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Abstract 
 

With the increase in computational power and the current development in artificial intelligence, 

new software applications have become possible. Humans have been replaced by such applications 

in multiple sectors (Huang, 2018). In the engineering sector many tools are used that also make use 

of artificial intelligence, but they are not yet able to replace humans. Because of the current 

development in the field of computer science and electrical engineering this could also happen in the 

engineering sectors. A software application using artificial intelligence has been built by M. Arafa and 

M. Alqedra, which was able to make a good estimation of the total costs of a construction project 

before the design of this structure (Arafa, 2011). In the future it might be possible to develop 

software that is able to design the structure as well. 

In this thesis, the possibilities of such software is investigated. By building a simple computer 

program that is able to design a rectangular cast-in-situ reinforced concrete beam, the calculation 

time of such software was researched. The program was designed to find the cost-optimal 

dimensions of a beam for a given span and load. During the design some problems were found and 

reported in this thesis. The concrete beam that is designed by the program is tested for the ultimate 

limit state (ULS). Both the moment capacity and the shear force capacity of the beams are calculated 

by the program which then performs the strength checks according to the Eurocode. The equations 

used to calculate the maximum forces and the capacities are also reported in the thesis.   

Two different models were built to give the cost-optimal dimensions of a beam. Both models 

design the beam using 4 different variables: the height of the beam, the width of the beam, the 

diameter of the reinforcement bars and the number of reinforcement bars. The first model uses 

multiple for-loops to check every combination that could be made with these four variables, where 

the height and width where given in steps of 10 millimetres and for the diameter the most common 

reinforcement bar diameters were used (12 mm, 16 mm, 20 mm, 25 mm, 32 mm). The cheapest 

option that passed the strength checks was then returned by the program. The second model uses an 

optimisation algorithm from a python package called SciPy. The boundaries and constraints for the 

function were specified and then inputted in the minimize function of this package. The boundaries 

represent the minimum and maximum value for the four variables and the constraints contain 

inequalities of the Eurocode requirements. The output given by the function was then rounded up to 

the closest values that could be used in practice. 

The first model turned out to be very fast for short beams but the calculation time increases 

quadratically with the beam length. For beams around 3 to 4 metre this is approximately 1 second, 

while a the calculation takes nearly 2 minutes for a 15 metre long beam. The calculation time of the 

second model depends less on the beam length, but is greatly affected by the convergence of the 

minimize function, which gives very random results for the calculation time. The dimensions of the 

beam show a clear pattern. The width of the beam is kept as small as possible but is increased so the 

reinforcement bars fit within this width. To keep the beam’s width as small as possible, mainly large 

diameter bars are used. The height and reinforcement area is increased when the maximum moment 

increases. 
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When this computer program would be further developed to design entire structures, the 

amount of components would increase a lot. The amount of combinations would then increase 

exponentially with the respect to the components, which would greatly affect the calculation time of 

the first model. The second method gives results that are far from optimal due to the rounding up of 

the variables. When the optimisation method would use discrete variables it could be useful in 

practice. During this research stability of the structure was neglected, which would add a lot of tests 

to the program which would increase the calculation time. With current computational power this 

would take too long to be of any use in practice. If it would be further developed it could assist 

engineers in dimensioning different components, but the layout of the entire structure should be 

designed by the engineers themselves.  
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1 – Introduction 
 

1.1 Problem statement 

Computers become more powerful every year and a lot of new software is developed to make 

use of the increasing computational power. There are many software tools created that are useful for 

engineers. Artificial Intelligence is currently used in many applications and has already replaced 

human employees in multiple sectors (Huang, 2018). M. Arafa and M. Alqedra have also shown in 

their research that a good estimation of the total costs of a construction project can be made with 

the help of artificial intelligence (Arafa, 2011). A software program that designs a construction 

project using artificial intelligence has not yet been developed, but could be developed in the future.  

In 2016, T. Wubs did a research for her bachelor thesis on optimizing the design of a cantilever 

truss and has shown that it is possible for a computer model to determine the cost-optimal design in 

six hours (Wubs, 2016). It might also be possible to create modules that give the optimal design for 

other structural parts (e.g. trusses, beams, joints, slabs, etc.) and their connections. A computer 

program consisting of a combination of all these modules would then be able to design a structure. 

To optimise every structural part of a structure and their connections a lot of calculations are 

needed. To perform these calculations, a lot of time and computational power is required. 

1.2 Objective 

The aim of this research is to determine the calculation time and limitations of a computer 

program that gives the cost-optimal dimensions of a rectangular, cast in situ reinforced concrete 

beam.  

The following questions have to be answered to obtain the objective: 

1. How can the optimal design of a concrete beam be determined? 

a. Eurocode equations 

b. parameters 

c. validity range 

2. Which optimisation algorithms are suitable? 

1.3 Approach 

By building a computer program that works out the cost-optimal dimensions of a single structural 

component, one can find potential problems for a program that designs an entire structure and get a 

better idea of the required calculation time. So a first step would be to create a program that gives 

the cost-optimal dimensions of a simple structural component, a two support concrete beam. To 

create such a program, information on concrete design and strength requirements is needed and was 

collected first. Optimisation algorithms in python were then researched. When this computer 

program worked, the results were validated. With hand calculations a check was performed, to 

determine if the program indeed gives a valid and optimal design. A few test cases were made to 

check the results.  
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The calculation time of such a computer program does not give a clear view on the total required 

time to design an entire structure. The calculation has to be performed for all the parts and their 

connections. For every structural part there are multiple alternatives and therefore there will be 

many different possible combinations for the design of a structure. Based on the number of 

combinations and the calculation time of a single element, the estimation of the total required time 

was made. 

1.4 Outline of thesis 

Section 2 of this report provides a literature overview of the optimisation algorithms and how 

they have been applied in the design of concrete structures.  

In section 3, the design of a concrete beam is described. The calculations concerning loads and 

stresses were given here, along with the strength requirements according to the Eurocode. 

Furthermore the steps that have been taken to design a concrete beam were specified. 

The design of the computer models is described in section 4. A clear overview of the steps that 

the models perform was given in charts and a short description. 

In section 5 the results of the research are presented. A conclusion drawn from the results and 

suggestions are presented in section 6 of this thesis. 

Some pictures from additional files were added in the appendices, along with the test cases that 

were used to verify the results. 
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2 – Literature review 
 

The design of concrete structures with the use of optimisation algorithms has been researched 

many times. A lot of different approaches are used in these researches. A program that gave the 

optimal dimensions for a certain moment capacity was made in an earlier research (Chakrabarty, 

1992). This research confirmed that there is a large number of alternative beam dimensions and 

reinforcement ratios that give the same moment resistance. An alternative approach was 

recommended where the bending moment in the beam is the input and the unique least-cost beam 

section is the output.  

In a more recent research, the environmental costs of the design of a concrete column was also 

taken into consideration instead of only the financial costs (de Medeiros & Kripka, 2014). An 

environmental scoring system for each input of reinforced concrete was used. The results of this 

research are quite similar to the results from financial optimisation methods, as both methods tend 

to go for a minimum amount of materials. Although they are quite similar there is one big difference, 

the model with environmental cost optimisation prefers using non-rectangular beams. This reduces 

the amount of materials needed but increases the financial costs, which makes it less relevant for 

financial cost optimisation. 

A model giving the optimal design of a three dimensional multi-story concrete structure using 

meta-heuristic algorithms was presented in a Iranian paper (Kaveh & Behnam, Design optimization of 

reinforced concrete 3D structures considereing frequency constraints via a charged system search, 

2013). This model made use of the charged system search algorithm. The charged search system 

algorithm is a recently developed optimisation method, that outperforms many evolutionary 

algorithms (Kaveh & Talatahari, Novel heuristic optimization method: charged system search, 2010). 

While the required time to perform the design is not stated in the report, it does say that it would be 

a suitable tool to in practice although the program needs a lot of computational power. Another 

computer model that was made to research the possibilities of optimisation in reinforced concrete 

design, made use of another method, namely DMPSO (Esfandiari, Urgessa, Sheikholarefin, & 

Dehghan Manshadi, 2018). This algorithm is a combination between multi-criteria decision-making 

(DM) and Particle Swarm Optimization (PSO). The algorithm gave optimal dimensions efficiently for 

three dimensional reinforced concrete structures. 
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3 – Concrete beam design  
 

Every construction component has to fulfil certain requirements. These requirements can be 

found in the Eurocode and a national annex. In this section, the calculations that should be 

performed to check the strength of a beam are given.  

3.1 Loads 

When the loads on a beam are known and the type and location of the supports, one can 

calculate the maximum bending moment and shear force in the beam. For this research only beams 

on two supports are considered. For many different statically undetermined situations formulas have 

been made that give the support forces and bending moments inside the beam for a given load. In 

the figures below the used formulas can be found: 

 

Figure 1: Equations for statically indeterminate beam with a fixed and a hinge support and a point load (van Rotterdam, 
2005). 

 

Figure 2: Equations for statically indeterminate beam with a fixed and hinge support and a distributed load (van 
Rotterdam, 2005). 
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Figure 3: Equations for statically indeterminate beam with two fixed supports and a point load (van Rotterdam, 2005). 

 

Figure 4: Equations for statically indeterminate beam with two fixed supports and a distributed load (van Rotterdam, 
2005). 

For cases with a statically determinate beam, the support forces are calculated by solving the 

equilibrium equations for the external forces (Hartsuijker, 1999). This gives the following formulas for 

the support forces: 

𝐴𝑣 =
𝐹∙𝑏

𝑎+𝑏
; 𝐵𝑣 =

𝐹∙𝑎

𝑎+𝑏
    (3.1) 

𝐴𝑣 = 𝐵𝑣 =
1

2
∙ 𝑞 ∙ 𝑙   (3.2) 

 

Where a is the distance from the left support to the location of the point load and b is the 

distance from the right support. Distributed loads that do not cover the entire length of the beam 

can’t be inputted in the program. After performing the calculations the line of the shear force can be 

created and with the shear force line, the moment line can be created.  

Loads are always multiplied by a safety factor depending on the type of load and the type of 

calculation. As the model only checks the beam for the ultimate limit state (ULS), the factors for 

permanent and variable loads are 1.2 and 1.5 respectively (Wagemans, Soons, & Raaij, 2014). The 

factors on the loads that are inputted in the model should already be applied, as the program can’t 

distinguish permanent and variable loads. The factor on permanent loads for the self-weight of the 

beam is included in the model and has a value of 1.2. 
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3.2 Moment capacity 

The maximum bending moment that a concrete beam can resist depends on the dimensions of 

the beam and the strength of the reinforcement steel and concrete. It is assumed that the 

reinforcement steel is yielding at the maximum bending moment and that the concrete has cracked 

in the tensile area and does not take any tensile forces (Hordijk & Lagendijk, B2 Buiging, 2017). The 

program does not take into account a normal force in the beam and therefore no 2nd and 3rd order 

moments as well. The force in the reinforcement steel can be calculated with the following formula: 

𝑁𝑠 = 𝐴𝑠 ∙ 𝑓𝑦𝑑    (3.3) 

Where As is the total area of the reinforcement bars and fyd the design yield stress of the steel. 

The total compressive force in the concrete Nc has to be equal to Ns in the opposite direction for a 

horizontal force equilibrium. The moment in the beam can be calculated by multiplying the force by 

the arm z. The arm depends on the height of the beam, the concrete cover, the diameters of the 

reinforcement and the height of the concrete compression zone. The height of the compression zone 

can be determined with the following formula: 

𝑁𝑠 = 𝑁𝑐 =  𝑓𝑐𝑑 ∙ 𝑏 ∙ 𝛼 ∙ 𝑥𝑢  (3.4) 

Where fcd is the design concrete strength, b is the width of the beam, xu is the concrete 

compression zone height and α is the shape factor. The value for α depends on the concrete strength 

and is 0.75 for a concrete strength lower than or equal to C50/60. As all values except for xu are 

known it is possible to determine the height of the concrete compression zone. The arm z can then 

also be calculated: 

𝑥𝑢 =
𝐴𝑠∙𝑓𝑦𝑑

𝑓𝑐𝑑∙𝑏∙𝛼
    (3.5) 

𝑧 = ℎ − 𝑐 −  ∅𝑠ℎ − 0.5 ∙ ∅𝑙𝑜𝑛𝑔 − 𝛽 ∙ 𝑥𝑢   (3.6) 

When the lever arm and the normal force in the concrete and reinforcement steel are known the 

moment capacity of the beam can be calculated by multiplying these values. This calculation is 

shown in the following equation: 

𝑀𝑅𝑑,𝑚𝑎𝑥 = 𝑁𝑠 ∙ 𝑧   (3.7) 

Some additional checks have to be performed during this calculation. There are restrictions to 

the amount of longitudinal reinforcement used and the height of the concrete compression zone. 

Eurocode suggests a minimum reinforcement ratio according to the following equation (EN:1992-1-1 

9.2, 2004): 

𝐴𝑠

𝐴𝑐
= 0.26 ∙

𝑓𝑐𝑡𝑚

𝑓𝑦𝑘
    (3.8) 
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For the maximum reinforcement a ratio of 4% is suggested, these values may differ in any 

national annex but for the design of our computer model the values in the Eurocode were used. The 

maximum amount of steel is also limited by the maximium concrete compression zone xu. The 

maximum ratio between effective height of the beam and the height of the concrete compression 

zone is given by the following equation (Hordijk & Lagendijk, B2 Buiging, 2017): 

𝑥𝑢

𝑑
≤

𝜀𝑐𝑢∙106

𝜀𝑐𝑢∙106+7∙𝑓𝑦𝑑
   (3.9) 

 

Figure 5: Schematisation of concrete and steel force and the internal lever arm (Hordijk & Lagendijk, B2 Buiging, 2017). 

3.3 Shear resistance 

Besides moment capacity, the strength of the beam is also checked for the shear force. The shear 

force requirements are also given by the Eurocode. There are equations for a beam with and without 

shear reinforcement. If a beam would have sufficient shear resistance without shear reinforcement, 

minimal reinforcement is applied, with a spacing of 300 millimetres. The strength calculations for 

both situations are described below.  
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Figure 6: Design process of shear reinforcement (Hordijk & Lagendijk, CTB2220 Beton & Staalconstructies, 2017). 

3.3.1 Shear resistance without shear reinforcement 

The shear resistance without shear reinforcement depends on multiple factors. The strength is 

determined based on the characteristic concrete strength fck, the effective height d of the beam and 

the reinforcement ratio in longitudinal direction using the effective height. Eurocode gives two 

equations to calculate the strength, a design value and a minimum value (EN:1992-1-1 6.2.2). Both 

these equations use a variable k. The following equations are used to determine the shear resistance: 

𝑘 = min (1 + √
200

𝑑
; 2.0) ; 𝑑 𝑖𝑛 𝑚𝑚   (3.10) 

𝑣𝑅𝑑,𝑐 = 0.12 ∙ 𝑘 ∙ (100 ∙ 𝜌𝑙 ∙ 𝑓𝑐𝑘)
1

3⁄    (3.11) 

𝑣𝑚𝑖𝑛 = 0.035 ∙ 𝑘
3

2⁄ ∙ 𝑓𝑐𝑘
1

2⁄     (3.12) 

The stresses are then multiplied by the width of the beam and the effective height to obtain the 

total shear resistance of the cross-sectional area. If the design value is lower than the minimum 

value, the minimum value will be used. 

3.3.2 Shear resistance with shear reinforcement 

For the shear resistance with reinforcement Eurocode gives again two different formulas, one for 

the design shear resistance and one for the maximum shear resistance.  
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𝑉𝑅𝑑,𝑠 =
𝐴𝑠𝑤

𝑠
∙ 𝑧 ∙ 𝑓𝑦𝑤𝑑 ∙ cot 𝜃   (3.13) 

𝑉𝑅𝑑,𝑚𝑎𝑥 =
𝛼𝑐𝑤∙𝑏𝑤∙𝑧∙𝑣1∙𝑓𝑐𝑑

cot 𝜃+tan 𝜃
   (3.14) 

The values for αcw and v1 are also given in the Eurocode and are 1 and 0.6 respectively if no 

prestress is used and concrete strength is below 60 MPa. fywd represents the yield stress of the shear 

reinforcement. The spacing s is determined by the program based on the other variables. The angle 

between the longitudinal reinforcement and the concrete struts is called θ. The value of θ must 

satisfy the following condition:  

21.8° ≤ 𝜃 ≤ 45°  

There is also a minimum requirement for the ratio between the cross-sectional area of the shear 

reinforcement and a product of the width of the beam and the spacing (EN:1992-1-1 9.2.2). This 

equation is presented below: 

𝜌𝑤,𝑚𝑖𝑛 =
𝐴𝑠

𝑏∙𝑠
=

0.08∙√𝑓𝑐𝑘

𝑓𝑦𝑘
    (3.15) 

The total shear resistance can be calculated by multiplying the design shear stress with the 

effective height and the beam width. 

 

3.4 Material properties 

For the design of the beam, many different types of steel and concrete can be used. There are 

many different concrete strength classes, but only strength classes up to C50 can be used by the 

program as some equations change for concrete above this strength class. For the reinforcement 

steel, only B500B is used, as this is the most common type of reinforcement steel. For both the 

materials there are also different material factors that should be used to calculate the design 

strength. An overview of the concrete classes and the material factors can be found below. 
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Table 1: Material factors according to EN:1992-1-1 2.4. 

 

Table 2: Concrete classes from table 3.1 in EN:1992-1-1 3.1. 

 

3.4.1 Costs 

To find the cost-optimal design of a beam, it is important to know how the costs of that beam can 

be calculated. The cost of the construction of a beam does not only depend on the cost of the 

materials, but also on the costs of labour. For this reason shear reinforcement is more expensive 

than longitudinal reinforcement. An estimation of the price for both types of reinforcements was 

given by Dr. ir. drs. C.R. Braam, a professor in concrete structures at Delft University of Technology. 

The values that were used for the reinforcement costs are 2 €/kg and 3 €/kg for longitudinal and 

shear reinforcement respectively. The cost of concrete depends on the strength class of the concrete 

and is a lot cheaper than steel. The price of concrete that was used is 130 €/m3 for concrete class 

C30. For concrete classes higher or lower than C30 the price changes with 10 €/m3 per concrete class. 

The total amount of longitudinal reinforcement, shear reinforcement and concrete is calculated by 

the program and is multiplied by the values given above to give the total cost of the beam. 
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3.5  Additional information  

Besides the above mentioned checks, there are also some other things that need to be taken into 

account when designing a concrete beam. In the Eurocode there is also a rule for the minimum 

concrete cover, the distance between the reinforcement steel and the surface area of the beam. This 

value depends on the lifetime of the structure and the environment that it is placed in. The value 

should be taken according to the table below. The exposure classes can be found in the other table. 

Table 3: Concrete cover according to table 4.4N from EN:1992-1-1. 
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Table 4: Exposure classes related to environmental conditions according to table 4.1 from EN:1992-1-1. 

 

Eurocode also gives a minimum value for the clear distance between reinforcement bars. The 

minimum distance is given by the highest value from the following equations:  

max (𝑘1 ∙ 𝑑,  𝑘2 ∙ 𝑑𝑔,   20)    (3.16) 
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Where k1  and k2  are constants that are given in the National Annex. The recommended values 

according to EN:1992-1-1 are 1 mm and 5 mm respectively. The maximum grain size in the concrete 

mixture is given by dg. This minimum distance is required so that the concrete can be casted and 

compacted between the bars and it is necessary for an adequate bond. 
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4 – Computer model design 
 

4.1 Design of computer model 1 (without optimisation algorithm) 

The first model that was designed, was a simple computer model that does not make use of 

optimisation algorithms. The program consists of many checks that are performed within the main 

loop. Four variables in the dimensions of the beams are used, the other values are user input and 

remain constant during the design of the beam. Input arrays are created for these four variables: 

beam height, beam width, diameter of reinforcement bars and the number of bars. For the beam 

height and width the following rule-of-thumbs were used: 

ℎ = 1
10⁄ −  1 15⁄   𝑙  𝑏 =  1

3⁄ − 1
2⁄   ℎ 

A small factor is used to make sure that the optimal dimensions are inside the range. For the 

diameter of the reinforcement steel, a standard array was made with most commonly used 

diameters, namely: 12 mm, 16 mm, 20 mm, 25 mm and 32 mm. For the number of bars, 2 is used as 

a minimum to have a proper connection to the shear reinforcement in the corners of the beam. It is 

then increased with a step of 1 until the maximum number of cables that would fit within the width 

of the beam. 

By using four for loops, all the combinations of this input is used to check if the beam fulfils all 

the requirements and what the price of the beam would be. The checks that are performed are 

described in section 3 of this report. When all the checks pass, the cost is compared to the cheapest 

combination that passed the tests and the dimensions are saved in an array that is printed at the end 

of the program. The schematisation on the next page gives an overview of what the main loop looks 

like.  
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Figure 7: Schematisation of the computer model. 
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4.2 Design of computer model 2 (with optimisation algorithm) 

Another model was created to see if the calculation time could be reduced. This model makes 

use of an optimisation package from python called scipy.optimize. Inside this package are multiple 

tools, one of these tools is minimize (SciPy.org, 2019). This tool is used to find the minimum value of 

a function with different possible optimisation methods. For the design of the beam there are many 

known boundaries for the optimal dimensions of the beam, given by the rule-of-thumbs and 

available reinforcement cable diameters. Some optimisation methods of the minimize tool can take 

into account these boundaries to reduce the calculation time and only give valid answers.  

Other checks that have to be performed, the moment capacity, shear force resistance and the 

minimum and maximum reinforcement ratio are also inputted in the model. These checks were put 

in the program by defining them as constraints. Some of the methods cannot deal with both 

constraints and boundaries so there are only two possible methods left, namely: SLSQP and trust-

constr (SciPy.org, 2019). The model makes use of the SLSQP method, which is the default method 

when boundaries and constraints are given. The SLSQP method replaces the objective function with 

the quadratic approximation and the constraints functions are replaced by linear approximations 

(NEOS, 2019).  

The main function for this model is also very different than the main function for model 1. The 

checks are now defined as constraints and are therefore not included in the main function. The main 

function now only determines the maximum shear force and the required spacing to resist this shear 

force and it returns the cost of the beam. The minimize function searches for the lowest cost within 

the boundaries and constraints but with continuous variables. The output contains very specific 

numbers with a precision that can’t be achieved in real life. Concrete beams are dimensioned with a 

precision of several millimetres, reinforcement cables are only available at certain diameters and the 

number of cables can only be a whole number. The output of the function is therefore rounded up to 

more realistic values which also increases the costs of the beam. 

An initial guess is also needed for the minimize function to start the calculation. This is again done 

by using the rule-of-thumbs. For the diameter and number of cables the minimum is taken so that it 

will fit within the width of the beam in all cases. When all the data is inputted, the program returns 

an array with the optimal dimensions and the cost of the beam. The schematisation below gives an 

overview of the model. 
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Figure 8: Schematisation of the computer model with the SLSQP optimisation method. 

The values that the minimize function returns are changed by a function. This function rounds the 

height and width up to the closest multiple of 10 mm. Then it goes through two for-loops to check 

which combination of diameter and number of bars is closest to the area that was found with the 

minimize function. It also checks if the bars fit within the width of the beam, if this is not the case 

then the width is increased by 10 mm and it runs through the for-loops again.   
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5 – Results 
 

Both models have been run several times to check the output. The checks that were performed 

according to the Eurocode were also done by hand and MatrixFrame. There were 3 different test 

cases which were ran by both models and the check by hand and the output data can be found in the 

appendices. The output of the models met the requirements by the Eurocode so the program works 

properly. Some other tests were performed to check the calculation speed and the prices of the 

beams. During all of the tests the following variables remained constant at the following values: 

• Concrete cover    35  [mm] 

• Yield stress steel fyk     500 [N/mm2] 

• Concrete compressive strength fck   30 [N/mm2] 

• Shear reinforcement diameter ∅𝑠ℎ    8 [mm]  

• Strut angle θ     30 [deg] 

• Concrete cost     130  [€/m3] 

• Longitudinal reinforcement cost   2 [€/kg] 

• Shear reinforcement cost     3 [€/kg]  

5.1 Calculation time 

The calculation speed of the model without optimisation algorithm mainly depends on the length 

of the beam. The program runs through multiple arrays to check all the combinations. The height and 

width array are created based on the length of the beam and they get longer as the beam gets 

longer. This explains the increase in calculation time for the model without optimisation algorithm. 

The calculation time of the model with the optimisation algorithm is less dependent on the beam 

length. As the beam gets longer, the boundaries of the minimize function go farther apart so there 

are more possible values for which the cost could be minimal, but it doesn’t perform a calculation for 

every combination. The graph below shows the calculation time against the beam length. The load is 

kept constant at 10 kN/m during these tests. With the curve_fit function from scipy.optimize a line 

was created that is quite accurate for the model without optimisation algorithm (SciPy, 2019). The 

line shows a quadratic relation between the time and length. 
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Figure 9: Graph of the calculation time against the beam length for a load of 10 kN/m. 

  

From the graph it is clear that the model with the optimisation algorithm is a lot faster for longer 

beams while for shorter beams the needed time is almost the same. The speed of the program 

without optimisation algorithm could be improved by changing the formulas that define the 

boundaries for the height and width. This would make the arrays that are used to check every 

possibility shorter and therefore less possibilities are checked.  

The models have also been ran with different loads and the calculation time of every calculation 

has been written down. For smaller beam lengths these values are very small so the difference in 

calculation time can be neglected. For longer beams you can see this difference in calculation time in 

the graph below. For every length of the beam, the time for a load of 10 kN/m is the shortest. The 

expected result would be that the time required for higher loads is shorter, as more strength checks 

will fail and then the cost calculation and possibly some other strength checks will be skipped. The 

difference in calculation time could also be caused by a difference in available computational power 

of the computer during the tests. 
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Figure 10: Calculation time for model 1 with different loads. 

When looking at the same results for model 2, there is no clear pattern in the calculation time. 

The results are scattered and there is no load for which the required calculation time is clearly lower. 

There is also an unexpected outlier at a length of 7 meters and a load of 5 kN/m, the program was 

therefore ran multiple times with this input with the same result every time. The difference in 

calculation time could be caused by a wrong initial guess or because the algorithm has trouble 

finding the optimal value.  

 

Figure 11: Calculation time for model 2 with different loads. 

5.2 Costs 

Besides the calculation time it is interesting to look at the dimensions that both models return 

and the costs of those beams. To compare both models, the program was ran with 4 different loads, 

namely: 5 kN/m, 10 kN/m, 20 kN/m and 30 kN/m. For every load the length was changed multiple 

times between 3 and 15 meter. 
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In the graph below you can see the average cost of a beam that was designed by model 2 with 

the optimisation algorithm before the values were rounded up. In this graph you can see that the 

increase in costs rises with the beam length. This graph is best described by a quadratic function. 

When the beam gets longer more material is needed and the cross-sectional area of the beam and 

reinforcement bars increases due to the increase in the maximum moment. In the left graph you can 

see the costs for the beams that were given by model and model 2 divided by the optimal cost. For 

model 1 you can see that the output is farther from the optimal cost as the beam gets longer. The 

output from model 2 is in most cases more expensive than the output from model 1 and doesn’t 

show a clear pattern. This seems logical as the optimal design can lie close to a valid design, but 

when the area of the reinforcement bars doesn’t lie close to a realistic value the beam can be over 

dimensioned which is reflected in the costs as well.  

   

Figure 12: Average cost of a beam relative to the optimal cost (left) and average optimal cost (right).       

5.3 Dimensions 

Another interesting thing to look at is the dimensions that both models give. In the tables below 

you can find the results from both models when using a load of 20 kN/m. You can clearly see here 

that the width is kept very small as this contributes little to the moment capacity compared to the 

reinforcement area and the height of the beam. The width is increased when the required 

reinforcement area increases, so that the bars fit within this width. For model 1 the width is also 

increased when the beam gets longer, this is because the array of the width that is used to find the 

optimal dimensions depends on the height of the beam and varies between a 1/3 and 1/2 of the 

beam height. It also becomes clear that the height of the beams designed by model 2 continuously 

increases, while the beams of model 1 decrease when the area of the reinforcement bars increases.  
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Table 5: Results of the tests with a load of 20 kN/m. 

 

The results of the same tests with different loads are similar. The width stays very small while the 

height increases a lot. The diameter of the bars increases first from low values and when it is at 32 

mm it will stay very high so that the width can be kept minimal. The results for the other loads can be 

found in the appendices. 
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6 – Conclusion 
 

The aim of this research was to determine the calculation time and limitations of a computer 

model that gives the cost-optimal dimensions of a concrete beam. The calculation time has been 

recorded and was presented in section 5 of this report. Limitations that were found during this 

research were reported here.  

Now that the calculation time of the model designing a single beam is known we can finally say 

something about how long it would take to design an entire structure using such software. The 

model is able to design a beam with a maximum of 2 minutes time, making it useful for engineers as 

this could be done many times on a single working day. However, when the number of components 

increases, the number of combinations increases exponentially. So using the same method as used in 

model 1, checking every combination and saving the cheapest option, would require a lot of time. 

Assuming that the calculation time increases linearly with the number of combinations, then model 1 

would not be suitable for the design of a structure with many components. A structure of 5 

components can have a calculation time of up to 1005 s, which is too long to be of any use in practice.  

Both models only take into account the strength requirements of the beam. The stability of all 

the components and the entire structure is not checked. A lot of extra formulas are needed to check 

the stability of a structure. Though the checks should be possible to program, this would add a lot of 

extra checks that have to be performed. Also designing and checking the connection between 

different components is not implemented in the models. With all these extra checks that should be 

performed the calculation time would again increase substantially, and the current method would 

not be of any use in practice.  

While these models or potential further developed models would not be able to replace 

engineers and design a whole structure independently. They could be used by engineers during the 

design process to dimension separate components, while the overall layout of the structure is 

designed by the engineers themselves.  

6.1 Discussion 

Some choices that were made during the design of the computer models could be considered as 

wrong choices. The costs of the beams designed by model 2 were often a lot higher than the prices 

for the beams designed by model 1. This was mainly caused by the way that the values are rounded 

up. The optimal value that was found, with the continuous variables, was just rounded up to the 

closest valid values. This could be more efficient if the program would make small arrays around 

these values to find the optimal solution, as the design is now often over dimensioned. The choice 

for optimisation with discrete variables could also be made. This wasn’t done because there are no 

packages in python that can easily optimize a function with discrete variables, while there are some 

mathematical methods to do this (Rajeev & Krishnamoorthy, 1992). When this would be 

implemented in the program, the results could be closer to the cost-optimal design.  

The width that model 1 designs for beams with a large length is now often higher than required, 

which unnecessarily increases the cost of the designed beams. The program now makes a width 
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array based on the height of the beam with a minimum value of 1/3 of the height. This is not a 

requirement given in the Eurocode and if it was omitted, then the width would be closer to those 

found by model 2.  

6.2 Recommendations 

Based on the results in this report, some new discussion points emerged. Recommendations for 

further research are: 

• A better design is obtained if the used optimisation method in the program makes use of a 

discrete optimisation algorithm instead of a continuous method. 

• Use of other types of beams could be included in the program to give better alternatives if 

the load or span becomes too high. And to reduce the amount of materials that is needed to 

fulfil the strength requirements. The design of prefabricated concrete with prestressed 

reinforcement could for example be implemented in the program. 

• The shape of the beam could be made variable. This could lead to designs that make better 

use of the materials, increasing the internal lever arm with the same amount of materials. 

• The ranges of height and width of the beam could be improved. That will improve the 

calculation speed of the models. When defining this range, the load on the beam should also 

be included in the function. Some research should be done to get a function that gives an 

accurate estimation. 
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A - Test case A 
Model without optimisation algorithm 
 

Input  

Left support Hinge 

Right support Moveable 

  

Length 10 [m] 

Load 10 [kN/m2] 

 

 

Output   

Height 500 mm 

Width  210 mm 

Used diameter 25  mm 

Number of cables 2  - 

   

Moment capacity 167 kNm 

Max shear resistance 444 kN 

Spacing shear reinf. 300 mm 

   

Cost 336 € 

Calculation time 34 s 

 

 

Verification 

Output MatrixFrame:             Hand calculations: 

 

  

𝐴𝑠 = 2 ∙
1

4
∙ 𝜋 ∙ 252 = 981.75 𝑚𝑚2 

𝑁𝑠 = 981.75 ∙ 434.78 = 426846.83 𝑁 

𝑥𝑢 =
426846.83

20 ∙ 210 ∙ 0.75
= 135.51 𝑚𝑚 

𝑧 = 500 − 35 −  8 − 0.5 ∙ 25 − 0.39 ∙ 135.51 = 391.65 𝑚𝑚 

𝑀𝑅𝑑 = 427060.25 ∙ 391.65 ∙ 10−6 = 167.176 𝑘𝑁𝑚 
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Output model 2   

Height 520 mm 

Width  200 mm 

Used diameter 25 mm 

Number of cables 2 - 

   

Moment capacity 175 kNm 

Max shear resistance 357 kN 

Spacing shear reinf. 300 mm 

   

Cost 335 € 

Calculation time 3 s 

Hand calculations: 

𝐴𝑠 = 2 ∙
1

4
∙ 𝜋 ∙ 252 = 981.75 𝑚𝑚2 

𝑁𝑠 = 981.75 ∙ 434.78 = 426844.27 𝑁 

𝑥𝑢 =
426844.27

20 ∙ 200 ∙ 0.75
= 142.28 𝑚𝑚 

𝑧 = 520 − 35 −  8 − 0.5 ∙ 25 − 0.39 ∙ 142.28 = 409.01 𝑚𝑚 

𝑀𝑅𝑑 = 426844.27 ∙ 409.01 ∙ 10−6 = 174.584 𝑘𝑁𝑚 
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B - Test case B 
 

Input  

Left support Hinge 

Right support Moveable 

  

Length 15 [m] 

Distributed load 10 [kN/m2] 

Point loads 20 [kN] 

 

 

Output model 1   

Height 680 mm 

Width  290 mm 

Used diameter 32  mm 

Number of cables 3 - 

   

Moment capacity 553 kNm 

Max shear resistance 856 kN 

Spacing shear reinf. 300 mm 

   

Cost 1051 € 

Calculation time 118 s 

 

 

Verification 

Output MatrixFrame:  

     Hand calculations: 

 

 

𝐴𝑠 = 3 ∙
1

4
∙ 𝜋 ∙ 322 = 2412.74 𝑚𝑚2 

𝑁𝑠 = 2412.74 ∙ 434.78 = 1049012.47 𝑁 

𝑥𝑢 =
1049012.47

20 ∙ 290 ∙ 0.75
= 241.15 𝑚𝑚 

𝑧 = 680 − 35 −  8 − 0.5 ∙ 32 − 0.39 ∙ 241.15 = 526.95 𝑚𝑚 

𝑀𝑅𝑑 = 1049012.47 ∙ 526.95 ∙ 10−6 = 552.778 𝑘𝑁𝑚 
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Output model 2   

Height 870 mm 

Width  250 mm 

Used diameter 32 mm 

Number of cables 3 - 

   

Moment capacity 736 kNm 

Max shear resistance 790 kN 

Spacing shear reinf. 300 mm 

   

Cost 1108 € 

Calculation time 13 s 

Hand calculations: 

𝐴𝑠 = 3 ∙
1

4
∙ 𝜋 ∙ 322 = 2412.74 𝑚𝑚2 

𝑁𝑠 = 2412.74 ∙ 434.78 = 1049012.47 𝑁 

𝑥𝑢 =
1049012.47

20 ∙ 250 ∙ 0.75
= 279.74 𝑚𝑚 

𝑧 = 870 − 35 −  8 − 0.5 ∙ 32 − 0.39 ∙ 279.74 = 701.90 𝑚𝑚 

𝑀𝑅𝑑 = 1049012.47 ∙ 526.95 ∙ 10−6 = 736.305 𝑘𝑁𝑚 
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C - Test case C 
 

Input  

Left support Hinge 

Right support Moveable 

  

Length 3 [m] 

Distributed load 30 [kN/m2] 

Point loads 50 [kN] 

 

 

Output model 1   

Height 420 mm 

Width  200 mm 

Used diameter 20 mm 

Number of cables 2 - 

   

Moment capacity 91 kNm 

Max shear resistance 349 kN 

Spacing shear reinf. 253 mm 

   

Cost 76 € 

Calculation time 0.05 s 

 

 

Verification 

Output MatrixFrame:           Hand calculations: 

 

 

 

𝐴𝑠 = 2 ∙
1

4
∙ 𝜋 ∙ 202 = 628.32 𝑚𝑚2 

𝑁𝑠 = 628.32 ∙ 434.78 = 273180.33 𝑁 

𝑥𝑢 =
273180.33

20 ∙ 200 ∙ 0.75
= 91.06 𝑚𝑚 

𝑧 = 420 − 35 −  8 − 0.5 ∙ 20 − 0.39 ∙ 91.06 = 331.49 𝑚𝑚 

𝑀𝑅𝑑 = 273180.33 ∙ 331.49 ∙ 10−6 = 90.556 𝑘𝑁𝑚 
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Output model 2   

Height 410 mm 

Width  200 mm 

Used diameter 25 mm 

Number of cables 2 - 

   

Moment capacity 128 kNm 

Max shear resistance 282 kN 

Spacing shear reinf. 245 mm 

   

Cost 92 € 

Calculation time 2 s 

Hand calculations: 

𝐴𝑠 = 2 ∙
1

4
∙ 𝜋 ∙ 252 = 981.75 𝑚𝑚2 

𝑁𝑠 = 981.75 ∙ 434.78 = 426844.27 𝑁 

𝑥𝑢 =
426844.27

20 ∙ 200 ∙ 0.75
= 142.28 𝑚𝑚 

𝑧 = 410 − 35 −  8 − 0.5 ∙ 25 − 0.39 ∙ 142.28 = 299.01 𝑚𝑚 

𝑀𝑅𝑑 = 426844.27 ∙ 299.01 ∙ 10−6 = 127.631 𝑘𝑁𝑚 
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D - Code computer model 1 
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E - Code computer model 2 
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F – Results of the tests 
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