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Abstract 

The purpose of this study is to calculate the critical stresses in a beam by using the finite element 

analysis. The study focuses on optimization of the number of 20-nodes volume-elements required to 

model rectangular beam and HE beam with a high accuracy. The optimal number of elements are 

directly derived through looking at the nodal forces, which follow from a linear elastic finite element 

analysis. The finite element method is a mathematical technique that splits up complex problems 

into greater number of simple problems which can approximate the solution. The study was divided 

into two parts, the first part concerning rectangular beam subjected to torsion differs considerably 

from the second part, HE-section subjected to bending moment, shear and torsion. In the first part of 

the study, a parameters study has been conducted, where approximately 300 models have been 

generated. This parameters study has been conducted in the search for the influence of every 

parameter on the accuracy of the solution. Evaluating the assembled results of this part gave the 

accuracy for every element configurations with respect to the computation time. In the second part, 

involving HE300A section a different working method has been used: The adaptive mesh refinement. 

In this method the models didn’t have a uniform mesh but standard coarse mesh with additional 

finer submesh regarding the magnitude of the stresses at that point. The highlights of this study are 

the output of mesh design tables for each loading case for rectangular and HE sections. Structural 

engineers may be using those tables to guide them through modelling in ANSYS with certain 

efficiency and accuracy. Modelling beams with FEM led to the following main conclusions: 

 

 Modelling a HE-beam subjected to shear force or bending moment with a maximal of 1% can 

be done with relative few elements; 

 Stresses caused by torsion moment will need the finest mesh in order to reach an accuracy of 

less than 10%; 

 Therefore, while modelling a beam subjected to shear, bending a torsion load, the mesh that 

belongs to the torsion moment should be applied; 

 Not only the total number of elements is important, but also the ratio between the elements 

in the height and in the width; 

 Transforming the peak shear stresses in the HE-section to the scalar quantity of Von-Mises 

stresses are a realistic representation of the accuracy of the stated mesh density. 
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1. Introduction 
This Bachelor thesis explains the method developed by engineers to analyze the stresses in a 

structure and its principles. It contains background information about the numerical finite element 

calculation and describes briefly the basics of the structural mechanics theories. The finite element 

analysis (FEA) is a way of getting a numerical solution to a problem that is usually being solved 

analytically by using formulas. The FE analysis is cutting the structure into several pieces and 

calculating for every element the strain, stress and the displacements with a high accuracy. However 

analyzing a beam or complete structure with FE method requires a significant computing capacity 

from the computer. In this Bachelor thesis we’ll find the optimal number of volume-elements 

required to analyse a beam with high precision and with effective computer computation. 

1.1 Background 
The Finite Element method as known today was provided in 1973 with the publication by Strang and 

Fix. The method has since been generalized for numerical modeling of physical systems like in 

structural engineering. By the late 1980s the software of FEA was available. In the recent years FEA 

has become popular, and form now a big industry. Numerical solutions of stress problems can now 

be obtained by using FEA with a powerful computer simulation. This Bachelor thesis will use the 

finite element computer-program ANSYS given in figure 1.1. 

 

 

Figure 1-1: ANSYS version 13.0 

ANSYS is engineering simulation software with a variety of tools. One of the tools being used in this 
research is the simulation for structural physics that simulate static problems. The software will solve 
the structure by generating a mesh that divides the structure into small elements. For every element 
ANSYS computes the stresses and deflection values with 3D numerical equations. These results can 
be presented in a list or directly plotted on the structure showing the deflections and the stresses 
contours. 

  

http://en.wikipedia.org/wiki/Computer-aided_engineering
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1.2 Problem formulation 
A 3D beam can be modeled by dividing it into volume-elements. The shape, size, amount and 

configuration of elements have to be chosen carefully such that the original body is simulated as 

closely as possible without decreasing computation effectiveness and accuracy.  

The problem in the current working method within the collaboration of the structural engineer and 

the architect comes from inefficient working procedure. For example an Architect designs a structure 

in AutoCAD software. The design is sent forward to the constructor for further static analysis of the 

structure. The problem occurs because the constructor needs to draw the structure again in static 

analysis's software such as Matrixframe as line element and afterwards to determine the sections 

properties of each line element.  A straight-forward solution is to solve the structure with the ANSYS 

program by meshing the existing AutoCAD design. The density of the mesh determines on one hand 

the accuracy of the solution but on the other hand the calculation time and the memory use required 

from the computer. In this case it is preferred to use much volume elements with small dimensions 

instead of a small number of elements with larger dimensions. (Figure 1-2, Figure 1-3) 

 

 

 

 

 

 

 

 

 

Although the left model is favorable, it is inefficient to use such a dens mesh for every section type or 

for every loading case. Therefore, for a stated section type an efficient mesh density and size is 

required. However, we know that on a structure a variety of loads are acting. For every loading case 

like bending moment or shear load the stresses in the structure behave differently. The ideal mesh 

will be the governing mesh that satisfies each loading case. For instance a mesh for HE-section 

subjected to shear and bending moment will require a different mesh than rectangular cross-section 

subjected to shear, torsion and bending load. The problems can be summarized into four sections: 

Problem 1: The current working method between the engineer and the architect is cost and time 

inefficient. 

Problem 2: Meshing an existing design will result in deviations of the values of the stresses. 

Problem 3: A fine mesh with small spacing between the nodes is accurate but time inefficient while a 

course mesh with larger spacing between the nodes is less accurate but time effective. How the ideal 

mesh can be defined for different loading cases? 

Figure 1-2: 10 by 10 grid Figure 1-3: 2 by 2 grid 



9 
 

Problem 4: For every loading type, for torsion, shear and bending, a different mesh is required. 

Which mesh is governing? 

Now, when the problems are described, the evaluation of the solution is necessary. How do we know 

if the chosen mesh is safe? Or in other words: What should be the deviation of the numerical 

solution from the exact solution in order to obtain a safe structure design that also meets the current 

design standards?  

1.3 The Finite Element Analysis  
The research problem is divided into two sub-problems: 

 1.3.1 Rectangular cross-section 
To model a rectangular beam in ANSYS, it is divided into volume-elements. Use a 20-nodes element 

like a Quadratic Hexahedron. Apply torsion load on the beam, calculate the largest stresses and 

compare these with the exact stresses values. Change the number of elements in the width and in 

the height of the rectangular cross-section. Determine the minimal number of volume-elements such 

that the torsion stresses in the critical cross-section can be calculated with a deviation of 1%-10%. 

Exhibit the deviation of the stresses in a table as a function of the number of elements in the width 

and the height. Confirm the current Thumb-rule of 2 elements in the width and 5 elements in the 

height are correct. (Figure 1-4) 

 

 

 

 

 

 
  

Figure 1-4: Element configuration for an error 
of 1% 
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1.3.2 Section HE300A 
In the industry a standard HE-section is often being used due to the high strength of the steel and the 

material efficient design it has in comparison to a massive cross-section. For a HE300A section a FEA 

model can be also created from a mesh of 20-nodes volume-elements. However, the distribution of 

these elements in the web and the flange is yet unknown. The purpose is to find the minimal amount 

of volume-elements in the web and the flanges with a deviation of 1%-10% under a torsion, shear 

and bending moment load. (Figure 1-5) 

 

 

 

 

 

 

 

 

1.3 Problem statement 
How can a beam, loaded under shear, moment, normal and torsion force, be divided into volume-

elements as efficient as possible with sufficient accuracy of the results? 

1.4 Aim of the research 
With the aid of this last paragraph it is now possible to determine the aim of this research. 

Primary objective:  Design a set of Thumb-rules for the necessary amount of volume-elements for an 

accurate calculation of the stresses.  

Secondary objective: Finding for the range of the accuracy for each loading case 

Tertiary objective: Finding the rate of convergence of the mesh density when its size goes to zero for 

rectangular cross-section subjected to torsion load and for HE300A section subjected to torsion, 

shear and bending moment. 

 

  

Figure 1-5: FEA model of I-section 
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1.5 ANSYS software 
Modelling the beam with ANSYS software is done by using the Finite Element Analysis. Working with 

ANSYS software suggests three working methods: The first method is by means of the graphical user 

interdace (GUI). This method is an interactive working mode where the user enters data about the 

structure in the main menu of ANSYS which contains the primary ANSYS functions. (Figure 1-6) 

 

Figure 1-6: ANSYS GUI with the menu on the left side 

In this working mode every step of the user represents a program command. From this menu the 

vast majority of modeling commands are issued. The user can save his work as a txt file containing all 

of the used commands.  
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The second working mode is by means of command files. The user writes a text file containing 

commands at the system level. ANSYS can import the text file and runs it to perform the required 

analysis. (Figure 1-7) 

 

Figure 1-7: An example of ANSYS text script 

The advantage of writing a script, the second working mode, is the ability of ANSYS to read the 

commands and solve the structure without the need of using the software toolbars. It is also the 

favorable working method for a parameter study/optimization study. 
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 The last working mode and the most user friendly one is by means of the ANASYS Workingbench 

(Figure 1-8). A complete environment for geometry modeling, mesh manipulations and optimization 

which is integrated with CAD package. This working mode is easy to use due to a project workflow 

scheme. 

 

Figure 1-8: The Workingbench 

In this bachelor thesis it is preferred to use the second working mode to simulate the rectangular 

beam and the first working method to simulate the HE-section. In this case the script will 

automatically sketch and solve the rectangular beam with regard to the mesh density that will be 

changed in every solving cycle. In such a way an optimum study can be easily conducted.  For 

example, consider a rectangular cross-section of a beam with the following dimensions: L=2000mm 

h=200mm and b=300mm. The beam is loaded. And we want to know which mesh will simulate the 

stresses in the beam as accurate as possible. Therefore we'll start with a rough mesh of two by two 

cross-sectional elements and twenty elements in the length of the beam. ANSYS computes the 

stresses in every element of the beam. Comparing those stresses with the analytical exact stresses 

gives the accuracy of the chosen mesh. 

1.6 Thesis outline 
This thesis begins in    where detailed introduction of the problem, thesis goelm, working method 

and fundumental knowledge over the finite element method in ANSYS software. The backround of 

this method, type of volume elements and the error obtained by it will be discussed in    .    

will subsequently discuss the hand-calculation solutions of considered beams of which the 

exact stresses values can be founded. In    the rectangular beam properties will be described. 

Moreover, the FEA-beam will be considered with the relevant basics principles related to 

interpretation and understanding the results from ANSYS. Subsequently, the output of the 

optimization study will be given in    where the influence of parameters variation will be 

summarized in meshing design tables.    continues with an overview of the HE300A section and the 

working method will be considered during the study of this section. In         the HE300A section 
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will be subjected to bending moment, shear force and torsion moment. The results will be evaluated 

and summarized in meshing design table for each loading case. This thesis finishes in     with a 

overview of the conclusions and recommendations. 
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2. Theory 
The Numerical calculation with Finite Element Method is using volume elements to divide the 

structure into small pieces. A consequence of this approach is that all six possible stresses must be 

taken into account (three normal and three shear). The displacement field involves three possible 

components for the           direction            . Typical 3D elements for solid structures are 

tetrahedral and hexahedron. Of course the number of elements and their shape vary with the type of 

the structure and it size. In this research linear analysis behaviour of the structure will be 

implemented. Initial stress due to temperature changes will be ignored in this study.  

2.1 The numerical FEA  
The FEA is applicable for the solution of equilibrium (static) problems. The FE method divides the 

structure into small pieces and for every small piece it computes the displacement and stresses. 

These elements are considered to be interconnected at specified nodal points. The variation of the 

displacement field can be approximated by a simple function. The function is used to represent the 

behaviour of the solution. The accuracy of the solution is obtained by increasing the order of the 

function polynomial. Therefore a polemical of infinite order corresponds to the exact solution. 

(Figure 2-1) 

 

 

 

 

 

 

 

  

Figure 2-1: Approaching the exact solution [Rao, Singiresu S, The finite element method in 
the engineering] 
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We shall consider a cubic hexahedron, an element that is known as a "higher order element" with 

extra interior nodes besides the primary corner nodes and a rectangular prism with only corner 

nodes. (Figure 2-1) 

 

 

 

 

 

 

 

 

 

The boundary conditions of the displacement field are known as the Kinematical boundary conditions 

and the forces on the structure are taking into account the dynamical boundary conditions. For the 

unknown displacement field we assume a polynomial type of variation for the displacement field  

         in a three-dimensional linear cubic element, where         are the coefficients of the 

polynomial.  

                           
     

     
                 

     
                  

With: 

            Displacement field in local coordinate system 

          Coefficients of the polynomial 

             The degree of the polynomial (For cubic n=3) 

            Number of polynomial coefficient (for Solid186 20-nodes cubic is 20) 

 

The number of the polynomial coefficients   should be equal to the number of nodal Degrees Of 

Freedom  . The nodal DOF is treated as unknown, with this nodal DOF as the displacement of every 

element that will be determent later. The next step in the solution procedure is to derive the strain-

displacements relations with the nodal DOF as parameters. Afterwards we can derive according to 

the Hook's Law the stress-strain relations with the nodal DOF as parameters. The last phase is to 

substitute the stresses expressed in the nodal DOF in the equilibrium equation of every element. 

 

Figure 2-1: Solid185 (left) versus Solid186 (right), [Rao, Singiresu S, The 
finite element method in the engineering] 
 

 



17 
 

The primary aim of any stress analysis is to find the distribution of the displacements and the stress 
under the stated loading and boundary condition. For a 3D problem the following basic equations 
need to be considered: 
 

Type of equations In 3D problem 

Equilibrium equations 

 

3 

 

Stress-strain equations 

 

6 

Strain-displacements relations 6 

Total number of equations 15 

          Table 2-1: Equations 

The unknown quantities whose number is equal to the number of equations available, are given 

below: 

Unknowns In 3D problems 

Displacements 

Stress 

       

              

Strains                              

Total number of unknown 15 

               Table 2-2: Unknowns 

In practice we'll also have to satisfy additional equations such as a compatibility equation and 

boundary conditions. Those equations are essential in deriving the element solutions. In order to find 

the displacements of every cubic volume-element under static load we should first use the 

equilibrium equations. 
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2.1.1 Equilibrium equation  
For a 3D problem we consider the stress acting on the cubic volume-element on the six faces of the 

cubic as given in Figure 2-2: 

 

 

 

 

 

 

 

 

 

 

The equilibrium equations for this 3D body are: 

    

  
 

    

  
 

    

  
       

    

  
 

    

  
 

    

  
       

    

  
 

    

  
 

    

  
       

2.1.2 Stress-strain relations 
According to the constitutive linear theory of elasticity the Stress-Strain relations are also known as 

Hooke’s Law, where  ̅ and   ̅are vectors with 6 components, as appears in figure below: 

 

 ̅     ̅

 

            ̅  

   

   

   

   

   

   

         ̅  

   

   

   

   

   

   

 

  

 

Figure 2-2: Axis definition  
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2.1.3 Stiffness matrix 
The stiffness matrix   is derived from combining the governing equations, so the only unknown will 

be the displacements. This can be done by using Hook's constitutive equations to replace the stresses 

in the equilibrium equations by the strain, and then using the kinematic equations to replace the 

strain by the displacements.   

The elastic stiffness matrix is expressed in constants such as the young's modulus   and Poisson's 

ratio  . The Poisson's ratio is the negative ratio of transverse to axial strain.  

 ̅     ̅

   
   

   
  

   

   
 

 

 

 

 

 

 

 

 

 

 

 

 
The elastics stiffness matrix    in figure 2-3 is necessary to determine the forces that are set up in 

the volume-element by the displacements of the nodes. With Gusse interpolation points we can 

approximate direct the displacement of every point within the element in terms of the nodal 

displacements. An example in one-dimension is presented in Figure 2-4  where function      

describes the nodal displacement and      describes the interpolation function. 

 

 

  

 

 

 

 

 

 

      

 

Figure 2-4: Interpolation in one dimension. ), [Rao, Singiresu S, The finite element method in 
the engineering] 
 

Figure 2-3: The elastic stiffness matrix     [Wikipedia] 

http://en.wikipedia.org/wiki/Strain_%28materials_science%29
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For a three dimensional cubic element there are       integrations points. (Figure 2-5) 

 

 

 
 
 
 
 
 
 
 
 
 
 

2.2 Solution procedure with FEA 
Preliminary Decisions: The most common type of analysis in the civil engineering: Static analysis is 

defined. The type of volume element will be defined. In this rapport we'll work only with 20-nods 

volume-elements since they’ve been proved to be more accurate. In ANSYS it called Solid186. 

Pre-processing: In this stage the model of the structure is entered into ANASYS. The geometry is 

divided into a number of sub-regions connected with each other at the nodes. The boundary 

conditions are specified by fixing the displacement of several nodes. In addition external load on the 

structure is added to the nodes (torsion, shear or bending moment load). Material properties are 

given to the volume-elements. The last step is to solve the model with the solver. 

Post processing:  Reviewing the results obtained by ANASYS. That includes viewing cross-sectional 

results and plotting data. 

2.3 20-nods element 
The Solid186 element is an element that exhibits quadratic displacement behaviour. This element is 

defined by 20 nodes having three degrees of freedom per node: Translation in the x, y, and z, that is 

60 DOF's per element. (Figure 2-6) 

 

 

 

 

 

 

 

 

Figure 2-5: [Rao, Singiresu S, The finite element method in the engineering] 
 

 

Figure 2-6: Solid186 , [Rao, Singiresu S, The finite element method in the 
engineering] 
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Because the Solid186 has midside nodes, the displacement varies parabolically, rather than linearly 

along that edge. The 20-nodes element has an interesting trait, which is that the displacement at the 

midside node will always be greater than at the corner nodes. Therefore it is usually better to pick 

the critical point at the midside node. The solid186 exhibits quadratic displacement behaviour. For a 

3D problem the following polynomial is given: 

                            
               

     
        

Stresses components can be derived: 
 

    
   

  
         

   

  
    

 

    
   

  
        

   

  
 

 

    
   

  
         

   

  
 

 

2.4 Degrees Of Freedom 
The Degrees of Freedom (DOF) of a beam assemble volume-elements indicates the amount of 

iterations needed by ANSYS to solve the structure. Of course, more DOF means more iteration that 

leads to longer calculation time. Therefore, the DOS will help us to take the time factor into account. 

A high DOS leads to unrealistic calculation time that the engineer should avoid. There are two types 

of DOF: Translational DOF, indicates that forces are transmitted through the nodes and a rotational 

DOF, that indicates that moments are transmitted through the nodes. For arbitrary cross-section in 

our beam we define       and    as numbers of elements in     and   direction in the local 

coordinates system.  

The total DOF's in a beam is determent according to the following formula: 

                                                 

 

 

 

 

 

 

 

 

2.5 Idealization study    

Figure 2-7: The beam in the local coordinate system  
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Stress analysis is conducted with ANSYS to find the ideal number of volume elements. The purpose of 

this study is to find the optimum number of volume-elements. The number of elements with respect 

to the DOF versus the exact stress solution is plotted in figure 2-8 to show what this study is exactly 

willing to achieve concerning the accuracy of the stresses computation in ANSYS. 

 

Figure 2-8: Approaching the exact solution with FEA method, [Rao, Singiresu S, The finite element method in 
the engineering] 
 

   represents the number of cross-sectional volume elements       and    , required in order to 

approach the exact stresses values (dashed line). Moreover, during the study the trendline given in -

figure 2-8 is expected to appear with as the output:     value for several loading cases. Using 

knowledge from previous studies indicates that the number of elements in the x-direction    also 

influences the accuracy of the solution. Therefore, in order to simplify the study, EX will be high 

enough in order to avoid deviation as result from too coarse mesh in this direction.  

2.6 Error in an FEA Model 

2.6.1 Accuracy solutions 
In all mathematical processes errors occur. The errors are unavoidable, however it is essential to 

understand the different types of errors. The numerical error considered in this rapport is the 

difference between the exact analytical (mathematical) solution and the approximated numerical 

solution obtained when simplifications in the numerical computation abbreviate the computation 

time. Because a numerical computation is still an approximation depending on the number of 

iterations and because we want to restrict the number of iterations while keeping the deviation as 

small as possible, appropriate approximation methods will be applied. These are as follows: 

 
1. The absolute error: |                           |  

2. The relative error:   
|                           |

|           |
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2.6.2 Mesh discretization error 
 When calculating the stresses in a beam subjected to a load, the solution from the stress-strain 

relations are continuous. This means that the stresses in the cross-section are continuous distributed. 

However, a FEA model is a discrete problem that approximates the continuous problem. The 

question might be: what is the error due to an inadequate mesh density?  

The mesh will be initially coarse with           , the number of elements will increase 

approaching the exact state of stress. The error of every refinement step of the mesh is defined by: 

 

               
|                                          |
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3. Analytical solution  
The analytical stress solution of the beam under stated load is associated with the exact value of the 

stresses in the beam. Hand calculations or an accurate numerical solution will form the required 

reference values during the study. Our beam is a homogenous beam with linear elastic behaviour. In 

this chapter the theoretical formulas will be applied in the search for the analytical stress solution for 

each of the loading cases described in     

3.1 Torsion  
The beam is subjected to torsion load. The torsion stiffness      of the cross-section is defined as the 

torsion moment    times the length of the beam divided by the rotation  . 

    
    

 
                       

The following common situation is being analysed. Torsion force is applied on a beam due to load 

from a transverse beam. (Figure 3-1)  

 

 

 

 

 

 

 

Before sketching the mechanical model, boundary conditions are chosen: 

Torsion boundary condition Physical meaning Mathematical meaning 

 

Pinned (Free end warping) 

 

 

The cross-section can’t 

twist but can warp freely 

     
   

   
   

 

Fixed The cross-section can’t  

twist or wrap 
     

  

  
   

Free The cross-section can 

twist and warp freely 

   

   
        

Table 3-1: Boundary conditions 

Let us consider that the rectangular bar is subjected to torsion as shown in figure 3-1. As mentioned 

in the table above we can approach the problem with three mechanical models. Let us focus from 

Figure 3-1: The beam under torsion moment. [Kracht en Vorm] 
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now on the both side fixed beam (figure 3-2). In this model, the cross-section at the fixed supporting 

point can’t twist or wrap. In this case there will be a warping resistance at the fixed supporting point. 

According to the theory of Vlasov, there is a deviation in the torsion values within a distance of five 

times the beam height from the fixed supporting point, due to mentioned warping resistance. (Figure 

3-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Due to symmetry we consider only one side of the beam. For T/2 it holds: 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
The cross-section in the middle of the beam will be analysed where the warping can be neglected. In 
this study the rectangular beam and HE300A beam will be considered. Of course, for each cross-
section the calculation will be different. As mentioned, the warping effect will not be taken into 
account. This means that the second part of the formula bellow will has to be zero: 

Figure 3-2: mechanical model 

Figure 3-3: The torsion moment distribution  
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As results, the deformation effect caused by the secondary torsion moment (Bi-moment) will not be 

taken into account. This assumption is taken in order to avoid a complex model. This assumption is 

thus necessary in order to simplify the model and restrict the research objective. A further detailed 

research on the effect of warping resistance on the accuracy of the numerical computation with FEA 

will need to be conducted.  

3.1.1 Table values rectangular profile 
The torsion stresses of rectangular cross-section are derived in table 3-1: 

 

 

 

 

 

 

 

 

 

 

The torsion moment in the cross section can be easily calculated with this table. However, there is 

one exception: For non-circle cross-section the polar torsion stiffness is unequal to the torsion 

stiffness. So it holds: 

              

3.1.2 Torsion HE300A section 
 

 

 

 

 

 

 
Figure 3-4: HE300A section subjected to torsion 
moment            

Table 3-2: Table values for rectangular cross-section [Reader Torsion, dr.ir.P.Hoogenboom] 
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The approximation of the maximal torsion stress in a HE-section is calculated for a bar which can 

warp freely and where only shear stress occurs. 

Torsion constant: 

  
 

 
((    )  

      
 )  

 

 
(                      )                

 

Maximal shear stress       
     

 
 

       

        
       

 

    

3.1.3 Ideal beam length  
In order to analyse the stresses in the cross-section it is important to ensure that this critical cross-

section is located far enough from the disturbed areas. These areas are most likely to be at the 

support points and at the force loading point. The theory of Valsov defines the resistance length 

where the shear stresses in the beam deviate due to warping resistance of the fixed supporting 

point. The distance lc (Valsov region) can be calculated according to the given formula: 

   √
   

   
 (3-4) 

The characteristic bar length according the formula of Valsov is computed: 

Shear modulus:    
 

      
 

      

        
         

 

    

Warping constant:    
            

    
 

               

    
               

Moment of inertia:                                            

Characteristic length:    √
   

   
 √

                 

                
        

Generally, for deviation smaller than 1% Valsov region should be equal to equal to 6*lc. That’s 

245.4mm for a bar with h=320mm and b=200mm. 

 

3.2 Bending moment 
From the constitutive, equilibrium and kinematic relationship of linear elastically behaviour the 

bending moment can be described for a cross-section where the x-axis coincides with the member 

axis and the NC coincides with the YZ origin.  

Moment of inertia rectangular cross-section:      
 

  
      

Curvature:          
  

   
 

Moment :               
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Stress:           
     

  
 

The cross-section can be considered as thin-walled or thick walled. Thin walled means that the 

material is concentrated in the centre lines:                . This means that the moment of 

inertia            
      

 will be zero. 

Thin walled Moment of inertia                   
      

            
    

Thick walled Moment of inertia     (           
      

             
      

)             
    

HE300A A [mm2]    [mm4] 

Thick walled 10627 1.7196e8 
Thin walled 10746 1.7486e8 
Table book 11300 1.8260e8 

                            Table 3-2: Area’s and moment of inertia  

 

3.3 Shear stress 
The cross-sectional shear stresses are stresses that are working on the cross-section plane.  This can 

be determined thanks to the equilibrium relationship on s small rectangular block (figure 3-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
   

 

    
 

In the cross-sectional plane the shear stresses in two perpendicular 

planes are equal (figure 3-6). For HE-sections subjected to shear 

force V, the shear stress can be calculated with the following 

formula: 

  
   represents the statical moment of the sliding element. In this 

way the shear stresses can be determined in each point of the cross-

sectional plane. In a case of a thin-walled HE section the web and the 

flange will be considered separately. In order to calculate the static 

moment of the flange, a symmetrical double cut has been 

introduced. Where    is the location of the cut (figure 3-7). This can 

be processed into formula: 

 
   

         

       

  
       

      
 

Figure 3-5: [C.Hartsuijker  
Toegepaste Mechanica, deel 2] 

Figure 3-6: [C.Hartsuijker  
Toegepaste Mechanica, deel 2] 

 

Figure 3-7: C.Hartsuijker  Toegepaste 
Mechanica, deel 2] 
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As for the web (figure 3-8): 

 

 

  
      

 

 
        

 

 
  

 

 
    

      

  
       

 
 

       (
 
 

  
 
 

  ) 

     
 

 

 

The shear stress diagram is presented in figure 3-8. The shear stress flow from the edges of the upper 

flange towards the web, and flow out below to the edges of the lower flange. The shear stress is 

constant along the wall thickness but increases linear from the edge to the centre of the flange. The 

shear stress at the web increases parabolic with top value at the level of NC. (Figure 3-9)  

 

 

 

 

 

 

 

 

  

Figure 3-8: :[ C.Hartsuijker  Toegepaste 
Mechanica, deel 2] 

 

Figure 3-9: Shear stress flow 
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4. The rectangular cross-section 
The beam consists of a steel rectangular cross-section with variable width and height. At the centre 

of the beam, at L/2, torsion loading is applied.  From analytical computation of the applied torsion 

loading, the resulting stresses in the cross-section can be calculated. The stresses due to the same 

torsion loading can be calculated with FEM. The precision of the stresses distribution calculated with 

FEM is strongly depending on the number, size and ratio of volume-elements applied in the cross-

section. In order to verify the optimal number of elements in the cross-section, the stress distribution 

of both Analytical (exact) and Numerical (approximation) methods need to be compared. The 

deviation from the exact solution needs to be as small as possible in order to meet the norms. This 

chapter will introduce the FEA model and will explain the method which the data from the model will 

be analysed. In the following next chapter      the database will be assembled and analysed and the 

recommendation will be given. 

4.1 Material properties  
The material properties of steel are been used. The material properties consist of the young’s 

modulus   and the Poisson’s ratio  . Regarding isotropic, linear elastic material the following 

properties are obtained: 

E         
 

    

ν 0.1 

The Poisson’s ratio has a direct influence on the stiffness matrix        obtained in FEA. The relation 

between the Poisson’s ratio and the Von-Mises stresses on an arbitrary point of a beam subjected to 

torsion moment is given in the following table: 

  0,1 0,15 0,2 0,25 0,3 0,35 

           
 

    312,66 307,968 303,397 298,937 294,573 290,28 

Table 4-1: Von-Mises stresses for variable Poisson’s ratio for an arbiter point of HE300A section 

Hereby the table values are plotted to confirm the linear relation between the nodal stresses and the 

Poisson’s ratio. 

 

  

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

290 295 300 305 310 315

v 

Von-Mises 

Figure 4-1: Linear relation between Poisson’s ratio and the nodal stresses 
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4.2 Constraint 
In order to simplify the problem, the beam will be modelled as a two sides fixed beam. This means 

that the boundary conditions for this problem are a fixed support applied on both side of the beam.  

These kinematical constraints will result in a simple and continues displacement distribution that 

meets the geometrical conditions of the beam. Further information can be found in        .        

4.3 Forces 
To simulate torsion moment acting on the 3D beam, a horizontal concentrated force is applied on the 

upper side and on the bottom side of the beam, in opposite directions. The magnitude of the applied 

force must not exceed the yield stress        
 

    in order to stay in the linear elastic stress 

distribution (Figure 4-2). 

 

 

  

 

    

 

 

 

 

In the example a cross section with      and      is drawn, the concentrated force is applied 

on the nodes of the beam as it appears in figure 4-3: 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Material properties steel 

 

 

Figure 4-3: Beam with EY=2 and EZ=2 under torsion load 
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The magnitude of the force      is derived from the way which the force applied on the nodes: 

         

       

   
 

        
 

The magnitude of   is arbitrary because we're only interested in the deviation of the stresses in our 

finite element model.  

4.4 Modelling of the beam 
The 3D beam (figure 4-4) is being modelled in ANSYS. Modelling the dimensions of the beam involves 

several variables such as:  

    Length of the beam 

   Cross-sectional width 

   Cross-sectional high 

While modelling the mesh of the beam involves the following factors: 

    Number of elements in the width of the beam 

    Number of elements in the high of the beam 

    Number of elements in the length of the beam 

     Length of volume-element in the x-direction 

    Length of volume-element in the y-direction  

     Length of volume-element in the z-direction 

Where: 
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The length of the beam    is derived directly from the number of volume-elements in the x-direction 

  . The applied loading on the beam is restricted to pure torsion. We want to neglect any variation 

of the numerical stress solution due to the number of elements in the length of the beam.  

Therefore, the beam will be modelled with length that goes to infinity, or in other words the ratio  
  

 
 

will be as small as possible. Furthermore, during the FEA only the critical cross-section will be 

analysed, this cross section is located far enough from the beam supporting point at     ⁄   where the 

warping resistance effect can be neglected.  

Modelling the beam in ANSYS is a significant stage in this research, since it is an optimization study 

for the best mesh density and size, several of mesh configurations will be considered during the 

study. Also the discretisation of the beam dimensions will be analysed. 

4.5 Stress field 
The concept introduced in       about the displacement field polynomial will be drawn-out. The 

unknown displacement field    can be described by using basis shape function and discrete nodal 

values     which represent the amplitude of the shape function. The displacement at any point in the 

structure is determined in terms of discrete number of values which are stored at the nodes (known 

as DOF) and basis functions. The shape function for one dimensional (figure 4-5) bar is given by: 

                             (5-1) 

    
 

 
   

   
 

 
 

  

  

Figure 4-4: FEA model of rectangular beam in the global coordinate system 

 

Figure 4: Left side is a primary sketch of the subjected beam in the global coordinate system, on the 
right side is a 20-nodes element  
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For a higher-order quadrilateral element such as 20-nodes elements, the so-called Lagrange element, 

the displacement will be given by matrix notation. The Function           is the function describing 

the displacement field for every point of the specified beam: 

       

With: 

   
   

        
 

The strain field is given by: 

       

Where the stress field is given by: 

       

 With N as a      matrix (dimensions*Number of nodes) and   
   

        
           

 

 

 

 

 

 

 

  

Figure 4-6: Higher order shape function 

Figure 4-5: Shape function for linear 
element 
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4.6 Torsion stresses 
The aim of the study is to anticipate the stress values in the beam with high accuracy. But how can 

we find this numerical solution with an as small as possible deviation for a beam under torsional 

load?  To answer this question the stresses distribution in the critical cross-section will be analyzed. 

At the critical cross-section located at L/2 the stresses values are being measured. The correct 

location of this reference point is important to avoid any unwanted measurement error 

(Observational error).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

The location of the analytical and numerical reference point must be identical. At these points the 

shear stresses     and     will be the corresponding points P1 and P2. These reference points are 

given in figure 4-8. 

  

Figure 4-7: The Beam in ANASYS 
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         (    
 ⁄ )  and              

 ⁄      

   
Points P1 and P2 in figure 4-8 are located where the torsion stresses are maximal. As showed In 

figure 4-9 and figure 4-10 : 

 

  

Figure 4-8: The location of the reference points p1 and p2 

Figure 4 -9:      stress torsional 

stresses distribution [Reader 
P.Hoogenboom] 

Figure 4-10:      stress torsional stresses 
distribution [Reader P.Hoogenboom] 
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4.7 Reference FEA model 
 

 

 

 

 

 

 

 

 

 

The reference model is required to reach exact stress values. These values will be from now on the 

reference values regarding the deviation of every FEA model. The reference FEA model should be as 

accurate as possible. Therefore a 10 by 10 element has been chosen. In addition, the present of a 

node in the midside of the cross-section, due to even number of elements in the height and the 

width will contribute the accuracy of the reference model. The FEA reference model results in: 

 Mesh of 10 by 10 elements:                   

 The length of beam             

 120 elements in the x-direction                  

 The           has 1023 DOF’s which indicate the time it will take for the computer to 

solve the model. High DOF means longer computation time. 

       

            

 Solid186 element 

         are variables 

 

 

  

Figure 4-11: The reference model in ANSYS 
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4.8 Element stresses distribution  
Now, when the cross sectional reference points    and    are defined and the reference model is 

established, the numerical stresses solutions for the model can be calculated. Yet, ANSYS program 

provides two ways of reading stresses values. The nodal stresses and the elements stresses. These 

two will be explained in the following paragraph. 

Initially, the stresses contour with respect to the elements will be discussed. Figure 4-12 illustrates 

the stresses contour at x=0 for a cross-section with                 .  

 

 

 

 

 

 

 

 

 

 

 

 

To understand the results above it is significant to comprehend the FEA solving procedure. The FEA 

software takes the considered beam of h=300mm, b=200mm and solves every region (element) 

individually with simple linear equations. Because the solutions are not continuous (Figure xx), the 

software creates linear approximations that strive to map, as closely as possible, the true continuous 

solution. For a 10 by 10 cross-section with 121 corner nodes and 220 midside nodes ANSYS will 

calculate the displacements at each node given the loading and constraints on the model. Next, as a 

secondary operation, ANSYS approximates the stress contour in each element by looking at the 

relative displacement of the nodes of each of the 100 elements. In this manner a stress contour is 

determined for each element. In this manner the stress contour will be discontinue from one 

element to the next. This discontinuity results in the so called discrezation error. The error is reduced 

when the elements size reduced towards zero. In the search for the minimal number of elements 

with minimal error, it can be concluded that elements stress contour will therefore not be used. In 

the next paragraph a more precise FEA solution method will be introduced.  

 
  

Figure 4-12: Element stresses contour at x=0 for     on the right and      on the left side a fixed support point 

(x=0) for b=200mm, h=320mm, M=20e06 Nmm2, L=3000mm, E=210e06 N/mm2 and v=0.1 
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4.9 Nodal stresses solution 
 

 

 

 

 

 

 

 

 

 

 

 

For the FEA with ANSYS software the same beam as mentioned is 4.7.1 will be analysed. The beam 

consist of 10 by 10 Solid186 20-noods element. For each node ANSYS will calculate three 

displacements              and three rotations           .  The stresses will be calculated for each 

node for the corresponding displacement value. (Figure 4-14) 

 

 

 

    

  

Figure 4-13: Torsion shear stresses  

Figure 4-14: Nodal stress contour at x=0 for     on the right and     on the left at fixed support 

point (x=0) for b=200mm, h=320mm, M=20e06 Nmm2, L=3000mm, E=210e06 N/mm2 and 
v=0.1 
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Figure 4-14 shows the nodal stress contour, The total picture is much more transparent than the 

elements stress-contour given in figure 4-12. For this new situation the coordinate system is defined 

in figure 4-15: 

 

 

 

 

 

 

 

 

Splitting the cross-section into elements can be done in two ways, odd number of elements or even 

number of elements. It’s important to distinguish between those two scenarios because the error for 

each partitioning is approximated differently. As shown figure 4-16 there are even numbers of 

elements at the   and  -direction. At the midside the maximal shear stresses can be directly read 

from the middle node.  

 

 

 

 

 

 

 

 

 

The reference coordinate where the stresses in the YZ plane can be read is at: 

                           

                          

  

Figure 4-16: Cross-section A-A with even number of elements:   =2 and      

Figure 4-15: the global coordinate system 
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In a case of odd number of nodes as shown in figure 4-17  the unknown numerical stresses values at 

midside of the outline can’t be red. There are no nodes at the midline.  

 

 

 

 

 

 

 

 

The cross-section in figure 4-17 is modelled in ANSYS with the purpose of understanding the 

influence of odd number of elements on the error. (Figure 4-18)  

 

 

 

 

 

 

 

 

 

 

 

We zoom in on the critical cross-section located at      . There, the two shear stress components 

    and     will be plotted. For five elements in the height there are six discrete points and for two 

elements in the width there are three discrete points. Notice that only the stresses on the outline of 

the cross-section are considered.  

 

 

Figure 4-17: Cross-section A-A with odd number of elements in the height of the beam 

      
Figure 4-18: The beam consist of                              
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The numerical analysis of the torsion stresses in the beam provides the nodal stresses in the critical 

cross-section indicated with a broken red line in figure 4-20: 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4-20: 3D ANSYS image of the considered cross-section 

Figure 4-19:      and     stresses 
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The    and    stresses components have the maximal stresses values along the outline of the 

rectangular. As mentioned before, the stresses in the nodes will be the design stresses. Theses 

stresses change from one node to the other along the cross-sectional outline. The stresses are 

presented in the following tables: 

Node Numerical 
 [N/mm2] 

Numerical ref 
[N/mm2] 

Deviation  
[-] 

Table value 
 [N/mm2] 

Deviation 
 [-] 

1 0.6308 - - - - 
2 5.2294 - - - - 
3 6.5067 6.6819 2.6% 6.5928 1.3% 
4 6.5067 6.6819 2.6% 6.5928 1.3% 
5 5.2294 - - - - 
6 0.6308 - - - - 

Table 4-2:     stress analysis: L=3000mm, h=320mm, b=200mm, E=210e3N/mm2, 

 v=0.1, EZ=2 and EY=5 

 

Node Numerical 
 [N/mm2] 

Numerical ref 
[N/mm2] 

Deviation 
[-] 

Table value 
 [N/mm2] 

Deviation 
 [-] 

6 1.2878 - - - - 
7 6.3991 5.5777 12.8% 5.5605 13.1% 
8 1.2878 - - - - 

Table 4-3: :     stresses analysis : L=3000mm, h=320mm,  
b=200mm, E=210e3N/mm2, v=0.1, EZ=2 and EY=5 
 

 

The data in the tables above shows the nodal cross-sectional shear stresses solution due to torsion 

moment. The data implies that for the current number of elements an accurate approximation of the 

stress can be achieved depending on which reference value is being chosen. The deviation of the 

numerical values from the reference values is larger than the deviation from the torsion table values 

given in       . The differences in stresses values with identical beam properties might lead to the 

wrong conclusions. The variation of the numerical reference model from the table values for the 

stated cross-section is presented in table 4-4: 

 
 ⁄  1 1,6 2 2,5 3 

    0,9% 1,3% 1,5% 1,49% 1,5% 

    0,9% 0,3% 0,3% 0,4% 1,1% 

Table 4-4: Deviation of the reference value from the table value 

 

This undesirable deviation of our numerical reference values from the table values occurs due to the 

modelling technique being used to derive the table values. The torsion table values is assembled 

from a model in FEA software just like our reference model. However, there are differences between 

the two models. (Table 4-5) 

  

Figure 4-21: the cross-
section 
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 Reference model Table model 

Equations 3D differential equations 2D differential equations 
Length Finite Infinite 
Boundary conditions Influence fixing and load at beam end No influence 
Elements High accuracy (20 nodes hexahedron) 

 
Low accuracy (3 nodes triangle) 

Cross-sectional DOF’s Approximately 300 100000 

Table 4-5: Comparison Reference model with Table value model 

The table values are obtained from a 2D model with significant amount of DOF’s , which explains the 

accurate results obtained from this model. To conclude, the table values are probably more accurate, 

therefore table values will be used as a reference for the rectangular beam concerning  the  

calculation of the error. 

4.10 Error approximation  
In      the deviation of the given rectangular beam has been analysed. Now the magnitude of the 

deviation (error) will be checked for this given beam. This working method will be applicable for 

     where the discretization of the beam in the height and in the width will take place. Below both 

shear stress components are given in two forms: 

 

 

 

 

 

 

 

 

 

 

 

The stresses distribution along the long side of the cross-section uses stresses data from six nodes. 

For 8-nodes elements the stresses would be constant between the nodes. For 20-nodes elements the 

same stresses values are distributed with a linear change between the nodes (figure 4-22). From the 

basic structural mechanics we know that torsional stresses distributed parabolically. Thus, we should 

consider using numerical manipulations to construct a new data point at the midside of the xy-plane 

within the range of the discrete set of known points, or in other words interpolation. The two 

possibilities, linear and quartic functions, given in figure 4-22 and figure 4-23 will be compared in 

table 4-6 and explained in         and        . 

  

Figure 4-23: Stresses replotted in a 4-oreder polynomial 
to approach the solution between node 3 and node 4. 

y = -0,0852x4 + 1,1923x3 - 6,6855x2 + 
17,586x - 11,377 
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Figure 4-22: Linear stresses distribution between the nodes 
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 Table value Linear (the mean of 
node 3 and 4) 

4-order polynomial 

Stress value [N/mm2] 6.5928 6.6819 6.6111 
Error             [-] 0% 1.3% 0.28% 

Table 4-6:  Error for     at point p1(y, z)=(0,b/2) 

  Analysing the content of table 4-2  reveal that the stresses by an odd number of elements can be 

approximated from the nodes lying nearby the midside, in our case it is node 3 and node 4 in figure 

4-21. However this conclusion will be checked for smaller number of odd element where the error 

might be large. 

4.10.1 Mean value for odd element number  
 This is the average of the     stresses in two midside nodes. The deviation of the mean value of two 

correspond nodes holds:      
           

 
  or in more general expression: 

   ̅̅ ̅̅  
 

 
  (              )   (              )  

With: 

            number of element in the y-direction for cross-section x=L/2 

 (
          

 
) stresses at the specified node 

Because the formula above is calculating the mean value of two points, it is essential to check the   

standard deviation of the measurements:  

  √[ (
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4.10.2 4-order polynomial 
 

Using excel results in quartic function results in formula 4.xx where              . 

       
     

     
         (4.x) 

                                               (4.x) 

Higher-order functions like 5-order or 6-order appear to not have any effect on the interpolation. It is 

remarkable that this equation looks like the approach of Roark’s formula for Stress&Strain  that 

holds: 
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5. Optimization study 
The length of the rectangular beam in the 3D space influence the accuracy of the obtained numerical 

stresses values. In         the ideal length of the beam considering the Vlasov regions is founded. 

The warping resistance is therefore neglected by modelling a beam with sufficient length.  In this 

case the length should be larger than 1000mm. Afterwards in      , the method of which the stress 

database should be assembled have been founded. The next step in the FEA is to run ANSYS several 

of times with respect to the discrete variables                   . Thanks to the optimized use of 

ANSYS, it is possible to conduct this calculations relative fast. The only restriction is the memory 

capacity of the computer which being reflected in long computation time. It is of course also an 

option to increase or decrease the Poisson’s ratio or the Young’s modulus. The correlation of the 

Poisson’s ratio with the stresses values has been presented in     . 

5.1 Length 
Initially, we consider the error due to variable beam length and cross-sectional dimensions. The 

purpose is to find the numerical solution changes in respect to the ratio of beam length and cross-

sectional dimensions (Table 5-1). The error is given by the following formula: 

   
|                                  |

               
     

 

       |   ⁄  1.42 2 3.33 4 6.66 10 20 30 

     
                 9.9 5.2 1.4 1.1 1.0 1.0 1.0 1.0 

                       7.0 3.0 0.7 1.0 1.1 1.0 1.0 1.0 

Table 5-1: The relative error ‘D’ for a square cross-section at x=L/2 for: E=210e3N/mm2, 
v=0.1, L=3000mm, Mt=20e6 Nmm and         

Table 5-1 indicates that the error decrease as function of the beam ratio. For        a relative 

larger error is obtained. This can also refer to the length of Vlasov region and to the disturbed zone 

due to the concentrated force and the boundary conditions. Therefore,      ratio of 9.375 will be 

used with        

5.2 YZ-plane dimensions  
The dimensions of the cross-section might have influence on the deviation of the solution. The 

rectangular beam is modelled in ANSYS with variable     ratio. The relation between the     ratio 

and the cross-sectional stresses distribution for a constant number of cross sectional elements    

and    is illustrated in table 5-2: 

h=300mm b =… [mm] 100 200 250 300 350 400 

       
 

   
  

  

25.0 7,0 4,6247 3,4468 2,4743 1,9353 

          
 

   
  

25.0 7.2305 4,8786 3,5592 2,7442 2,2045 

Error [%] 0,05 3,21 5,49 3,26 10,91 13,91 

Table 5-2: The relative error at x=L/2 for           , E=210e06, v=0.1,         and Mt=20e06Nmm 
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The error for     is increasing with respect to  . For the cross-sectional dimensions the following 

rule is applied:   
 

 
   for       

5.3 Number of elements 
Optimization study of the number of cross-sectional elements was critical to determine the 

distribution of the error. From this study conclusion can be made over the minimal number of 

elements for a certain error. The error is computed with as reference value, the torsion table values  

 

  

 

 

 

 

 

 

 

     
 :   ⁄      ,            is  0,2% 

     
 :    ⁄     ,            is  3,2% 

In addition, as for the maximal stress component    , it seems that the error will increase if the 

number of elements in the transverse direction will increase. While for      , the error will decrease 

when the  

 

 

 

 

 

 

 

  

described in       . It seems that the 

error is relative large for cross-section 

with only two elements in the height. 

This is valid for all :   ⁄  ratio and for 

both stress components     and    . 

According to figure 5-1 based on        

table 5-3 it seems that the error 

convergence to zero for     . It 

can be concluded that for the highest 

accuracy:       Furthermore, it 

should be noticed that besides the 

total number of elements also the 

ratio between the    and    

influence the accuracy. For example:  

 

Figure 5-1:      error for variable EY, EZ=2 and  EX=160 
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as the number of elements will 

increase for               .  It 

can be concluded that for      the 

following design rule valid:   
  

  
  . 

The diagram showed in figure 5-2 

presents the change in the error as 

function of number of elements in the 

width for constant number of element 

in the height. The error is large for 

higher values of     . Table 5-2 and    

5-3 present the data collected during 

the optimization study of the discrete  
Figure 5-2:      error for variable EZ EY=4 and EX=160 

beam.  The data is valid for Solid186 volume elements for constant beam length of 3000mm, 

constant element length in the x-direction         and constant torsion load of 2      . 
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 ⁄    2 3 4 5 6 7 8 

   2 10,0 13,4 14,6 15,1 15,3 15,5 15,5 

 
3 7,1 2,3 0,4 0,6 1,2 1,5 1,7 

 
4 2,7 0,3 1,7 2,5 2,9 3,2 3,4 

 
5 7,1 3,6 2,0 1,2 0,7 0,4 0,2 

 
6 4,9 1,6 0,1 0,6 1,0 1,3 1,5 

 
7 6,9 3,4 1,8 1,0 0,6 0,3 0,1 

 
8 5,6 2,2 0,7 0,0 0,5 0,7 0,9 

  

   
      

 

 
 ⁄      2 3 4 5 6 7 8 

   2 15,8 16,3 16,4 16,5 16,5 16,5 16,5 

 
3 1,3 2,9 3,6 3,9 4,0 4,1 4,2 

 
4 1,9 2,7 3,2 3,5 3,7 3,8 3,8 

 
5 1,3 0,3 0,2 0,5 0,7 0,8 0,9 

 
6 0,1 1,0 1,4 1,7 1,8 1,9 1,9 

 
7 1,4 0,3 0,2 0,4 0,6 0,6 0,7 

 
8 0,5 0,5 1,0 1,2 1,3 1,4 1,5 

  

   
      

 

 
 ⁄    2 3 4 5 6 7 8 

   2 17,6 17,2 17,1 17,0 16,9 16,9 16,9 

 
3 4,3 5,1 5,5 5,6 5,7 5,7 5,7 

 
4 2,7 3,2 3,5 3,6 3,7 3,8 3,8 

 
5 0,2 0,7 1,0 1,2 1,3 1,3 1,4 

 
6 1,1 1,5 1,7 1,8 1,9 2,0 2,0 

 
7 0,0 0,5 0,7 0,9 0,9 1,0 1,0 

 
8 0,6 1,1 1,3 1,4 1,5 1,6 1,6 

  

   
      

 

 
 ⁄      2 3 4 5 6 7 8 

   2 17,6 17,2 17,1 17,0 16,9 16,9 16,9 

 
3 6,8 7,2 7,3 7,3 7,3 7,2 7,2 

 
4 2,9 3,2 3,4 3,5 3,5 3,5 3,5 

 
5 1,1 1,4 1,5 1,6 1,7 1,7 1,8 

 
6 1,5 1,7 1,8 1,8 1,9 1,9 1,9 

 
7 0,7 1,0 1,1 1,1 1,2 1,2 1,2 

 
8 1,1 1,4 1,5 1,5 1,5 1,6 1,6 

  

   
      

 

 
 ⁄    2 3 4 5 6 7 8 

   2 17,3 16,9 16,7 16,7 16,6 16,6 16,6 

 
3 8,6 8,6 8,6 8,6 8,5 8,5 8,5 

 
4 2,9 3,2 3,3 3,4 3,4 3,4 3,4 

 
5 1,6 1,8 1,9 2,0 2,0 2,0 2,1 

 
6 1,6 1,7 1,8 1,8 1,8 1,9 1,9 

 
7 1,1 1,3 1,3 1,4 1,4 1,4 1,4 

 

8 1,4 1,5 1,5 1,6 1,6 1,6 1,6 

Table 5-3: Relative error for       
 

                        L=3000mm and EX=120 
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 ⁄    2 3 4 5 6 7 8 

   2 10,0 7,1 2,7 7,1 4,9 6,9 5,6 

 
3 13,4 2,3 0,3 3,6 1,6 3,4 2,2 

 
4 14,6 0,4 1,7 2,0 0,1 1,8 0,7 

 
5 15,1 0,6 2,5 1,2 0,6 1,0 0,0 

 
6 15,3 1,6 2,9 0,7 1,0 0,6 0,5 

 
7 15,5 1,5 3,2 0,4 1,3 0,3 0,7 

 
8 15,5 1,7 3,4 0,2 1,5 0,1 0,9 

  

   
      

 

h/b=1.6 2 3 4 5 6 7 8 

   2 1,5 20,6 13,2 18,5 15,7 18,1 16,5 

 
3 7,9 9,8 5,1 9,7 7,2 9,4 7,9 

 
4 11,4 5,3 1,5 5,8 3,5 5,5 4,2 

 
5 13,1 2,9 0,3 3,8 1,6 3,5 2,3 

 
6 14,0 1,5 1,4 2,6 0,5 5,5 1,2 

 
7 14,5 0,6 2,1 1,9 0,1 1,6 0,5 

 
8 14,8 0,0 2,5 1,4 0,6 1,2 0,0 

  

   
      

 

 
 ⁄    2 3 4 5 6 7 8 

   2 9,5 29,4 20,4 26,1 22,9 25,5 23,7 

 
3 4,2 14,5 8,8 13,8 11,1 13,4 11,9 

 
4 9,3 8,2 3,6 8,2 5,8 7,9 6,5 

 
5 11,9 4,8 1,0 5,3 3,0 5,0 3,7 

 
6 13,3 2,8 0,6 3,6 1,4 3,3 2,1 

 
7 14,2 1,5 1,6 2,5 0,4 2,2 1,0 

 
8 14,7 0,6 2,2 1,7 0,3 1,5 0,3 

  

   
      

 

 
 ⁄      2 3 4 5 6 7 8 

   2 20,4 41,1 30,1 36,2 32,4 35,2 33,2 

 
3 1,4 21,2 14,5 19,9 17,0 19,4 17,8 

 
4 5,6 12,8 7,3 12,2 9,5 11,8 10,3 

 
5 9,4 8,1 3,5 8,0 5,6 7,7 6,3 

 
6 11,6 5,2 1,2 5,6 3,3 5,3 4,0 

 
7 13,0 3,3 0,2 4,0 1,8 3,7 2,4 

 
8 13,9 2,0 1,2 2,9 0,7 2,6 1,4 

  

   
      

 

 
 ⁄    2 3 4 5 6 7 8 

   2 31,2 52,4 39,5 45,9 41,5 44,5 42,2 

 
3 7,3 28,2 20,5 26,3 23,1 25,7 23,9 

 
4 1,7 17,6 11,2 16,4 13,6 15,9 14,4 

 
5 6,7 11,5 6,2 11,0 8,4 10,6 9,2 

 
6 9,7 7,7 3,2 7,7 5,3 7,4 6,0 

 
7 11,6 5,3 1,2 5,6 3,3 5,3 4,0 

 

8 12,9 3,6 0,1 4,1 1,9 3,8 2,6 

Table 5-4: Relative error for       
 

                        L=3000mm and EX=160 
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Looking at the error tables in the previous page will reveal that the correlation between the number 

of elements and the error is quite strong.  The smallest error is seen at the largest index. But now as 

an alternative, the degrees of freedom of the cross-section will be plotted. The DOF of the cross-

section can be calculated as mentioned in     . It holds: 

  
   

      

   
2 3 4 5 6 7 8 

   2 
 

63 87 111 135 159 183 207 

 
3 

 
87 120 153 186 219 252 285 

 
4 

 
111 153 195 237 279 321 363 

 
5 

 
135 186 237 288 339 390 441 

 
6 

 
159 219 279 339 399 459 519 

 
7 

 
183 252 321 390 459 528 597 

 
8 

 
207 285 363 441 519 597 675 

                       Table 5-5: Cross-sectional DOF’s 

 

The error is now plotted with respect to cross-sectional DOF and compared with different       

ratio’s. (Figure 5-3) 

 

 

 

 

 

 

 

 

 

 

 

 

The error decreases for constant     ⁄  ratio by increasing the number of elements in the width. 

Furthermore, the error becomes smaller for smaller values of    ⁄ . In the second  diagram         

(Figure 5-4) the    ⁄  will be constant while the number of elements in the height will increases. It is 

remarkable that in this case the error will decrease for higher values of    
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Figure 5-3: Relative error distribution versus cross-sectional DOF for   ⁄     .  
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Figure 5-4: Relative error distribution versus cross-sectional DOF for   ⁄      

 

Both of the diagrams proofs what have been mentioned in the beginning of this paragraph. The ratio 

of the elements is critical for the accuracy and not only the number of elements (DOF’s).  This 

conclusion is valid for the maximal shear stress component. Consequently, in order to approach     

for   
 

 
 1 , the number of elements in the height are critical to reduce the error whereas the number 

of elements in the width will increase the error. As for the secondary shear components it can be 

concluded that while approaching the     for 
 

 
 1 ,increasing the number of elements in the height 

or in the width will reduce the error. 

5.4 Sorting results 
Sorting the results in table 5-3 and table 5-4 regarding the smallest error up to the largest error will 

help us to draw the conclusion related not to the accuracy but also to the computation time. As 

mentioned before, this computation time is equivalent to the DOF. In this way the minimal number 

of elements can be determine with taking into account the effectiveness of the computation time. 

Table 5-6 and table 5-7 present the relative error for    ⁄     . According to table 5-6 the vertical 

shear stress component       will be approached with accuracy of 99.9% through applying      

and      with only     DOF’s. In      the meshing design tables for torsion moments will be 

presented on the basis of this representation. 
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EY EZ ERROR DOF's EY EZ ERROR DOF's 

6 2 0,1 159 6 5 1,7 339 

5 4 0,2 237 6 6 1,8 399 

7 4 0,2 321 6 7 1,9 459 

5 3 0,3 186 6 8 1,9 519 

7 3 0,3 252 4 2 1,9 111 

7 5 0,4 390 3 2 2,7 87 

8 2 0,5 207 3 3 2,9 120 

8 3 0,5 285 4 4 3,2 195 

5 5 0,5 288 4 5 3,5 237 

7 6 0,6 459 3 4 3,6 153 

7 7 0,6 528 4 6 3,7 279 

5 6 0,7 339 4 7 3,8 321 

7 8 0,7 597 4 8 3,8 363 

5 7 0,8 390 3 5 3,9 186 

5 8 0,9 441 3 6 4 219 

8 4 1 363 3 7 4,1 252 

6 3 1 219 3 8 4,2 285 

8 5 1,2 441 2 2 15,8 63 

8 6 1,3 519 2 3 16,3 87 

5 2 1,3 135 2 4 16,4 111 

3 2 1,3 87 2 5 16,5 135 

6 4 1,4 279 2 6 16,5 159 

8 7 1,4 597 2 7 16,5 183 

7 2 1,4 183 2 8 16,5 207 

8 8 1,5 675 
    Table 5-6: relative of      for   ⁄      

 

 

 

 

 

 

 

 

 

 

 

Tabel ‎0-1: relative error for   ⁄      of      

 

EY EZ ERROR DOF's EY EZ ERROR DOF's 

8 2 0 207 4 6 3,5 279 

8 8 0 675 5 5 3,8 288 

7 6 0,1 459 4 8 4,2 363 

5 4 0,3 237 3 4 5,1 153 

6 6 0,5 399 4 3 5,3 153 

7 8 0,5 597 6 7 5,5 459 

7 3 0,6 252 4 7 5,5 321 

8 6 0,6 519 4 5 5,8 237 

8 7 1,2 597 3 6 7,2 219 

6 8 1,2 519 3 8 7,9 285 

7 7 1,2 528 3 2 7,9 87 

6 4 1,4 279 3 7 9,4 252 

8 5 1,4 441 3 5 9,7 186 

6 3 1,5 219 3 3 9,8 120 

2 2 1,5 63 4 2 11,4 111 

4 4 1,5 195 5 2 13,1 135 

5 6 1,6 339 2 4 13,2 111 

7 5 1,9 390 6 2 14 159 

7 4 2,1 321 7 2 14,5 183 

5 8 2,3 441 8 2 14,8 207 

8 4 2,5 363 2 6 15,7 159 

6 5 2,6 339 2 8 16,5 207 

5 3 2,9 186 2 7 18,1 183 

5 7 3,5 390 
    Table 5-7 : relative error of     for   ⁄      
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5.5 Conclusion 
From table 5-3 in      , only element configuration correspond with an error of up to 3% are taken 

into account. Moreover, the errors given in the meshing design table are compared to reject any 

chance that the obtained error has been founded accidently and valid only for the specific 

configuration with the specific dimensions. In addition, element configuration with large DOF will be 

neglected because only effective element configuration is wanted. This result in “FEA Meshing Design 

table” for rectangular beam subjected to pure torsion moment, without taking into account the 

warping resistance. The design table should be applied for the Ultimate limit state where the 

maximal shear force is governing. In our case it is     . In addition, the table is valid for load within 

the linear elastic stress distribution. The following parameters have been used to compute this 

design table: 

  

 
 

 

   
               

 

   
                          

 

 

    EY EZ Error DOF's 

      

6 4 0.1 279 

4 3 0.3 153 

6 3 1.6 219 

4 2 2.7 111 

        

5 3 0.3 186 

6 3 1 219 

5 2 1.3 135 

4 2 1.9 111 

4 3 2.7 153 

      

5 2 0.2 135 

5 3 0.7 186 

4 2 2.7 111 

4 3 3.2 153 

        

5 2 1.1 135 

5 3 1.4 186 

4 2 2.9 111 

      

5 2 1.6 135 

6 3 1.7 219 

4 2 2.9 111 

4 3 3.2 153 

                             Table 5-8: FEA Design table for rectangular cross-section subjected to torsion 
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6.  The HE300A section 

6.1 Relevant information from previous report  
The report of B.M. van de Weerd [December 2007] describes the numerical solution using FEA model 

for several of I-sections subjected to shear stress. The measurements of the shear stresses in the 

critical cross-section imply that these stresses will be largest at the mid-wedge as expected. 

Furthermore, it shows peaks of the stresses at the wedge-flange connection as shown in figure 6-1 

 

 

 

 

 

 

 

 

 

6.2 Concept HE-beam model 
In the previous chapter, the rectangular cross-section subjected to torsion moment has been 

analyses in the search fot optimal number volume elements. The rectangular cross-section was 

relative simple to model. Due to the rectangular shape there are few peak stresses concentrations. 

Those peak stresses are located at the corners of the cross-section and cause an infinite stresses 

values. The same logic applies for simplified HE-section model with rectangular planes. (Figure 6-2) 

 

 

 

 

 

 

 

 

 

Figure 6-1: Shear stresses contour in 
ANSYS [B.M van de Weerd 2008] 

Figure 6-2: Simplified model for r=0 consist of 
rectangular geometry 
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The stresses contour of the simple HE-section in figure 6-3 will contain peak stresses consecration at 

the web-flange connection and at the edges of the flanges. Letting ANSYS to analyses this model will 

result in infinite stresses values in those locations. That is the reason why realistic model will be 

introduced, including the rounded corners with       . (figure 6-3) 

 

 

 

 

 

 

 

 

 

In this model the rounded corners reducing the peak stresses concentration. This singularities can be 

explained according to the elastic membrane analogy [Ludwig Prandtl, 1903] which describes the he 

stress distribution on a long bar in torsion. The theory uses the term          which directly 

proportional to the stresses. In the corner of the model (figure 6-3) the         will be large, 

rounding these corners will reduce the slope and the stresses peak concentration. In this research 

only the realistic HE-section with rounded corners will be analyzed. In the future, it is recommended 

to compare the stresses results of the simple model with the stresses results of the realistic model,  

in order to find the accuracy of the simple model. 

6.3 Elements type 
In this phase we’ll analyze an FEA model of HE300A section, this common steel section is being used 

as compression element or for beam when the structure height has to be limited. However, modeling 

HE-section considering the mesh located at the rounded corners will require the use of volume 

elements like Prism (figure 6-4) due to the parabolic shape. 

 

 

 

 

  

 

 

Figure 6-4: Various 
Solid186 shapes 

Figure 6-3: Realistically model for r=27mm 

http://en.wikipedia.org/wiki/Ludwig_Prandtl
http://en.wikipedia.org/wiki/Stress_%28physics%29
http://en.wikipedia.org/wiki/Torsion_%28mechanics%29
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6.4 The simple FEA model 
To remind, the goal of this research is not to make the most accurate mesh, but to make a new 

accessible working method for the civil engineer. The simple HE-model from figure 6-2 meet this 

requirement because it can be meshed with only hexahedron volume elements. In this case the 

model consist of rectangular sections with uniform mesh. That should be a straightforward mesh 

configuration with limited number of elements. In this report the reliability of this model will not be 

checked due to lack of time. However, it been recommended to check the accuracy of this model in 

future researches. Figure 6-5 shows the simple FEA model in ANSYS.  

 

 

 

 

 

 

 

 

6.5 The realistic model 
To meet the shape requirements related to the use of the rounded corners, this model will consist of  

20-nodal hexahedron volume-element in the flange and web while the rounded flange-web corners 

will consist of 20-nodes Prism volume-elements. (Figure 6-6) 

 

 

 

 

 

 

 

 

 

  

Figure 6-5 The simplified model with r=0 

Figure 6-6: The realistic model with RoC=27mm 
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6.6 The reference models 
In the search for the optimal HE300A FEA model the numerical, yet unknown values, will be 

compared with a reference value. This reference value should supply the exact stress value of which 

the deviation will be measured. The reference model consist of a fine mesh comparing to the coarse 

mesh of the investigated model. For each loading case the reference model will be different with 

respect to the pattern being discovered  in the analysis. For example, the reference model of the 

torsion moment case has been resolved by more than one million differential equation and 9123 

cross sectional DOF’s. Such a model has been solved within more than one hour on a Pentium 4 

computer.( Figure 6-7) 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

6.7 Working method  
The design of the HE300A beam in ANSYS occurs in a different method than from the previous 

rectangular beam. In this case,  few  HE300A FEA-models will be individually computed between 

themself. The working method suggests beginning with a basic coarse mesh which will be refined in 

every new model. The results of this working method will be the reducing/increasing the deviation 

with every new mesh density. This working method will adapt the mesh density until an adequate 

deviation will be achieved. 

 

 

  

Figure 6-7: The reference model 
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  6.7.1 Adaptive Mesh Refinement 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sub region Description 

Green Flange mesh 

Red Peak stress region  

Orange Web mesh 

Blue Rounded corners (R) 

Table 6-1: Legend for figure 6-8 

For a proper modeling the mesh will not be uniform however, it will be denser where the stresses are 

maximal. Alternative approach considers a FEA model with a standard uniform mesh. The unknown 

nodal stresses values for this grid are estimated by ANSYS. The spacing of the mesh determines the 

accuracy of these values. Although the mesh of the cross-section is uniform, the stresses contour is 

not uniform. There are regions in the cross-section where a finer mesh is required to reduce the 

deviation from the real stresses values. The Adaptive Mesh Refinement is using submesh to fix 

computations error in difficult regions. The first step is identifying the peak stresses of every load 

case. Indubitably, every loading case like torsion, bending moment and shear obtain different 

stresses contour and required a different mesh. The idealized mesh will be then non-uniform mesh. 

The mesh density will be determined upon the peak stresses. The location of the peaks is well known 

from the theory and from early researches as mentioned in         

Figure 6-8: Cross-section is divided into subregions 
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6.7.2 Meshing variation  
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Due to modeling limitation with ANSYS software, the area around the web-flange connection consists 

of four fixed regions given in the small figure above (table 6-1). Within the boundaries of each region 

a local mesh refinement will be generated. Meshing the cross-section will be executed in such a way 

that the    of the web coincide with    of the flange in the red subregion mentioned in       . Or 

in other words, the vertical mesh of the flange coincides with the horizontal mesh of the web in the 

red subregion will be called from now on peak-region. The peak-region is confine by the mesh 

density of the web and the flange. Because the peak stresses are likely to occur in the peak region, 

the meshing components                     will have a crucial influence on the deviation of the 

peak stresses values. Analyzing the stresses results in this report pointed that the minimum mesh for 

the peak region should be: 

                

Therefor the initial mesh of every FEA Model will be as given in figure 6-9.  

Figure 6-9: Initial mesh with                  
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7. Bending moment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For bending moment without an additional normal force, the bending stresses will be approached 

with numerical equation. The normal bending stresses are uniform distributed along the beam 

length. The characteristic cross-section will be at halfway the beam length in order to neglect the 

influence of boundary conditions on the stresses. In this cross-section the outer fibers are loaded 

maximally. The HE-sections have broad flanges to use maximum material in the flanges subjected to 

bending. Assumption: the magnitude of the applied bending moment will not cause yielding of the 

steel. In that case plastic deformation will not occur and the stress distribution will stay linear as 

shown in figure 7-2. The applied moment will increase the curvature within the linear elastic stress 

phase (figure 7-3). 

 

 

 

 

        

         

       
 

   
 

      

           

 

 

Figure 7-1: The FEA bending moment model in ANSYS 

Figure 7-2: Bending stresses [H.Welleman] Figure 7-3: Moment (y-axis) versus the curvature (x-axis) 
for the different stresses distribution [H.Welleman] 
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When a slender member is subjected to axial force due to flexure the top side and the bottom side 

will be subjected to axial compression or axial tension force.  Because the stated member in   

figure 7-1 is not supported in lateral direction, the beam will fail due to lateral buckling of the 

compression flange. This will occur for a critical value of the flexural load. In addition, if the 

compression flange buckles laterally, the cross section will also twist in torsion, resulting in a failure 

mode known as lateral-torsional buckling. These two failure mechanism will not be discussed in this 

research. The governing bending moment load in this case will be small enough preventing the 

mentioned mechanism to occurring .  
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7.1 The FEA models 
According to the adaptive meshing refinement working method explained in     , the models will 

be refined or coarsen according to the obtained results of the first model “Model 1”. Analyzing 

stresses results for the first model emphasis the need for a second model. Therefore three FEA 

models are introduced from coarse to fine mesh when the third model will be the reference model.    

( Table 7-1) 

FEA bending models DOF’s flange DOF’s web DOF’s RoC Total DOF’s 

Model 1 351 129 33 963 
Model 2 543 225 33 1443 
Model 3 (Ref) 1497 507 69 3777 

Table 7-1: Bending moment FEA models 

7.1.1 Model 1 (963 DOF’s) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The normal stresses due to pure bending moment are checked for FEA model with the following 

mesh refinement: 

                                                       
                      

             

                                                  
  

                      
  

         

      
  

                         
  

                      
 

                        
 

                   

Figure 7-4: The first model 
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7.1.2 Model 2 (1443 DOF’s) 
 

 

 

 

 

 

 

 

 
 

 

 

 

During the FEA of the first model, deviation in the stresses distribution has been found. Yet, this 

deviation occurs in the web of the cross-section and not in the flange. The deviation can be referred 

to the element height in the web. As mentioned before, the critical stresses occur in the outer fiber, 

therefore the normal stresses values in the web are less interesting. This second model has been 

added to this analysis in order to observe the change in stresses values due to decreasing elements 

height. 

                                                    
                     

            

                                                 
  

                  
  

         

      
  

                           
  

                    
 

                      
 

       

     

  

Figure 7-5: The second model 
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7.1.3 Model 3 (Ref) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

The reference model concerns this loading case involves 3777 cross-sectional DOF. The mesh consists 

of Solid186 Hexahedron and Prism elements with the following configurations: 
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1
 Total number of elements at rounded corners   

Figure 7-6: The bending reference model 
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7.2 Stresses distribution  
 

 
 

 

 

 

 

 

 

 

Only the normal stress components (perpendicular to the cross-sectional plane) are presented in the 

figure above. This stress contour is a representation of the actual normal bending stresses in the HE-

section, in a cross section located half way the beam length. The stress contour shows linear stresses 

distribution according to the theory. This is conformed in figure 7-8.  The maximum stresses occur as 

stated before at the outer fiber, where at the middle of the web the stresses are zero. The nodal 

normal stress values in figure 7-8 are plotted for      and along the y-axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Figure 7-8: Normal stresses for z=0 at x=L/2 for M=10e6 Nmm 

Figure 7-7: Nodal normal stress contour at x=L/2 
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Remarkable from the diagram in figure 7-8 is the accuracy of the critical stresses values at the outer 

fibre. It seems that Model 1 and Model 2 are successfully approaching the actual stresses at the outer 

fibres. However, as expected the web of model 1 deviate from the actual stresses values due to 

larger element height. The error for z=0 and y=0.5h is given in the following table: 

 Reference  Model 1  Model 2 Analytical 

        ⁄  7.9238 7.8766 7.9180 7.94085 
Error      - 0.6% 0.07% 0.2% 

Table 7-2: Stresses values at (x,y,z)=(0.5L, 0.5h,0) for M=10e6 Nmm E=210e6 N/mm2 v=0.1 and L=3000mm  
for HE300A section. 

The first model succeeds to approach the stress with error smaller than 1%. Adding elements to the 

web and the flange while unchanging the Red-subregion mesh where the stresses at the outer fibre 

are measured result in extremely small error 0.07%. 

7.3 Stresses distribution in the width 
Investigating the stresses distribution along the width of the beam in model 1 and in model 2 reveals 

constant stresses along the flange width. 

7.4 Number of elements 

7.4.1 Web 
As mentioned before, the height of the element has a direct influence on the accuracy of the FEA-

model. Since this research is carried out on specific cross section, the cross-sectional dimensions are 

not discrete. Nevertheless ,it is essential to be able to produce a more global conclusions that can be 

applied on every HE or I-section. Therefore the ratio  
  

   

    
 has been plotted with the relative error.  

 

 

 

 

  

 

 

 

 

The error convergences to zero for smaller values of the  
  

   

    
 ratio with   

      . This is logical 

because when the number of elements in the height of the web increases the error will be smaller. 

  

Figure 7-9: Relative error 
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https://www.google.nl/search?client=firefox-a&hs=n8c&rls=org.mozilla:en-US:official&q=successfully&spell=1&sa=X&ei=bTeuUfq4F6uT0AWr5IDIDw&ved=0CC0QvwUoAA
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7.5.2 Flange 
 

 

 

 

 

 

 

 

Zooming on the area where the peak stresses are measured showed in figure 7-10 and comparing 

this mesh with the reference mesh in figure 7-11  reveal that           elements with the 

ratio  
  

  

   
     are sufficient in order to achieve error with upper value of 1%. However as 

mentioned before in        meshing this peak region holds:  

 

         
  

                          
  

 

As for the number of element in the width of the flange      . Reducing the      from 12 to 8 and to 

6 result in negligible fluctuation of the peak stresses values. It can be explained due to the constant 

stresses distribution along the beam width mentioned in     . 

7.6 Conclusions bending moment 
During the FEA of the pure bending moment three models are carried out in ANSYS. In the search for 

the minimal number of elements with minimal deviation from exact stresses values the following 

Rule of thumb should be used for an HE or I-section subjected to pure bending moment: 

 Required mesh concerning         at the outer fiber for       

  
 

  
 

  
  

   
 

      

   ⁄    ⁄  0% 

   ⁄    ⁄  0.07% 

  ⁄    ⁄  0.6% 

                                                    Table 7-3: Solid186 mesh design table for         

Using the table together with the meshing method mentioned in        will be explained on the 

basis of the next example: Given HE300A section, a mesh with accuracy of 1% is required. The cross 

section is subjected to pure bending moment with linear elastic stresses distribution. The mesh will 

be determined as followed: 

 

Figure 7-10: Peak region meshed with 2*2 elements 
result in up to 1% error 

Table 7-11 Reference mesh with 3*4 elements  
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Because of the relations           
  

 and            
  

 the peak region will be: 

      
  

       
  

   . In addition the rounded corners will be modeled with the minimum number 

of Prism elements for a rounded shape       

 

  

 

 

 

 

  
Figure 7-12: Peak region mesh and 
rounded corners mesh 
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8. Cross-sectional shear stresses 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Just like the rectangular beam in    ,the beam is fixed at the edge for an displacements in the     

and   direction. At the other edge, vertical concentrated force is applied on each of the nodes 

modeling shear force of        . As mentioned before, the critical cross-section will be taken 

halfway the beam length in order to neglect any irregularities of the stress nearby the boundary 

conditions and irregularities at the location of the forces.   

The shear stress distribution in the HE-section is depending on the type of model which will be 

analyzed. In the search for the accurate solution, the HE section will be model as close as possible to 

real HE-section properties. For instance, the web-flange corners in the FEA model will be rounded 

with the appropriate radius. The shear stress diagram for rounded corners will differ from diagram 

without rounded corners. This can be seen in figure 8-2 and figure 8-3. 

 

 

        

         

       
 

    

      

         

       

 

Figure 8-1: The FEA shear model 
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8.1 The FEA models  
Just like in      the reference model will have the finest mesh, it will be able to anticipate the exact 

shear stress values in the cross-section. Broad description of this model can be found at     . The 

other models are models that already introduced in     .  

Shear FEA models flange DOF’s  web DOF’s  Corners DOF  Total DOF’s 

Model 1 351 129 33 963 
Model 2 543 225 33 1443 
Model 3 (Ref) 1497 507 69 3777 

Table 8-1: Shear stress FEA models 

8.2 Shear stress distribution 

8.2.1 Evaluating results 
The FEA of the model 1 ( 963 DOF) is carried out in ANSYS. The shear stresses components,     and 

    ,of each of the nodes are plotted forming the following stress contour: 

  

 

 

 

 

 

 

 

 

As described in a previous bachelor thesis of B.M van de Weerd [December 2007] . The shear 

stresses in the web are much larger than in the flanges. The shear stress distribution in the web 

should have, according to the theory a parabolic form. Plotting these nodal stresses values in the 

diagram on figure 8-6 would confirm the parabolic stress distribution.  

Figure 8-2 Shear stress distribution when 

RoC=27mm [Reader Staalconstructies CT2035] 

 

Figure 8-3: Shear stress distribution when RoC=0 
[Reader Staalconstructies CT2035] 

Figure 8-4: XY shear contour Figure 8-5: XZ shear contour 
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The flanges are subjected to smaller stresses compared with the web. The maximal stress in the web 

is            while the maximal stress in the flange is            , as it appears in figure 8-7. It 

seems that the    stresses in figure 8-7 behaving according to the theory, the stresses increasing 

linear from the edge to nearby the middle of the flange where in the middle the stresses are zero. 

The dashed black line describes the theoretical XZ stresses distribution in the flange. The different 

between the numerical solution and the analytical solution (black dashed line) is seen at the middle 

of the flange. There, the numerical values goes to zero while the analytical value grows continuously. 

This is due to the absence of rounded corners in the theoretical formulas. 
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Figure 8-6: Shear stresses distribution in the web  

Figure 8-7: Shear stresses distribution in the flanges  
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The rounded corners exhibit peak stresses higher than the maximum stresses maximum stresses in 

the flange. Those stresses will be critical in testing  HE/I-section on fatigue. The rounded corners of 

this section are important to increase the fatigue strength of the structure.(Figure 8-7) 

 

 

 

 

 

 

 

8.3.2 Comparison results 
The maximal shear stress value halfway the web height is compared for both models: the reference 

model (3777 DOF’s) and model1 (963 DOF’s) to find the relation between number of elements and 

the accuracy. 

              Reference Model 1 Analytical2 

        ⁄   4.45427 4,42867 4.4980 

Error        - 0.6% 1.0% 

Table 8-2: The relative error for model 1 and the analytical solution from the reference model 

Remarkable is that the critical stress in the cross-section is approached with accuracy of 0.6% already 

by the first coarse model. It can be concluded that the six elements in the height of the web are 

sufficient to approach the exact stress values.  

Although the    shear component is not the maximal stress and therefore will not be used in the 

ultimate limit state calculations, it is significant to be able to approach this stress component with 

sufficient accuracy. This can be used for example in shear failure analysis. The maximal XZ stress 

value founded nearby the middle of the flange exhibit the following error: 

             Reference Model 1 

        ⁄  0.81129          0.71055           ) 

Error 0%    12.4% 

             Table 8-3: The relative error of model 1 from the reference model  

It can be assumed that the cause for the relative large is the number of elements in the width of the 

flange     . To confirm this assumption a new model will be created. 

  

                                                           
2
 For simplified cross-section with RoC=0 according to      

Figure 8-7: XZ shear stresses component 
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8.3.3 Improved model 

                                         
  

                    
  

         

In order to reduce the error observed in the first model, a new model is introduced. Model 2 is a 

model being used in         to model a beam subjected to bending moment. This model includes a 

finer mesh from Model 1. This will be used to track changes in the error due to increasing number of 

element in the width of the flange. For         the following green stress distribution is added to 

figure 8-7: 

 

 

 

 

 

 

 

 

 

 

 

 

According to the second model, it seems that the results of the new model are closer to the 

reference values. Accordingly, the most important conclusion is the link that established between the 

magnitude of the error and the number of elements in the width of the flange. The improved model 

with        reduc es the error in 7.80% to 4.62%.  
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Figure 8-8: Improved shear stress distribution in green  
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8.4 Von Mises 
 

 

 

 

 

 

 

 

 

Until now, the shear forces in the    direction and in the    direction have been separately 

analyzed. The problem in this approach occurs in the region where those two stress components are 

working. Von Mises approach suggests a scalar quantity where both of the shear components are 

processed. This is the so-called Von Mises yielding criterion which is favorable to use with ductile 

materials as steel. It holds: 

    
 

√ 
√(       )

 
 (       )

 
          

   (           )
 
 

For combination of shear and bending moment stresses valid for the stated model it holds: 

    √        

8.4.1 Flange 
The maximal Von Mises stress in the middle of the flange at              is compared for both 

models with the reference model. The relative error is presented in table 8-4: 

 Reference Model 1 Model2 

    11,8781 11,5985 11,8583 

Error 0% 2,4% 0,2% 

Table 8-4: Von Mises yielding criterion flange 

8.4.2 Rounded corners  
The rounded corners are modeled with Solid186 Prism 20-nodes elements. In each model the 

number of elements is increased and the Von Mises values are noted. The Error is presented in table 

8-5: 

 Reference Model 1 Model 2 

VM 10,6660 10,5020 10,6590 

Error 0% 1,53% 0,06% 

Table 8-5: Von Mises yielding criterion curvatur 

Figure 8-9: Von Mises stresses at        
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8.5 Number of elements 

8.5.1 Web 
As for the web of the HE300A section, it is noticed that with      and      the maximal shear 

force can be approximated with error of 0.6%. The required number of elements for error with upper 

value of 1% is 6. This valid for  
  

 

  
=0.167. The relative error with respect to the web dimensions and 

the number of elements is  given in figure 8-10: 

 

 

 

 

 

 

 

 

8.5.2 Flange 
Although the flanges are not experience the maximal shear stress and the fact  that the structural 

engineer will prefer to use the maximum shear value at the web in order to meet the Ultimate Limit 

State requirement, modeling the flange will be necessary for analyzing the shear failure of the beam. 

Therefore, it is important to be able to approach the maximum stress value at the flanges as accurate 

as possible. (Figure 8-11)      

 

  

Error of 4.2% will be achieved with          for HE300A section 
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Figure 8-10:    error 
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The error of the maximal stress in the flange according to Von Mises criteria is present in figure 9-12. 

It is remarkable that by applying Von-Mises the error of is dramatically decreased. It might be more 

convenient to determine the required number of elements in the flange with the Von Mises 

approach. 

 

 

 

 

 

 

 

 

 

 

8.5.3 Rounded corners 
With the criterion of Von Mises, the critical stresses in each of the models are compared for the 

rounded corners of the HE300A section. As expected, there is relation between the number of Prism 

elements in the corners to the error (table 8-6) .With only 3 Prism elements on an area of         

error of 1.5% is observed. 

  Model 3(Ref) Model 2 Model 1 

VM 10,666 10,659 10,5023 

Element          11 5 3 

Error 0% 0,06% 1,5% 

        Table 8-6: Von-Mises error for rounded corners 

A conclusion regarding this comparison might be that 3 elements are sufficient for radius of 27mm. 

Yet modeling an area with only 3 elements will change the shape of the rounded corners and as 

result the cross-sectional properties will be changed. Therefore it is recommended for each stated 

section to model the rounded corners with the minimal number of element required to model the 

corners without damaging the shape of it. (Figure 8-13 and Figure 8-14) 
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Figure 8-12: Von Mises error flange peak stress region 

Figure 8-13: 3 Prism 
elements 

Figure 8-14: 11 Prism elements 
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8.6 Conclusion shear stress  
During the FEA of fixed beam subjected to shear force, the cross-sectional shear stress components 

have been successfully modeled in ANSYS. The stresses showed similar distribution according to the 

theory. The maximal shear stress at the web of the cross-section was relative easy to approach with 

the first coarse model. However the stresses at the flanges and at the rounded corners needed a 

finer model to understand the change in accuracy due to discrete number of elements in the width of 

the flanges. In addition the Von Mises criterion has been applied in the search for the error in the 

middle of the flanges and the error in the rounded corners. The following mesh should be applied: 

 Required mesh at the web concerning       for        

 

  
 

  
 

Error [%] 

  ⁄  0.6 
   ⁄  0.09 
   ⁄     

                                                               Table 8-7: Solid186 mesh design table for      

 Required mesh  at the flange concerning          and         for         

 

 

  
  

      
 

              

[%] 

          
[%] 

   ⁄  12.4 2.35 
   ⁄  4.2 0.17 
   ⁄        

                                      Table 8-8: Solid186 mesh design table for error         

Please note, the errors registered in the table 8-7 and table 8-8 related to the maximal possible error. 

For example: Given HE300 cross-section subjected to shear force within the linear elastic stress 

distribution phase. The required error is 1%. Therefore the mesh using these tables with respect to 

the maximal stress will be: 

                
  

 

  
 

 

 
    

                  

                   
  

  

      
 

 

  
     

                      

 

 

 

  

The stresses at the flange are not the maximal stress value and therefore the most 

course mesh density has been chosen for the flanges. In addition according to the 

meshing method in         the peak region enclosed by nodes 5,6,7 and 8 in figure 9-15 

would be:    
  

        and    
  

       . As for the rounded corners three 

elements as given in figure 9-16 are sufficient according to table 9-5. 

 

 

Figure 8-15:Peak 

Figure 8-16 
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9. Torsion  
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

The 3D FEA torsion model of the HE300A section is presented in figure 9-1.. In        , the ideal 

length of the beam subjected to torsion load have been founded  according to the theory of Valsov. 

The FEA beam model carried out in ANSYS will has to be long enough to omit the warping resistance 

and irregularities concerning the boundary conditions and the concentrated forces. Cross-section 

halfway the beam length should meet these requirements. Therefore, in this FEA-model the length is 

increased from         to        to ensure the reliability of the results.  In    ,the rectangular 

beam subjected to torsion have been modeled in ANSYS and compared with the torsion table values. 

Table values however, do not exist for HE sections. Therefore,  

 

 

 

 

 

        

         

       
 

   
 

      

            

       

 

Figure 9-1: The torsion FEA model 

in this analysis reference model will be used. From the 

literature it’s well known that HE or I-sections are 

inefficient in carrying torsion. Basic principles known from 

earlier researches, is that the mesh density for torsion 

models are finer than mesh density for shear or bending 

models. Thus, in this chapter new reference model has 

been added with a fine mesh. According to the theory, the 

torsion stresses are extreme at the outer fiber for an open 

cross-section. Therefore in an open cross-section like the 

HE300A the stresses will be measured in the nodes located 

at the outer fiber.  

 

Figure 9-2: Torsion stresses 

http://en.wikipedia.org/wiki/Torsion_%28mechanics%29
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9.1 The FEA models 
During the research, the need to refine the mesh occurs  several of times. This results in additional 

models comparing with the other loading cases. The models in table 9-1 presented from the coarse 

to the fine mesh: 

Torsion FEA models flange DOF’s  web DOF’s  Corners DOF’s  Total DOF’s 

Model 1 351 129 33 963 
Model 2 543 225 33 1443 
Model 3 747 369 36 2007 
Model 4 1497 507 69 3777 
Model 5 (Ref) 3399 1821 126 9123 

            Table 9-1: Torsion FEA models  

Models 1 and 2 are already introduced in     . Model 4 was the reference model in    and    . 

Models 3 and 5 are new models and therefore will be introduced in the next paragraph.  

9.1.1 Model 3 (2007 DOF’s) 

 

 

 

 

 

 

 

 

 
 

 

                                                           
                  

              

                                                        
  

                
  

            

      
  

                              
  

                        
 

                    
 

          

     

  

Figure 9-2: Cross-section model 3 
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9.1.2 Model 5 (9123 DOF’s) 
 

 

 

 

 

 
 

 

 

 

 

 

                                                        
                   

            

                                                     
  

                     
  

           

      
  

                           
  

                       
 

                    
 

         

      

  

Figure 9-3: Cross-section reference model  
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9.2 Torsion stresses distribution 

9.2.1 Evaluating results 
The finite element analysis is carried out in ANSYS. The contour plots for Model 5(Ref) concerning 

both stress components are given bellow in figure 9-3 and figure 9-4: 

 

 

 

. 

 

 

 

 

 

 From the theory it is known that torsion stresses are proportional to the thickness of the open cross-

section. As for the HE300A section, the flanges are      thick while the web is       thick. 

Therefore, the largest stresses are expected in the outer line of the flanges. This can be confirmed by 

the contour plot of figure 9-4 and figure 9-5 where the maximal shear stresses are registered at the 

flanges outer line, in accordance with the theory. These stress peaks at the middle of the flange will 

exhibit the critical stresses in the cross-section. In addition just like mentioned before in       there 

are peak stresses at the rounded corners. These stresses are combination of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9-3 : XY contour plot for model 5 Figure 9-4: XZ contour plot for model 5 

 

the    and the    stress components. In figure 9-5 and figure 9-6 the 

contour lines indicating peak stresses at the top of the flange and at the 

rounded corners. It is noticed that the rounded corners experiences peak 

stresses also due to shear force (figure 9-7). Combining these results 

concludes that the rounded corners are certainly an critical point in the 

section where a mesh with high accuracy should be used. A possible 

question arises while observing the contour lines, how many elements in 

the peak regions will be sufficient to be able to approximate the stresses 

with high accuracy?  and is it reliable to address each stress component 

separately in a region where those two stress components are present?  To 

answer the second question an additional method to observe the stresses 

will be checked. Reasonable method concerning steel construction is 

suggested by Von-Mises.  Applying the Von Mises stress criteria to estimate 

the accuracy of the peak stresses will be suitable, since it plots both stress 

components together. In the search for the optimal mesh density in the 

discrete beam  the number of elements in the flange, web and in the 

rounded corners according to the Von-Mises yielding criterion will be 

therefore used.  

Figure 9-5: Torsion XY 
Peak 

Figure 9-6:Torsion  XZ 
peak 

Figure 9-7: XZ shear peak 



82 
 

. But beforehand, the stresses solutions of the five models will be plotted in a diagram representing 

the nodal stress values along the web and along the flange of the cross-section. The stress values 

regarding cross-section at the middle of the beam. Due to symmetry figure 9-7 will present the XZ 

stress components of the left side of the upper flange. 

 

 

 

 

 

  

 

 

 

 

 Looking at the maximal stress values of each model amplifies the relation between the number of 

elements in the width of the flange and the on the accuracy of the results. This relation will be later 

on established in the conclusion. In figure 9-7 the maximal stress of 188N/mm^2  is watched  in the  
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Figure 9-7: XZ stress distribution for the left side of the upper flange 
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middle of the flange at Z=0 for the reference mesh. The 

coarser meshes are approaching this value as the mesh 

will become denser. Figure 9-8 gives the XY stress 

component for the upper half of the web. It is noticed 

that the stresses at the web are approximately one 

third from the maximal stresses at the flanges. Nearby 

the rounded corners the XY stresses are maximal. It is 

remarkable that the number of elements in the height 

of the web    having almost no influence on the stress 

values. Good results can be achieved already with the 

first model, with     . The critical point in this 

diagram is at      , where the stresses deviate from 

each other even when finer mesh is applied . This 

problem will be solved with the help of the Von Mises 

criterion in the next paragraph.  

 

Figure 9-8: XY stresses distribution for the upper half 
of the web  
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9.2.2 Von Mises 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Von Mises yield criterion introduced in      for the shear loading case is favourable to use in the 

case of torsion of steel. In figure 9-9 the Von Mises equivalent stresses are plotted in for a cross-

section halfway the beam length. Comparing with the contour plot in      , this contour plot offers   

 

 

 

 

 

  

a straight forward method to observe the stresses in the entire cross-

section. The contour lines at the flange-web connection indicate that 

the stresses in the top of the flange and in the rounded corners are 

more or less the same. This can be also explained by applying the 

Membrane analogy by Ludwig Prandtl. It describes the proportions 

between the torsion stresses and the slope of a soap film of non-circle 

cross-sections. The slope at these locations will then have to be more 

or less the same. Thus, while testing the HE/I member subjected to 

torsion load in the Ultimate Limit State approaching the exact stresses 

values in these stated peak regions will be essential. The failure 

mechanism will probably occur due to yielding of these peak regions.  

The data obtained from the Von Mises contour plot will be processed 

and evaluated in the next paragraph regarding the required mesh 

refinement. 

Figure 9-9: Von-Mises plot contour at       

Figure 9-10: Peak 
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9.3 Number of elements 

9.3.1 Flange 
In relation to the required number of elements with respect to the accuracy obtained by the mesh 

figure 9-11 is given. The diagram shows the deviation of  the maximal stress value at the middle of 

the flange for each model. 

 

                      Figure 9-11: Error as function of the total DOF for the maximal stress 

Looking at the distribution of error versus the cross-sectional degrees of freedom suggest that  the 

error goes to infinity, or at least to real large value for a coarser model than the Model 1  
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  (936 DOF). It also seems that the Von-Mises 

and the XZ stress components behave the 

same. This confirms that the founded error 

distribution is correct. To determine the 

required number of elements in the flanges 

the following ratios:  
  

  

   
  and 

  
  

   
  are 

processed in the x-axis of figure 9-12 and 

figure 9-13. For example: according to the 

graphs, error smaller than 10% for HE300A 

would be achieved with 18 elements in the 

width and 3 elements in the height of the 

flange. Remarkable is that the torsion load 

requires the largest number of elements and 

therefore it represent the critical number of 

elements required to model a HE section. The 

actual mesh of a beam subjected to 

combination load of shear, normal, bending 

and torsion load will follow the mesh 

recommended in the Mesh design tables in 

the conclusion 

Figure 9-12: Relative error flange 

Figure 9-13: Relative error flange 
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9.3.2 Rounded corners 
 

 

 

 

 

 

 

 

 

9.3.3 Web 
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Considering the web of the cross-section, 

the error versus the DOF’s is plotted. Also 

here the same pattern of accuracy 

occurs. More elements in the web mean 

higher accuracy of the XY stress. The 

slope of the line will be also in this case 

steep from the first until the third model.  

A much smaller slope is watched from 

Model 3, suggesting the use his mesh as 

minimal mesh.  
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The Von-Mises stress accuracy in the 

rounded corners with respect to the 

cross-sectional degrees of freedom is 

plotted in figure 9-14. The slope of the 

error between model 1 and 2 is very 

steep, almost parallel to the y-axis. In the 

second model the slope is smaller 

suggesting that the required mesh should 

be in any case denser than the mesh 

applied in model 2. This mesh consist of 

six Prism elements. 

 

, as mentioned before experience more 

or less the same stresses. Thus, when 

choosing a mesh the rounded corners 

should be also take into account 

Figure 9-14: Von-Mises  

Figure 9-15: Relative error of xy shear stress 
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9.4 Conclusion 
During the FEA of the fixed beam subjected to torsion load, the cross-sectional shear stress 

components have been successfully modeled in ANSYS. The stresses show comparable distribution 

with the theory. The maximal shear stresses at the flanges and at the rounded corners of the cross-

section need relative finer mesh to be able to approach the exact value with an error smaller than 

10%. In addition, the Von Misses criterion has been applied in the search for the error in the middle 

of the flanges and the error in the rounded corners. Engineer may use the suggested design tables to 

mesh HE or I section in finite element software. For each mesh the obtained error is given in order to 

know which safety factors should be applied using each mesh. 

 Required mesh concerning         

 

  
  

   
 

  
  

      
 

Error [%] 

  ⁄     ⁄  14.60 

  ⁄     ⁄  8.45 

  ⁄     ⁄  5.90 

  ⁄     ⁄  3.76 

  ⁄     ⁄     
       Table 9-2: Solid 186 mesh design table for      

 Required mesh concerning          

 

  
 

  
 

  
 

  
 

Error [%] 

  ⁄    ⁄  14.20 

   ⁄    ⁄  7.43 

   ⁄    ⁄  4.50 

   ⁄    ⁄  2.6 

   ⁄    ⁄     
                                                            Table 9-3: Solid186 mesh design table for         

 Required mesh concerning         at the rounded corners 

 

Number of 
Prism 

elements 
      

[%] 

  20.6 

  12.3 

9 7.2 

19    
                                     Table 9-4: Solid186 (Prism) mesh design table for rounded corners for r=27mm 
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Using the design tables above will be explained through an example: given HE300A section subjected 

to torsion moment within the linear elastic stress distribution, without considering the warping 

resistance on the cross-section. The following mesh should be applied in order to achieve an 

accuracy of minimal 10% , regarding only the maximal stress      

                  
  

  

   
 

 

 
  

  
  

      
 

 

  
    

  
          

  
               

              

                      The peak region at the middle of the flanges will be meshed as followed: 

            As mentioned before two is the minimum value for this region 
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10. Conclusions and Recommendations 
In this bachelor thesis a study has been conducted in the search for possibility’s to model rectangular 

beam and HE/I-beams in finite element software like ANSYS. The study has been dived into four 

different phases in order to create a logical working method. Firstly, the fundamental knowledge 

about FEM is studied following by study of the existing theory. Afterwards the database has been 

assembled and finally the results have been evaluated in order to track possible mistakes and vague 

results. This usefully approach is given shortly bellowed: 

 Fundamental knowledge FEM-         

 Structural mechanics theory -    

 Building models and assembling database rectangular beam  -    

 Optimization study rectangular beam-     

 The adaptive mesh refinement method for HE300A section-                

The study has been conducted exclusively for Solid186 elements with 20-nodes where the stresses in 

the nodes are approached with linear elastic numerical FEM.  

Reading results: 

 

The results of the stresses should be measured only in the nodes. The elements stresses are the 

average of the nodal values and hereto less accurate.             

 

Optimization study rectangular beam: 

Nodal stresses due to torsion moment of fixed beam had been analysed. The warping resistance and 

deformation of the flanges is being neglected by taking a cross-section far enough from the disturbed 

zone’s.  In this manner, optimization study has been conducted by changing every possible 

parameter in the search for the correlation between these parameters and the stress values. In this 

parameter study the relation between the element proportion and their quantity has been 

summarized in one final output, Mesh design table for a beam subjected to torsion. This table is 

applicable for beams subjected to all kind of loads. Because it is already discovered in earlier studies 

that torsion moment requires the finest comparison to shear, normal and bending load. Moreover, 

while evaluating the results the efficiency of the mesh has been checked. This by choosing as minimal 

as possible DOF’s with as accurate as possible mesh. Hereby the mesh design table: 
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     EY EZ Error DOF's 

      

6 4 0.1 279 

4 3 0.3 153 

6 3 1.6 219 

4 2 2.7 111 

        

5 3 0.3 186 

6 3 1 219 

5 2 1.3 135 

4 2 1.9 111 

4 3 2.7 153 

      

5 2 0.2 135 

5 3 0.7 186 

4 2 2.7 111 

4 3 3.2 153 

        

5 2 1.1 135 

5 3 1.4 186 

4 2 2.9 111 

      

5 2 1.6 135 

6 3 1.7 219 

4 2 2.9 111 

4 3 3.2 153 

                       Table 10-1: FEA  mesh design table for rectangular cross-section  

 

Adaptive mesh refinement HE300A beam: 

In compered with the previous described optimization study, analysing the stresses in HE section has 

been done with the adaptive refinement working method. In this way, initially a beam with coarse 

mesh has been modelled in ANSYS. The stresses at the critical points has been noted an compared 

with an reference value. If a large deviation is noticed a second model has been introduced, and so 

on. During this analysis the beam was loaded with bending force, shear force and torsion force. 

Hereby is a summary of the study concerning the HE300A section: 

Bending moment: 

 For bending moment an coarse model is sufficient to approach the maximal normal bending 

stress at the flanges.  

Shear: 

 Applying shear load on the beam reveal peak stresses at the middle of the web. These 

stresses can be also approached by coarse mesh at the web of the section. 

 Moreover, peak stresses due to shear load have been noticed at the rounded corners and at 

the middle of the flanges.  
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 The peak stresses due to shear load at the top of the flange are approximately four times 

smaller than the stress at the web, while the peak stresses at the rounded corners are 

approximately the half from the maximal stress at the web. 

 A coarse mesh is sufficient to approach the maximal stress at the web 

 A finer mesh is required to approach the peak stresses at the middle of the flange and at the 

rounded corners. 

Torsion: 

 An finer mesh comparing with the other loads is required to approach the stresses values 

with high accuracy. 

 The peak stresses are noticed, just like by the shear load, at the rounded corners and at the 

middle of the flange. 

Comparing the results of these loading cases imply the following recommendations applying for all 

loading cases: 

 Rounded corners should be meshed with a fine mesh 

 The middle of the flange should be meshed with a finer mesh comparing to the sides of the 

flanges 

 The web can be meshed with relative coarse mesh 

 

 

 

 

 

 

 

                             

    

 

 

 

 

 

 

 

 

Area Description  Mesh 

1,2,6,7 and 3, 4, 8, 5: Flanges coarse 
5, 6, 7, 8 Peak zone fine 
17,5,22 and 6,16,23 Rounded corners fine 
5, 6, 10, 11 Web coarse 
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Finally, the mesh design tables for each loading case are given: 

Bending moment: 

  
 

  
 

  
  

   
 

      

   ⁄    ⁄  0% 

   ⁄    ⁄  0.07% 

  ⁄    ⁄  0.6% 

table 10-2: FEA  mesh design table for         

 

                                  
   

  
              

  

  
                                    

Shear: 

 Required mesh at the web concerning       for        

 

  
 

  
 

Error [%] 

  ⁄  0.6 
   ⁄  0.09 
   ⁄     

                                                               Table 8-7: Solid186 mesh design table for      

 Required mesh  at the flange concerning          and         for         

 

 

  
  

      
 

              

[%] 

          
[%] 

   ⁄  12.4 2.35 
   ⁄  4.2 0.17 
   ⁄        

                                      Table 8-8: Solid186 mesh design table for error         

Number of Prism elements Error 

3 1.5 

5 0.06 

11    
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Torsion: 

 Required mesh concerning         

 

  
  

   
 

  
  

      
 

Error [%] 

  ⁄     ⁄  14.60 

  ⁄     ⁄  8.45 

  ⁄     ⁄  5.90 

  ⁄     ⁄  3.76 

  ⁄     ⁄     
       Table 9-2: Solid 186 mesh design table for      

 Required mesh concerning          

 

  
 

  
 

  
 

  
 

Error [%] 

  ⁄    ⁄  14.20 

   ⁄    ⁄  7.43 

   ⁄    ⁄  4.50 

   ⁄    ⁄  2.6 

   ⁄    ⁄     
                                                            Table 9-3: Solid186 mesh design table for         

 Required mesh concerning         at the rounded corners 

 

Number of 
Prism 

elements 
      

[%] 

  20.6 

  12.3 

9 7.2 

19    
                                     Table 9-4: Solid186 (Prism) mesh design table for rounded corners for r=27mm 
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A. Appendices: 
 

A.1  Stresses values for rectangular beam subjected to torsion 

A.2  Design tables for rectangular beam subjected to torsion 

A.3  Von Mises stresses of HE300A section 
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A.1 Stresses values for rectangular beam subjected to torsion 

  
   

      
 

  ⁄    
 

2 3 4 5 6 7 8 

 
2 

 
3,9210 4,0719 4,1307 4,1552 4,1668 4,1729 4,1763 

 
3 

 
3,2950 3,4468 3,5147 3,5497 3,5696 3,5814 3,5889 

 
4 

 
3,4342 3,5386 3,5900 3,6175 3,6343 3,6453 3,6528 

   5 
 

3,2930 3,4047 3,4579 3,4854 3,5018 3,5123 3,5195 

 
6 

 
3,3618 3,4720 3,5232 3,5493 3,5644 3,5738 3,5800 

 
7 

 
3,2991 3,4121 3,4644 3,4914 3,5071 3,5168 3,5233 

 
8 

 
3,3391 3,4511 3,5024 3,5290 3,5443 3,5539 3,5602 

  
   

      
 

  ⁄      
 

2 3 4 5 6 7 8 

 
2 

 
7,8299 7,8754 7,8897 7,8923 7,8922 7,8916 7,8910 

 
3 

 
6,6769 6,7913 6,8399 6,8609 6,8711 6,8763 6,8789 

   4 
 

6,7196 6,7790 6,8133 6,8328 6,8445 6,8515 6,8559 

 
5 

 
6,5067 6,5738 6,6081 6,6270 6,6387 6,6463 6,6515 

 
6 

 
6,5973 6,6601 6,6892 6,7040 6,7127 6,7184 6,7225 

 
7 

 
6,5038 6,5727 6,6045 6,6206 6,6298 6,6357 6,6397 

 
8 

 
6,5608 6,6272 6,6574 6,6728 6,6816 6,6872 6,6908 

  
   

      
 

  ⁄    
 

2 3 4 5 6 7 8 

 
2 

 
6,0577 6,0503 6,0456 6,0416 6,0389 6,0370 6,0358 

   3 
 

5,2441 5,2921 5,3114 5,3182 5,3207 5,3215 5,3216 

 
4 

 
5,1581 5,1846 5,2006 5,2092 5,2139 5,2164 5,2178 

 
5 

 
5,0282 5,0552 5,0702 5,0789 5,0843 5,0878 5,0902 

 
6 

 
5,0745 5,0975 5,1080 5,1137 5,1174 5,1200 5,1220 

 
7 

 
5,0189 5,0456 5,0578 5,0641 5,0678 5,0703 5,0720 

 
8 

 
5,0511 5,0766 5,0880 5,0938 5,0972 5,0993 5,1007 

  
   

      
 

  ⁄      
 

2 3 4 5 6 7 8 

 
2 

 
4,6477 4,6277 4,6193 4,6148 4,6122 4,6106 4,6095 

 
3 

 
4,1119 4,1265 4,1315 4,1319 4,1313 4,1305 4,1298 

   4 
 

3,9448 3,9592 3,9671 3,9704 3,9718 3,9723 3,9723 

 
5 

 
3,8723 3,8841 3,8910 3,8951 3,8975 3,8990 3,8998 

 
6 

 
3,8885 3,8964 3,8998 3,9022 3,9039 3,9053 3,9063 

 
7 

 
3,8597 3,8693 3,8735 3,8758 3,8773 3,8785 3,8793 

 
8 

 
3,8749 3,8842 3,8880 3,8900 3,8912 3,8920 3,8925 

  
   

      
 

  ⁄    
 

2 3 4 5 6 7 8 

   2 
 

3,7173 3,7001 3,6933 3,6899 3,6881 3,6869 3,6863 

 
3 

 
3,3650 3,3661 3,3655 3,3638 3,3624 3,3613 3,3605 

 
4 

 
3,1671 3,1770 3,1814 3,1826 3,1828 3,1825 3,1821 

 
5 

 
3,1237 3,1311 3,1352 3,1374 3,1386 3,1392 3,1395 

 
6 

 
3,1250 3,1287 3,1303 3,1318 3,1329 3,1337 3,1344 

 
7 

 
3,1104 3,1147 3,1163 3,1175 3,1184 3,1190 3,1195 

 
8 

 
3,1172 3,1214 3,1229 3,1237 3,1242 3,1246 3,1249 

Table A-1:     stresses values for M=20e6 Nmm 
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  ⁄    

 
2 3 4 5 6 7 8 

   2 
 

3,9210 3,2950 3,4342 3,2930 3,3618 3,2991 3,3391 

 
3 

 
4,0719 3,4468 3,5386 3,4047 3,4720 3,4121 3,4511 

 
4 

 
4,1307 3,5147 3,5900 3,4579 3,5232 3,4644 3,5024 

 
5 

 
4,1552 3,5498 3,6175 3,4854 3,5493 3,4914 3,5290 

 
6 

 
4,1668 3,4720 3,6343 3,5018 3,5644 3,5071 3,5443 

 
7 

 
4,1729 3,5814 3,6453 3,5123 3,5738 3,5168 3,5539 

 
8 

 
4,1763 3,5889 3,6528 3,5195 3,5800 3,5233 3,5602 

  
   

      

 
  ⁄      

 
2 3 4 5 6 7 8 

   2 
 

5,4787 4,6110 4,9108 4,6907 4,8070 4,7087 4,7729 

 
3 

 
6,0394 5,0651 5,2915 5,0683 5,1851 5,0845 5,1510 

 
4 

 
6,2776 5,2806 5,4786 5,2561 5,3708 5,2703 5,3357 

 
5 

 
6,3991 5,4032 5,5778 5,3572 5,4706 5,3712 5,4361 

 
6 

 
6,4662 5,4778 5,6378 5,4181 5,5304 5,2703 5,4963 

 
7 

 
6,5054 5,5259 5,6770 5,4573 5,5686 5,4708 5,5348 

 
8 

 
6,5294 5,5583 5,7043 5,4841 5,5944 5,4971 5,5608 

  
   

      

 
  ⁄    

 
2 3 4 5 6 7 8 

   2 
 

3,6346 3,0763 3,3053 3,1562 3,2400 3,1728 3,2181 

 
3 

 
4,1558 3,4779 3,6584 3,4982 3,5828 3,5107 3,5585 

 
4 

 
4,3874 3,6778 3,8413 3,6792 3,7633 3,6901 3,7378 

 
5 

 
4,5165 3,7973 3,9418 3,7808 3,8639 3,7912 3,8386 

 
6 

 
4,5920 3,8722 4,0034 3,8434 3,9259 3,8537 3,9008 

 
7 

 
4,6384 3,9219 4,0437 3,8844 3,9663 3,8946 3,9415 

 
8 

 
4,6680 3,9564 4,0718 3,9126 3,9939 3,9227 3,9693 

  
   

      

 
  ⁄      

 
2 3 4 5 6 7 8 

   2 
 

2,4282 2,0728 2,2473 2,1470 2,2086 2,1627 2,1953 

 
3 

 
2,8837 2,4116 2,5535 2,4382 2,4998 2,4479 2,4824 

 
4 

 
3,0982 2,5919 2,7258 2,6067 2,6692 2,6155 2,6506 

 
5 

 
3,2288 2,7057 2,8258 2,7064 2,7683 2,7144 2,7495 

 
6 

 
3,3093 2,7794 2,8886 2,7698 2,8312 2,7775 2,8125 

 
7 

 
3,3612 2,8298 2,9304 2,8122 2,8732 2,8198 2,8547 

 
8 

 
3,3959 2,8656 2,9596 2,8418 2,9025 2,8494 2,8841 

         

  
   

      

 
  ⁄    

 
2 3 4 5 6 7 8 

   2 
 

1,7540 1,5107 1,6505 1,5782 1,6267 1,5931 1,6184 

 
3 

 
2,1455 1,7952 1,9109 1,8229 1,8706 1,8310 1,8574 

 
4 

 
2,3408 1,9575 2,0705 1,9778 2,0273 1,9855 2,0130 

 
5 

 
2,4685 2,0650 2,1683 2,0741 2,1233 2,0809 2,1086 

 
6 

 
2,5503 2,1366 2,2315 2,1371 2,1860 2,1435 2,1712 

 
7 

 
2,6052 2,1867 2,2742 2,1802 2,2288 2,1864 2,2140 

 
8 

 
2,6431 2,2230 2,3045 2,2109 2,2592 2,2170 2,2445 

Table ‎0A-2: :     stresses values for M=20e6 Nmm 
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A.2 Design tables for rectangular beam subjected to torsion 

The following tables can be applied to calculate a rectangular beam in ANSYS. The tables are 

computed with the following parameters: 

  

 
 

 

   
               

 

   
                  

The tables are computed for the Ultimate limit state, apply only for the maximal shear tress 

component. 

 

 

 
EY EZ ERROR DOF's EY EZ ERROR DOF's 

 
8 5 0 441 3 6 1,2 219 

 
7 8 0,1 597 6 7 1,3 459 

 
6 4 0,1 279 6 8 1,5 519 

 
5 8 0,2 441 3 7 1,5 252 

 
7 7 0,3 528 6 3 1,6 219 

 
4 3 0,3 153 4 4 1,7 195 

 
5 7 0,4 390 3 8 1,7 285 

 
3 4 0,4 153 7 4 1,8 321 

 
8 6 0,5 519 5 4 2 237 

 
3 5 0,5 186 8 3 2,2 285 

 
6 5 0,6 339 3 3 2,3 120 

 
7 6 0,6 459 4 5 2,5 237 

 
5 6 0,7 339 4 6 2,9 279 

 
8 4 0,7 363 

    

 
8 7 0,7 597 

    

 
8 8 0,9 675 

    

 
6 6 1 399 

    

 
7 5 1 390 

    

 
5 5 1,2 288 

    Table A-3: Increasing of the error for       
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EY EZ ERROR DOF EY EZ ERROR DOF 

6 2 0,1 159 6 3 1 219 

5 4 0,2 237 8 5 1,2 441 

7 4 0,2 321 8 6 1,3 519 

5 3 0,3 186 5 2 1,3 135 

7 3 0,3 252 3 2 1,3 87 

7 5 0,4 390 6 4 1,4 279 

8 2 0,5 207 8 7 1,4 597 

8 3 0,5 285 7 2 1,4 183 

5 5 0,5 288 8 8 1,5 675 

7 6 0,6 459 6 5 1,7 339 

7 7 0,6 528 6 6 1,8 399 

5 6 0,7 339 6 7 1,9 459 

7 8 0,7 597 6 8 1,9 519 

5 7 0,8 390 4 2 1,9 111 

5 8 0,9 441 3 2 2,7 87 

8 4 1 363 3 3 2,9 120 

                                                      Table A-4 : Increasing of the error for         

 

EY EZ ERROR DOF EY EZ ERROR DOF 

7 2 0 183 8 6 1,3 519 

5 2 0,2 135 8 7 1,3 597 

7 3 0,5 252 5 8 1,4 441 

8 2 0,6 207 8 5 1,4 441 

7 4 0,7 321 8 6 1,5 519 

5 3 0,7 186 6 3 1,5 219 

7 5 0,9 390 8 7 1,6 597 

7 6 0,9 459 8 8 1,6 675 

7 7 1,0 528 6 4 1,7 279 

7 8 1,0 597 6 5 1,8 339 

5 4 1,0 237 6 6 1,9 399 

8 3 1,1 285 6 7 2 459 

6 2 1,1 159 6 8 2 519 

5 5 1,2 288 4 2 2,7 111 

8 4 1,3 363 
                                                         Table A-5: : Increasing of the error for       
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EY EZ ERROR DOF EY EZ ERROR DOF 

7 2 0,7 183 5 4 1,5 237 

7 3 1 252 8 7 1,6 597 

7 4 1,1 321 8 8 1,6 675 

7 5 1,1 390 5 5 1,6 288 

8 2 1,1 207 6 3 1,7 219 

5 2 1,1 135 5 6 1,7 339 

7 6 1,2 459 5 7 1,7 390 

7 7 1,2 528 6 4 1,8 279 

7 8 1,2 597 6 5 1,8 339 

8 3 1,4 285 5 8 1,8 441 

5 3 1,4 186 6 6 1,9 399 

8 4 1,5 363 6 7 1,9 459 

8 5 1,5 441 6 8 1,9 519 

8 6 1,5 519 4 2 2,9 111 

6 2 1,5 159 
                                                           Table A-6: : Increasing of the error for         

 

EY EZ ERROR DOF EY EZ ERROR DOF 

7 2 1,1 183 5 2 1,6 135 

7 3 1,3 252 6 3 1,7 219 

7 4 1,3 321 6 4 1,8 279 

7 5 1,4 390 6 5 1,8 339 

7 6 1,4 459 6 6 1,8 399 

7 7 1,4 528 5 3 1,8 186 

7 8 1,4 597 5 4 1,9 237 

8 2 1,4 207 6 7 1,9 459 

8 3 1,5 285 6 8 1,9 519 

8 4 1,5 363 5 5 2 288 

8 5 1,6 441 5 6 2 339 

8 6 1,6 519 5 7 2 390 

8 7 1,6 597 5 8 2 441 

8 8 1,6 675 4 2 2,9 111 

6 2 1,6 159 
                                                                    Table A-7: Increasing of the error for       
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A.3 Von Mises stresses of HE300A section 

As for the HE300A cross-section the Von-Mises stress criterion are given in the tables for an cross-

section with the origin in the centre of gravity.  The Y and Z coordinate are applied for for a cross-

section located at x=L/2. The beam is subjected to torsion moment of          . The following 

parameters have been used to compute the data: 

                                        

 

 

 

 

 

 

 

 

 
 
 
 
          963 DOF’s) 

Y Z  Flange [N/mm2] 

145 31,25  219,83 

145 4,25  267,4 

145 0  282,5 

Y Z  rounded corners [N/mm2] 

131 31,25  215,412 

127,3 17,75  269,86 

117,5 7,86  275 

108 4,25  201 
Table A-8: Von-Mises 

  

Figure A-1: HE300A  
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          1443 DOF’s) 

Y Z Flange [N/mm2] 

145 31,25 212,723 

145 17,75 257,07 

145 4,25 294,17 

145 0 304,849 

Y Z rounded corners [N/mm2] 

131 31,25 214,7 

129 21 264,8 

123 12 298,3 

114,5 6,3 260,5 

104 4,25 196,5 
Table ‎0A-9: Von-Mises 

 

          2007 DOF’s) 

Y Z Flange [N/mm2] 

145 32,25 216,2 

145 17,75 261,6 

145 4,25 302,405 

145 0 314,6 

Y Z rounded corners [N/mm2] 

131 31,25 219,53 

128,9 20,9 264,3 

123 12 277,285 

114,3 6,3 249,35 

104 4,25 173,95 
Table A-10:Von-Mises 

 

          2007 DOF’s) 

Y Z Flange [N/mm2] 

145 31,25 213,9 

145 22,25 242,4 

145 13,25 282,221 

145 4,25 311,32 

145 1,4 320,75 

Y Z rounded corners [N/mm2] 

131 31,25 211,8 

130 24,2 245,3 

127,4 17,75 289,8 

123 12,1 315,56 

117,5 7,8 287,65 

110 5,17 222,3 

104 4,25 156,38 
Tabel A-11: Von-Mises 
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          9123 DOF’s) 

Y Z 
 

Flange [N/mm2] 

145 25,85 
 

229,43 

145 20,45 
 

251,98 

145 15,05 
 

278,671 

145 9,65 
 

304,65 

145 4,25 
 

321,621 

145 2,125 
 

328 

145 0 
 

329 

Y Z 
 

rounded corners [N/mm2] 

131 31,25 
 

213 

130 27 
 

230 

129 22 
 

261 

128 19 
 

293 

125,8 15 
 

320 

123 12 
 

340 

120 9,4 
 

323 

116 7,2 
 

285 

112 5,57 
 

231 

108 4,25 
 

144 
Table A-12: Von-Mises 
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