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Abstract 
In the mid-west of Mali, buildings are being realized by Partners Pays-Dogon in collaboration with the 

architectural firm LEVS. These buildings are build using HCEB, these are Hydraulic Compressed Earth 

Blocks, made of local material. The importance of using these bricks is that they are low in costs and better 

for the environment. Only the constructional properties of this material are less known and therefore 

there are no design rules that can guarantee the strength and stability of buildings with this material. 

This bachelor thesis deals with creating design rules for a corbelled dome. A corbelled dome is a dome 

build by stacking the bricks horizontally on top of each other, unlike an ordinary dome in which the bricks 

are stacked with an angle increment. A few geometric boundaries have been drawn up that must be met. 

By complying with these boundaries, the strength and stability of the dome are guaranteed. Also, the 

dome complies with the NEN. 

The corbelled dome is designed for two stress boundaries; No tensile membrane stresses may occur, and 

the shear strength must be higher than the shear stresses. 

A relationship has been found between the base angle φ and the base radius r. The design rules are shown 

below: 

- Maximal base angle φ is 60° 

- 
𝑟

(𝑠𝑖𝑛𝜙−𝑠𝑖𝑛15)  
< 4.11 

A maximal base radius 𝑟 can be found by combining these two design rules. The maximal base radius is 

2.50 m, and the total span is 5.00m 
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Introduction 
Over the past decade Partners Pays-Dogon, in collaboration with the architectural firm LEVS, has realized 
several education buildings in the mid-west of Mali for the Dagon people. A number of these building 
projects use HCEB (Hydraulic compressed earth blocks) as a building material. Some roofs have already 
been realized using HCEB. These roofs have a corbelled dome construction. 
 
These HCEB bricks can be made from local material, which results in lower construction costs due to less 
use of cement and steel, which is also better for the environment. A roof made of HCEB performs better 
in terms of thermal insulation. People are also less dependent on materials that must be supplied. Besides, 
no framework is required when making a corbelled dome, unlike normal domes. The advantage of a dome 
over a flat roof made of concrete slabs is that larger spans can be achieved. With large spans, the concrete 
slabs become thicker resulting in a high own weight. This creates a higher load on the underlying 
construction. 
 

1.1 Problem 
In the design of the dome construction for the roof, little attention has been paid to the load-bearing 
system. The physics underlying the corbelled dome is not well known yet, especially in combination with 
the HCEB. The corbelled domes that have been made during these building projects are designed to be 
safe, using small spans. The problem is that there is no standard design that can be used for all spans, so 
every time a new design must be developed.   
 

1.2 Goal 
The object of this report is to set up several calculation rules for the design of a load-bearing system using 
a corbelled dome. It must be possible to easily make a roof construction with these calculation rules, 
without having to make a new design. The strength and stability of the dome must be guaranteed by using 
these calculation rules. 
To achieve this goal, the physics background of corbelled domes must be studied. Analytical of the 
geometry. To achieve this, a literature study will be conducted first, after which the theory will be applied 
to find an optimal design. 
The design of the domes must be suitable for buildings made of HCEB in Mali with a maximum of two 
building layers and where the domes span a maximum of 10 m. These domes must comply with the Dutch 
Eurocode about masonry. Hardly any earthquakes occur in Mali, so they are not included in the design. 
 

1.3 Research questions 
Mean question: 
What is the geometry of a corbelled dome made of HCEB with varying span where strength requirements 
are met and that satisfies the NEN. How can this be presented in the form of calculation rules or a design 
table? 
 
Sub-questions: 
To answer the main question, it will be supplemented with a few sub-questions. The sub-questions can be 
divided into two groups. The first group of sub-questions can be answered through a literature study and 
the second group of sub-questions will be elaborated using a design procedure. 
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Literature study: 
1. What are the mechanical principles of a shell structure? How can these principles be applied to a 

masonry dome? 
2. What are the differences between a corbelled dome and an ordinary dome? 
3. What are the properties of the HCEB, and which standards and safety margins must be met? 
4. How is the shape of a corbelled dome mathematically described? 

 
Design: 

5. What is the optimal shape for a corbelled dome that can be easily scaled?  
6. What forces act on the structure besides its weight? How are these forces transferred and where 

do the biggest stresses occur?  
7. What is the largest span that can be realized? 
8. How are the geometrical parameters, such as the height and the distance between the bricks, 

related to the span? 
 
To find an answer to the mean question, the sub-questions are divides into chapters. First, in Chapter 2 
some information is given about corbelled dome and their history. Thereafter, the mechanical behavior of 
shell structures is studied in Chapter 3 and in Chapter 4 the corbelling theory is investigated. In Chapter 5, 
the loads acting on the dome are defined, followed by Chapter 6 giving the masonry properties. A 
mathematical shape for the dome is described in Chapter 7 and in Chapter 8 the dimension boundaries 
are found for the dome. Chapter 9 gives the resulting maximal span for a corbelled dome. Chapter 10 
describes some solutions for the trust forces and in Chapter 11 a conclusion is given. 
 

  



3 
 

2. Corbelled dome 

2.1 Definition 
A corbelled dome is made of horizontal stone elements that are cantilevering towards the center of the 
dome. The corbelled dome is a corbelled arch extended in three dimensions. Making a corbelled dome 
requires simple techniques and does not need a temporary supporting structure like building an ordinary 
dome. The corbelled dome has not the same structural behavior as an ordinary dome, which is based on 
a tension line. The corbelled dome is therefore also called ‘false vault’. (Foti P, 2017) (Fraddosio A, 2019) 
 

2.2 History 
Early on, people in many different countries realized that corbelled domes and corbelled arches were good 

constructions to easily build all kinds of buildings and bridges. The use of the corbelled principle in contrast 

to the original arches was widely used by all kinds of peoples. Following is a timeline of places that used 

corbelled domes. A few well-known corbelled domes from history are further explained below. 

Timeline 
• The oldest corbelled domes have been found in Ireland and date from the period 3200 - 2500 BC. 

But also, later, around the early Middle Ages, corbelled domes were built. The so-called beehive 

huts were used by monks as homes. In Ireland, the building can have different shapes. For 

example, the more rectangular shaped buildings were used as an oratory. (Stalley, n.d.)  

• The Egyptians used corbelled arches for separating rooms in the construction of the pyramids 

around 2600 BC. They preferred rectangular shapes for which the normal arch was less suitable 

and therefore they used corbelled vaults. Egyptians used large courses for building the domes, as 

they did when building the Pyramids. The builders, therefore, had to understand the force 

distribution because it was accompanied by great forces. In addition to corbelled arches, they also 

used very large angled stones that were placed together to support the load and form an opening. 

(Moyer, n.d.)  

• In today's Syria and Israel, corbelled domes and arches were used as tombs and as homes. Nomads 

made these domes because they followed their grazing flock. In these places, wood is scarce, 

which is the reason for building domes. What makes these domes special is their smooth outer 

surface, due to mortar application. What makes the domes special is the thin shell of the domes. 

(Rovero, 2012) 

• The ancient Greeks built corbelled domes for a long time. From the Mycenean period starting in 

1600 BC until the Hellenistic period in 31 BC. One of the most famous Greek domes is the Treasure 

of Atreus.  

• The Mayan civilization mainly builds corbelled arches, which made them unique. This started 

around 2500 BC, which is the beginning of the Classic period. Many buildings were made with this 

technique, such as gates, temples, and houses. Corbelled vaults were built on pyramids, so they 

represented the surrounding mountains.  These were mainly used as tombs. The Maya 

architecture is known for its elongated low constructions, the opposite of a corbelled arch which 

is most stable when it is high and narrow. Yet this construction technique was often used because 

the dark, narrow spaces gave the feeling of a traditional Maya hut. (Seldom Scene Photography, 

n.d.) (carolinarh, 2017) (FLAAR, 2009) 
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• In India, corbelled arches were first built before switching to real arches. The arches in India are 

unique in that the stones are sawn exactly in such a way that the opening has a special shape. In 

India, people started using this masonry technique around 950 AD. 

 

Famous corbelled domes 

Corbelled Passage of Newgrange 3200 BC, Ireland 

The corbelled vault that is part of the Newgrange, a historical monument in Ireland, is built around 3200 

BC. The Newgrange site consists of an entrance, a 19-meter-long passage, the corbelled vault, and three 

adjacent chambers. The chambers were used as tombs and preserved human bones and grave goods. In 

Newgrange, many stones are engraved with megalithic art. This is a type of art that includes the art that 

has been made by engraving stones during the prehistoric period in Europe(wiki). To this day the hole 

construction is still intact, which is rare compared to other constructions of this age. The Newgrange is one 

of the oldest remaining constructions as it is older than Stonehenge and the Egyptian pyramids. 

(Wikipedia, n.d.) 

Sic meters above the ground floor, the corbelled vault is closed on top by a capstone. The reason why the 

dome is still in a good shape is partly that almost no water can enter the vault. The stones used at the 

outside of the vault are tilted downwards and the outside of the stone vault is surrounded by smaller 

stones, called the cairn. The rainwater will be transported to de cairn, so the vault remains dry. In figure 1 

a cross-section and a plan of Newgrange are shown. (O'Kelly, n.d.) (Morgan, n.d.) 

 

Figure 2.1: Cross-section and plan Newgrange (NEWGRANGE, n.d.)           Figure 2.2: Cross-section Treasure of Atreus (Donaldson) 

Treasury of Atreus 1250 BC 

The Treasury of Atreus has been built around 1250 BC in Mycenae, Greece. It is a pointed dome excavated 

into the side of a hill, served as a tomb. One thing that makes this dome special are the dimensions. The 

diameter and the height of the tomb are slightly less than 15 and 14 meters respectively (Encyclopaedia 

Britannica, n.d.). The dome can be entered by an enormous doorway. The dome was constructed by 

digging a vertical hole in the hill and then making the dome from inside. When the dome was finished the 

vertical hole was refilled. The stones used for the dome were shaped so the internal surface of the dome 

would be smooth, like a true dome. This was done to improve the stability of the vault. It is no true dome, 

as no keystone is used, and the shape of the dome is ogival. To facilitate the force distribution at the 
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position of the entrance a triangular-shaped lintel was used, transporting the weight above the entrance 

to the ground. (Wikipedia, n.d.) 

After a further investigation is found that the stones used for the vault do not lay horizontal. If this is done 

on purpose or that this is due to settlements is unknown. The way the stones are now positioned they can 

follow the trust line better because they are perpendicular to this line. 

It is unclear whether horizontal hoop forces are used in the vault, as 2/3 of the ring is opened to facilitate 

the entrance. The corbelling technique is the main mechanical principle that is used in this dome. The soil 

of the hill surrounding the dome ensures the resisting moment. Figure 2 shows a cross-section of the 

Treasure of Atreus. (Cavanagh, 1981) 
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3. Mechanical behavior shell structure 
A dome is a thin shell construction. A dome transfers external forces through a pressure line to the 

supports, like an arch. A particular feature of a pressure line is that there is always a horizontal and vertical 

support reaction depending on the angle at which the arch arrives and the magnitude of the external load. 

Extra attention should be paid to the horizontal part of the support reaction, as it is much larger compared 

to other constructions that span a ditto distance. This force can be absorbed by a buttress or a tension tie. 

The pressure line follows from the balance of the internal forces in the structure and the external forces 

acting on the structure. The shape of the trust line is like an inverted chain subject to gravity or additional 

external forces. The chain adapts to an external load and because a chain can only absorb tension, the 

reverse chain will only have compressive forces. When the external force only consists of the dead load, 

the top of the arch is in the middle. This results in an optimal shape of the arch, known as a funicular arch.  

If the pressure line goes exactly through the center of the cross-section, only pressure forces will occur. If 

this is not the case and the pressure line goes outside the center of the cross-section, besides a pressure 

force also a moment with the magnitude: 𝑀 = 𝑁 ∗ 𝑒 occurs. When 𝑒 is smaller than 
1

6
𝑡 with t the thickness 

of the cross-section, no tensile forces occur. One does not want tensile forces occurring in the cross-section 

because it cannot be absorbed by the masonry and it causes cracks. Besides, the pressure force increases 

in the remaining cross-section. It is assumed that the masonry can withstand this pressure force and that 

any cracks that may occur are acceptable. Tensile forces are thus allowed in the cross-section and the 

assumption that the pressure line must lie in the cross-section. 

In addition to the forces resulting from the trust lines, domes are subjected to hoop forces or parallel 

forces. These forces ensure that the pressure lines in the individual arch segments remain within the cross-

section of the arch if the arch does not have the same shape as the pressure line. These forces arise from 

the rotation of an arch around a vertical axis and can be transferred to the trust by gravity. A dome can be 

thought of as a series of arch segments that rotated around a center. The forces that arise in the trust line 

in each arch and the combined hoop forces together form a network of compressive and tensile forces 

across the surface of the dome.  

The transfer of forces in a network can be represented with the membrane theory. This theory is based on 

tensile and compressive forces only assuming the dome has no rigidity against bending and torsion. 

Therefore, the membrane theory is simpler than the bending theory. The membrane theory is usually 

applied to thin shells. A shell is a thin shell if the requirement R/t> 20 is met, with R the local radius of 

curvature and t the thickness (Heyman, 1967). In advance of the design of the domes, it is unknown if this 

rule applies to the domes. Bending and torsional moments can arise due to variation in thickness, abrupt 

changes in curvature, or the presence of concentrated loads and near the boundaries.  

In using the membrane theory for domes, assumptions are made: 

- As mentioned earlier, the shell thickness t is negligibly small compared to the radius R. The ratio 

R/t >20 must be satisfied.  

- Strains and displacements arising in the shell are small. 

- The normal stresses σ transverse to the middle surface are small and can be neglected. 

- The shell has a constant thickness t. 
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A shell is described by a surface obtained by rotating a curve around an axis that lies in the plane of the 

curve. The two coordinated associated with the lines of the curve are φ (meridian coordinates) and θ 

(longitude coordinate). A point on the shell is located by these coordinates and a surface element, ABCD 

which is identified by the meridian and parallel increment dφ and dθ. These are all shown in Figure 3.1 

The curvature radii denoted by respectively 𝑟 and  𝑟1 are related to parallel and meridian curves and  𝑟2 is 

the distance between the point and the intersection between the curvature radius and the rotation axis. 

The derivation of the meridian and hoop stresses can be found in Appendix A. 

The formulas for σφ and σθ are shown in Formula 3.1 and 3.2. 

𝜎𝜙 = −
𝐹(𝜙)

2𝜋𝑟𝑠𝑖𝑛 𝜙 𝑡
           [3.1]  

𝜎𝜃 = (−𝑝 cos 𝜙
𝑟

sin 𝜙
+

𝐹(𝜙)

2𝜋𝑟(𝑠𝑖𝑛 𝜙)2 ∗
𝑟

𝑟1
) ∗

1

𝑡
        [3.2] 

 

Figure 3.1 Surface element ABCD (Vittone, 2014) 
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4. Corbelling theory 
In this chapter some information is given about the corbelling theory and if this theory can be used for 

designing the domes. The corbelling theory is used to understand the structural behavior of a corbelled 

dome. This theory assumes that the external forces are only transferred vertically between the horizontally 

lying rings of stones. This means that a trust line with a horizontal component is not assumed, like in 

ordinary domes. The equilibrium analyzes are done by choosing a tipping point and determining the 

resisting and overturning moment for this point.  

By stacking identical stones on top of each other, the shape in Figure 4.1 can be obtained. One assumes 

that the joint center of gravity of the stones above does not lay outside the underlying stone. With this 

method, one finds a curve with the corresponding Formula 4.1. The variables are shown in Figure 4.1 

𝑥 = 𝑛𝑏;     𝑦 =  ∑
𝑐

2𝜂
𝑛
𝜂=1                                                                                                                                           [4.1] 

To obtain a larger span, one can move the center of gravity of the above stones by putting more weight 

on the outside of the arch. The dome at Newgrange and Treasury of Atreus are examples where the 

resisting moment is increased by placing soil on the outside of the dome. (Post, 2020) 

With this method force transfer using shear forces between stones is not considered. It is also important 

to mention that no mortar is used between the stones. The corbelling theory can only be used with 

corbelled arches. Because of the three-dimensional nature of the dome, the internal action between the 

forces in the adjacent arches and the hoop forces resulting in extra strength and stability. 

the modified corbelling theory is an improvement of the original corbelling theory. This theory is made 

specifically for domes, whereby the horizontal interaction between adjacent arches has been included in 

the equilibrium equations. For the equations that could be made, some assumptions are done. Frictionless 

blocks are used, and no mortar was used, so an infinitesimal space between the adjacent layers. The 

equilibrium equations for the resisting and overturning moments are set up for a spherical wedge as shown 

in Figure 4.2 and an extra equation for the interaction between the wedges. The results show that adjacent 

wedges can support each other, so a couple of adjacent wedges can withstand the overturning moment. 

This means that the force interaction between the wedges is essential for corbelled arch wedges to be 

stable (Foti P, 2017). Unfortunately, the corbelling theory cannot be used for designing the domes, as these 

use a mortar and therefore can transfer load also in the horizontal direction, like an ordinary dome. 

 

     

 

  

  
Figure 4.2 Infinitesimal meridian wedge of a dome which equilibrium is 

evaluated by the corbelling theory (Pilade Foti) 

Figure 4.1 Pile of shifted 
blocks  (Hoogenboom P. ) 
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5. Defining loads 
In this chapter the loads acting on the dome are determined. The load combinations are determined based 

on Eurocode 0 and 1. Different load combinations will be drawn up and compared. A distinction is made 

here between permanent and variable load. 

The domes will be part of a residential building and possibly public buildings. The corresponding 

consequence class is CC2 according to the national appendix NEN-EN1990. This consequence class results 

in a factor kfi of 1.0. The domes will only be tested for the ultimate limit state (ULS) and not for the 

serviceability limit state, as the deformations of a dome are negligible due to its shape and absence of 

frequent load combinations. 

The load combinations belonging to the ULS are: 

FC1: 1.35 ∗ 𝐺 + ∑  1.5 ∗ 𝜓0,𝑖 ∗ 𝑄𝑘,𝑖   

FC2: 1.2 ∗ 𝐺 + 1.5 ∗ 𝑄𝑘,1 + ∑  1.5 ∗ 𝜓0,𝑖 ∗ 𝑄𝑘,𝑖 

First, the permanent load will be determined. This consists of the self-weight load of the dome and the 

water-resistant layer. 

 

5.1 Uniform load 

Self-weight masonry 
The unit weight of the masonry is made up of the unit weight of the HCEB bricks, which is 22 kN/m3 and 

the mortar, with a unit weight of 21.25 kN/mA. The dimensions of the HCEB bricks are 295x140x70 mm. 

The horizontal joints are 15mm and the vertical joints are 12 mm. Rounded, this results in a joint unit 

weight of 22 kN/mA. For a first estimate of the thickness of the dome, the length of a brick, 295 mm, is 

assumed. The length of the bricks is used because with a smaller width it is difficult to span a large distance 

without resulting in a large height. This results in a distributed load of G_masonry = 6.5 kN/m2. 

Water-resistant layer 
The water-resistant mortar layer on top of the dome can be made of various materials. The layer that has 

been used for the domes that have been built are made of soil, sand, and lime. The density of such a mortar 

is around 18 kN/mA. The thickness of the mortar is estimated at 70 mm. This results in a distributed load 

of G_mortar= 1.3 kN/m2. 

The total permanent load is G= 7.8 kN/m2 

 

5.2 Concentrated load 
Second, the variable load will be determined. The only variable load that will be considered is a 

concentrated load due to a worker standing on the roof. One position will be investigated, namely a 

concentrated load at the crown of the dome. The magnitude of the concentrated load is Qk = 1.5 kN. This 

force is applied on a surface of 0.1 – 0.1 m2. The simultaneity factor applicable to loads on roofs is                   

𝜓0,𝑖= 0 
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For the variable load, no wind load is considered because it is expected to have a negligible effect on the 

stresses in the dome. This is because the loads due to the dome's weight are large, compared to the loads 

due to wind load. 

 

Now the load combinations can be determined: 

FC1: 1.35*7.8[kN/m2] + 1.5*0*1.5[kN] = 10.5 kN/m2 

FC2: 1.2*7.8 [kN/m2] + 1.5*1.5[kN] = 9.4 kN/m2 + 2.3 kN 
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6. Masonry properties 
Masonry is usually made up of elements joined with mortar. It is an old construction technique that was 

used as far back as 6000 AD. Masonry used to be used in many structures such as bridges, aqueducts, and 

houses. An advantage to masonry is that it can be easily done by hand, hence the name masonry. Also, 

masonry is good for thermal and sound insulation. Due to the high compressive forces that masonry can 

absorb, it is extremely suitable as a load-bearing construction. The brick gives strength to the masonry and 

the mortar creates a bond between the bricks. 

The HCEB bricks used for the dome are the modern version of the ancient adobe bricks, that are molded 

sun-dried earth bricks. By using a compressing machine, the quality and performance of the bricks are 

improved. Many types of compressing machines are designed powered by human or an engine. The main 

difference between the different pressing machines is production speed, dimensions, and compression 

capacity. The machine the HCEB bricks are made with is developed by the Dutch company OSKAM v-f. It is 

a mobile hydraulic press on wheels, which also includes all the machinery for making the blocks. With this 

machine, it is possible to have full production directly on-site, which also can quickly be moved.  

The bricks that are produced using the above-mentioned technique, have varying mechanical properties 

because they strongly depend on the raw earth mixture and the soil type that is used. For load-bearing 

structures, the bricks can be stabilized to ensure the waterproofing properties of the HCEB. This can be 

done by adding lime and cement to the mixture. By testing it is proved that the compressive strength of 

stabilized blocks increased. The dry compressive strength of stabilized HCEB is fb = 9 N/mm2 after curing 

for 28 days.  

A mortar mixture is used to join the blocks together and it gives resistance to lateral forces. It is used in 

horizontal joints to distribute the vertical loads homogenously and making precise horizontal courses. The 

joints prevent air and water from passing through the construction. The mortar used is different from pure 

cement mortar, as this is too brittle. When the mortar used is stronger than the HCEB bricks, the bricks 

can crack due to stresses produced by small displacements of the masonry. This must always be avoided, 

especially in load-bearing constructions. Lime or cement is added to the mortar mix to make it waterproof. 

The compressive strength of the mortar is fm =1 N/mm2. 

 

6.1 Compressive strength 
The compressive strength of the masonry can best be determined by testing several test samples. This is 

often not possible on a construction site, and it also takes time before the samples can be tested. 

Alternatively, the compressive strength can be determined using Formula 6.2 given by Eurocode. (EN1996-

1-1: Formula 9.4.1) 

𝑓𝑘 = 𝐾 ∗ 𝑓𝑏
𝛼 ∗ 𝑓𝑚

𝛽
                                                                             [6.1] 

The constant variables depend on the type of brick and type of mortar and are determined in National 

Annex NB-A of NEN-EN1996-1-1. HCEB blocks are not included in Eurocode, therefore clay bricks with a 

total volume of perforations <25% are assumed. The HCEB bricks are pressed and will therefore contain 

virtually no perforations. This choice results in the following values for the constant variables. K = 0.6, 𝛼 = 

0.65, 𝛽 = 0.25.  
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With Formula 6.2 and the above-mentioned constant variables, compressive strength can be found.  

fk = 2.5 N/mm2.  

For the design of the masonry, the design compressive strength can be calculated with Formula 3 (EN1990: 

formula 9.4.2) 

𝑓𝑑 =
𝑓𝑘

𝜓𝑚
                [6.2] 

For the ultimate limit state, the value of 𝜓𝑚 is given in the Dutch National Annex EN1996-1-1. For 

consequence class CC2 and bricks in category 1, the value of 𝜓𝑚 is 1.7. The bricks are in category 1 if the 

perforation<25%. The design compressive strength of the masonry is 𝑓𝑑  = 1.47 N/mm2. 

For masonry, the tensile strength is assumed to be zero, because bricks and mortar have a minimum tensile 

strength.  

 

6.2 Shear strength 
The shear strength of masonry depends on the applied vertical load and the normal stress that occurs. 

Four failure mechanisms can be distinguished, according to Mann und Muller. First, gaping of the bed 

joints can lead to failure(a). Secondly, the shear strength increases linearly depending on the compressive 

stress. At certain shear stress, the horizontal joints fail(b). Next, diagonal cracks in the bricks can occur due 

to tensile stresses(c). Lastly, the masonry can fail under compression(d). The four mechanisms are shown 

in Figure 6.1. 

 

Figure 6.1: Failure mechanisms (Jäger, 2009) 

The shear strength of the masonry is unknown but can be calculated by Formula 6.3 (EN1996-1-1 formula 

9.4.3). In this formula, the left part represents the failure mechanism a, and the right part presents the 

failure mechanism c.  

𝑓𝑣𝑘 =  𝑓𝑣𝑘𝑜 + 0.4 𝜎𝑑 < 0.065 ∗ 𝑓𝑏                 [6.3] 

𝑓𝑣𝑘𝑜 can be found by defining the environmental class and brick category. The environmental class for this 

type of masonry is MX2, which corresponds to masonry exposed to moisture or water. The  𝑓𝑣𝑘𝑜 is 0.1 

N/mm2 for 𝑓𝑚
 between 1 and 2 N/mm2 from table 5.4 of EN 1996-1-1:2019 (E). The compressive stress 𝜎𝑑 

depends on the vertical force applied to the masonry. This is equal to the vertical component of the 

meridian stress at a certain φ.  

The formula for σd is shown in Formula 7.5. 
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is unknown in advance. The right part of the formula results in and 𝑓𝑣𝑘  less than 0.59 N/mm2. It is assumed 

that 𝑓𝑣𝑘 is smaller than 0.59 N/mm2. 

The design shear strength can be found using Formula 6.4. 

𝑓𝑣𝑑 =
𝑓𝑣𝑘

𝜓𝑚
=

0.1+0.4∗𝜎𝑑 

1.7
              [6.4] 

 

6.3 Critical buckling membrane stresses 
In a thin shell structure, the membrane stress for buckling can be lower than the compressive strength of 

the masonry and therefore be critical. buckling can occur because of irregularities in the masonry. It can 

also arise from deformation, whether initially or over time. Irregular settlement of the support can also 

result in deformations of the support, the eccentricity of loading, temperature stresses, or creep. 

(Hoogenboom D. P., 2020) 

For a dome, the critical membrane stress 𝜎𝑐𝑟 for a base radius 𝑟 > 3.8√𝑎𝑡 is shown in Formula 6.5. It is 

assumed that this condition is met. 

𝜎𝑐𝑟 =
−1

√3(1−𝜈2)

𝐸𝑡2

𝑎
            [6.5] 

No value for the elasticity modulus is given, so an estimation is made. The elasticity modulus 𝐸 of masonry 

is 𝑓𝑘 ∗ 𝐾𝐸, with 𝐾𝐸 is 1000. With 𝑓𝑘  found in Formula 6.1, E is 2500 N/mm2. The Poisson’s ratio for masonry 

is assumed to be 0.25. With Formula 6.5 critical membrane stress 𝜎𝑐𝑟 is −
440∗103

𝑎
 N/mm3. 

Only for large values of a critical buckling strength is smaller than the design compressive strength. 

Buckling will therefore never be normative. 
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7. Modeling dome design 
In this chapter, the various shapes for the dome will be investigated. This dome will all be represented by 

one mathematical shape. It is investigated which shape has the most efficient power distribution and 

which is most suitable for a corbelled dome. For these shapes, formulas are determined to calculate the 

stresses in the domes. The same starting points and boundaries apply to all domes and these are 

formulated below: 

- There are no tensile forces in the dome because they cannot be absorbed by the brickwork. These 

must therefore be circumvented. 

- In the design, no restrictions were placed on the size of the support reactions. 

- A constant thickness t = 0.295 m is assumed 

- The dome is completely closed and has no lantern at the crown. 

 

7.1 Mathematical shape 
The mathematical shape that will be used to present the cross-section of the domes is shown in Figure 7.1. 

Variable 𝑎 represents the transverse radii of curvature, 𝑟 is the radius at the base of the dome, φ is the 

angle belonging to a point on the shell and φ0 is the angle at which the meridian arch intersects with the 

axis of revolution. The symbol t represents the constant thickness of the shell. The relation between 

variables 𝑟, 𝑎, and φ is shown in Formula 7.1. 

This mathematical shape can produce different kinds of dome shapes. For example, with a φ0 is 0° a 

segmental dome is represented, and with a bigger φ0, this results in a pointed dome. The angle φ at the 

base can variate, resulting in the variable height of the dome. Also, the radius 𝑟 can variate resulting in a 

change in the span.  

𝑟 = 𝑎 ∗ (sin 𝜙 − sin 𝜙0)          [7.1]  

 

7.2 Stress analysis 
In Chapter 3 the stresses σφ and σθ are determined for a point in a shell structure using the membrane 

theory. Formulas for the stresses in the mathematical dome shape introduced in section 7.1 are denoted 

in Formula 7.2 and 7.A. The derivation of the formulas is put in Appendix B. In these formulas two parts 

are distinguished. One part belongs to the uniform load corresponding to the self-weight of the dome and 

the second part belongs to a concentrated load at the top of the crown. The values of these loads are 

determined in Chapter 5. 

For a corbelled dome, a third stress is relevant, the shear stress in the horizontal bed joints. In ordinary 

domes, this stress is neglectable, because the meridian stress acts almost perpendicular to the bed joints 

resulting in a small shear force. While the horizontal component of the meridian stress results in shear 

stress acting on a bed joint in a corbelled dome as shown in Figure 7.2. Formula 7.4 gives the shear stress 

due to dead load and a concentrated load. For a reference system, the outward acting stress is positive. 

The shear strength depends on the stress perpendicular to the bed joint. This stress is equal to the vertical 

component of the meridian stress and is shown in Formula 7.5. There is a relation between the shear stress 
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and shear strength as these both depend on the meridian stress acting on the cross-section and the angle 

φ of the cross-section. 

𝜎𝜑 = (−𝑤𝑎 (
(cos 𝜙−𝑐𝑜𝑠𝜙0)−(𝜙−𝜙0)sin  ϕ) 

(sin 𝜙−sin 𝜙0) sin 𝜙
) −

𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
) ∗

1

𝑡
     [7.2] 

𝜎𝜃 = (
−𝑤𝑎((𝜙−𝜙0)𝑠 in 𝜙−(cos 𝜑−cos 𝜙0) sin 𝜙+(sin 𝜙−sin 𝜙0) cos 𝜙 sin 𝜙)

(sin 𝜙)2 +
𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
) ∗

1

𝑡
   [7.3] 

𝜏𝜑 =  𝜎𝜑 ∗ cos (𝜑)            [7.4] 

𝜎𝑑 =  𝜎𝜑 ∗ sin (𝜑)                   [7.5] 

 

 

Figure 7.1 Cross-section mathematical shape dome 

 

 

 

Figure 7.2 Shear forces a) ordinary dome, b) corbelled dome (Tempesta, 2018) 
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8. Stress analysis 
For a better understanding of the relationship between the stresses and the variables, in Appendix D, the 

stresses in the dome are analyzed. Two load combinations found in Chapter 5 will be tested. This will be 

done for various angles φ0 and φ at the base of the dome. The masonry strength parameters are calculated 

in Chapter 6 and are used to define if the external stresses exceed the strength of the masonry. For both 

load combination the meridian stresses, hoop stress, and shear stresses in the dome are calculated. The 

strength parameters result in boundaries for angle φ for different spans. The chosen angles for φ0 are 0° 

and 5°. For the calculation of the meridian and hoop stresses a base radius of 𝑟 = 1m is chosen. The 

calculations are done using the software Python and are added in Appendix C. 

A relationship should be found between angle φ and the base radius 𝑟. For various angles φ0 a relation can 

be found. The strength parameters result in boundaries for angle φ for different base radii. This results in 

a relation between angle φ and the base radius 𝑟 for various angles φ0. 

The boundaries are given by the buckling strength for meridian and hoop stresses, the shear strength, and 

no tensile hoop stresses that may occur. These boundaries are found in the following paragraphs for a 

constant φ0 = 15°. The value for φ0 is obtained by analyzing existing domes and the practical building 

possibilities. Domes with a large span and high φ0 value will result in large heights, this is not economical. 

Domes with small φ0 are difficult to build, as the top of the dome is horizontal. When using a corbelled 

dome this is difficult to build and it results in less stability. 

 

8.1 Tensile hoop stresses 
In the lower region of a dome, hoop stresses can be tensile. This results in cracks and further degradation 

of the dome. The magnitude and the sign of the hoop stresses depend on the shape of the arch, that is, 

the angular difference between two membrane adjacent nodes, the corresponding stresses of these 

nodes, and the magnitude of the self-weight applied to the lower node. In the lower region, the self-weight 

dominates resulting in tensile hoop stresses. At which angle φ the hoop forces are zero largely depend on 

φ0 and much less on the span and the magnitude of the self-weight and concentrated load. The hoop 

stresses are calculated using Formula 7.3. Figure 8.1 shows that the hoop stresses become tensile at φ is 

60°. This angle is the maximal base angle of the dome.  

 

Figure 8.1 Hoop stresses for φ0=15, r=1m, and φ=70 
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8.2 Shear stresses 
The shear stresses may not exceed the shear strength of the masonry. The shear strength is shown in 

Formula 6.4 and dependent on the normal stress acting on the horizontal cross-section. A relation between 

base radius 𝑟 and base angle φ can be found by setting the shear stress in Formula 7.4 equal to the shear 

strength. In Formula 6.4 and 6.5, instead of using thickness t, t/2 is used in the formula. This is done 

because in a corbelled dome the bricks at the top only overlap by half a brick. Failure due to shear firstly 

appears at the top. In Figure 8.2 for φ0 from 0° until 40°, the maximal value for 𝑎 can be found. The variable 

𝑎 is found for φ0 = 15° and gives a lower boundary condition. For the two load combinations, the maximal 

value for variable a is 4.11 m resulting in Formula 8.1 obtained from Formula 7.1.  

𝑟

(𝑠𝑖𝑛𝜙−𝑠𝑖𝑛15)  
< 4.11 𝑚           [8.1] 

  

Figure 8.2 Radius a vs φ0 (thickness = t/2)   Figure 8.3 Radius a vs φ0 (thickness = t)         

When using an ordinary dome, for Formulas 6.4 and 6.5 the thickness t has to be used. This results in 

higher shear resistance. In Figure 8.3 a is found for various φ0 for thickness t. The value for 𝑎 is 8.12 m for 

φ0 is 15°. This means the dome can be larger when using an ordinary dome. Using Formula 7.1, for an 

ordinary dome, a radius 𝑟 of 4.93 m is found. 
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9. Results 
In this chapter, the results of Chapter 8 are combined to find a maximal radius 𝑟 and a range for base angle 

φ. A design is made for the dome with the maximal span and the stresses in this dome are calculated.  

In Section 8.1 and 8.2, several boundary conditions are found for the base radius and the base angle. 

Section 8.1 gives an upper boundary for the base angle, φ is 60°. This means that the base angle cannot 

be larger than 60° with a φ0 is 15°. Section 8.2 gives a lower boundary for radius 𝑎, which is a relation 

between base radius 𝑟 and base angle φ. The shear analysis for a corbelled dome gives a value for 𝑎 which 

is 4.11 m. When combining the results of Section 8.1 and 8.2, one can obtain the largest radius. This value 

is 2.50 m for radius 𝑟 and base angle φ is 60°. The design is safe for values of 𝑎 lower than 4.11 m and 

values of φ lower than 60°. For a design with lower values for 𝑎 and φ, the base radius is also smaller. The 

maximal span for a corbelled dome is 5 m and the height in the middle of this dome is 1.91 m. In Table 8.1, 

for different span, a range for the base angle and the height in the center of the dome is given. 

Table 9.1 Dome span and corresponding height and base angle 

Span [m] Base angle 𝝓 [°] Height in the center [m] 

2 30 - 60 0.41 - 0.77 

3 38.6 - 60 0.76 - 1.15 

4 48.2 - 60 1.23 - 1.53 

5 60 1.91 

 

In Figure 9.1 a dome design is shown for a maximal span of 5 m. In Appendix E the meridian, hoop, and 

shear stresses are shown for this span. 

 

Figure 9.1 Dome design r = 2.5 m 
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10. Horizontal load bearing 
In this chapter transfer of the horizontal forces at the base of the dome will be discussed. The magnitude 

and the direction of the thrust forces follow from the base angle, the loads, and the span of the dome. A 

small base angle results in large horizontal truss forces. The horizontal forces are given by Formula 10.1 

and derived from Formula 7.2. 𝑁𝜙 is the horizontal component of the meridian stresses multiplied by the 

thickness of the dome. If these forces are too high, these cannot be transferred by a single masonry 

structural wall. Several solutions can be found to accommodate the horizontal forces. Below some 

solutions are given. 

𝑁𝜙 = (
−𝑤𝑎((𝜙−𝜙0)𝑠 in 𝜙−(cos 𝜑−cos 𝜙0) sin 𝜙+(sin 𝜙−sin 𝜙0) cos 𝜙 sin 𝜙)

(sin 𝜙)2 +
𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
) ∗ cos𝜙     [10.1] 

Thick walls 
For domes with a large span and a large base angle, the height of the dome can partially be used as a living 

space. The walls will be shorter and thicker to accommodate the horizontal support reactions. The 

advantages of this design are that no extra material is used, as the walls are thicker but lower. 

Disadvantages are the arching walls, making it less efficient for large furniture. In Figure 10.1 an example 

is given of this design. This technique cannot be used for small base angles because the height will not 

suffice.  

 

Figure 10.1 (Stabilisation of dome entrance) 

Additional vertical forces 
Another solution is using an additional vertical load at the position of the support. The additional force 

results in higher shear resistance of the wall, therefor it can bear more horizontal force. This solution will 

possible only be used with small domes, because in large domes 

Ring beam 
A ring beam can resist the horizontal support reactions by a tensile hoop force. This beam must be made 

from steel and must be rigidly attached to the dome so that the horizontal forces are carried by the ring 

beam. When this beam is made of reinforcement bars, it must be protected from the environment. This 

solution can only be used for small spans, as large ring beams are hard to fabricate. In the country where 

these domes are used, it is not desired to use steel, so this is not the most optimal solution. 

Buttresses 
For large domes, buttresses can be used to facilitate horizontal support reactions. An investigation must 

turn out what size and shape these must be and how the walls between the buttresses will react. 

Buttresses are used in large buildings, like churches. 
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11. Conclusions and recommendations 

11.1 Conclusions 
This thesis aims to make design rules for the building corbelled domes made of HCEB. This material is not 

standardly used, so there are no regulations regarding a safe dome design. This thesis answers the main 

question: 

What is the geometry of a corbelled dome made of HCEB with varying span where strength and stability 
requirements are met and that satisfies the NEN. How can this be presented in the form of calculation rules 
or a design table? 
 

To answer this problem, first, the mechanical behavior of a shell structure and the corbelling theory is 

studied. After this, the material properties and the loads acting on the dome are determined. Then a model 

for the dome is described using a constant thickness t and a constant φ0 of 15°. Also, the membrane 

stresses for variating φ0, and φ are determined. The design rules for the dome arise from equating the 

design strength and the stresses due to the load combinations. Doing this for the tensile stresses a maximal 

value for φ is found and for shear, a maximum value 𝑎 is found. Variable 𝑎 gives a relation between base 

angle φ and base radius 𝑟.  

It is assumed that no tensile stresses may occur, resulting in a maximal base angle φ of 60° shown in Figure 

8.1. In Figure 8.2 is the relation between 𝑎 and φ0 shown for the shear analysis. In this figure at φ0 is 15°, 

the variable 𝑎 is 4.11 m. The restrictions give a minimum and maximum relation between the base radius 𝑟 

and the base angle φ. Below the design rules are shown: 

- Maximal base angle φ is 60° 

- 𝑎 =  
𝑟

(𝑠𝑖𝑛𝜙−𝑠𝑖𝑛15)  
< 4.11 𝑚 

A maximal base radius 𝑟 can be found by combining these two design rules. The maximal base radius is 

2.50 m, and the total span is 5.00 m. 

 

11.2 Recommendations 
For this model, a constant value for φ0 is chosen. This results in less geometric freedom. Besides, different 

values for φ0, 𝑟, and φ can result in a similar geometric shape, because the arch shape remains still within 

the cross-section of the dome. For a wider range of values of these variables, design rules must be found, 

so there is more design freedom. Research must also be done on the building possibilities of the dome. 

What are the extreme limits of this? Also, the material properties of HCEB must be further investigated, 

so that it is clear how much horizontal load a wall can bear, and at which span extra support is required. 

Research should also be conducted into the inclusion of horizontal loads on walls.  

The maximum span when using a corbelled dome is 5.00 m. If larger spans are wanted, ordinary domes 

must be considered, and which span one can achieve with them. With equal spans, a corbelled dome and 

an ordinary dome can be compared in terms of performance. One can look at the crack formation. 
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Furthermore, it can be investigated whether a round wall performs better compared to a four straight 

walls. In Mali, no earthquakes occur, but in other countries this can be the case. For this situation design 

rules can be found. 
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Appendix 

Appendix A 
In this Appendix, a general expression for the meridian and hoop stresses is derived. 

In Formula A.1, A.2, and A.3 the relationship of the radii is shown. 

𝑟 = 𝑟2 ∗ sin 𝜙            [A.1] 

𝑙𝑎𝑐 = 𝑟𝑑𝜙             [A.2] 

𝑙𝑐𝑑 = 𝑟1𝑑𝜃            [A.3] 

When an axial symmetric load is applied to a shell of a revolution there are only two membrane forces, 

Nφ and Nθ. There is no shear force. To determine these forces, one must set up two equilibrium equations 

in the direction φ and the normal direction 𝑟. The external forces are indicated with p, the weight per unit 

of area. Formula A.4 and A.5 give equations for the components of the loads in meridian and normal 

direction.  Because of axial symmetry, there is no variation in the forces in the membrane in the direction 

θ. In Formula A.6 the force balance in the normal direction is shown. After dividing by  𝑟 ∗  𝑟1 one obtains 

Formula A.7. 

𝑝𝜙 = 𝑝 sin 𝜙            [A.4] 

𝑝𝑟 = −𝑝 cos 𝜙            [A.5] 

𝑁𝜙𝑟 + 𝑁𝜃𝑟1 ∗ sin 𝜙 −  𝑝𝜙𝑟1𝑟 = 0         [A.6] 

𝑁𝜙

𝑟1
+

𝑁𝜃

𝑟2
=  𝑝𝑟             [A.7] 

In Formula A.8 the force balance in direction φ is shown.  

𝑑

𝑑𝜙
(𝑁𝜙𝑟) −  𝑁𝜃𝑟1 cos 𝜙 + 𝑝𝜙𝑟1𝑟 = 0         [A.8] 

The forces Nφ and Nθ can be determined by solving Formula A.7 and A.8. It is also possible to solve Nφ by 

solving the equilibrium equation along the vertical direction as shown in Figure A.1. The vertical force F(φ) 

is the resultant of all forces acting on the shell above angle φ and sustained by the resultant of the vertical 

components of the uniformly distributed forces Nφ. One obtains the equation denoted in Formula A.9. A 

formula for Nφ is shown in Formula A.10 and Nθ can be determined by substituting Formula A.10 in 

Formula A.7, resulting in Formula A.11 for Nθ. Formula A.9 shows that Nφ is negative, which means this is 

a compressive force.  

𝐹(𝜙) − 𝑁𝜙2𝜋𝑟𝑠𝑖𝑛 𝜙 = 0          [A.9] 

𝑁𝜙 = −
𝐹(𝜙)

2𝜋𝑟(𝑠𝑖𝑛 𝜙)2           [A.10]  

𝑁𝜃 = −𝑝 cos 𝜙
𝑟

sin 𝜙
+

𝐹(𝜙)

2𝜋𝑟(𝑠𝑖𝑛 𝜙)2 ∗
𝑟

𝑟1
         [A.11] 
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The meridian and hoop stresses can be found by dividing the forces Nφ and Nθ by thickness t. The formulas 

for σφ and σθ are shown in Formula A.12 and A.13. 

𝜎𝜙 = −
𝐹(𝜙)

2𝜋𝑟𝑠𝑖𝑛 𝜙 𝑡
           [A.12]  

𝜎𝜃 = (−𝑝 cos 𝜙
𝑟

sin 𝜙
+

𝐹(𝜙)

2𝜋𝑟(𝑠𝑖𝑛 𝜙)2 ∗
𝑟

𝑟1
) ∗

1

𝑡
        [A.13] 

 
 

  

Figure A.1 (Revolution under the angle ϕ) 
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Appendix B 
Derivation meridian and hoop stresses, using Figure 3.1. Solving Formula A.7 for Nθ and substituting this 

in Formula A.8, one obtains Formula B.1. Combining the two parts at the left and integrating for N φ an 

equation for Nθ is found in Formula B.2. Constant C represents the loads above φ=φ0, which is the 

concentrated load F. To simplify Formula B.2, C is assumed to be zero. Later the concentrated load is 

added, which is equal to Formula A.10. 

The meridian and hoop stresses can be found by dividing the forces Nφ and Nθ by thickness t. 

𝑑(𝑟𝑁𝜙)

𝑑𝜙
𝑠𝑖𝑛𝜙 − 𝑟𝑁𝜙𝑐𝑜𝑠𝜙 =  𝑟1𝑟2𝑝𝑟𝑐𝑜𝑠𝜙𝑠𝑖𝑛𝜙 − 𝑟1𝑟2𝑝𝜙𝑠𝑖𝑛2𝜙     [B.1] 

𝑁𝜙 =
1

𝑟1𝑠𝑖𝑛2𝜙
[∫ 𝑟1𝑟2(𝑝𝑟𝑐𝑜𝑠𝜙 − 𝑝𝜙𝑠𝑖𝑛𝜙)𝑠𝑖𝑛𝜙𝑑𝜙 + 𝐶]       [B.2] 

The unit weight p is assumed to be equal to the unit weight of the dome and the water-resisting cover, 

indicated by variable w. The concentrated load is indicated by variable W. The relation between r2 and 

constant radius a.  

𝑟2 = 𝑎 ∗ (1 −
𝑠𝑖𝑛𝜙0

𝑠𝑖𝑛𝜙
)          [B.3] 

The meridian forces are found by integrating Formula B.2 and the hoop forces are found by substitution 

of the solution in Formula A.7. The formulas for the meridian and hoop forces are shown respectively in 

Formula B.4 and B.5. The concentrated loads are added by assuming that W is applied at φ0. 

𝑁𝜙 = (−𝑤𝑎 (
(cos 𝜙−𝑐𝑜𝑠𝜙0)−(𝜙−𝜙0)sin  ϕ) 

(sin 𝜙−sin 𝜙0) sin 𝜙
) −

𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
)     [B.4] 

𝑁𝜃 =
−𝑤𝑎((𝜙−𝜙0)𝑠 in 𝜙−(cos 𝜑−cos 𝜙0) sin 𝜙+(sin 𝜙−sin 𝜙0) cos 𝜙 sin 𝜙)

(sin 𝜙)2 +
𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
   [B.5] 

The meridian and hoop stresses can be found by dividing the forces Nφ and Nθ by thickness t. Respectively 

shown in Formula B.6 and B.7. 

𝜎𝜑 = (−𝑤𝑎 (
(cos 𝜙−𝑐𝑜𝑠𝜙0)−(𝜙−𝜙0)sin  ϕ) 

(sin 𝜙−sin 𝜙0) sin 𝜙
) −

𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
) ∗

1

𝑡
    [B.6] 

𝜎𝜃 = (
−𝑤𝑎((𝜙−𝜙0)𝑠 in 𝜙−(cos 𝜑−cos 𝜙0) sin 𝜙+(sin 𝜙−sin 𝜙0) cos 𝜙 sin 𝜙)

(sin 𝜙)2 +
𝑊

2𝜋 a(sin 𝜙−sin 𝜙0)
) ∗

1

𝑡
   [B.7]  
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Appendix C 
Python script for meridian, hoop, and shear stresses. 

1. # # conoidal shape   
2. # FC1/2 mer and hoop stresses   
3. hoek0 = 15   
4. r = 1   
5. b = 60   
6.    
7. e = 0   
8. alpha = np.arange(e, b)   
9. alpha1 = np.arange(hoek0, b)   
10.    
11. w = 10.5   
12. W = 0   
13.    
14. sigma_mer = np.zeros([b-hoek0,b-e])   
15. sigma_hoop = np.zeros([b-hoek0,b-e])   
16. sigma_cr = np.zeros([b-hoek0,b-e])   
17. c = np.ones([b-e])*r/(np.sin(b*np.pi/180)-np.sin(hoek0*np.pi/180))   
18. a = np.zeros(b)   
19.    
20. for i in range(len(alpha1)):   
21.     a[i] = r/(np.sin(alpha[i]*np.pi/180)-np.sin(hoek0*np.pi/180))   
22.     for j in range(len(alpha)):   
23.         sigma_mer[i,j] = (-w*a[i]*((np.cos(hoek0*np.pi/180)-

np.cos(alpha[j]*np.pi/180))-(alpha[j]*np.pi/180-
hoek0*np.pi/180)*np.sin(hoek0*np.pi/180))/((np.sin(alpha[j]*np.pi/180)-
np.sin(hoek0*np.pi/180))*np.sin(alpha[j]*np.pi/180))-
(W/(2*np.pi*a[i]*(np.sin((alpha[j]-hoek0)*np.pi/180))**1)))/(0.295*1000)   

24.         sigma_hoop[i,j] = ((-w*a[i]*((alpha[j]*np.pi/180-
hoek0*np.pi/180)*np.sin(hoek0*np.pi/180)-(np.cos(hoek0*np.pi/180)-
np.cos(alpha[j]*np.pi/180))+(np.sin(alpha[j]*np.pi/180)-
np.sin(hoek0*np.pi/180))*np.cos(alpha[j]*np.pi/180)*np.sin(alpha[j]*np.pi/180))/(np.sin
(alpha[j]*np.pi/180))**2)+(W/(2*np.pi*a[i])*(np.sin((alpha[j]-
hoek0)*np.pi/180))**1))/(0.295*1000)   

25.         sigma_cr[i] = -440/(c[i]*1000)   
26.            
27. sigma_merb = sigma_mer[b-hoek0-1]   
28. sigma_hoopb = sigma_hoop[b-hoek0-1]   
29.    
30. plt.plot(alpha[hoek0:], sigma_merb[hoek0:])   
31.    
32. plt.plot(alpha[hoek0:], sigma_hoopb[hoek0:])   
33. plt.plot(alpha[hoek0:], sigma_cr, 'r')   
34. plt.xlabel('angle \u03C6 [\N{DEGREE SIGN}]')   
35. plt.ylabel('stresses [N/mm2]')   
36. plt.title('FC1: Meridian and hoop stresses \u03C6=60\N{DEGREE SIGN} for \u03C60=15\N{DE

GREE SIGN}')   
37. plt.legend(['\u03C3_\u03C6: meridian stresses', '\u03C3_\u03B8: hoop stresses', 'Critic

al buckling strength'])  
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1. # FC1/2 shear strength   
2. r = 1   
3.    
4. hoek0 = 15   
5.    
6. w = 9.4   
7. W = 2.3   
8.    
9. c = 0   
10. d = 60   
11. alpha = np.arange(c, d)   
12. alpha1 = np.arange(hoek0, d)   
13.    
14. sigma_mer = np.zeros([d-hoek0, d-c])   
15. tau_hor = np.zeros([d-hoek0, d-c])   
16. tau_str = np.zeros([d-hoek0, d-c])   
17.    
18. a = np.zeros(d-hoek0)   
19.    
20. for i in range(len(alpha1)):   
21.     a[i] = r/np.sin(alpha1[i]*np.pi/180)   
22.     for j in range(len(alpha)):   
23.         sigma_mer[i,j] = (-w*a[i]*((np.cos(hoek0*np.pi/180)-

np.cos(alpha[j]*np.pi/180))-(alpha[j]*np.pi/180-
hoek0*np.pi/180)*np.sin(hoek0*np.pi/180))/((np.sin(alpha[j]*np.pi/180)-
np.sin(hoek0*np.pi/180))*np.sin(alpha[j]*np.pi/180))-
(W/(2*np.pi*a[i]*(np.sin(alpha[j]*np.pi/180)-np.sin(hoek0*np.pi/180)))))/(0.295*1000)   

24.         tau_str[i,j] = (-sigma_mer[i,j]*np.sin(alpha[j]*np.pi/180)*0.4 + 0.2)/1.7   
25.         tau_hor[i,j] = -sigma_mer[i,j] * np.cos(alpha[j]*np.pi/180)   
26.    
27. tau_hor_b = tau_hor[d-hoek0-1]   
28. tau_str_b = tau_str[d-hoek0-1]   
29.    
30. plt.plot(alpha[hoek0:], tau_hor_b[hoek0:]);   
31. plt.plot(alpha[hoek0:], tau_str_b[hoek0:], 'r')   
32. plt.xlabel('angle \u03C6 [\N{DEGREE SIGN}]')   
33. plt.ylabel('stresses [N/mm2]')   
34. plt.title('FC2: Shear stress and shear strength for \u03C6=30\N{DEGREE SIGN} and \u03C6

0=0\N{DEGREE SIGN}')   
35. plt.legend(['\u03C4:shear stress', 'fvd:design shear strength'])  
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Appendix D 
In this appendix for both load combination the meridian stresses, hoop stresses, and shear stresses in the 

dome are calculated. The strength parameters result in boundaries for angle φ for different spans. This 

results in a relation between angle φ and the base radius r. For various angles φ0 a relation can be found. 

The chosen angles for φ0 are 0° and 5°. 

D.1 Segmental dome 
A segmental dome is a dome as introduced in Section 7.1 with a φ0 = 0°. This dome is horizontal at the 

crown and therefore not ideal for a corbelled dome as the horizontal stacking of the bricks results in a 

pointed top. The dome becomes more horizontal in the middle, therefor the adjacent bricks must overlap 

as little as possible. This can be difficult as the bricks can turn over by their weight. For this shape, an 

ordinary dome is more ideal, because this building method is more efficient in following the shape. With 

a corbelled dome, it is possible the dome cannot follow the shape exactly, possibly resulting in a pressure 

line outside the cross-section.  

First, the meridian and hoop stresses are determined for a base radius of r=1 m. The relation between the 

magnitude of these stresses and the and the angle φ is determined for the two load combinations. Next, 

the relation between angle φ and radius 𝑟 is determined by setting the shear stress equal to the shear 

strength. These two steps result in an upper and lower boundary for the relation between angle φ and 

radius 𝑟.  

Meridian and hoop stresses 
The meridian and hoop stresses are determined for a base radius of 𝑟 = 1 m. The relation between the 

magnitude of these stresses and the and the angle φ is determined for the two load combinations. Load 

combination 1 resulted in a uniform load of 10.5 kN/m2. For φ is 30° and 60° the meridian and hoop 

stresses. These are shown in Figures D.1 and D.2. In both figures can be seen that the hoop stresses 

become tensile stresses at φ = 51.8°. This angle can be found by setting the Formula 7.2 equal to zero. For 

a segmental dome, the angle at which tensile stresses occur is independent of the loads and base radius. 

This is the first boundary for the dome design. The base angle cannot be smaller than 51.8°. A difference 

between the results is that with a higher base angle the stresses at the top of the dome are lower. In Figure 

D.3 the stresses are shown for a base radius of r=4 m and φ is 30. Comparing Figure D.1 and D.3, a bigger 

base radius results in bigger stresses all over the dome.  

 

Figure D.1       Figure D.2 
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Figure D.3 

Load combination 2 results in a uniform load of 9.4 kN/m2 and a concentrated load at the crown of 2.3 kN. 

The meridian and hoop stresses for r=1 m and φ is 30° and 60° are shown in Figure D.4 and D.5. Because 

of the concentrated load, the meridian stresses approach infinite at the crown of the dome. Besides this 

phenomenon, no major difference is visible between the stresses due to load combination 1 and 2. The 

angle at which hoop stresses become tensile stresses is not 51.8° exact but varies around this value for 

different base angles. These are minor variations. 

 

Figure D.4       Figure D.5 

Shear stresses  
For load combination 1, the shear stresses and shear strength for a base radius r=1m and φ is 30° and 60° 

are shown in Figure D.6 and D.7. In these figures is visible that the shear stresses do not exceed the shear 

strength for these combinations of φ and radius 𝑟. In Figure D.7 the stresses are shown for 𝑟 = 4 m and 

with these values for variables 𝑟 and φ the shear stress is higher than the strength over the entire dome. 

With a constant radius, the angle in the dome at which the shear stress is equal to the shear strength 

increases with an increasing base angle. the shear stress must never exceed the shear strength in the 

dome. This first occurs at the top of the dome, at φ = 0°. For this angle, the shear stresses must be equal 

to the shear strength. The angle and base radius for which this applies can be found by setting Formula 

7.4 equal to Formula 7.5 and for σφ substituting Formula 7.2. One now found a formula for variable a, 

which gives a relation between base angle φ and base radius 𝑟. Variable 𝑎 can be found by setting φ 
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approaching zero. For load combination 1 this results in a value for 𝑎 is 6.61. This means that shear stress 

does not exceed the shear strength if r/sin(φ) < 6.61m. This is the lower boundary for the dome design. 

 

Figure D.6      Figure D.7 

  

Figure D.8 Stresses at radius 𝑟 = 4m 

For load combination 2, the shear stresses and shear strength for a base radius 𝑟 = 1 m and φ is 30 and 60 

are shown in Figure D.9 and D.10. In this case, the value found for a is infinite, because of the concentrated 

load. For a small value of φ = 0.4 a lower boundary is r/sin(φ) < 5.36 m. Comparing the two load 

combinations, a point load results in a higher dome, which is a more conservative design. In Figure D.11 

the shear stress and shear strength are shown for 𝑟 = 4 m for φ = 30. With a bigger base radius and a 

constant base angle, the shear stresses are much higher. This is because the dome with the bigger radius 

is shallower, compared to the smaller radius, resulting in more shear stresses, especially at the top of the 

dome.  
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Figure D.9      Figure D.10 

  

Figure D.11 stresses at radius 𝑟 = 4m 
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D.2 Pointed dome  
A pointed dome is a dome with a φ0 higher than zero. This dome is pointed at the crown and therefore 

can be easily be built with a corbelling technique because the shape of a corbelling dome is always pointed 

at the crown and therefore the middle section always lays within the thickness of the dome. 

Meridian and hoop stresses 
Like with the segmental dome the meridian and hoop stresses are determined, but now for a φ0 = 5, a base 

radius of 𝑟 = 1 m and the two load combinations. Again, for φ = 30° and 60°, the stresses are calculated 

and shown below in figures D.12 till D.15. Figures D.12 and D.13 show load combination 1 and figure D.14 

and D.15 show load combination 2. 

 

Figure D.12       Figure D.13 

  

Figure D.14       Figure D.15 

Figure D.12 shows that the meridian and hoop stresses start at zero at the top of the dome. This differs 

from the stresses for φ0 = 0°, because these stresses can compensate at the top of the dome as the angle 

is zero. At the base of the dome, there are no major differences in the magnitude of the stresses because 

the stresses are equal at the base for Figures D.1 and D.12. The angle at which tensile hoop stresses occur 

is bigger with φ0 = 5° than with φ0 = 0°. In Figure D.13 is visible that this angle is 55°. This angle depends 

mostly on the angle φ0 and less on the load combination and base radius.  

For load combination 2, visible in Figure D.14 and D.15, the meridian stresses are big at the crown due to 

the concentrated load. At φ at the base angle, the meridian stresses are both smaller for load combination 
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2 than for load combination one. Load combination 1 is normative for the compressive strength and the 

angle at which hoop stresses become tensile stresses. 

Shear stresses 
The shear stresses and shear strength are calculated for radius 𝑟, φ0 = 5° and φ is 30° and 60°. In Figure 

D.16 and D.17, the stresses are shown for load combination 1. The shear stresses are significantly lower 

than the shear strength. This also applies to load combination 2 shown in Figure D.18 and D.19. In Figure 

D.20 the stresses are calculated for 𝑟 = 4 m. With a bigger radius and a constant base angle, this results in 

a higher shear strength compared to Figure D.10. 

 

Figure D.16       Figure D.17 

 

Figure D.18       Figure D.19 
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Figure D.20 Stresses at radius 𝑟 = 4m 
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Appendix E 
In this Appendix, the stresses are given for the maximal span found in Chapter 9. In Figure E.1, the decisive 

values for meridian and hoop stresses are shown for all angles φ from φ = φ0 is 15° until φ = 60° for radius 

𝑟 is 2.5 m. In Figure E.2 the shear stress is shown for this dome design. For Figure E.1 load combination 1 

results in the highest stresses and for the shear stresses in Figure E.2 this is load combination 2. 

 

Figure E.1 Meridian and hoop stresses for r = 2.5 m 

 

 

Figure E.2 Shear stresses for r = 2.5 m 


