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Abstract

To describe the behaviour of beams which are loaded on a torsional force it is
possible to make use of the Saint-Venant formula, if the beam is unconstrained
on both sides. This theory can be used regardless the cross-sectional dimensions
of the beam. If the beam is only constrained at one side and unconstrained at
the other side, it is possible to make use of the Vlasov torsion theory to describe
the behaviour of the beam, however this theory is proven only for open cross-
section. In this report it is attempted to prove the Vlaslov torsion theory for
rectangular solid cross-sections and for rectangular closed tube cross-section.

It is important to describe a proper method to validate the Vlasov torsion theory.
The beam will be constrained only at one side and a torsional external moment
will work at the free end of the beam. During the whole validity process it has
been chosen to keep the material properties and the external moment the same
in order to compare the results. The length of the beams are kept variable to
see what the influence is of the length of the beam on the accuracy of the Vlasov
torsion theory. First, the maximum horizontal displacement and the maximum
normal stress has been calculated by use of the Vlasov equations. Second, the
maximum horizontal displacement and the maximum normal stress have been
calculated by use of the FEM software Abaqus. These outcomes have been
compared with each other by use of a ratio check, namely if the maximum error
is within 15 percent it can be stated that the theory is valid for the tested beam
length.

From the obtained results it can be stated that the Vlasov torsion theory seems
to be valid regarding the maximum horizontal displacement for the rectangular
solid cross-sections and the rectangular closed tube cross-sections. The obtained
results for the maximum normal stress exceed the maximum allowable error of
15 percent. Regarding the obtained results for the maximum normal stress, the
Vlasov torsion theory can not be declared valid for the mentioned cross-sections.
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1 Introduction

1.1 Problem description

The first theory that was published to describe the behaviour of beams loaded
with a torsional moment is the theory of Saint-Venant. The theory of Saint-
Venant can be used for beams which can warp and rotate unimpededly. This
theory can be used for all different types of cross-sections. In 1933 the Vlasov
torsion theory was published, this theory describes the behaviour of thin walled
beams which are prevented of rotation and warping on one side of the beam.
Since these profiles are often loaded on torsional forces which can cause warping
of the thin walled beams, this theory is mostly relevant for thin walled profiles
(P.C.J.Hoogenboom, 2008).

 —
g\ Free warping P—g
j~ Impeded warping

Figure 1: Top views of two I-sections considering respectively the set-up for the
Saint-Venant theory and the Vlasov torsion theory (P.C.J.Hoogenboom, 2008)

The Vlasov torsion theory is only proven for thin walled cross-sections, there-
fore it is not allowed to use the Vlasov torsion theory for other cross-sections.
Because of this limitations commercial framework programs make only use of
the theory of Saint-Venant. If a constrained thin walled profile is modelled in
these framework programs and is tested on a torsional moment the program
gives a warning. Because of this limitations the engineer needs to perform hand
calculations to describe the behaviour of the mentioned thin walled beam. To
unburden the engineer and to improve the framework programs it would be ideal
if it can be proven that the Vlasov theory is valid for all types of cross-sections
(P.C.J.Hoogenboom, 2008). Therefore, the research question can be formulated
as:

Is the Viasov torsion theory valid for rectangular solid cross-sections and for
rectangular closed tube cross-sections?



1.2 Approach

The first step is to understand the equations derived from the Vlasov torsion
theory. After the theory is understood it is possible to apply the Vlasov torsion
theory for a determined system. In this report the FEM software Abaqus will be
used to check the results obtained by use of the Vlasov torsion theory. Abaqus
will be used on the online workstation of the TU Delft. Which means that the
used software is not limited in performing element calculation, due to licence
limitations. By use of this software it is attempted to prove the validity of
the Vlasov torsion theory. Furthermore the influence of the mesh size on the
accuracy of the obtained results will be discussed. The length of the beams that
will be checked is variable, this will be done to check the influence of the beam
length on the accuracy of the results.

1.3 Previous performed studies

A study about the given research question has been performed by a couple
of Bsc students. The first study that has been performed, was done by T.B
Raaphorst. From this study it can be concluded that the results are positive
for the mentioned cross-sections, however the done calculations have been per-
formed for only a length of 2540 mm (T.B Raaphorst, 2020). The Vlasov torsion
theory needs to be checked on a couple of lengths before it can be valid for the
mentioned cross-sections. A follow up study has been performed by A.Yildirim,
from this study it can be concluded that the stresses calculated with the FEM
software were a factor 10 bigger then the calculated values from the Vlasov
torsion theory (A.Yildirim, 2021). Due to the inconsistent results a follow up
study has been performed by F.Hilmer to prove the validity of the Vlasov torsion
theory for rectangular solid cross-sections and for rectangular closed tube cross-
sections . The results from this report were promising, however not conclusive
enough to prove the validity. The outcomes of the Vlasov torsion theory has
been compared with the outcomes obtained from the Finite Element Method
software Ansys. Due to the limitation of the element calculations performed by
the used student version of Ansys it was not possible to prove the validity of
the Vlasov torsion theory (F.Hilmer, 2021).



2 Method

In this chapter the method will be described for the validity of the Vlasov
torsion theory. It is essential that a method will be formulated, which makes it
possible to perform the check for beams with different types of cross-sections.

2.1 Vlasov Torsion Theory

Before a method can be described to test the validity of the Vlasov torsion
theory it is important to understand the theory and the equations which can
be derived from this theory. The Vlasov torsion theory can be described by the
following formula (P.C.J.Hoogenboom, 2008):

¢
dx?
E = Young’s modulus [MPa]

Cw = Warping constant [mm

e P (1)

EC, w
dx?
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¢ = Angular deviation [rad]

G = Shear modulus [MPa]

I, = Torsional moment of inertia [mm?]

[T

mg = Distributed torsional moment along the beam |= 7>

The warping constant can be described by the following formula:
Cy = / YidA  (2)
A

The Bi-moment can be described by the formula:

B=— z20dA (3
/A‘”/’ 3)

If warping of a cross-section is constrained, then a Bi-moment will work in the
constrained side of the beam. By solving the differential equation it is possible to
determine the Bi-moment. Thereafter the wringing moment can be determined:

42
B=-EC, 75 (&)

d¢p dB
My, =Gl,—+— (5
dz + dz 5)
By combining formula’s 4 and 5 it is possible to derive a differential equation
for the torsional moment:



d¢ de®
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The characteristic length can be determined by use of the formula:

EC,

le =
GI,

(7)

2.2 Set up of the system

The beam that will be tested has to be constrained at one side and be free
of any constraining at the other side. At the constrained side warping and
angular displacement will be hindered. At the free side a torsional moment will
be introduced.

77

Figure 2: Set up of the system

It has been chosen to model a beam of the material structural steel (F.Hilmer,
2021). Structural steel has the following material properties:

Table 1: Material properties of the beam

material property \ value

E 210000[N/mm?]
v 0.29[—]
G 81000[N/mm?

The only external Load that will work on the beam is a torsional moment,
which will be equal to :

Table 2: External torsional load on the beam

FExternal Load \ value
T 10°[Nmm]




2.3 Cross-sectional properties

In order to solve the Vlasov equation it is necessary to determine the cross-
sectional properties of the chosen cross-sections that will be analysed. 3 param-
eters are necessary to solve the equation: the Torsional moment of inertia [I,,],
the Warping constant [C,] and the Warping function [¢)]. These parameters
are dependent of the dimensions of each cross-section. In this validity process
a rectangular solid cross-section and a rectangular closed cross-section will be
analysed.

The torsional moment of inertia for a solid rectangular cross-section can be
determined by use of the formula (Paul A. Seaburg, 2003):

hb3
Ly = —;

>1
2210 @)

&+ | o

The torsional moment of a inertia for a closed rectangular cross-section with a
thickness t can be determined by use of the formula (Paul A. Seaburg, 2003):
2t2b%h? b
w="7"77=>10 (9
bt + ht " t 9)

The formula for the warping constant is described in paragraph 2.1. The warping
constant is dependent of the dimensions of the cross-section and the warping
function. The warping function describes the deformation of a cross-section
(P.C.J.Hoogenboom, 2008).

If the dimensions of the cross-section are determined, it is possible to model the
cross-section in the software program Shapebuilder. This program returns all
the cross-sectional parameters including the three mentioned parameters who
are needed to solve the Vlasov equation.

2.4 Aplication of Vlasov torsion theory

In this paragraph the application of the Vlasov torsion theory will be described
for the mentioned set up in paragraph 2.2 . The following boundary condition
can be derived from the chosen set up (P.C.J.Hoogenboom, 2008):

Constrained at x = 0:

1) ¢(0) =0,

20y =0

2
)dx

Free support and external torsional moment at x = L:
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Since the differential equation described by Vlasov is a fourth power differential
equation, at least four equations are needed to solve this equation. The made
set up satisfies this requirement. By use of the software Maple the differential
equations can be solved. By solving this equation two relevant properties of the
beam will be derived. The rotation of the beam and the maximum longitudinal
(normal) warping stress in the beam.

Figure 3: Rotation of a rectangular cross-section (P.C.J.Hoogenboom, 2008)

By use of the rotation of the beam it is possible to determine the maximum
displacement of the beam. To make it possible to compare the outcomes it has
been chosen to determine only the horizontal displacement. Since the chosen
cross-sections are rectangular it is possible to determine the horizontal displace-
ment by use of the formula :

Umax,horizontal = (b * 0.5h (10)

The maximum longitudinal (normal) warping stress can be formed by combining
the formulas 2 and 3 and solving it for 0., (P.C.J.Hoogenboom, 2008):

Ope = ——1 (11)

0z = The mazimum longitudinal (normal) warping stress [N/mm?]
B = maximum bimoment [Nmm?|
Cw = Warping constant [m5]

Y = normalized unit warping [mm?]



2.5 Finite Element Method calculations

To check the validity of the outcomes from the Vlasov equations a Finite Ele-

ment Method software will be used to calculate the behaviour of the analysed
beams. In the previous done study by F.Himler these calculations were done
by a FEM software which was limited in its element calculations. It is expected
that due to this limitations it was not possible to formulate a decisive con-
clusion about the validity of the the Vlasov torsion theory for the mentioned
cross-section. In this report a FEM software will be used which can perform
element calculation without any restrictions. The software Abaqus will be used
to perform the calculations. To make it possible for third parties to perform
the same calculations, a small instruction manuel will be given about the steps
that need to be taken to get the right outcomes in Abaqus.

Before the Abaqus software can be used it is important to perform the steps
mentioned in the paragraphs 2.2, 2.3 and 2.5. By performing these steps the
needed parameters and boundary conditions will be obtained.

The first step is to model the dimensions of the beam in Abaqus. Which can
be done in the model window using the parts module. First the cross-sectional
dimensions have to be modelled followed with the length of the beam. After the
dimensions are modelled it is important to assign the whole beam to a section
assignment. It is important to assign the section as a homogeneous solid beam.

If the beam is assigned to a section it will be possible to model the material
properties of the beam. This can be done in the module property. The me-
chanical properties need to be determined, in order to be more specific it is
important to change the elastic material behavior. In this window it is possible
to apply the desired Young’s modulus and the Poisson’s ratio according to the
chosen material.

After the material properties are determined it is possible to model the bound-
ary conditions of the beam. According to the set up in chapter 2.2 the beam
needs to be constrained at one side. This can be done in the load module by
making use of the Boundary conditions tab. The surface of the to constraining
part should be selected first, after the selection is approved it is possible to
encastre the chosen section.

The last mechanical step is to apply the load on the beam. Before we can
apply a load it is necessary to determine the location of the load. The torsional
moment should be located at the unconstrained part of the beam. It is important
to apply this moment at the centre of the cross-section. First, the coordinate
system needs to be placed at this location. Then, it is possible to make this point
visible by making use of the tools tab and creating a reference point. Now it is
possible to assign a load to the created reference point. This can be done under
the load module. It is important to apply the moment in the right direction so a
torsional moment will be created. There are 3 options CM1(moment around the
x-axis), CM2(moment around the y-axis) and CM3(moment around the z-axis).
The coordinate system has been placed so that the z-axis is the depth of the
beam. Thus, to apply a torsional moment CM3 should be chosen.

Before the model can be run, the mesh size should be determined. First, a
random value has to be chosen for the element size, thenit is able to run the



model. If the running has been completed, it is possible to view the results. If
the results do not approach the desired values, a solution could be to refine the
mesh size to a smaller value. This step can be iterated until the desired value
is approached sufficiently.

After the results are obtained it is important to process the results correctly.
For this research the maximum horizontal displacement and the maximum lon-
gitudinal (normal) stress should determined. In the visualization module it is
possible to display the desired displacement and stresses. The coordinate sys-
tem has been placed so that the horizontal displacement will happen in line with
the x-axis, therefore the maximum horizontal displacement can be found under
the Ul tab. The maximum longitudinal (normal) stress will be in the same
direction as the z-axis, so to display this stress the tab S33 should be used.

Figure 4: Orientation of the coordinate system

2.6 Validation of the results

If the results from the Vlasov equation and from the FEM software calculations
are obtained, it is possible to compare these results. The validation will be done
by use of a ratio check of the results. It is given that an error of maximum 15%
is allowed for engineering purposes. This ratio check will be performed for both
cross-section with variable length. This will be done to analyse the influence of
the length of the beam on the validity of the Vlasov torsion theory.

. value obtained from Vlasov theory
Ratio =

12
value obtained from FEM software (12)



3 Results

In this chapter the results of the calculation will be described. The calculations
will be performed for a rectangular solid cross-section and a rectangular closed
cross-sections. These calculations will be performed for various lengths of each
cross-section. The set up of the system and the material properties can be found
in chapter 2.2.

3.1 Rectangular solid cross-section
3.1.1 Cross-section properties

The dimensions of the cross-section are given in figure 5 it has been chosen to
have a width height ratio of 1:1.5 . The first beam will have a length of 150
[mm] each following beam will have a two times bigger length as the previous
one (F.Hilmer, 2021). It has been chosen to check 5 beams, the lengths of the
beams can be found in the table below .

0.075m

0.150m

0.075m

0.050m | 0.050m

0.100 m

Figure 5: Dimensions of the solid cross-section

Table 3: Lengths of the tested beams

beam \ beam length
beam 1 150 [mm]
beam 2 300 [mm]
beam 3 600 [mm]
beam 4 1200 [mm)]
beam 5 2400 [mm]

By use of the cross-sectional dimensions, the cross-sectional properties are de-
termined with the software Shapebuilder:



Table 4: Cross-sectional properties of the beams

cross-sectional property \ value

L, 2.94 * 107 [mm]
Cu 3.79 % 10°[mmS]
(0 1.4 % 103 [mm?

3.1.2 Beam 1

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set-
up has been determined. These calculations have been performed in maple for
the determined properties of beam 1. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.005506[rad]
Umazx,horizontal = 00413[77”7’),]

Omaz = 67.3666[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results for the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 6 and 7 .

Table 5: Results of the FEM calculations for the different element sizes

element size [mm] | maximum displacement [mm] | maximum stress[N/mm?]
) 0.04230 38.06
3 0.04230 46.02
2 0.04228 52.73
1.8 0.04228 54.57

10



U, ul
+4.228e-02
+3.524e-02
+2.819e-02
+2.114e-02
+1.409e-02
+7.047e-03
+0.000e+00
-7.047e-03
-1.409e-02
-2.114e-02
-2.819e-02
-3.524e-02
-4.228e-02

Figure 6: Maximum Displacement of beam 1

5,633

(Avg: 75%)
+5.457e+01
+4.548e+01
+3.638e+01
+2.729%e+01
+1.819e+01
+9.096e+00
=5.722e-06

-9.096e+00
-1.819e+01
-2.729e+01
-3.638e+01
-4.548e+01
-5.457e+01

Figure 7: Maximum Stress of beam 1

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 1.8 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.0413 [mm] __ 0.977
value obtained from FEM software — 0.04228 [mm] — ~°

Displacement ratio =

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory __ 67.3666 [N/mm?] _ 1.23
value obtained from FEM software ~  54.57 [N/mm?2] — —*

Stress ratio =

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6

11



to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.

The obtained outcomes have also been compared with the results obtained
by F.Hilmer (F.Hilmer, 2021). The set-up, material properties, cross-sectional
properties, length and mesh size are kept the same to have a proper comparison
of the results. From this comparison it can be seen that the outcomes obtained
by use of the Vlasov torsion theory are exactly the same. Regarding the maxi-
mum horizontal displacement and the maximum normal stress, there were some
significant differences for the values obtained by use of the FEM softwares An-
sys and Abaqus. The maximum displacement determined by use of the Abaqus
software approaches the results obtained by the Vlasov torsion theory better
then the Ansys software. But the maximum normal stress is approached better
by use of the Ansys software compared to the Abaqus software.

To check the model on inconsistent results it has been chosen to check the model

on singularities. This has been done by first changing the boundary conditions of
the model. In the used model the beam was constrained on all axes (encastred).
To check if singularity has took place in the fully constrained model, it has been
chosen to repeat the FEM calculations with only the z-axis being constrained.
The results that are obtained are from the smallest possible mesh size of 1.8
mm. From the results in figure 9, it can be concluded that singularity due to
fixed x and y can be excluded, because the stresses are almost similar to the
obtained results from the fully constrained model. The horizontal displacements
gets significantly less accurate if only the z-axes is constrained, as can be seen
in figure 8 . Regarding the values obtained for the maximum stresses it can be
observed that the difference is approximately 1.4 percent between the obtained
stresses.

LUl

+3.185e-02
+2.442e-02
+1.699-02
+9.554e-03
+2.122e-03
-5.311e-03
-1.274e-02
-2.018e-02
-2.761e-02
-3.504e-02
-4.247e-02
-4.991e-02
-5.734e-02

Figure 8: Maximum Displacement of beam 1 only constrained in the z-axis

12



S, 533

(Avg: 75%)
+5.533e+01
+4.611e+01
+3.689e+01
+2.766e+01
+1.844e+01

+9.221e+00
+5.722e-06
-9.221e+00
-1.844e+01
-2.766e+01
-3.689e+01
-4.611e+01
-5.533e+01

Figure 9: Maximum Stress of beam 1 only constrained in the z-axis

3.1.3 Beam 2

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 2. The performed calculations can be found
in Apendix A. From these calculations we can derive the following outcomes:

= 0.001177[rad]
Umaz,horizontal = 008831[mm]
Omaz = 67.3666[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 10 and 11 .

Table 6: Results of the FEM calculations for different element sizes

element size [mm] | maximum displacement [mm] | maximum stress [N/mm?]
6 0.08935 36.33
3 0.08922 46.74

13




U, U1
+8.922e-02
+7.435e-02
+5.948e-02
+4.461e-02
+2.974e-02
+1.487e-02
=3.725e-09
-1.487e-02
-2.974e-02
-4.461e-02
-5.948e-02
-7.435e-02
-8.922e-02

S, £33

(Avg: 75%)
+4.674e+01
+3.895e+01
+3.116e+01
+2.337e+01
+1.558e+01
+7.791e+00
-1.907e-06
-7.791e+00
-1.558e+01
-2.337e+01
-3.116e+01
-3.895e+01
-4.674e+01

SUTIAG Kbas.fEa 0 DRI e 3 0 e

Figure 11: Maximum Stress of beam 2

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 3 mm.

Maximum displacement check:

. . walue obtained from Vlasov theory __ 0.08831 [mm] __
D’Lspla’cement ratio = value obtained from FEM software — 0.08935 [mm] ~— 0.988

maximum longitudinal (normal) stress check:

. walue obtained from Vlasov theory _ 67.3666 [N/mm?] _
Stress ratio = value obtained from FEM software ~  46.74 [N/mm?3] — 1.441

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.

14



3.1.4 Beam 3

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 3. The performed calculations can be found
in Apendix A. From these calculations we can derive the following outcomes:

¢ = 0.002431[rad]
Umax,horizontal = 01823[mm]
Omaz = 67.3666]N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 12 and 13 .

Table 7: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress [N/mm?]
7 0.1838 33.38
3 0.1834 46.74

U, Ul
+1.834e-01
+1.528e-01
+1.223e-01
+9,170e-02
+6.114e-02
+3.057e-02
+3.725e-09
-3.057e-02
-6.114e-02
-9,170e-02
-1.223e-01
-1.528e-01
-1.834e-01

Figure 12: Maximum Displacement of beam 3

15



S, 833

(Avg: 75%)
+4.674e+01
+3.895e+01
+3.116e+01
+2.337e+01
+1.558e+01
+7.790e+00
+9.537e-07

-7.790e+00
-1.558e+01
=2.337e+01
-3.116e+01
-3.895e+01
-4.674e+01

Figure 13: Maximum Stress of beam 3
Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 3 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.1823 [mm] __ 0.994
value obtained from FEM software ~— 0.1834 [mm] ~— 7

Displacement ratio =
maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _  67.3666 [N/mm?] 1.44
value obtained from FEM software ~—  46.74 [N/mm?3] —

Stress ratio =

From the performed unity checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.1.5 Beam 4

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 4. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.004938[rad]

Umax,horizontal = 03704[mm]
Omaz = 67.3666]N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below. The
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 14 and 15 .

Table 8: Results of the FEM calculations for different element sizes

element size [mm)|

maximum displacement [mm]|

maximum stress [N/mm?]

9
3

0.3733
0.3718

30.08
46.74

U, Ui

+3.718e-01
+3.098e-01
+2.479e-01
+1.859e-01
+1.239e-01
+6.196e-02
+0.000e+00
-6.196e-02

=1.239a8-01
-1,.859e-01
-2.479e-01
-3.098e-01
-3.718e-01

Figure 14: Maximum Displacement of beam 4
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S.533

(Avg: 75%)
+4.674e+01
+3.895e+01
+3.116e+01
+2.337e+01
+1.558e+01
+7.790e+00
+9.537e-07

-7.790e+00
-1.558e+01
-2.337e+01
-3.116e+01
-3.895e+01
-4.674e+01

3 HU00800 AN a/Bu 0400 0041 Vme Zee 4T 24040 W, Hataes Burlnt

Figure 15: Maximum Stress of beam 3

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 3 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.3704 [mm] __ 0.997

Dzsplacement ratio = value obtained from FEM software ~— 0.3717 [mm] —

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _  67.3666 [N/mm?] _ 1.44

Stress ratio = value obtained from FEM software ~  46.74 [N/mm?]

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.1.6 Beam 5

Calculations Vlasov theory

In chapter 2.4 the application of the Vlasov theory for the mentioned set up
has been determined. These calculations have been performed in maple for the
determined properties of beam 5. The performed calculations can be found in
Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.009953[rad]
Umax,horizontal = 07465[mm]

Omaz = 67.3666[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 16 and 17.

Table 9: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress [N/mm?]
12 0.7547 25.69
6 0.7496 36.33

U, U1

+7.496e-01
+6.247e-01
+4.997e-01
+3.748e-01
+2.499e-01
+1.249e-01
-1.490e-08
-1.249e-01
-2.499%e-01
-3.748e-01
-4,997e-01
-6.247e-01
-7.496e-01

Figure 16: Maximum Displacement of beam 5
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(Avg: 75%)
+3.633e+01
+3.028e+01
+2.422e+01
+1.817e+01
+1.211e+01
+6.056e+00
+2.861e-06
-6.056e+00
-1.211e+01
-1.817e+01
-2.422e+01
3.028e+01
.633e+01

Figure 17: Maximum Stress of beam 5

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 6 mm.

Maximum displacement check:

- . walue obtained from Vlasov theory __ 0.7465 [mm] __
Dlsplacement ratio = value obtained from FEM software ~— 0.7496 [mm] — 0.996

maximum longitudinal (normal) stress check:

. walue obtained from Vlasov theory __ 67.3666 [N/mm?] _
Stress ratio = value obtained from FEM software ~—  36.33 [N/mm?2] — 1.85

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.2 Rectangular closed cross-section
3.2.1 Cross-section properties

The dimensions of the cross-section are given in figure 18 it has been chosen to
have a width height ratio of 1:1.5 and a thickness of 10 mm . The first beam
will have a length of 150 [mm] each following beam will have a two times as
big length as the previous one (F.Hilmer, 2021). It has been chosen to check 5
beams the lengths of the beams can be found in the table below .
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Figure 18: Dimensions of the rectangular closed cross-section

Table 10: Lengths of the tested beams

beam \ beam length
beam 6 150 [mm|
beam 7 300 [mm)]
beam 8 600 [mm)]
beam 9 1200 [mm]
beam 10 2400 [mm]

By use of the cross-sectional dimensions the cross-sectional properties are de-
termined with the software Shapebuilder:

Table 11: Cross-sectional properties of the beams

cross-sectional property value

I, 1.45 % 107 [mm?]
Cy 9.187 % 103[mm?)
0 1 % 103[mm?]
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3.2.2 Beam 6

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set-
up has been determined. These calculations have been performed in maple for
the determined properties of beam 6. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.001171[rad]
Umax,horizontal = 008785[mm}
Tmas = 140.9137[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-

formed for different element sizes as has been described in chapter 2.6. The
results for the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 19 and 20 .

Table 12: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress [N/mm?]
2.5 0.09201 79.34
1 0.09202 111.9

u, ui
+9.202e-02
+7.668e-02
+6.134e-02
+4.601e-02
+3.067e-02
+1.534e-02
-1.101e-06
-1,534e-02
-3.067e-02

-4.601e-02
-6,135e-02
-7.668e-02
-9,202e-02

andard 3DEXPERTENCE F.2013x  Sat Oct 02 18:05:48 W. Europe Daylight Time 2021

Figure 19: Maximum Displacement of beam 6
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S, €33

(Avg: 75%)
+1.119e+02
+9.323e+01
+7.458e+01
+5.594e+01
+3.729e+01
+1.865e+01
+0.000e+00
-1.865e+01

-3.729e+01
-5.594e+01
-7.458e+01
-9.323e+01
-1.119e+02

0D8: tubeL150meshi.odb Abagus/Standard 3DEXPERIENCE F2019x  Sat Oct 02 18:05:48 W. Europe Daylight Time 2021

Figure 20: Maximum Stress of beam 6

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 1 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.08785 [mm] __ 0.951
value obtained from FEM software ~— 0.09202 [mm] ~— *°

Displacement ratio =

maximum longitudinal (normal) stress check:

. walue obtained from Vlasov theory __ 140.9137 [N/mm?] _
Stress ratio = value obtained from FEM software — 111.9[N/mm?2] 1.259

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.2.3 Beam 7

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 7. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.002451[rad)
Umax,horizontal = 01838[mm]
Tmaz = 140.9137[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 21 and 22 .

Table 13: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress [N/mm?]
3 0.1881 70.24
2 0.1880 82.89

Figure 21: Maximum Displacement of beam 7
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©DB: Trmash2L300.0db  Abaqus/Standard 2DEXFERIENCE k2019%  Sun Oct 10 13131116 W, Europs Daylight Time 2021
Step: Step-1
i

Figure 22: Maximum Stress of beam 7

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 2 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.1838 [mm] — 0.978

Dzsplacement ratio = value obtained from FEM software ~— 0.1880 [mm)]

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _  140.9137 [N/mm?] _ 1.7

Stress ratio = value obtained from FEM software ~—  82.89 [N/mm?]

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.2.4 Beam 8

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 8. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.005011[rad)
Umax,horizontal = 03758[mm]
Tmaz = 140.9137[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below. and
the visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 23 and 24 .

Table 14: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress[N/mm?]
4 0.3803 53.73
2 0.3805 73.81

ODBi mesh2L600.0db  Abagusstandard JDEXPERIENCE R2019%  Sun Oct 10 13:45:17 W, Europe Daylight Time 2021
Step: Step-1

Figure 23: Maximum Displacement of beam 8
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ODBi mesh2L600.0db Al 30ER ENCERR20189%  Sun fi 3:45:17 W, Europe Daylight Time 2021
Step: Step-1 <

Figure 24: Maximum Stress of beam 8

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 2 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 0.3758 [mm] __ 0.987
value obtained from FEM software ~— 0.3805 [mm] ~— ~°

Displacement ratio =

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _ 140.9137 [N/mm?] _ 1.91
value obtained from FEM software ~—  73.81 [N/mm?2] ~— —°

Stress ratio =

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.2.5 Beam 9

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 9. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.001013[rad)
Umax,horizontal = 07597[mm]
Tmaz = 140.9137[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 25 and 26 .

Table 15: Results of the FEM calculations for different element sizes

element size [mm)| maximum displacement [mm| | maximum stress [N/mm?]
) 0.7638 43.99
2 0.7641 71.98

0B tmesh2L1200.0db  Abas

Step: Step-1

Figure 25: Maximum Displacement of beam 9
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ODB: tmesh2L1200.0db  Abaqus/Standard 3DEXPERIENCE R2019x  Sun Oct 10 14:03:37 W, Europe Daylight Time 2021

Step: Step-1
Increment

1; Step Time =  1.000

Figure 26: Maximum Stress of beam 9

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 2 mm.

Mazimum displacement check:

value obtained from Vlasov theory __ 0.7597 [mm] __ 0.994
value obtained from FEM software ~— 0.7641 [mm]| — 7

Displacement ratio =

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _  140.9137 [N/mm?] 1.958
value obtained from FEM software —  71.98 [N/mm?] ~— ~°

Stress ratio =

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.2.6 Beam 10

Calculations Vlasov torsion theory

In chapter 2.4 the application of the Vlasov torsion theory for the mentioned set
up has been determined. These calculations have been performed in maple for
the determined properties of beam 10. The performed calculations can be found
in Apendix A . From these calculations we can derive the following outcomes:

¢ = 0.02037[rad]

Umax,horizontal = 15276[mm]
Tmaz = 140.9137[N/mm?]

Calculations Finite Element Method

The calculations performed with the Finite Element Method have been per-
formed for different element sizes as has been described in chapter 2.6. The
results from the different element sizes can be found in the table below and the
visual display of the maximum displacement and the maximum stress of the
smallest mesh size can be found in respectively figure 27 and 28 .

Table 16: Results of the FEM calculations for different element sizes

element size [mm)|

maximum displacement [mm]|

maximum stress [N/mm?]

1.529
1.531

40.01
60.58

ODB; tmesh3L2400.0db  Abaqus/Standard IDERPERIENCE R2019x

Step: Step-1
crarpenty 1y

Sun Oct 10 14:43:03 W, Europe Daylight Time 2021

Figure 27: Maximum Displacement of beam 10
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0DB: tmeshal2400,0db  Abaqus/Standard 3DEKPERIENCE R2019x  Sun Oct 10 14:43:03 W, Eurape Daylight Time 2021

Step: Step-1
Increment

1; Step Time = 1.000

Figure 28: Maximum Stress of beam 10

Comparison of the results

The comparison will be performed for the values obtained from the smallest
mesh size. The smallest mesh size that could be performed is 3 mm.

Maximum displacement check:

value obtained from Vlasov theory __ 1.5276 [mm] __ 0.998

Dzsplacement ratio = value obtained from FEM software — 1.531 [mm] ~—

maximum longitudinal (normal) stress check:

value obtained from Vlasov theory _ 140.9137 [N/mm?] _ 239
value obtained from FEM software —  60.58 [N/mm?] ~— <*

Stress ratio =

From the performed ratio checks it can be concluded that the ratio for the max-
imum horizontal displacement satisfies the conditions mentioned in chapter 2.6
to be valid. The ratio for the maximum longitudinal(normal) stress exceeds the
maximum allowable error. Which means that the found outcomes are invalid.
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3.3 Overall comparison of the results

In the table below the overall results are displayed. The first 5 beams have
a solid rectangular cross-ssection and the beams 6 until 10 have a rectangular
closed tube cross-section.

Table 17: Overall results of the ratio’s for the smallest possible mesh size

beam beam length | element size | ratio max- | ratio maxi-

[mm] [mm] imum  dis- | mum stress
placement

beam 1 150 1.8 0.977 1.23

beam 2 300 3 0.988 1.441

beam 3 600 3 0.994 1.44

beam 4 1200 3 0.997 1.44

beam 5 2400 6 0.996 1.85

beam 6 150 1 0.951 1.259

beam 7 300 2 0.978 1.7

beam 8 600 2 0.987 1.91

beam 9 1200 2 0.994 1.958

beam 10 2400 3 0.998 2.32

After performing several refining steps of the mesh size, it could be observed
that the mesh size had a decisive influence on the results of the maximum
stress. Multiple attempts has been done to refine the mesh size to an even
smaller size, however due to an insufficient random access memory of the TU
Delft work station, where the Abaqus software was installed, it was not possible
to perform these refining steps. To give more understanding of the influence of
the mesh size on the maximum stress, it has been chosen to plot the mesh size
vs the maximum stress, this has been done for beam 1. Between these points
an interpolation function has been used to give a more realistic behaviour of the
function, as can be seen in figure 29 . Furthermore, the length of the beam has
influence on the accuracy of the ratio’s. It can be observed that the longer the
beam the more inaccurate the ratio’s become. The influence of the length on
the accuracy of the maximum stress ratio’s has been plot in figure 31 .

Regarding the ratio’s for the maximum displacement, it can be observed that
the mesh size does not have a significant influence on the results. Furthermore,
the length of the beams does not influence the outcome of the ratio’s for the
maximum displacement, as can be seen in figure 31. The ratio’s are consistently
close to the desired value of 1 with a maximum error of 4.9 percent.
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o Vlasov theory compared with FEM software calculation

—— calculated stress Vlasov torsion theory
%0 —— Observated behaviour of FEM outcomes
* calculated outcomes with FEM

maximum stress [N/mm~2]
8
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20 25 30 35 40 45 50

mesh size [mm]

Figure 29: The Observed behaviour of the maximum stress

It can be observed that the smaller the mesh size the more the maximum stress
approaches the desired value. In figure 30 the desired behaviour of the maximum
stress is displayed, it should be mentioned that singularities have not been
taken into account. By following the behaviour of the obtained results it is also
possible that the results of the maximum normal stress will go to infinity instead
of converging to the desired normal stress. This would cause an undesirable
situation and can not be excluded.

100 Vlasov theory compared with FEM software calculation

—— calculated stress Viasov torsion theory
—— expected behaviour of FEM cutcomes
@ calculated outcomes with FEM

maximum stress [N/mm~2]
3

mesh size [mm]

Figure 30: The expected behaviour of the maximum stress
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stnhE influence of the lengths of the beam on the the accuracy of the ratios for the rectangular closed tube cross-section
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Figure 31: The influence of the lengths of the beam on the the accuracy of the
ratios for the rectangular closed open cross-section
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It can be observed that all the outcomes obtained for the maximum displace-
ment by use of the Vlasov torsion theory satisfy the mentioned error conditions.
To show the possible importance of the Vlasov torsion theory it has been cho-
sen to also calculate the maximum displacements by use of the Saint-Venant
displacement equations. By comparing these results it is possible to determine
if the Vlasov torsion theory is the only option to calculate the maximum hor-
izontal displacement for a one side constrained beam, loaded with a torsional
moment. The performed calculations can be found in Appendix B. In the ta-
ble below the results from the Vlasov torsion theory and the results from the
Saint-Venant theory are displayed.

Table 18: Comparison of the Vlasov torsion theory with the Saint-Venant-theory

beam beam length | element| ratio maximum | ratio maximum

[mm] size displacement displacement
[mm] | Vlasov torsion | Saint-Venant
theory theory

beam 1 150 1.8 0.977 1.11

beam 2 300 3 0.988 1.05

beam 3 600 3 0.994 1.03

beam 4 1200 3 0.997 1.01

beam 5 2400 6 0.996 1.0076

beam 6 150 1 0.951 1.035

beam 7 300 2 0.978 1.014

beam 8 600 2 0.987 1.002

beam 9 1200 2 0.994 0.99799

beam 10 2400 3 0.998 0.99616

From the obtained results we can observe that all the ratio’s obtained by use
of the Saint-Venant theory also satisfy the maximum allowable error, with a
minimum error of 0.201 percent and a maximum error of 11 percent. It can be
noted that all the outcomes obtained for the Rectangular solid cross-section are
unconservative even tough the results satisfy the error conditions. Regarding
the values obtained for the rectangular closed tube cross-sections, it can be
observed that the results are more accurate and at the lengths of 1200 mm and
2400 mm it can be concluded that the outcomes are conservative. From these
results we can state that both theories can be used to calculate the maximum
displacement for a rectangular closed tube cross-section and a rectangular solid
cross-section, which is constrained at one side.
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4 Discussion

In the first study done by F.Hilmer about the validity of the torsion theory for

rectangular solid cross-sections and rectangular closed tube cross-sections the
student version of Ansys caused the results to be not conclusive enough. This
was due to the limitation of the element calculations of the software (F.Hilmer,
2021). In this report the FEM software Abaqus has been used on the workstation
of the TU Delft. The software itself can perform unlimited element calculation,
which means that the mesh size can be chosen as small as possible. After
performing some FEM calculations in Abaqus with relative small mesh sizes,
it became clear that the work station of the TU Delft does not have enough
random access memory (RAM) to perform the calculations. This observation
was strengthened by the fact that the bigger the length of the beams the more
inaccurate the outcomes became.This can be explained due to the fact that a
longer beam will consist of more elements compared to a relative smaller beam,
if the same mesh size has been used. If the maximum allowable elements that
can be used is exceeded the Abaqus software will abort the job. Due to this
limitation it was not possible to check the validity of the Vlasov theory for
smaller mesh sizes.

It is also possible that the inconsistent results for the maximum normal stresses
was caused due to singularity, because it has been chosen to constrain the x-axis,
y-axis and z-axis. One scenario was that due to the encastring of the beam it was
not possible for the beam to expand which caused singularity of the elements
and prevented the stresses to converge to the maximum normal stress. To check
if this scenario has took place, it has been chosen to simulate the rectangular
solid cross-section with a length of 150 mm and the constraining of only the
z-axis. This FEM calculation has been done for the smallest possible mesh
size. From these results we can exclude singularity of the encastred model due
to the fixation of the x-axis and y-axis, because the obtained results from the
simulation were almost similar to the results obtained from the fully constrained
model.
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5 Conclusion and recommendation

From the obtained results of the rectangular solid cross-section and the rectan-
gular closed tube cross-section we can conclude that the maximum horizontal
displacements calculated by use of the Vlasov torsion theory are almost the same
as the values calculated by use of the FEM software. From the ratio checks it
can be observed that all the obtained results are below 1, which means that
the Vlasov displacement predictions are all conservative. From the results it is
also notable that the influence of the length on the accuracy of the ratio was
negligible, because the maximum error was equal to 4.9 percent. Which means
that concerning the maximum displacement the Vlasov torsion theory is valid
for rectangular solid cross sections and rectangular closed tube cross sections.
From the results obtained from the comparison of the Vlasov torsion theory
with the Saint-Venant theory it can be observed that both theories satisfy the
maximum allowable error for the maximum displacement raio’s.

From the obtained results of the rectangular solid cross-section and the rect-
angular closed tube cross-section we can conclude that the maximum normal
stresses calculated by use of the Vlasov torsion theory and the values calculated
by use of the FEM software have a significant difference. The minimum error
is 23 percent and the maximum error is 132 percent. It is expected that this
significant difference is caused due to the limitation of applying a smaller mesh
size. Concluding, the errors for the maximum normal stress ratio’s exceed the
maximum allowable error for engineering purposes of 15 percent. Which means
that concerning the maximum normal stress that the Vlasov torsion theory is
not valid for rectangular solid cross sections and rectangular closed tube cross
sections.

The overall conclusion is that with the obtained results it is not possible to prove

the Vlasov torsion theory for rectangular solid cross-sections and for rectangular
closed tube cross-sections. It is expected that the maximum normal stresses
obtained by the FEM software will approach the calculated outcomes with the
Vlasov torsion theory sufficiently to be valid, if a sufficient small mesh size will
be used. If this can be proven it means that the Vlasov torsion theory is valid for
rectangular solid cross-sections and for rectangular closed tube cross-sections.

For third parties who want to do a follow up study about the mentioned re-
search question, it is recommended to obtain the licence of a FEM software and
download it on a computer or work station with enough RAM. The workstation
of the TU Delft has a RAM of 32 GB. So to refine the mesh size a computer
should be used with at least 64 GB.

Furthermore, it is advised to make use of the Abaqus software, because it
can be observed that the outcomes obtained by use of the Ansys software and
outcomes of the Abaqus software have a significant difference. This difference
in the outcomes could be due to a model error in one of the software or due
to singularity of one of the models. In order to find out what caused this
difference, it is advised to compare both methods of modelling. By applying the
software Abaqus it is possible to do a follow up study more properly, because the
instruction manuel for abaqus for the mentioned set-up is described in paragraph
2.5 .
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7 Appendix A

Gi= 8139534883
Iw=29410"
owi=37910°

v

m=0 (&)

1400.

7.9590000 10"

393023256 10" @

Viason Equation :
with{ DEtools)

Viason Equation :
with( DEtools) :
ODE i= ECw-diff (phi(x).

\x.X) - GIw-diff (phi ()

0DE = 79590000 10" L o(x) — 2.393023256 102 L o(x) =0 @
@ @

Boundary conditions:
bound_con = phi(0) =0.D(phi) (0)

. Gl

D(phi) (1) - ECw- (D@@3) (phi) (1) =T. (D@@2) (phi) (1) =0:
bound_con == (0) =0, D(6)(0) =0, 2.393023256 10'> D(0) (150) — 7.959000010'* D) (6) (150) =1.010”. D) (¢) (150) =0 @

Solving Viasov theory:
Sol = evalf (dsolve( { ODE, bound_con}. {phi(x) })):
assign(Sol): phi := phi(x)

Sol := 6(x) = ~0.00007620944719 + 4.178814383 10 ~®x — 5.468545857 10~ 12 P 03485327774x 4 6 60007620045263 005 483327774x
6 :=-0.00007620944719 + 4.178814383 10~ x — 5.468545857 1012 2 O548327774x 4 0007620045263 ¢ ™0 03483327774 ®
Bimoment and torsional moment:
B= -ECw-diff (phi.x.x):
Bim 1308635741 Q9T _ 1 g1a00007 108 ¢-0054833277T4x
Ml = 1717156602 10'2 > 04833277742 3 303023084 1010 ¢ 005483327774
M2 = 07175678705 &” S E32T774X 1 9 099999283 106 ¢ 0 05482777
Mivtot = 1.717156602 10" "% 483327774X 4 3 303023084 10'7 & 2 ©
—1.823709794 10°
x o
rotations and displacements:
x = I: phi_max = phi;
phi_max = 0.0005506127102 ®
w_max = phi_max-0.5-I;
u_max = 0.04129595326 ©
x = 0: sigma_max =
sigma_max = 67.36658870 (10)
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beam with L =300 mm

029"

10E6:#Nmm

210000:#MPa
E

0 Fy e

2.94E7Hmm
3.79E9#mm®
= LAE3#mn?

Stiffne:
ECw = E-C:
Ghv = G-hv:
7.9590000 10
2.393023256 101
Viason Equation :

with(DEtools) :
ODE = ECw-diff (phi(x). x,

. x.x) = Ghv-diff (phi(x). x, x) = mx :
4 2
ODE = 79590000 10™* % o(x) — 2393023256 1012 4 g(x) =0
v @’
Boundary conditions:
bound_con = phi(0) =0. D(phi) (0) =0. Ghv-D(phi) (/) - ECw-(D@@3) (phi) (/) = 7. (D@@2) (phi) (1) = 0
bound_con = 6(0) =0, D(6) (0) =0, 2.393023256 10'2 D(¢) (300) — 7.9590000 10'* D) (6) (300) = 1.0 10", D®)(6) (300) =0

Solving Viasov theory:
Sol = evalf(dsolve( { ODE, bound_con}, {phi(x)})):
assign(Sol); phi := phi(x)

19 005483327774 x -0.05483327774 x

Sol == o(x) = ~0.00007620945812 + 4178814383 10~ ° x

-0.00007620945812 + 4.178814383 10 % x — 3.924053381 10719 P 048327774

3.924053381 10 +0.00007620945812 ¢

005483327774 ¢

+0.00007620945812 ¢
Bimoment and torsional moment:

— 2774 N 27774 x
B 7 DOS48ITTT4 08 ¢-005483327774

9.390351001 10 — 1.823710056 1

005483327774 x

Mivl = 1232176587 ¢ 9 ~0.054833277 74 x

+2.393023256 10"

=8 DOS483327774 x 7 008483327774 x

M2 + 1.000000000 10" &

= 5.149037245 10

Mivtot = 123217.6587 L O3H32T7I4x 5 393023256 1019 & 003483327774 x

x=0:
#plot(B,
—1.823710056 10°
=
rotations and displacements:
1: phi_max = phi;

phi_max = 0.001177434857

u_max = phi_max-0.5-h;

008830761430

u_max

B

+ sigma_max

sigma_max = 67.36639838
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beam with L = 600 mm

parameters:

= 150: #mm

10E6:#Nmm
210000:#MPa

E
PRI T

2.94ETHmm*
3.79E9H#mm®
V= L4E3#mm®

SR
m

ECw = 7.9590000 10™

Ghv = 2.393023256 10"

Viason Equation :
with(DEtools) :
ODE i= ECw-diff (phi(x). x,x.x.x) = Ghv-diff (phi(x). x.x) =

Viason Equation :
with( DEtools)
ODE := ECw-diff (phi(x). x.x, x.x) = Ghv-diff (phi(x). x.x) = mx :
4 2
ODE = 7.9590000 10** 6—4 o(x) — 2393023256 1012 4 o(x) =0
@ @’

Boundary conditions:
bound_con = phi(0)

. D(phi) (0) = 0. Ghv-D(phi) (/) = ECw(D@@3) (phi) (/) = 7. (D@@2) (phi) (1) = 0:
‘bound_con := 6(0) =0, D(6) (0) =0, 2393023256 101 D(6) (600) — 7.9590000 10* D*)(¢) (600) = 1.0 10”. D' (¢) (600) =0

Solving Viasov theory:

Sol i= evalf (dsolve( { ODE. bound_con). {phi(x)})):

assign(Sol): phi := phi(x)

Sol == o(x) = ~0.00007620945812 + 4.178814383 10~° x — 2.020509704 10733 (O8I x

© :=-0.00007620945812 + 4.178814383 10~ % x — 2.020509704 1073 05483327774

+0.00007620945812 ¢
005483327774 x

+0.00007620945812 ¢
Bimoment and torsional moment:
- ECw-diff (phi. . x):
= Ghv-diff (B.x)
diff(B. x)
Ml + M2

B = 4835126712 10721 P OS8BITTx _ 533710056 10° &0 0483

=10 D0S832TTTAx 4 3 393093556 1019 ¢ 00HEIITTax

327774 x

Miv] = 6344523150 10

M2 = 2.651258459 10722 LOSBTT4x 4 4 600000000 107 &0 05483774 X

Mivtor = 6.344523150 10710 P OHEBITTTX 4 5 303023756 1010 ¢ 00X

xi=0:8;
#plot(B. x=

—1.823710056 10°
x

rotations and displacements:
xi= 1 phi_max = phi;

phi_max = 0.002431079172
u_max == phi_max-0.5-Ir,
u_max = 0.1823309379
B
0 sigma_max ==

sigma_max = 6736659838
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beam with L = 1200 mm

parameters:

150; #mm

3.79E9:H#mm®
LAE3#mnit

Viason Equation :
with(DEtools) :
oD,

8139534883
294107

3.7910°
1400.

mx =0

9590000 10

2393023256 102

E = ECv-diff (phi(x). % % %, ) = Glv-diff (phi(x), . x) =mx s

Boundary conditions:
bound_con = phi(0) = 0, D(phi) (0)

Solving Viasov theory:

. Ghv-D(phi) (/) = ECw- (D@@3) (phi) (/) = 7. (D@@2) (phi) (1) = 0:
bound_con = (0) =0, D(6) (0) =0, 2393023256 10" D(6) (1200) — 7.9590000 10"* D) (0) (1200) = 1.0 10", D*' () (1200) =0

" 2
79590000 10™* % o(x) — 2393023256 1022 9 o(x) =0
dy’ dy’

Sol = evalf (dsolve( { ODE, bound_con, {phi(x)})):
ohel {00

assign(Sol): ph

phi(x

o=
#plot(B.

rotations and displacements:
1: phi_max = phi:

w_max = phi_max-0.5-h.

0: sigma_max

Sol

o(x) =
-0.00007620945812 + 4.178814383 10

0.00007620945812 + 4.178814383 10~ °x

— 5356893223 10762 LONEBITIX 4 6,00007620945812 ¢

Bi= 1281917006 10~ DB _ | g3 5056 108 (005483327774 x

Mivl = 1682096997 1038 LOSEBTHE 4 5 393053556 1919 (~00S4E332T7T4x

—51 005483327774 x 7 -0.05483327774x

Miw2 = 7.029171123 10 + 1.000000000 10" &

Mivtot = 1682096997 1078 PO37TH4x 4 3 39303256 1019 ¢ 0 0HEITT4x

—1.823710036 10°

xd=m

phi_max := 0.004938367802

3703775852

sigma_max = 6736659838
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beam with L = 2400 mm

10E6:#Nmm
210000:#MPa

E
22(1+v) "
By = 2.94ETHmm*
3.79E9H#mm®
v i= LAE3#mn’®
Nt

mx = 0
m

G 1= 81395.34883

Bv=29410"
37910°
= 1400,
0

mx

Ghv = G-Iw
7.9590000 10
2.393023256 10"
Viason Equation :
with(DEtools) :
ODE = ECw-diff (phi(x). x.x. x.x) = Ghv-diff (phi(x). x.x)

n 2
ODE = 7.9590000 10** "—4 o(x) — 2393023256 10*2 d—z o(x) =0
@ @

Boundary conditions:
bound_con = phi(0) =0, D(phi) (0) = 0, Ghv-D(phi) (/) - ECw-(D@@3) (phi) (/) = T. (D@@2) (phi) (/) = 0:
bound_con = 6(0) =0, D(6) (0) =0, 2.393023256 10'> D(¢) (2400) — 7.9590000 10™ D*)(¢) (2400) = 1.0 10", D*'(¢) (2400) =0

Solving Viasov theory:
Sol := evalf (dsolve( { ODE. bound_con}. {phi(x)})):
assign(Sol): phi *= phi(x)

Sol = ¢(x) = -0.00007620945812 + 4178814383 10~ 6 x — 3765451918 10~ 119 L0 05483327774 x

—119 005483327774 x

+0.00007620945808 ™0 0%483327774x

-0.00007620945812 + 4.178814383 10 ° x — 3765451918 10 +0.00007620945808 00483327774 x

Bimoment and torsional moment:

—107 008483327774 x 8 005483327774 x

B :=9.010814004 10 — 1.823710055 10° &

Ml = 1182374764 10~ PIHEBTTIX 4 5 393093255 1019 005483327774
M2 1= 4940924669 10108 LPOMEBTIX 1 g 999999996 10 ¢ 0.0HEITTX
28 E0 05483327774 x 9 evﬂ 05483327774 x

Mitot == +2.393023255 10"

182374764 10

—1.823710055 10°

rotations and displacements:
xi= 1 phi_max = phi;

phi_max := 0.009952945062
w_max = phi_max-0.5-h:
u_max = 0.7464708795
B

0 : sigma_max

sigma_max = 6136659833
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[Rectangular closed tube Cross-sections

beam with L = 150 mm

G = 8139534883

44107
9.023 10°
= 1000,
= m
1.894830000 10
1172093023 10 @
1271464051 (]
Viasov equation:
with{ DEtools)
‘ODE = ECw-diff (phi(x), x, x, x, x) ~ Ghw diff (phi(x), x, x) = mx;
& ol
Boundary conditions:
bound_con = phi(0) =0, D(phi) (0) =0, Glw-D(phi) 1) ~ ECw- (D@@S) (phi) 1) = T (D@@2)(phi) 1) =0;
bound_con = 6(0) =0, D(6)(0) =0, 1172093023 10" D(¢)(150) — 1894830000 10'* D*)(¢)(150) = 1.0 10", D'*)(6) 150) =+ ®
Sobving Viasow theors:
Sol = evalf (dsolve( { ODE, bound_con}, {phi(x)}));
assign(Sol) phi = phi(x) . .
Sol = @(x) = ~0.0001084780838 + 8531746034 105 x — 6.140872277 1015 DOSH64T 501084780838 078649490646
1= ~0.0001084780838 -+ §.531746034 10~ x— 6.140872277 1015 LOTIM64% 1 ,0001084780838 ¢ 0TI ©
‘Bimoment and torsional moment:
~ECw-diff (phi. x, x)
. x):
+ M2,
Bi= 0007197673551 > OIHOT _ | 271464052 10° ¢ ORI
6635140760 10° POTSEM6X 4 1 172003024 1017 ¢ O 0TIEINI08IX
0.0005660933586 c” TS84 1 000000001 107 ¢ 00TEBHI0Ex
6635140760 10° XTI 4 17200304 1019 ¢ DIINN )
Rotation, dispacement and sress:
1 phi_max = phi;
phi_max = 0.001171283821 ®
©
a0
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jpeam with L =300 mm

§94830000 10
172093023 102
Characteristic length:
tes= sau G )
le = 1271464081
Viasav equation:
with{DEtools) :
ODE = ECvw-dif (phi(x). x. x. . x) - Glw-ciff(phi(x). x. x) =moc
ODE = 194830000 10* i‘ o121 — 1172003023 102 =g =0
dx’ &

Boundary conditions:

bound_con = phi(0) =0, Diphi) (0) =0, Ghw-D(phi) (1) - ECw- (D@@3) (pki) (1) = T, (D@@2) (phi (1) =0;

bonnd_con = #(0) = 0, D(4)(0) =0, 1172093023 10'* D(#) (300) — 1.894830000 10** D'/ (¢) (300) = 1.0 107, D'?) (¢} (300) =0
Salving Flasov theary:
Sol = evalf (dsolvel (ODE, bound_con}, {phi(x)}));
assign(Sol); phi = phi(x)
() = ~0.0001084780838 + 8. 531746034 10~ x — 3.476307080 10725 DITSHMIEX g 6901084780835 ¢ OITEHIME X
0—11 tl!,mlﬂﬁﬁﬂolx <0.07864849064 x

-0.0001084780838 + 8 531746034 10~* x — 3 476307080 1

o

+0.0001084780838 ¢

‘Bimoment and torsional moment:

B = -ECw-diff{phi. x. x).

Ml = Glw diff (B, x).
M2 = diff(B, x);
Mwtor = Mwl + Mw2;
Br= 4.074555276 1013 (M OTISIMI0BT_ 4 551464052 1% ¢ 00706
007861545084 x 07864845064 x

Ml = 003756109192 ¢ + 1172093024 10" ¢
M2 = 3204616970 10714 OSN3 000000001 107

Mutor = 003756109192 ¢ OTIHNOIX 1 4 172093024 1917 ¢ OOTIENNGIx

-0.07364949064 x

Roution, dispacement and stress:

I phi_max := phi;

x
Pphi_max = 0.002451045726

u_max = phi_max0.5};

01838284294

u_max

sigma_mere = 140.9136708
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beam with L =600 mm

G = 8139534883
Iwi=14410"
O =902310°

1000.

m

1894830000 10

1172093023 102 @

Viasov equation:

with( DErools) :
ODE := ECw-diff (phi (x). x,x. . x) - Ghv-diff (phi (x). x. ) = mx:

2
ODE = 1.894830000 10** b 6(x) — 1172003023102 < () =0 @
@ &

Boundary conditions:

bound_con = phi(0) =0, D(phi) (0) =0, Ghw-D(phi) (1) - ECw-(D@@3) (phi) (1) =T. (D@@2) (phi) (1)

bound_con = 6(0) =0, D(6) (0) =0, 1.172093023 10" D(9) (600) — 1.894830000 10" D*) () (600) = 1.0 10", D () (600) =0 ®

Solving Viasov theory:

evalf(dsolve( { ODE. bound_con}. {phi(x) })):
assign(Sol); phi = phi(x)

—45 DO7864549064x

Sol = o(x) = ~0.0001084780838 + 8.531746034 10~ x — 1.114023266 10 +0.0001084780838 &0 07864949064 x

—45 DO7864949064x

-0.0001084780838 + 8.531746034 106 x — 1.114023266 10 +0.0001084780838 ¢ 0 07864949084 ©

Bimoment and torsional moment:

Cov-diff (phi. x. x):
Glw-diff(B.x):

Bim 1305738807 10=33 DOTBHO064X _ 1 201 4cic0 ) o (00784949064

Mivl = 1203689125 10722 OTESHNI0SH 4 19709302 1010 ¢007E6404084x
M2 = 1.026056992 10 7M1 1 000000001 107 & OTEENS0E
Mivtor = 1203689125 1022 DUTEGIN06T 4 1 197093024 1019 ¢ 00786040084 m
Rotation, dispacement and stress:
xi=1: phi_max = phi:
phi_max = 0.005010569536 ®
u_max = phi_max-0.5-h
u_max = 03757927152 ©
0: sigma_max
sigma_max = 140.9136708 a0
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beam with L = 1200 mm

ECw = 1894830000 10"

Ghw = 1172093023 10"
Characteristic length:
ECw
Eesal )
le = 1271464051

Viasov equation:

with{ DErools) -
ODE := ECw-diff (philx), x, x, x, x) = Ghv diff (phi(x), x, x) = mx.

ODE = 1894830000 10" iJ #(x) — 1172093023 10'? sz;—) =0
& @
Boundary conditions:
bound_con = phi(0) =0, Diphi)(0) = 0. Giw -D(phi)(/) - ECw- (D@3 )(phi)(
bound_can = 6(0)

. (D@@2) (phi) (1 =0;
. D(#)(0) =0, 1.172093023 1012 D(6) (1200) — 1894830000 10' D'*'(4) (12001 = 1.0 10", D'¥ () (1200) = 0

Solving Viasov theory:

Sol = evalf(dsolve( { ODE. bound_con}, {phi(x)})):
assign(Sof); phi := phi(x)

d(x) = ~0.0001084730838 + 8.531746034 10~ x — 1.144053959 1036 P9 SE4%49084x 1 5,090 104750838 ¢ 0 ITEES4084x
0.0001084780838 + £.531746034 10™%.x — 1.144083950 1036 (LTSNS X, 0,0001084780838 ¢ "0TEHNIE

@

Bimoment and rorsional momens:

B = —ECw diff (phi, x, x);
1 - diff (B, x);

Ml = Ghw diff(

M2 = diff(B. x):

Mivtor = Miwl + M2

Bom 1340937663 10~ LDVSIUS0SE _ 1 10 1cuocn 08 -00TRSISIS0Hx

Mol = 1236136938 10-03 OTSIUSOSLx 1 o000 g1 (- DOTRGISIS06Lx
M2 = 1054640642 107 PTSHMNEIx 4 1 000000001 107 ¢ 007808
Muvtor == 1236136938 1053 (MIT8SN06x 4 1 173003024 1017 O 0TBE4NGI

Rotation, dispacement and stress:

1- phi_max = phi;

phi_max = 0.01012961716

u_max = 07597212870

140.9136708
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beam with L = 2400 mm

= [0}

1.894830000 10"

Ghe = 1172093023 10'* @
Characteristic length:
Ies= sm{% :
Ie = 12.71464051 @

Viasor equation:

with{ DErools) -
ODE = ECw-diffphi(x), x, x. x, x) - Ghw-diff(phi(x), x. x) = mx;

0DE = 1894830000 10" &

o(x) — 1.172093023 10'2 i, @
&
Boundary conditions:
bound_con = phi(0) =0, D(phi)(0) =0, GhwDiphi){/) - ECw (D@@3)(phi)(/) = T, (D@@2)(phi) (1) = 0;
bownd_con = ¢{0) =0, D(6)(0) = 0, 1172093023 10'2 D(¢)(2400) — 1.894830000 10'* D' (¢)(2400) = 1.0 10", D'* () (2400) = 0 ®
Solving Viasow theory:
Sol := evalf(dsolve{ { ODE, bound_con). {phi(x)})}:
assign{Sol); phi = phi(x)
Sol = ¢(x) = -0.0001084780838 + 8.531746034 10~° x — 1206565900 1048 ¢ +0 €
& = -0.0001084780838 + 8 531746034 105 x — 1206565900 10188 LOTEHNNEE L 1 001084780838 O ()
Bimoment and torsional moment:
~ECw diff (phi. x. x);
"
Br= 1414207473 1071 P OTISINN6T ) 571464057 10F ¢ PITEOI0406
Ml = 1303680360 107143 DOTSN06Ix L 177093004 1! ¢ 0 OTRO04N0EIX
M2 = 1112266974 107157 DOTRHMNEX L 1 000000001 107 ¢ 0076 X
Mwtot := 1303680360 10143 DOTSSMNEIX 4 19909304 1017 o 0OTEERI06 X @]
Rotation, dispacement and stress:
x = 1: phi_max = phi;
phi_ma = 002036771240 ®)
w_max = phi_max-0.5h;
_max = 1527578430 ©)
0: sigma_max = -2
= O
sigma_mex = 1409136708 0
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8 Appendix B

Rectangular solid cross-section

Iw = 29400000 [mm~4] M

= A (.p w
G= 8139534883 [N/mm~2] ‘4 o ("'I _r * I —

Moy = Uy -
Mw = 10000000 [Nmm] / GI,,
h= 150 [mm]
I [mim] phi umaxhor [mm] (Saint-Venant}) umaxhor [mm] (FEM)

beam 1 150 0.000627 0.047011662 0.04228
beam 2 300 0.001254 0.094023324 0.085935
beam 3 600 0.002507 0.188046647 0.1834
beam 4 1200 0.005015 0.3760932%4 0.3717
beam 5 2400 0.010029 0.752186589 0.7465
Rectangular closed tube cross-section
Iw = 14500000 [mm~4] M

W A p w
G= 81395.34883 [N/mm~2] M i GI . 2 * E =
Mw = 10000000 [Nmm] w LAY Gl
h= 150 [mm]

I [mm] phi umaxhor [mm] (Saint-Venant) umaxhor [mm] (FEM)

beam 6 150 0.001271 0.095320157 0.09202
beam 7 300 0.002542 0.190640354 0.188
beam 8 600 0.005084 0.381280788 0.3805
beam 9 1200 0.010167 0.762561576 0.7641
beam 10 2400 0.020335 1.525123153 1.531
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ratio
1.111913
1.052304
1.025336
1.011819
1.007618

@

ratio
1.035804
1.014045
1.002052
0.997987
0.996161



