walls, so vehicles can pass under the CEG building. Explosive munitions can directly
hit the ground floor structure. For the use as a bomb shelter, research can be done
on a direct impact in this section.

Not much is known about how many people daily visit the CEG building and how
many people are present at peak moments. More research is needed to determine if

the basement is large enough to shelter all present in the building.

The Campus of the TU Delft is very large and many people visit each day. The
basement of the CEG building cannot shelter all these people, moreover not every
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one will be close enough to reach the basement. It would thus be valuable to study
if other buildings and can be used as a bomb shelter.
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Appendix A. Model in python

The python model makes use of two files. In the first file the functions used for
calculating are defined, in second file the calculations take place and the model is

tested.
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Failure of a cross-section

In [1]:

# Calculating the Moment capacity, the curvature, the beamstiffness and x_u
def func_4(cover, A_s):

d = h - cover - 0.5%0_hw

x_u = (As * f_yd) / (.75 * b * f_cd)

M4 = A_s * fyd * (d - (7/18) * x_u)

kappad = (3.5 * le-3) / (x_u)

EI4 = M4 / kappad

return M4, kappa4, EI4, x_u

Deflection for every hinge formed

In [2]: # Calculating the deflection for @ hinges
def func_we():
qo = (2650 * b * h * 1le-9) * 9.81
w_C@ = (1/384) * ((q@ * (L**4)) / (EI_C))
return go, w_C0
# Calculating the deflection for 1 hinge
def func_wi():
ql = (12 * M_pl_A) / (L**2)
w_Cl = ((1/192) * ((q1 * (L**4) ) / EI_C)) - ((1/32) * ((M_pl_A * (L**2) ) / EI_C))
return g1, w_C1
# Calculating the deflection for 2 hinges
def func_w2():
q2 = 8 * (M_pl B / (L**2)) + 4 * (M_pl_A / (L**2))
w_C2 = ((5/384) * ((q2 * (L¥¥4)) / EI_C)) - ((1/16) * ((M_pl_A * (L**¥2)) / EI_C)) - ((1/16) * ((M_pl_B * (L**2)) / EI_C))
return g2, w_C2
# calculating the deflection at which at third hinge forms
def func_w3():
dq = symbols('dq")
equation = + M_pl_A + M_pl_C + (dq) * (L/2) * (L/4) - ((1/2) * (dgq)* L) * (L/2)
delta_q = solve(equation)[0]
q3 = delta_q
w_C3 = ((5/384) * ((q3 * (L**4)) / EIC)) - ((1/16) * ((M_pl_A * (L**2)) / EI_C)) - ((1/16) * ((M_pl_B * (L**2)) / EI_C))
return g3, w_C3
Stiffness
In [3]: # Defining thes stiffness of the system for a distributed Load per mm
def func_k():
k1= (ql * L) / wCl
k2 = ((q2 - q1) * L) / (w_C2 - w_C1)
k3 = ((93 - g2) * L) / (w_C3 - w_C2)
k4 = 0
return k1, k2, k3, k4
# function for changing the stiffness for incresing deflections
def func_stiffness(u):
if u == o:
return ki1
elif u < -w_C3:
return k4
elif u < -w_C2:
return k3
elif u < -w_C1:
return k2
else:
return ki1
Explosion
In [4]: # Calculating the pressure and positive phase duration

def func_expl_par(W_TNT):
P_R =P_r * le-3 # pressur fromm kPa to N/mm"2
t_0 = te * (W_TNT**(1/3)) * le-3 # Positive phase duration
return P_R, t 0

# Friedland equation

def func_friedland(t):
pressure = P_R * (1 - (t / t_0)) * np.exp(-(t / t_0))
return pressure # N/mm*2
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Running ODE and RK4

In [5]: # Function for the shock wave in time
def func_ft(t):

if t <= t_o:

f_t = func_friedland(t) * b * L
else

ft=0

return np.array([-f_t, ©.0])

# Function for the RK4 method

def func_G(y, t, A_inv, B):
G = np.dot(A_inv, (func_ft(t) - np.dot(B,y))) # setting up the equation
return G

# Calculating the RK4 method

def func_RK4(y, t, dt, A_inv, B):
k_1 = func_G(y, t, A_inv, B)
k_2 = func_G(y + @.5%k_1*dt, t + @.5*dt, A_inv, B)
k_3 = func_G(y + @.5*k_2*dt, t + @.5*dt, A_inv, B)
k_4 = func_G(y + k_3 *dt, t + dt, A_inv, B)
RK4 = (dt * (k_1 + 2%k_2 + 2*k_3 + k_4)) / 6
return RK4

# Solving the equation with the RK4 metod
def func_run(ye, timesteps, dt):
A_inv = inv(np.array([[m * K_LM, @], [0, 1]])) # inverse of matrix A

y =ye
w= ]
v=1l]
f =[]

for t in timesteps:
k = func_stiffness(y[1])

B = np.array([[c, k], [-1, @]]) # matrix B
RK4 = func_RK4(y, t, dt, A_inv, B)
y =y + RK4

v.append(y[0])
w.append(y[1])
f.append(func_ft(t)[0])
if y[1] < -w_C3 or t == timesteps[-1]:
break
return v, w, f
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In [1]: import os
import numpy as np
import pandas as pd
from sympy import symbols, solve
from matplotlib import pyplot as plt
from scipy.integrate import odeint
from labellines import labelline, labellines
from numpy.linalg import inv
%run FunctionsBEP.ipynb

Plate parameters

In [2]: %run FunctionsBEP.ipynb
def func_parallel():
L

= 7200
b = 3000
h = 600

cover_AB = 20 + 18

cover_C = 20 + 14

o_hw = 12

A s A= ((1/4) * np.pi * (10%*2) * 15) + ((1/4) * np.pi * (12%*2) * 15)
A_s_B = ((1/4) * np.pi * (10*%*2) * 15) + ((1/4) * np.pi * (12%*2) * 15)
A_s_C = ((1/4) * np.pi * (12%*2) * 30)

m=L%*b *h* 2650 * le-9

return L, b, h, cover_AB, cover_C,o_hw, A_s_ A, A s B, A.s C, m

def func_perpundicular():

L = 6700
b = 3600
h = 600
cover_AB = 20

((1/4) * np.pi * (12%*2) * 18)

((1/4) * np.pi * (12*%*2) * 18) + ((1/4) * np.pi * (10**2) * 18)
= ((1/4) * np.pi * (12%*2) * 18) + ((1/4) * np.pi * (14**2) * 18)
= b * h * 2650 * le-9

return L, b, h, cover_AB, cover_C, o_hw, A_s_A, A_s B, As C, m

L, b, h, cover_AB, cover_C, o_hw, A_s_A, A_s_B, A_s_C, m = func_parallel()
L, b, h, cover_AB, cover_C, o_hw, A_s_A, A s B, A s_C, m = func_perpundicular()

In [3]: %run FunctionsBEP.ipynb

f_yd = 356.6 # Steel yield strength (N/mm"2)

f_cd = 12.6 # Design value for compressive strength of concrete

E_s = (200 * 1e3) # Elastic modulus of steel (N/mm*2)

K_LM = 0.78 # Load-mass transformation factor

eps_c3 = (1.75 * 1le-3) # Limit value of concrete under compression (promile)

# Explosives

P_TNT = 1.00

W_OF_465 = 3.46
W_OF_45 = 11.78
W_OF_43 = 27.41
W_SH_131 = 15.0
W_SH_136 = 40.0
W_FAB_500 = 209

In [4]: %run FunctionsBEP.ipynb
# System properties as t=0

c_s =0 # Dempingsconstante (N/m)
t_start = 0 # begintijd (s)

dt = 0.00001 # tijdstap (s)

t_end = 10 # eindtijd (s)

u_start = 0 # uitwijking van de massa op t=0
v_start = 0 # snelheid van de massa op t=0
W_TNT = 209

# explosion properties

0 = 0.19

P_r = 200000

timesteps = np.arange(t_start, t_end + dt, dt)
P_R, t_0 = func_expl_par(W_TNT)

In [5]: Z.R =1/ (W_TINT**(1/3))
# Printing the scaled distance for determining P_SO and t_6
print(f'The scaled distance Z is {round(Z_R, 3)}')
print(te * (W_TNT**(1/3)) * 10%*-3)

The scaled distance Z is 0.169
0.0011275497066759888

36



Getting all relevent parameters

In [6]: %run FunctionsBEP.ipynb

# Moment capacities, curvature end EI

M_pl_A, kappa_A, EI_A, x_uA = func_4(cover_AB, A_s_A)
M_pl_B, kappa_B, EI_B, x_uB = func_4(cover_AB, A_s_B)
M_pl_C, kappa_C, EI_C, x_uC = func_4(cover_C, A_s_C)

# Deflections

q0, w_Ce = func_wo()
ql, w_C1l = func_wl()
q2, w_C2 = func_w2()
q3, w_C3 = func_w3()

#starting conditions
y@ = np.array([v_start, 0]) # starting conditions

#stiffnesses
k1, k2, k3, k4 = func_k()

Forming of the three hinges

In [7]: fig, ax = plt.subplots(1l, 1, figsize=(10,5))
w_curve, = ax.plot([6, w_C@, w_Cl, w_C2, w_C3, 1.2*w_C3], [0, g0, q1, g2, g3, 93], 'r')
ax.arrow(@, 0, @, int(q3*1.05), head_width = 5, width = 0.5, head_length=10, ec='k', fc="k')
ax.arrow(@, 0, int(1.21*w_C3), @, head_width = 7, width = ©.5, head_length=7, ec="k', fc="k")
ax.arrow(int(w_C3), int(qg3), int(@.2*w_C3), © , head_width = 4, width = 0.5, ec="r', fc="r")

W= [w_C1l, w C2, w_C3]
q = [q1, g2, q3]

for i in range(3):

ax.plot((0, W[i]), (q[i], q[i]), color='k', linestyle='--")
ax.plot((W[i], W[i]), (@, q[i]), color='k', linestyle='--')
ax.scatter(x=[w_C1, w_C2, w_C3], y=[ql, g2, q3], c="k")
ax.plot(w_C3*1.1, g3*1.1)
ax.set_title('Simulation of Mass-Spring-Damper System')
ax.set_xlabel('deflection [mm]")
ax.set_ylabel('Distributed load [N/mm]")
ax.set_xticks([])
ax.set_yticks([])
ax.grid()
plt.show()
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Calculating the deflection

In [8]:

In [9]:

#
de

de

Parallel
f func_parallel_parameters():
L = 7200
b = 3000
h = 600
m= 2650 * L * b * h * le-9
k1l = k2 = 8271
k3 = 1633
k4 = 0
W Cl = w2 =112.3
w_C3 = 368.0
return m, k1, k2, k3, k4, w_C1, w_C2, w_C3
f func_perpendicular_paramaters():
L = 6700
b = 3200
h = 600
m= 2650 * L * b * h * le-9
k1 = 17187
k2 = 8992
k3 = 3484
k4 = 0
w_Cl = 40.1
w_C2 = 80.1
w_C3 = 239.7

return m, k1, k2, k3, k4, w_C1, w_C2, w_C3

m, k1, k2, k3, k4, w_C1, w_C2, w_C3 = func_parallel_parameters()

m, k1, k2, k3, k4, w_Cl, w_C2, w_C3 = func_perpendicular_paramaters()
c=20

%run FunctionsBEP.ipynb

fig, [ax1, ax2] = plt.subplots(nrows=1, ncols=2, figsize=(20, 5))

m, k1, k2, k3, k4, w_C1, w_C2, w_C3 = func_parallel_parameters()

v, u, f = func_run(y@, timesteps, dt)

axl.axhline(-w_C1, color='k', linestyle='--', label=r'$w_{1}$")
axl.axhline(-w_C2, color='k', linestyle='--', label=r'$w_{2}$")
axl.axhline(-w_C3, color='k', linestyle='--', label=r'$w_{3}$")
axl.plot(timesteps[:len(u)], u, color="b', label=r'$h_{expl}$' f' = ')
m, k1, k2, k3, k4, w_C1, w_C2, w_C3 = func_perpendicular_paramaters()
v, u, f = func_run(y@, timesteps, dt)

ax2.axhline(-w_C1, color='k', linestyle='--', label=r'$w_{1}$")
ax2.axhline(-w_C2, color='k', linestyle='--', label=r'$w_{2}$")
ax2.axhline(-w_C3, color='k', linestyle='--', label=r'$w_{3}$")
ax2.plot(timesteps[:len(u)], u, color="b', label=r'$h_{expl}$' ' = ')
axl.set_title('Deflection for parallel reinforcement orientation')
ax1.set_xlabel('t (s)')

axl.set_ylabel(r'u (mm)")

ax1.grid()

ax2.set_title('Deflection for perpendicular reinforcement orientation')
ax2.set_xlabel('t")
ax2.set_ylabel(r'u (mm)')
ax2.grid()
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Deflection for perpendicular reinforcement orientation
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Appendix C. Forget-Me-Nots
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