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Abstract
There are a few techniques to describe the torsional behaviour of beams. One of these techniques
is the torsion theory of Vlasov. This theory describes the torsional behaviour of a beam with a
fixed end at one side which constrains warping1. The theory of Vlasov is proven to be valid for
thin-walled open cross-sections (Hoogenboom, 2019), however, it is uncertain if the theory can be
applied for other types of cross-sections. This study looks at the validity of the theory of Vlasov
and its limitations for different types of cross-sections and lengths and will formulate an answer
to the research question: "Is the Vlasov torsion theory valid for rectangular solid cross-sections
and for rectangular closed tube cross-sections?".

To answer the research question a specific method and setup is used for the different types of
cross-sections and beams. This study looks at a beam fixed at one side and a torsional moment
at the free end. For each of the cross-sections five beams with different lengths are tested, i.e.
beams 1 - 5 for rectangular solid cross-sections and beams 6 - 10 for rectangular closed tube
cross-sections. The first beams of each cross-section, i.e. beams 1 and 6, have a length of 150
mm, which matches the height of the beam, and the following beams have twice the length of
the previous beam. First of all, the cross-sectional parameters, i.e. warping constant, torsional
moment of inertia and warping function, are calculated with a cross-section design program called
ShapeBuilder. These parameters are used as input for the differential equation of Vlasov. The
differential equation of Vlasov, in combination with specific boundary conditions, returns a value
for the angular deviation which results in the maximum horizontal deformation of the beam. The
maximum normal stress in the beam can be calculated with the use of the differential equation of
Vlasov as well. The results obtained with the theory of Vlasov are compared to the results of a
Finite Element Method program called ANSYS Workbench in terms of a ratio for the maximum
horizontal deformation Ratio umax and a ratio for the maximum normal stress Ratio σmax. A
maximum error of 15% is allowed for engineering purposes.

The study found that the Ratio umax for rectangular solid cross-sections is the most accurate for
the longest beam, i.e. beam 5, and is equal to 0.99. This is an error of 1%. For beams 2 - 4 ratios
of respectively 0.90, 0.95 and 0.97 are found, which means that these beams are within the error
margin of 15%. For beam 1 a Ratio umax of 0.82 is found. The Ratio σmax of beam 1 is equal
to 0.99 which means an error of 1%. Beams 2 - 5 are less accurate, respectively ratios of 1.07,
1.10, 1.18 and 1.25. A similar result is found for beams 6 - 10, which have rectangular closed tube
cross-sections. The ratios for the maximum horizontal displacement are respectively 0.83, 0.94,
0.97, 0.99 and 1.04 and the ratios for the maximum normal stress are respectively 1.04, 1.29, 1.34,
1.67 and 1.87.

The theory of Vlasov probably gives an accurate result for the normal stresses due to constraint
warping for both types of cross-sections and the different lengths. Due to the educational license
of ANSYS Workbench the number of elements for the mesh of the longer beams, e.g. beams 2 -
5 and beams 7 - 10, is limited. Furthermore, it can be observed that the theory of Vlasov is valid
for both types of cross-sections for the horizontal deformation, except for extreme short beams
where the length of the beams matches the height of the cross-sections.

1Warping is defined as the deformation of an initial flat cross-section and can occur due to a torsional moment
or an eccentric force (Hoogenboom, 2019).
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1 | Introduction
1.1 Background information

Besides extension, bending and shearing, beams can experience torsion as well as a result of a
torsional moment or an eccentric force, which can lead to warping1 of a beam. Over the past years
several techniques are developed to describe the torsional behaviour of beams. The first technique
is a theory found by Aldémar Barré de Saint-Venant, also called circulatory torsion or uniform
torsion. This theory does not take the constraint of warping at the fixed support into account,
therefore, it is only valid from a certain distance of the fixed support, see Figure 1.1. This distance
is called the characteristic length (lc in [mm]) and is defined as:

lc =

√
ECw

GIw
(1.1)

Where:
ECw [Nmm4] = warping stiffness
GIw [Nmm2] = torsional stiffness

Figure 1.1: Influence of constraint warping, From: Hoogenboom, 2019

1.2 Theory of Vlasov

Because of this difficulty, Vasiliy Vlasov developed a new theory that does take the constraint
of warping at the fixed support into account. This theory is referred as warping torsion or
non-uniform torsion. The warping along the longitudinal axis is not constant in this theory
and the angular deviation ϕ of the cross-section follows from the differential equation of Vlasov:

ECw
d4ϕ

dx4
−GIw

d2ϕ

dx2
= mx (1.2)

Where:
E [MPa] = Young’s modulus
Cw [mm] = warping constant
ϕ [rad] = angular deviation
G [MPa] = shear modulus
Iw [mm4] = torsional moment of inertia
mx [Nmm/mm] = distributed torsional moment along the beam

1Warping is defined as the deformation of an initial flat cross-section and can occur due to a torsional moment
or an eccentric force (Hoogenboom, 2019).
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1.3 Problem definition and research question

The theory of Vlasov is valid for thin-walled open cross-sections, however, it is very uncertain if
the theory applies for other types of cross-sections as well. A study performed by T.B. Raaphorst
(Raaphorst, 2020) researched the validity of the Vlasov theory for different types of solid and
tube cross-sections. One of the conclusions of this study is that the Vlasov theory is accurate for
stresses in closed tube cross-sections. An additional study, performed by F. Yildirim (Yildirim,
2021), found inconsistent results. The study states that the Vlasov theory is not accurate for
stresses in closed tube cross-sections. The difference with the performed Finite Element Method
is a factor 10. Most likely a calculation error is made, but not found by the author. This
contradiction between both studies needs additional research to check the validity of the Vlasov
theory for different types of cross-sections. This report will look deeper in this subject and will
formulate an answer to the research question:

Is the Vlasov torsion theory valid for rectangular solid cross-sections and for rectangular closed
tube cross-sections?
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2 | Method
The validity of the theory of Vlasov is checked with the use of different computer programs.
Different types of cross-sections are analysed with the method described in this chapter. Furthermore,
beams with different lengths are analysed to check whether this will give the same results or not.

2.1 Setup of the beam

The different types of cross-sections have the same setup for each of the beams. This study analyses
a beam with a fixed end at one side which constrains the warping. Due to a torsional moment
which is attached at the other end of the beam, torsion occurs in the beam, see Figure 2.1.

Figure 2.1: Setup of the beam, From: Hoogenboom, 2019

The material that the beam is made out is structural steel. Structural steel has typical properties
which are used for all cross-sections that are analysed in this study. Some standard parameters that
are used for all cross-sections and the typical properties of structural steel are listed in Table 2.1.
The shear modulus G is calculated with Equation (2.1).

G =
E

2(1 + ν)
=

210000

2(1 + 0.29)
= 81395MPa (2.1)

Table 2.1: Standard parameters and properties of structural steel

Symbol Property Value Unit
T Torsional moment 10E6 Nmm
E Young’s modulus 2.1E5 MPa
ν Poisson’s ratio 0.29 -
G Shear modulus 8.1E4 MPa

2.2 Determination of the cross-sectional parameters

First of all the cross-sectional parameters of each beam are calculated with the use of a cross-section
design program called ShapeBuilder. The dimensions of the cross-sections are chosen arbitrary,
as the theory of Vlasov has to be valid for all dimensions. Subsequently the cross-section is
modelled in ShapeBuilder with the parameters and properties mentioned in Table 2.1. The mesh
refinement is chosen as fine as possible to get the most exact results. The program returns a
set of cross-sectional parameters and displays the results in an analysis view. The cross-sectional
parameters that are of use for the application of the theory of Vlasov are: the warping constant
Cw, the torsional moment of inertia Iw and the warping function ψ. The warping constant shows
whether warping could occur in a cross-section or not. If the warping constant equals zero, warping
does not occur in the cross-section, for example in circular cross-sections (Hoogenboom, 2019).
The warping function shows the distribution of the warping over the cross-section. The torsional
moment of inertia describes the torsional stiffness of a beam. The results of the warping function
can be displayed in the analysis view and are of use to compare with the results of the Finite
Element Method.
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2.3 Application of the theory of Vlasov

The cross-sectional parameters obtained from ShapeBuilder are used to check the validity of the
theory of Vlasov. The angular deviation, and consequently the horizontal deformation, and the
normal stress are calculated with the theory of Vlasov using Maple. To start with the warping
stiffness and the torsional stiffness are determined. Now the different cross-sectional parameters
and properties of the structural steel are put in the differential equation of Vlasov, described by
Equation (1.2). This differential equation is solved with specified boundary conditions. For a one
side fixed beam, known as a cantilever, with a torsional moment at the free end specific boundary
conditions are used (Hoogenboom, 2019).

ϕ(0) = 0

dϕ

dx
(0) = 0

GIw ·
dϕ

dx
(l)− ECw ·

d3ϕ

dx3
(l) = T

d2ϕ

dx2
(l) = 0

The differential equation of Vlasov, Equation (1.2), in combination with the boundary conditions
mentioned above, results in a value for the angular deflection ϕ as a function of the longitudinal
axis of the beam. Multiplying the angular deflection with 0.5h gives the maximum horizontal
deformation of the beam, see Equation (2.2).

umax = ϕ · 0.5h (2.2)
Subsequently the bimoment B [Nmm2] as a function of the longitudinal axis is calculated. A
bimoment shows the distributions at the cross-section of warping stress in cases of torsional warping
(Maisel, Roll, Cement, & Association, 1974) and is calculated with Equation (2.3).

B = −ECw
d2ϕ

dx2
(2.3)

The maximum bimoment is used to find the maximum normal stress in the beam, which is located
at the fixed end. The maximum normal stress is calculated with Equation (2.4).

σmax = −Bmax

Cw
·ψ (2.4)

Where:
σmax [MPa] = maximum normal stress
Bmax [Nmm2] = maximum bimoment
ψ [mm2] = warping function

2.4 Calculation with the Finite Element Method

The beam is modelled with a Finite Element Method after the calculations with the theory of
Vlasov in ShapeBuilder and Maple. The program used for the Finite Element Method is ANSYS
Workbench. First of all, as in ShapeBuilder, the parameters and properties as mentioned in
Table 2.1 are specified in the program. Subsequently the beam is modelled with the specified
dimensions, fixed support and torsional moment. The element size of the mesh is chosen as fine as
possible to get the most accurate result and is mentioned for each beam. With this information
ANSYS Workbench is able to analyse the model and calculate the horizontal deformation and the
normal stress distribution.
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2.5 Comparing of the results

In this last stage of the study the results of the theory of Vlasov are compared to the calculations
with the Finite Element Method. The horizontal deformations and normal stresses are compared
and expressed with a ratio, see Equation (2.5). If the ratio is close to one, an error of 15% or 0.15
is allowed for engineering purposes, it means that the theory of Vlasov is valid for that type of
cross-section and beam.

Ratio =
Theory of V lasov

F inite Element Method
(2.5)
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3 | Rectangular solid cross-sections
The validity of the theory of Vlasov is checked for rectangular solid cross-sections in this chapter.
The dimensions of the considered cross-section are indicated in Figure 3.1a. The validity of the
theory of Vlasov is researched for different lengths. The length of the first beam is chosen arbitrary,
the lengths of the following beams are twice the length of the previous beam. The method described
in Chapter 2 is applied in the following subsections.

Figure 3.1: (a) Rectangular solid cross-section; (b) Warping function rectangular solid cross-section

3.1 Determination of the cross-sectional parameters

The rectangular solid cross-section with dimensions shown in Figure 3.1a used for beams 1 -
5 is modelled in ShapeBuilder, with a mesh refinement as fine as possible. The input values are
defined in Table 2.1 and are inserted in ShapeBuilder. The program returns values for the warping
constant, torsional moment of inertia and the warping function. The cross-sectional parameters
for the rectangular solid cross-section that are discussed in this part of the study are listed in
Table 3.1 and are used as input for the theory of Vlasov. The warping function is visualised in
Figure 3.1b.

Table 3.1: Cross-sectional parameters rectangular solid cross-section

Symbol Property Value Unit
Cw Warping constant 3.79E9 mm6

Iw Torsional moment of inertia 2.94E7 mm4

ψ Warping function 1.4E3 mm2

6



3.2 Beam 1: length = 150 mm

Application of the theory of Vlasov
The cross-sectional parameters obtained from the model in ShapeBuilder, as listed in Table 3.1,
are used as input for the theory in Vlasov. Equation (1.2) is the differential equation of Vlasov.
Solving this equation, with the boundary conditions mentioned in Section 2.3, gives the angular
deflection ϕ.

The maximum horizontal displacement umax is obtained by multiplying the angular deflection at
length x = l with 0.5 the height of the beam, see Equation (2.2). The maximum normal stress in
the beam is calculated with Equation (2.4). In this equation the bimoment is taken at length x =
0. The calculations in Maple are included in Appendix A.

ϕ = 0.0005506 rad

umax = ϕ · 0.5h = 0.0005506 · 0.5 · 150 = 0.04130 mm

σmax = −Bmax

Cw
·ψ = −−1.82E8

3.79E9 · 1.4E3 = 67.3666 MPa

Calculation with the Finite Element Method
The calculations with the Finite Element Method are performed in ANSYS Workbench with an
element size of 5.0 mm for the mesh. The parameters and properties as mentioned in Table 2.1 are
used as input for the model. The dimensions of the cross-section are given in Figure 3.1a and the
length of the beam is equal to 150 mm. Figure 3.2 shows the maximum horizontal deformation of
the beam. The maximum horizontal deformation occurs at the free end of the beam. Figure 3.3
shows the maximum normal stress in the beam. The maximum normal stress occurs at the fixed
end of the beam.

umax = 0.05039 mm

σmax = 67.8250 MPa

Figure 3.2: Deformation of beam 1 analysed in ANSYS Workbench

7



Figure 3.3: Normal stress in beam 1 analysed in ANSYS Workbench

Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio, see Equation (2.5).

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.04130mm

0.05039mm
= 0.82

The ratio is below one. This means that the theory of Vlasov underestimates the maximum
horizontal displacement in beam 1. The error is 18%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

67.3666MPa

67.8250MPa
= 0.99

The ratio is approximately equal to one. This means that the theory of Vlasov is valid for the
maximum normal stress in beam 1. The error is 1%.

3.3 Beam 2: length = 300 mm

Application of the theory of Vlasov
For this beam the same cross-sectional parameters and dimensions are used as in Section 3.2,
only the length of the beam differs. These parameters are used as input for the theory in Vlasov.
Equation (1.2) is the differential equation of Vlasov. Solving this equation, with the boundary
conditions mentioned in Section 2.3, gives the angular deflection ϕ.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.001177 rad

umax = ϕ · 0.5h = 0.001177 · 0.5 · 150 = 0.08831 mm

σmax = −Bmax

Cw
·ψ = −−1.82E8

3.79E9 · 1.4E3 = 67.3666 MPa
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Calculation with the Finite Element Method
The calculations with the Finite Element Method for this beam are performed in ANSYSWorkbench
as well but now with an element size of 6.0 mm for the mesh. This is a less accurate element size
than used in Section 3.2 due to licence errors. The parameters and properties as mentioned
in Table 2.1 are used as input for the model. The dimensions of the cross-section are given in
Figure 3.1a and the length of the beam is equal to 300 mm. Figure 3.4 shows the maximum
horizontal deformation of the beam and occurs at the free end of the beam. Figure 3.5 shows the
maximum normal stress in the beam and occurs at the fixed end of the beam.

umax = 0.09784 mm

σmax = 63.1910 MPa

Figure 3.4: Deformation of beam 2 analysed in ANSYS Workbench

Figure 3.5: Normal stress in beam 2 analysed in ANSYS Workbench
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Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio in the same way as in Section 3.2.

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.08831mm

0.09784mm
= 0.90

The ratio is below one but in the error margin. This means that the theory of Vlasov is valid for
the maximum horizontal displacement in beam 2. The error is 10%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

67.3666MPa

63.1910MPa
= 1.07

The ratio is a bit more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 2. This can be due to the larger element size for the mesh. The error is 7%.

3.4 Beam 3: length = 600 mm

Application of the theory of Vlasov
The same cross-sectional parameters, as listed in Table 3.1, are used for this beam as the cross-section
remains the same. The length of the beam is 600 mm. The same boundary conditions as mentioned
in Section 2.3 are used to solve the differential equation of Vlasov, see Equation (1.2). This gives
the results listed below.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.002431 rad

umax = ϕ · 0.5h = 0.002431 · 0.5 · 150 = 0.1823 mm

σmax = −Bmax

Cw
·ψ = −−1.82E8

3.79E9 · 1.4E3 = 67.3666 MPa

Calculation with the Finite Element Method
The element size for the mesh is 7 mm for this beam. This is less accurate than the previous beams
due to licence errors. The input for the model is mentioned in Table 2.1 and the dimensions of
the cross-section remain the same as in the previous sections. The length of the beam is 600 mm.
Figure 3.6 shows the maximum horizontal deformation of the beam and occurs at the free end of
the beam. Figure 3.7 shows the maximum normal stress in the beam and occurs at the fixed end
of the beam.

umax = 0.1920 mm

σmax = 61.2370 MPa
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Figure 3.6: Deformation of beam 3 analysed in ANSYS Workbench

Figure 3.7: Normal stress in beam 3 analysed in ANSYS Workbench

Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio as defined with Equation (2.5).

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.1823mm

0.1920mm
= 0.95

The ratio is below one but in the error margin. This means that the theory of Vlasov is valid for
the maximum horizontal displacement in beam 3. The error is 5%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

67.3666MPa

61.2370MPa
= 1.10

The ratio is a bit more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 3. This can be due to the larger element size for the mesh. The error is
10% so within the error margin.

11



3.5 Beam 4: length = 1200 mm

Application of the theory of Vlasov
To calculate the angular deflection ϕ of this beam, with the boundary conditions mentioned in
Section 2.3, the same cross-sectional parameters are used as in the previous sections as input for
the differential equation of Vlasov, see Equation (1.2). The length of the beam is 1200 mm.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.004938 rad

umax = ϕ · 0.5h = 0.004938 · 0.5 · 150 = 0.3704 mm

σmax = −Bmax

Cw
·ψ = −−1.82E8

3.79E9 · 1.4E3 = 67.3666 MPa

Calculation with the Finite Element Method
For this beam an element size for the mesh of 9 mm is used. This is less accurate than the shorter
beams in the previous sections due to licence errors. The input for the model with the Finite
Element Method is mentioned in Table 2.1 because the dimensions of the cross-section are not
changed. Figure 3.8 shows the maximum horizontal deformation of the beam and occurs at the
free end of the beam. Figure 3.9 shows the maximum normal stress in the beam and occurs at the
fixed end of the beam.

umax = 0.3802 mm

σmax = 57.0340 MPa

Figure 3.8: Deformation of beam 4 analysed in ANSYS Workbench
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Figure 3.9: Normal stress in beam 4 analysed in ANSYS Workbench

Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio in the same way as in the previous sections.

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.3704mm

0.3802mm
= 0.97

The ratio is close to one. This means that the theory of Vlasov is valid for the maximum horizontal
displacement in beam 4. The error is 3%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

67.3666MPa

57.0340MPa
= 1.18

The ratio is more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 4. This can be due to the larger element size for the mesh. The error is
18%.

3.6 Beam 5: length = 2400 mm

Application of the theory of Vlasov
The same boundary conditions, as mentioned in Section 2.3, and cross-sectional parameters are
used for this beam as for the previous rectangular solid cross-sections to calculate the angular
deflection ϕ. The differential equation of Vlasov, see Equation (1.2), can be solved with the
boundary conditions and input. The length of the beam is 2400 mm.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.009953 rad

umax = ϕ · 0.5h = 0.009953 · 0.5 · 150 = 0.7465 mm

σmax = −Bmax

Cw
·ψ = −−1.82E8

3.79E9 · 1.4E3 = 67.3666 MPa

13



Calculation with the Finite Element Method
An element size of 12 mm is used for this beam. This is less accurate than the previous beams with
rectangular solid cross-sections due to licence errors. The dimensions of the cross-section remains
the same as in the previous sections. Therefore the input for the model is given in Table 2.1.
Figure 3.10 shows the maximum horizontal deformation of the beam and occurs at the free end
of the beam. Figure 3.11 shows the maximum normal stress in the beam and occurs at the fixed
end of the beam.

umax = 0.7567 mm

σmax = 54.0800 MPa

Figure 3.10: Deformation of beam 5 analysed in ANSYS Workbench

Figure 3.11: Normal stress in beam 5 analysed in ANSYS Workbench
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Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio in the same way as in the previous sections.

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.7465mm

0.7567mm
= 0.99

The ratio is almost one. This means that the theory of Vlasov is valid for the maximum horizontal
displacement in beam 5. The error is 1%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

67.3666MPa

54.0800MPa
= 1.25

The ratio is more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 5. This can be due to the larger element size for the mesh. The error is
25%.

3.7 Overview rectangular solid cross-sections

An overview of the obtained results for each beam is presented in Table 3.2. As can be seen in
the Mesh refinement column, the first beam has the finest element size for the mesh. The other
beams have a more coarse mesh refinement due to licence errors. This affects the ratio for the
maximum normal stress in the beams, as can be seen in the Ratio σmax column. Because the
cross-section remains the same for each of the five beams, namely 100x150 mm, the ratio for the
maximum normal stress has to be the same. The maximum normal stress is only dependent, see
Equation (2.4), on the maximum bimoment, warping constant and warping function. These are
all cross-sectional properties. Therefore, because of the more coarse mesh refinement, a different
result for the maximum normal stress is found. The ratio for the maximum normal stress for the
first beam is the most accurate since this beam is modelled with the finest mesh refinement. From
the Ratio umax column it can be concluded that the ratio is more accurate for the longest beam.
This means that the theory of Vlasov is the most accurate for beam five, which has a length of
2400 mm. Actually, since the error margin is 15%, it means that the theory of Vlasov for the
Ratio umax is accurate for all beams except for beam 1.

Table 3.2: Overview ratios of the five beams with rectangular solid cross-sections

Mesh refinement [mm] Ratio umax [-] Ratio σmax [-]
Beam 1 5 0.82 0.99
Beam 2 6 0.90 1.07
Beam 3 7 0.95 1.10
Beam 4 9 0.97 1.18
Beam 5 12 0.99 1.25
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3.8 Influence changing parameters

This section looks at the influence of changing different standard parameters listed in Table 2.1,
as well as changing the height of the cross-section and the mesh refinement. One parameter is
changed at a time in order to research its influence on umax and σmax. A new ratio for umax and
σmax is calculated using ShapeBuilder and Maple for the theory of Vlasov and ANSYS Workbench
for the Finite Element Method. This new ratio is compared to the ratio of the normal situation;
the situation of beam 3 with the standard, unchanged parameters. If the ratio is closer to one, it
means that the change has a positive influence on the accuracy of the theory of Vlasov. Table 3.3
gives an overview of the ratios with the changed parameters.

Table 3.3: Influence of changing different parameters

Parameter Normal Smaller Bigger
ν [-] 0.29 0.24 0.34
Ratio umax 0.95 0.95 0.95
Ratio σmax 1.10 1.15 1.05
E [MPa] 210000 190000 230000
Ratio umax 0.95 0.95 0.95
Ratio σmax 1.10 1.10 1.10
Height h [mm] 150 50 250
Ratio umax 0.95 1.00 0.93
Ratio σmax 1.17 1.13 0.80
Mesh refinement [mm] 7 - 20
Ratio umax 0.95 - 0.95
Ratio σmax 1.10 - 1.46

The first parameter that is changed is the Poisson’s ratio ν. The ν used for the five beams is
equal to 0.29. The smaller value of 0.24 has no influence on the umax, but leads to a slightly
less accurate result for σmax. The bigger value of 0.34 has no influence on the umax as well, but
leads to a somewhat more accurate result for σmax. The differences are small, i.e. 5%, so it can
be concluded that a small change in the Poisson’s ratio does not lead to significant differences
and therefore has no effect on the theory of Vlasov. If the Poisson’s ratio is taken much bigger,
this will probably lead to a more accurate result. However, this is very uncertain and should be
researched more detailed.

The second parameter that its influence on the theory of Vlasov is checked is the Young’s modulus
E. The standard value that is used in this report is 210000 MPa. Changing this value to 190000
MPa or to 230000 MPa has no influence for both ratios and therefore has no effect on the validity
of the theory of Vlasov.

The influence of the height of the cross-section is researched as well. A mesh refinement of 8.5 mm
is used for researching the height. The standard height of the beam is 150 mm. A smaller height
of 50 mm, now the width is bigger than the height, is chosen. This leads to a significantly more
accurate ratio for umax and a slightly more accurate ratio for σmax. If the height of the beam is
taken 250 mm, it has a negative result on both ratios. A higher beam leads to a less accurate
result with the theory of Vlasov for the maximum deformation and the maximum normal stress.

Lastly, the influence of a more coarse mesh refinement is researched. A more fine mesh refinement is
not possible due to licence errors and is therefore not included in this report. The mesh refinement
used for beam 3 is 7 mm. If the mesh refinement is changed to 20 mm this has no influence on
the ratio umax, but it has an influence on the ratio σmax. If the mesh refinement becomes more
coarse, the application of the theory of Vlasov will be less accurate.

16



4 | Rectangular closed tube cross-sections
The second part of this study researches the validity of the theory of Vlasov for rectangular closed
tube cross-sections. Five beams are analysed with the same cross-section, see Figure 4.1a, but
different lengths. The length of beam 6 is chosen arbitrary and the lengths of the following beams
are twice the length of the previous beam, in the same way as in Chapter 3. The method applied
in this chapter is described in Chapter 2.

Figure 4.1: (a) Rectangular closed tube cross-section; (b) Warping function rectangular closed
tube cross-section

4.1 Determination of the cross-sectional parameters

The dimensions of the rectangular closed tube cross-section are shown in Figure 4.1a. This
cross-section is used for beams 6 - 10 and is modelled in ShapeBuilder with a mesh refinement as
fine as possible and input values as defined in Table 2.1. The program calculates the model and
returns values for the warping constant, torsional moment of inertia and the warping function.
These values are listed in Table 4.1. The warping function is visualised in Figure 4.1b.

Table 4.1: Cross-sectional parameters rectangular closed tube cross-section

Symbol Property Value Unit
Cw Warping constant 9.023E8 mm6

Iw Torsional moment of inertia 1.44E7 mm4

ψ Warping function 1E3 mm2
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4.2 Beam 6: length = 150 mm

Application of the theory of Vlasov
The cross-sectional parameters listed in Table 4.1, obtained from the model in ShapeBuilder,
are used as input for the theory of Vlasov. The differential equation of Vlasov, defined in
Equation (1.2), is solved for the angular deflection ϕ using this cross-sectional parameters and
the boundary conditions specified in Section 2.3.

The maximum horizontal displacement umax is obtained by multiplying the angular deflection at
length x = l with 0.5 the height of the beam, see Equation (2.2). The maximum normal stress in
the beam is calculated with Equation (2.4). In this equation the bimoment is taken at length x =
0. The calculations in Maple are included in Appendix A.

ϕ = 0.001171 rad

umax = ϕ · 0.5h = 0.001171 · 0.5 · 150 = 0.08785 mm

σmax = −Bmax

Cw
·ψ = −−1.27E8

9.023E8 · 1E3 = 140.9137 MPa

Calculation with the Finite Element Method
ANSYS Workbench is used for the calculations with the Finite Element Method with an element
size for the mesh of 2.5 mm. The input parameters for the model are listed in Table 2.1 and
the dimensions of the cross-section are given in Figure 4.1a. The length of the beam is 150 mm.
Figure 4.2 shows the maximum horizontal deformation of the beam. The maximum horizontal
deformation occurs at the free end of the beam. Figure 4.3 shows the maximum normal stress in
the beam. The maximum normal stress occurs at the fixed end of the beam.

umax = 0.1058 mm

σmax = 135.7900 MPa

Figure 4.2: Deformation of beam 6 analysed in ANSYS Workbench
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Figure 4.3: Normal stress in beam 6 analysed in ANSYS Workbench

Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio, see Equation (2.5).

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.08785mm

0.1058mm
= 0.83

The ratio is below one. This means that the theory of Vlasov underestimates the maximum
horizontal displacement in beam 6. The error is 17%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

140.9137MPa

135.7900MPa
= 1.04

The ratio is slightly more than one. This means that the theory of Vlasov is valid for the maximum
normal stress in beam 6. The error is 4%.

4.3 Beam 7: length = 300 mm

Application of the theory of Vlasov
The angular deflection ϕ of this beam can be calculated with the differential equation of Vlasov, see
Equation (1.2), in combination with the boundary conditions mentioned earlier. The cross-sectional
parameters mentioned in Table 4.1 are used as input for the differential equation. The length of
the beam is 300 mm.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.002451 rad

umax = ϕ · 0.5h = 0.002451 · 0.5 · 150 = 0.1838 mm

σmax = −Bmax

Cw
·ψ = −−1.27E8

9.023E8 · 1E3 = 140.9137 MPa
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Calculation with the Finite Element Method
For this beam an element size for the mesh of 3 mm is used. This is slightly more coarse than
beam 6 due to licence errors. The parameters mentioned in Table 2.1 are used as input for the
Finite Element Method. Figure 4.4 shows the maximum horizontal deformation of the beam and
occurs at the free end of the beam. Figure 4.5 shows the maximum normal stress in the beam and
occurs at the fixed end of the beam.

umax = 0.1964 mm

σmax = 109.5600 MPa

Figure 4.4: Deformation of beam 7 analysed in ANSYS Workbench

Figure 4.5: Normal stress in beam 7 analysed in ANSYS Workbench
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Comparing of the results
The deformations and normal stresses calculated with the theory of Vlasov and with the Finite
Element Method are compared using a ratio.

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.1838mm

0.1964mm
= 0.94

The ratio is below one but within the error margin. This means that the theory of Vlasov is valid
for the maximum horizontal displacement in beam 7. The error is 6%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

140.9137MPa

109.5600MPa
= 1.29

The ratio is much more than one. This means that the theory of Vlasov overestimates the
maximum normal stress in beam 7. The error is 29%.

4.4 Beam 8: length = 600 mm

Application of the theory of Vlasov
The length of this beam is 600 mm. The same cross-sectional parameters and boundary conditions
as the previous sections about rectangular closed tube cross-sections are used to solve the differential
equation of Vlasov.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.005011 rad

umax = ϕ · 0.5h = 0.005011 · 0.5 · 150 = 0.3758 mm

σmax = −Bmax

Cw
·ψ = −−1.27E8

9.023E8 · 1E3 = 140.9137 MPa

Calculation with the Finite Element Method
An element size of 4 mm is chosen for this beam. This is less accurate than the previous beams
due to licence errors. ANSYS Workbench uses Table 2.1 as input for the model. Figure 4.6
shows the maximum horizontal deformation of the beam and occurs at the free end of the beam.
Figure 4.7 shows the maximum normal stress in the beam and occurs at the fixed end of the beam.

umax = 0.3870 mm

σmax = 105.3800 MPa
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Figure 4.6: Deformation of beam 8 analysed in ANSYS Workbench

Figure 4.7: Normal stress in beam 8 analysed in ANSYS Workbench

Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using a ratio as defined in Equation (2.5).

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.3758mm

0.3870mm
= 0.97

The ratio is just below one. This means that the theory of Vlasov is valid for the maximum
horizontal displacement in beam 8. The error is 3%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

140.9137MPa

105.3800MPa
= 1.34

The ratio is more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 8. The error is 34% so the theory of Vlasov is not valid for this beam. This
is due to the more coarse element size.

22



4.5 Beam 9: length = 1200 mm

Application of the theory of Vlasov
The differential equation of Vlasov uses the cross-sectional parameters specified in Table 4.1 and
boundary conditions specified in Section 2.3 as input to solve for the angular deviation ϕ. The
length of the beam is 1200 mm.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.01013 rad

umax = ϕ · 0.5h = 0.01013 · 0.5 · 150 = 0.7597 mm

σmax = −Bmax

Cw
·ψ = −−1.27E8

9.023E8 · 1E3 = 140.9137 MPa

Calculation with the Finite Element Method
The calculations with the Finite Element Method for this beam are performed in ANSYSWorkbench
as well but now with a more coarse mesh of 5 mm due to licence errors. The parameters and
properties mentioned in Table 2.1 are used as input for the model. The dimensions of the
cross-section are given in Figure 4.1a and the length of the beam is equal to 1200 mm. Figure 4.8
shows the maximum horizontal deformation of the beam and occurs at the free end of the beam.
Figure 4.9 shows the maximum normal stress in the beam and occurs at the fixed end of the beam.

umax = 0.7691 mm

σmax = 84.5960 MPa

Figure 4.8: Deformation of beam 9 analysed in ANSYS Workbench
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Figure 4.9: Normal stress in beam 9 analysed in ANSYS Workbench

Comparing of the results
The theory of Vlasov and the calculations with the Finite Element Method are compared using a
ratio.

Ratio umax =
Theory of V lasov

F inite Element Method
=

0.7597mm

0.7691mm
= 0.99

The ratio is almost equal to one. This means that the theory of Vlasov is valid for the maximum
horizontal displacement in beam 9. The error is 1%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

140.9137MPa

84.5960MPa
= 1.67

The ratio is a much more than one. This means that the theory of Vlasov is not valid for the
maximum normal stress in beam 9. This is probably due to the larger element size for the mesh.
The error is 67%.

4.6 Beam 10: length = 2400 mm

Application of the theory of Vlasov
The cross-sectional parameters listed in Table 4.1 are used for this beam as the cross-section
remains the same as in the previous sections. In order to solve the differential equation of Vlasov,
the same boundary conditions are used as in Section 2.3.

The maximum horizontal displacement umax is calculated with Equation (2.2) and the maximum
normal stress in the beam is calculated with Equation (2.4). In this equation the bimoment is
taken at length x = 0. The calculations in Maple are included in Appendix A.

ϕ = 0.02037 rad

umax = ϕ · 0.5h = 0.02037 · 0.5 · 150 = 1.5276 mm

σmax = −Bmax

Cw
·ψ = −−1.27E8

9.023E8 · 1E3 = 140.9137 MPa
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Calculation with the Finite Element Method
The length of the beam is 2400 mm. The element size for the mess is 7 mm. This is less accurate
than the previous beams due to licence errors. As input for the model in ANSYS Workbench
the parameters mentioned in Table 2.1 are used. Figure 4.10 shows the maximum horizontal
deformation of the beam and occurs at the free end of the beam. Figure 4.11 shows the maximum
normal stress in the beam and occurs at the fixed end of the beam.

umax = 1.4737 mm

σmax = 75.3800 MPa

Figure 4.10: Deformation of beam 10 analysed in ANSYS Workbench

Figure 4.11: Normal stress in beam 10 analysed in ANSYS Workbench
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Comparing of the results
The results of the theory of Vlasov and the calculations with the Finite Element Method are
compared using the same ratio as in the previous sections.

Ratio umax =
Theory of V lasov

F inite Element Method
=

1.5276mm

1.4737mm
= 1.04

The ratio is a bit more than one. This means that the theory of Vlasov overestimates the horizontal
deformation but is valid for the maximum horizontal displacement in beam 10 because it is within
the error margin. The error is 4%.

Ratio σmax =
Theory of V lasov

F inite Element Method
=

140.9137MPa

75.3800MPa
= 1.87

The ratio is more than one. This means that the theory of Vlasov overestimates the maximum
normal stress in beam 10. This is probably due to a more coarse mesh. The error is 87%.

4.7 Overview rectangular closed tube cross-sections

This section gives an overview of the ratios for the beams with rectangular closed tube cross-sections.
The results are presented in Table 4.2. The first beam, i.e. beam 6, has the finest element size for
the mesh, as can be seen in the Mesh refinement column. This is as fine as possible. The other
beams, i.e. beams 7 - 10, have a more coarse mesh refinement due to licence errors. The mesh
refinement for these beams are as fine as possible, just as in Chapter 3. Therefore the maximum
normal stress, presented in the Ratio σmax column, in beams 7 - 10 is less accurate due to the more
coarse mesh refinement. The Ratio umax column shows the ratios for the maximum horizontal
deformations. It can be observed that as the beam is getting longer, the theory of Vlasov will be
more accurate. An acceptable result is obtained for beams 7 - 10.

Table 4.2: Overview ratios of the five beams with rectangular closed tube cross-sections

Mesh refinement [mm] Ratio umax [-] Ratio σmax [-]
Beam 6 2.5 0.83 1.04
Beam 7 3 0.94 1.29
Beam 8 4 0.97 1.34
Beam 9 5 0.99 1.67
Beam 10 7 1.04 1.87

4.8 Influence changing parameters

The influence of changing different parameters, cross-sectional dimensions, mesh refinement and
thickness of the tube on the maximum horizontal deflection and maximum normal stress are
discussed in this section. The procedure of testing the influence is the same as in Section 3.8,
but now compared to the situation of beam 8. Table 4.3 gives an overview of the ratios with the
changed parameters.
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Table 4.3: Influence of changing different parameters

Parameter Normal Smaller Bigger
ν [-] 0.29 0.24 0.34
Ratio umax 0.97 0.97 0.97
Ratio σmax 1.34 1.40 1.26
E [MPa] 210000 190000 230000
Ratio umax 0.97 0.97 0.97
Ratio σmax 1.34 1.34 1.34
Height h [mm] 150 50 250
Ratio umax 0.97 0.99 0.92
Ratio σmax 1.62 1.39 1.25
Mesh refinement [mm] 4 - 20
Ratio umax 0.97 - 1.08
Ratio σmax 1.34 - 2.55
Thickness t [mm] 10 5 20
Ratio umax 0.97 0.98 0.96
Ratio σmax 1.34 1.87 1.21

The first parameter that is looked at is Poisson’s ratio ν. This ratio gives the deformation of
the steel in directions perpendicular to the direction of loading. The ν used in this study is
0.29. Reducing the ν to 0.24 or increasing it to 0.34 has no effect on the maximum horizontal
deformation, the ratio remains 0.97. Changing the ν has a minor effect on the maximum normal
stress as can be seen in Table 4.3. These results are comparable to the results obtained for changing
the ν of rectangular solid cross-section, discussed in Section 3.8.

Changing the Young’s modulus E, both for a smaller and a bigger value, has no effect on the ratios
and consequently has no influence on the validity of the theory of Vlasov for rectangular closed
tube cross-sections. These results are comparable to the results obtained in Section 3.8.

The next parameter that is changed is the height h of the cross-section. The height used in this
study is 150 mm. The influence of both a smaller and bigger height is researched, respectively 50
mm and 250 mm. Choosing a smaller height has a positive effect on both the maximum horizontal
deformation and the maximum normal stress and therefore on the validity of the theory of Vlasov
on rectangular closed tube cross-sections. Choosing the height bigger has a negative effect on the
validity of the theory of Vlasov. An element size for the mesh refinement of 4.5 mm is used for
checking the height of the cross-section due to licence errors.

The mesh refinement used for beam 8 is 4 mm. Only the influence of a more coarse mesh refinement
is researched as a more fine mesh refinement is not possible for beam 8 due to licence errors.
An element size of 20 mm for the mesh refinement has a negative influence on the ratio for the
maximum horizontal deformation and for the maximum normal stress. This result is not surprising
since the peak umax and σmax is lower.

The last parameter that is researched is the thickness t of the tube. A thickness of 10 mm is used
in this study. The influence of both a smaller and bigger thickness, respectively 5 mm and 20 mm,
on the ratio umax is negligible. A smaller thickness has a negative influence on the σmax, as a
bigger thickness has a positive influence on the σmax.
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5 | Observations and conclusions
This study looked at the validity of the theory of Vlasov for rectangular solid cross-sections and
rectangular closed tube cross-sections by means of the maximum horizontal displacement and the
maximum normal stress. The results for rectangular solid cross-sections are presented in Table 3.2
and for rectangular closed tube cross-sections in Table 4.2.

From Table 3.2 can be concluded that the theory of Vlasov is valid for the maximum horizontal
displacement for beams 2 - 5. The Ratio umax for beam 1, where the length matches the height, is
0.82 which means that the theory of Vlasov underestimates the maximum horizontal displacement
as a maximum error of 15% is allowed. The Ratio umax is most accurate for the longest beam,
i.e. beam 5 with a Ratio umax of 0.99.

The theory of Vlasov gives an accurate result for the maximum normal stress in beams 1 - 5 as the
Ratio σmax for beam 1 is 0.99. For this beam the most fine mesh refinement is used. Unfortunately
it was not possible to use smaller elements for the mesh of the longer beams due to the educational
licence of ANSYS Workbench. Therefore inaccurate results are found for the normal stresses
and can be ignored for these beams. Equation (2.4) shows that the maximum normal stress is
only dependent on cross-sectional parameters, i.e. the bimoment, warping constant and warping
function, so consequently the Ratio σmax has to be equal for beams 1 - 5 regardless the length of
the beams.

According to Table 4.2 the theory of Vlasov is valid for the maximum horizontal displacement
for beams 7 - 10 as the error is smaller than 15%. The Ratio umax for beam 5, where the length
matches the height, is 0.83 which means that the theory of Vlasov underestimates the maximum
horizontal displacement in this beam. This result is similar to the result found for the Ratio umax

for beam 1.

For the Ratio σmax similar results are found for the rectangular closed tube cross-sections according
to Table 4.2. The theory of Vlasov gives an accurate result for the maximum normal stress in
beams 6 - 10 as the Ratio σmax is 1.04 for beam 6, which has the finest mesh refinement. Because
of the same reason as for the rectangular solid cross-sections, it means that the theory of Vlasov
is valid for the longer beams with a larger error as well.

Section 3.8 and Section 4.8 looked at the influence of changing different parameters on the validity
of the theory of Vlasov. From these sections can be concluded that changing the Young’s modulus
E has no influence and changing the Poisson’s ratio ν has a minor influence on the validity of the
theory of Vlasov for the considered cross-sections. Choosing the height smaller than the width of
the cross-section has a positive influence on the validity of the theory of Vlasov. When looking at
the mesh refinement it can be observed that a more coarse element size leads to a less accurate
result. Lastly, the influence of the thickness t of the tube is researched. It can be concluded that
the thickness has a minor influence on the Ratio umax and a bigger thickness leads to a more
accurate result for Ratio σmax.

It could be interesting to do research on the exact length from the fixed end where the theory of
Vlasov is valid for the maximum horizontal displacement for both types of cross-sections. This
distance will be approximately between one and two times the height of the cross-section, according
to the findings of this study.

This study concludes that the theory of Vlasov is valid for two types of cross-sections: rectangular
solid cross-sections and rectangular closed tube cross-sections. It could be interesting to look at
validity of the theory of Vlasov for more unusual types of cross-sections. In addition, more extreme
values for the Poisson’s ratio ν could be looked at.
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Appendix A: Calculations in Maple

(4)(4)

(3)(3)

(2)(2)

(1)(1)

restart :

Beam 1: rectangular solid cross-section 150 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 ld 150; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 2.94E7; #mm4
 Cwd 3.79E9; #mm6
 psid 1.4E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

ld 150

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 2.94 107

Cwd 3.79 109

yd 1400.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 7.9590000 1014

GIwd 2.393023256 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 18.23710056
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;

ODEd 7.9590000 1014 
d4

dx4
f x K2.393023256 1012 

d2

dx2
f x = 0
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(10)(10)

(8)(8)

(11)(11)

(6)(6)

> > 

(5)(5)

(9)(9)

(7)(7)

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 2.393023256 1012 D f 150

K7.9590000 1014 D 3 f 150 = 1.0 107, D 2 f 150 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.00007620944719C4.178814383 10K6 x

K5.468545857 10K12 e0.05483327774 xC0.00007620945263 eK0.05483327774 x

fdK0.00007620944719C4.178814383 10K6 xK5.468545857 10K12 e0.05483327774 x

C0.00007620945263 eK0.05483327774 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 13.08635741 e0.05483327774 xK1.823709925 108 eK0.05483327774 x

Mw1d 1.717156602 1012 e0.05483327774 xC2.393023084 1019 eK0.05483327774 x

Mw2d 0.7175678705 e0.05483327774 xC9.999999283 106 eK0.05483327774 x

Mwtotd 1.717156602 1012 e0.05483327774 xC2.393023084 1019 eK0.05483327774 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.823709794 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.0005506127102
u_maxd phi_max$0.5$h;

u_maxd 0.04129595326

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 67.36658870
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(2)(2)

(1)(1)

(3)(3)

restart :

Beam 2: Rectangular solid cross-section 300 mm

Parameters:
 hd 150; #mm
 bd 100; #mm 
 ld 300; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 2.94E7; #mm4
 Cwd 3.79E9; #mm6
 psid 1.4E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

ld 300

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 2.94 107

Cwd 3.79 109

yd 1400.

mxd 0

Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 7.9590000 1014

GIwd 2.393023256 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 18.23710056
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(9)(9)

(10)(10)

> > 

(6)(6)

(5)(5)

(8)(8)

(11)(11)

(7)(7)

(4)(4)ODEd 7.9590000 1014 
d4

dx4
f x K2.393023256 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 2.393023256 1012 D f 300

K7.9590000 1014 D 3 f 300 = 1.0 107, D 2 f 300 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.00007620945812C4.178814383 10K6 x

K3.924053381 10K19 e0.05483327774 xC0.00007620945812 eK0.05483327774 x

fdK0.00007620945812C4.178814383 10K6 xK3.924053381 10K19 e0.05483327774 x

C0.00007620945812 eK0.05483327774 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 9.390351001 10K7 e0.05483327774 xK1.823710056 108 eK0.05483327774 x

Mw1d 123217.6587 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

Mw2d 5.149037245 10K8 e0.05483327774 xC1.000000000 107 eK0.05483327774 x

Mwtotd 123217.6587 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.823710056 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.001177434857
u_maxd phi_max$0.5$h;

u_maxd 0.08830761430

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 67.36659838
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(1)(1)

(2)(2)

(3)(3)

restart :

Beam 3: Rectangular solid cross-section 600 mm

Parameters:
 hd 150; #mm
 bd 100; #mm 
 ld 600; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 2.94E7; #mm4
 Cwd 3.79E9; #mm6
 psid 1.4E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

ld 600

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 2.94 107

Cwd 3.79 109

yd 1400.

mxd 0

Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 7.9590000 1014

GIwd 2.393023256 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 18.23710056
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(6)(6)

(10)(10)

(11)(11)

> > 

(7)(7)

(9)(9)

(5)(5)

(4)(4)

(8)(8)

ODEd 7.9590000 1014 
d4

dx4
f x K2.393023256 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 2.393023256 1012 D f 600

K7.9590000 1014 D 3 f 600 = 1.0 107, D 2 f 600 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.00007620945812C4.178814383 10K6 x

K2.020509704 10K33 e0.05483327774 xC0.00007620945812 eK0.05483327774 x

fdK0.00007620945812C4.178814383 10K6 xK2.020509704 10K33 e0.05483327774 x

C0.00007620945812 eK0.05483327774 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 4.835126712 10K21 e0.05483327774 xK1.823710056 108 eK0.05483327774 x

Mw1d 6.344523150 10K10 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

Mw2d 2.651258459 10K22 e0.05483327774 xC1.000000000 107 eK0.05483327774 x

Mwtotd 6.344523150 10K10 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.823710056 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.002431079172
u_maxd phi_max$0.5$h;

u_maxd 0.1823309379

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 67.36659838
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(3)(3)

(2)(2)

(1)(1)

restart :

Beam 4: Rectangular solid cross-section 1200 mm

Parameters:
 hd 150; #mm
 bd 100; #mm 
 ld 1200; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 2.94E7; #mm4
 Cwd 3.79E9; #mm6
 psid 1.4E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

ld 1200

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 2.94 107

Cwd 3.79 109

yd 1400.

mxd 0

Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 7.9590000 1014

GIwd 2.393023256 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 18.23710056
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(7)(7)

(8)(8)

> > 

(11)(11)

(9)(9)

(4)(4)

(6)(6)

(5)(5)

(10)(10)

ODEd 7.9590000 1014 
d4

dx4
f x K2.393023256 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 2.393023256 1012 D f 1200

K7.9590000 1014 D 3 f 1200 = 1.0 107, D 2 f 1200 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.00007620945812C4.178814383 10K6 x

K5.356893223 10K62 e0.05483327774 xC0.00007620945812 eK0.05483327774 x

fdK0.00007620945812C4.178814383 10K6 xK5.356893223 10K62 e0.05483327774 x

C0.00007620945812 eK0.05483327774 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 1.281917006 10K49 e0.05483327774 xK1.823710056 108 eK0.05483327774 x

Mw1d 1.682096997 10K38 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

Mw2d 7.029171123 10K51 e0.05483327774 xC1.000000000 107 eK0.05483327774 x

Mwtotd 1.682096997 10K38 e0.05483327774 xC2.393023256 1019 eK0.05483327774 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.823710056 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.004938367802
u_maxd phi_max$0.5$h;

u_maxd 0.3703775852

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 67.36659838
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(3)(3)

(2)(2)

(1)(1)

restart :

Beam 5: Rectangular solid cross-section 2400 mm

Parameters:
 hd 150; #mm
 bd 100; #mm 
 ld 2400; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 2.94E7; #mm4
 Cwd 3.79E9; #mm6
 psid 1.4E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

ld 2400

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 2.94 107

Cwd 3.79 109

yd 1400.

mxd 0

Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 7.9590000 1014

GIwd 2.393023256 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 18.23710056
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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> > 

(9)(9)

(4)(4)

(8)(8)

(5)(5)

(11)(11)

(6)(6)

(10)(10)

(7)(7)

ODEd 7.9590000 1014 
d4

dx4
f x K2.393023256 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 2.393023256 1012 D f 2400

K7.9590000 1014 D 3 f 2400 = 1.0 107, D 2 f 2400 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.00007620945812C4.178814383 10K6 x

K3.765451918 10K119 e0.05483327774 xC0.00007620945808 eK0.05483327774 x

fdK0.00007620945812C4.178814383 10K6 xK3.765451918 10K119 e0.05483327774 x

C0.00007620945808 eK0.05483327774 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 9.010814004 10K107 e0.05483327774 xK1.823710055 108 eK0.05483327774 x

Mw1d 1.182374764 10K95 e0.05483327774 xC2.393023255 1019 eK0.05483327774 x

Mw2d 4.940924669 10K108 e0.05483327774 xC9.999999996 106 eK0.05483327774 x

Mwtotd 1.182374764 10K95 e0.05483327774 xC2.393023255 1019 eK0.05483327774 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.823710055 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.009952945062
u_maxd phi_max$0.5$h;

u_maxd 0.7464708795

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 67.36659833
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(1)(1)

(3)(3)

(2)(2)

restart :

Beam 6: rectangular closed tube cross-section 150 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 td 10; #mm
 ld 150; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 1.44E7; #mm4
 Cwd 9.023E8; #mm6
 psid 1E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

td 10

ld 150

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 1.44 107

Cwd 9.023 108

yd 1000.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 1.894830000 1014

GIwd 1.172093023 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 12.71464051
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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> > 

(8)(8)

(7)(7)

(10)(10)

(4)(4)

(6)(6)

(9)(9)

(11)(11)

(5)(5)

ODEd 1.894830000 1014 
d4

dx4
f x K1.172093023 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 1.172093023 1012 D f 150

K1.894830000 1014 D 3 f 150 = 1.0 107, D 2 f 150 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.0001084780838C8.531746034 10K6 xK6.140872277 10K15 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

fdK0.0001084780838C8.531746034 10K6 xK6.140872277 10K15 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 0.007197673551 e0.07864949064 xK1.271464052 108 eK0.07864949064 x

Mw1d 6.635140760 108 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

Mw2d 0.0005660933586 e0.07864949064 xC1.000000001 107 eK0.07864949064 x

Mwtotd 6.635140760 108 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.271464052 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.001171283821
u_maxd phi_max$0.5$h;

u_maxd 0.08784628660

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 140.9136708
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(2)(2)

(1)(1)

(3)(3)

restart :

Beam 7: rectangular closed tube cross-section 300 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 td 10; #mm
 ld 300; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 1.44E7; #mm4
 Cwd 9.023E8; #mm6
 psid 1E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

td 10

ld 300

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 1.44 107

Cwd 9.023 108

yd 1000.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 1.894830000 1014

GIwd 1.172093023 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 12.71464051
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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> > 

(4)(4)

(8)(8)

(9)(9)

(5)(5)

(11)(11)

(7)(7)

(10)(10)

(6)(6)

ODEd 1.894830000 1014 
d4

dx4
f x K1.172093023 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 1.172093023 1012 D f 300

K1.894830000 1014 D 3 f 300 = 1.0 107, D 2 f 300 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.0001084780838C8.531746034 10K6 xK3.476307080 10K25 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

fdK0.0001084780838C8.531746034 10K6 xK3.476307080 10K25 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 4.074555276 10K13 e0.07864949064 xK1.271464052 108 eK0.07864949064 x

Mw1d 0.03756109192 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

Mw2d 3.204616970 10K14 e0.07864949064 xC1.000000001 107 eK0.07864949064 x

Mwtotd 0.03756109192 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.271464052 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.002451045726
u_maxd phi_max$0.5$h;

u_maxd 0.1838284294

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 140.9136708
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(1)(1)

(3)(3)

(2)(2)

restart :

Beam 8: rectangular closed tube cross-section 600 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 td 10; #mm
 ld 600; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 1.44E7; #mm4
 Cwd 9.023E8; #mm6
 psid 1E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

td 10

ld 600

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 1.44 107

Cwd 9.023 108

yd 1000.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 1.894830000 1014

GIwd 1.172093023 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 12.71464051
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(9)(9)

(11)(11)

(6)(6)

(8)(8)

> > 

(7)(7)

(10)(10)

(5)(5)

(4)(4)ODEd 1.894830000 1014 
d4

dx4
f x K1.172093023 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 1.172093023 1012 D f 600

K1.894830000 1014 D 3 f 600 = 1.0 107, D 2 f 600 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.0001084780838C8.531746034 10K6 xK1.114023266 10K45 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

fdK0.0001084780838C8.531746034 10K6 xK1.114023266 10K45 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 1.305738897 10K33 e0.07864949064 xK1.271464052 108 eK0.07864949064 x

Mw1d 1.203689125 10K22 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

Mw2d 1.026956992 10K34 e0.07864949064 xC1.000000001 107 eK0.07864949064 x

Mwtotd 1.203689125 10K22 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.271464052 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.005010569536
u_maxd phi_max$0.5$h;

u_maxd 0.3757927152

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 140.9136708
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(1)(1)

(3)(3)

(2)(2)

restart :

Beam 9: rectangular closed tube cross-section 1200 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 td 10; #mm
 ld 1200; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 1.44E7; #mm4
 Cwd 9.023E8; #mm6
 psid 1E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

td 10

ld 1200

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 1.44 107

Cwd 9.023 108

yd 1000.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 1.894830000 1014

GIwd 1.172093023 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 12.71464051
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(11)(11)

> > 

(9)(9)

(8)(8)

(6)(6)

(5)(5)

(4)(4)

(7)(7)

(10)(10)

ODEd 1.894830000 1014 
d4

dx4
f x K1.172093023 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 1.172093023 1012 D f 1200

K1.894830000 1014 D 3 f 1200 = 1.0 107, D 2 f 1200 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.0001084780838C8.531746034 10K6 xK1.144053959 10K86 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

fdK0.0001084780838C8.531746034 10K6 xK1.144053959 10K86 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 1.340937663 10K74 e0.07864949064 xK1.271464052 108 eK0.07864949064 x

Mw1d 1.236136938 10K63 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

Mw2d 1.054640642 10K75 e0.07864949064 xC1.000000001 107 eK0.07864949064 x

Mwtotd 1.236136938 10K63 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.271464052 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.01012961716
u_maxd phi_max$0.5$h;

u_maxd 0.7597212870

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 140.9136708
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(1)(1)

(3)(3)

(2)(2)

restart :

Beam 10: rectangular closed tube cross-section 2400 mm

Parameters:
 hd 150; #mm
 bd 100; #mm
 td 10; #mm
 ld 2400; #mm
 vd 0.29; #`-`
 Td 10E6; #Nmm
 Ed 210000; #MPa 

 Gd
E

2$ 1Cv
; #MPa

 Iwd 1.44E7; #mm4
 Cwd 9.023E8; #mm6
 psid 1E3; #mm2

 mxd 0; #
Nm
m

hd 150

bd 100

td 10

ld 2400

vd 0.29

Td 1.0 107

Ed 210000

Gd 81395.34883

Iwd 1.44 107

Cwd 9.023 108

yd 1000.

mxd 0
Stiffnesses:
ECwd E$Cw;
GIwdG$Iw;

ECwd 1.894830000 1014

GIwd 1.172093023 1012

Characteristic length:

lcd sqrt
ECw
GIw

;

lcd 12.71464051
Vlasov equation:
with DEtools :
ODEd ECw$diff phi x , x, x, x, x KGIw$diff phi x , x, x = mx;
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(9)(9)

(10)(10)

(8)(8)

(6)(6)

(5)(5)

(4)(4)

> > 

(11)(11)

(7)(7)

ODEd 1.894830000 1014 
d4

dx4
f x K1.172093023 1012 

d2

dx2
f x = 0

Boundary conditions:
bound_cond phi 0 = 0, D phi 0 = 0, GIw$D phi l KECw$ D@@3 phi l = T, D

@@2 phi l = 0;

bound_cond f 0 = 0, D f 0 = 0, 1.172093023 1012 D f 2400

K1.894830000 1014 D 3 f 2400 = 1.0 107, D 2 f 2400 = 0

Solving Vlasov equation:
Sold evalf dsolve ODE, bound_con , phi x ;
assign Sol ; phid phi x

Sold f x =K0.0001084780838C8.531746034 10K6 x

K1.206565900 10K168 e0.07864949064 xC0.0001084780838 eK0.07864949064 x

fdK0.0001084780838C8.531746034 10K6 xK1.206565900 10K168 e0.07864949064 x

C0.0001084780838 eK0.07864949064 x

Bi-moment and torsional moment:
BdKECw$diff phi, x, x ;
Mw1dGIw$diff B, x ;
Mw2d diff B, x ;
MwtotdMw1CMw2;

Bd 1.414207473 10K156 e0.07864949064 xK1.271464052 108 eK0.07864949064 x

Mw1d 1.303680360 10K145 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

Mw2d 1.112266974 10K157 e0.07864949064 xC1.000000001 107 eK0.07864949064 x

Mwtotd 1.303680360 10K145 e0.07864949064 xC1.172093024 1019 eK0.07864949064 x

xd 0 : B; xd'x ';
#plot B, x = 0 ..l ;

K1.271464052 108

xd x
Rotations and displacements:
xd l : phi_maxd phi;

phi_maxd 0.02036771240
u_maxd phi_max$0.5$h;

u_maxd 1.527578430

xd 0 : sigma_maxdK
B
Cw

$psi;

sigma_maxd 140.9136708
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