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INTRODUCTION

Current models used for determining a minimum distance from a column edge to a supported beam
are not sufficient to make an accurate design. It does not give enough information to have a com-
pletely safe design which will not cause any damage. These damages do occur, but there is no model
developed to give an accurate calculation of the capacity and thus the safety.

To compute such a model, the simplest alternative was chosen: using the equilibrium condi-
tions. The question is whether this basic method will work for such a complicated problem. In or-
der to research this, reference models for concrete detailing computation will be used. References
to literature about these models will be made later in the following chapters.

By stating and researching four main questions, a solution to the problem defined above, might
be found. When a sufficient result is obtained, some recommendations can be given.
The following questions will be stated and discussed in the next chapters:

• Can there be a simply defined model and what will the corresponding assumptions and bound-
ary conditions be?

• What are the current standards?

• How to determine the support’s ultimate capacity?

• Which recommendations can now be made?

The first question is actually the input of the created model. Here, assumptions and boundary
conditions for input parameters will be stated. Calculations will be made in a two- dimensional
plane and are supported by sketches to define the parameters visually. These parameters are now
subjected to a python script (displayed in the Appendix), which will generate (perhaps valuable)
output.

Secondly, the current standards have to be researched. Which standard could be applied in
theory and what disadvantage(s) does it have? Answers can only be obtained by searching literature.

To determine a support’s ultimate capacity and do a check, the model has to be tested and the
corresponding literature for combining axial-, shear- and bending stresses has to be used.

The last question is a conclusion of the research. Recommendations and problems have to be
derived from the previously discussed chapters. Also, the conclusion gives a description of the use-
fulness of the simple equilibrium model.
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1
BOUNDARY CONDITIONS AND

ASSUMPTIONS FOR CREATING A SIMPLE

MODEL

To create a working model, a few assumptions have to be made in order to make it feasible. Another
point to discuss, are the boundary conditions for which the model is valid. This is an important step
in the research to clarify and converge the problem. For that, it will be a more specific problem and
it produces a less common solution.
For one thing, the different types of bearing will be discussed and they are narrowed down to one of
them. Secondly, the equilibrium conditions (also its derivations) and assumptions for the calcula-
tion model are described. To support and clarify these statements, some figures have been added.
All of the calculations or statements will be made in a two- dimensional plane, which means that
for all quantities, it is calculated per 1 mm depth.
Another assumption is that an end- support is calculated. This also applies to a column which is
supporting two separate beams at either side. This means there are no additional support bending
stresses generated, because there is no bending moment present in the support.

Reinforcement within the column is not only counteracting bending moment of this complete
element. It also has a positive effect on it’s bearing capacity. The lack of reinforcement at the edges
is a reason of failure while pure concrete cannot withstand a large number of tensile stresses. The
influence of reinforcement is beyond the scope of this paper.

1.1. BEARING PRINCIPLES

Not all types of bearings will be discussed or calculated in this paper. First of all, a distinction be-
tween non- isolated- and isolated joints is made. The isolated joints do not include the so- called
sandwiched bearing pad, whereas the non- isolated supports do. The main advantage of these non-
isolated bearing type is the cleared cover zone. This bearing pad can be constructed in several ways.
Four different types of non-isolated bearings are sketched and discussed below in figure 1.1 [1].
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Figure 1.1: Non- isolated bearing types [1]

The upper two sketches represent either a dry- packed or wet- bedded mortar. While this cement
grouting type of supporting is quite common, the focus of this paper is aimed at the third type
of bearing. This type is often used as well, while elastomeric bearing pads are relatively flexible.
Elastomeric bearing pad characteristics are not included in this research.

1.2. DIMENSIONS
The dimensions of the possible failure plane within the supporting concrete column, have to be set
and defined. In figure 1.2 all the possible variables are shown. The indirect variables (this means
they can be derived from the primary- or direct variables) are marked.

Figure 1.2: Direct- and indirect (red) variables

The (indirect) variables θ, k en Pq are composed of direct variables:

• θ = t an-1( b
a ) [rad]
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• k = h +0,5d Eff [mm]

• P q = q ×d Eff [kN]

Where, the effective length to which the support stress applies, ’dEff = a-h’ when ’d+h’ is larger
than ’a’. Otherwise, ’dEff’ is equal to ’d’. Conclusively, if ’a=h’, ’dEff’ has a zero value.
The cross- sectional distance ’c’ is an indirect variable as well and can be derived according to
Pythagoras with the variables ’a’ and ’b’.

1.3. EQUILIBRIUM CONDITIONS AND ASSUMPTIONS
To create a simple calculation model, some basic equilibrium conditions such as

∑
F = 0 has to

be met in all directions, which is in this case:
∑

F H = 0 and
∑

F V = 0 Another basic equilibrium
condition is:

∑
M = 0. This results in a force- and momentum scheme as in figure 1.3. The resulting

force and bending moment act halfway of the cross- sectional distance ’c’.

Figure 1.3: Force- and momentum equilibrium on a possible failure plane

The mentioned eccentricity ’e’ is due to dimensional calculations: e = k−(0,5×c×cos(θ)) [mm].
If the value for eccentricity should be positive, the force quantity Pq acts on the left side of the as-
signed midpoint and vice versa. This resulting internal moment and -force, will produce stresses on
the cross section. Decomposition (figure 1.4) of these forces enables a calculation of the normal-
and bending stresses (due to Pqv and P q ×e) as well as calculating the shear stress due to Pqh.

Figure 1.4: Decomposed forces Pqh and Pqv
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The normal-, bending- and shear stresses will be parametrically determined and plotted nu-
merically in Chapter 2: Parameter study and model.



2
PARAMETER STUDY AND MODEL

In the previous chapter, the definitions of the variables were given and all assumptions that were
made to create a model, were mentioned as well. Now, the method and calculations will be dis-
cussed, supported by some clarifying sketches. The model is computed in a python program of
which the code is displayed in the Appendix.

First of all, the calculation of the axial- and bending stresses will be discussed. Then, a possible
variation of parameters will be discussed. These involve plots which will give a lot of information
about the relations between different variables. Some of the variables are of influence to the shear
stress calculation as well, so the calculation of the shear stress is partially the same as the first one
about axial- and bending stresses. The topic of shear stresses will be addressed in the third section.
The last part is about the interpretation of the shear stress distributions, supported by some relevant
graphs.

2.1. AXIAL- AND BENDING STRESSES: CALCULATION

Quantifying the axial- and bending stresses will be done by the following known expressions for
cross- sectional stresses:

σR = N

A
+ M × z

I zz

and

σL = N

A
− M × z

I zz

The cross- sectional area Ac is in this case: c ×1 = c [mm2], because the in- depth distance was
assumed at all places as 1 mm. The same way, Izz;c is defined as 1

12 c3 [mm4]. The normal force ’N’ is
equall to -Pqv and the bending moment ’M’ is given as P q × e. The bending stress components will
be the same (but positive/ negative), because the assumption is a small rectangular cross- section
with a height of length ’c’. Thus, the value of ’z’ is in both cases is 1

2 c.

The function that is eventually written, will return a stress value for each position along the
cross- sectional distance ’c’, which means that xmin = 0 [mm] and xmax = c [mm]. The positional
stress value is obtained by defining a certain linear function depending on the values c, σR and σL.
An example of a cross- sectional stress distribution is given in 2.1.

6
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Figure 2.1: Stress distribution along the x- axis

The linear expression will be:

y(x) =σL + σR −σL

c
x (2.1)

2.2. AXIAL- AND BENDING STRESSES: INTERPRETATION

The expression 2.1 is the eventual function and is dependant on ’x’, ’a’, ’b’, ’d’, ’h’ and ’q’. Having a
range of values for ’h’ can give a lot of information when plotting ’h’ versus stress y(x) in different
scenarios. For example, what is the influence of an alternating distance ’a’ on the ’h’, stress- relation?
And what happens to this relation if the value for ’q’ changes? These questions can now be answered
by plotting the expression 2.1, combined with assuming and altering certain variables.

Plotting location ’x’ versus compressive stress while altering distance ’h’ presents a graph that
shows the actual stress distribution within the possible concrete crack plane (figure 2.2). For ’h=50
mm’ (not plotted in the figure) a horizontal line would emerge, because of the absence of a bending
moment. The resulting force Pq is then acting without any eccentricity, so only axial (and no bend-
ing) stresses will be present. The fact that ’h=200 mm’ only produces zero- values is due to the fact
that all support stress is fully taken by the column when ’h ≥ a’ (i.e. ’dEff=0’).

Figure 2.2: The influence of distance ’h’ on the location ’x’, sigma- relation
Constants are: a=200 mm, b=200 mm, d=100 mm, q=2 N/mm2
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For ’h=0’ a descending line was found, whereas ’h=100’ shows an ascending line. The reason for
this is the differing eccentricity. While the resulting force acts left of the cross- sectional midpoint
for ’h=100’, the ’h=0’- configuration produces a different bending moment, because Pq is now on
the right side of the midpoint. When a location of the support would be fixed, plotting the stress
distribution could be quite useful to determine a concrete strength class for example. The maxi-
mum stresses do not always occur at the exact same place. Changing distance ’h’, alters the stress
distribution, but also it’s magnitude.

Figure 2.3: The influence of the support stress ’q’ on the distance ’h’, sigma- relation.
Constants are: a=200 mm, b=200 mm, x=0 mm, d=200 mm

The second relation to be discussed, is the influence of the support stress on the distance ’h’,
sigma- relation. Figure 2.3 shows three different values for the support stress and as expected, a
larger support stress produces a larger cross- sectional stress (at position ’x=0 mm’). The interesting
thing here, is the maximum showing for each value of q. The value h for which the maximum stress
occurs is in all cases the same, so it could be stated that there is one value of ’h’ for which the cross-
sectional stress is maximal. The value of ’q’ does not influence this one value of ’h’ and is only of
importance to the stress quantity. The zero- value at ’h=200’ mm is not surprising. With a constant
value of 200 mm for ’a’ as well, it means that ’h=a’ and there is thus no support stress acting on the
failure part. All these support stresses are further taken by the column.

Figure 2.4: The influence of length ’d’ on the distance ’h’, sigma- relation.
Constants: a=200 mm, b=200 mm, x=0 mm, q=2 N/mm2

As a third, the influence of the length at which the support stress acts (also: the effective bearing
pad length) will be presented in figure 2.4. This plot shows the effect of altering ’d’ to the axial- and
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bending stress value at position ’x=0 mm’. Only in some cases, this is the maximum value (see figure
2.2). The stress graph is a smooth curve when ’d’ is equal to 200 mm. Having a value of ’d’ which is
smaller than dimension ’a’, causes for a transition. In this case, a transition from linear to a curved
graph. The maximum stress value at ’x=0 mm’ is not totally dependant on the value of ’d’, while for
both ’d=150 mm’ and ’d=200 mm’ the curve is at some point the same. The corresponding ’h’ value
is the same as the ’h’ value for maximum stress in the ’q’- influence plot (figure 2.2).

Figure 2.5: The effect of proportional crack dimensions on force and eccentricity.

The influence of crack dimension ’a’ will be shown in figure 2.6. The crack dimension ’b’ is
kept as a constant, so this figure is merely showing the proportional crack dimension influence. The
crack dimension size influence will be discussed later. The effect of proportional change to the force
distribution is illustrated in figure 2.5.

Figure 2.6: The influence of the crack dimension ’a’ on the distance ’h’, sigma- relation.
Constants: b=200 mm, x=0 mm, d=200 mm, q=2 N/mm2

Clearly visible in figure 2.6, is the influence of ’a’ on the value of ’h’ for which the cross- sectional
compression is maximal. The location of the maximum value is not necessarily the same as the
location for which the function transforms from linear to parabolic. For ’a=200 mm’ there is no
transition present and the maximum value is not at ’h=0’. This transition seems to be present only
for cases in which the support stress can be partially taken by the column. Of course, for every ’h>0’
(with ’d ≥ a=200 mm’) the graph should then be a curve.
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Values for ’a’ as 250 mm and 300 mm do result in a transitional curve with a transition for ’h=50 mm’
and ’h=100 mm’ respectively. This is a value which can thus be easily obtained by the expression
’h=a-d’, where ’d=200 mm’ (constant) in this particular case. The maximum compression values
with variable ’a’ are not linearly related to each other, as is visible in figure 2.6.

Figure 2.7: The influence of the crack dimension size on the distance ’h’, sigma- relation.
Constants are: d=200 mm, q=2 N/mm2 and x=0.1c

’a=b’ [mm] Distance ’h’ [mm] Max. Stress value [N/mm2]

200 58.291457286432156 -1.2041665614504682
250 73.293172690763058 -1.2041612232060772
300 100.33444816053512 -1.1997740517443871

Table 2.1: Maximum cross- sectional compression for different values of ’h’.
Constants are: d=200 mm, q=2 N/mm2 and x=0.1c

Now, the size of the crack dimension has been taken into account. In figure 2.7 the dimensions
’a’ and ’b’ are now variables, but their proportions are not: the angle θ is equal to 1

4π rad (constant),
which means that ’a=b’. These graphs are very similar to the ones in figure 2.6, but in this case the
magnitude of compression is not actually influenced by the variables ’a’ and ’b’. The values for the
maximum compression at ’x=0.1c’ are about 1.2 N/mm2. This value does barely fluctuate as can be
seen in table 2.1. The corresponding values of distance ’h’, belong to an optimum.
This optimum considers two separate phenomena. Shifting the distributed load to the left, de-
creases the magnitude of force Pqv (so it decreases the axial stress), but it can increase the eccen-
tricity substantially. Considering these two contradictions, a certain optimum can be found. Hence,
the odd- looking numbers for a corresponding ’h’- value.

2.3. SHEAR STRESSES: CALCULATION
The internal concrete cross- section is also subjected to a shear force, which is equal to Pqh. The
magnitude of Pqh is influenced by distance ’h’ and possible crack dimension ’a’. These two variables
influence the value of Pq and thus influence Pqh. But not only the magnitude of indirect variable Pq

modifies Pqh. This shear force also changes when the proportions ’a’ and ’b’ (i.e. thet a) change.

The general expression for shear stress τ can be rewritten like in expression 2.2. In this expres-
sion, the width of the rectangular cross- section was taken as 1 mm. Variable Sx is dependent on ’x’,
which eventually makes τ dependant on position ’x’ as well (expression 2.3).
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τ= V ∗Sx

b ∗ I zz
= P qh ∗Sx

1
12 ∗ c3

(2.2)

Where:

Sx = 0.5∗x ∗ (c −x) (2.3)

The maximum value of shear stress is being calculated by the general formula, rewritten in ex-
pression 2.4. For a rectangular cross- section, this maximum shear stress always occurs halfway it’s
length and width. So in this case: ’x=0.5c’.

τmax = V ∗Sx

b ∗ I zz
= P qh ∗ 1

8 ∗ c2

1
12 ∗ c3

= 3

2
∗ P qhp

a2 +b2
(2.4)

2.4. SHEAR STRESSES: INTERPRETATION
This last section is about the results of calculating the shear stress distribution. First, an example
is shown in a plot and it’s maximum value is checked by expression 2.4. Secondly, the effect of
applying different support stresses will be discussed and while the effect of length ’d’ is limited, it is
still basically the same as altering ’q’. An ’h’- versus shear stress plot will be made as a third point
of attention. Next, the influence of the possible crack dimension ’a’ on the shear stress distribution,
will be discussed. And the last subject will be the influence of the support stress position ’h’ for
different values of ’a’.

Figure 2.8: Shear stress distribution [N/mm2] alongside the cross- section with position x.
Constants are: a=200 mm, b=200 mm, d=200 mm, h=100 mm, q=5 N/mm2

An example of a shear distribution is given in figure 2.8. The maximum value returned by the
program is: 1.8749762541 N/mm2. Calculating this by using the formula, gives:

τmax = 3

2
∗ q ∗d Effp

a2 +b2
= 3

2
∗ 5∗ (200−100)p

2002 +2002
= 1.875[N /mm2] (2.5)

The direction of the shear force is not dependant on the location at which it acts (like when
calculating bending stresses). The direction of the shear stress is the same each time, but the mag-
nitude of it’s maximum is the most important in terms of evaluating it’s value with regards to the
concrete material capacity.
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Figure 2.9: Shear stress distribution [N/mm2] for different values of ’q’ alongside the cross- section with position x.
Constants are: a=200 mm, b=200 mm, d=200 mm, h=100 mm

Figure 2.9 illustrates the effect of altering the support load magnitude. The maximum value of
shear will be at midpoint, no matter the location of the distributed support load. The increase in ’q’
and the increase in (maximum) shear stress are one- to- one related.

Figure 2.10: Shear stress distribution [N/mm2] for different values of ’d’ while varying ’h’.
Constants are: a=200 mm, b=200 mm, q=2 N/mm2 and x=0.5c

Plotting the shear stress distribution to position ’x’ for the influence of ’d’, is basically the same
as for support load ’q’ (figure 2.9), only when ’d +h ≥ a’, maximum value of τ is reached. The stress
distribution will remain the same (with a constant ’h’), no matter the increase of value ’d’. So a plot
with regards to a changing ’h’ (figure 2.10), will show a constant value of τmax up until a certain value
of ’h’ is reached. τmax will then decrease linearly.
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Figure 2.11: Shear stress distribution [N/mm2] for different values of ’a’ alongside the cross- section with position x.
Constants are: b=200 mm, d=200 mm, h=100 mm, q=2 N/mm2

In figure 2.11 the shear stress distribution was plotted for some different values of variable ’a’.
The ’x’- values for which the maximum values occur change when ’a’ increases. This makes sense
when realizing that ’c’ increases when ’a’ increases. However, this is not a one- on- one relation
(Pythagoras), so when the ’x’- value for τmax is always half the value of c, then this line on which
each maximum point must lie, will represent a certain square root function. An approximation of
this line was plotted in figure 2.11.

Figure 2.12: Support stress location ’h’ plotted versus shear stress.
Constants are: b=200 mm, d=200 mm, q=2 N/mm2 and x=0.5c

Figure 2.12 shows the shear stress for every value of ’h’ from 0 to ’a’ for two different values of ’a’.
When ’a=200 mm’, the maximum shear stress occurs for a value of ’h=0 mm’, but for ’a=300 mm’, this
will no longer be the case. A value of 300 mm for ’a’ presents a constant value of shear stress until
the point of ’h=100 mm’ is reached. Of course, when ’h=a-d’, the support stress magnitude starts
to be taken by the column itself. So when ’a’ or ’d’ changes, the value of ’h’ for which the transition
will take place, will change. The interesting thing here, is the fact that the maximum shear stress is
also different. This change is due to the altering angle of θ. When θ decreases, Pqv increases and
Pqh decreases. The result is a reduction of the maximum shear force value, which will always occur
when h=0, but when d 6= a, this maximum shear force will present itself up until ’h=a-d’.



3
CURRENT STANDARDS

Current dutch standards do not fully, theoretically apply to the case of bearing.

The British Standard (BS8110) mostly prescribes empirical formula’s and is not quite accurate.
This standard generates a minimum value for the effective and nominal bearing length. The ul-
timate bearing stress is also processed and tested as a unity check against the cube compressive
strength [2]. In case of a non- isolated support, this check holds for all three materials and their
corresponding fcu (ultimate compressive strength of the material).

First of all, the (effective) bearing length and the consequences of its value will be thoroughly
discussed. Like the simplified model, this theory applies to a bearing- plate type of support. All the
other possible types of support were quickly addressed to in Chapter 1: Boundary conditions and
assumptions for creating a simple model.

The ultimate bearing stress and the unity check is the next subject described. This is also limited
to padded bearing and especially elastomeric bearing.

To conclude this chapter, the dutch standards will be discussed and compared to the British
Standard serving the purpose of showing the differences and similarities in procedure of calculation.

3.1. BRITISH STANDARD: BEARING LENGTH

To calculate the ultimate bearing stress, the effective surface of the bearing plate has to be deter-
mined and in order to do so, the effective bearing length and the net bearing width have to be
obtained. The application of the effective surface will be further discussed in Section 3.2: British
Standard: Ultimate bearing stress.
First, the effective bearing length (l’bearing) is defined as the minimum of three values:

• lbearing (The actual bearing length)

• 0.5× l bearing +100mm

• 600 mm

So, this effective length is always less or equal to the actual length of the bearing pad.
The net bearing width is just like l’bearing a length quantity [m] and is defined as in figure 3.1 [1].

14
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Figure 3.1: Definitions of bearing lengths [1]

From the figure, it can be shown that:
Net bear i ng wi d th +2 ×Spal l i ng al l ow ance = Actual bear i ng wi d th
The minimum value for the net bearing width (b’net) for non- isolated joints is 40 mm.

3.2. BRITISH STANDARD: ULTIMATE BEARING STRESS

According to the formula for stresses (σ= F
A ) and taking only the effective plane loaded into account,

the ultimate bearing stress will be:

f b = V support;ultimate

l ′bearing ×b′
net

So, the equation basically presents the effective surface as the loaded plane. The assumption of
stress variation throughout the bearing pad was made in the British Standard. This varying stress
distribution is more explicitly mentioned in the early Dutch Standard (Section 3.3). Eventually, this
ultimate bearing stress must not exceed the compressive strength conditions of the material ap-
plied. For elastomeric bearing pads, the value which cannot be exceeded is between 0,4fcu and
0,6fcu (in which fcu is the ultimate cube compressive strength of concrete):

f b ≤ 0,5 f cu

3.3. DUTCH STANDARD BASED ON VARIABLE SUPPORT STRESS- DISTRIBUTION
The earlier dutch Standard VBC 1990 ("Voorschriften Beton Constructieve eisen") does not have a
precise calculation method for the bearing length, based on all the parameters that were mentioned
in Chapter 1: Boundary conditions and assumptions for creating a simple model.

The second thing to notice about the dutch standard, is the influence of using a bearing pad, on
the support stress distribution [3]. The stress distribution curve alters with either the bearing type
or the limit state of support (ULS or SLS).

The dutch standard defines a few variables:

a = minimum support length
ab = support width
Fd = design value for the support reaction
fb’ = design value for the concrete

compressive strength
∅ = diameter of the reinforcement in the

lower part of the beam

The minimum support length for an isolated support, will depend on the full span (L), the pos-
sible length to the crack (a2) and the concrete cover in the beam (c). Eventually; ’a ≥ a1 +a2 + c’,
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where ’a1 = max(50+0,004L;
F d

2
3 f ′

b×ab
;6∅ ≥ 70mm)’. The fact that ’a1’ could be equal to ’

F d
2
3 f ′

b×ab
’,

is due to a parabolic support stress distribution.

In the VBC 1990, ’a2’ is set to be equal to ’
F rep

1
2 f ′

b×ab
’, where ’Frep’ is defined as the representative

value of the support reaction. Should ’a2’ be larger than 25 mm, a bearing pad should be used.
When the bearing pad is applied, the support length ’a’ should be larger than- or equal to: ’a1 +

ar + c’ and ’ar’ (the distance from the bearing pad to the edge of the support) can’t be larger than 25
mm.

3.4. COMPARING THE STANDARDS
Both standards use the support stress distribution and simplify it to have a more fast and easy cal-
culation method. The British standard clearly distinguishes isolated- and non- isolated bearings,
which are basically the same as supporting with- or without bearing pad, discussed in the Dutch
Standard.

The current Dutch standard NEN-EN 13670:2009 nl [4] only suggests certain failure allowances,
but does not specify a bearing length (’h’) or support stress magnitude (’q’) for that matter.

Obvious about these existing standards is the amount of assumptions and rules of thumb. Most
of them are more or less empirically determined. There is no precise in- depth calculation for the
required support length present in either standard.



4
ULTIMATE CAPACITY

Plotting several varying parameters seems to be insufficient, when a piece of column needs to be
evaluated about it’s capacity. This capacity involves shear- and axial stress capacity and has to have
a combined limit. When the support edge is loaded with both shear- and axial stress, there obviously
must be a lower limit than when the cross- section is solely loaded with shear stress for example.

The Mohr- Coulomb curve describes the capacity limit for a combination of all stresses. This
curve and it’s origin are the first thing to be discussed. After that, some parameter estimations have
to be made in order to do a capacity check. Varying crack size by altering the value for ’a=b’, results
in a certain σ-, τ curve, which is bound by the capacity line. A capacity check can then be executed.

4.1. MOHR- COULOMB FAILURE CURVE
The principle of the capacity line is dependant on the material properties of a certain concrete type
(e.g. C45/55). Particularly the tensile- and compressive strength are of importance. The first step
in the Mohr- Coulomb failure hypothesis, is to plot two failure circles for both compressive strength
(fc) and tensile strength (ft). The tangent line of both circles presents the failure line, which is the
capacity limit [5]. The corresponding expression for this curve is:

τ= c +σ∗ t an(φ)

Where:

c = 1
2 f c f t f c = 2c∗cos(φ)

1−si n(φ)

si n(φ) = f c− f t
f c+ f t

f t = 2c∗cos(φ)
1+si n(φ)

Figure 4.1: Mohr- Coulomb failure curve [5]
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4.2. MAXIMUM STRESSES COMBINED
Combining shear stress τ and axial-/ bending stressσ is not a simple matter of summing two values.
The maximum values of these stresses have to be obtained first, but the problem for this would be,
that τmax occurs at ’x=0.5c’ and σmax presents itself at either ’x=0’ or ’x=c’ (see figure 4.2).

Figure 4.2: Locations of maximum stress

The assumption of having a constant maximum shear stress of 60% of the actual maximum
value, gives a maximum combination at either ’x=0’ or ’x=c’. However, when ’k=0.5a or ’h≥a’, the x-
location of the combined maximum stresses is not important, because both stress distributions will
then be constant (or equal to zero).

The Mohr failure envelope is a linear function τ(σ). So, when the modelled results are plotted
they have to be below this curve in order to prevent failure of the concrete segment. The curve
from the model is a σ versus τ plot, with a parameter ’a’. The first step is to generate a distance
’a’-, σ plot. This way, the crack size is increasing each time with a value of ’∆a’, but has a constant
value of ’θ’. For a constant value of ’h’ (in this case ’h=100 mm’), there is a maximum tensile stress
with a corresponding value of ’a’ (and thus ’b’) as can be seen in figure 4.3. The maximum stress is
obviously dependent on the crack dimensions ’a’ and ’b’ (or for that matter the value of θ).

Figure 4.3: Determining possible crack locations for axial-/ bending stresses

The 60% maximum shear stress can also be plotted in terms of variable ’a’, which results in a
graph like figure 4.4. The shear stress in terms of ’a’ does not really have a maximum value when a
small part of the column is evaluated. However, when ’a=d+h’, a transition occurs and the maximum
shear stress value is present at ’a=d+h’. Considering a larger range of ’a’ might be interesting to find
this shear value, but for this check, a large value of length ’d’ was considered to specify the problem
solely to the changing crack size.
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Figure 4.4: Determining possible crack locations for shear stress

Also for this figure 4.4, the stresses at all distances ’a’ are lower for ’a=0.5b’. The conclusion can
now be that in this case these proportions will not be the most probable crack dimensions. Another
important thing to notice here is the shift of the graph caused by the value of ’h’. Only zero values
are produced for the stress level when ’0 ≤ a ≤ h’ in both figures 4.3 and 4.4. Distance ’h’ does not
change the stress levels, it only changes the starting point of the graph. The all- zero values for τ and
σ are due to the fact that there is no loading on the segment as long as distance ’h’ is still larger than
distance ’a’. The amount of zero- values is equal to ’h/∆a’.

Figure 4.5: Capacity check for different values of ’a=b’

In figure 4.5 some failure envelopes for different concrete strength classes are plotted. Appar-
ently, the value for ’φ’ remains unaltered when a different concrete strength class is applied. The
’c’- value however is dependant on the strength class. In contrast to ’φ’, variable ’c’ is not a ratio
of fc and ft, it is a multiplication, which explains the increase, while both tensile and compressive
strength increase with a larger strength class.



20 4. ULTIMATE CAPACITY

Figure 4.6: (Shear) stress function for different values of ’a=b’

The grey curve in figure 4.5, which is the σ versus τ plot, was composed of both the a-, σ- (fig-
ure 4.3) and the a-, τ plot (figure 4.4) for an ’a/b’- ratio of ’1’. While considering the low concrete
strength class (C20/25), this grey ’load curve’ touches the capacity limit slightly. This means that
a crack at a certain location ’a’ will be formed. The intersection seems to appear at approximately
’σ=3.55 N/mm2’ (tensile stress). Returning this value, it appears that ’a=180 mm’ is the most proba-
ble location, because ’σ(a=180)= 3.55 N/mm2’. However, these statements are only valid for ’h=100
mm’.

Several likewise calculations show that the size of the crack is linearly related to distance ’h’. In
table 4.1 some of the solutions were given and they are then plotted in figure 4.7.

Distance ’h’ [mm] Crack size ’a=b’ [mm]

10 18
50 90

100 180
200 360

Table 4.1: Influence of distance ’h’ to the crack size and it’s location
Constants are: d= 600 mm and q=24 N/mm2

Variable ’h’ does not influence the magnitude of maximum (shear) stress, but it creates a shift in
the stress graphs, because of the presence of ’h’ times an ’a=0 mm’ value.
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Figure 4.7: Influence of distance ’h’ to the crack size and it’s location
Constants are: d= 600 mm and q=24 N/mm2

The reason for this crack size not to be increasing infinitely for an infinite increase of ’h’ in ac-
tually occurring failure cases, is the applied reinforcement of the column, which will start to act
when load ’q’ is applied above this steel reinforcement. Because of the reinforcement, the bending
moment can be taken more easily and also the forces Pqv and Pqh will be counteracted.

It can be concluded that bearing distance ’h’ does in fact influence the crack size , but not it’s
corresponding value of maximum (shear) stress.



CONCLUSION

As the described standards in chapter 3 have shown, current calculations are not as exact and ex-
plicit as desired.
In chapter 2, the influences of several variables on the possible crack size / -location were discussed,
while chapter 4 was exactly the opposite way around.

In figures 2.3 and 2.4, an optimum for the stress was found with a corresponding ’h’- value (while
having constant values for crack size and ’x’- position). Another remarkable thing was the linear to
parabolic transition zone. Apparently, this happens when ’dEff’ is no longer equal to ’d’.
From figures 2.10 and 2.12 in 2.4 it can be concluded that the maximum shear stress is always de-
pending on the value of ’dEff’. If this value decreases (it becomes smaller than distance ’d’), τmax will
(linearly) decrease as well.

In the fourth chapter, a possible crack was enlarged each time to see which maximum stress
values would be generated for each crack size. Doing this, means creating a more practical graph
to determine a possible crack location. It was stated that support load location ’h’ would have no
influence on the value of stress, but it does have an apparent influence on when (at which value of
’a=b’) the ultimate capacity is being reached. In the second chapter about the parameter variations,
concluded at some point that distance ’h’ alters both stress distribution and maximum values of
stress. A few chapters later, this seems no longer to be the case. The reason for this is partially that
only σmax was used no matter the ’x’- position. Additionally, distance ’h’ does alter stress values,
but plotting ’a’ versus ’σ’ shows that this is only due to a caused shift of the graph. I.e. the stress
propagation starts at a larger ’a’- value.

Observing actual column damages due to support capacity failure, the ’a/b’- ratio would often
not be equal to ’1’, but would rather be ’0.2 - 0.5’. But plotting the stresses for such a ratio does not
reveal a larger maximum (shear) stress.
Another remark would be that the corresponding support load magnitude is equal to ’24 N/mm2’,
which is a ridiculously large value (e.g. 240 kN concentrated support load on a 100 mm x 100 mm
bearing pad). These large support stresses would first cause for a failure of the bearing pad.

The simplified model does produce some problems.
First, some estimations of the crack dimensions and it’s proportions have to be made in order for
calculations to be made. These two assumptions already cause for enough speculation. After that,
the influences of certain variables (e.g. ’q’, ’d’, ’h’) have to be determined. They have to be varied one
at a time to see it’s influence on the stress distribution. The shape of the distributed load is assumed
as well and is simplified to not complicate stress relations any further.
Creating a plot, gives more information and better insight, but cannot provide a waterproof state-
ment about which distances have to be kept.

Too many assumptions have to be made, to make this model feasible. Some of the assumptions
could be empirically obtained after a failure, but that will cause for a no longer, strictly theoreti-
cal model. Further research is needed in order to contemplate actual failure cases and parameter
estimations.
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APPENDIX

APPENDIX A: PYTHON CODE

import numpy as np
import matplotlib.pyplot as plt
import numpy.random as rnd
from scipy.stats import norm
import scipy.optimize as sc
import ipywidgets as widgets
from ipywidgets import interact
%matplotlib inline

#General function for stress when 'h' is a list
def Function(x=5,a=200,b=200,d=200,q=20):

c = np.sqrt((a**2)+(b**2))
Theta = np.arctan(b/a)
Phi = np.arctan(a/b)
Ac = 1*c
Ic = (1/12)*1*(c**3)
h = np.linspace(0,a,a)
d1 = np.zeros(a)
for i in range(a):

if d+h[i]>a:
d1[i] = a-h[i]

else:
d1[i] = d

k = h + (0.5*d1)
e = k-(0.5*c*np.cos(Theta))
Pq = q*d1
Mq = e*Pq
Pqh = np.cos(Phi)*Pq
Pqv = np.cos(Theta)*Pq
sigMr = ((Mq*0.5*c)/Ic)
sigMl = -((Mq*0.5*c)/Ic)
sigPqv = -(Pqv/Ac)
sigR = sigMr + sigPqv
sigL = sigMl + sigPqv
y = sigL+((sigR-sigL)/c)*x
Sx = 0.5*x*(c-x)
tau = ((Pqh*Sx)/Ic)
return h, y, tau, c
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#General function for stress when 'x' is a list
def Yfunc(a=200,b=200,d=200,h=100,q=20):

c = np.sqrt((a**2)+(b**2))
Theta = np.arctan(b/a)
Phi = np.arctan(a/b)
Ac = 1*c
Ic = (1/12)*1*(c**3)
if d+h>a:

d1 = a-h
else:

d1 = d
k = h + (0.5*d1)
e = k-(0.5*c*np.cos(Theta))
Pq = q*d1
Mq = e*Pq
Pqh = np.cos(Phi)*Pq
Pqv = np.cos(Theta)*Pq
sigMr = ((Mq*0.5*c)/Ic)
sigMl = -((Mq*0.5*c)/Ic)
sigPqv = -(Pqv/Ac)
sigR = sigMr + sigPqv
sigL = sigMl + sigPqv
x = np.linspace(0,c,c)
y = sigL+((sigR-sigL)/c)*x
Sx = 0.5*x*(c-x)
tau = ((Pqh*Sx)/Ic)

return x, y, tau, c

##Figure 2.2
plt.plot(Yfunc(200,200,100,0,2)[0],Yfunc(200,200,100,0,2)[1], 'cyan')
plt.plot(Yfunc(200,200,100,100,2)[0],Yfunc(200,200,100,100,2)[1], 'darkgrey')
plt.plot(Yfunc(200,200,100,200,2)[0],Yfunc(200,200,100,200,2)[1], 'k')
plt.xlim(0,c)

##Figure 2.3
plt.plot(Function(0,200,200,200,1)[0],np.abs(Function(0,200,200,200,1)[1]), 'aqua')
plt.plot(Function(0,200,200,200,2)[0],np.abs(Function(0,200,200,200,2)[1]), 'gray')
plt.plot(Function(0,200,200,200,3)[0],np.abs(Function(0,200,200,200,3)[1]), 'k')
plt.ylim(0,2.2)

##Figure 2.4
plt.plot(Function(0,200,200,100,2)[0],Function(0,200,200,100,2)[1], 'aqua')
plt.plot(Function(0,200,200,150,2)[0],Function(0,200,200,150,2)[1], 'gray')
plt.plot(Function(0,200,200,200,2)[0],Function(0,200,200,200,2)[1], 'k')
plt.ylim(-2,2)

##Figure 2.6
c4 = Function(0,200,200,200,2)[3]
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c5 = Function(0,250,200,200,2)[3]
c6 = Function(0,300,200,200,2)[3]

X_1 = Function(0.1*c4,200,200,200,2)[0]
X_2 = Function(0.1*c5,250,200,200,2)[0]
X_3 = Function(0.1*c6,300,200,200,2)[0]

Y_1 = Function(0.1*c4,200,200,200,2)[1]
Y_2 = Function(0.1*c5,250,200,200,2)[1]
Y_3 = Function(0.1*c6,300,200,200,2)[1]

plt.plot(X_1,Y_1, 'aqua')
plt.plot(X_2,Y_2, 'gray')
plt.plot(X_3,Y_3, 'k')

Min_y_1 = min(Y_1)
Min_x_1 = X_1[Y_1.argmin()]
Min_y_2 = min(Y_2)
Min_x_2 = X_2[Y_2.argmin()]
Min_y_3 = min(Y_3)
Min_x_3 = X_3[Y_3.argmin()]

plt.plot([Min_x_1,Min_x_2,Min_x_3],[Min_y_1,Min_y_2,Min_y_3], 'ko')

##Figure 2.7
c4 = Function(0,200,200,200,2)[3]
c5 = Function(0,250,250,200,2)[3]
c6 = Function(0,300,300,200,2)[3]
plt.plot(Function(0.1*c4,200,200,200,2)[0],

Function(0.1*c4,200,200,200,2)[1], 'aqua')
plt.plot(Function(0.1*c5,250,250,200,2)[0],

Function(0.1*c5,250,250,200,2)[1], 'gray')
plt.plot(Function(0.1*c6,300,300,200,2)[0],

Function(0.1*c6,300,300,200,2)[1], 'k')
plt.ylim(-1.4,0)

##Figure 2.8
plt.plot(Yfunc(200,200,200,100,5)[0],

Yfunc(200,200,200,100,5)[2], 'cyan')

##Figure 2.9
plt.plot(Yfunc(200,200,200,100,1)[0],Yfunc(200,200,200,100,1)[2], 'cyan')
plt.plot(Yfunc(200,200,200,100,2)[0],Yfunc(200,200,200,100,2)[2], 'gray')
plt.plot(Yfunc(200,200,200,100,3)[0],Yfunc(200,200,200,100,3)[2], 'k')

#Figure 2.10
def plt_(d0=100):

c0 = Function(0,200,200,d0,2)[3]
X0 = np.linspace(0,c0,200)
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Y0 = Function(0.5*c0,200,200,d0,2)[2]
Xb = Function(X0,200,200,d0,2)[0]
return Xb, Y0

plt.subplot(1,2,1)
plt.plot(plt_(50)[0],plt_(50)[1],'k')

plt.subplot(1,2,2)
plt.plot(plt_(100)[0],plt_(100)[1],'cyan')

##Figure 2.11
a1 = 120
a2 = 160
a3 = 200
a4 = 240

c1 = Yfunc(a1,200,200,100,2)[3]
c2 = Yfunc(a2,200,200,100,2)[3]
c3 = Yfunc(a3,200,200,100,2)[3]
c4 = Yfunc(a4,200,200,100,2)[3]

X1 = Yfunc(a1,200,200,100,2)[0]
X2 = Yfunc(a2,200,200,100,2)[0]
X3 = Yfunc(a3,200,200,100,2)[0]
X4 = Yfunc(a4,200,200,100,2)[0]

Y1 = Yfunc(a1,200,200,100,2)[2]
Y2 = Yfunc(a2,200,200,100,2)[2]
Y3 = Yfunc(a3,200,200,100,2)[2]
Y4 = Yfunc(a4,200,200,100,2)[2]

plt.plot(X1,Y1, 'cyan')
plt.plot(X2,Y2, 'darkgrey')
plt.plot(X3,Y3, 'grey')
plt.plot(X4,Y4, 'k')

Max_y1 = max(Y1)
Max_x1 = X1[Y1.argmax()]
Max_y2 = max(Y2)
Max_x2 = X2[Y2.argmax()]
Max_y3 = max(Y3)
Max_x3 = X3[Y3.argmax()]
Max_y4 = max(Y4)
Max_x4 = X4[Y4.argmax()]

plt.plot([Max_x1,Max_x2,Max_x3,Max_x4],[Max_y1,Max_y2,Max_y3,Max_y4], 'ko')
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p0,p1 = ([[Max_x1,Max_x2,Max_x3,Max_x4],[Max_y1,Max_y2,Max_y3,Max_y4]])

plt.xlim(0,350)
plt.ylim(0,0.9)
plt.plot(p0,p1, 'bo')
p2 = np.polyfit(p0,p1, 3)

ypol = np.zeros(len(p0))

for i in range(len(p0)):
ypol[i] = p2[0]*(p0[i]**3) + p2[1]*(p0[i]**2) + p2[2]*p0[i] +p2[3]

#plt.plot(p0,ypol)

p3 = np.linspace(100, 157, 100)
ypol1 = np.zeros(100)
for i in range(len(p3)):

ypol1[i] = p2[0]*(p3[i]**3) + p2[1]*(p3[i]**2) + p2[2]*p3[i] +p2[3]
plt.plot(p3,ypol1,linestyle = '--', color = 'k', label = 'Max shear');

##Figure 2.12
def plt_(a0=200):

c0 = Function(0,a0,200,200,2)[3]
X0 = np.linspace(0,c0,a0)
Y0 = Function(0.5*c0,a0,200,200,2)[2]
Xb = Function(X0,a0,200,200,2)[0]
return Xb, Y0

plt.subplot(1,2,1)
plt.plot(plt_(200)[0],plt_(200)[1],'k')

plt.subplot(1,2,2)
plt.plot(plt_(300)[0],plt_(300)[1],'cyan')

#General function for determining stress maximum
def Maxs(a=200,b=200,d=200,h=100,q=20):

c = np.sqrt((a**2)+(b**2))
Theta = np.arctan(b/a)
Phi = np.arctan(a/b)
Ac = 1*c
Ic = (1/12)*1*(c**3)
if h>=a:

d1 = 0
elif d+h>a:

d1 = a-h
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else:
d1 = d

k = h + (0.5*d1)
e = k-(0.5*c*np.cos(Theta))
Pq = q*d1
Mq = e*Pq
Pqh = np.cos(Phi)*Pq
Pqv = np.cos(Theta)*Pq
sigMr = ((Mq*0.5*c)/Ic)
sigMl = -((Mq*0.5*c)/Ic)
sigPqv = -(Pqv/Ac)
sigR = sigMr + sigPqv
sigL = sigMl + sigPqv
x = np.linspace(0,c,c)
y = sigL+((sigR-sigL)/c)*x
z = np.max(y)
return z

#General function for determining shear stress maximum
def Maxsh(a=200,b=200,d=200,h=100,q=24):

c = np.sqrt((a**2)+(b**2))
Theta = np.arctan(b/a)
Phi = np.arctan(a/b)
Ac = 1*c
Ic = (1/12)*1*(c**3)
if h>=a:

d1 = 0
elif d+h>a:

d1 = a-h
else:

d1 = d
k = h + (0.5*d1)
e = k-(0.5*c*np.cos(Theta))
Pq = q*d1
Mq = e*Pq
Pqh = np.cos(Phi)*Pq
Pqv = np.cos(Theta)*Pq
sigMr = ((Mq*0.5*c)/Ic)
sigMl = -((Mq*0.5*c)/Ic)
sigPqv = -(Pqv/Ac)
sigR = sigMr + sigPqv
sigL = sigMl + sigPqv
x = np.linspace(0,c,c)
y = sigL+((sigR-sigL)/c)*x
Sx = 0.5*x*(c-x)
tau = ((Pqh*Sx)/Ic)
z = np.max(np.abs(tau))
return z
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##Figure 4.3
n2 = 200
z2 = np.zeros(n2)
ab2 = 1
for i in range(n2):

z2[i] = Maxs((i+1)*ab2,(i+1)*2*ab2,800,10,24)
xab2 = np.linspace(0,n2*ab2,n2)
plt.plot(xab2,z2,'cyan')
plt.plot(xab1,z1,'grey')
Max_y2 = max(z2)
Max_x2 = xab2[z2.argmax()]
print('a=', Max_x2,'sig=',Max_y2)

##Figure 4.4
n4 = 200
z4 = np.zeros(n4)
ab4 = 1
for i in range(n4):

z4[i] = Maxsh((i+1)*ab4,(i+1)*2*ab4,300,10,24)
xab4 = np.linspace(0,n4*ab4,n4)
plt.plot(xab4,z4,'cyan',label = 'a=0.5b')
plt.plot(xab3,z3,'grey',label = 'a=b')
plt.xlabel('Position of the crack a')
plt.ylabel('Shear stress [N/mm^2]')
Max_y4 = max(z4)
Max_x4 = xab4[z4.argmax()]
print(Max_x4,Max_y4)

##Figure 4.5
fck = 20 #N/mm^2 (For example C20/25)
fctk005 = 2.2 #N/mm^2

fcd = fck/1.5 #N/mm^2
fctd = fctk005/1.5 #N/mm^2

fck1 = 30
fctk1 = 2.9

fcd1 = fck1/1.5
fctd1 = fctk1/1.5

fck2 = 45
fctk2 = 3.8

fcd2 = fck2/1.5
fctd2 = fctk2/1.5

def cap(fcd,fctd):
sigm = np.linspace(-20,10,200)
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phi = np.arcsin((fcd-fctd)/(fcd+fctd))
c = 0.5*fcd*fctd
tau = c-(sigm*np.tan(phi))
return sigm, tau

plt.plot(cap(fcd,fctd)[0],cap(fcd,fctd)[1],'cyan')
plt.plot(z1,0.6*z3,'grey',)
plt.axhline(y=0,'k')
plt.axvline(x=0,'k')

plt.plot(cap(fcd1,fctd1)[0],cap(fcd1,fctd1)[1],'b')
plt.plot(cap(fcd2,fctd2)[0],cap(fcd2,fctd2)[1],'k')

##Figure 4.6
plt.plot(cap(fcd,fctd)[0],cap(fcd,fctd)[1],'cyan')
plt.plot(z1,0.6*z3,'gray')

X = z1
Y = cap(fcd,fctd)[1]
Z = z3

print(X[180])
plt.axvline(X[180],'k')
plt.xlim(0,5)
plt.ylim(0,10)

##Figure 4.7
plt.plot([10,50,100,200],[18,90,180,360],'ko')
plt.xlim(0,300)

def a_(h):
return 1.8*h

h = np.linspace(0,300,300)
plt.plot(h,a_(h),'k')
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