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Summary

In a response to the Russian invasion of Ukraine, the question of national defense has become a more
relevant topic. Is the Netherlands properly prepared for war? One of these preparations are enough
bomb shelters for the civilian population to take cover during air raids and bombings. The faculty of civil
engineering and geo sciences is a large building with many concrete elements and a big concrete cellar.
Therefore the ability of the building to resist a bombing is modeled and from these models estimations
are made.

The main structural elements of the building bearing the vertical loads into the ground are the columns
in the building. This report will therefore look at these columns and see if they can resist the loading of
different blasts. The main question of the report is: What is the explosive power which is necessary
to blow away the supoorting columns of the CITG building?

Firstly these columns are looked at more closely, what are their dimensions. What properties do they
have, and what is the mostly likely mode of failure. These columns consist of reinforced concrete. First
we look at how such a column behaves in a linear elastic loading range, then there is a more detailed
into what happens when the plastic limits get reached and parts of the column can not take any more
loads. Here we found that the first area’s to fail are the edges, when about 1700kN gets applied,
then the middle also fails at a load of 2300kN . This creates a mechanism, meaning the column can
freely move and therefore collapses. This happens when the maximum displacement is 7.37mm and
19.68mm respectively.

Then the blast forces are investigated, for different types of explosives. From literature the relation
between the blast weight, distance between blast and important point and incoming pressure are found.
This gets further elaborated upon in subsection 4.2 and the resulting forces can be found in tables 4.2,
4.3 and 4.4.

All these forces are and properties of the column are then used in a model, as a mass spring-system.
From which a ordinary differential equation can be set up. This differential equation is then approached
by a numerical program using the Euler forward method. Here it uses a linearisation of the local deriva-
tive with a finitely small time step to find the next point. This method is O(h) meaning error linearly
decreases with the time step. The blast forces get modeled as a force that acts for a small time in the
beginning and then stops.

Finally from all these values it is found that the blast has to occur very close to have any kind of impact
on the system. And only really collapses when it has a blast load greater than 50kg equivalent of TNT.
So a lot of mid-sized bombs will not be enough to cause the column to collapse.
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1
Introduction

In febuari 2022 Russia invaded Ukraine. In Europe the fear that the war might escalate started spread-
ing. With this fear came the question: are we prepared for a war should it find us?
One of the ways to be prepared for a war is having a safe place for the civilian population to hide away
during the conflict, for example a bomb shelter. This report will therefore focus on seeing if the celar of
the faculty civil engineering and geosciences of the TU Delft is adequately dimensioned to withstand
different blasts and finally if it can be used as a bomb shelter.

Another report [7], by F. Saab modeled what would happen should the explosion blow away one of
the columns and the effect that has on the cellar with the falling rubble. However these columns do
not simply disappear, and the main question therefore of this report will center around: What is the
explosive power which is necessary to blow away the supoorting columns of the CITG building?

The chapter 2 will focus on the column and the dimensions it has. It will then see what kind of properties
is has and translate that into numbers for the mathematical model. Similarly with the forces coming
from the blast. Then in chapter 3 the nunmerical method used to make the model will be discussed.
Which equations are critical and how we go from the data to our results. Finally in chapter 4 all the
different data is collected and shown which is then interpreted in chapter 5.
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2
From reality to model

To be able to actually calculate the damage done to the building, it first has to be simplified into a model.
This chapter will therefore analyse the structure and translate it into a or multiple equations. To get there
some assumptions and idealisations have to be made, these will also be justified in this chapter.

Figure 2.1: Top down view of columns and Figure 2.2: lengthwise viewing of the building, lower floors

2.1. The building and the columns
The building rests on multiple lines of columns that are lined up. They are 900x500 concrete columns
with reinforcement as seen in figure 2.1. The exact reinforcement is however not online available.
Important for the model is that the column already has to bear the load of the floors on top, which
means that the column might fail first on crushing or the yielding of the reinforcement. from this we
model the entire column as a bar under compression that is fully fixed from end to end (no rotation near
the ends). This full length is 6410 mm which can be seen in figure 2.2. However this height includes
the horizontal concrete beam, which is about 1.7 meters in height. The full lenght is then 4750 mm
(measured).

The column is under compression. Because of this the resistance against moments becomes different.
Where normally the first things to fail should be the reinforcement because that generally is the most
ductile mode of failure, so columns get designed to fail that way. In columns with compression in them
however an extra compressive stress has to be taken into account. In the first area cases the tensile
reinforcement will yield before the concrete crushes. In the second area the compressive reinforcement
will also yield, peaking the moment that gets taken. Then in the third area, the concrete crushes before
the tensile reinforcement yields. After this the capacity drops significantly until the compressive stresses
get so great that no moment can be taken anymore at all because the full cross-section is at it’s limit.

These resistances against the moment can be found using a few different formula’s each for another
cases with how much normal force is present. Beginning with no normal force present.[3]

2



2.1. The building and the columns 3

MRd = Asfyd(h/2− d2) +As2σs2(h/s− d2) + αxbfcd(h/2− βx) (2.1)

where:

• MRD(kNm) = the moment capacity of the cross section
• As2(mm2) = the reinforcement area of the compressed area
• As(mm2) = the reinforcement area of the tensioned area
• d2(mm) = the distance from the edge of the column to the working reinforcement
• d(mm) = the useful height, so the height minus the distance between the reinforcement and the
edge (such that d2 + d = h

• x(mm) = the height concrete in the cross section in compression
• α(−) = a reduction factor due to some of the concrete already yielding (in lower strenght 0.75)
• β(−) = a reducion factor having to do with the working line of the concrete force with respect to
the normal centre (0.39)

• fcd(N/mm2) = the concrete design yield strength (in this case 19)
• fyd(N/mm2) = the reinforcement steel yield strength (in this case 435)
• σs2(N/mm2) = the stress in the compressed part of the reinforcement

Figure 2.3: A sketch of the column and the important properties

In the equation 2.1, since we are looking at the weakest axis around which to bend, the height is 500,
while the width is 900. Because of this we also have 6 active reinforcement bars on either side of the
column, making it 12 total. The a sketch of the cross section of the column can be seen in figure 2.3

The only unknowns in this formula right now are the stress in the compression reinforcement and the
x as height of concrete under compression.[3]

x1 = (
ϵcu3

ϵcu3 − ϵyd
)d2 (2.2)

σs2 = Es(1−
d2
x
)ϵcu3 (2.3)

Here:

• ϵcu3(%0) = the ultimate strain for concrete (which is 3.5)
• ϵc3(%0) = the yield strain for concrete (which is 1.75)
• ϵyd(%0) = the yield strain for reinforcement concrete ( 2.175)
• Es(N/mm2) = the elasticity modulus of steel (which is 210000)
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This gives the moment capacity in the first case. Then for the next cases we use a similar basic formula
for themoment itself, however mainly the area under compression and the stresses in the reinforcement
will mostly differ.

x2 = (
ϵcu3

ϵcu3 + ϵyd
)d (2.4)

In this case both reinforcements are yielding, meaning σt = σd = fyd, which makes:

MRd = Asfyd(d− d2) + αx2bfcd(h/2− βx2) (2.5)

In this case, the moment is fully taken by the reinforcement, so the compressive force is fully taken by
the concrete:

NED = Nc = αxbfcd (2.6)

The next important point is when there is no more tension in the entire cross section, Here x = h

ϵs = (d/h− 1)ϵcu3 (2.7)

Ns = As ∗ Es ∗ ϵs (2.8)

Ns2 = As2fyd (2.9)

Nc = αbhfcd (2.10)

NEd = Ns2 +Nc +Ns (2.11)

MRd = Ns2(h/2− d2) +Ns(h/s− d2) +Nc(h/2− βh) (2.12)

This is the last cross section with any sort of moment Resistance. Finally we have the case of pure
compression. All the elements are yielding at their full strength.

NED = Asfyd +As2fyd + bhfcd (2.13)

These equations can then be used to get a diagram plotting the moment capacity versus the acting
normal force.

Figure 2.4: A interaction diagram between the normal forces and moment capacity



2.1. The building and the columns 5

When trying to find the actual moment capacity we first try to estimate the force acting through the
column. We assume that the actual force nears the design strength.

NEd = bhfcd/γconcrete (2.14)

Here we use the concrete’s design strength combined with a safety factor of 1.5 for concrete. After that
we use linear interpolation to gain the strength from the graph that is shown in figure 2.4.

situation 1 situation 2 situation 3 situation 4 actual situation
xu (mm) 164 274 500 500 n. d.
N (kN) 0 1951 8511 12748 5700
MRD (kNm) 798 1115 763 0 914

Table 2.1

This 914 kNm from table 2.1 will be the plastic moment capacity of the column going forward. The other
values are the moment capacities and normal Forces that are used in figure 2.4

2.1.1. column in the model
In the model the column will be modeled as a mass spring system. Here a few aspects of the column
are very important, firstly the moving mass [m], the spring stiffness [k] and the damping coefficient [c].
Firstly the mass that gets moving in the system is simply the mass of the column. However due to the
fixed ends, the column is restricted in moving. So a effective length of the moving column is taken only
looking at about 0.7 of the total length.

m = (Ac ∗ ρc +As ∗ ρs) ∗ leff (2.15)

The spring stiffness follows from a structural ”forget-me-not”. This is a standard case for how a doubly
clamped bar reacts to a uniformly distributed load.

Figure 2.5: Forget met not [10]

For any elastic behaviour of a cross section, it is important to know how stresses distribute over those
cross sections. Important here is the EI or the Elasticity modulus multiplied with the surface area
moment. In composite cross sections like reinforced concrete, the more stiff material pulls more stress
to it’s surface, which can make this EI hard to calculate. Since however this is a relatively symmetrical
cross section, a lot simplifies. First off, the EI can be split into that of the steel part and the concrete.

EI = EsIs + EcIc (2.16)

Most of the steel however does not centre around the normal centre. To find this moment of inertia we
can then use Steiner’s theorem or the parallel axis theorem, which states:

Iz = Ix +Ar2 (2.17)
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Finally we then get

EI = Esnw(
π

4
(ϕlw/2)

4 +
π

4
(ϕlw)

2(h/2− d2)
2) + Ec

1

12
Bh3 (2.18)

where:

• nw = the amount of active reinforcement bars in a cross section (in this case 6)
• ϕlw = the diameter of the reinforcement steel (here 32 mm)
• Ec = the stiffness modulus of concrete (usually around 30000, but if we assume it cracks, then
the stiffness gets reduced by a factor 3)

because ϕlw << h, means that the contribution of (ϕlw/2)
4 is probably negligible in comparison to the

other addition, and will be assumed as such

From the standard case in figure 2.5 we find that the following relation between the displacement and
the acting forces:

wc =
1

384

ql4

EI
(2.19)

Looking back at our standard spring model, we find that normally the forces from a spring can be found
as the following:

Fspring = −k ∗ u (2.20)

We can rewrite equation 2.19 in the following way to make it look more like equation 2.20:

ql =
384EI

l3
∗ wc (2.21)

Here the ql is similar to the Fspring, only this is the load required to move the column, while the Fspring

is the reaction force resisting the movement. Then we can also see that our k can be described as
384EI

l3 , which will also be the k used in our model. Important is to note that this only applies to the elastic
realm. Once plastic deformation happens, the moment and strain distribution will become different and
a different stiffness will be used.

2.1.2. plastic deformation
Going into plastic stiffness it gets more complicated as different parts of the column will start to behave
non linearly after the plastic limit is reached [6]. The first parts of the beam to reach it’s plastic limit will
be the ends at the bottom and top, as the moment distribution is highest there in this standard case.

Figure 2.6: Moment distribution before moment failure [6]

In the figure 2.6 the Mp is the plastic moment capacity we found from figure 2.4. As seen in the forget
me not’s, the moment here will be given by Mend = ql2

12 , so qcollapsel = 12Mp/l. Plugging this into the
forget me not for the deflection, the following can be stated:
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wy =
12Mpl

2

384EI
(2.22)

This displacement still holds, since moment just before the failure is still wholly elastic. After the ends
collapse the standard situation more closely resembles a hinged supported beam with two moments
acting on both ends with the size of the plastic moment capacity. This does mean that from now on the
angle at the end of the beam ϕ1 > 0

Figure 2.7: Displacement case after the ends fail

In figure 2.7 the wy is the displacement caused by the load until the ends fail, the subsequent ∆w
is the displacement added onto it by the load that adds itself on after the ends have already yielded
∆q = qfullcollapse − qy. The moment distribution will finally be the Mp’s at the edges of the column and
the Mp at the centre. Finally the full collapse displacement is given as wc = wy +∆w.

Figure 2.8: Moment distribution when the full beam collapses

Since in figure 2.8 the ends are now hinges, the moment distribution will also become like that of a
hinged beam. So for the middle of the beam the moments will change as follows:

0.5Mp+
∆ql2

8
= Mmiddle (2.23)

When the middle collapses Mmiddle = Mp from which we can find the following relations:

∆ql = 4Mp/l (2.24)

qyl = 12Mp/l (2.25)

qcl = 12Mp/l + 4Mp/l = 16Mp/l (2.26)

wc =
qyl

4

384EI
+

5∆ql4

384EI
=

12Mpl
2

384EI
+

20Mpl
2

384EI
=

Mpl
2

12EI
(2.27)
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From these equations, we find the plastic limits and the deflections that accompany it. After these limits
are reached the column stops behaving elastically. It will then start to act plastically.

yield collapse

w (mm) 4.05 10.81
ql(kN) 2310 3080

Table 2.2: the displacements and accompanying loads of collapse

Figure 2.9: The plasticity graph and it’s collapse load versus displacement

In table 2.2 we find the different displacements, first when the edges start to fail, causing the beam to
act like a hinged beam. Then the deflection when the entire beam collapses. Then there are also the
loads at which this happens, which are finally all graphed in figure 2.9. These values are important for
the final models, which are discussed further in chapter 4.
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2.2. Finding the blast forces
The main force the column will have to withstand will consist of the blast load from the explosion. These
forces come from the shock wave that radiates out from the explosion. These shock waves are most
often modeled as a wave of high pressure followed by an area of negative pressure. These waves
travel with the speed of sound through the air, meaning they pass a very short time. In this report all
the explosions happen at relatively short distance, so the blast will get modeled as a uniform, evenly
distributed load working horizontally. Important is that the impulse absorbed from the explosion is the
same as the initial momentum from the column.

I =

∫ tend

t0

Fexplosion dt (2.28)

The force will be modeled as constant so equation 2.28 easily simplifies into the force times the active
time. The most important part of the function is that this energy release is constant, meaning that the
impulse stays the same. For the purposes of this system therefore, the input will be given as a set
impulse, which then gets divided by a active time. When the time is lower then the active time, the
righthandside of the main equation 3.2 will have this force acting, after this time it will disappear. This
has the benefit of being stable, while not requiring a extremely small time step in the forward Euler
method. It does start to behave weirdly when the bomb time is too high, since the spring forces start
to become significant before the bomb stops acting on the system. This is mainly due to the numerical
method 3.1

Figure 2.10: Graph showing the shockwave passing [5]

First that impulse that is created can be also be found as an integral of the shockwave [8]. In reality
the wave takes about 0.01 second to pass as seen in figure 2.10.

is =

∫ tend

t0

Ps0 dt (2.29)

Here the pressure is the incoming pressure wave. To model this we will make a very sweeping gener-
alisation, since we are mostly interested in the structural reaction to the blast and not necessarily the
blast itself. If we make a linearisation from the peak pressure to the 0 point we can integrate over a
line. This makes:

is =
1

2
Ps0 ∗ tend (2.30)

This decreases over the distance it travels. Here we use a scaled distance Z. [4]
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Z = R/W
1/3
TNT (2.31)

here:

• R(m) = the distance from the explosion to the point of interest
• WTNT (kg) = the weight of the explosive as it’s tnt equivalent

This can then be expressed using bakers equation [1] [8], which use parameters from empirical results
to describe the blast waves relation to the relative distance as such:

Ps0 = 20.06Z−1 + 1.94Z−2 − 0.04Z−3(0.05 ≤ Z ≤ 0.5) (2.32)

Ps0 = 0.67Z−1 + 3.01Z−2 − 4.31Z−3(0.5 ≤ Z ≤ 70.9) (2.33)

Where Pso is the pressure in bar.

In the formula we use the TNT equivalent weight. This is because different kinds of explosives have
different types of explosive power. To standardise this a bit, so different types of explosives can be
better compared to each other. For this project we will limit it to a few different types of explosives:
PETN charges, TNT and nitroglycerin charges.

type of explosive Wtnt equivalent factor
TNT 1.1
Nitroglycerine 1.2
PETN 1.7

Table 2.3: Factors for the explosiveness of substances [5]

We use the factors from table 2.3 to find the TNT equivalent as follows:

WpTNT = (
P

PTNT
)W (2.34)

Where the P
PTNT

is the same as the equivalent factor [9].

With these equations we can find the final forces acting on the structure, simply by multiplying the
incoming pressure with the area it acts over (900 and 6410), these can be found in chapter 4.



3
Python program

Last chapter we discussed about how the real life column got transformed into a mass spring system,
where stiffness and the mass got decided by the dimensions of the columns. In this chapter there will
be an expansion upon the mass spring system, where different loads are unleashed on the system,
which will then be expanded upon.

3.1. the forward Euler method
To approximate the solution to the system, a numerical method is used, the forward Euler method.
This method uses a linearisation around a certain time step of the function. The main principle centres
around the following equation

yn+1 = yn + f(yn, tn)h (3.1)

Here the function f(yn, tn) is the rate of change of yn at that specif moment. In the specific case of the
column, the full system is governed by the basic mass spring equation. [2]

mẅ + kw + cẇ = Fexternal (3.2)

The equation 3.2 can be rewritten to be an explicit way to calculate the acceleration at that specific
moment as a function of the place and the speed. here the k is the spring coefficient, c is the damping
factor.

an = (Fexternal − kwn − cvn)/m (3.3)

When having found the acceleration at a certain point, this can be used to find the speed in a following
time step h.

vn+1 = vn + anh (3.4)

This speed can then be used to find the next displacement of the column.

wn+1 = wn + vnh (3.5)

It should be noted that there are some limiting factors when using this method, since it is only a lineari-
sation around the specific point in time, it is not fully accurate. However it gets more and more accurate
as the h decreases. This algorithm is O(h), so the error linearly decreases with the step size.A

11



3.2. Blast forces 12

To actually go through the time steps, it loops through the system, with the same amount of time steps
as are given. Arrays are made for each value that is of interest in which the value gets saved.

3.2. Blast forces
The blast forces will be modeled as incoming shock waves. These shock waves are already trans-
formed into a point pulse acting on the mass-spring system. This pulse is then divided into a force
acting over a time. This is the time the bomb is active. Then this gets added as a constant to the
system. After this time the force will be set to 0.

Figure 3.1: example of blast force

The numbers in figure 3.1 are arbitrary and it is more important to show how the force works.

3.3. stiffness and plasticity
From section 2.1.1 it follows that the initial stiffness of the system is found from the forget me not as
a constant. Then in section 2.1.2 it is seen that this behaviour changes from the moment the plastic
capacity gets reached. A few different models got made to take this into account. One where the
stiffness k stays constant. This is a best case scenario and failure here means the column probably
does really collapse under the blast.

The second model investigates everything as linear, up until the moment the ultimate deflection gets
reached, the column cannot take any more load. Meaning the spring force will stay constant as long
as it is above that ultimate deflection load. The response this gives can be seen in figure 3.2

The third model Is similar to the second one, but then adds a third component. Here we also take
into account that the edges can start to fail before creating a full mechanism. So the column will not
fully stop being able to resist deformation, but it will become less stiff. This secondary stiffness can be
expressed in the following equation.

k =
384EI

5l3

When the hinges get formed at the edges, these edges can rotate. The the other forget me not can
then be used for the new stiffness. This can be seen in figure 3.3

Figure 3.2: F-w diagram where only the ultimate
collapse displacement is important

Figure 3.3: F-w diagram with the first hinges also
displayed



4
Inputs and data

In this chapter the final inputs will be calculated and be used to graph the dynamic response of the
system. Because there are multiple models some data will be repeatedly modeled, however if this is
for some reason redundant, it will not be included.

4.1. confirmation of the model
In numerical models it is hard to be sure that your model is accurate as some methods can be unstable
and are prone to errors. However in mass-spring systems some properties should be visible in a
graphing of the problem. Mainly the natural frequency of the oscillator. This is found as:[9]

ω0 =

√
k

m
(4.1)

This is a frequency at which such a system will naturally want to oscillate. To find the period from this
we simply use:

T =
2π

ω0
(4.2)

From this we find a natural frequency and the period, we can do this with both the regular stiffness and
the secondary stiffness (the stiffness when the hinges at both ends form. From this we get:

type stiffness (N/mm) natural frequency ω0 (Hz) Period T (s)
k1 570055 12.04 0.52
k2 114011 5.38 1.16

Table 4.1: analytical properties of the different ossicilations

From table 4.1 we can confirm that the model is fairly accurate, since the model with only k1 has 39
peaks in 20 seconds (figure 4.1), which results in a period of 0.51 seconds, while the model with the
secondary stiffness has 21 peaks in 20 seconds (figure 4.9). This gives a period of 0.95 seconds. But
this model uses both stiffnesses so it should indeed lie between 0.52 and 1.16.

13



4.2. Blasts 14

4.2. Blasts
First a table of close blasts. This happens at 0.2 meters from the column.

type explosive
weight
explosive
(kg)

weight
eq factor

weight
tnt eq
(kg)

distance
r (m)

Relative
distance Z

pressure
bakers eq (Pa)

relative
impulse
(Nm/s/m2)

impulse
(Nm/s)

TNT 5 1.1 5.5 0.2 0.113 30066520 30067 128534
TNT 50 1.1 55 0.2 0.053 80786483 80786 345362
nitroglycerine 5 1.2 6 0.2 0.110 31240067 31240 133551
nitroglycerine 50 1.2 60 0.2 0.051 83598137 83598 357382
PETN 5 1.7 8.5 0.2 0.098 36419639 36420 155694
PETN 50 1.7 85 0.2 0.045 95360941 95361 407668

Table 4.2: Different blasts happening at 0.2 meters distance from the column

The blasts from table 4.2 give dynamic responses visible in figures 4.1, 4.2, 4.3, 4.4, 4.5 and 4.6 all
figures were using the smallest possible time step of 0.000005. This was the smallest because the
time steps were halved until python ran out of data to store:

Figure 4.1: 5kg of TNT Figure 4.2: 50 kg of TNT

Figure 4.3: 5kg of nitroglycerine Figure 4.4: 50kg of nitroglycerine
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Figure 4.5: 5kg of PETN Figure 4.6: 50kg of PETN

In these models the stiffness k stays constant. Meaning a mechanism only forms when 50 kg PETN
gets detonated. Further away blasts scale down quickly.

type explosive
weight
explosive
(kg)

weight
eq factor

weight
tnt eq
(kg)

distance
r (m)

Relative
distance Z

pressure
bakers eq (Pa)

relative
impulse
(Nm/s/m2)

impulse
(Nm/s)

TNT 5 1.1 5.5 0.5 0.283 9323770 9324 39859
TNT 50 1.1 55 0.5 0.131 24720304 24720 105679
nitroglycerine 5 1.2 6 0.5 0.275 9660583 9661 41299
nitroglycerine 50 1.2 60 0.5 0.128 25679571 25680 109780
PETN 5 1.7 8.5 0.5 0.245 11147822 11148 47657
PETN 50 1.7 85 0.5 0.114 29921799 29922 127916

Table 4.3: Different blasts happening at 0.5 meters distance from the column

type explosive
weight
explosive
(kg)

weight
eq factor

weight
tnt eq
(kg)

distance
r (m)

Relative
distance Z

pressure
bakers eq (Pa)

relative
impulse
(Nm/s/m2)

impulse
(Nm/s)

TNT 5 1.1 5.5 2 1.133 296315 296 1267
TNT 50 1.1 55 2 0.526 2963137 2963 12667
nitroglycerine 5 1.2 6 2 1.101 323253 323 1382
nitroglycerine 50 1.2 60 2 0.511 3232513 3233 13819
PETN 5 1.7 8.5 2 0.980 457941 458 1958
PETN 50 1.7 85 2 0.455 4579391 4579 19577

Table 4.4: Different blasts happening at 2 meters distance from the column

From table 4.4 and table 4.3 we can see that even a small distance causes the explosions to have
immensely less power compared to the blasts happening next to the column. These blasts certainly
will not reach the moment capacity and are therefore irrelevant to show.

What will be shown again however is the differences between a linear k and a changing k.
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Figure 4.7: Blast with constant k Figure 4.8: Blast with hinge at collapse load

Figure 4.9: Blast with plastic hinges

You can see in figures 4.7 and 4.8 the blast hangs a bit more in the mechanism range when the k
changes, versus the constant elastic version. However this difference is not very extreme and is barely
visible. The biggest change is visible when we also change the hinges at the ends in figure 4.9. A max
deflection which is 1.5 times as high as the other ones.

We can also remodel this with the blasts where the hinges do form, namely the 50 kg TNT and the 50
kg nitroglycerin.

Figure 4.10: 50 kg TNT Figure 4.11: 50 kg TNT with plastic hinges
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Figure 4.12: 50 kg nitroglycerine Figure 4.13: 50 kg nitroglycerine with deformed hinges

Between figure 4.10 and figure 4.11 is a very visible difference between the two models, as one forms
a mechanism while the other does not. Meaning the difference between plastic deformed ends vs stiff
ends does make a significant contribution to the system. The exact same holds for figure 4.12 and
figure 4.13.

4.3. damping
In the previous section we examined the dynamic response of the column to the blast forces. Those
oscilations are idealised models and don’t take losses from friction into equation. This effect is called
damping. The damping coëfficient c can be found in equation 3.2, but is up until now taken as 0. This
damping ratio is found by equation 4.3:

c = ζ ∗ 2 ∗m ∗ ω0 (4.3)

or
c = ζ ∗ 2 ∗

√
m ∗ k (4.4)

Here the ζ is the damping ratio, a percentage of kinetic energy that fades per oscillation. When the
damping ratio is 1 or greater than 1, the system is over damped and will asymptotically approach the
equilibrium instead of oscillating around it. The damping in the case for a concrete column is around
2.5 % The effect the dampening has on the oscilation will be showcased on figures 4.14 and 4.15.

Figure 4.14: 50 kg PETN model 3 with damping Figure 4.15: 50 kg PETN model 2 with damping

Here we can see the damping makes the oscillation die out quite quickly, after only 10 seconds it
becomes insignificant in comparison to the maximum displacement.



5
Interpretations

In this chapter the data from chapter 4 will be quickly discussed.

Firstly important is to note the big difference that the distance makes to the power of the explosive.
This is because the equations that were used were for open air explosions. This will mean short
wave reflections against the roof and floor, or reflections inside the building itself were neglected. And
instead the pressure had enough room to escape into all sides. Even at 0.5 meters distance the biggest
explosive has a similar incoming pressure as that as seen in figure 4.1. There the dynamic response
is very little.

Besides this the explosives while packing quite a punch were often not strong enough to blow away
the column, the explosions themselves went up to a maximum of 50 kg. This was mainly done so the
relative distance would not drop below 0.05, after this the baker equations 2.32 and 2.33 breaks down
and will not be relevant anymore.

In the initial model the only explosion to lead where a full mechanism forms is the 50kg PETN charge.
The other 50kg charges do cause the edges to fail and become hinges. In the final model however,
when we take the effect of the hinged edges on the stiffness of the mass-spring system, the weakened
column makes it easier for the other hinge to form and create a mechanism. This does accentuate the
big impact of the different models.

To find out if the column actually collapses under the loads presented by the blast we have to know if
the forces present will continue the collapse mechanism. These are the normal forces present in the
column times the displacement from the second order effects.

Mbuc = N ∗ wmax (5.1)

The moment from equation 5.1 is the moment keeping the failure mechanism going after the blast
forces fade away. We take the maximum displacement in the worst case scenario. Which is the 50 kg
in model 3 from figure 4.9. This is 20.2mm, together with the normal force of 5700kN from table 2.1 we
get 107kNm, which is much less than the collapse moment of 914kNm. Which leads to the conclusion
that the column won’t collapse at this load, but it does come very close to this point. Since the column
stops behaving linearly, the pressure does not need to be 9 times as large to cause full failure, but only
the displacement has to become 9 times as large.
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6
Conclusion and recommendations

From the model of the column as a mass spring system, a few things can be noted. Firstly the explosion
has to be significant and close to the column for it to fail. Otherwise the column is stable and does not
near failure. This effect can already be seen when the distance increases to half a meter. A relatively
big bomb has to be used for multiple columns to fail, so the entire building is fairly resistant to mid-sized
bombings. Only direct hits with 50 kg bombs can really cause the columns to form a mechanism, which
is not even a full collapse.

It is also necessary to say that the plastic analysis is very important to the behaviour of the system.
When looking at the differences between the models that did take changes of behaviour due to local
failure and the models that did not, it can be seen that these fail earlier, from which can be concluded
that local failures easily compound onto each other into complete failure.

6.1. future research
There are some glaring missing pieces from this research that should be investigated when it comes
to future research into this topic.

Firstly the how the blast itself was modeled. The leading equation was one that only holds in open air.
Nothing about it says anything about the interaction between the dynamic response of the ground, the
rest of the building or how it might reflect inside of the building. It was all pretty straight forward. But
since this report was mainly focused on the structural part and not really the blast dynamics, this part
was beyond the scope of this project.

Another aspect that did not get a lot of cover in this project is the impact of second order effects. Be-
cause this is a column under pressure the entire system is prone to buckling and extra stresses from
eccentric loading. Especially because the explosion causes the column to oscillate, those displace-
ments cause extra moments in the column when looking at the compression in the column, which in
turn cause extra displacement. A future model where the effects of these extra forces cause extra
displacement can be very interesting.

It is also interesting to look at themoment that the column collapses and see what the rest of the building
does in response. Will the structure in the ceiling be enough to still carry the weight of the building or
will the absence of the column cause a chain reaction. It can also be that the collapse stops midway,
because load gets distributed through the roof into other columns.

Then there finally there should also be amore detailed analysis on the column, maybe in a finite element
analysis where the column gets divided into multiple smaller elements which interact with each other.
This can be used to say a lot more about the local responses to the load, as the individual elements
can only take so much stress. A lot more can be said about how the pressure wave clashes with the
column and a much more detailed analysis can be made about for local failures like spalling of the
concrete and failure on the interaction between the reinforcement steel and the concrete itself.
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A
The code

1 %matplotlib inline
2 import numpy as np
3 import pandas as pd
4 import matplotlib.pyplot as plt
5 from scipy import interpolate

1 #making a funciton to find the linear stiffness
2 def EI(H, B, Es, Ec, nw, phi_sw, phi_lw, c):
3 EIzz = Ec * (1 / 12 * B * H ** 3) + Es * ((0.5 * H - c - phi_sw - 0.5 * phi_lw) ** 2 * (

nw - 4) * (0.25 * phi_lw ** 2 * np.pi))
4 EIyy = Ec * (1 / 12 * H * B ** 3) + Es * ((0.5 * B - c - phi_sw - 0.5 * phi_lw) ** 2 * nw

* (0.25 * phi_lw ** 2 * np.pi))
5 return EIzz, EIyy

1 a, b = EI(900, 500, 200000, 10000, 12, 20, 32, 30)
2 print (a, b)

1 def forward_eu(k, m, zeta, P, t_end, dt, t0=0, tbomb=0.001, y_0=0, v0=0):
2 n = (t_end - t0) / dt
3 t = np.zeros(int(n+1))
4 y_n = np.zeros(int(n+1))
5 v = np.zeros(int(n+1))
6 F = P / tbomb
7 omega = np.sqrt(k/m)
8 c = zeta * 2 * m * omega
9 v[0] = v0
10 y_n[0] = y_0
11 t[0] = t0
12 print(2 * np.pi / omega)
13 print(omega)
14 for i in range(int(n)):
15 if t[i] <= tbomb:
16 ft = F
17 else:
18 ft = 0
19 v[i + 1] = v[i] + ((ft - k * y_n[i] - c * v[i]) / m) * dt
20 y_n[i + 1] = y_n[i] + v[i] * dt
21 t[i + 1] = t[i] + dt
22 return y_n, t, n
23

24

25 #testing it out
26 x, t, n = forward_eu(100, 200, 0.02, -30000, 10, 0.00001)
27 print(x, t, n)
28 plt.plot(t, x)

1 #function to calculate design N force in column in kN
2 def descap(H, B, fck, gamma):

21
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3 N = fck * H * B / gamma
4 return N
5 N = descap(900, 500, 19, 1.35)
6 print(N)
7

8 #function making a graph of the N-M interaction diagram
9

10 def NMdiag(H, B, philw, phisw, fyd, fck, nt, N, c=30, alpha=0.75, beta=0.38888, epsc3=1.75,
epscu3=3.5, epsyd=2.175, Es=200):

11 As = 0.25 * philw ** 2 * np.pi * nt
12 a = c + phisw + 0.5 * philw
13 xu0 = (As * fyd) / (alpha * H * fck)
14 d = B - a
15 Mp0 = As * fyd * (B/2 - a) + alpha * xu0 * H * fck * (B/2 - beta*xu0)
16 N0 = 0
17 xu1 = (epscu3/(epscu3 + epsyd)) * d
18 Mp1 = As * fyd * (B / 2 - a) + alpha * xu0 * H * fck * (B / 2 - beta*xu1) + As * fyd * (B

/2 - a)
19 N1 = alpha * xu1 * B * fck
20 xu2 = B
21 epss = (d/B - 1) * epscu3
22 Ns2 = epss * Es
23 Mp2 = As * fyd * (B / 2 - a) + Ns2 * (B / 2 - a) + alpha * B * H * fck * (B / 2 - beta *

xu2)
24 N2 = alpha * B * H * fck + As * fyd - Ns2
25 Mp3 = 0
26 N3 = B * H * fck + 2 * As * fyd
27 plt.figure(figsize=(10,6))
28 if N0 <= N < N1:
29 mp = np.interp(N, [N0, N1], [Mp0, Mp1])
30 #print(mp)
31 #plt.plot(N, mp, 'ro')
32 elif N1 <= N < N2:
33 mp = np.interp(N, [N1, N2], [Mp1, Mp2])
34 #print(mp)
35 #plt.plot(N, mp, 'ro')
36 elif N2 <= N < N3:
37 mp = np.interp(N, [N2, N3], [Mp2, Mp3])
38 #print(mp)
39 # plt.plot(N, mp, 'ro')
40 elif N > N3:
41 mp = 0
42 print('the␣column␣will␣crush␣before␣failing␣under␣the␣moment␣capacity')
43 plt.plot([N0, N1, N2, N3], [Mp0, Mp1, Mp2, Mp3], label='N-M␣diagram')
44 plt.plot(N, mp, 'ro', label='moment␣capacity␣due␣to␣Normal␣forces')
45 #plt.plot(0, mp, 'go')
46 plt.legend()
47 plt.xlabel('Compression␣[N]')
48 plt.ylabel('Plastic␣moment␣capacity␣[Nmm]')
49 plt.title('N-M␣interaction␣diagram')
50 return mp
51

52 mp = NMdiag(900, 500, 32, 10, 435, 19, 6, N)
53 print(mp)

1 def normcol(H, B, L, EI, ns, philw, rho_c=2400, rho_s=7850):
2 leff = L * 0.7
3 k = 384 * EI / (L ** 3)
4 Ac = H * B
5 As = 0.25 * philw ** 2 * np.pi * ns
6 m = (rho_c * Ac * leff + rho_s * As * leff) / (10 ** 9)
7 return k, m
8 k1, m1 = normcol(900, 500, 6410, b, 16, 32)
9 print(k1, m1)
10

11 w1, t1, n = forward_eu(k1, m1, 600, 100000, 20, 0.00005, tbomb=0.1)
12 print(w1, t1, n)
13 plt.plot(t1, w1)

1 def analytical(k1, k2, m):
2 omega1 = np.sqrt(k1/m)
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3 T1 = np.pi * 2 / omega1
4 omega2 = np.sqrt(k2/m)
5 T2 = np.pi * 2 / omega2
6 c1 = 0.025 * 2 * m * omega1
7 c2 = 0.025 * 2 * m * omega2
8 return omega1, T1, omega2, T2, c1, c2
9

10 o1, T1, o2, T2, c1, c2 = analytical(k1, k2, m1)
11 print(o1, o2, T1, T2, c1, c2)
12 print(k1, k2)

1 def plasticcol(Mp, l, EI):
2 wy = Mp * l ** 2 / (32 * EI)
3 wc = Mp * l ** 2 / (12 * EI)
4 wend = wc * 5
5 W1 = 12 * Mp / l
6 W2 = 16 * Mp / l
7 W3 = W2
8 phi1 = - (4 * Mp * l) / (24 * EI)
9 print(phi1)
10 plt.plot([0, wy, wc, wend], [0, W1, W2, W3])
11 return wy, wc, wend, W1, W2, W3
12

13 wy, wc, wend, Wy, Wc, Wend = plasticcol(mp, L, b)
14 print(wy, wc, Wy, Wc)
15 plt.plot(wc, Wc, 'go', label='hinge␣in␣the␣middle')
16 plt.plot(wy, Wy, 'ro', label='hinges␣on␣the␣sides')
17 plt.legend()
18 plt.xlabel('deflection␣(mm)')
19 plt.ylabel('Added␣force␣(N)')

1 def forward_eu2(k, m, zeta, P, t_end, dt, wlim, Wc, t0=0, tbomb=0.001, y_0=0, v0=0):
2 n = (t_end - t0) / dt
3 print(n)
4 t = np.zeros(int(n+1))
5 y_n = np.zeros(int(n+1))
6 v = np.zeros(int(n+1))
7 F = P / tbomb
8 omega = np.sqrt(k/m)
9 c = zeta * 2 * m * omega
10 v[0] = v0
11 y_n[0] = y_0
12 t[0] = t0
13 print(2 * np.pi / omega)
14 for i in range(int(n)):
15 if t[i] <= tbomb:
16 ft = F
17 else:
18 ft = 0
19 if y_n[i] > wlim:
20 k1 = Wc / y_n[i]
21 elif y_n[i] < -wlim:
22 k1 = -Wc / y_n[i]
23 else:
24 k1 = k
25 v[i + 1] = v[i] + ((ft - k1 * y_n[i] - c * v[i]) / m) * dt
26 y_n[i + 1] = y_n[i] + v[i] * dt
27 t[i + 1] = t[i] + dt
28 return y_n, t, n

1 def forward_eu3(k, m, zeta, P, t_end, dt, wlim, k2, Wc, t0=0, tbomb=0.001, y_0=0, v0=0):
2 n = (t_end - t0) / dt
3 print(n)
4 t = np.zeros(int(n+1))
5 y_n = np.zeros(int(n+1))
6 v = np.zeros(int(n+1))
7 F = P / tbomb
8 omega = np.sqrt(k/m)
9 c = zeta * 2 * m * omega
10 v[0] = v0
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11 y_n[0] = y_0
12 t[0] = t0
13 print(2 * np.pi / omega)
14 for i in range(int(n)):
15 if t[i] <= tbomb:
16 ft = F
17 else:
18 ft = 0
19 if y_n[i] > wlim:
20 k1 = Wc / y_n[i]
21 elif y_n[i] > wy:
22 k1 = k2
23 elif y_n[i] < -wlim:
24 k1 = -Wc / y_n[i]
25 elif y_n[i] < -wy:
26 k1 = k2
27 else:
28 k1 = k
29 v[i + 1] = v[i] + ((ft - k1 * y_n[i] - c * v[i]) / m) * dt
30 y_n[i + 1] = y_n[i] + v[i] * dt
31 t[i + 1] = t[i] + dt
32 return y_n, t, n

1 #Define limits of the motion
2

3 wlim = np.ones(len(t1))
4 wlimcup = wlim * wc
5 wlimcdown = wlim * -wc
6 wlimyup = wlim * wy
7 wlimydown = wlim * -wy

1 w1, t1, n = forward_eu(k1, m1, 0, 710991, 20, 0.0001, tbomb=0.001)
2 #print(w1, t1, n)
3

4

5 plt.plot(t1[(w1 < wc) & (w1 > -wc)], w1[(w1 < wc) & (w1 > -wc)], 'b')
6 plt.plot(t1[(w1 > wc) | (w1 < -wc)], w1[(w1 > wc) | (w1 < -wc)], 'ro')
7 plt.plot(t1, wlimcup, 'r--')
8 plt.plot(t1, wlimcdown, 'r--')
9 plt.plot(t1, wlimyup, 'r--')
10 plt.plot(t1, wlimydown, 'r--')
11 plt.xlabel('time␣(s)')
12 plt.ylabel('displacement␣(mm)')

1 w1, t1, n = forward_eu2(k1, m1, 0, 710991, 20, 0.0001, wc, Wc, tbomb=0.001)
2 #print(w1, t1, n)
3

4 plt.plot(t1[(w1 < wc) & (w1 > -wc)], w1[(w1 < wc) & (w1 > -wc)], 'b')
5 plt.plot(t1[(w1 > wc) | (w1 < -wc)], w1[(w1 > wc) | (w1 < -wc)], 'ro')
6 plt.plot(t1, wlimcup, 'r--')
7 plt.plot(t1, wlimcdown, 'r--')
8 plt.plot(t1, wlimyup, 'r--')
9 plt.plot(t1, wlimydown, 'r--')
10 plt.xlabel('time␣(s)')
11 plt.ylabel('displacement␣(mm)')

1 w1, t1, n = forward_eu3(k1, m1, 0, 710991, 20, 0.0001, wc, k2, Wc, tbomb=0.001)
2 #print(w1, t1, n)
3

4 plt.plot(t1[(w1 < wc) & (w1 > -wc)], w1[(w1 < wc) & (w1 > -wc)], 'b')
5 plt.plot(t1[(w1 > wc) | (w1 < -wc)], w1[(w1 > wc) | (w1 < -wc)], 'ro')
6 plt.plot(t1, wlimcup, 'r--')
7 plt.plot(t1, wlimcdown, 'r--')
8 plt.plot(t1, wlimyup, 'r--')
9 plt.plot(t1, wlimydown, 'r--')
10 plt.xlabel('time␣(s)')
11 plt.ylabel('displacement␣(mm)')

Important to not is that these last few cells were used to make the graphs, they therefore have been
run with other parameters, but putting all that in the appendix would not add anything.
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