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Abstract

The purpose of this study is to calculate the critical stresses in a beam by using the finite element
analysis. The study focuses on optimization of the number of 20-nodes volume-elements required to
model rectangular beam and HE beam with a high accuracy. The optimal number of elements are
directly derived through looking at the nodal forces, which follow from a linear elastic finite element
analysis. The finite element method is a mathematical technique that splits up complex problems
into greater number of simple problems which can approximate the solution. The study was divided
into two parts, the first part concerning rectangular beam subjected to torsion differs considerably
from the second part, HE-section subjected to bending moment, shear and torsion. In the first part of
the study, a parameters study has been conducted, where approximately 300 models have been
generated. This parameters study has been conducted in the search for the influence of every
parameter on the accuracy of the solution. Evaluating the assembled results of this part gave the
accuracy for every element configurations with respect to the computation time. In the second part,
involving HE300A section a different working method has been used: The adaptive mesh refinement.
In this method the models didn’t have a uniform mesh but standard coarse mesh with additional
finer submesh regarding the magnitude of the stresses at that point. The highlights of this study are
the output of mesh design tables for each loading case for rectangular and HE sections. Structural
engineers may be using those tables to guide them through modelling in ANSYS with certain
efficiency and accuracy. Modelling beams with FEM led to the following main conclusions:

e Modelling a HE-beam subjected to shear force or bending moment with a maximal of 1% can
be done with relative few elements;

e Stresses caused by torsion moment will need the finest mesh in order to reach an accuracy of
less than 10%;

o Therefore, while modelling a beam subjected to shear, bending a torsion load, the mesh that
belongs to the torsion moment should be applied;

e Not only the total number of elements is important, but also the ratio between the elements
in the height and in the width;

e Transforming the peak shear stresses in the HE-section to the scalar quantity of Von-Mises
stresses are a realistic representation of the accuracy of the stated mesh density.
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1. Introduction

This Bachelor thesis explains the method developed by engineers to analyze the stresses in a
structure and its principles. It contains background information about the numerical finite element
calculation and describes briefly the basics of the structural mechanics theories. The finite element
analysis (FEA) is a way of getting a numerical solution to a problem that is usually being solved
analytically by using formulas. The FE analysis is cutting the structure into several pieces and
calculating for every element the strain, stress and the displacements with a high accuracy. However
analyzing a beam or complete structure with FE method requires a significant computing capacity
from the computer. In this Bachelor thesis we’ll find the optimal number of volume-elements
required to analyse a beam with high precision and with effective computer computation.

1.1 Background

The Finite Element method as known today was provided in 1973 with the publication by Strang and
Fix. The method has since been generalized for numerical modeling of physical systems like in
structural engineering. By the late 1980s the software of FEA was available. In the recent years FEA
has become popular, and form now a big industry. Numerical solutions of stress problems can now
be obtained by using FEA with a powerful computer simulation. This Bachelor thesis will use the
finite element computer-program ANSYS given in figure 1.1.

Figure 1-1: ANSYS version 13.0

ANSYS is engineering simulation software with a variety of tools. One of the tools being used in this
research is the simulation for structural physics that simulate static problems. The software will solve
the structure by generating a mesh that divides the structure into small elements. For every element
ANSYS computes the stresses and deflection values with 3D numerical equations. These results can
be presented in a list or directly plotted on the structure showing the deflections and the stresses
contours.


http://en.wikipedia.org/wiki/Computer-aided_engineering

1.2 Problem formulation

A 3D beam can be modeled by dividing it into volume-elements. The shape, size, amount and
configuration of elements have to be chosen carefully such that the original body is simulated as
closely as possible without decreasing computation effectiveness and accuracy.

The problem in the current working method within the collaboration of the structural engineer and
the architect comes from inefficient working procedure. For example an Architect designs a structure
in AutoCAD software. The design is sent forward to the constructor for further static analysis of the
structure. The problem occurs because the constructor needs to draw the structure again in static
analysis's software such as Matrixframe as line element and afterwards to determine the sections
properties of each line element. A straight-forward solution is to solve the structure with the ANSYS
program by meshing the existing AutoCAD design. The density of the mesh determines on one hand
the accuracy of the solution but on the other hand the calculation time and the memory use required
from the computer. In this case it is preferred to use much volume elements with small dimensions
instead of a small number of elements with larger dimensions. (Figure 1-2, Figure 1-3)

ELEMENTS ELEMENTS

Figure 1-2: 10 by 10 grid Figure 1-3: 2 by 2 grid

Although the left model is favorable, it is inefficient to use such a dens mesh for every section type or
for every loading case. Therefore, for a stated section type an efficient mesh density and size is
required. However, we know that on a structure a variety of loads are acting. For every loading case
like bending moment or shear load the stresses in the structure behave differently. The ideal mesh
will be the governing mesh that satisfies each loading case. For instance a mesh for HE-section
subjected to shear and bending moment will require a different mesh than rectangular cross-section
subjected to shear, torsion and bending load. The problems can be summarized into four sections:

Problem 1: The current working method between the engineer and the architect is cost and time
inefficient.

Problem 2: Meshing an existing design will result in deviations of the values of the stresses.

Problem 3: A fine mesh with small spacing between the nodes is accurate but time inefficient while a
course mesh with larger spacing between the nodes is less accurate but time effective. How the ideal
mesh can be defined for different loading cases?



Problem 4: For every loading type, for torsion, shear and bending, a different mesh is required.
Which mesh is governing?

Now, when the problems are described, the evaluation of the solution is necessary. How do we know
if the chosen mesh is safe? Or in other words: What should be the deviation of the numerical
solution from the exact solution in order to obtain a safe structure design that also meets the current
design standards?

1.3 The Finite Element Analysis

The research problem is divided into two sub-problems:

1.3.1 Rectangular cross-section
To model a rectangular beam in ANSYS, it is divided into volume-elements. Use a 20-nodes element
like a Quadratic Hexahedron. Apply torsion load on the beam, calculate the largest stresses and
compare these with the exact stresses values. Change the number of elements in the width and in
the height of the rectangular cross-section. Determine the minimal number of volume-elements such
that the torsion stresses in the critical cross-section can be calculated with a deviation of 1%-10%.
Exhibit the deviation of the stresses in a table as a function of the number of elements in the width
and the height. Confirm the current Thumb-rule of 2 elements in the width and 5 elements in the
height are correct. (Figure 1-4)

Figure 1-4: Element configuration for an error
of 1%



1.3.2 Section HE300A

In the industry a standard HE-section is often being used due to the high strength of the steel and the
material efficient design it has in comparison to a massive cross-section. For a HE300A section a FEA
model can be also created from a mesh of 20-nodes volume-elements. However, the distribution of
these elements in the web and the flange is yet unknown. The purpose is to find the minimal amount
of volume-elements in the web and the flanges with a deviation of 1%-10% under a torsion, shear
and bending moment load. (Figure 1-5)

Figure 1-5: FEA model of I-section

1.3 Problem statement
How can a beam, loaded under shear, moment, normal and torsion force, be divided into volume-
elements as efficient as possible with sufficient accuracy of the results?

1.4 Aim of the research
With the aid of this last paragraph it is now possible to determine the aim of this research.

Primary objective: Design a set of Thumb-rules for the necessary amount of volume-elements for an
accurate calculation of the stresses.

Secondary objective: Finding for the range of the accuracy for each loading case

Tertiary objective: Finding the rate of convergence of the mesh density when its size goes to zero for
rectangular cross-section subjected to torsion load and for HE300A section subjected to torsion,
shear and bending moment.
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1.5 ANSYS software

Modelling the beam with ANSYS software is done by using the Finite Element Analysis. Working with
ANSYS software suggests three working methods: The first method is by means of the graphical user
interdace (GUI). This method is an interactive working mode where the user enters data about the
structure in the main menu of ANSYS which contains the primary ANSYS functions. (Figure 1-6)

I\ ANSYS Multiphysics Utility Menu T AT (| = | @ e
File Select List Plot PlotCtrls WorkPlane Parameters Macro MenuCirls Help

|z o & & 7| = = 9l

ANSYS Toolbar 3|
SAVE_DB| RESUM_DB| QUIT| POWRGRPH

. =

5 NODES 3

Element Type ]

Real Constants
Material Props
Sections
Modeling
Meshing
Checking Ctrls
Numbering Ctrls
Archive Model
Coupling / Cegn
FLOTRAN Set Up
Multi-field Set Up
Loads
Physics
Path Operations
Solution
General Postproc
TimeHist Postpro
Topological Opt
ROM Tool
DesignXplorer
Design Opt
Prob Design
Radiation Opt
& Session Editor
& Finish

Rllplslplels[e[tlolelsloleelzalalefalale i

| Pick a menu item or enter an ANSYS Command (PREPT) | mat=1 \ type=1 real=1 csys=0 secn=1

Figure 1-6: ANSYS GUI with the menu on the left side

In this working mode every step of the user represents a program command. From this menu the
vast majority of modeling commands are issued. The user can save his work as a txt file containing all
of the used commands.
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The second working mode is by means of command files. The user writes a text file containing
commands at the system level. ANSYS can import the text file and runs it to perform the required
analysis. (Figure 1-7)

ax = 3000 ! Lenght mm
ay = 400 ! Height mm
az = 40 ! width mm
factorl = 0.237

E = 210e3 ! voung's modulus N/mmA2
nu = 0.1 ! poisson’s ratio -
EZ = 2 ! Number of elements in width

EY = 2| ! Number of elements in height

dex = 25

M = 20e6 ! Force Nmm
Iz = (1/12)*az*ay*ay*ay ! Moment of inertia mmA4
/PREPT

MPTEMP ! Material: isotropic

MPDATA,EX,1,,E
MPDATA, PRXY,1, ,nu
ET,1,50LID186

Element type: 8 node

nz=2*gz+1
ny=2"EY+1
s5=ax

Number of nodes in x, y and z direction

%=
*DOWHILE, S
s=5-2%dEX
nx=nx+4
*ENDDO
Ex=(nx-1)/2

nudenr ].
D0,
x= (1 1) (ax/(nx 1))

%nﬁ ]¥ (ay/(ﬂy—l)) ay/2

z= (nz k) (az/(nz 1))-az/2
N,nodenr,x,y,z,,,
nodenr=nodenr+1°
“ENDDO
*ENDDO

PUt nodes

*00,3,2, ny 1 2
*00.k. 2,
NDELE, (1 1)“ny“nz+(] 1) *nz+k
“ENDDO
“ENDDO
*ENDDO
*D0,1,2,nx-1,2
“0o,3.1, ny 2
*00.k. 2,
NDELE, (1 L)*ny*ny—(] 1) *nz+k
“ENDDO
*ENDDO
*ENDDO
*D0,1,2,nx-1,2

NDELE, (i-1)*ny*nz+(j-1) *nz+k
*ENDDO
*ENDDO
*ENDDO
*Do,1,1,EX ! put elements
*D0,j.1,EY
*Du,k,]. EZ
, (1 1)‘2"ny“r’|z+]"2‘mz+k 241, (i-1)*2*ny*nz+j*2*nz+k*2-1,1*2*ny*nz+j*2*nz+k*2-1,1*2*ny*nz+j*2*nz+k*2+1, (1-1)*2*ny*nz+ (F-1) *2*nz+k*2+1, (i-1)*2*ny*nz

ek 1)"2*nz+k"2 1,3 %2%ny*nz+ (3-1) *2#nz+k*2-1, 1*2*ny¥nz+ (3-1) *2¥nz+k*2+1

Figure 1-7: An example of ANSYS text script

The advantage of writing a script, the second working mode, is the ability of ANSYS to read the
commands and solve the structure without the need of using the software toolbars. It is also the
favorable working method for a parameter study/optimization study.
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The last working mode and the most user friendly one is by means of the ANASYS Workingbench
(Figure 1-8). A complete environment for geometry modeling, mesh manipulations and optimization
which is integrated with CAD package. This working mode is easy to use due to a project workflow

scheme.

th\nvrdﬁuml - Workbench . .-J.ﬂl.!l
PFle  Vew Tooks Unts  Hep
_INew | Sopen... ol Swve il Swe s, | wui & Ralvesh Project  / Lpdate Project o 1rport... | (2 ivonct @ Compact Mode

Toobor - EETTE— -x
E] Anslyss Systens =

8 Bectric (ANSYS)

B9 Exphck Dynaeics (AUTOOYN) > A

B Exphc Dynamics (LS-OYNA) ey 1 Lot Rrucharol (ANSYS)

Q Flud Flow (CFX) 2 @ engreeingData v 4

& Faud Flow (RIENT) 3 @ Gocratry 2.

B Hamonk Response (ANSYS) <@

B Unear Bucking (ANSYS) @ todel .

Bl Mognetostatic (ANSYS) 5 @ setp " a

B Modsl (aSYS) 6 Q) Sohgion -4

B Random Vibeabion (ANSYS) 7 D Reaks ¥

B Response Spectrum (ANSYS)
- Stk Stnxtur o (ANSYS)

L) S (5 LA

) |
(B 5atic Struckir ol (ANSYS) I
W " " -
i

Y ™ermalElactric (ANSYS)

B Transient Structurdd (ANSYS)
B Trangent Structurdl (MED)
ﬂ Trangent Thermal (ANSYS)

8 Componert Systans -

Cunstomn Systers i)
[7 View Al | Custonrize... |
o Feady Show Progress I ¥ Show 0 Messages I

Figure 1-8: The Workingbench

In this bachelor thesis it is preferred to use the second working mode to simulate the rectangular
beam and the first working method to simulate the HE-section. In this case the script will
automatically sketch and solve the rectangular beam with regard to the mesh density that will be
changed in every solving cycle. In such a way an optimum study can be easily conducted. For
example, consider a rectangular cross-section of a beam with the following dimensions: L=2000mm
h=200mm and b=300mm. The beam is loaded. And we want to know which mesh will simulate the
stresses in the beam as accurate as possible. Therefore we'll start with a rough mesh of two by two
cross-sectional elements and twenty elements in the length of the beam. ANSYS computes the
stresses in every element of the beam. Comparing those stresses with the analytical exact stresses
gives the accuracy of the chosen mesh.

1.6 Thesis outline

This thesis begins in § 1 where detailed introduction of the problem, thesis goelm, working method
and fundumental knowledge over the finite element method in ANSYS software. The backround of
this method, type of volume elements and the error obtained by it will be discussed in $ 2. ¢ 3

will subsequently discuss the hand-calculation solutions of considered beams of which the

exact stresses values can be founded. In § 4 the rectangular beam properties will be described.
Moreover, the FEA-beam will be considered with the relevant basics principles related to
interpretation and understanding the results from ANSYS. Subsequently, the output of the
optimization study will be given in ¢ 5 where the influence of parameters variation will be
summarized in meshing design tables. 45 6 continues with an overview of the HE300A section and the
working method will be considered during the study of this section. In gﬁ 7 45 8 gﬁ 9 the HE300A section

13



will be subjected to bending moment, shear force and torsion moment. The results will be evaluated
and summarized in meshing design table for each loading case. This thesis finishes in gﬁ 10 with a
overview of the conclusions and recommendations.
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2. Theory

The Numerical calculation with Finite Element Method is using volume elements to divide the
structure into small pieces. A consequence of this approach is that all six possible stresses must be
taken into account (three normal and three shear). The displacement field involves three possible
components for the x,y and z direction u v and w. Typical 3D elements for solid structures are
tetrahedral and hexahedron. Of course the number of elements and their shape vary with the type of
the structure and it size. In this research linear analysis behaviour of the structure will be
implemented. Initial stress due to temperature changes will be ignored in this study.

2.1 The numerical FEA

The FEA is applicable for the solution of equilibrium (static) problems. The FE method divides the
structure into small pieces and for every small piece it computes the displacement and stresses.
These elements are considered to be interconnected at specified nodal points. The variation of the
displacement field can be approximated by a simple function. The function is used to represent the
behaviour of the solution. The accuracy of the solution is obtained by increasing the order of the
function polynomial. Therefore a polemical of infinite order corresponds to the exact solution.
(Figure 2-1)

#(x)

Exact solution

e - #(x) = ag= constant

je—subregion or element —

(a) approximation by a constant

#(x)
¢(%)

Exact solution
/¢(x) =ag+a.X+ 2

Exact solution

l—subregion or element —! je— subregion or element —

d L i roximation
(b) linear approximation (c) quadratic app &

Figure 2-1: Approaching the exact solution [Rao, Singiresu S, The finite element method in
the engineering]
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We shall consider a cubic hexahedron, an element that is known as a "higher order element" with
extra interior nodes besides the primary corner nodes and a rectangular prism with only corner
nodes. (Figure 2-1)

Figure 2-1: Solid185 (left) versus Solid186 (right), [Rao, Singiresu S, The
finite element method in the engineering]

The boundary conditions of the displacement field are known as the Kinematical boundary conditions
and the forces on the structure are taking into account the dynamical boundary conditions. For the
unknown displacement field we assume a polynomial type of variation for the displacement field
N(x,y,z) in a three-dimensional linear cubic element, where a; .... a;, are the coefficients of the
polynomial.

N(x,v,2) = a; + ax + a3y + a4z + asx? + agy? + a,z2 + agxy + agyz + aygxz
+ a1x3 . +a9yz? + ayoxyz

With:

N Displacement field in local coordinate system
A, Coefficients of the polynomial

n The degree of the polynomial (For cubic n=3)

m Number of polynomial coefficient (for Solid186 20-nodes cubic is 20)

The number of the polynomial coefficients m should be equal to the number of nodal Degrees Of
Freedom a. The nodal DOF is treated as unknown, with this nodal DOF as the displacement of every
element that will be determent later. The next step in the solution procedure is to derive the strain-
displacements relations with the nodal DOF as parameters. Afterwards we can derive according to
the Hook's Law the stress-strain relations with the nodal DOF as parameters. The last phase is to
substitute the stresses expressed in the nodal DOF in the equilibrium equation of every element.

16



The primary aim of any stress analysis is to find the distribution of the displacements and the stress
under the stated loading and boundary condition. For a 3D problem the following basic equations
need to be considered:

Type of equations In 3D problem
Equilibrium equations 3
Stress-strain equations 6

Strain-displacements relations 6
Total number of equations 15

Table 2-1: Equations

The unknown quantities whose number is equal to the number of equations available, are given

below:
Unknowns In 3D problems
Displacements u,v,w
Stress Oxx,0yy,0zz
Strains Exx 1 Eyy 1 €22 Exy 1 Eyz s Ezx
Total number of unknown 15

Table 2-2: Unknowns

In practice we'll also have to satisfy additional equations such as a compatibility equation and
boundary conditions. Those equations are essential in deriving the element solutions. In order to find
the displacements of every cubic volume-element under static load we should first use the

equilibrium equations.
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2.1.1 Equilibrium equation
For a 3D problem we consider the stress acting on the cubic volume-element on the six faces of the
cubic as given in Figure 2-2:

O

Figure 2-2: Axis definition

The equilibrium equations for this 3D body are:

00,y N aaxy N 00,

ax Ty TTa T =0
00y, 00y, 00y,
ax "oy "oz T =0
00, 00y, 00,
+ =24 ¢, =0

Ox dy 0z

2.1.2 Stress-strain relations
According to the constitutive linear theory of elasticity the Stress-Strain relations are also known as
Hooke’s Law, where @ and & are vectors with 6 components, as appears in figure below:

o=E¢
O-xx gxx
Oyy Eyy
5= Ozz &= €2z
Oxy Exy
Oyz Eyz
O-ZX gzx
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2.1.3 Stiffness matrix

The stiffness matrix K is derived from combining the governing equations, so the only unknown will
be the displacements. This can be done by using Hook's constitutive equations to replace the stresses
in the equilibrium equations by the strain, and then using the kinematic equations to replace the
strain by the displacements.

The elastic stiffness matrix is expressed in constants such as the young's modulus E and Poisson's
ratio v. The Poisson's ratio is the negative ratio of transverse to axial strain.

o=Ke
po Yy __de
de, de,

1 —v —y 0 0
—V 1 —v 0 0
—Vv —vy 1 0 0
0 0 0 2(1+4v) 0
+
0

] —

R SRREORT )
00 D

Figure 2-3: The elastic stiffness matrix K. [Wikipedia]

The elastics stiffness matrix K, in figure 2-3 is necessary to determine the forces that are set up in
the volume-element by the displacements of the nodes. With Gusse interpolation points we can
approximate direct the displacement of every point within the element in terms of the nodal
displacements. An example in one-dimension is presented in Figure 2-4 where function u(x)
describes the nodal displacement and N (X) describes the interpolation function.

I 1
iy
.._--
uix) =7
..-""lbI
uﬂ __.-'"'-F v
" :
" | »
Vg : AR
I._ T I ,_,--'-'J.
| _CComeezIlT
=TT ] -
0 1 +

Figure 2-4: Interpolation in one dimension. ), [Rao, Singiresu S, The finite element method in
the engineering]
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For a three dimensional cubic element there are 2 X 2 X 2 integrations points. (Figure 2-5)

r

I

Fl
7
T T
M A
= L[
| LT_ K
1
2
P ooz

Figure 2-5: [Rao, Singiresu S, The finite element method in the engineering]

2.2 Solution procedure with FEA

Preliminary Decisions: The most common type of analysis in the civil engineering: Static analysis is
defined. The type of volume element will be defined. In this rapport we'll work only with 20-nods
volume-elements since they’ve been proved to be more accurate. In ANSYS it called Solid186.

Pre-processing: In this stage the model of the structure is entered into ANASYS. The geometry is
divided into a number of sub-regions connected with each other at the nodes. The boundary
conditions are specified by fixing the displacement of several nodes. In addition external load on the
structure is added to the nodes (torsion, shear or bending moment load). Material properties are
given to the volume-elements. The last step is to solve the model with the solver.

Post processing: Reviewing the results obtained by ANASYS. That includes viewing cross-sectional
results and plotting data.

2.3 20-nods element
The Solid186 element is an element that exhibits quadratic displacement behaviour. This element is
defined by 20 nodes having three degrees of freedom per node: Translation in the x, y, and z, that is
60 DOF's per element. (Figure 2-6)

Figure 2-6: Solid186, [Rao, Singiresu S, The finite element method in the
engineering]
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Because the Solid186 has midside nodes, the displacement varies parabolically, rather than linearly
along that edge. The 20-nodes element has an interesting trait, which is that the displacement at the
midside node will always be greater than at the corner nodes. Therefore it is usually better to pick
the critical point at the midside node. The solid186 exhibits quadratic displacement behaviour. For a
3D problem the following polynomial is given:

Uy(x,¥,2) = Dy + Dyx + D3y + Dyz + Dsx? + Dgxy + D;xz + Dgy? + Doz? + D1gyz

Stresses components can be derived:

duy Ay
Exx % S Oxx = E % %
ou, ou,y
Exy = W Oxy = E * dy
ou, ou,y
EXZ aZ O-XZ = E * aZ
2.4 Degrees Of Freedom

The Degrees of Freedom (DOF) of a beam assemble volume-elements indicates the amount of
iterations needed by ANSYS to solve the structure. Of course, more DOF means more iteration that
leads to longer calculation time. Therefore, the DOS will help us to take the time factor into account.
A high DOS leads to unrealistic calculation time that the engineer should avoid. There are two types
of DOF: Translational DOF, indicates that forces are transmitted through the nodes and a rotational
DOF, that indicates that moments are transmitted through the nodes. For arbitrary cross-section in
our beam we define EY, EZ and EX as numbers of elements in Y, Z and X direction in the local
coordinates system.

The total DOF's in a beam is determent according to the following formula:

(EX+1)* (3*EY*EZ +2EY + 2EZ+ 1)« 3+ EX(EY *EZ + EY + EZ + 1) * 3

2 -5 iucdalizativii stuuy

Figure 2-7: The beam in the local coordinate system
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Stress analysis is conducted with ANSYS to find the ideal number of volume elements. The purpose of
this study is to find the optimum number of volume-elements. The number of elements with respect
to the DOF versus the exact stress solution is plotted in figure 2-8 to show what this study is exactly
willing to achieve concerning the accuracy of the stresses computation in ANSYS.

Exact | ____ e
solution| ~ T~~~ T TTTTTTTTTTTTT— T v
] ’ i s
t Solution given by the
l' inite element method
|
1
|
1
! _ number of
No "~ elements

no significant improvement beyond N,

Figure 2-8: Approaching the exact solution with FEA method, [Rao, Singiresu S, The finite element method in
the engineering]

N, represents the number of cross-sectional volume elements EX, EY and EZ , required in order to
approach the exact stresses values (dashed line). Moreover, during the study the trendline given in -
figure 2-8 is expected to appear with as the output: N value for several loading cases. Using
knowledge from previous studies indicates that the number of elements in the x-direction EX also
influences the accuracy of the solution. Therefore, in order to simplify the study, EX will be high
enough in order to avoid deviation as result from too coarse mesh in this direction.

2.6 Error in an FEA Model

2.6.1 Accuracy solutions

In all mathematical processes errors occur. The errors are unavoidable, however it is essential to
understand the different types of errors. The numerical error considered in this rapport is the
difference between the exact analytical (mathematical) solution and the approximated numerical
solution obtained when simplifications in the numerical computation abbreviate the computation
time. Because a numerical computation is still an approximation depending on the number of
iterations and because we want to restrict the number of iterations while keeping the deviation as
small as possible, appropriate approximation methods will be applied. These are as follows:

1. The absolute error: [numerical value — exact value|

|numerical value—exact value|

2. The relative error: * 100

|lexact value|
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2.6.2 Mesh discretization error

When calculating the stresses in a beam subjected to a load, the solution from the stress-strain
relations are continuous. This means that the stresses in the cross-section are continuous distributed.
However, a FEA model is a discrete problem that approximates the continuous problem. The
guestion might be: what is the error due to an inadequate mesh density?

The mesh will be initially coarse with EY x EZ = 2 x 2, the number of elements will increase
approaching the exact state of stress. The error of every refinement step of the mesh is defined by:

|Numerical referamce valeu — numerical valeu |
%

100
Numerical referance valeu

Relative error =
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3. Analytical solution

The analytical stress solution of the beam under stated load is associated with the exact value of the
stresses in the beam. Hand calculations or an accurate numerical solution will form the required
reference values during the study. Our beam is a homogenous beam with linear elastic behaviour. In
this chapter the theoretical formulas will be applied in the search for the analytical stress solution for

each of the loading cases described in § 1.

3.1 Torsion
The beam is subjected to torsion load. The torsion stiffness GI; of the cross-section is defined as the
torsion moment M, times the length of the beam divided by the rotation ¢.

Mt*L

Glt =

The following common situation is being analysed. Torsion force is applied on a beam due to load

from a transverse beam. (Figure 3-1)

Figure 3-1: The beam under torsion moment. [Kracht en Vorm]

Before sketching the mechanical model, boundary conditions are chosen:

Torsion boundary condition Physical meaning Mathematical meaning
de
=0,—=0
¢ dx?

Pinned (Free end warping) The cross-section can’t
twist but can warp freely

Fixed The cross-section can’t —0 do _ 0
twist or wrap dx
Free The cross-section can d?¢ —OM =
twist and warp freely dx?2 7"

Table 3-1: Boundary conditions

Let us consider that the rectangular bar is subjected to torsion as shown in figure 3-1. As mentioned
in the table above we can approach the problem with three mechanical models. Let us focus from
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now on the both side fixed beam (figure 3-2). In this model, the cross-section at the fixed supporting
point can’t twist or wrap. In this case there will be a warping resistance at the fixed supporting point.
According to the theory of Vlasov, there is a deviation in the torsion values within a distance of five
times the beam height from the fixed supporting point, due to mentioned warping resistance. (Figure
3-2)

A 5 0
%&m ! /[ ,,_if -0

F

Ll Ll
.

ot
disjw‘fh»k d\‘-&};:m(

250N

Figure 3-2: mechanical model

Due to symmetry we consider only one side of the beam. For T/2 it holds:

0

T Poure Torsion

Tp

Warpims
ToySion

T

Te!t&d

Torsion

Figure 3-3: The torsion moment distribution

The cross-section in the middle of the beam will be analysed where the warping can be neglected. In
this study the rectangular beam and HE300A beam will be considered. Of course, for each cross-
section the calculation will be different. As mentioned, the warping effect will not be taken into
account. This means that the second part of the formula bellow will has to be zero:
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_ a¢ a¢
Ty = Glta — Elwﬁ
As results, the deformation effect caused by the secondary torsion moment (Bi-moment) will not be
taken into account. This assumption is taken in order to avoid a complex model. This assumption is
thus necessary in order to simplify the model and restrict the research objective. A further detailed
research on the effect of warping resistance on the accuracy of the numerical computation with FEA

will need to be conducted.

3.1.1 Table values rectangular profile
The torsion stresses of rectangular cross-section are derived in table 3-1:

b I, 1, M, M, 1000 Sw 100 B

h bir R T’ N I G i’

1.0 0,141 0.167 0,210 0,210 0,134 0.368

1.2 0,166 0.203 0,221 0.237 0,352 0.565

1.4 0,187 0.247 0,230 0.262 0,838 0.987 T nax

1.6 0204 0297 0237 0.281 1.418 1,37 —
1.8 0218 0353 0243 0.299 2.000 1,69 T
20 0229 0417 0249 0.314 2.540 194 T, l T “h
25 0250 0604 0261 0.342 3.640 2,35 ,
30 0264 0833 0271 0.362 4.416 2,59 —= >
40 0281 1417 0288 0.388 5354 2,82 p o

50 0202 2167 0299 0.398 5.865 2,90 < N
100 0314 8417 0323 0.400 6.642 2,94
50,0 0331 208.417 0329 0.400 6.931 2.82

» 1 o 1 2 25 5

3 3 5 36 18

Table 3-2: Table values for rectangular cross-section [Reader Torsion, dr.ir.P.Hoogenboom]

The torsion moment in the cross section can be easily calculated with this table. However, there is
one exception: For non-circle cross-section the polar torsion stiffness is unequal to the torsion
stiffness. So it holds:

Gl, # G,
3.1.2 Torsion HE300A section
r=27mm ! ' f

262,0mm  290,0mm

* 3
| '

Figure 3-4: HE300A section subjected to torsion
moment M = 10e6 Nmm

300,0mm |
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The approximation of the maximal torsion stress in a HE-section is calculated for a bar which can
warp freely and where only shear stress occurs.

Torsion constant:

1 1
J= §((h —t)t3 + 2bt)§) == ((290 ~ 14)8.5% +2 « 300 « 147) = 605299.5 mmn*

. Myt 10e6+14 N
Maximal shear stress Tmax = L = 231.29
Ji 605299.5 mm?2

3.1.3 Ideal beam length

In order to analyse the stresses in the cross-section it is important to ensure that this critical cross-
section is located far enough from the disturbed areas. These areas are most likely to be at the
support points and at the force loading point. The theory of Valsov defines the resistance length
where the shear stresses in the beam deviate due to warping resistance of the fixed supporting
point. The distance Ic (Valsov region) can be calculated according to the given formula:

ECy,

L. =
¢ Gl

(3-4)

The characteristic bar length according the formula of Valsov is computed:

Shear modulus: G =—— =299 _ 9545454 L
2(14+v)  2(1+0.1) mm?2
«b3xh3 . * 34 3
Warping constant: C, = factorsb™+h” _ 1418:200+320° _ 3 71720e11mm®

1000 1000

Moment of inertia: I, = factor x b * h3 = 0.204 * 300 * 2003 = 4.896e8 mm*

- EC 210000+3.71720e11
Characteristic length: [, = [—%= = 40.9mm
Gl 95454.54%4.896€8

Generally, for deviation smaller than 1% Valsov region should be equal to equal to 6*Ic. That’s
245.4mm for a bar with h=320mm and b=200mm.

3.2 Bending moment

From the constitutive, equilibrium and kinematic relationship of linear elastically behaviour the
bending moment can be described for a cross-section where the x-axis coincides with the member
axis and the NC coincides with the YZ origin.

1

Moment of inertia rectangular cross-section: I, = o* b * h3
M
Curvature: ky, =%
EL,
Moment : M, = Elk,
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MyZ
Stress: oy, =2
Iy

The cross-section can be considered as thin-walled or thick walled. Thin walled means that the
material is concentrated in the centre lines: ¢, < h and t; < b . This means that the moment of

. . l
inertia If ange

y (cneter) will be zero.

Iflange + Iweb

Thin walled Moment of inertia I), = 2 * I}, stcinery T Iy (centre)

Thick walled Moment of inertia I, = (Iﬂange )+ [flange )2 + [vep

vy (centre y (steiner) y (centre)
HE300A A [mm2] 1, [mm4]
Thick walled 10627 1.7196e8
Thin walled 10746 1.7486e8
Table book 11300 1.8260e8

Table 3-2: Area’s and moment of inertia

3.3 Shear stress

The cross-sectional shear stresses are stresses that are working on the cross-section plane. This can
be determined thanks to the equilibrium relationship on s small rectangular block (figure 3-5).

In the cross-sectional plane the shear stresses in two perpendicular y“
m
planes are equal (figure 3-6). For HE-sections subjected to shear x

z
force V, the shear stress can be calculated with the following
formula: 1 =
mmb D
o VSy x
b,
o-xm = O-mx

a . - .
Sy represents the statical moment of the sliding element. In this Figure 3-5: [C. Hartsuijker

way the shear stresses can be determined in each point of the cross-  Toegepaste Mechanica, deel 2]

sectional plane. In a case of a thin-walled HE section the web and the g
flange will be considered separately. In order to calculate the static l i
moment of the flange, a symmetrical double cut has been b T
introduced. Where m, is the location of the cut (figure 3-7). This can T
be processed into formula: Figure 3-6: [C.Hartsuijker
Toegepaste Mechanica, deel 2]
Sy = —tbm, .5 t ey
m, my
he = th i T g=—sm-—m -+
GX"I Uxm
V- trbm, 4 2
T=— \
y <—NC +
)4 2
28 i

Figure 3-7: C.Hartsuijker Toegepaste
Mechanica, deel 2]



As for the web (figure 3-8):

1 5 m hl2

1 1
Y=th-—h+t “(zh—=
Sy =tf >ty (2 > my) , oo 1
b% = tw % ot siaes Gtmﬁ h2
Ly
1 1 ™ 7
V- (tfb ) 7h +tymy - (2 h 7m1)) (it 7 e
T =
ty - Iy A2 L

z

Figure 3-8: :[ C.Hartsuijker Toegepaste
Mechanica, deel 2]

The shear stress diagram is presented in figure 3-8. The shear stress flow from the edges of the upper
flange towards the web, and flow out below to the edges of the lower flange. The shear stress is
constant along the wall thickness but increases linear from the edge to the centre of the flange. The
shear stress at the web increases parabolic with top value at the level of NC. (Figure 3-9)

Figure 3-9: Shear stress flow
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4. The rectangular cross-section

The beam consists of a steel rectangular cross-section with variable width and height. At the centre
of the beam, at L/2, torsion loading is applied. From analytical computation of the applied torsion
loading, the resulting stresses in the cross-section can be calculated. The stresses due to the same
torsion loading can be calculated with FEM. The precision of the stresses distribution calculated with
FEM is strongly depending on the number, size and ratio of volume-elements applied in the cross-
section. In order to verify the optimal number of elements in the cross-section, the stress distribution
of both Analytical (exact) and Numerical (approximation) methods need to be compared. The
deviation from the exact solution needs to be as small as possible in order to meet the norms. This
chapter will introduce the FEA model and will explain the method which the data from the model will
be analysed. In the following next chapter 95 5. the database will be assembled and analysed and the
recommendation will be given.

4.1 Material properties

The material properties of steel are been used. The material properties consist of the young'’s
modulus E and the Poisson’s ratio v. Regarding isotropic, linear elastic material the following
properties are obtained:

N
mm?2

E 210,000

\Y 0.1

The Poisson’s ratio has a direct influence on the stiffness matrix $ 2.3.1 obtained in FEA. The relation
between the Poisson’s ratio and the Von-Mises stresses on an arbitrary point of a beam subjected to
torsion moment is given in the following table:

v 01 0,15 0,2 0,25 0,3 0,35

312,66 307,968 303,397 298,937 294,573 290,28

Von Mises 5
mm

Table 4-1: Von-Mises stresses for variable Poisson’s ratio for an arbiter point of HE300A section

Hereby the table values are plotted to confirm the linear relation between the nodal stresses and the
Poisson’s ratio.

0,4
0,35
0,3
0,25

> 0,2
0,15
0,1
0,05

0

290 295 300 305 310 315
Von-Mises

Figure 4-1: Linear relation between Poisson’s ratio and the nodal stresses

30



4.2 Constraint

In order to simplify the problem, the beam will be modelled as a two sides fixed beam. This means
that the boundary conditions for this problem are a fixed support applied on both side of the beam.
These kinematical constraints will result in a simple and continues displacement distribution that
meets the geometrical conditions of the beam. Further information can be found in ¢ 3.1.3 .

4.3 Forces

To simulate torsion moment acting on the 3D beam, a horizontal concentrated force is applied on the
upper side and on the bottom side of the beam, in opposite directions. The magnitude of the applied

. N . . . .
force must not exceed the yield stress f,, = 235 oz N order to stay in the linear elastic stress

distribution (Figure 4-2).

>~
Strese. strength f;
.
o [N/mm-7] f
Jailure
vield stress,

Sy [N/mm~] H «— —
1 brittle ductile
¥ unloading

Young's modilus,
E [N/mm’]
\ _ strain
&=0,1 % e=2% & &§=20 %
plastic deformatign

Figure 4-2: Material properties steel

In the example a cross section with EY = 2 and EX = 2 is drawn, the concentrated force is applied
on the nodes of the beam as it appears in figure 4-3:

Figure 4-3: Beam with EY=2 and EZ=2 under torsion load
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The magnitude of the force F, is derived from the way which the force applied on the nodes:
E,xnxh=M
n=EZ+1

- M
“ hx(EZ+1)

The magnitude of M is arbitrary because we're only interested in the deviation of the stresses in our
finite element model.

4.4 Modelling of the beam

The 3D beam (figure 4-4) is being modelled in ANSYS. Modelling the dimensions of the beam involves
several variables such as:

L Length of the beam
b Cross-sectional width
h Cross-sectional high

While modelling the mesh of the beam involves the following factors:

EZ Number of elements in the width of the beam
EY Number of elements in the high of the beam
EX Number of elements in the length of the beam
L, Length of volume-element in the x-direction
Ly, Length of volume-element in the y-direction
L, Length of volume-element in the z-direction
Where

L=1L, EX

b=1L,-EZ

h=1L,-EY
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Figure 4-4: FEA model of rectangular beam in the global coordinate system

The length of the beam L is derived directly from the number of volume-elements in the x-direction
EX. The applied loading on the beam is restricted to pure torsion. We want to neglect any variation
of the numerical stress solution due to the number of elements in the length of the beam.
Therefore, the beam will be modelled with length that goes to infinity, or in other words the ratio %
will be as small as possible. Furthermore, during the FEA only the critical cross-section will be
analysed, this cross section is located far enough from the beam supporting point at L/2 where the

warping resistance effect can be neglected.

Modelling the beam in ANSYS is a significant stage in this research, since it is an optimization study
for the best mesh density and size, several of mesh configurations will be considered during the
study. Also the discretisation of the beam dimensions will be analysed.

4.5 Stress field

The concept introduced in fﬁ 2.3 about the displacement field polynomial will be drawn-out. The
unknown displacement field u" can be described by using basis shape function and discrete nodal
values N; which represent the amplitude of the shape function. The displacement at any point in the
structure is determined in terms of discrete number of values which are stored at the nodes (known
as DOF) and basis functions. The shape function for one dimensional (figure 4-5) bar is given by:

u(x) = Ny(x)a; + No(x)a, (5-1)

N1=_ +1

x
L

N_x
27

33



._______
T

,
Wb

Figure 4-5: Shape function for linear
element

For a higher-order quadrilateral element such as 20-nodes elements, the so-called Lagrange element,
the displacement will be given by matrix notation. The Function u"(x, y, z) is the function describing

the displacement field for every point of the specified beam:

um = Na,

With:
h oul
a(x,y,2)

The strain field is given by:

e" = Ba,
Where the stress field is given by:

oc=E=xgh

With N as a 3 X 20 matrix (dimensions*Number of nodes) and B =

Figure 4-6: Higher order shape function
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4.6 Torsion stresses

The aim of the study is to anticipate the stress values in the beam with high accuracy. But how can
we find this numerical solution with an as small as possible deviation for a beam under torsional
load? To answer this question the stresses distribution in the critical cross-section will be analyzed.
At the critical cross-section located at L/2 the stresses values are being measured. The correct
location of this reference point is important to avoid any unwanted measurement error
(Observational error).

EIZI:l.':‘.:l\'EI

Ly =25mm

L =3000mm
N
E = 210e6 5
mm
v=0.1

M = 20e6 Nmm

Figure 4-7: The Beam in ANASYS

The location of the analytical and numerical reference point must be identical. At these points the
shear stresses 7, and T, will be the corresponding points P1 and P2. These reference points are
given in figure 4-8.
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P (y,2) = (0,=2/,) and P, (y,2) = (- "/,,0)

.. = o _____‘_______>q5
o

N

Figure 4-8: The location of the reference points p1 and p2

Points P1 and P2 in figure 4-8 are located where the torsion stresses are maximal. As showed In
figure 4-9 and figure 4-10 :

Figure 4 -9: T,y stress torsional
stresses distribution [Reader
P.Hooaenboom]

Fig 4-10: Ty, stressorsional stresses
distribution [Reader P.Hoogenboom]
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4.7 Reference FEA model

1
ELEMENT

Figure 4-11: The reference model in ANSYS

The reference model is required to reach exact stress values. These values will be from now on the
reference values regarding the deviation of every FEA model. The reference FEA model should be as
accurate as possible. Therefore a 10 by 10 element has been chosen. In addition, the present of a
node in the midside of the cross-section, due to even number of elements in the height and the
width will contribute the accuracy of the reference model. The FEA reference model results in:

e Mesh of 10 by 10 elements: EZ =10 EY =10
e The length of beam L =3000mm
e 120 elements in the x-direction EX =120 L, = 25mm

e TheYZ — plane has 1023 DOF’s which indicate the time it will take for the computer to
solve the model. High DOF means longer computation time.

e v=01

e M = 20e6Nmm?

e Solid186 element

e hand b are variables
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4.8 Element stresses distribution

Now, when the cross sectional reference points P1 and P2 are defined and the reference model is
established, the numerical stresses solutions for the model can be calculated. Yet, ANSYS program
provides two ways of reading stresses values. The nodal stresses and the elements stresses. These
two will be explained in the following paragraph.

Initially, the stresses contour with respect to the elements will be discussed. Figure 4-12 illustrates
the stresses contour at x=0 for a cross-section with EZ = 10 and EY = 10.

-5.33333

Figure 4-12: Element stresses contour at x=0 for T, on the right and T, on the left side a fixed support point
(x=0) for b=200mm, h=320mm, M=20e06 Nmm2, L=3000mm, E=210e06 N/mm2 and v=0.1

To understand the results above it is significant to comprehend the FEA solving procedure. The FEA
software takes the considered beam of h=300mm, b=200mm and solves every region (element)
individually with simple linear equations. Because the solutions are not continuous (Figure xx), the
software creates linear approximations that strive to map, as closely as possible, the true continuous
solution. For a 10 by 10 cross-section with 121 corner nodes and 220 midside nodes ANSYS will
calculate the displacements at each node given the loading and constraints on the model. Next, as a
secondary operation, ANSYS approximates the stress contour in each element by looking at the
relative displacement of the nodes of each of the 100 elements. In this manner a stress contour is
determined for each element. In this manner the stress contour will be discontinue from one
element to the next. This discontinuity results in the so called discrezation error. The error is reduced
when the elements size reduced towards zero. In the search for the minimal number of elements
with minimal error, it can be concluded that elements stress contour will therefore not be used. In
the next paragraph a more precise FEA solution method will be introduced.
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4.9 Nodal stresses solution

2
3

Figure 4-13: Torsion shear stresses

For the FEA with ANSYS software the same beam as mentioned is 4.7.1 will be analysed. The beam
consist of 10 by 10 Solid186 20-noods element. For each node ANSYS will calculate three
displacements U, Uy U, and three rotations 6, 6, 8,. The stresses will be calculated for each

node for the corresponding displacement value. (Figure 4-14)

Figure 4-14: Nodal stress contour at x=0 for T, on the right and T, on the left at fixed support
point (x=0) for b=200mm, h=320mm, M=20e06 Nmm2, L=3000mm, E=210e06 N/mm2 and
v=0.1
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Figure 4-14 shows the nodal stress contour, The total picture is much more transparent than the
elements stress-contour given in figure 4-12. For this new situation the coordinate system is defined
in figure 4-15:

Figure 4-15: the global coordinate system

Splitting the cross-section into elements can be done in two ways, odd number of elements or even
number of elements. It's important to distinguish between those two scenarios because the error for
each partitioning is approximated differently. As shown figure 4-16 there are even numbers of
elements at the Y and Z-direction. At the midside the maximal shear stresses can be directly read
from the middle node.

T
N\

by i W e
i B —+: T ~— Ties
L L g L/ =]
h —t L
Tx2
e A

Figure 4-16: Cross-section A-A with even number of elements: EZ=2 and EY = 4

The reference coordinate where the stresses in the YZ plane can be read is at:
Txz(x,¥,2) = (0.5L, £0.5h, 0)

Ty (x,y,2) = (0.5L,0,£0.5b)
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In a case of odd number of nodes as shown in figure 4-17 the unknown numerical stresses values at
midside of the outline can’t be red. There are no nodes at the midline.

T
Ly \ h
§> i / N - N
! T
f—t
| L i LA E
T2
; b

Figure 4-17: Cross-section A-A with odd number of elements in the height of the beam

The cross-section in figure 4-17 is modelled in ANSYS with the purpose of understanding the
influence of odd number of elements on the error. (Figure 4-18)

Figure 4-18: The beam consist of EZ = 2,EY = 5,L = 3000mm ,h = 320mm
b =200

We zoom in on the critical cross-section located at x = L/2. There, the two shear stress components
Txy and T, will be plotted. For five elements in the height there are six discrete points and for two

elements in the width there are three discrete points. Notice that only the stresses on the outline of
the cross-section are considered.
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xy and T, stresses

The numerical analysis of the torsion stresses in the beam provides the nodal stresses in the critical
cross-section indicated with a broken red line in figure 4-20:

Figure 4-20: 3D ANSYS image of the considered cross-section
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The XY and XZ stresses components have the maximal stresses values along the outline of the
rectangular. As mentioned before, the stresses in the nodes will be the design stresses. Theses
stresses change from one node to the other along the cross-sectional outline. The stresses are
presented in the following tables:

Node | Numerical | Numerical ref Deviation | Table value Deviation
[N/mm2] | [N/mm2] [[] [N/mm2]  []
1 0.6308 - - - -
2 5.2294 |- - - - )
3 6.5067 6.6819 2.6% 6.5928 1.3%
4 6.5067 6.6819 2.6% 6.5928 1.3% bl E—
5 5.2294 - - - - 3
6 0.6308 |- - - - ’
Table 4-2: t,y stress analysis: L=3000mm, h=320mm, b=200mm, E=210e3N/mm2, @ s
v=0.1, EZ=2 and EY=5
[ —
ES 2
Node | Numerical | Numerical ref Deviation | Table value Deviation > X
[N/mm2] | [N/mm2] L] [N/mm2] [ Figure 4-21: the cross-
6 1.2878 . ) . ) section
7 6.3991 5.5777 12.8% 5.5605 13.1%
8 1.2878 - - - -

Table 4-3: : 1, stresses analysis : L=3000mm, h=320mm,
b=200mm, E=210e3N/mm2, v=0.1, EZ=2 and EY=5

The data in the tables above shows the nodal cross-sectional shear stresses solution due to torsion
moment. The data implies that for the current number of elements an accurate approximation of the
stress can be achieved depending on which reference value is being chosen. The deviation of the
numerical values from the reference values is larger than the deviation from the torsion table values
given in § 3.1.1. The differences in stresses values with identical beam properties might lead to the
wrong conclusions. The variation of the numerical reference model from the table values for the
stated cross-section is presented in table 4-4:

h/ 1 1,6 2 2,5 3
b

Dyy 0,9% 1,3% 1,5% 1,49% 1,5%
Dy, 0,9% 0,3% 0,3% 0,4% 1,1%

Table 4-4: Deviation of the reference value from the table value

This undesirable deviation of our numerical reference values from the table values occurs due to the
modelling technique being used to derive the table values. The torsion table values is assembled
from a model in FEA software just like our reference model. However, there are differences between
the two models. (Table 4-5)
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Reference model Table model
Equations 3D differential equations 2D differential equations
Length Finite Infinite
Boundary conditions | Influence fixing and load at beam end No influence
Elements High accuracy (20 nodes hexahedron) Low accuracy (3 nodes triangle)
Cross-sectional DOF’s | Approximately 300 100000

Table 4-5: Comparison Reference model with Table value model

The table values are obtained from a 2D model with significant amount of DOF’s , which explains the
accurate results obtained from this model. To conclude, the table values are probably more accurate,
therefore table values will be used as a reference for the rectangular beam concerning the
calculation of the error.

4.10 Error approximation

In § 4.9 the deviation of the given rectangular beam has been analysed. Now the magnitude of the
deviation (error) will be checked for this given beam. This working method will be applicable for

¢ 5.0 where the discretization of the beam in the height and in the width will take place. Below both
shear stress components are given in two forms:

, | | , | |
/ \ 6 y =10,0 +1,192 ,6855%2 +

17}586x - 11,377

N
~

1 2 3 4 5 6 1 2 3 4 5 6

=@—1_xy numerical =—¢—T1_xy numerical

Figure 4-22: Linear stresses distribution between the nodes Figure 4-23: Stresses replotted in a 4-oreder polynomial
to approach the solution between node 3 and node 4.

The stresses distribution along the long side of the cross-section uses stresses data from six nodes.
For 8-nodes elements the stresses would be constant between the nodes. For 20-nodes elements the
same stresses values are distributed with a linear change between the nodes (figure 4-22). From the
basic structural mechanics we know that torsional stresses distributed parabolically. Thus, we should
consider using numerical manipulations to construct a new data point at the midside of the xy-plane
within the range of the discrete set of known points, or in other words interpolation. The two
possibilities, linear and quartic functions, given in figure 4-22 and figure 4-23 will be compared in
table 4-6 and explained in ¢ 4.10.1 and § 4.10.2.
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Table value Linear (the mean of 4-order polynomial
node 3 and 4)
Stress value [N/mm2] | 6.5928 6.6819 6.6111
Error [-] 0% 1.3% 0.28%

Table 4-6: Error for Ty at point p1(y, z)=(0,b/2)

Analysing the content of table 4-2 reveal that the stresses by an odd number of elements can be
approximated from the nodes lying nearby the midside, in our case it is node 3 and node 4 in figure
4-21. However this conclusion will be checked for smaller number of odd element where the error
might be large.

4.10.1 Mean value for odd element number
This is the average of the 7,,, stresses in two midside nodes. The deviation of the mean value of two

Txy;3F Txy;a

correspond nodes holds: 7y, = or in more general expression:

Ty = 5 ((yectyo + D/2) + (o~ 1/2))
With:
Ny x=1/2 number of element in the y-direction for cross-section x=L/2
T (nyx%mﬂ) stresses at the specified node

Because the formula above is calculating the mean value of two points, it is essential to check the
standard deviation of the measurements:

2 2
n L—1 n L—1
Y.x=§ y,x=§
o= — | T + |7 5 Ty

4.10.2 4-order polynomial

Using excel results in quartic function results in formula 4.xx wheret,; = Ty, (x = 3.5).
Ty = @ x* + apx3 + azx? + 4x + as (4.x)
Tyy = —0.0852x* + 1.1923x3 — 6,6855x2 + 17,586x — 11.377 (4.x)

Higher-order functions like 5-order or 6-order appear to not have any effect on the interpolation. It is
remarkable that this equation looks like the approach of Roark’s formula for Stress&Strain that
holds:

2 3 4

= 3 406095 4 08865 (") — 1.8023(") +0.9100 ("
Txy = gppz L1 T 060957 +0. (Z) ' (E) ' (E)]
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5. Optimization study

The length of the rectangular beam in the 3D space influence the accuracy of the obtained numerical
stresses values. In § 3.3.1 the ideal length of the beam considering the Vlasov regions is founded.
The warping resistance is therefore neglected by modelling a beam with sufficient length. In this
case the length should be larger than 1000mm. Afterwards in gﬁ 4.9, the method of which the stress
database should be assembled have been founded. The next step in the FEA is to run ANSYS several
of times with respect to the discrete variables EX, EZ ,EY , b, and h. Thanks to the optimized use of
ANSYS, it is possible to conduct this calculations relative fast. The only restriction is the memory
capacity of the computer which being reflected in long computation time. It is of course also an
option to increase or decrease the Poisson’s ratio or the Young’s modulus. The correlation of the
Poisson’s ratio with the stresses values has been presented in § 4.1.

5.1 Length

Initially, we consider the error due to variable beam length and cross-sectional dimensions. The
purpose is to find the numerical solution changes in respect to the ratio of beam length and cross-
sectional dimensions (Table 5-1). The error is given by the following formula:

|Numerical solution — Referance valeu|
= *

100
Referance valeu

T

L/max(h | b) 142 2 333 4 666 10 20 30
D, (z=05b;y=0)[ 99 52 14 11 10 10 10 10
D, (z=0;y=05h)| 70 30 07 10 11 1.0 1.0 10

Table 5-1: The relative error ‘D’ for a square cross-section at x=L/2 for: E=210e3N/mm2,
v=0.1, L=3000mm, Mt=20e6 Nmm and L, = 25mm

Table 5-1 indicates that the error decrease as function of the beam ratio. For L/h < 2 a relative
larger error is obtained. This can also refer to the length of Vlasov region and to the disturbed zone
due to the concentrated force and the boundary conditions. Therefore, L/h ratio of 9.375 will be
used with EX = 120

5.2 YZ-plane dimensions
The dimensions of the cross-section might have influence on the deviation of the solution. The
rectangular beam is modelled in ANSYS with variable h/b ratio. The relation between the h/b ratio

and the cross-sectional stresses distribution for a constant number of cross sectional elements EY
and EZ is illustrated in table 5-2:

h=300mm b =... [mm] | 100 200 250 300 350 400
N 25.0 7,0 4,6247 3,4468 12,4743 1,9353
Ty L]
N 25.0 7.2305 4,8786 3,5592 12,7442 2,2045
Ref Txy [_2]
mm
Error [%] 0,05 3,21 5,49 3,26 1091 1391

Table 5-2: The relative error at x=L/2 for EZ = 2,EY = 5, E=210e06, v=0.1, L, = 25mm and Mt=20e06Nmm
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The error for b > h is increasing with respect to b. For the cross-sectional dimensions the following

. . h
rule is applied: ™ = 1forzy,

5.3 Number of elements

Optimization study of the number of cross-sectional elements was critical to determine the
distribution of the error. From this study conclusion can be made over the minimal number of
elements for a certain error. The error is computed with as reference value, the torsion table values
described in § 3.1.1. It seems that the

error is relative large for cross-section ——h/b=1.6 ——h/b=2 h/b=2.5 ——h/b=3
with only two elements in the height. 20,0

This is valid for all : h/b ratio and for

both stress components 7y, and Ty. « 150

According to figure 5-1 based on Q 10,0

table 5-3 it seems that the error i

convergence to zero for EY = 5. It 2,0

can be concluded that for the highest 0,0 ~— —
accuracy: EY > 5 Furthermore, it 2 3 4 5 6 7 )
should be noticed that besides the EY

total number of elements also the
ratio between the EY and EZ
influence the accuracy. For example:

Figure 5-1: T, error for variable EY, EZ=2 and EX=160

. DTxy:h/b=1.6,nb=4nh=5 is 0,2%
e D : h/b=16,n,=5n, =4 is 3,2%

In addition, as for the maximal stress component 1., it seems that the error will increase if the
number of elements in the transverse direction will increase. While for t,.,, the error will decrease
as the number of elements will
increase for EY > 2 and EZ > 2. It
4,0 can be concluded that for 7,4, the

3,5 7—/‘_ following design rule valid: % > 1.
3,0 The diagram showed in figure 5-2

e=—=h/b=1.6 ==—=h/b=2 h/b=2.5 e===h/b=3

-4
(@]
& 25 // presents the change in the error as
w ’
50 / function of number of elements in the
= width for constant number of element
L5 in the height. The error is large for
2 3 4 5 6 7 8

higher values of EZ . Table 5-2 and
5-3 present the data collected during

EZ

Figure 5-2: t,,. error for variable EZ EY=4 and EX=160
the optimization study of the discrete

beam. The data is valid for Solid186 volume elements for constant beam length of 3000mm,
constant element length in the x-direction L, = 25mm and constant torsion load of 20e6Nmm.
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EZ Tyy

ho=1| 2 3 4 5 & 7 8
EY 2| 100 134 146 151 153 155 155
3 71 23 04 06 12 15 1,7
41 27 03 17 25 29 32 34
s| 71 36 20 12 07 04 02
6| 49 16 01 06 10 13 15
7] 69 34 18 10 06 03 01
8| 56 22 07 00 05 07 09
EZ
hy=16| 2 3 4 5 6 7 8
EY 2] 158 163 164 165 165 165 16,5
3] 1,3 29 36 39 40 41 42
4] 1,9 27 32 35 37 38 38
s| 1,3 03 02 05 07 08 09
6| 01 1,0 1,4 17 18 19 1,9
7] 14 03 02 04 06 06 07
8| 05 05 1,0 12 13 14 15
EZ
hy, = 2 3 4 5 6 7 8
EY 2176 172 171 170 169 169 169
3| 43 51 55 56 57 57 57
4] 27 32 35 36 37 38 38
s| 02 07 1,0 12 13 13 14
6| 1,1 15 1,7 18 19 20 20
7] 00 05 07 09 09 10 1,0
8| o6 1,1 1,3 14 15 16 16
EZ
ho=25| 2 3 4 5 6 7 8
EY 2176 172 17,1 170 169 169 169
3| 68 72 73 73 73 72 72
4] 29 32 34 35 35 35 35
s| 11 14 15 16 17 1,7 1,8
6| 15 1,7 1,8 18 19 19 1,9
70 07 10 1,1 11 12 12 1,2
8| 1,1 1,4 15 15 15 16 16
EZ
ho=312 3 4 5 & 7 8
EY 20173 169 167 167 166 166 16,6
3| 86 86 86 86 85 85 85
4] 29 32 33 34 34 34 34
s| 16 1,8 1,9 20 20 20 21
6| 16 1,7 1,8 18 18 19 1,9
7] 11 13 1,3 14 14 14 14
8| 14 15 15 16 16 16 16

N

mm?2
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EZ Tyz

ho=1| 2 3 4 5 & 7 8
EY 2] 100 71 27 71 49 69 56
3|134 23 03 36 16 34 22
4|146 04 1,7 20 01 18 07
5|151 06 25 12 06 10 00
6/153 1,6 29 07 1,0 06 05
70155 15 32 04 13 03 07
8155 1,7 34 02 15 01 09
EZ
hb=16 | 2 3 4 5 6 7 8
EY 2| 15 206 132 185 157 181 165
3] 79 98 51 97 72 94 7.9
4114 53 15 58 35 55 42
5/131 29 03 38 16 35 23
6| 140 15 14 26 05 55 12
70145 06 21 19 01 16 05
8| 148 00 25 14 06 12 00
EZ
h, = 2 3 4 5 6 71 8
EY 2| 95 294 204 261 229 255 237
3| 42 145 88 138 11,1 134 119
4| 93 82 36 82 58 79 65
5|19 48 10 53 30 50 37
6133 28 06 36 14 33 21
70142 15 16 25 04 22 10
8147 06 22 17 03 15 03
EZ
hy=25| 2 3 4 s 6 7 8
EY 2] 204 41,1 301 362 324 352 332
3| 1,4 212 145 199 170 194 178
4| 56 128 73 122 95 118 10,3
5| 94 81 35 80 56 77 63
6| 116 52 12 56 33 53 40
70130 33 02 40 18 37 24
8139 20 12 29 07 26 14
EZ
=312 3 4 5 & 7 8
EY 2] 31,2 524 395 459 415 445 422
3| 73 282 205 263 231 257 239
4| 17 176 112 164 13,6 159 144
5| 67 115 62 11,0 84 106 9,2
6| 97 77 32 77 53 74 60
70116 53 12 56 33 53 40
8129 36 01 41 19 38 26

N

mm

Table 5-4: Relative error for M = 20e6

> V=0.1E =210e6 N/mm? L=3000mm and EX=160
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Looking at the error tables in the previous page will reveal that the correlation between the number
of elements and the error is quite strong. The smallest error is seen at the largest index. But now as
an alternative, the degrees of freedom of the cross-section will be plotted. The DOF of the cross-
section can be calculated as mentioned in § 2.4. It holds:

EY
2 3 4 5 6 7 8
EY 2 63 87 111 135 159 183 207
3 87 120 153 186 219 252 285
4 111 153 195 237 279 321 363
5 135 186 237 288 339 390 441
6 159 219 279 339 399 459 519
7 183 252 321 390 459 528 597
8 207 285 363 441 519 597 675

Table 5-5: Cross-sectional DOF’s

The error is now plotted with respect to cross-sectional DOF and compared with different h,/h
ratio’s. (Figure 5-3)

4,5
4,0 g L2
* mu"
3,5 |
[ |
3,0
¢ [ | @ he/h=1/3
g 2,5 W he/h=1/4
o
& A he/h=1/5
w20 = x X X
Ls X X he/h=1/6
' o A X * e °® ¢ @ % he/h=1/7
1,0 ® ® he/h=1/8
A A4 X el
v X
0,5 . - %
A AX X
0,0 X
0 100 200 300 400 500 600 700 800
DOF (EZ)

Figure 5-3: Relative error distribution versus cross-sectional DOF forh/b = 1. 6.

The error decreases for constant h,/h ratio by increasing the number of elements in the width.
Furthermore, the error becomes smaller for smaller values of h,/h. In the second diagram

(Figure 5-4) the b, /b will be constant while the number of elements in the height will increases. It is
remarkable that in this case the error will decrease for higher values of EY
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Figure 5-4: Relative error distribution versus cross-sectional DOF forh/b = 1.6

Both of the diagrams proofs what have been mentioned in the beginning of this paragraph. The ratio
of the elements is critical for the accuracy and not only the number of elements (DOF’s). This
conclusion is valid for the maximal shear stress component. Consequently, in order to approach t,,

h . . -
for 5 =1, the number of elements in the height are critical to reduce the error whereas the number
of elements in the width will increase the error. As for the secondary shear components it can be
. . h . . . .
concluded that while approaching the 7, for; >1 ,increasing the number of elements in the height

or in the width will reduce the error.

5.4 Sorting results

Sorting the results in table 5-3 and table 5-4 regarding the smallest error up to the largest error will
help us to draw the conclusion related not to the accuracy but also to the computation time. As
mentioned before, this computation time is equivalent to the DOF. In this way the minimal number
of elements can be determine with taking into account the effectiveness of the computation time.
Table 5-6 and table 5-7 present the relative error for h/b = 1.6. According to table 5-6 the vertical
shear stress component t,,,, Will be approached with accuracy of 99.9% through applying EY = 6
and EZ = 2 with only 159 DOF’s. In $ 5.5 the meshing design tables for torsion moments will be
presented on the basis of this representation.
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EY EZ|ERROR|DOF's|EY EZ|ERROR |DOF's
6 2| 01| 159 6 5 1,7| 339
5 4| 02| 237l 6 6 1,8 399
7 4| 02| 321| 6 7 1,9| 459
5 3| 03| 18| 6 8 1,9 519
7 3| 03] 2524 2 1,9 111
7 5| 04| 39%]3 2 2,7| 87
8 2| 05| 207| 3 3 2,9 120
8 3| 05| 28| 4 4| 32| 195
5 5/ 05| 28] 4 5| 35| 237
7 6| 06| 459 3 4| 36| 153
7 7| 06| 528 4 6| 3,7| 279
5 6/ 07| 3394 7 3,8| 321
7 8/ 07| 597 4 8| 38| 363
5 7/ 08| 39%] 3 5 39| 186
5 8/ 09| 441 3 6 4| 219
8 4 1] 363 3 7| 41| 252
6 3 1| 219| 3 8| 42| 285
8 5 1,2 441] 2 2| 158| 63
8 6 1,3| 519| 2 3| 163| 87
5 2 1,3| 135] 2 4| 164| 111
3 2 1,3| 87| 2 5| 165| 135
6 4| 14| 279] 2 6| 165| 159
8 7 1,4| 5971 2 7| 16,55| 183
7 2 1,4| 183| 2 8| 165| 207
8 8 1,5| 675

Table 5-6: relative of T, forh/b =1.6
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EY EZ|ERROR|DOF's|EY EZ|ERROR |DOF's
8 2 0| 207| 4 6 3,5| 279
8 8 0| 675 5 5 3,8| 288
7 6 0,1 459] 4 8 4,2| 363
5 4 03| 2371 3 4 51| 153
6 6 0,5/ 3991 4 3 53| 153
7 8 0,5| 5971 6 7 55| 459
7 3 06| 2521 4 7 55| 321
8 6 0,6 5191 4 5 58| 237
8 7 1,2| 597| 3 6 7,2| 219
6 8 1,2 519| 3 8 79| 285
7 7 1,2| 528| 3 2 7,9 87
6 4 1,4, 2791 3 7 9,4| 252
8 5 1,4\ 4411 3 5 9,7| 186
6 3 1,5/ 219 3 3 9,8| 120
2 2 1,5 63| 4 2 11,4 111
4 4 1,5/ 1951 5 2 13,1 135
5 6 16| 339 2 4| 13,2 111
7 5 1,9 390| 6 2 14| 159
7 4 2,1 321 7 2 14,5| 183
5 8 2,3| 441 8 2 14,8| 207
8 4 2,5 363 2 6 15,7| 159
6 5 26| 3391 2 8 16,5| 207
5 3 2,9 186 2 7 18,1| 183
5 7 3,5/ 390

Table 5-7 : relative error of T, forh/b = 1.6



5.5 Conclusion

From table 5-3in $ 5.3, only element configuration correspond with an error of up to 3% are taken
into account. Moreover, the errors given in the meshing design table are compared to reject any
chance that the obtained error has been founded accidently and valid only for the specific
configuration with the specific dimensions. In addition, element configuration with large DOF will be
neglected because only effective element configuration is wanted. This result in “FEA Meshing Design
table” for rectangular beam subjected to pure torsion moment, without taking into account the
warping resistance. The design table should be applied for the Ultimate limit state where the
maximal shear force is governing. In our case it is Ty,, . In addition, the table is valid for load within
the linear elastic stress distribution. The following parameters have been used to compute this

design table:
EX 1
T =10 E = 210e6mm2 v=01 b=200mm
Txy EY EZ Error DOF's
6 4 0.1 279
Wb =1 4 3 0.3 153
6 3 1.6 219
4 2 2.7 111
5 3 0.3 186
6 3 1 219
h/b=1,6 5 2 1.3 135
4 2 1.9 111
4 3 2.7 153
5 2 0.2 135
Wb =2 5 3 0.7 186
4 2 2.7 111
4 3 3.2 153
5 2 1.1 135
h/b =25 5 3 1.4 186
4 2 2.9 111
5 2 1.6 135
Wb =3 6 3 1.7 219
4 2 2.9 111
4 3 3.2 153

Table 5-8: FEA Design table for rectangular cross-section subjected to torsion
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6. The HE300A section

6.1 Relevant information from previous report

The report of B.M. van de Weerd [December 2007] describes the numerical solution using FEA model
for several of I-sections subjected to shear stress. The measurements of the shear stresses in the
critical cross-section imply that these stresses will be largest at the mid-wedge as expected.
Furthermore, it shows peaks of the stresses at the wedge-flange connection as shown in figure 6-1

L

Figure 6-1: Shear stresses contour in
ANSYS [B.M van de Weerd 2008]

6.2 Concept HE-beam model

In the previous chapter, the rectangular cross-section subjected to torsion moment has been
analyses in the search fot optimal number volume elements. The rectangular cross-section was
relative simple to model. Due to the rectangular shape there are few peak stresses concentrations.
Those peak stresses are located at the corners of the cross-section and cause an infinite stresses
values. The same logic applies for simplified HE-section model with rectangular planes. (Figure 6-2)

262,0mm290,0mm

¥

L73OO,Omm 4*‘

Figure 6-2: Simplified model for r=0 consist of
rectangular geometry
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The stresses contour of the simple HE-section in figure 6-3 will contain peak stresses consecration at
the web-flange connection and at the edges of the flanges. Letting ANSYS to analyses this model will
result in infinite stresses values in those locations. That is the reason why realistic model will be
introduced, including the rounded corners with r = 27mm. (figure 6-3)

r=27mm

262,0mm  290,0mm

Li%[],[]mm 4J

Figure 6-3: Realistically model for r=27mm

In this model the rounded corners reducing the peak stresses concentration. This singularities can be
explained according to the elastic membrane analogy [Ludwig Prandtl, 1903] which describes the he
stress distribution on a long bar in torsion. The theory uses the term ¢ — slope which directly
proportional to the stresses. In the corner of the model (figure 6-3) the ¢p — slope will be large,
rounding these corners will reduce the slope and the stresses peak concentration. In this research
only the realistic HE-section with rounded corners will be analyzed. In the future, it is recommended
to compare the stresses results of the simple model with the stresses results of the realistic model,
in order to find the accuracy of the simple model.

6.3 Elements type

In this phase we’ll analyze an FEA model of HE300A section, this common steel section is being used
as compression element or for beam when the structure height has to be limited. However, modeling
HE-section considering the mesh located at the rounded corners will require the use of volume
elements like Prism (figure 6-4) due to the parabolic shape.

MNOPUVWX
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MN.OP.UVWX

Figure 6-4: Various
Solid186 shapes
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http://en.wikipedia.org/wiki/Ludwig_Prandtl
http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Torsion_%28mechanics%29

6.4 The simple FEA model

To remind, the goal of this research is not to make the most accurate mesh, but to make a new
accessible working method for the civil engineer. The simple HE-model from figure 6-2 meet this
requirement because it can be meshed with only hexahedron volume elements. In this case the
model consist of rectangular sections with uniform mesh. That should be a straightforward mesh
configuration with limited number of elements. In this report the reliability of this model will not be
checked due to lack of time. However, it been recommended to check the accuracy of this model in
future researches. Figure 6-5 shows the simple FEA model in ANSYS.

oy

Figure 6-5 The simplified model with r=0

6.5 The realistic model
To meet the shape requirements related to the use of the rounded corners, this model will consist of
20-nodal hexahedron volume-element in the flange and web while the rounded flange-web corners

will consist of 20-nodes Prism volume-elements. (Figure 6-6)

Figure 6-6: The realistic model with RoC=27mm
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6.6 The reference models

In the search for the optimal HE300A FEA model the numerical, yet unknown values, will be
compared with a reference value. This reference value should supply the exact stress value of which
the deviation will be measured. The reference model consist of a fine mesh comparing to the coarse
mesh of the investigated model. For each loading case the reference model will be different with
respect to the pattern being discovered in the analysis. For example, the reference model of the
torsion moment case has been resolved by more than one million differential equation and 9123
cross sectional DOF’s. Such a model has been solved within more than one hour on a Pentium 4
computer.( Figure 6-7)

Figure 6-7: The reference model

6.7 Working method

The design of the HE300A beam in ANSYS occurs in a different method than from the previous
rectangular beam. In this case, few HE300A FEA-models will be individually computed between
themself. The working method suggests beginning with a basic coarse mesh which will be refined in
every new model. The results of this working method will be the reducing/increasing the deviation
with every new mesh density. This working method will adapt the mesh density until an adequate

deviation will be achieved.
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6.7.1 Adaptive Mesh Refinement

Figure 6-8: Cross-section is divided into subregions

Sub region | Description

Green Flange mesh
Red Peak stress region
Orange Web mesh

Blue Rounded corners (R)
Table 6-1: Legend for figure 6-8

For a proper modeling the mesh will not be uniform however, it will be denser where the stresses are
maximal. Alternative approach considers a FEA model with a standard uniform mesh. The unknown
nodal stresses values for this grid are estimated by ANSYS. The spacing of the mesh determines the
accuracy of these values. Although the mesh of the cross-section is uniform, the stresses contour is
not uniform. There are regions in the cross-section where a finer mesh is required to reduce the
deviation from the real stresses values. The Adaptive Mesh Refinement is using submesh to fix
computations error in difficult regions. The first step is identifying the peak stresses of every load
case. Indubitably, every loading case like torsion, bending moment and shear obtain different
stresses contour and required a different mesh. The idealized mesh will be then non-uniform mesh.
The mesh density will be determined upon the peak stresses. The location of the peaks is well known
from the theory and from early researches as mentioned in 95 6.1
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6.7.2 Meshing variation

Figure 6-9: Initial mesh with EYy = 2 and EZ,, = 2

Due to modeling limitation with ANSYS software, the area around the web-flange connection consists
of four fixed regions given in the small figure above (table 6-1). Within the boundaries of each region
a local mesh refinement will be generated. Meshing the cross-section will be executed in such a way
that the EZ of the web coincide with EY of the flange in the red subregion mentioned in § 6.7.1. Or
in other words, the vertical mesh of the flange coincides with the horizontal mesh of the web in the
red subregion will be called from now on peak-region. The peak-region is confine by the mesh
density of the web and the flange. Because the peak stresses are likely to occur in the peak region,
the meshing components EZ,,;, and EYfjqn 4. Will have a crucial influence on the deviation of the
peak stresses values. Analyzing the stresses results in this report pointed that the minimum mesh for

the peak region should be:
EY, =2and EZ, =2

Therefor the initial mesh of every FEA Model will be as given in figure 6-9.
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7. Bending moment

,(le\/m

1
ELEMENTS

Lg =25mm

L =3000mm

E = 210e6 >
mm

v=20.1

M = 10e6 Nmm

Figure 7-1: The FEA bending moment model in ANSYS

For bending moment without an additional normal force, the bending stresses will be approached
with numerical equation. The normal bending stresses are uniform distributed along the beam
length. The characteristic cross-section will be at halfway the beam length in order to neglect the
influence of boundary conditions on the stresses. In this cross-section the outer fibers are loaded
maximally. The HE-sections have broad flanges to use maximum material in the flanges subjected to
bending. Assumption: the magnitude of the applied bending moment will not cause yielding of the
steel. In that case plastic deformation will not occur and the stress distribution will stay linear as
shown in figure 7-2. The applied moment will increase the curvature within the linear elastic stress

phase (figure 7-3).

moment

M, \
plastic
elasto-plastic %
M.
elastic 1
curvature kK

Figure 7-3: Moment (y-axis) versus the curvature (x-axis)
for the different stresses distribution [H.Welleman]

Tension-u

SeA

Figure 7-2: Bending stresses [H.Welleman] 60



When a slender member is subjected to axial force due to flexure the top side and the bottom side
will be subjected to axial compression or axial tension force. Because the stated member in

figure 7-1 is not supported in lateral direction, the beam will fail due to lateral buckling of the
compression flange. This will occur for a critical value of the flexural load. In addition, if the
compression flange buckles laterally, the cross section will also twist in torsion, resulting in a failure
mode known as lateral-torsional buckling. These two failure mechanism will not be discussed in this
research. The governing bending moment load in this case will be small enough preventing the
mentioned mechanism to occurring .
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7.1 The FEA models

According to the adaptive meshing refinement working method explained in § 6.7, the models will
be refined or coarsen according to the obtained results of the first model “Model 1”. Analyzing
stresses results for the first model emphasis the need for a second model. Therefore three FEA
models are introduced from coarse to fine mesh when the third model will be the reference model.
( Table 7-1)

FEA bending models | DOF’s flange DOF’s web DOF’s RoC Total DOF’s
Model 1 351 129 33 963

Model 2 543 225 33 1443
Model 3 (Ref) 1497 507 69 3777

Table 7-1: Bending moment FEA models

7.1.1 Model 1 (963 DOF’s)

Figure 7-4: The first model

The normal stresses due to pure bending moment are checked for FEA model with the following
mesh refinement:

EYyep =6 EZyep = 2 bYeb = 4.25mm h¥eb = 43.67mm
= = fl _ fl _
EYfiange = 2 EZfiange = 12 by = 24.3mm hy =7mm
Eyll =2 EzIl =2 b? = 4.25mm hY =7mm  Ep =3
peak peak E : E R
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7.1.2 Model 2 (1443 DOF’s)

Figure 7-5: The second model

During the FEA of the first model, deviation in the stresses distribution has been found. Yet, this
deviation occurs in the web of the cross-section and not in the flange. The deviation can be referred
to the element height in the web. As mentioned before, the critical stresses occur in the outer fiber,
therefore the normal stresses values in the web are less interesting. This second model has been
added to this analysis in order to observe the change in stresses values due to decreasing elements
height.

EYflange =2 EZflange =20 bgl = 14.575mm h£l =7mm

Lo _ o _ D _ p_
EYpeak =2 EZpeak =2 bE = 4.25mm hE =7mm
ER - 5
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7.1.3 Model 3 (Ref)

Figure 7-6: The bending reference model

The reference model concerns this loading case involves 3777 cross-sectional DOF. The mesh consists
of Solid186 Hexahedron and Prism elements with the following configurations:

EYyep = 16 EZyep =3 byeb =28mm  hYe’ =16.375mm
EYfiange = 4 EZfiange =32 bf'=91mm  hl'=35mm
EY) e =4 EZl 0 =3 bY = 2.6mm hY = 3.5mm

Epl =11

1
Total number of elements at rounded corners
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7.2 Stresses distribution

Figure 7-7: Nodal normal stress contour at x=L/2

Only the normal stress components (perpendicular to the cross-sectional plane) are presented in the
figure above. This stress contour is a representation of the actual normal bending stresses in the HE-
section, in a cross section located half way the beam length. The stress contour shows linear stresses
distribution according to the theory. This is conformed in figure 7-8. The maximum stresses occur as
stated before at the outer fiber, where at the middle of the web the stresses are zero. The nodal
normal stress values in figure 7-8 are plotted for Z = 0 and along the y-axis.

200

- 150
b

—o—Ref(3777 DOF's)
—8—Mode1l(963 DOF's)
10 Model2 (1443 DOF's)

-200

Figure 7-8: Normal stresses for z=0 at x=L/2 for M=10e6 Nmm
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Remarkable from the diagram in figure 7-8 is the accuracy of the critical stresses values at the outer
fibre. It seems that Model 1 and Model 2 are successfully approaching the actual stresses at the outer
fibres. However, as expected the web of model 1 deviate from the actual stresses values due to
larger element height. The error for z=0 and y=0.5h is given in the following table:

Reference Model 1 Model 2 Analytical
o, N/mm? 7.9238 7.8766 7.9180 7.94085
Error - 0.6% 0.07% 0.2%

Table 7-2: Stresses values at (x,y,z)=(0.5L, 0.5h,0) for M=10e6 Nmm E=210e6 N/mm2 v=0.1 and L=3000mm
for HE300A section.

The first model succeeds to approach the stress with error smaller than 1%. Adding elements to the
web and the flange while unchanging the Red-subregion mesh where the stresses at the outer fibre
are measured result in extremely small error 0.07%.

7.3 Stresses distribution in the width

Investigating the stresses distribution along the width of the beam in model 1 and in model 2 reveals
constant stresses along the flange width.

7.4 Number of elements

7.4.1 Web

As mentioned before, the height of the element has a direct influence on the accuracy of the FEA-
model. Since this research is carried out on specific cross section, the cross-sectional dimensions are
not discrete. Nevertheless ,it is essential to be able to produce a more global conclusions that can be

h}/;veb

applied on every HE or |-section. Therefore the ratio has been plotted with the relative error.

web

1
0,9
0,8

Model 1 0,7
0,6

0,5

\\ 0,4
~C 0,3

0,2

\wdnl 3 0.1

0

ERROR

0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04
h./h,

Figure 7-9: Relative error

hpeb oo o
E_ ratio with h}Y¢? — 0. This is logical

The error convergences to zero for smaller values of the

web

because when the number of elements in the height of the web increases the error will be smaller.
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7.5.2 Flange

Figure 7-10: Peak region meshed with 2*2 elements Table 7-11 Reference mesh with 3*4 elements
result in up to 1% error

Zooming on the area where the peak stresses are measured showed in figure 7-10 and comparing
this mesh with the reference mesh in figure 7-11 reveal that EY * EZ = 2 * 2 elements with the
fl

. h . . . .
ratio —£& = 0.5 are sufficient in order to achieve error with upper value of 1%. However as

hgy
mentioned before in _Cﬁ 6.7.2 meshing this peak region holds:

Ez!

l
Sk = EZyep and EYpignge = EY),

peak

As for the number of element in the width of the flange EZf; . Reducing the EZg; from 12 to 8 and to
6 result in negligible fluctuation of the peak stresses values. It can be explained due to the constant

stresses distribution along the beam width mentioned in § 6.4.

7.6 Conclusions bending moment

During the FEA of the pure bending moment three models are carried out in ANSYS. In the search for
the minimal number of elements with minimal deviation from exact stresses values the following
Rule of thumb should be used for an HE or I-section subjected to pure bending moment:

e Required mesh concerning oy, mqx at the outer fiber for EZ,, > 2

hi hy

E h_fl Error
1/16 1/4 0%
1/10 1/2 0.07%
1/6 1/2 0.6%

Table 7-3: Solid186 mesh design table for 6,y yax

Using the table together with the meshing method mentioned in § 6.7.2 will be explained on the
basis of the next example: Given HE300A section, a mesh with accuracy of 1% is required. The cross
section is subjected to pure bending moment with linear elastic stresses distribution. The mesh will
be determined as followed:
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w

Y 1
Web: h,, = 262mm = h—E=Z = hY = 43.67mm = EY,, = 6 EZ,, = 2
w

nf!

™ = % = hgl = 4.25mm = EY; = 2 EZ;; = can be arbitrary chosen

Flange: hy; = 14mm =

I and Yy = EY/]

peak the peak region will be:

Because of the relations EZ,, = EZ

EYﬂ = EZﬂ = 2. In addition the rounded corners will be modeled with the minimum number

peak peak
of Prism elements for a rounded shape EYz = 3

Figure 7-12: Peak region mesh and
rounded corners mesh
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8. Cross-sectional shear stresses
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Figure 8-1: The FEA shear model

Just like the rectangular beam in ¢ 4 ,the beam is fixed at the edge for an displacements in the x, y
and z direction. At the other edge, vertical concentrated force is applied on each of the nodes
modeling shear force of 10e3 N . As mentioned before, the critical cross-section will be taken
halfway the beam length in order to neglect any irregularities of the stress nearby the boundary
conditions and irregularities at the location of the forces.

The shear stress distribution in the HE-section is depending on the type of model which will be
analyzed. In the search for the accurate solution, the HE section will be model as close as possible to
real HE-section properties. For instance, the web-flange corners in the FEA model will be rounded
with the appropriate radius. The shear stress diagram for rounded corners will differ from diagram
without rounded corners. This can be seen in figure 8-2 and figure 8-3.
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Figure 8-2 Shear stress distribution when Figure 8-3: Shear stress distribution when RoC=0

RoC=27mm [Reader Staalconstructies CT2035] [Reader Staalconstructies CT2035]

8.1 The FEA models
Just like in gﬁ 7.1 the reference model will have the finest mesh, it will be able to anticipate the exact
shear stress values in the cross-section. Broad description of this model can be found at ¢ 7.1. The

other models are models that already introduced in ¢ 7.1.

Shear FEA models | flange DOF’s web DOF’s Corners DOF Total DOF’s
Model 1 351 129 33 963

Model 2 543 225 33 1443
Model 3 (Ref) 1497 507 69 3777

Table 8-1: Shear stress FEA models

8.2 Shear stress distribution

8.2.1 Evaluating results
The FEA of the model 1 (963 DOF) is carried out in ANSYS. The shear stresses components, 7,,, and

T,, ,0f each of the nodes are plotted forming the following stress contour:

Figure 8-4: XY shear contour Figure 8-5: XZ shear contour

As described in a previous bachelor thesis of B.M van de Weerd [December 2007] . The shear
stresses in the web are much larger than in the flanges. The shear stress distribution in the web
should have, according to the theory a parabolic form. Plotting these nodal stresses values in the
diagram on figure 8-6 would confirm the parabolic stress distribution.
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Figure 8-6: Shear stresses distribution in the web

The flanges are subjected to smaller stresses compared with the web. The maximal stress in the web
is 4.8 N/mm”2 while the maximal stress in the flange is 0.8N/mm"2 , as it appears in figure 8-7. It
seems that the XZ stresses in figure 8-7 behaving according to the theory, the stresses increasing
linear from the edge to nearby the middle of the flange where in the middle the stresses are zero.
The dashed black line describes the theoretical XZ stresses distribution in the flange. The different
between the numerical solution and the analytical solution (black dashed line) is seen at the middle
of the flange. There, the numerical values goes to zero while the analytical value grows continuously.
This is due to the absence of rounded corners in the theoretical formulas.
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o
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Figure 8-7: Shear stresses distribution in the flanges
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The rounded corners exhibit peak stresses higher than the maximum stresses maximum stresses in
the flange. Those stresses will be critical in testing HE/I-section on fatigue. The rounded corners of

this section are important to increase the fatigue strength of the structure.(Figure 8-7)

Figure 8-7: XZ shear stresses component

8.3.2 Comparison results

The maximal shear stress value halfway the web height is compared for both models: the reference
model (3777 DOF’s) and modell (963 DOF’s) to find the relation between number of elements and
the accuracy.

(y =0,z = 4.25) Reference Model 1 Analytical’
Ty N/mm? 4.45427 4,42867 4.4980
Error - 0.6% 1.0%

Table 8-2: The relative error for model 1 and the analytical solution from the reference model

Remarkable is that the critical stress in the cross-section is approached with accuracy of 0.6% already
by the first coarse model. It can be concluded that the six elements in the height of the web are
sufficient to approach the exact stress values.

Although the XZ shear component is not the maximal stress and therefore will not be used in the
ultimate limit state calculations, it is significant to be able to approach this stress component with
sufficient accuracy. This can be used for example in shear failure analysis. The maximal XZ stress
value founded nearby the middle of the flange exhibit the following error:

(y = 145,z = 47) Reference Model 1
Ty, N/mm? 0.81129 (z = 45) 0.71055  (z = 55)
Error 0% 12.4%

Table 8-3: The relative error of model 1 from the reference model

It can be assumed that the cause for the relative large is the number of elements in the width of the
flange EZy;. To confirm this assumption a new model will be created.

® For simplified cross-section with RoC=0 according to gﬁ 4.3
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8.3.3 Improved model
Model 2:EYy = 2 EZ; =20  bf'=14575mm  hl' =7mm

In order to reduce the error observed in the first model, a new model is introduced. Model 2 is a
model being used in gﬁ 7.2.2 to model a beam subjected to bending moment. This model includes a
finer mesh from Model 1. This will be used to track changes in the error due to increasing number of
element in the width of the flange. For AEZ = 48 the following green stress distribution is added to
figure 8-7:

[REY

—o— Model3_Ref(3777 DOF's)

== Model1(963 DOF's)

Y ' '
-200 -H\\-loo -50 ‘5# 50 100 150 200
012 {
N I
. Model2(1443 DOF's)

N
¥ Iy
p (
A 0
Ny
“\J 0

Figure 8-8: Improved shear stress distribution in green

According to the second model, it seems that the results of the new model are closer to the
reference values. Accordingly, the most important conclusion is the link that established between the
magnitude of the error and the number of elements in the width of the flange. The improved model
with AEZ = 8 reduc es the error in 7.80% to 4.62%.
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8.4 Von Mises

Figure 8-9: Von Mises stresses at x = L/2

Until now, the shear forces in the XZ direction and in the XY direction have been separately
analyzed. The problem in this approach occurs in the region where those two stress components are
working. Von Mises approach suggests a scalar quantity where both of the shear components are
processed. This is the so-called Von Mises yielding criterion which is favorable to use with ductile
materials as steel. It holds:

1
Oym = ﬁ\/(axx - ayy)z + (ayy + O'xx)z + (0,5 — 04 )% + 6(axy + 0y, + axy)z

For combination of shear and bending moment stresses valid for the stated model it holds:

Oym =+ Oxx + 372
8.4.1 Flange

The maximal Von Mises stress in the middle of the flange at (y = 145,z = 0) is compared for both
models with the reference model. The relative error is presented in table 8-4:

Reference Model1 Model2
Ovum 11,8781 11,5985 11,8583

Error 0% 2,4% 0,2%
Table 8-4: Von Mises yielding criterion flange

8.4.2 Rounded corners

The rounded corners are modeled with Solid186 Prism 20-nodes elements. In each model the
number of elements is increased and the Von Mises values are noted. The Error is presented in table
8-5:

Reference Model1 Model 2
VM 10,6660 10,5020 10,6590
Error 0% 1,53% 0,06%

Table 8-5: Von Mises yielding criterion curvatur
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8.5 Number of elements

8.5.1 Web

As for the web of the HE300A section, it is noticed that with EY = 6 and EZ = 2 the maximal shear
force can be approximated with error of 0.6%. The required number of elements for error with upper
value of 1% is 6. This valid for h—E:0.167. The relative error with respect to the web dimensions and

w

the number of elements is given in figure 8-10:

0,8

Model 1
0,6

ERROR

0,4

\%‘ 0, 2

Model 3

0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04
he/h,,

Figure 8-10: XY error

8.5.2 Flange

Although the flanges are not experience the maximal shear stress and the fact that the structural
engineer will prefer to use the maximum shear value at the web in order to meet the Ultimate Limit
State requirement, modeling the flange will be necessary for analyzing the shear failure of the beam.
Therefore, it is important to be able to approach the maximum stress value at the flanges as accurate

as possible. (Figure 8-11)

14
g Model 1 12
\ 10
)

N\ 5

&

w

Model 2 4

i

\Model 4
0,1 0,08 0,06 b 0,04 0,02 0

Figure 8-11: XZ error

Error of 4.2% will be achieved with EZ¢; = 20 for HE300A section
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The error of the maximal stress in the flange according to Von Mises criteria is present in figure 9-12.
It is remarkable that by applying Von-Mises the error of is dramatically decreased. It might be more
convenient to determine the required number of elements in the flange with the Von Mises
approach.

3,5

Model 1

2,5
N ,
\ Model 2 !
\\ Model 3 0,5

-

0,18 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0
be/b;

Error [%]

Figure 8-12: Von Mises error flange peak stress region

8.5.3 Rounded corners

With the criterion of Von Mises, the critical stresses in each of the models are compared for the
rounded corners of the HE300A section. As expected, there is relation between the number of Prism
elements in the corners to the error (table 8-6) .With only 3 Prism elements on an area of 163mm?
error of 1.5% is observed.

Model 3(Ref) Model 2 Model 1
VM 10,666 10,659 10,5023
Element 11 5 3
Error 0% 0,06% 1,5%

Table 8-6: Von-Mises error for rounded corners

A conclusion regarding this comparison might be that 3 elements are sufficient for radius of 27mm.
Yet modeling an area with only 3 elements will change the shape of the rounded corners and as
result the cross-sectional properties will be changed. Therefore it is recommended for each stated
section to model the rounded corners with the minimal number of element required to model the
corners without damaging the shape of it. (Figure 8-13 and Figure 8-14)

Figure 8-13: 3 Prism

Figure 8-14: 11 Prism elements
elements
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8.6 Conclusion shear stress

During the FEA of fixed beam subjected to shear force, the cross-sectional shear stress components
have been successfully modeled in ANSYS. The stresses showed similar distribution according to the
theory. The maximal shear stress at the web of the cross-section was relative easy to approach with
the first coarse model. However the stresses at the flanges and at the rounded corners needed a
finer model to understand the change in accuracy due to discrete number of elements in the width of
the flanges. In addition the Von Mises criterion has been applied in the search for the error in the
middle of the flanges and the error in the rounded corners. The following mesh should be applied:

e Required mesh at the web concerning 7,4, for EZ,, = 2

hy Error [%]
hy
1/6 0.6
1/10 0.09
1/16 <é¢

Table 8-7: Solid186 mesh design table for T,y

* Required mesh at the flange concerning s mqyx and oy r; for EYy = 2

bg : ETror Te max Error oyy
1/12 124 235
1/20 4.2 0.17
1/32 <& <é&

Table 8-8: Solid186 mesh design table for error g pax

Please note, the errors registered in the table 8-7 and table 8-8 related to the maximal possible error.
For example: Given HE300 cross-section subjected to shear force within the linear elastic stress
distribution phase. The required error is 1%. Therefore the mesh using these tables with respect to
the maximal stress will be:

Web: h,, = 262mm = Z—E =% = hY = 43.67mm = EY,, = 6

w

bl 1

_1 fl _ _
il bg = 24.3mm = EZ; =12 ‘ ‘

The stresses at the flange are not the maximal stress value and therefore the most . .
Figure 8-15:Peak

Flange: by = 300mm =

course mesh density has been chosen for the flanges. In addition according to the
meshing method in f 7.7.2 the peak region enclosed by nodes 5,6,7 and 8 in figure 9-15
would be: EYpﬂ =EYy =2and EZ{:I = EZ,, = 2. As for the rounded corners three

elements as given in figure 9-16 are sufficient according to table 9-5.

Figure 8-16
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9. Torsion

1
ELEMENTS

Lg = 25mm

L =4000mm

E =210e6 5
m

v=20.1

M; = 10e6 Nmm

EX =160

Figure 9-1: The torsion FEA model

The 3D FEA torsion model of the HE300A section is presented in figure 9-1.. In § 3.1.3 , the ideal
length of the beam subjected to torsion load have been founded according to the theory of Valsov.
The FEA beam model carried out in ANSYS will has to be long enough to omit the warping resistance
and irregularities concerning the boundary conditions and the concentrated forces. Cross-section
halfway the beam length should meet these requirements. Therefore, in this FEA-model the length is
increased from 3000mm to 4000mm to ensure the reliability of the results. In gﬁ 4 ,the rectangular
beam subjected to torsion have been modeled in ANSYS and compared with the torsion table values.

Table values however, do not exist for HE sections. Therefore,
in this analysis reference model will be used. From the

literature it’s well known that HE or I-sections are

inefficient in carrying torsion. Basic principles known from
earlier researches, is that the mesh density for torsion
models are finer than mesh density for shear or bending

models. Thus, in this chapter new reference model has
been added with a fine mesh. According to the theory, the
torsion stresses are extreme at the outer fiber for an open
cross-section. Therefore in an open cross-section like the

HE300A the stresses will be measured in the nodét8located
. Figure 9-2: Torsion stresses
at the outer fiber.



http://en.wikipedia.org/wiki/Torsion_%28mechanics%29

9.1 The FEA models

During the research, the need to refine the mesh occurs several of times. This results in additional
models comparing with the other loading cases. The models in table 9-1 presented from the coarse
to the fine mesh:

Torsion FEA models | flange DOF’s web DOF’s Corners DOF’s Total DOF’s
Model 1 351 129 33 963

Model 2 543 225 33 1443
Model 3 747 369 36 2007
Model 4 1497 507 69 3777
Model 5 (Ref) 3399 1821 126 9123

Table 9-1: Torsion FEA models

Models 1 and 2 are already introduced in $ 7.1. Model 4 was the reference modelin ¢ 7and § 8.
Models 3 and 5 are new models and therefore will be introduced in the next paragraph.

9.1.1 Model 3 (2007 DOF’s)

Figure 9-2: Cross-section model 3

EYyep = 16 EZyep = 2 b¥el = 425mm  h¥°’ = 16.375mm

EYfiange =3 EZf1ange = 20 b[' =14575mm hl' = 4.67mm

EY!' =3 Ez' =2 b? = 4.25mm hY = 4.67mm
peak peak E ' E .

ER == 6
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9.1.2 Model 5 (9123 DOF’s)

Figure 9-3: Cross-section reference model

EYyep = 44 EZyep =4 bYel = 2.125mm  h¥°’ = 5.95mm

EY, =5 EZ = 62 bt = 4.7mm ht = 2.8mm
flange — flange — E — E — <

EY/! =5 EzIl =4 bP =2.125mm  KP = 2.8mm
peak peak E ) E )

Er =19
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9.2 Torsion stresses distribution

9.2.1 Evaluating results

The finite element analysis is carried out in ANSYS. The contour plots for Model 5(Ref) concerning

both stress components are given bellow in figure 9-3 and figure 9-4:

Figure 9-3 : XY contour plot for model 5

From the theory it is known that torsion stresses are proportional to the thickness of the open cross-
section. As for the HE300A section, the flanges are 14mm thick while the web is 8.5mm thick.

Therefore, the largest stresses are expected in the outer line of the flanges. This can be confirmed by

the contour plot of figure 9-4 and figure 9-5 where the maximal shear stresses are registered at the

flanges outer line, in accordance with the theory. These stress peaks at the middle of the flange will

exhibit the critical stresses in the cross-section. In addition just like mentioned before in § 8.21 there

are peak stresses at the rounded corners. These stresses are combination of
the XY and the XZ stress components. In figure 9-5 and figure 9-6 the
contour lines indicating peak stresses at the top of the flange and at the
rounded corners. It is noticed that the rounded corners experiences peak
stresses also due to shear force (figure 9-7). Combining these results
concludes that the rounded corners are certainly an critical point in the
section where a mesh with high accuracy should be used. A possible
question arises while observing the contour lines, how many elements in
the peak regions will be sufficient to be able to approximate the stresses
with high accuracy? and is it reliable to address each stress component
separately in a region where those two stress components are present? To
answer the second question an additional method to observe the stresses
will be checked. Reasonable method concerning steel construction is
suggested by Von-Mises. Applying the Von Mises stress criteria to estimate
the accuracy of the peak stresses will be suitable, since it plots both stress
components together. In the search for the optimal mesh density in the
discrete beam the number of elements in the flange, web and in the
rounded corners according to the Von-Mises yielding criterion will be
therefore used.
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Peak

Figure 9-6:Torsion XZ
peak

Figure 9-7: XZ shear peak



. But beforehand, the stresses solutions of the five models will be plotted in a diagram representing
the nodal stress values along the web and along the flange of the cross-section. The stress values
regarding cross-section at the middle of the beam. Due to symmetry figure 9-7 will present the XZ

stress components of the left side of the upper flange.

o—EY=2 EZ=14

I~ —
9 e
E L 100  —M—EY=2 EZ=22
% 80 EY=3 EZ=22
x
I a0 — —
3 60 EY=4 EZ=35

==ie=EY=5 EZ=66

-150 -100 -50
Flange width [mm]

Figure 9-7: XZ stress distribution for the left side of the upper flange

Looking at the maximal stress values of each model amplifies the relation between the number of
elements in the width of the flange and the on the accuracy of the results. This relation will be later
on established in the conclusion. In figure 9-7 the maximal stress of 188N/mmA”2 is watched in the

middle of the flange at Z=0 for the reference mesh. The
coarser meshes are approaching this value as the mesh
will become denser. Figure 9-8 gives the XY stress
component for the upper half of the web. It is noticed
that the stresses at the web are approximately one
third from the maximal stresses at the flanges. Nearby
the rounded corners the XY stresses are maximal. It is
remarkable that the number of elements in the height
of the web EY having almost no influence on the stress
values. Good results can be achieved already with the
first model, with EY = 6. The critical point in this
diagram is at = 120, where the stresses deviate from
each other even when finer mesh is applied . This
problem will be solved with the help of the Von Mises
criterion in the next paragraph.

82

140

120

100

80

60

Web height [mm]

40

20

0

o—EY=6 EZ=2

== EY=10 EZ=2

EY=16 EZ=2
=>¢=EY=16 EZ=3
=ie=EY=44 EZ=4

30 130
Tau_xy [N/mm2]

Figure 9-8: XY stresses distribution for the upper half

of the web



9.2.2 Von Mises

Figure 9-9: Von-Mises plot contour at x = L /2

The Von Mises yield criterion introduced in $ 8.4 for the shear loading case is favourable to use in the
case of torsion of steel. In figure 9-9 the Von Mises equivalent stresses are plotted in for a cross-
section halfway the beam length. Comparing with the contour plot in gﬁ 9.3, this contour plot offers

a straight forward method to observe the stresses in the entire cross-
section. The contour lines at the flange-web connection indicate that _

the stresses in the top of the flange and in the rounded corners are
more or less the same. This can be also explained by applying the

., il
Membrane analogy by Ludwig Prandtl. It describes the proportions l
between the torsion stresses and the slope of a soap film of non-circle
cross-sections. The slope at these locations will then have to be more
3

or less the same. Thus, while testing the HE/I member subjected to .
] ) ) o ) Figure 9-10: Peak
torsion load in the Ultimate Limit State approaching the exact stresses
values in these stated peak regions will be essential. The failure
mechanism will probably occur due to yielding of these peak regions.
The data obtained from the Von Mises contour plot will be processed
and evaluated in the next paragraph regarding the required mesh

refinement.
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9.3 Number of elements

9.3.1 Flange

In relation to the required number of elements with respect to the accuracy obtained by the mesh

figure 9-11 is given. The diagram shows the deviation of the maximal stress value at the middle of

the flange for each model.
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14,0

‘ Model1

12,0

10,0

8,0 Model 2

ERROR
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==\ M
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4,0
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== Tau_XZ

2,0

0,0

100 2100 4100

\Mode/ 5

6100
DOF

8100 10100

Figure 9-11: Error as function of the total DOF for the maximal stress

Looking at the distribution of error versus the cross-sectional degrees of freedom suggest that the

error goes to infinity, or at least to real large value for a coarser model than the Model 1
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Figure 9-12: Relative error flange
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Figure 9-13: Relative error flange

(936 DOF). It also seems that the Von-Mises
and the XZ stress components behave the
same. This confirms that the founded error
distribution is correct. To determine the

required number of elements in the flanges
bl nf!

E E
—= and = are
bfl hfl

the following ratios:
processed in the x-axis of figure 9-12 and
figure 9-13. For example: according to the
graphs, error smaller than 10% for HE300A
would be achieved with 18 elements in the
vidth and 3 elements in the height of the
tlange. Remarkable is that the torsion load
requires the largest number of elements and
therefore it represent the critical number of
elements required to model a HE section. The
actual mesh of a beam subjected to
combination load of shear, normal, bending
and torsion load will follow the mesh
recommended in the Mesh design tables in
the conclusion



9.3.2 Rounded corners

The Von-Mises stress accuracy in the
rounded corners with respect to the
cross-sectional degrees of freedom is
plotted in figure 9-14. The slope of the
error between model 1 and 2 is very
steep, almost parallel to the y-axis. In the
second model the slope is smaller
suggesting that the required mesh should
be in any case denser than the mesh
applied in model 2. This mesh consist of
six Prism elements.

9.3.3 Web

Considering the web of the cross-section,
the error versus the DOF’s is plotted. Also
here the same pattern of accuracy
occurs. More elements in the web mean
higher accuracy of the XY stress. The
slope of the line will be also in this case
steep from the first until the third model.
A much smaller slope is watched from
Model 3, suggesting the use his mesh as
minimal mesh.

25,0
20,0 Model 1
g 150 wdelz
&
w 10,0
5,0
Model 5
0,0
100 2100 4100 6100 8100 10100
DOF's
Figure 9-14: Von-Mises
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12,00 \
g 10,00 \
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w
6,00 \
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4,00 Model 4
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0,00
0 2000 4000 6000 8000 10000
DOF's

Figure 9-15: Relative error of xy shear stress
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9.4 Conclusion

During the FEA of the fixed beam subjected to torsion load, the cross-sectional shear stress
components have been successfully modeled in ANSYS. The stresses show comparable distribution
with the theory. The maximal shear stresses at the flanges and at the rounded corners of the cross-
section need relative finer mesh to be able to approach the exact value with an error smaller than
10%. In addition, the Von Misses criterion has been applied in the search for the error in the middle
of the flanges and the error in the rounded corners. Engineer may use the suggested design tables to
mesh HE or | section in finite element software. For each mesh the obtained error is given in order to
know which safety factors should be applied using each mesh.

e Required mesh concerning T4

hlt bl

h_ﬂ bs —ty, Error [%]
1/2 1/12 14.60
1/2 1/20 8.45
1/3 1/20 5.90
1/4 1/32 3.76
1/5 1/62 <&

Table 9-2: Solid 186 mesh design table for T,

e Required mesh concerning Tyy max

hy by

E E Error [%]
1/6 1/2 14.20
1/10 1/2 7.43
1/16 1/2 4.50
1/16 1/3 2.6
1/44 1/4 <eg

Table 9-3: Solid186 mesh design table for Tyy max

e Required mesh concerning gy mqy at the rounded corners

Number of
Prism Error
elements [%]
3 20.6
5 12.3
9 7.2
19 <e¢

Table 9-4: Solid186 (Prism) mesh design table for rounded corners for r=27mm
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Using the design tables above will be explained through an example: given HE300A section subjected
to torsion moment within the linear elastic stress distribution, without considering the warping
resistance on the cross-section. The following mesh should be applied in order to achieve an
accuracy of minimal 10% , regarding only the maximal stress 7,4

T

b = hg _ 1, 1 fl_ Sl —
Flange: bsy = 300mm = h 2 bty 20 = hy =4.25mm; b = 14.575mm = EYy;

Peak region (flange): The peak region at the middle of the flanges will be meshed as followed:

EZ, = EZ, =2 Asmentioned before two is the minimum value for this region

EY, = EY;; =2
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10. Conclusions and Recommendations

In this bachelor thesis a study has been conducted in the search for possibility’s to model rectangular
beam and HE/I-beams in finite element software like ANSYS. The study has been dived into four
different phases in order to create a logical working method. Firstly, the fundamental knowledge
about FEM is studied following by study of the existing theory. Afterwards the database has been
assembled and finally the results have been evaluated in order to track possible mistakes and vague
results. This usefully approach is given shortly bellowed:

e Fundamental knowledge FEM- $1 ,¢ 2

e  Structural mechanics theory - § 3

e Building models and assembling database rectangular beam - 95 4

e  Optimization study rectangular beam- 93 5

e The adaptive mesh refinement method for HE300A section-$6, ¢7, $8, ¢9

The study has been conducted exclusively for Solid186 elements with 20-nodes where the stresses in
the nodes are approached with linear elastic numerical FEM.

Reading results:

The results of the stresses should be measured only in the nodes. The elements stresses are the
average of the nodal values and hereto less accurate. $ 4.8 ¢ 4.9

Optimization study rectangular beam:

Nodal stresses due to torsion moment of fixed beam had been analysed. The warping resistance and
deformation of the flanges is being neglected by taking a cross-section far enough from the disturbed
zone’s. In this manner, optimization study has been conducted by changing every possible
parameter in the search for the correlation between these parameters and the stress values. In this
parameter study the relation between the element proportion and their quantity has been
summarized in one final output, Mesh design table for a beam subjected to torsion. This table is
applicable for beams subjected to all kind of loads. Because it is already discovered in earlier studies
that torsion moment requires the finest comparison to shear, normal and bending load. Moreover,
while evaluating the results the efficiency of the mesh has been checked. This by choosing as minimal
as possible DOF’s with as accurate as possible mesh. Hereby the mesh design table:
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Tnax EY EZ Error DOF's
6 4 0.1 279

h/b =1 4 3 0.3 153
6 3 1.6 219

4 2 2.7 111

5 3 0.3 186

6 3 1 219

h/b=1,6 5 2 1.3 135
4 2 1.9 111

4 3 2.7 153

5 2 0.2 135

h/b =2 5 3 0.7 186
4 2 2.7 111

4 3 3.2 153

5 2 1.1 135

h/b = 2.5 5 3 14 186
4 2 2.9 111

5 2 1.6 135

h/b =3 6 3 1.7 219
4 2 2.9 111

4 3 3.2 153

Table 10-1: FEA mesh design table for rectangular cross-section

Adaptive mesh refinement HE300A beam:

In compered with the previous described optimization study, analysing the stresses in HE section has
been done with the adaptive refinement working method. In this way, initially a beam with coarse
mesh has been modelled in ANSYS. The stresses at the critical points has been noted an compared
with an reference value. If a large deviation is noticed a second model has been introduced, and so
on. During this analysis the beam was loaded with bending force, shear force and torsion force.
Hereby is a summary of the study concerning the HE300A section:

Bending moment:

e For bending moment an coarse model is sufficient to approach the maximal normal bending
stress at the flanges.

Shear:

e Applying shear load on the beam reveal peak stresses at the middle of the web. These
stresses can be also approached by coarse mesh at the web of the section.

e Moreover, peak stresses due to shear load have been noticed at the rounded corners and at
the middle of the flanges.
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e The peak stresses due to shear load at the top of the flange are approximately four times
smaller than the stress at the web, while the peak stresses at the rounded corners are
approximately the half from the maximal stress at the web.

e A coarse mesh is sufficient to approach the maximal stress at the web

e Afiner mesh is required to approach the peak stresses at the middle of the flange and at the
rounded corners.

Torsion:

e An finer mesh comparing with the other loads is required to approach the stresses values
with high accuracy.

e The peak stresses are noticed, just like by the shear load, at the rounded corners and at the
middle of the flange.

Comparing the results of these loading cases imply the following recommendations applying for all
loading cases:

e Rounded corners should be meshed with a fine mesh

e The middle of the flange should be meshed with a finer mesh comparing to the sides of the
flanges

The web can be meshed with relative coarse mesh

Area Description Mesh
1,2,6,7 and 3, 4, 8, 5: | Flanges coarse
56,78 Peak zone fine
17,5,22 and 6,16,23 | Rounded corners fine
5,6,10,11 Web coarse
I°
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Finally, the mesh design tables for each loading case are given:

Bending moment:

hy h

E h_fl Error
1/16 1/4 0%
1/10 1/2 0.07%
1/6 1/2 0.6%

table 10-2: FEA mesh design table for 6y yax

_ _hn _ hw _ _ _
EY, = EYs = —hg EY, =—¢ EZy =EZ, =2 EZs = 5
Shear:

e Required mesh at the web concerning 7,4, for EZ,, = 2

hy Error [%]
hy
1/6 0.6
1/10 0.09
1/16 <e

Table 8-7: Solid186 mesh design table for T,y

* Required mesh at the flange concerning s mqyx and oy r; for EYy = 2

bg : ETror Te max Error oyy
1/12 124 235
1/20 4.2 0.17
1/32 <e <e¢

Table 8-8: Solid186 mesh design table for error Ty«

Number of Prism elements | Error
3 1.5
5 0.06
11 <e&

EY,,

Il

|

o
:l\l

7 EZy =EZ,=2 EY,=EY; =2
E
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Torsion:

e Required mesh concerning T«

hlt bl

h_ﬂ be — ty, Error [%]
1/2 1/12 14.60
1/2 1/20 8.45
1/3 1/20 5.90
1/4 1/32 3.76
1/5 1/62 <&

Table 9-2: Solid 186 mesh design table for T .

e Required mesh concerning Tyy max

hy by

E E Error [%]
1/6 1/2 14.20
1/10 1/2 7.43
1/16 1/2 4.50
1/16 1/3 2.6
1/44 1/4 <&

Table 9-3: Solid186 mesh design table for Tyy max

e Required mesh concerning gy max at the rounded corners

Number of
Prism Error
elements [%]
3 20.6
5 12.3
9 7.2
19 <e¢

Table 9-4: Solid186 (Prism) mesh design table for rounded corners for r=27mm

hw bw fl — tw fl
EY,, = G EZy = EZ, = G EZ; o7 =
E
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A. Appendices:

A.1 Stresses values for rectangular beam subjected to torsion
A.2 Design tables for rectangular beam subjected to torsion

A.3 Von Mises stresses of HE300A section
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A.1 Stresses values for rectangular beam subjected to torsion

EZ
h/b =1 2 3 4 5 6 7 8
2 [3,9210 4,0719 4,1307 4,1552 4,1668 4,1729  4,1763
3 |3,2950 3,4468 3,5147 3,5497 3,5696 3,5814  3,5889
4 |3,4342 3,538 3,5900 3,6175 3,6343 3,6453  3,6528
EY 5 |3,2930 3,4047 3,4579 3,4854 3,5018 3,5123  3,5195
6 |3,3618 3,4720 3,5232 3,5493 3,5644 3,5738  3,5800
7 [3,2991 3,4121 3,4644 3,4914 3,5071 3,5168 3,5233
8 [3,3391 3,4511 3,5024 3,5290 3,5443 3,5539  3,5602
EZ
h/b =16 2 3 4 5 6 7 8
2 |7,8299 7,8754 7,8897 7,8923 7,8922 7,8916 7,8910
3 |66769 67913 6,8399 68609 68711 6,8763 6,8789
EY 4 16,7196 6,7790 6,8133 6,8328 6,8445 6,8515  6,8559
5 |65067 65738 6,6081 6,6270 6,6387 6,6463  6,6515
6 |6,5973 66601 66892 67040 6,7127 67184  6,7225
7 |6,5038 65727 6,6045 6,6206 6,6298 6,6357  6,6397
8 |6,5608 66272 66574 66728 6,6816 6,6872  6,6908
EZ
h/b =2 2 3 4 5 6 7 8
2 |6,0577 6,0503 6,0456 6,0416 6,0389 60370 6,0358
EY 3 |5,2441 52921 53114 53182 53207 53215 53216
4 |51581 5,1846 52006 5,2092 52139 52164 52178
5 |5,0282 50552 50702 50789 50843 50878  5,0902
6 |5,0745 50975 5,1080 5,1137 51174 51200 5,1220
7 |5,0189 50456 50578 50641 50678 50703 5,0720
8 |5,0511 50766 5,0880 50938 50972 5,0993 5,1007
EZ
h/b = 2.5 2 3 4 5 6 7 8
2 |4,6477 46277 4,6193 4,6148 46122 46106  4,6095
3 [4,1119 41265 4,1315 4,1319 4,1313  4,1305 4,1298
EY 4 |3,9448 3,9592 3,9671 3,9704 3,9718 3,9723  3,9723
5 [3,8723 3,8841 3,8910 3,8951 3,8975 3,8990  3,8998
6 |3,8885 3,8964 3,8998 3,9022 3,9039 3,9053  3,9063
7 |3,8597 3,8693 3,8735 3,8758 3,8773 3,8785 3,8793
8 [3,8749 3,8842 13,8880 13,8900 3,8912 3,8920 3,8925
EZ
h/b =3 2 3 4 5 6 7 8
EY 2 [3,7173 3,7001 3,6933 3,6899 3,6881 3,6869 3,6863
3 |3,3650 3,3661 3,3655 3,3638 3,3624 3,3613  3,3605
4 |3,1671 3,1770 3,1814 3,1826 3,1828 3,1825 13,1821
5 |3,1237 3,1311 3,1352 3,1374 3,1386 3,1392  3,1395
6 |3,1250 3,1287 3,1303 3,1318 3,1329 3,1337 3,1344
7 |3,1104 3,1147 3,1163 3,1175 3,1184 3,1190 3,1195
8 [3,1172 3,1214 3,1229 3,1237 3,1242 3,1246  3,1249

Table A-1: Ty stresses values for M=20e6 Nmm
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EZ

h/b=1 2 3 4 5 6 7 8
EY 2 3,9210 3,2950 3,4342 3,2930 3,3618 3,2991 3,3391
3 4,0719  3,4468 3,5386 3,4047 3,4720 3,4121 3,4511
4 | 4,1307 3,5147 3,5900 3,4579 3,5232 3,4644 3,5024
5 4,1552  3,5498 3,6175 3,4854 3,5493 3,4914 3,5290
6 | 4,1668 3,4720 3,6343 3,5018 3,5644 3,5071 3,5443
7 4,1729  3,5814 3,6453 3,5123 3,5738 3,5168 3,5539
8 |4,1763  3,5889 3,6528 3,5195 3,5800 3,5233 3,5602
EZ
h/b=1.6 2 3 4 5 6 7 8
EY 2 5,4787 4,6110 4,9108 4,6907 4,8070 4,7087 4,7729
3 6,0394  5,0651 5,2915 5,0683 5,1851 5,0845 5,1510
4 6,2776  5,2806 5,4786 5,2561 5,3708 5,2703 5,3357
5 6,3991 5,4032 5,5778 5,3572 5,4706 5,3712 5,4361
6 6,4662 5,4778 5,6378 5,4181 5,5304 5,2703 5,4963
7 6,5054  5,5259 5,6770 5,4573 5,5686 5,4708 5,5348
8 6,5294  5,5583 5,7043 5,4841 5,5944 5,4971 5,5608
EZ
h/b =2 2 3 4 5 6 7 8
EY 2 3,6346  3,0763 3,3053 3,1562 3,2400 3,1728 3,2181
3 4,1558 3,4779 3,6584 3,4982 3,5828 3,5107 3,5585
4 4,3874 3,6778 3,8413 3,6792 3,7633 3,6901 3,7378
5 4,5165 3,7973 3,9418 3,7808 3,8639 3,7912 3,8386
6 4,5920 3,8722 4,0034 3,8434 3,9259 3,8537 3,9008
7 4,6384 3,9219 4,0437 3,8844 3,9663 3,8946 3,9415
8 4,6680 3,9564 4,0718 3,9126 3,9939 3,9227 3,9693
EZ
h/b =25 2 3 4 5 6 7 8
EY 2 2,4282 2,0728 2,2473 2,1470 2,2086 2,1627 2,1953
3 2,8837 2,4116 2,5535 2,4382 2,4998 2,4479 2,4824
4 3,0982 2,5919 2,7258 2,6067 2,6692 2,6155 2,6506
5 3,2288 2,7057 2,8258 2,7064 2,7683 2,7144 2,7495
6 3,3093 2,7794 2,8886 2,7698 2,8312 2,7775 2,8125
7 3,3612  2,8298 2,9304 2,8122 2,8732 2,8198 2,8547
8 3,3959 2,8656 2,9596 2,8418 2,9025 2,8494 2,8841
EZ
h/b =3 2 3 4 5 6 7 8
EY 2 1,7540 11,5107 1,6505 1,5782 1,6267 1,5931 1,6184
3 2,1455  1,7952 1,9109 1,8229 1,8706 1,8310 1,8574
4 2,3408 1,9575 2,0705 1,9778 2,0273 1,9855 2,0130
5 2,4685  2,0650 2,1683 2,0741 2,1233 2,0809 2,1086
6 2,5503  2,1366 2,2315 2,1371 2,1860 2,1435 2,1712
7 2,6052  2,1867 2,2742 2,1802 2,2288 2,1864 2,2140
8 2,6431  2,2230 2,3045 2,2109 2,2592 2,2170 2,2445
Table 0A-2: : t,, stresses values for M=20e6 Nmm
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A.2 Design tables for rectangular beam subjected to torsion

The following tables can be applied to calculate a rectangular beam in ANSYS. The tables are
computed with the following parameters:

EX 1
— E =210e6

L 120 mm?z

The tables are computed for the Ultimate limit state, apply only for the maximal shear tress
component.

EY EZ|ERROR|DOF's|EY EZ|ERROR |DOF's
8 5 0 441 13 6| 1,2 219
7 8| 01 507 16 7| 1,3 459
6 4| 01 279 |6 8| 1,5 519
5 8| 0,2 441 |3 7| 1,5 252
7 7| 03 528 16 3| 1,6 219
4 3| 03 153 |4 4| 1,7 195
5 7| 04 390 |3 8| 1,7 285
3 4| 04 153 |17 4| 1,8 321
8 6| 05 519 |5 4 2 237
3 5| 05 186 | 8 3| 2,2 285
6 5| 06 339 |3 3| 23 120
7 6| 06 459 |4 5| 2,5 237
5 6| 07 339 |14 6| 29 279
8 4| 0,7 363

8 7| 07 597

8 8| 09 675

6 6 1 399

7 5 1 390

5 5 1,2 288

Table A-3: Increasing of the error forh/b = 1
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EY EZ|ERROR|DOF|EY EZ|ERROR|DOF
6 2 0,1} 1591 6 3 1 219
5 4 0,21 2371 8 5| 1,2 |441
7 4 0,23211 8 6| 1,3 |519
5 3 03| 186 5 2| 1,3 |135
7 3 0,3]2521 3 2| 13 87
7 5 0,4| 390 6 4| 1,4 |279
8 2 05)2071 8 7| 1,4 |597
8 3 0,5/ 2851 7 2| 1,4 |183
5 5 0,5)288] 8 8| 1,5 |675
7 6 0,6 4591 6 5| 1,7 |339
7 7 065281 6 6| 1,8 |399
5 6 0,7/ 3391 6 7| 19 |459
7 8 0,7/ 5971 6 8| 1,9 |519
5 7 0,8/ 3901 4 2| 19 |111
5 8 094411 3 2| 2,7 87
8 4 1(363] 3 3| 29 |120

Table A-4 : Increasing of the error forh/b = 1.6

EY EZ|ERROR|DOF|EY EZ|ERROR|DOF
7 2 0 18318 6 1,3 | 519
5 2| 0,2 13518 7 1,3 | 597
7 3| 05 |[252]5 8 1,4 | 441
8 2| 06 |207]8 5 1,4 |441
7 4| 0,7 [321]8 6 1,5 |519
5 3] 07 |186]6 3 1,5 | 219
7 5/ 09 (390]|8 7 1,6 |597
7 6/ 09 (459]|8 8 1,6 | 675
7 7| 1,0 |528]|6 4 1,7 | 279
7 8| 1,0 |597]6 5 1,8 |339
5 4| 10 [237]6 6 1,9 |399
8 3| 1,1 (285]|6 7 2 459
6 2| 1,1 |159]|6 8 2 519
5 5| 1,2 (288]|4 2 2,7 | 111
8 4| 1,3 |363

Table A-5: : Increasing of the error for h/b = 2
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EY EZ|ERROR|DOF|EY EZ|ERROR|DOF
7 2 0,7/ 1831 5 4| 1,5 |237
7 3 1252y 8 7| 1,6 |597
7 4 1,11 321| 8 8| 1,6 |675
7 5 1,11 390| 5 5| 1,6 |288
8 2 1,1 207 6 3| 1,7 |219
5 2 1,1, 135 5 6| 1,7 |339
7 6 1,21 459 5 7| 1,7 |390
7 7 1,2 528 6 4| 1,8 |279
7 8 1,21 597 6 5| 1,8 |339
8 3 1,4, 285 5 8| 1,8 |441
5 3 1,4| 186 6 6| 1,9 |399
8 4 1,5/363| 6 7| 19 |[459
8 5 1,5| 441 6 8| 1,9 |519
8 6 1,5/ 5191 4 2| 29 |111
6 2 1,5| 159

Table A-6: : Increasing of the error forh/b = 2.5

EY EZ|ERROR|DOF|EY EZ|ERROR |DOF
7 2 1,1 (1835 2| 1,6 |135
7 3 1,3 | 25216 3 1,7 | 219
7 4| 1,3 |321|6 4| 1,8 |279
7 5 1,4 |390]6 5 1,8 |339
7 6| 1,4 |459|6 6| 1,8 |399
7 7| 1,4 |528|5 3 1,8 | 186
7 8| 1,4 |597|5 4| 19 |237
8 2 1,4 |207]16 7| 19 |459
8 3 1,5 (286 8| 19 |519
8 4| 15 |363|5 5 2 288
8 5 1,6 (44115 6 2 339
8 6| 16 |519|5 7 2 390
8 7| 16 |597|5 8 2 441
8 8| 16 |67514 2| 29 |111
6 2 1,6 | 159

Table A-7: Increasing of the error for h/b = 3
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A.3 Von Mises stresses of HE300A section

As for the HE300A cross-section the Von-Mises stress criterion are given in the tables for an cross-
section with the origin in the centre of gravity. The Y and Z coordinate are applied for for a cross-
section located at x=L/2. The beam is subjected to torsion moment of 10e6 Nmm . The following

parameters have been used to compute the data:

L=4000mm wv=01 E =210e6 N/mm"2

r=27mm

262,0mm  290,0mm

LiBOO,Omm 4"1

Figure A-1: HE300A

Model 1 (963 DOF’s)

Y Z Flange [N/mm2]
145 31,25 219,83
145 4,25 267,4
145 0 282,5
Y Z rounded corners [N/mm?2]
131 31,25 215,412
127,3 17,75 269,86
117,5 7,86 275
108 4,25 201

Table A-8: Von-Mises
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Model 2 (1443 DOF’s)

Y Z Flange [N/mm2]
145 31,25 212,723
145 17,75 257,07
145 4,25 294,17
145 0 304,849

Y Z |rounded corners [N/mm?2]
131 31,25 214,7
129 21 264,8
123 12 298,3

1145 6,3 260,5
104 4,25 196,5

Table 0A-9: Von-Mises

Model 3 (2007 DOF’s)

Y Z Flange [N/mm2]
145 32,25 216,2
145 17,75 261,6
145 4,25 302,405
145 0 314,6
Y Z |rounded corners [N/mm?2]
131 31,25 219,53
128,9 20,9 264,3
123 12 277,285
114,3 6,3 249,35
104 4,25 173,95

Table A-10:Von-Mises

Model 4 (2007 DOF’s)

Y Z Flange [N/mm2]
145 31,25 213,9
145 22,25 242,4
145 13,25 282,221
145 4,25 311,32
145 1,4 320,75
Y Z |rounded corners [N/mm?2]
131 31,25 211,8
130 24,2 245,3
127,4 17,75 289,8
123 12,1 315,56
117,5 7,8 287,65
110 5,17 222,3
104 4,25 156,38

Tabel A-11: Von-Mises

100



Model 5 (9123 DOF’s)

Y Z Flange [N/mm2]
145 25,85 229,43
145 20,45 251,98
145 15,05 278,671
145 9,65 304,65
145 4,25 321,621
145 2,125 328
145 0 329
Y z rounded corners [N/mm2]
131 31,25 213
130 27 230
129 22 261
128 19 293
125,8 15 320
123 12 340
120 9,4 323
116 7,2 285
112 5,57 231
108 4,25 144

Table A-12: Von-Mises
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