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Preface 
This project marks the culmination of my Bachelor of Civil Engineering at Delft University of 

Technology.  

 This report is intended for readers with a foundational understanding of physics and 

mathematics in the field of Civil Engineering, particularly in structure analysis and safety 

measures. It assumes familiarity with concepts such as load bearing, dynamic response 

simulation and material properties. 

 The feasibility of using the Civil Engineering building as a bomb shelter was thoroughly 

examined in this report, it starts with an introduction of the problem at hand and methodology, 

followed by ammunition impact, then an analytical and a numerical simulation of spring-mass 

system for testing accuracy of models, then a dynamic response simulation is done. This report 

ends with result discussion, recommendations for futures research and appendices for 

simulation code. 

  This project would not have been possible without the guidance of the supervisors/ 

assessors Dr. ir. P.C.J. (Pierre) Hoogenboom and Prof. dr. H.M. (Henk) Jonkers. 
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Summery 
Using the basement of the Civil Engineering building at TU Delft as a bomb shelter is 

investigated in this Bachelor end project. After the increased geopolitical risks and war knocking 

at the doorstep of Europe following the latest war between Russia and Ukraine, research to the 

safety of building under attack scenario is paramount. 

This study focuses on assessing whether the Civil Engineering building basement at TU Delft is 

feasible to serve as a bomb shelter, the assessment considers a scenario where the above-

ground structure of the building is collapsing due to ammunition impact on the first-floor 

columns. In this case a substantial force will be exerted on the basement roof causing it to 

vibrate in response to the sudden load. The main research question addressed in this report is: 

Is the basement of the Civil Engineering Building a safe place to take shelter if a ground floor 

column is blown away by a bomb? 

First begin the search for the destructive capability of modern warfare ammunition, especially 

the highly used high-explosive (HE) mortar rounds with a 120mm caliber and an explosive 

weight of approximately 2 kg of TNT. and its effect on impact on reinforced concrete columns 

was estimated. The chapter estimates that a force of 523 MN will be released from such rounds. 

Comparing it to compressive strength of a concrete columns, which is calculated to withstand 

around 14.85 MN, gave a clear conclusion these type of ammunition are more than capable to 

blast the Civil engineering building columns and to start the collapse events. 

To create a spring-mass model that accurately simulates the dynamic response of the 

basement roof using numerical methods, it is essential to first develop a standard spring-mass 

system with fixed conditions that can be solved analytically. By comparing the numerical results 

with the analytical solutions, the exact error of the numerical spring-mass system can be 

calculated. This error assessment is crucial for ensuring the accuracy and reliability of the model 

when the basement roof is subsequently analyzed. It begins with harmonic motion, where a 

mass on a spring oscillates due to the restoring force described by Hooke's Law. The motion is 

modeled by the equation 𝑚 ⋅
ⅆ2𝑥

ⅆ𝑡2 + 𝑘𝑥 = 0. The chapter examines the impact of damping, 

leading to underdamped, critically damped, and overdamped behaviors. It also investigates 

forced oscillations, highlighting resonance when the driving frequency matches the system's 

natural frequency, causing large oscillations.  

In the next chapter, all three spring-mass systems were modeled using Euler's forward 

numerical method to calculate position and velocity over time. Euler's method approximates 

equations by discretizing time into small steps, updating position and velocity iteratively. 

Comparisons between numerical and analytical solutions confirm that the numerical method's 

mean error is under 1%, even for complex systems such as those with forced oscillations. 

Modeling is done using Python programing. 

Chapter 4 details a numerical simulation of the dynamic response of a concrete basement roof 

subjected to collapse forces. The simulation models the slab as a spring-mass-damper system. 

The shelter's dimensions and material properties, such as column width, slab thickness, and 
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concrete density, are specified. The study concludes that the basement of the Civil Engineering 

Building at TU Delft is currently not safe to use as a bomb shelter. To enhance its structural 

integrity, recommendations include adding additional columns, using stronger materials, 

conducting detailed dynamic load analyses, incorporating design redundancy, and adhering to 

updated engineering standards. 

Further research should focus on improving the building's design to withstand extreme impacts 
and exploring advanced materials that offer better resilience. Additionally, enhancing simulation 
models to include various collapse scenarios can provide a more comprehensive understanding 
of potential failures and mitigation strategies. 
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Introduction  
Due to increasing geopolitical risks and the possibility of war breaking out in the Netherlands, 

ensuring safety in emergency scenarios is paramount. The former commander of the Dutch 

Land Force, Mark de Kruif, has warned that the Russian military might be capable of attacking 

NATO within two years. (De Kruif, 2024)  

If war occurs around TU Delft, underground shelters are essential for protection. Several large 

buildings on the TU Delft campus have basements that could serve as shelters. However, their 

structural integrity under modern warfare conditions is crucial. This study investigates the 

potential collapse of a building due to bomb impacts or explosions and the impact on those 

seeking shelter in the basement. 

In addition to this research, Luc de Wil is examining the impact of a grenade on the ground floor 

of the same building Together, these complementary studies aim to provide a comprehensive 

overview of the risks associated with taking shelter in the basement of the Civil Engineering 

Building at TU Delft (L.A. De Wild, A study on the use of the basement of the CEG building as a 

bomb shelter, Bachelor end project, Delft University of Technology, 2024). 

Main Research Question 

Is the basement of the Civil Engineering Building a safe place to take shelter if a ground floor 

column is blown away by a bomb? 

Sub-questions 

1. What ammunition can blow away the column of a building? 

2. What are the structural specifications and dimensions of the Civil Engineering and 

Geosciences (CEG) building, particularly the ground floor? 

3. What load will then be placed on the basement roof? 

4. Will the basement roof collapse under this load? 

This report is structured as follows: It begins with an analysis of modern warfare ammunition, 

specifically high-explosive (HE) mortar rounds, and their capability to destroy reinforced 

concrete columns. Following this, the study develops a theoretical framework for a spring-mass 

system to model the dynamic response of the basement roof under collapse forces. The 

numerical simulations are performed using Euler's forward method, validated against analytical 

solutions to ensure accuracy. The results are then applied to the specific case of the Civil 

Engineering Building's basement roof, assessing its structural integrity under the simulated 

collapse scenario. The study concludes with recommendations for enhancing the structural 

resilience of the shelter. 
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Methodology 
- Literature Review: Examine scholarly articles, military publications, and technical reports to 

understand the types of munitions and their power output. 

- Structural Measurements: Conduct on-site measurements and structural assessments to 

determine the building's load-bearing capacity and potential weak points. 

- Simulation and Calculations: Use Python programming to model the effects of bomb 

impacts on the ground floor and assess the potential for collapse. 

- Extrapolation and Risk Scenarios: Project different collapse scenarios and evaluate their 

impact on the safety of the basement shelters. Examine how debris and structural failure could 

affect those in the basement. 

- Capacity and Amenities Assessment: Determine the capacity of the basement shelter and 

assess available amenities (such as toilets, ventilation, and emergency exit) for safety and 

comfort during extended sheltering.  
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1 Ammunition Capable of blasting a Column of a Building 
 

In modern warfare, certain types of munitions are specifically designed to penetrate and destroy 

reinforced structures such as concrete columns. Understanding the types of ammunition that 

can cause significant structural damage is crucial for assessing the safety and integrity of 

buildings under potential attack. This chapter will explore high-explosive mortar rounds, 

calculate the force they produce, and evaluate their capability to blow away concrete columns. 

 

1.1 High-Explosive Mortar Rounds 
 

High-explosive (HE) mortar rounds are commonly used in military operations due to their 

destructive capability and effective fragmentation pattern. These rounds are designed to cause 

maximum damage upon impact, making them a likely candidate for blowing away structural 

columns. 

Specifications of HE Mortar Rounds: 

- Caliber: 120mm 

- Explosive Weight: Approximately 2 kg of TNT equivalent  

- Effective Firing Range: Up to 7,240 meters 

- Lethality Radius: Approximately 69 meters (Nammo, 2023) 

 

1.2 Calculation of Explosive Force 
 

The explosive force generated by a mortar round can be estimated using the energy released 

by the TNT equivalent. One kilogram of TNT releases approximately 4.184 megajoules (MJ) of 

energy. (Tons (Explosives) to Gigajoules Conversion Calculator, n.d.) 

For a 120mm mortar round with 2 kg of TNT: Total Energy Released = 2 kg × 4.184 MJ/kg =

8.368 MJ 

To convert this energy into force, we consider the impulse-momentum principle. The impulse is 

the product of the force and the time over which the force acts. The explosion causes the 

concrete column to shatter in a very short duration, 8 milliseconds to be exact. (Pääkkönen, 

1991) 

The force can be calculated as follows: 
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Impulse = Force × Time duration (1.1) 

 

Given: 

Force =
Total Energy Released

Explosion Duration
=

8.368 MJ

8 * 10-3 s
= 1046 MN (1.2) 

 

However, it is important to note that not all of this force will act in the axial direction of the 
column. A more realistic assumption is that only a fraction of the force contributes to axial 
loading, depending on the angle of impact and the distribution of explosive energy. For instance, 

if we assume that 50% of the force acts axially, the effective force becomes: Effective Force =
0.5 × 1046 MN = 523MN 

1.3 Structural Damage Assessment 
Concrete columns are designed to withstand compressive forces but are vulnerable to high-

impact explosive forces. The strength of a concrete column depends on its dimensions, 

reinforcement, and the quality of the concrete. To evaluate whether a 120mm HE mortar round 

can blow away a concrete column, we need to compare the explosive force with the column's 

load-bearing capacity. 

Concrete Column Specifications: 

- Column Width: 0.55 meters - Concrete Strength (𝑓_𝑐𝑘): 30 MPa - Reinforcement: Standard 

steel bars 

Compressive Strength Calculation: 

The compressive force (𝐹𝑐) that a concrete column can withstand is given by: 

𝐹𝑐 = Area × Concrete Strength 

With the columns Area = 0.55 × 0.90 = 0.495 m2 and this mean 𝐹𝑐 = 0.495 × 30 × 106 N/m
2  =

 14.85 × 106 N (this assume a constant strength thus a varying spring constant k is not taken 

into consideration to accurately reflect changes in stiffness. When the reinforcement yields, the 

tangent stiffness is effectively reduced to zero. This leads to overestimation of the strength of 

the columns, but in this case, it does not affect the conclusion) 

The compressive strength of the column is approximately 14.85 MN. When compared to the 

explosive force of 523 MN, it is evident that a single HE mortars round will completely blow 

away a well-reinforced concrete column.  
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2 Mass-Spring System (Analytical solution) 
Mechanical vibrations play a significant role in many branches of physics and engineering, 

particularly in systems that involve oscillatory motion. A classic example of such a system is a 

mass moving back and forth on a spring, often referred to as harmonic motion. This chapter 

explores the fundamental principles of harmonic motion, focusing on a simple mass-spring 

system. And how it relates to subject matter studied in this research project. 

2.1 Mass-Spring System  
Consider a system consisting of a mass 𝑚 resting on a frictionless surface. The mass is 

attached to a spring, which exerts a force proportional to its displacement from the equilibrium 

position. The equilibrium position is where the spring is neither stretched nor compressed, 

representing the state of rest for the system. The primary question to address is how the system 

behaves when the mass is displaced from this equilibrium position. 

2.1.1 Force Analysis and Hooke's Law 
The force exerted by the spring on the mass is governed by Hooke's Law, which states that the 

force is proportional to the displacement from the equilibrium position. Mathematically, this force 

can be described as: (The Editors of Encyclopaedia Britannica, 1998) 

𝐹 = −𝑘𝑥 (2.1) 

where 𝑘 is the spring constant, a measure of the spring's stiffness, and 𝑥 is the displacement 

from the equilibrium position. The negative sign indicates that the force exerted by the spring is 

always directed towards the equilibrium position, thus providing a restoring force. 

2.1.2 Newton's Second Law and Differential Equations 
To understand the dynamics of the mass-spring system, we turn to Newton's second law, which 

states that the sum of the forces acting on an object is equal to the mass of the object multiplied 

by its acceleration. In this context, acceleration can be written as the second derivative of 

displacement 𝑥 with respect to time 𝑡. (NASA Glenn Research Center, 2023) 

Given that the only force in this system is the spring force, Newton's second law can be written 

as: 

𝑚 ⋅
ⅆ2𝑥

ⅆ𝑡2
= −𝑘𝑥 (2.2) 

Rearranging, we get a second-order differential equation: 

𝑚 ⋅
ⅆ2𝑥

ⅆ𝑡2
+ 𝑘𝑥 = 0 (2.3) 

This differential equation describes the motion of the mass-spring system and can be solved to 

understand the behavior of the oscillations. 
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2.1.3 Solving the Differential Equation 
To solve this differential equation, we assume a solution of the form: (Blaauwendraad, 2016) 

𝑥(𝑡) = ⅇ𝑟𝑡 (2.4) 

where 𝑟 is an unknown constant. By substituting this assumed solution into the differential 

equation, we obtain the characteristic equation: (Blaauwendraad, 2016) 

𝑚 ⋅ 𝑟2 + 𝑘 = 0 (2.5) 

Solving for 𝑟, we get: 

𝑟 = ±ⅈ√
𝑘

𝑚
(2.6) 

Introducing the term 𝜔0 = √
𝑘

𝑚
 , which represents the natural frequency of the system, the 

solution to the differential equation can be written as: (Blaauwendraad, 2016) 

𝑥(𝑡) = 𝐴 𝑐𝑜𝑠(𝑤0𝑡)  + 𝐵 𝑐𝑜𝑠(𝑤0𝑡) (2.7) 

where 𝐴 and 𝐵 are constants determined by initial conditions. 

2.1.4 Combining Trigonometric Functions 
To simplify the solution, we can express it in a different form using a single trigonometric 

function. By applying trigonometric identities, the above expression can be rewritten as: 

𝑥(𝑡) = 𝐶 𝑐𝑜𝑠(𝑤0𝑡 +  𝛾)  (2.8) 

where 𝐶 represents the amplitude of the oscillations, and 𝛾 is a phase shift that depends on the 

initial conditions. The amplitude 𝐶 indicates the maximum displacement from the equilibrium 

position, while the natural frequency 𝛾 determines the rate of oscillation.  

Graphical Interpretation and Analysis: 

In figure 1, this solution represents oscillatory 

motion with three key parameters: amplitude, 

frequency, and phase shift. The amplitude 𝐶 

reflects the maximum range of oscillation, while 

the natural frequency 𝛾 determines the speed of 

oscillation. The phase shift 𝛾 describes the initial 

position of the oscillation. The behavior of the 

oscillations can be visualized through graphs that 

illustrate these parameters' effects. The Python 

code to plot this graph is placed in Appendix B. 

Figure 1  
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2.2 Friction and Damping in Mass-Spring Oscillations 
In the context of a mass oscillating on a spring, the effects of friction and damping are crucial in 

understanding the system's behavior over time. In an ideal scenario with no friction, a mass 

attached to a spring will oscillate indefinitely. However, in real-world applications, friction 

inevitably comes into play, gradually reducing the amplitude of the oscillations until the system 

returns to its equilibrium position. This chapter explores how friction affects a mass-spring 

system and delves into the various scenarios that can arise from different levels of damping. 

-  Damping Force (Friction): Friction or damping in a system acts against the motion, 

proportional to the velocity of the mass. This can be modeled as: (Blaauwendraad, 2016) 

𝐹𝑓 = −𝑐 ⋅
ⅆ𝑥

ⅆ𝑡
(2.9) 

Where ( 𝑐 ) is the damping coefficient, indicating the level of friction, and (
ⅆ𝑥

ⅆ𝑡
) is the velocity of 

the mass. 

- Net Force and Newton's Law: The total force acting on the mass is the sum of these forces, 

leading to Newton's second law, which states that force is equal to mass times acceleration: 

𝑚 ⋅
ⅆ2𝑥

ⅆ2𝑡
= 𝐹𝑠 + 𝐹𝑓 (2.10) 

2.2.1 Differential Equation with Damping 
Combining these forces, we get a second-order differential equation that describes the motion 

of the mass-spring system with friction: 

𝑚 ⋅
ⅆ2𝑥

ⅆ2𝑡
+ 𝑐 ⋅

ⅆ𝑥

ⅆ𝑡
+ 𝑘 ⋅ 𝑥 = 0 (2.11) 

To solve this differential equation, we typically use an exponential form for the solution: 𝑥(𝑡) =

ⅇ𝑟𝑡 Substituting this into the differential equation leads to a characteristic equation: 𝑚 ⋅ 𝑟2 + 𝑐 ⋅

𝑟 + 𝑘 = 0 . This characteristic equation can be solved using the quadratic formula to obtain the 

roots: 

𝑟 =
−𝑐 ± √𝑐2 − 4𝑚𝑘

2𝑚
 =

−𝑐

2𝑚
±

√𝑐2 − 4𝑚𝑘

2𝑚
(2.12) 

Dividing the r into real part and another imaginary part, for simplicity iω1 =
√𝑐2−4𝑚𝑘

2𝑚
 depending 

on the discriminant (𝑐2 − 4𝑚𝑘), the solution can yield different types of damping behaviors, 

each with distinct physical interpretations. 

2.2.2 Types of Damping 
Underdamped Case 
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When (𝑐2 − 4𝑚𝑘) is negative, the roots are complex, indicating oscillatory behavior with 

damping. This is known as the underdamped case, where the system oscillates but with 

decreasing amplitude over time due to the frictional force. The solution can be expressed as: 

(Blaauwendraad, 2016) 

𝑥(𝑡) = ⅇ−𝑐/2𝑚⋅𝑡 ⋅ (𝐴 ⋅ cos(ω1 ⋅ 𝑡) + 𝐵 ⋅ sin(ω1 ⋅ 𝑡)) (2.13) 

𝑥(𝑡) = ⅇ−𝑐/2𝑚⋅𝑡 ⋅ (𝐶 ⋅ 𝑐𝑜𝑠(𝜔1 ⋅ 𝑡 −   𝛾)) (2.14) 

where (ω1 = √4𝑚𝑘 − 𝑐2/(2𝑚))represents the damped frequency. In this scenario, the 

oscillations gradually decrease in amplitude, with the exponential decay term causing the 

oscillations to die out as time progresses. This behavior is typical in mechanical systems with 

moderate levels of friction. 

Overdamped Case 

In the overdamped case, (𝑐2 − 4𝑚𝑘) is positive, resulting in two distinct real roots. The system 

does not oscillate; instead, it exhibits exponential decay towards the equilibrium position. The 

general solution is: 𝑥(𝑡) = 𝐴 ⋅ ⅇ𝑟1⋅𝑡 + 𝐵 ⋅ ⅇ𝑟2⋅𝑡 

where(𝑟1)and (𝑟2) are both negative, indicating the rate of exponential decay. In this case, the 

high level of friction prevents oscillation, and the system quickly settles to its equilibrium position 

without significant oscillation. (Blaauwendraad, 2016) 

Critically Damped Case 

The critically damped case occurs when (𝑐2 − 4𝑚𝑘) is precisely zero. This condition is rare but 

represents the optimal level of damping where the system returns to equilibrium in the shortest 

time without oscillation. The solution for this case is: 𝑥(𝑡) = (𝐴 + 𝐵 ⋅ 𝑡) ⋅ ⅇ−𝑐/(2𝑚)⋅𝑡 

In this scenario, the system may initially move away from the equilibrium due to the linear term, 

but it quickly settles back to zero due to exponential decay, representing the balance between 

damping and oscillation. (Blaauwendraad, 2016) 

Graphical Interpretation and Conclusion: 
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In figure 2 Graphical representations of these damping cases help visualize how each type of 

damping affects the system's behavior. In the underdamped case, the oscillations gradually 

decrease in amplitude, with an "envelope" created 

by the exponential decay. In the overdamped case, 

the system quickly returns to equilibrium without 

oscillation. In the critically damped case, the system 

has an initial oscillation but settles to equilibrium 

efficiently. The Python code to plot this graph is 

placed in Appendix B. 

Understanding these different damping scenarios is 

crucial for designing systems that rely on controlled 

oscillations, such as shock absorbers in vehicles or 

building designs that consider seismic activity. By 

analyzing the behavior of damped mass-spring 

systems, engineers can ensure the stability and 

safety of various applications.  

2.3 Forced Oscillations and Resonance in Damped Mass-Spring 
Systems 
 

2.3.1 Forced Oscillations in Damped Systems 
Consider a mass attached to a spring with a damping mechanism. When an external periodic 

force is applied to this system, it begins to oscillate with a frequency that matches the frequency 

of the driving force. The response of the system depends on the amplitude and frequency of the 

external force, as well as the system's natural frequency and damping characteristics. 

The equation of motion for a forced mass-spring system with damping can be derived using 

Newton's second law. Given a mass (𝑚), spring constant (𝑘), damping coefficient (𝑏), and an 

external force ( 𝐹_0 𝑐𝑜𝑠 (𝜔𝑡)), the system's motion can be described as: 

𝑚 ⋅ �̈� + 𝑏 ⋅ �̇� + 𝑘 ⋅ 𝑥 = 𝐹0 ⋅ cos(ω𝑡) (2.15) 

This second-order differential equation represents the balance between inertial, damping, and 

restoring forces, with the additional driving force providing external energy to the system. 

2.3.2 Resonance and Natural Frequency 
One of the most intriguing aspects of forced oscillations is resonance, which occurs when the 

driving frequency ( ω) matches the system's natural frequency ( ω_0 =  √
𝑘

𝑚
). At resonance, 

even a small driving force can lead to large oscillations due to constructive interference, where 

energy from the driving force accumulates over time. 

Figure 2 
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The amplitude of oscillations at resonance depends on the damping coefficient. Lower damping 

leads to higher amplitudes, while increased damping reduces the impact of resonance. This 

balance is critical in applications like suspension systems, bridges, and buildings, where 

excessive oscillations can be dangerous. 

2.3.3 Types of Forced Oscillations 
The behavior of a forced mass-spring system with damping can vary significantly based on the 

level of damping and the driving frequency. We explore the following cases: 

 

Under-Damped Oscillations 
When damping is relatively low, the system exhibits oscillatory behavior even with the presence 

of damping. At resonance, the oscillations reach their maximum amplitude, but they gradually 

decay due to the damping force. The general solution for this case includes both the natural 

oscillatory response and the forced response, given by: 

𝑥(𝑡) = ⅇ−𝑏/2𝑚⋅𝑡 ⋅ (𝐴 ⋅ cos(ω1 ⋅ 𝑡) + 𝐵 ⋅ sin(ω1 ⋅ 𝑡)) +
𝐹0/𝑚

√(ω0
2 − ω2)2 + (𝑏 ⋅ ω/𝑚)2

⋅ cos(ω ⋅ 𝑡 − ϕ) (2.16) 

where (ϕ) is the phase shift resulting from damping and the driving frequency, and (ω1 =

√ω0
2 − (𝑏/2𝑚)2). The under-damped scenario is characterized by sustained oscillations with 

gradually decaying amplitude. 

 

Critically Damped Oscillations 
Critical damping represents the optimal level of damping where the system returns to 

equilibrium without oscillation but in the shortest time possible. This condition occurs when 

(𝑏2 = 4 ⋅ 𝑚 ⋅ 𝑘). The solution in this case is: 

𝑥(𝑡) = (𝐴 + 𝐵 ⋅ 𝑡) ⋅ ⅇ−𝑏/2𝑚⋅𝑡 (2.17) 

In this scenario, the system experiences a smooth return to equilibrium, making it ideal for 

applications where oscillations must be minimized, such as in precision engineering. 

Over-Damped Oscillations 
When the damping is higher than the critical level, the system does not oscillate but slowly 

returns to equilibrium. This behavior occurs when (𝑏2 > 4 ⋅ 𝑚 ⋅ 𝑘). The general solution is: 

𝑥(𝑡) = 𝐴 ⋅ ⅇ𝑟1⋅𝑡 + 𝐵 ⋅ ⅇ𝑟2⋅𝑡 (2.18) 

where (𝑟1) and (𝑟2) are the roots of the characteristic equation. This situation is typical in 

systems requiring stability without oscillation, such as heavy machinery or high-speed 

transportation.  

Graphical Interpretation and Resonance Phenomena: 
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In figure 3 Graphs illustrating forced oscillations reveal 

the complex dynamics at play. For example, the phase 

space diagram, which plots position against velocity, 

demonstrates the oscillatory patterns in under-damped 

systems and the smooth transitions in critically 

damped and over-damped cases. Resonance 

phenomena can also be visualized through amplitude 

vs. driving frequency plots, indicating the sharp 

increase in amplitude as the driving frequency 

approaches the system's natural frequency. This 

behavior underscores the importance of carefully 

controlling the driving frequency and damping in 

engineering applications to avoid undesirable 

resonance effects. The Python code to plot this graph 

is placed in Appendix B. 

 

3 Mass-Spring System (Numerical solution) 
In this project, we implemented a numerical simulation of a spring-mass system to compute the 

position and speed of the mass over time. The simulation is based on Euler's method, a 

straightforward approach to solving ordinary differential equations. This report explains how 

Euler's method works, its limitations, and how we mitigated those limitations through an 

appropriate choice of time step. 

3.1 Spring-Mass System without damper  
A spring-mass system consists of a mass attached to a spring that obeys Hooke's Law, which 

states that the force exerted by the spring is proportional to the displacement from its 

equilibrium position. The system experiences oscillatory motion due to this restoring force. 

Newton's second law governs the dynamics of the system, leading to the following differential 

equations: 

1. Velocity equation: 

ⅆ𝑥

ⅆ𝑡
= 𝑣 (3.1) 

2. Acceleration equation: 

ⅆ𝑣

ⅆ𝑡
= 𝑔 −

𝑘 ⋅ 𝑥

𝑚
(3.2) 

 

where: 

Figure 3 
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- ( 𝑥 ) is the position, - ( 𝑣 ) is the velocity, 

- ( 𝑔 ) is the gravitational constant (9.81 m/s²), - ( 𝑘 ) is the spring constant (40 N/m), 

- ( 𝑚 ) is the mass (1 kg). 

3.1.1 Euler Forward Method 
Euler's method approximates the solution of these differential equations by discretizing time into 

small steps, ( Δ𝑡 ). Given the current values of position and velocity, it calculates the new values 

after a small-time increment. The following formulas outline how Euler's method computes these 

updates: (Libretexts, 2022) 

1. Update position: 

𝑥𝑡+Δ𝑡 = 𝑥𝑡 + Δ𝑡 × 𝑣𝑡 (3.3) 

2. Update velocity: 

𝑣𝑡+Δ𝑡 = 𝑣𝑡 + Δ𝑡 × (𝑔 −
𝑘 ⋅ 𝑥𝑡

𝑚
) (3.4) 

This approach is applied iteratively to generate a sequence of position and velocity values over 

time. The simulation computes these values over a predefined time span, using a set of initial 

conditions and a specified time step, ( Δ𝑡 ). 

 

3.1.2 Limitations of Euler Forward and How to Overcome Them 
While Euler's method is straightforward and easy to implement, it has some notable limitations: 

- Stability: The method can become unstable for large time steps, leading to erroneous results. 

In the case of oscillatory systems like the spring-mass system, large time steps can result in 

growing oscillations that don't reflect the physical reality. 

- Accuracy: Euler's method is a first-order approximation, which can lead to errors 

accumulating over time, especially with larger time steps. (Forward and Backward Euler 

Methods, n.d. 

To overcome these limitations, we used a small-time step, ( Δ𝑡 ), to ensure stability and 

accuracy. Smaller time steps yield more accurate results, although they increase computational 

cost due to the need for more iterations. In this simulation, a time step of  105 time points over a 

5-second span. 

3.1.3 Results and Analysis 
In appendix A python code is places that have been used to calculate displacement of this 

spring mass system using Euler forward and the result are shown in figures 4 and 5. The 

position and velocity of the spring-mass system were calculated using the Euler forward 

method, and the results were visualized through plots. The oscillations in position and velocity, 
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as well as the phase diagram (plotting velocity against position), provided insights into the 

behavior of the system. 

By employing a small-time step, we achieved a stable simulation with a good representation of 

the oscillatory motion characteristic of the spring-mass system. 

 

Figure 5 

3.2 Spring-Mass system with damper  

 

Let’s simulate a spring-mass-damper system, a mechanical system characterized by a mass 

attached to a spring with a damping element. The damping term introduces resistance to the 

system's motion, affecting the oscillation's amplitude and rate of decay. This report outlines the 

simulation process using Euler's forward method and discusses the importance of a fine time 

step for stability and accuracy. 

Where a new term is added 

- (𝑏): Damping coefficient, 1 Ns/m. 

3.2.1 Euler Forward Method and Damping 
Euler's forward method computes the system's behavior by incrementally updating the position 

and velocity over time. The method is applied iteratively, with updates determined by the current 

velocity and the calculated acceleration. The inclusion of a damping term alters the acceleration 

equation, introducing a force that opposes motion, thus reducing oscillation amplitude over time. 

3.2.1.1 Euler Forward Algorithm 
1. Update Position: 

   The new position is derived from the current velocity: 

𝑥[ⅈ] = 𝑥[ⅈ − 1] + ℎ × 𝑥ⅆ𝑜𝑡[ⅈ − 1] (3.5) 

Figure 4 
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2. Calculate Acceleratio*: 

   The acceleration now accounts for the gravitational force, the spring force (restoring force), 

and the damping force: 

acceleration = 𝑔 −
𝑘 ⋅ 𝑥[ⅈ − 1]

𝑚
−

𝑏 ⋅ 𝑥ⅆ𝑜𝑡[ⅈ − 1]

𝑚
(3.6) 

3. Update Velocity: 

   The new velocity is updated based on the calculated acceleration: 𝑥ⅆ𝑜𝑡[ⅈ] = 𝑥ⅆ𝑜𝑡[ⅈ − 1] +

ℎ × acceleration   

3.2.2 Limitations and Importance of a Fine Time Step 
Euler's forward method can be prone to stability issues and inaccuracies, especially with large 

time steps. The inclusion of damping increases stability, but the accuracy can still be 

compromised if the time step is too large. By using a fine time step (105), the simulation 

achieves a stable and accurate representation of the spring-mass-damper system's behavior. 

Overall, this simulation demonstrates how Euler's forward method can be used to simulate a 

spring-mass-damper system, with appropriate time step choices to maintain stability and 

capture the system's oscillatory behavior. In appendix A python code is places that have been 

used to calculate displacement of this spring mass system using Euler forward and the result 

are shown in figures 6 and 7. 

 

Figure 7 

3.3 Spring-Mass system with driving force  

3.3.1 Added constants and Initial Conditions 
-  F_0 : Amplitude of the driving force (10 N). 

-  w : Angular frequency of the driving force (1.5 rad/s). 

Figure 6 
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3.3.2 Euler Forward Method with Damping and Driving Force 
Euler's forward method is used to compute the position and velocity iteratively over time. This 

method is well-suited for simple simulations, though it can be less accurate with larger time 

steps. The inclusion of damping and driving force modifies the acceleration equation, 

introducing terms that represent these additional forces. 

3.3.3 Euler Forward Algorithm 
1. Update Position: 

   The position is updated using the current velocity: 

𝑥[ⅈ] = 𝑥[ⅈ − 1] + ℎ × 𝑥ⅆ𝑜𝑡[ⅈ − 1] (3.8) 

2. Compute Acceleration: 

   The acceleration includes the gravitational force, damping force, spring restoring force, and 

driving force: 

acceleration = 𝑔 −
𝑏 ⋅ 𝑥ⅆ𝑜𝑡[ⅈ − 1]

𝑚
+

𝐹0 ⋅ cos(𝑤 × 𝑡[ⅈ − 1])

𝑚
−

𝑘 ⋅ 𝑥[ⅈ − 1]

𝑚
(3.9) 

3. Update Velocity: 

   The new velocity is calculated based on the acceleration: 𝑥ⅆ𝑜𝑡[ⅈ] = 𝑥ⅆ𝑜𝑡[ⅈ − 1] +

ℎ × acceleration  

In figure 9 the displacement and velocity diagram of this system is shown, and in figure 8 the 

phase diagram is also shown. An observation can be made that after the initial displacement the 

spring mass system will find a new oscillatory equilibrium that is caused by the constant driving 

force. In appendix A the python code used to calculate and plot the graphs is shown.  

 

Figure 9 

  

Figure 8 
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3.4 Accuracy Testing of the Numerical Method 
To verify the accuracy of the numerical method employed in this study, a comparison between 

the numerical and analytical solutions for a forced damped mass-spring system was performed. 

The analytical solution incorporates both the transient and steady-state responses, providing a 

comprehensive benchmark against which the numerical results can be evaluated. 

The results of the numerical and analytical solutions were compared by plotting the position and 

velocity over time. The absolute errors and percentage errors were calculated to quantify the 

accuracy of the numerical method. 

 

Figure 10 shows the comparison of the position and velocity between the analytical and 
numerical solutions. The close agreement between the two indicates the accuracy of the 
numerical method. presents the absolute errors in position and velocity, highlighting the 
transient behaviour and the steady-state accuracy. 

- Mean Position Error Percentage: 0.87% 

- Mean Velocity Error Percentage: 1.01% 

In Appendix C the python code used to calculate the mean error is shown. These results 

demonstrate that the numerical method provides a highly accurate approximation of the 

analytical solution, validating its use for the forced oscillations in a damped mass-spring system. 
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4 Dynamic Response of a Concrete Roof Slab Under 
Collapse Forces 
This chapter presents a numerical simulation of the dynamic response of a concrete roof slab in 

an underground shelter subjected to collapse forces. The simulation models the slab as a 

spring-mass-damper system and applies forces representing the sequential collapse of building 

floors above the shelter. This approach helps evaluate the structural integrity and safety of the 

shelter under catastrophic events. 

 

Figure 11 Overzichtstekening kelder drawn on AutoCAD 

 

Figure 12 Doorsnede kelder drawn on AutoCAD 
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4.1 Shelter Dimensions and Material Properties 
The underground shelter is characterized by the following dimensions and material properties: 

- Column Width: 0.55 meters - Distance Between Columns (h.o.h): 7.75 meters 

Distance Between Columns: 7.20 meters 

- Distance to Wall: 6.36 meters - Slab Thickness: 0.5 meters 

- Concrete Density: 2400 kg/m³ - Modulus of Elasticity (E) for C30 Concrete: 3 GPa 

   

4.2 Effective Length and Moment of Inertia 
The effective length of the beam, which represents the slab supported between columns, is 

calculated as: 

𝑙 = 0.75 × Distance Between Columns = 0.75 × 7.75 m = 5.81 m (4.1𝑎) 

 

The moment of inertia (I) for the rectangular cross-section of the slab is given by: (Hartsuijker & 

Welleman, 2007) 

 

𝐼 =
Effective Width × Slab Thickness

3

12
=

3 m × (0.5 m)3

12
= 0.03125 m4 (4.1𝑏) 

4.3 Spring Constant Calculation 
The spring constant ( 𝑘 ) is initially calculated for a beam supported at two points: (Hartsuijker & 

Welleman, 2007) 

 

𝑘 =
384

5
×

𝐸 × 𝐼

𝑙4
=

384

5
×

30 × 109 Pa × 0.03125 m4

(5.81 m)4
= 3.38 × 107 N/m (4.2𝑎) 

This is equation is being derived from the general spring mass equation (1.1) and from the 

general displacement equation on beam on two support 𝑘 =
5

384
×

𝑙4∗𝑞

𝐸×𝐼
   , For a beam supported 

at four points, the spring constant is approximately doubled: 𝑘adjusted = 2 × 𝑘 = 6.76 × 107 N/m 

The stiffness of cracked concrete is approximately 1/4 of uncracked concrete. In fact, it is a non-

linear spring; when the reinforcement flows, the stiffness is zero (tangent stiffness). When 

unloaded, the stiffness again equals the torn stiffness. An illustrative graph was added that 

shows the changes in the stiffness. In practice there must be a set displacement and force on 

where the Elasticity modulus will change accordingly. In designing this shelter roof phase 1 will 

be passed, and if a design load of 3.5 kN/m^2 is taken this will lead to a displacement of 
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𝑢 =
5

385
×

𝑞∗𝑙4

𝐸𝐼
=

5

385
×

7.35∗3.5∗103∗5.814

3∗109∗ 0.03125
= 0.004 𝑚ⅇ𝑡ⅇ𝑟 (4.2𝑏)  

And this will lead that the displacement at which the concrete is fully cracked is equal to 4 time 

the calculated displacement, equal to 0.016 meter. In Appendix D of the Python model, the 

varying spring constant k is taken into consideration to accurately reflect changes in stiffness. 

When the reinforcement yields, the tangent stiffness is effectively reduced to zero. This variation 

is crucial because, without it, the model would inaccurately apply a constant stiffness of 3 GPa 

at all times. By incorporating this variation, the model more accurately represents the dynamic 

response of the system under different loading conditions, ensuring a realistic simulation of the 

structural behavior. 

 

Figure 13 graph showing Elasticity modulus changing from not cracked to partly cracked to fully cracked concrete 

4.4 Damping Coefficient Calculation 
The damping coefficient ( 𝑐 ) is calculated using: (Critical Damping Coefficient, 2022) 

𝑐 = 2 × ζ × √𝑘 × 𝑚 (4.3) 

where ( ζ) is the damping ratio (4%) and ( 𝑚 ) is the mass of the slab. 
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Given: 𝑚 = Concrete Density × Slab Thickness × Effective Length = 2400 kg/m
3

× 0.5  m ×

5.81 m = 6,972 kg 

Thus: 𝑐 = 2 × 0.04 × √6.76 × 107 N/m × 6,972 kg = 238,144 Ns/m 

4.5 Simulation Setup 
To simulate the dynamic response of the shelter in case of a building collapse, the shelter's roof 

is modeled as a modified version of a spring-mass-damper system. This model is adapted to 

represent the concrete slab roof in the underground floor. The simulation incorporates the forces 

due to the building's collapse. 

A 2D cross-section of the shelter is taken and represented as a beam on four support points 

because the shelter has two columns and two walls on the side. The effective length of the 

beam is modeled accordingly. The shelter's structural layout includes columns measuring 90x55 

cm, with two columns 775 cm apart from heart to heart. The distance from the heart of a column 

to the heart of a side wall is 636 cm, with the side wall itself being 50 cm thick. The height of 

each floor is 420 cm. All structural components are made from C30 concrete, with the roof slab 

thickness being 50 cm. The same layout applies to the floors above, except there are no side 

walls, and the floor thickness is 50 cm. 

4.5.1 Collapse Scenario and Forces 
The building is divided into six levels: -1 (shelter), 0 (ground level), 1, 2, 3, 4, and 5. The 

collapse is modeled in sequential moments, denoted as t0, t1, t2, etc. 

 

Figure 14 Sketch strip for the moment of collapse of building t0, t1 and t2. Drawn on AutoCAD 
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Collapse Events 

- t0: Before the collapse, the mass of the spring-mass system is the mass of the concrete roof 

of the shelter. 

- t1: A column on the ground floor is blasted, causing the building (levels 1-5) to come down. 

The falling mass exerts a force ( 𝐹1 ) equal to the weight of the entire building falling at 

gravitational acceleration ( 𝑔 ). This force acts as a point force between the columns, leading to 

the roof slab's displacement and dynamic response. 

- t2: The first level floor reaches the ground level floor. The mass of the spring-mass system 

now includes the ground floor's mass. A column of the first-floor collapses, causing levels 2-5 to 

fall. The new force ( 𝐹2 ) is exerted, which is less than ( 𝐹1 ) due to the reduced mass. 

- t3, t4, t5, t6: Similar events occur, with the mass and forces changing as each subsequent 

floor collapses until the entire building is at ground level. 

4.5.2 Updated Mass Calculation 

Volume Calculation: Volume = thickness × width × length = 0.5 m ×
8.3

2
 m ×

8.4

2
 m = 8.715 m3 

Mass Calculation: Mass = Volume × density = 8.715 m3 × 2400 kg/m
3 = 20,916 kg 

Updated Force Calculation: 

4.5.2 Velocity at Impact: 
- Free fall distance: 4.2 meters (height of one floor). 

- Using the formula (𝑣 =  √2𝑔ℎ) This equation is derived by assuming that air resistance is 

negligible and equating the potential energy to the kinetic energy. The potential energy at height 

ℎ h is converted entirely into kinetic energy as the object falls. Solving for 𝑣: (Carbary, 2021) 

𝑣 =  √2𝑔ℎ = √2 × 9.81 m/s
2 × 4.2 m ≈ 9.1 m/s (4.4) 

But for the first two floors the height is dubbed thus 𝑣 = 12.84 m/s  

Force Calculation: 

- The impact force can be estimated using impulse-momentum principle. If the debris comes to 

a stop within a short duration (Δ𝑡), the force ( 𝐹 ) can be approximated by: 

𝐹 =
Δ𝑝

Δ𝑡
=

𝑚 ⋅ 𝑣

Δ𝑡
(4.5𝑎) 

−𝐴𝑠𝑠𝑢𝑚ⅈ𝑛𝑔(Δ𝑡 = 0.1 s):    

𝐹 =
20,916 kg × 9.1 m/s

0.1 s
≈ 1,903,356 N ≈ 1.9 × 106 N (4.5𝑏) 

𝐹_𝑓ⅈ𝑟𝑠𝑡 𝑎𝑛ⅆ 𝑠ⅇ𝑐𝑜𝑛ⅆ 𝑓𝑙𝑜𝑜𝑟 =
20,916 kg × 12.84 m/s

0.1 s
≈ 2685614.4 N ≈ 2.7 × 106 N (4.5𝑐) 
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4.5.3 Numerical Simulation Using Euler Forward Method 
In appendix D the python code for the model of the building is given where Euler forward 

method is employed to simulate the dynamic response over time. The position ( 𝑥 ), velocity 

( 𝑣 ), and acceleration ( 𝑎 ) of the slab are updated at each time step based on the collapse 

forces, damping, and spring forces. The collapse forces are modeled using a simplified 

approach where each collapse event applies a force ( 𝐹 ) for a specified duration: 

𝐹(𝑡) = ∑ collapse_force(𝑡, 𝑡collapse, 𝐹collapse,duration) (4.6) 

 

 

Figure 15 The displacement graph shows the roof slab's displacement over time. Peaks in the 
graph indicate significant deflections due to applied collapse forces. 

From Figure 15, it is evident that the first two peaks of the graph correspond to the 
collapse of the first two floors. These peaks mean a higher displacement magnitudes 
due to the greater forces involved. Additionally, as the spring-mass system changes in 
mass after each collapse event, a slightly different response is observed even if the 
applied force remains constant. 

  

 

Figure 16 Velocity of shelter roof slab. 
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Figure 17 The applied force graph illustrates the forces exerted on the roof slab during the 
collapse events. Notice the short duration of these applied forces; this duration estimates the 
time required for the system to halt the falling mass during the building's collapse. 

 

5 Calculation of Reinforcement and Maximum 
Displacement Before Failure 
To determine whether the dynamic response leads to the failure of the shelter structure, we 

need to perform several calculations based on the reinforcement properties and the stress-

strain relationships. Here's a step-by-step process: 

5.1 Parameters 

5.1.1 Calculate the Compressive Force in the Concrete (𝑵𝒄) 
   - Use the rule of thumb formula: 

𝑁𝑐 = α ⋅ 𝑏 ⋅ 𝑋𝑢 ⋅ 𝑓𝑐ⅆ (5.1) 

(Abspoel et al., 2013) 

   - Given: 

     - (α =  0.75)  - (𝑏 = 3 m) 

     - (𝐻 = 0.5 m)(thickness of the roof slab) 

     - (𝑋𝑢 =
1

5
𝐻 =

1

5
× 0.5 = 0.1 m) 

     - (𝑓𝑐ⅆ =
𝑓𝑐𝑘

1.5
), 𝑤ⅈ𝑡ℎ(𝑓𝑐𝑘 = 30 MPa): 𝑓𝑐ⅆ =

30

1.5
= 20 MPa = 20 × 106 N/m

2
 

Thus 𝑁𝑐 = 0.75 ⋅ 3 ⋅ 0.1 ⋅ 20 × 106 = 4.5 × 106 N  

5.1.2 Determine the Force in the Reinforcement (𝑵𝒔) 
−(𝑁𝑠 = 𝑁𝑐)  

   - Given: 
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−(𝑓𝑦ⅆ =
𝑓𝑦𝑘

1.15
), 𝑤ⅈ𝑡ℎ(𝑓𝑦𝑘 = 500 N/mm

2): 𝑓𝑦ⅆ =
500

1.15
≈ 434.78 N/mm

2 = 434.78 × 106 N/m
2
 

 

5.1.3 Calculate the Area of Reinforcement (𝑨𝒔) 
𝑁𝑠 = 𝐴𝑠 ⋅ 𝑓𝑦ⅆ (5.2) 

(Abspoel et al., 2013) 

4.5 × 106 =⋅ 434.78 × 106 ➔ 𝐴𝑠 =
4.5×106

434.78×106 ≈ 0.01035 m2 

 

5.1.4 Determine the Number of Reinforcement Bars 
   - Given the diameter of each bar is 16 mm (ⅆ = 16 mm = 0.016 m): 

𝐴single bar = π (
ⅆ

2
)

2
= π (

0.016

2
)

2
≈ 2.01 × 10−4 m2  

   - Number of bars: 

Number of bars =
𝐴𝑠

𝐴single bar
=

0.01035

2.01×10−4 ≈ 51.49, Thus, approximately 52 reinforcement bars are 

used. 

5.1.5 Calculate Maximum Extension Before Breaking: 
   - Given the ultimate strain for reinforcement steel (ϵ𝑢ⅆ = 4.5\% = 0.045): 

   - The initial length of the slab is the effective length: Δ𝐿max = 𝐿 ⋅ ϵ𝑢ⅆ = 7.2 m ⋅ 0.045 ≈ 0.324 𝑚 

Assuming a simply supported beam with uniform extension along its length. The parabolic 

shape is chosen as it more accurately represents the deflection of beams under uniform 

conditions compared to a circular shape. Using a measure tape and extending the length with 

0.3 m while fixing the endpoints in place, will lead to a deflection shape with a maximum of 0.75 

m at the midpoint.  
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Figure 18 The maximum allowable displacement is in red, and the model clearly indicates that this threshold is 
exceeded during the first two collapse events. 

This means that the basement roof is unable to withstand the collapse event. Furthermore, 
when the first mass impacts the ground floor, a significant force of 2.7 * 10^9 N is exerted. 
This results in a displacement greater than the maximum allowable displacement for the 
underground level roof, leading to its collapse. 

5.2 Consideration of Measurement and Simulation Errors 

The aim is to stay within limit of 10% and that must include: 

• The expected error from the Euler forward simulation model is approximately 1%.  

• Measurement errors can be up to 8 to 10%, particularly since the building drawings were 

not available, and hand measurements had to be performed.   
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6 Conclusion and recommendations 

This study aimed to determine the safety of the basement in the Civil Engineering Building at TU 

Delft as a shelter if a ground floor column were to be blown away by a bomb. The research 

commenced with the development of a spring-mass system model, which was analysed under 

various conditions, both analytically and numerically. This initial phase was crucial to establish a 

reliable numerical system applicable to the building. By understanding the behaviour of the 

spring-mass system, we were able to predict the expected error levels in our model, ensuring 

the accuracy and dependability of our subsequent analysis. 

Following this theoretical groundwork, detailed measurements of the Civil Engineering and 

Geosciences (CEG) building's basement and various levels were conducted to obtain precise 

structural specifications. With this data, we created a comprehensive simulation model to predict 

the building’s behaviour in a collapse scenario, focusing on the dynamic response to forces 

exerted by the collapse of a ground floor column. 

The model simulated the impact of a bomb blast capable of blowing away a ground floor 

column, using high-explosive mortar rounds known for their significant destructive power. The 

analysis included calculating the force these munitions could generate, which far exceeds the 

load-bearing capacity of typical reinforced concrete columns. This scenario assessed the load 

that would be placed on the basement roof due to the collapse of the floors above it. The 

dynamic response simulations indicated that the displacements caused by the collapse events 

would exceed the maximum allowable displacements, leading to structural failure. When the first 

mass impacts the ground floor, the force exerted results in a displacement greater than what the 

underground roof can withstand, ultimately causing it to collapse. 

In conclusion, based on our simulations and calculations, the basement of the Civil Engineering 

Building is not currently safe to use as a shelter under the specified conditions. The collapse of 

a ground floor column due to a bomb impact leads to forces and displacements that exceed the 

structural capacity of the basement roof. This study underscores the urgent need for structural 

reinforcements and further research to enhance the safety of underground shelters in scenarios 

involving extreme impacts. By addressing these vulnerabilities, it is possible to significantly 

improve the structural integrity and safety of such shelters, providing better protection for 

individuals in emergency situations. 

 

Future Research and Recommendations 

To prevent the collapse of the shelter, future researchers should focus on the following areas: 

1. Structural Reinforcement: One potential solution is to add additional columns in the 

basement. By halving the distance between existing columns, the load distribution would 

be improved, reducing the stress on any single point. This could effectively increase the 

overall stability of the underground roof and help it withstand collapse events. 
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2. Material Improvements: Investigate the use of stronger or more flexible materials that 

can better absorb and distribute the forces experienced during collapse events. 

Advanced composite materials or high-strength alloys could be considered. 

3. Simulation and Modeling: Enhance simulation models to include more variables and 

potential scenarios. This could include varying the impact angles, the masses involved, 

and different collapse sequences to better predict and mitigate potential failures. 

By focusing on these research areas, future improvements can be made to enhance the 

structural integrity and prevent the collapse of underground shelters in the event of significant 

impacts. 
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Appendix A Python Code Numerical solution 
This code was used to calculate the displacement of spring mass system with no damping. 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Constants 

g = 9.81  # gravitational constant 

k = 40  # spring constant 

m = 1  # mass 

 

# Time settings 

t_start = 0  # initial time 

t_end = 5  # final time 

num_steps = 10**5  # number of steps in the time span 

h = (t_end - t_start) / num_steps  # time step size 

t = np.linspace(t_start, t_end, num_steps)  # time array 

 

# Initial conditions: position and velocity 

x = np.zeros(num_steps)  # position array 

x_dot = np.zeros(num_steps)  # velocity array 

  

x[0] = 0  # initial position 

x_dot[0] = 0  # initial velocity 

 

# Euler's forward method to solve the system 

for i in range(1, num_steps): 

    # Update position 

    x[i] = x[i - 1] + h * x_dot[i - 1] 

     

    # Compute acceleration 

    acceleration = g - (k * x[i - 1]) / m 

     

    # Update velocity 

    x_dot[i] = x_dot[i - 1] + h * acceleration 

 

# Plotting position and velocity over time 

plt.plot(t, x, 'r', lw=2, label=r'$x$')  # position over time 

plt.plot(t, x_dot, 'b', lw=2, label=r'$\dot x$')  # velocity over time 

plt.axhline(0.25, color='gray', linestyle='--', linewidth=0.5, 

label='Equilibrium') 

plt.title('Spring-Mass System (Euler Method)') 

plt.xlabel('Time (seconds)') 

plt.ylabel('Position (x), Velocity (dx/dt)') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Phase diagram (Position vs. Velocity) 

plt.plot(x, x_dot, 'b', lw=2) 

plt.title('Phase Diagram (Euler Method)')  
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This is used to calculate the displacement of spring mass system with damping. 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Constants 

g = 9.81  # gravitational constant, used to calculate acceleration due to 

gravity 

k = 40  # spring constant 

m = 1  # mass 

b = 1  # damping coefficient 

 

# Time settings 

t_start = 0 

t_end = 10 

num_steps = 10**5 

h = (t_end - t_start) / num_steps  # time step 

t = np.linspace(t_start, t_end, num_steps)  # time points 

 

# Initial conditions: position and velocity 

x = np.zeros(num_steps) 

x_dot = np.zeros(num_steps) 

 

x[0] = 0  # initial position 

x_dot[0] = 0  # initial velocity 

 

# Define the spring-mass-damper system with Euler's forward method 

for i in range(1, num_steps): 

    # Update position 

    x[i] = x[i - 1] + h * x_dot[i - 1] 

     

    # Calculate acceleration (second-order ODE) 

    acceleration = g - (k * x[i - 1] / m) - (b * x_dot[i - 1] / m) 

     

    # Update velocity 

    x_dot[i] = x_dot[i - 1] + h * acceleration 

 

# Plot position and velocity over time 

plt.plot(t, x, 'r', lw=2, label='Position (x)') 

plt.plot(t, x_dot, 'b', lw=2, label='Velocity (dx/dt)') 

plt.axhline(0.25, color='gray', linestyle='--', linewidth=0.5, 

label='Equilibrium') 

plt.title('Spring-Mass-Damper System (Euler Method)') 

plt.xlabel('Time (seconds)') 

plt.ylabel('Position (x), Velocity (dx/dt)') 

plt.legend() 

plt.grid(True) 

plt.show() 

 

# Plot phase space (position vs. velocity)  
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This is used to calculate the displacement of spring mass system with damping and driving 
force.  

import numpy as np 

import matplotlib.pyplot as plt 

 

# Constants 

m = 10  # mass 

k = 40  # spring constant 

b = 10  # damping coefficient 

F_0 = 10  # amplitude of the driving force 

w = 1.5  # angular frequency of the driving force 

g = 9.81 

 

# Time settings 

t_start = 0 

t_end = 20 

num_steps = 500 

h = (t_end - t_start) / num_steps  # time step 

t = np.linspace(t_start, t_end, num_steps)  # time array 

 

# Initial conditions: position and velocity 

x = np.zeros(num_steps) 

x_dot = np.zeros(num_steps) 

 

x[0] = 0  # initial position 

x_dot[0] = 0  # initial velocity 

 

# Implement Euler's forward method to solve the system 

for i in range(1, num_steps): 

    # Update position 

    x[i] = x[i - 1] + h * x_dot[i - 1] 

     

    # Compute acceleration 

    acceleration = g - (b * x_dot[i - 1] / m) + (F_0 * np.cos(w * t[i - 1]) / 

m) - (k * x[i - 1] / m) 

     

    # Update velocity 

    x_dot[i] = x_dot[i - 1] + h * acceleration 

 

# Plot position and velocity over time 

plt.plot(t, x, 'r', lw=2, label='Position (x)') 

plt.plot(t, x_dot, 'b', lw=2, label='Velocity (dx/dt)') 

plt.title('Forced Spring-Mass System (Euler Method)') 

plt.xlabel('Time (s)') 

plt.ylabel('Position (x), Velocity (dx/dt)') 

plt.legend() 

plt.grid(True) 

plt.show() 
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Appendix B Python code analytical solutions 

First spring mass system:  

import numpy as np 

import matplotlib.pyplot as plt 

 

# Function to simulate the oscillations of a mass-spring system 

def simulate_oscillation(amplitude, omega, phase, time): 

    # Return the displacement at given time(s) 

    return amplitude * np.cos(omega * time - phase) 

 

# Parameters 

# Amplitude (maximum displacement from equilibrium) 

amplitude = 5.0  # You can change this to adjust amplitude 

 

# Angular frequency (related to spring constant and mass) 

omega = 1.5  # You can change this to adjust frequency 

 

# Phase shift (how much the oscillation is shifted) 

phase = 0.5  # You can change this to adjust phase shift 

 

# Time array for simulation 

time = np.linspace(0, 10, 1000)  # 0 to 10 seconds with 1000 points 

 

# Simulate oscillation 

displacement = simulate_oscillation(amplitude, omega, phase, time) 

 

# Plotting 

plt.plot(time, displacement, label="Oscillation") 

plt.title("Harmonic Oscillation of a Mass-Spring System") 

plt.xlabel("Time (s)") 

plt.ylabel("Displacement from Equilibrium") 

plt.axhline(0, color='gray', linestyle='--', linewidth=0.5, 

label='Equilibrium') 

plt.legend() 

plt.show() 
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Second spring mass system: 
import numpy as np 

import matplotlib.pyplot as plt 

 

# Constants 

m = 1  # mass 

k = 40  # spring constant 

c = 1  # damping coefficient 

t = np.linspace(0, 10, 500)  # time array 

 

# Angular frequency for the underdamped case 

omega_1 = np.sqrt(4 * k * m - c ** 2) / (2 * m) 

 

# Decay constant 

alpha = c / (2 * m) 

 

# Arbitrary constants for oscillatory part (choose initial amplitude and 

phase) 

A = 1.0  # amplitude constant 

B = 0.0  # initial phase shift constant 

 

# Analytical solution for underdamped oscillations 

x_analytical = np.exp(-alpha * t) * (A * np.cos(omega_1 * t) + B * 

np.sin(omega_1 * t)) 

 

# Plotting the analytical solution 

plt.plot(t, x_analytical, label='Analytical Solution') 

plt.axhline(0, color='gray', linestyle='--', linewidth=0.5, 

label='Equilibrium') 

plt.xlabel('Time (s)') 

plt.ylabel('Position (x)') 

plt.title('Damped Spring-Mass Oscillation') 

plt.legend() 

plt.grid() 

plt.show() 
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Third spring mass system: 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Constants 

m = 1  # mass 

k = 40  # spring constant 

b = 1  # damping coefficient 

F0 = 10  # amplitude of the driving force 

omega = 5  # driving frequency 

t = np.linspace(0, 10, 500)  # time array 

 

# Angular frequency for the underdamped case 

omega_1 = np.sqrt(4 * k * m - b ** 2) / (2 * m)  # damped natural frequency 

 

# Decay constant for damping 

alpha = b / (2 * m) 

 

# Steady-state solution (particular solution) 

x_steady_state = (F0 / (m * ((omega_1 ** 2 - omega ** 2) ** 2 + (b * omega / 

m) ** 2) ** 0.5)) * np.cos(omega * t) 

 

# Homogeneous solution (natural oscillations) 

x_homogeneous = np.exp(-alpha * t) * np.cos(omega_1 * t) 

 

# Total analytical solution: homogeneous + steady-state 

x_analytical = x_homogeneous + x_steady_state 

 

# Plotting the analytical solution 

plt.plot(t, x_analytical, label='Analytical Solution') 

plt.axhline(0, color='gray', linestyle='--', linewidth=0.5, 

label='Equilibrium') 

plt.xlabel('Time (s)') 

plt.ylabel('Position (x)') 

plt.title('Forced Damped Spring-Mass Oscillation') 

plt.legend() 

plt.grid() 

plt.show() 
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Appendix C Python code to compare analytical and 
numerical solutions 
import numpy as np 

import matplotlib.pyplot as plt 

 

# Parameters 

m = 1.0  # mass (kg) 

k = 40.0  # spring constant (N/m) 

c = 2.0  # damping coefficient (Ns/m) 

F0 = 10.0  # Amplitude of driving force (N) 

omega_drive = 1.5  # Driving angular frequency (rad/s) 

 

# Derived parameters 

omega_0 = np.sqrt(k / m) 

gamma = c / (2 * m) 

omega_d = np.sqrt(omega_0**2 - gamma**2) 

 

# Time parameters 

t_start = 0 

t_end = 20  # End time, change this as needed 

dt = 0.00001  # Fixed time step for consistent accuracy 

num_points = int((t_end - t_start) / dt) + 1  # Calculate number of points 

t_points = np.linspace(t_start, t_end, num_points) 

 

# Initial conditions 

x_init = 1.0  # Initial position (m) 

v_init = 0.0  # Initial velocity (m/s) 

 

# Analytical solution: Steady-state response 

A = F0 / (m * np.sqrt((omega_0**2 - omega_drive**2)**2 + (2 * gamma * 

omega_drive)**2)) 

delta = np.arctan2(2 * gamma * omega_drive, omega_0**2 - omega_drive**2) 

x_steady_state = A * np.cos(omega_drive * t_points - delta) 

v_steady_state = -A * omega_drive * np.sin(omega_drive * t_points - delta) 

 

# Analytical solution: Transient response 

C1 = x_init - x_steady_state[0] 

C2 = (v_init + gamma * C1) / omega_d 

x_transient = np.exp(-gamma * t_points) * (C1 * np.cos(omega_d * t_points) + 

C2 * np.sin(omega_d * t_points)) 

v_transient = np.exp(-gamma * t_points) * (-C1 * omega_d * np.sin(omega_d * 

t_points) + C2 * omega_d * np.cos(omega_d * t_points)) - gamma * x_transient 

 

# Full analytical solution 

x_analytical = x_steady_state + x_transient 

v_analytical = v_steady_state + v_transient 

 

# Numerical solution 

x_numerical = np.zeros(len(t_points)) 

v_numerical = np.zeros(len(t_points))  
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x_numerical[0] = x_init 

v_numerical[0] = v_init 

 

# Euler forward method 

for i in range(1, len(t_points)): 

    a = (F0 * np.cos(omega_drive * t_points[i-1]) - c * v_numerical[i-1] - k * 

x_numerical[i-1]) / m 

    v_numerical[i] = v_numerical[i-1] + dt * a 

    x_numerical[i] = x_numerical[i-1] + dt * v_numerical[i-1] 

 

# Compute error 

position_error = np.abs(x_numerical - x_analytical) 

velocity_error = np.abs(v_numerical - v_analytical) 

 

# Handle division by zero by masking zero values 

position_error_percentage = np.where(np.abs(x_analytical) > 0, (position_error 

/ np.abs(x_analytical)) * 100, 0) 

velocity_error_percentage = np.where(np.abs(v_analytical) > 0, (velocity_error 

/ np.abs(v_analytical)) * 100, 0) 

 

mean_position_error_percentage = np.mean(position_error_percentage) 

mean_velocity_error_percentage = np.mean(velocity_error_percentage) 

 

# Plotting the results 

plt.figure(figsize=(14, 7)) 

 

plt.subplot(2, 2, 1) 

plt.plot(t_points, x_analytical, label='Analytical Position') 

plt.plot(t_points, x_numerical, label='Numerical Position', 

linestyle='dashed') 

plt.xlabel('Time (s)') 

plt.ylabel('Position (m)') 

plt.legend() 

plt.title('Position Comparison') 

 

plt.subplot(2, 2, 2) 

plt.plot(t_points, v_analytical, label='Analytical Velocity') 

plt.plot(t_points, v_numerical, label='Numerical Velocity', 

linestyle='dashed') 

plt.xlabel('Time (s)') 

plt.ylabel('Velocity (m/s)') 

plt.legend() 

plt.title('Velocity Comparison') 

 

plt.subplot(2, 2, 3) 

plt.plot(t_points, position_error, label=f'Position Error (Mean Error: 

{mean_position_error_percentage:.2f}%)') 

plt.xlabel('Time (s)') 
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plt.ylabel('Absolute Error (m)') 

plt.legend() 

plt.title(f'Position Error (Mean Error: 

{mean_position_error_percentage:.2f}%)') 

 

plt.subplot(2, 2, 4) 

plt.plot(t_points, velocity_error, label=f'Velocity Error (Mean Error: 

{mean_velocity_error_percentage:.2f}%)') 

plt.xlabel('Time (s)') 

plt.ylabel('Absolute Error (m/s)') 

plt.legend() 

plt.title(f'Velocity Error (Mean Error: 

{mean_velocity_error_percentage:.2f}%)') 

 

plt.tight_layout() 

plt.show() 

 

# Display error percentages 

print(f'Mean Position Error Percentage: 

{mean_position_error_percentage:.2f}%') 

print(f'Mean Velocity Error Percentage: 

{mean_velocity_error_percentage:.2f}%') 
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Appendix D Python Code of the building’s basement roof 
simulation  

 

import numpy as np 
import matplotlib.pyplot as plt 
 
# Shelter dimensions and material properties 
column_width = 0.55  # meters 
slap_effective_width = 3  # meters 
distance_between_columns = 7.75  # meters 
distance_to_wall = 6.36  # meters 
slab_thickness = 0.5  # meters 
concrete_density = 2400  # kg/m^3 
 
# Define initial modulus of elasticity 
E_initial = 30e9  # Pa (modulus of elasticity for C30 concrete) 
E_cracked = E_initial / 3  # Pa, modulus of elasticity for cracked concrete 
 
# Calculate effective length of the beam 
effective_length = 0.75 * distance_between_columns 
 
# Moment of inertia for the rectangular cross-section of the slab 
I = (slap_effective_width * slab_thickness**3) / 12 
 
# Calculate the initial spring constant k (beam on four support points) 
k_initial = (384 / 5) * (E_initial * I) / (effective_length**4) 
k_cracked = (384 / 5) * (E_cracked * I) / (effective_length**4) 
 
# For beam on four support points, the spring constant is approximately 
doubled 
k_initial *= 2 
k_cracked *= 2 
 
# Damping coefficient 
damping_ratio = 0.04  # 4% 
c = 2 * damping_ratio * np.sqrt(k_initial * (concrete_density * slab_thickness 
* effective_length)) 
 
# Initial mass of the roof slab 
initial_mass = concrete_density * slab_thickness * effective_length 
 
# Time parameters 
t_start = 0 
t_end = 20  # seconds (for a longer simulation) 
dt = 0.00001  # Fixed time step for consistent accuracy 
num_points = int((t_end - t_start) / dt) + 1  # Calculate number of points 
t_points = np.linspace(t_start, t_end, num_points) 
 
# Initial conditions 
x_init = 0.0  # Initial displacement (m) 
v_init = 0.0  # Initial velocity (m/s) 
 
# Numerical solution arrays 
x_numerical = np.zeros(len(t_points)) 
v_numerical = np.zeros(len(t_points)) 
a_numerical = np.zeros(len(t_points)) 
F_applied = np.zeros(len(t_points)) 
 
x_numerical[0] = x_init  



40 
 

v_numerical[0] = v_init 
 
# Force due to building collapse at each time step (simplified model) 
def collapse_force(t, t_collapse, F_collapse, duration): 
    return F_collapse if t_collapse <= t < t_collapse + duration else 0 
 
# Define collapse events 
collapse_events = [ 
    (1, 2.7e6, 0.1),  # At t1, force due to initial collapse 
    (2, 2.7e6, 0.1),  # At t2, subsequent collapse force 
    (3, 1.9e6, 0.1),  # At t3, subsequent collapse force 
    (4, 1.9e6, 0.1),  # At t4, subsequent collapse force 
    (5, 1.9e6, 0.1),  # At t5, subsequent collapse force 
    (6, 1.9e6, 0.1)   # At t6, subsequent collapse force 
] 
 
# Euler forward method for numerical simulation 
for i in range(1, len(t_points)): 
    t = t_points[i-1] 
     
    # Update the mass at each collapse event 
    current_mass = initial_mass 
    for j in range(1, 7): 
        if t >= j: 
            current_mass += concrete_density * slab_thickness * 
effective_length 
     
    # Calculate the applied force 
    F = sum(collapse_force(t, t_collapse, F_collapse, duration) for 
t_collapse, F_collapse, duration in collapse_events) 
    F_applied[i] = F 
 
    # Update the modulus of elasticity based on the force-deflection 
relationship 
    if x_numerical[i-1] < 0.016:  # Assuming 0.01 m as the deflection limit 
for uncracked concrete 
        E = E_initial 
        k = k_initial 
    else: 
        E = E_cracked 
        k = k_cracked 
     
    if F > 25:  # If the reinforcement yields, set stiffness to zero (almost) 
        k = 0.03 
     
    # Calculate acceleration, velocity, and displacement 
    a = (F - c * v_numerical[i-1] - k * x_numerical[i-1]) / current_mass 
    v_numerical[i] = v_numerical[i-1] + dt * a 
    x_numerical[i] = x_numerical[i-1] + dt * v_numerical[i-1] 
    a_numerical[i] = a 
 
# Calculate maximum values and their corresponding times 
max_displacement = np.max(x_numerical) 
max_displacement_time = t_points[np.argmax(x_numerical)] 
 
max_velocity = np.max(v_numerical)  
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max_velocity_time = t_points[np.argmax(v_numerical)] 
 
# Plot results 
plt.figure(figsize=(12, 6)) 
plt.subplot(2, 1, 1) 
plt.plot(t_points, x_numerical) 
plt.xlabel('Time (s)') 
plt.ylabel('Displacement (m)') 
plt.title('Dynamic Response with Nonlinear Stiffness') 
plt.grid(True) 
 
plt.subplot(2, 1, 2) 
plt.plot(t_points, v_numerical) 
plt.xlabel('Time (s)') 
plt.ylabel('Velocity (m/s)') 
plt.grid(True) 
 
plt.tight_layout() 
plt.show() 
 
# Print maximum values 
print(f'Max Displacement: {max_displacement} m at {max_displacement_time} s') 
print(f'Max Velocity: {max_velocity} m/s at {max_velocity_time} s') 
 
 

 


