ey

Calculation ttime and limitations of a

computer model giving the cost-optimal

design of a reinforced concrete beam

B. van Kessel

i

IS |

Calculation time and limitations of a computer model
giving the cost-optimal design of a reinforced concrete
beam

By

B. van Kessel

In partial fulfilment of the requirements for the degree of

Bachelor of Science
in Civil Engineering

at the Delft University of Technology,
Faculty of Civil Engineering and Geosciences

June 18, 2019

Student number: 4552318
Project duration: April 22, 2019 —June 18, 2019
Advisors: Dr. ir. P.C.J. Hoogenboom

Dr. ir. drs. C.R. Braam

%
TUDelft

Abstract

With the increase in computational power and the current development in artificial intelligence,
new software applications have become possible. Humans have been replaced by such applications
in multiple sectors (Huang, 2018). In the engineering sector many tools are used that also make use
of artificial intelligence, but they are not yet able to replace humans. Because of the current
development in the field of computer science and electrical engineering this could also happen in the
engineering sectors. A software application using artificial intelligence has been built by M. Arafa and
M. Algedra, which was able to make a good estimation of the total costs of a construction project
before the design of this structure (Arafa, 2011). In the future it might be possible to develop
software that is able to design the structure as well.

In this thesis, the possibilities of such software is investigated. By building a simple computer
program that is able to design a rectangular cast-in-situ reinforced concrete beam, the calculation
time of such software was researched. The program was designed to find the cost-optimal
dimensions of a beam for a given span and load. During the design some problems were found and
reported in this thesis. The concrete beam that is designed by the program is tested for the ultimate
limit state (ULS). Both the moment capacity and the shear force capacity of the beams are calculated
by the program which then performs the strength checks according to the Eurocode. The equations
used to calculate the maximum forces and the capacities are also reported in the thesis.

Two different models were built to give the cost-optimal dimensions of a beam. Both models
design the beam using 4 different variables: the height of the beam, the width of the beam, the
diameter of the reinforcement bars and the number of reinforcement bars. The first model uses
multiple for-loops to check every combination that could be made with these four variables, where
the height and width where given in steps of 10 millimetres and for the diameter the most common
reinforcement bar diameters were used (12 mm, 16 mm, 20 mm, 25 mm, 32 mm). The cheapest
option that passed the strength checks was then returned by the program. The second model uses an
optimisation algorithm from a python package called SciPy. The boundaries and constraints for the
function were specified and then inputted in the minimize function of this package. The boundaries
represent the minimum and maximum value for the four variables and the constraints contain
inequalities of the Eurocode requirements. The output given by the function was then rounded up to
the closest values that could be used in practice.

The first model turned out to be very fast for short beams but the calculation time increases
qguadratically with the beam length. For beams around 3 to 4 metre this is approximately 1 second,
while a the calculation takes nearly 2 minutes for a 15 metre long beam. The calculation time of the
second model depends less on the beam length, but is greatly affected by the convergence of the
minimize function, which gives very random results for the calculation time. The dimensions of the
beam show a clear pattern. The width of the beam is kept as small as possible but is increased so the
reinforcement bars fit within this width. To keep the beam’s width as small as possible, mainly large
diameter bars are used. The height and reinforcement area is increased when the maximum moment
increases.

B. van Kessel BSc Thesis i

When this computer program would be further developed to design entire structures, the
amount of components would increase a lot. The amount of combinations would then increase
exponentially with the respect to the components, which would greatly affect the calculation time of
the first model. The second method gives results that are far from optimal due to the rounding up of
the variables. When the optimisation method would use discrete variables it could be useful in
practice. During this research stability of the structure was neglected, which would add a lot of tests
to the program which would increase the calculation time. With current computational power this
would take too long to be of any use in practice. If it would be further developed it could assist
engineers in dimensioning different components, but the layout of the entire structure should be
designed by the engineers themselves.

B. van Kessel BSc Thesis iii

Acknowledgements

This thesis was written as final part of my Bachelor’s degree in Civil Engineering at Delft
University of Technology. | really enjoyed working on this project, as | could combine my interests in
Civil Engineering and Computer Science. It also made me more enthusiastic about programming and
made me realize that | want to learn more about it.

During my bachelor Civil Engineering at Delft University, my teachers and peers have taught me a
great set of skills in engineering and collaboration, which I'd like to thank them for. | also want to
thank some people in particular. First of all, I'd like to thank my first advisor, Pierre Hoogenboom, for
helping me find a subject for my bachelor’s thesis and giving advice and guidance throughout this
period in which | was doing my research. Secondly, I'd like to thank my other advisor, for taking the
time to review my work and giving feed-back of the flash report.

Bart van Kessel

Delft, June 2019

B. van Kessel BSc Thesis iv

Contents

LY o1 1 T AU P PPV PTUPPTOPRTOPRRRPSRTPN ii
Yol g LoV 1= F=d<T o Y=Y o N iv
Rl oY i o Te [¥ ot i o T DO TSP PUTO PO OTOTRTI 1
1.1 Problem Statement. ... ettt 1
R O] o 1= o 4 Y PPt 1
0 T Yoo T o - Yo o PPt 1
1.4 OULHNE Of thESIS et sttt st sbe e s 2

2 — LItEratlure FRVIEW . .eeeeiiieee ettt ettt et e e st e e s s e e s s e e s eeabeeesesnreeesennnenas 3
3 —CoNCrete bEAM dESIZNviiii ettt e et e e e et e e e e e be e e e s ebteeeeebtaeeeentaeaeeanes 4
701 R o T-To [OOSR PRSP PPTPORUPRRPORt 4
3.2 MOMENE CAPACITY . ceiieiiiiiiiieeee ettt ettt e e e e e st e e e e e s s s sabtbeeeeessssssssbenaeeeeessnsansneneeeens 6
3.3 ShEAI FSISTANCE .eueeieiieeiee ettt e b e bbbt st e e et e sbe e saeesane e 7
3.3.1 Shear resistance without shear reinforcement.......c.ccccoeceeriiiiiiiiniiineec e, 8
3.3.2 Shear resistance with shear reinforcementccoceeeriiiniiiiiicis e 8

3.4 MaATErial PrOPEITIES cooeiieeeeeectiee ettt et e e st e e e et e e e st e e e e eabeeeeeabaeeeesraeeeenbaeeeennrenas 9
341 COSES ettt 10

3.5 Additional iNfOrmMationeoeeiiiiie e e 11

4 — Computer MOl dESIZNueieeeiie e e e e e e re e e e e b e e e e e araee e e nnreeas 14
4.1 Design of computer model 1 (without optimisation algorithm)........cceccevevrciiiinnieneenne, 14
4.2 Design of computer model 2 (with optimisation algorithm)cccccoeciieeiiiiiieiecieeee 16

5 m RESUIES .. e e s st st e nes 18
5.1 CalCulation tiMe...cui et 18
T A o 1) £SO PETOTSST PP 20
5.3 DIMENSIONS c.evtiiiiiiiiiiiiiii ittt 21
Lo o] a [ol (V1Y (o] o [P PO P ST TRTOTSTI 23
6.1 DISCUSSION .ttt ettt e et e e s s e e e s e e s s mr e e e s e b e e e e e ren e e e ennene s e nnrenes 23
6.2 RECOMMENAATIONS. ..cutiiiietieieeiie ettt ettt sttt st e b e b e saeesanesr e e neennes 24

F AN o 01T o Lol TSR USURRNt 27
A - TESECASE A oottt ara s 28
B - TEST CASE Bu.oeeeiiiiiiiiii i 30
(O Sy i oF= 1Y TSRS PRPRN 32
(DI @foTo [l ole] o oY UL L= gl Vo Yo 11 It AP 34

B. van Kessel BSc Thesis v

E - Code computer model 2

F — Results of the tests........

B. van Kessel

BSc Thesis

Vi

1 — Introduction

1.1 Problem statement

Computers become more powerful every year and a lot of new software is developed to make
use of the increasing computational power. There are many software tools created that are useful for
engineers. Artificial Intelligence is currently used in many applications and has already replaced
human employees in multiple sectors (Huang, 2018). M. Arafa and M. Algedra have also shown in
their research that a good estimation of the total costs of a construction project can be made with
the help of artificial intelligence (Arafa, 2011). A software program that designs a construction
project using artificial intelligence has not yet been developed, but could be developed in the future.

In 2016, T. Wubs did a research for her bachelor thesis on optimizing the design of a cantilever
truss and has shown that it is possible for a computer model to determine the cost-optimal design in
six hours (Wubs, 2016). It might also be possible to create modules that give the optimal design for
other structural parts (e.g. trusses, beams, joints, slabs, etc.) and their connections. A computer
program consisting of a combination of all these modules would then be able to design a structure.
To optimise every structural part of a structure and their connections a lot of calculations are
needed. To perform these calculations, a lot of time and computational power is required.

1.2 Objective

The aim of this research is to determine the calculation time and limitations of a computer
program that gives the cost-optimal dimensions of a rectangular, cast in situ reinforced concrete
beam.

The following questions have to be answered to obtain the objective:

1. How can the optimal design of a concrete beam be determined?
a. Eurocode equations
b. parameters
c. validity range

2. Which optimisation algorithms are suitable?

1.3 Approach

By building a computer program that works out the cost-optimal dimensions of a single structural
component, one can find potential problems for a program that designs an entire structure and get a
better idea of the required calculation time. So a first step would be to create a program that gives
the cost-optimal dimensions of a simple structural component, a two support concrete beam. To
create such a program, information on concrete design and strength requirements is needed and was
collected first. Optimisation algorithms in python were then researched. When this computer
program worked, the results were validated. With hand calculations a check was performed, to
determine if the program indeed gives a valid and optimal design. A few test cases were made to
check the results.

B. van Kessel BSc Thesis 1

The calculation time of such a computer program does not give a clear view on the total required
time to design an entire structure. The calculation has to be performed for all the parts and their
connections. For every structural part there are multiple alternatives and therefore there will be
many different possible combinations for the design of a structure. Based on the number of
combinations and the calculation time of a single element, the estimation of the total required time
was made.

1.4 Outline of thesis

Section 2 of this report provides a literature overview of the optimisation algorithms and how
they have been applied in the design of concrete structures.

In section 3, the design of a concrete beam is described. The calculations concerning loads and
stresses were given here, along with the strength requirements according to the Eurocode.

Furthermore the steps that have been taken to design a concrete beam were specified.

The design of the computer models is described in section 4. A clear overview of the steps that
the models perform was given in charts and a short description.

In section 5 the results of the research are presented. A conclusion drawn from the results and
suggestions are presented in section 6 of this thesis.

Some pictures from additional files were added in the appendices, along with the test cases that
were used to verify the results.

B. van Kessel BSc Thesis 2

2 — Literature review

The design of concrete structures with the use of optimisation algorithms has been researched
many times. A lot of different approaches are used in these researches. A program that gave the
optimal dimensions for a certain moment capacity was made in an earlier research (Chakrabarty,
1992). This research confirmed that there is a large number of alternative beam dimensions and
reinforcement ratios that give the same moment resistance. An alternative approach was
recommended where the bending moment in the beam is the input and the unique least-cost beam
section is the output.

In a more recent research, the environmental costs of the design of a concrete column was also
taken into consideration instead of only the financial costs (de Medeiros & Kripka, 2014). An
environmental scoring system for each input of reinforced concrete was used. The results of this
research are quite similar to the results from financial optimisation methods, as both methods tend
to go for a minimum amount of materials. Although they are quite similar there is one big difference,
the model with environmental cost optimisation prefers using non-rectangular beams. This reduces
the amount of materials needed but increases the financial costs, which makes it less relevant for
financial cost optimisation.

A model giving the optimal design of a three dimensional multi-story concrete structure using
meta-heuristic algorithms was presented in a Iranian paper (Kaveh & Behnam, Design optimization of
reinforced concrete 3D structures considereing frequency constraints via a charged system search,
2013). This model made use of the charged system search algorithm. The charged search system
algorithm is a recently developed optimisation method, that outperforms many evolutionary
algorithms (Kaveh & Talatahari, Novel heuristic optimization method: charged system search, 2010).
While the required time to perform the design is not stated in the report, it does say that it would be
a suitable tool to in practice although the program needs a lot of computational power. Another
computer model that was made to research the possibilities of optimisation in reinforced concrete
design, made use of another method, namely DMPSO (Esfandiari, Urgessa, Sheikholarefin, &
Dehghan Manshadi, 2018). This algorithm is a combination between multi-criteria decision-making
(DM) and Particle Swarm Optimization (PSO). The algorithm gave optimal dimensions efficiently for
three dimensional reinforced concrete structures.

B. van Kessel BSc Thesis 3

3 — Concrete beam design

Every construction component has to fulfil certain requirements. These requirements can be
found in the Eurocode and a national annex. In this section, the calculations that should be
performed to check the strength of a beam are given.

3.1 Loads

When the loads on a beam are known and the type and location of the supports, one can
calculate the maximum bending moment and shear force in the beam. For this research only beams
on two supports are considered. For many different statically undetermined situations formulas have
been made that give the support forces and bending moments inside the beam for a given load. In
the figures below the used formulas can be found:

-
~

*

M, = H’(.‘_i.'._) = Fol L. 3.".‘.. la

267 £ 2¢ 28
ll‘ Fh(‘fz (3 a |a]
V.= govsame o o

2 b 2% 2 t’J

‘ 2¢° 28 2°0

M,
CE ‘ \
f 7, '{ 5 I-'a’(Sf—g_):F[Ja' 1a’]
Y, Vs

a, - s

_Fa'b _ u‘f 2 2
* T 3EIE 4l-l L

Figure 1: Equations for statically indeterminate beam with a fixed and a hinge support and a point load (van Rotterdam,
2005).

1 gf* 1 gt*

10 7 - Vi

q
M, : O‘y’ s
(‘- 2T A8 EI'’ 192 EI
_ 0, M, =—qt*: V.==qgl: V,==ql
?Vl ; ?V | 8‘] [8q 2 8‘1

.-

Figure 2: Equations for statically indeterminate beam with a fixed and hinge support and a distributed load (van
Rotterdam, 2005).

B. van Kessel BSc Thesis

Fab® ')
Ml:'?zb —lf[‘—z a

¢ 2P
F 2
M, O (2 7) S L
)|
(
A!z—Fab g__a_
f V; g \# P

2 3
V, = Fa’(¢+ 2b)_n(25}
e ¢

Figure 3: Equations for statically indeterminate beam with two fixed supports and a point load (van Rotterdam, 2005).

q 1 gt*

M, : :V : . M, w_,=;8_4‘7_1
; M,=M,=—ql*;: V,=V,=—qf
?VI . f A 1 2 I2q | 2‘1

Figure 4: Equations for statically indeterminate beam with two fixed supports and a distributed load (van Rotterdam,
2005).

For cases with a statically determinate beam, the support forces are calculated by solving the
equilibrium equations for the external forces (Hartsuijker, 1999). This gives the following formulas for
the support forces:

F-b F-a
A= B = (3.1)
1
Ay=B,=q"I (3.2)

Where a is the distance from the left support to the location of the point load and b is the
distance from the right support. Distributed loads that do not cover the entire length of the beam
can’t be inputted in the program. After performing the calculations the line of the shear force can be
created and with the shear force line, the moment line can be created.

Loads are always multiplied by a safety factor depending on the type of load and the type of
calculation. As the model only checks the beam for the ultimate limit state (ULS), the factors for
permanent and variable loads are 1.2 and 1.5 respectively (Wagemans, Soons, & Raaij, 2014). The
factors on the loads that are inputted in the model should already be applied, as the program can’t
distinguish permanent and variable loads. The factor on permanent loads for the self-weight of the
beam is included in the model and has a value of 1.2.

B. van Kessel BSc Thesis 5

3.2 Moment capacity

The maximum bending moment that a concrete beam can resist depends on the dimensions of
the beam and the strength of the reinforcement steel and concrete. It is assumed that the
reinforcement steel is yielding at the maximum bending moment and that the concrete has cracked
in the tensile area and does not take any tensile forces (Hordijk & Lagendijk, B2 Buiging, 2017). The
program does not take into account a normal force in the beam and therefore no 2" and 3" order
moments as well. The force in the reinforcement steel can be calculated with the following formula:

NS = AS) fyd (33)

Where As is the total area of the reinforcement bars and f,4 the design yield stress of the steel.
The total compressive force in the concrete N, has to be equal to Ns in the opposite direction for a
horizontal force equilibrium. The moment in the beam can be calculated by multiplying the force by
the arm z. The arm depends on the height of the beam, the concrete cover, the diameters of the
reinforcement and the height of the concrete compression zone. The height of the compression zone
can be determined with the following formula:

Neg=N,.= foq-b-a-x, (3.4)

Where f.q is the design concrete strength, b is the width of the beam, x, is the concrete
compression zone height and a is the shape factor. The value for a depends on the concrete strength
and is 0.75 for a concrete strength lower than or equal to C50/60. As all values except for x, are
known it is possible to determine the height of the concrete compression zone. The arm z can then
also be calculated:

_ Asfya
Xy = Fba (3.5)
z=h—c— Qg — 05 Qiong — B x4y (3.6)

When the lever arm and the normal force in the concrete and reinforcement steel are known the
moment capacity of the beam can be calculated by multiplying these values. This calculation is
shown in the following equation:

MRd,max =Nz (3.7)

Some additional checks have to be performed during this calculation. There are restrictions to
the amount of longitudinal reinforcement used and the height of the concrete compression zone.
Eurocode suggests a minimum reinforcement ratio according to the following equation (EN:1992-1-1
9.2, 2004):

As fetm
—==0.26— 3.8
Ac fyk ()

B. van Kessel BSc Thesis 6

For the maximum reinforcement a ratio of 4% is suggested, these values may differ in any
national annex but for the design of our computer model the values in the Eurocode were used. The
maximum amount of steel is also limited by the maximium concrete compression zone x,. The
maximum ratio between effective height of the beam and the height of the concrete compression
zone is given by the following equation (Hordijk & Lagendijk, B2 Buiging, 2017):

x £y 100
Tu o EwlD (3.9)
d £cu 10847 fyq

Figure 5: Schematisation of concrete and steel force and the internal lever arm (Hordijk & Lagendijk, B2 Buiging, 2017).

3.3 Shear resistance

Besides moment capacity, the strength of the beam is also checked for the shear force. The shear
force requirements are also given by the Eurocode. There are equations for a beam with and without
shear reinforcement. If a beam would have sufficient shear resistance without shear reinforcement,
minimal reinforcement is applied, with a spacing of 300 millimetres. The strength calculations for
both situations are described below.

B. van Kessel BSc Thesis 7

Determine shear force Vgp <

Y

‘ Calculate Vgq

YES

Change

dimensions

Sufficient strength
with minimal

reinforcement -
Calculate shear reinforcement

Figure 6: Design process of shear reinforcement (Hordijk & Lagendijk, CTB2220 Beton & Staalconstructies, 2017).

3.3.1 Shear resistance without shear reinforcement

The shear resistance without shear reinforcement depends on multiple factors. The strength is
determined based on the characteristic concrete strength f«, the effective height d of the beam and
the reinforcement ratio in longitudinal direction using the effective height. Eurocode gives two
equations to calculate the strength, a design value and a minimum value (EN:1992-1-1 6.2.2). Both
these equations use a variable k. The following equations are used to determine the shear resistance:

k = min (1 + /%; 2.0>;d inmm (3.10)

Vrae = 012k - (100~ p; - fur) /3 (3.11)

Vi = 0.035 - k2 - £, 12 (3.12)

The stresses are then multiplied by the width of the beam and the effective height to obtain the
total shear resistance of the cross-sectional area. If the design value is lower than the minimum
value, the minimum value will be used.

3.3.2 Shear resistance with shear reinforcement

For the shear resistance with reinforcement Eurocode gives again two different formulas, one for
the design shear resistance and one for the maximum shear resistance.

B. van Kessel BSc Thesis 8

A

VRd,S = % A fywd -cot@ (313)
_ Qew'bwZV1fea
VRd,max " cotf+tan6 (3.14)

The values for acwand v; are also given in the Eurocode and are 1 and 0.6 respectively if no
prestress is used and concrete strength is below 60 MPa. f,wq represents the yield stress of the shear
reinforcement. The spacing s is determined by the program based on the other variables. The angle
between the longitudinal reinforcement and the concrete struts is called 8. The value of 6 must
satisfy the following condition:

21.8° <6 < 45°

There is also a minimum requirement for the ratio between the cross-sectional area of the shear
reinforcement and a product of the width of the beam and the spacing (EN:1992-1-1 9.2.2). This
equation is presented below:

_ As _ 008/
Pwmin = 3= f_yk (3.15)
The total shear resistance can be calculated by multiplying the design shear stress with the
effective height and the beam width.

3.4 Material properties

For the design of the beam, many different types of steel and concrete can be used. There are
many different concrete strength classes, but only strength classes up to C50 can be used by the
program as some equations change for concrete above this strength class. For the reinforcement
steel, only B500B is used, as this is the most common type of reinforcement steel. For both the
materials there are also different material factors that should be used to calculate the design
strength. An overview of the concrete classes and the material factors can be found below.

B. van Kessel BSc Thesis

Table 1: Material factors according to EN:1992-1-1 2.4.

Design situations 7 forconcrete | s for reinforcing steel | 5 for prestressing steel
Persistent & Transient 1.5 1,15 1,15
Accidental 1,2 1.0 1.0

Table 2: Concrete classes from table 3.1 in EN:1992-1-1 3.1.

Strength classes for concrete Analytical relation
| Explanation

fa (MPa)| 12 16 20 25 30 35 40 45 50 55 60 70 80 90

frcube 15 20 25 30 7 45 50 55 60 67 75 85 95 105 I
(MPa) 28
Jem 20 24 28 k< 38 43 48 53 58 63 68 78 88 98 fom = 5 *8(MPa)
(MPa)
feam 1.6 19 22 26 29 3.2 3.5 38 4.1 42 4.4 4.6 48 5.0 |Jm=0,30x£"" <C50/60
{MPa} Fam=2,12-In{1+{L.10))
= C50/60

fax .05 11 13 | 15 1.8 2,0 22 25 | 27 29 3.0 31 32 34 3.5 | foos =0Tk

(MPa) 5% fractile
feaw 0,95 201 25 (29| 33 [38 | 42 | 46 | 49 | 53 55 5,7 6,0 6,3 6,6 | fomoon = 13ufmm
(MPa) 95% fractile
Eem 27 29 30 3 33 34 35 36 37 38 39 41 42 44 Eon = 22{(fm)10F*
(GPa) {fm in MPa)

&1 (%e) 1.8 19 2.0 sl 22 | 225 | 23 24 2,45 2,5 2,6 2,7 28 2,8 | see Figure 3.2
i (o) = 07 £ <2 8@

Eaut (%0) 3,5 3.2 3.0 2.8 28 2,8 | see Figure 3.2
for f. 2 50 Mpa
el oal=2 B+ 2T((QB-12)/100T'
. 20 22 23 24 2,5 26 see Figure 3.3
&z (%o) for fx 2 50 Mpa
i | ol ") =2,040,085(f-50 "™

X 35 31 29 27 26 26 see Figure 3.3
Wi for I 2 50 Mpa

ool J= 2,6+ 35((90-£, ¥100]"

n 2,0 1,75 16 1,45 14 14 for Ix2 50 Mpa
n=1,4+23 4[(90- f,V100]"

&3 (%) 1,75 18 19 20 2.2 2.3 see Figure 3.4
for fs2 50 Mpa

el V=1, 75+0,55((f-50)/40)

for f. 2 50 Mpa
ez ol "o)22, B+ IS(90-1., 1 100)"

Eeya (Yoo) 3.5 3,1 29 ‘ 27 | 26 26 see Figure 3.4

3.4.1Costs

To find the cost-optimal design of a beam, it is important to know how the costs of that beam can
be calculated. The cost of the construction of a beam does not only depend on the cost of the
materials, but also on the costs of labour. For this reason shear reinforcement is more expensive
than longitudinal reinforcement. An estimation of the price for both types of reinforcements was
given by Dr. ir. drs. C.R. Braam, a professor in concrete structures at Delft University of Technology.
The values that were used for the reinforcement costs are 2 €/kg and 3 €/kg for longitudinal and
shear reinforcement respectively. The cost of concrete depends on the strength class of the concrete
and is a lot cheaper than steel. The price of concrete that was used is 130 €/m? for concrete class
C30. For concrete classes higher or lower than C30 the price changes with 10 €/m? per concrete class.
The total amount of longitudinal reinforcement, shear reinforcement and concrete is calculated by
the program and is multiplied by the values given above to give the total cost of the beam.

B. van Kessel BSc Thesis 10

3.5 Additional information

Besides the above mentioned checks, there are also some other things that need to be taken into
account when designing a concrete beam. In the Eurocode there is also a rule for the minimum
concrete cover, the distance between the reinforcement steel and the surface area of the beam. This
value depends on the lifetime of the structure and the environment that it is placed in. The value
should be taken according to the table below. The exposure classes can be found in the other table.

Table 3: Concrete cover according to table 4.4N from EN:1992-1-1.

Environmental Requirement for ¢y, gy (MmM)
Structural Exposure Class according to Table 4.1

Class X0 XC1 | XC2/XC3 XC4 XD1/XS1 | XD2/XS2 | XD3/ XS3
S1 10 10 10 15 20 25 30
S2 10 10 15 20 25 30 35
S3 10 10 20 25 30 35 40
S4 10 15 25 30 35 40 45
S5 15 20 | 30 35 40 45 50
S6 | 20 25 | 35 40 | 45 50 | 55

B. van Kessel BSc Thesis 11

Table 4: Exposure classes related to environmental conditions according to table 4.1 from EN:1992-1-1.

Class Description of the environment Informative examples where exposure classes
designation may occur
1 No risk of corrosion or attack
For concrete without reinforcement or
X0 embedded metal: all exposures except where
there is freeze/thaw, abrasion or chemical
attack
For concrete with reinforcement or embedded
metal: very dry Concrete inside buildings with very low air humidi
2 Corrosion induced by carbonation
Xc1 Dry or permanently wet] Concrete inside buildings with low air humidity
Concrete permanently submerged in water
XCc2 Wet, rarely dry Concrete surfaces subject to long-term water
contact
Many foundations
XC3 Moderate humidity Concrete inside buildings with moderate or high air
humidity
External concrete sheltered from rain
XC4 Cyclic wet and dry Concrete surfaces subject to water contact, not
| within exposure class XC2
3 Corrosion induced by chlorides
XD1 Moderate humidity Concrete surfaces exposed to airborne chlorides
XD2 Wet, rarely dry Swimming pools
Concrete components exposed to industrial waters

containing chlorides

XD3 Cyclic wet and dry Parts of bridges exposed to spray containing
chlorides
Pavements
Car park slabs
4 Corrosion induced by chlorides from sea water
XS1 Exposed to airbome salt but not in direct Structures near to or on the coast
contact with sea water
XS2 Permanently submerged Parts of marine structures
XS3 Tidal, splash and spray zones Parts of marine structures
5. Freeze/Thaw Attack
XF1 Moderate water saturation, without de-icing Vertical concrete surfaces exposed to rain and
agent freezing
XF2 Moderate water saturation, with de-icing agent | Vertical concrete surfaces of road structures
exposed to freezing and airborne de-icing agents
XF3 High water saturation, without de-icing agents | Horizontal concrete surfaces exposed to rain and
freezing
XF4 High water saturation with de-icing agents or Road and bridge decks exposed to de-icing agents
sea water Concrete surfaces exposed o direct spray
containing de-icing agents and freezing
I Splash zone of marine structures exposed to

freezing
6. Chemical attack
XA1 Slightly aggressive chemical environment Natural soils and ground water
according to EN 206-1, Table 2
XAZ2 Moderately aggressive chemical environment | Natural soils and ground water
according to EN 206-1, Table 2
XA3 Highly aggressive chemical environment Natural soils and ground water

according to EN 206-1, Table 2

Eurocode also gives a minimum value for the clear distance between reinforcement bars. The
minimum distance is given by the highest value from the following equations:

max(k, - d, k- dg, 20) (3.16)

B. van Kessel BSc Thesis 12

Where k; and k; are constants that are given in the National Annex. The recommended values
according to EN:1992-1-1 are 1 mm and 5 mm respectively. The maximum grain size in the concrete
mixture is given by d,. This minimum distance is required so that the concrete can be casted and
compacted between the bars and it is necessary for an adequate bond.

B. van Kessel BSc Thesis 13

4 — Computer model design

4.1 Design of computer model 1 (without optimisation algorithm)

The first model that was designed, was a simple computer model that does not make use of
optimisation algorithms. The program consists of many checks that are performed within the main
loop. Four variables in the dimensions of the beams are used, the other values are user input and
remain constant during the design of the beam. Input arrays are created for these four variables:
beam height, beam width, diameter of reinforcement bars and the number of bars. For the beam
height and width the following rule-of-thumbs were used:

_1 1 _1/_1
h="/10="/15 b= /3= "/ h

A small factor is used to make sure that the optimal dimensions are inside the range. For the
diameter of the reinforcement steel, a standard array was made with most commonly used
diameters, namely: 12 mm, 16 mm, 20 mm, 25 mm and 32 mm. For the number of bars, 2 is used as
a minimum to have a proper connection to the shear reinforcement in the corners of the beam. It is
then increased with a step of 1 until the maximum number of cables that would fit within the width
of the beam.

By using four for loops, all the combinations of this input is used to check if the beam fulfils all
the requirements and what the price of the beam would be. The checks that are performed are
described in section 3 of this report. When all the checks pass, the cost is compared to the cheapest
combination that passed the tests and the dimensions are saved in an array that is printed at the end
of the program. The schematisation on the next page gives an overview of what the main loop looks
like.

B. van Kessel BSc Thesis 14

User Input
{supports and loads)

v

Vs

.

~
Create input array for beam height

and diameter reinforcement steel DERIEE QN Al e

v

For loop in height array

-~

Create input array for beam width
based on current height

width=1/3-112h

.

For loop in width array

-

Determines self-weight. max moment|

and max shear force

.

For loop in diameter array

Determines maximum shear
resistance

Strength

’V
e

Creates number of cables array

.

For loop in number of cables array

Determines moment capacity

\A
7

B. van Kessel

V

Determines maximum spacing for
shear reinforcement

v

Determines total cost

If
lowest total

cost

Save dimensions and total cost to
array

Output

Figure 7: Schematisation of the computer model.

BSc Thesis

15

4.2 Design of computer model 2 (with optimisation algorithm)

Another model was created to see if the calculation time could be reduced. This model makes
use of an optimisation package from python called scipy.optimize. Inside this package are multiple
tools, one of these tools is minimize (SciPy.org, 2019). This tool is used to find the minimum value of
a function with different possible optimisation methods. For the design of the beam there are many
known boundaries for the optimal dimensions of the beam, given by the rule-of-thumbs and
available reinforcement cable diameters. Some optimisation methods of the minimize tool can take
into account these boundaries to reduce the calculation time and only give valid answers.

Other checks that have to be performed, the moment capacity, shear force resistance and the
minimum and maximum reinforcement ratio are also inputted in the model. These checks were put
in the program by defining them as constraints. Some of the methods cannot deal with both
constraints and boundaries so there are only two possible methods left, namely: SLSQP and trust-
constr (SciPy.org, 2019). The model makes use of the SLSQP method, which is the default method
when boundaries and constraints are given. The SLSQP method replaces the objective function with
the quadratic approximation and the constraints functions are replaced by linear approximations
(NEOS, 2019).

The main function for this model is also very different than the main function for model 1. The
checks are now defined as constraints and are therefore not included in the main function. The main
function now only determines the maximum shear force and the required spacing to resist this shear
force and it returns the cost of the beam. The minimize function searches for the lowest cost within
the boundaries and constraints but with continuous variables. The output contains very specific
numbers with a precision that can’t be achieved in real life. Concrete beams are dimensioned with a
precision of several millimetres, reinforcement cables are only available at certain diameters and the
number of cables can only be a whole number. The output of the function is therefore rounded up to
more realistic values which also increases the costs of the beam.

An initial guess is also needed for the minimize function to start the calculation. This is again done
by using the rule-of-thumbs. For the diameter and number of cables the minimum is taken so that it
will fit within the width of the beam in all cases. When all the data is inputted, the program returns
an array with the optimal dimensions and the cost of the beam. The schematisation below gives an
overview of the model.

B. van Kessel BSc Thesis 16

e

MRd * Mmax

s

- LT
VRd, max > Vimax

8

b > n*(dtdg) + ¢

8

Figure 8: Schematisation of the computer model with the SLSQP optimisation method.

B. van Kessel

-

J

.

.

L

A

.

L

A

Main function

Y

sCipy.optimize
minimze

Y

Rizund to good
values

Y

cutput

BSc Thesis

Boundaries

12 h<b<12Zh

12<d=<32

2=n=10

The values that the minimize function returns are changed by a function. This function rounds the
height and width up to the closest multiple of 10 mm. Then it goes through two for-loops to check
which combination of diameter and number of bars is closest to the area that was found with the
minimize function. It also checks if the bars fit within the width of the beam, if this is not the case
then the width is increased by 10 mm and it runs through the for-loops again.

17

5 — Results

Both models have been run several times to check the output. The checks that were performed
according to the Eurocode were also done by hand and MatrixFrame. There were 3 different test
cases which were ran by both models and the check by hand and the output data can be found in the
appendices. The output of the models met the requirements by the Eurocode so the program works
properly. Some other tests were performed to check the calculation speed and the prices of the
beams. During all of the tests the following variables remained constant at the following values:

e Concrete cover 35 [mm]

e Yield stress steel fyx 500 [N/mm?]
e Concrete compressive strength f 30 [N/mm?]
e Shear reinforcement diameter @, 8 [mm]

e Strutangle6 30 [deg]

e Concrete cost 130 [€/m3]

e Longitudinal reinforcement cost 2 [€/kg]

e Shear reinforcement cost 3 [€/kg]

5.1 Calculation time

The calculation speed of the model without optimisation algorithm mainly depends on the length
of the beam. The program runs through multiple arrays to check all the combinations. The height and
width array are created based on the length of the beam and they get longer as the beam gets
longer. This explains the increase in calculation time for the model without optimisation algorithm.
The calculation time of the model with the optimisation algorithm is less dependent on the beam
length. As the beam gets longer, the boundaries of the minimize function go farther apart so there
are more possible values for which the cost could be minimal, but it doesn’t perform a calculation for
every combination. The graph below shows the calculation time against the beam length. The load is
kept constant at 10 kN/m during these tests. With the curve_fit function from scipy.optimize a line
was created that is quite accurate for the model without optimisation algorithm (SciPy, 2019). The
line shows a quadratic relation between the time and length.

B. van Kessel BSc Thesis 18

® with optimize function »
100 1 @ without optimize function y
.
= 907
o
g -
=] B0 4
5 .
]
35 ™
g 9 .
S .
20 A) .
» ®
P v o & @®
o] e—e—ea—%—e .
4 6 8 10 12 14

beam length [m]

Figure 9: Graph of the calculation time against the beam length for a load of 10 kN/m.

From the graph it is clear that the model with the optimisation algorithm is a lot faster for longer
beams while for shorter beams the needed time is almost the same. The speed of the program
without optimisation algorithm could be improved by changing the formulas that define the
boundaries for the height and width. This would make the arrays that are used to check every
possibility shorter and therefore less possibilities are checked.

The models have also been ran with different loads and the calculation time of every calculation
has been written down. For smaller beam lengths these values are very small so the difference in
calculation time can be neglected. For longer beams you can see this difference in calculation time in
the graph below. For every length of the beam, the time for a load of 10 kN/m is the shortest. The
expected result would be that the time required for higher loads is shorter, as more strength checks
will fail and then the cost calculation and possibly some other strength checks will be skipped. The
difference in calculation time could also be caused by a difference in available computational power
of the computer during the tests.

B. van Kessel BSc Thesis 19

o] ® SkNim $
® 10 kN/m
® 20 kN/m
1001 @ 30KkN
= = o
@ &
E
S B0 1
c .
2 ®
’ '
v ¢
ol !
g 10 1 12 13 14 15

beam length [m]

Figure 10: Calculation time for model 1 with different loads.

When looking at the same results for model 2, there is no clear pattern in the calculation time.
The results are scattered and there is no load for which the required calculation time is clearly lower.
There is also an unexpected outlier at a length of 7 meters and a load of 5 kN/m, the program was
therefore ran multiple times with this input with the same result every time. The difference in
calculation time could be caused by a wrong initial guess or because the algorithm has trouble
finding the optimal value.

W ® 5KkN/m
| ® 10kN/m .
12 ® 20 kN/m [
_ ® 30kN/m
w10
E ®
L]
e " - * .
§ s
2 6 . H .
5 L
2 ° . . o ' e * 9
] J ® L []
- . .
» ® = ' &
® o § o
21 ® o @
P o ¢
4 6 8 10 1 14

beam length [m]

Figure 11: Calculation time for model 2 with different loads.

5.2 Costs

Besides the calculation time it is interesting to look at the dimensions that both models return
and the costs of those beams. To compare both models, the program was ran with 4 different loads,
namely: 5 kN/m, 10 kN/m, 20 kN/m and 30 kN/m. For every load the length was changed multiple
times between 3 and 15 meter.

B. van Kessel BSc Thesis 20

In the graph below you can see the average cost of a beam that was designed by model 2 with
the optimisation algorithm before the values were rounded up. In this graph you can see that the
increase in costs rises with the beam length. This graph is best described by a quadratic function.
When the beam gets longer more material is needed and the cross-sectional area of the beam and
reinforcement bars increases due to the increase in the maximum moment. In the left graph you can
see the costs for the beams that were given by model and model 2 divided by the optimal cost. For
model 1 you can see that the output is farther from the optimal cost as the beam gets longer. The
output from model 2 is in most cases more expensive than the output from model 1 and doesn’t
show a clear pattern. This seems logical as the optimal design can lie close to a valid design, but
when the area of the reinforcement bars doesn’t lie close to a realistic value the beam can be over
dimensioned which is reflected in the costs as well.

125 { @ model2 . L]
model 1 800
5 ° @
S 120 © .
o
E . 600 o
2115 4 ° .)
=] - L]
2 &
2 ° ™ . S 400 .
2 110 L a
E []
e L]
@ [
S 105 200 .
[
.
100 L% T r T T r - 0 * T T
4 6] 10 12 14 8 10 12 14

beam length [m]

beam length [m]

Figure 12: Average cost of a beam relative to the optimal cost (left) and average optimal cost (right).

5.3 Dimensions

Another interesting thing to look at is the dimensions that both models give. In the tables below
you can find the results from both models when using a load of 20 kN/m. You can clearly see here
that the width is kept very small as this contributes little to the moment capacity compared to the
reinforcement area and the height of the beam. The width is increased when the required
reinforcement area increases, so that the bars fit within this width. For model 1 the width is also
increased when the beam gets longer, this is because the array of the width that is used to find the
optimal dimensions depends on the height of the beam and varies between a 1/3 and 1/2 of the
beam height. It also becomes clear that the height of the beams designed by model 2 continuously
increases, while the beams of model 1 decrease when the area of the reinforcement bars increases.

B. van Kessel BSc Thesis 21

Table 5: Results of the tests with a load of 20 kN/m.

L= 3 4 5 6 7 8 9 10 11 12 13 14 15
o =20 kN/m

Model 1

time 0,314 1,182 3,157 5493 10,774 16,885 25,655 33,888 45,131 59,424 76,394 096547 124,194
height 220 330 350 470 440 550 700 570 670 810 680 780 910
width 200 200 200 200 210 210 230 220 220 270 290 2590 300
diameter 16 16 20 20 25 25 25 32 32 32 32 32 32
number of bars 2 2 2 2 2 2 2 2 2 2 3 3 3
spacing 300 300 300 300 300 300 300 203,2 300 300 2513 262,1 2744
cost 42,73 71,58 111,32 157,6 219,75 285,06 383,2 467,88 55427 73323 927,89 10587 1239,88
Model 2

time 2,001 2,607 2,473 3,456 4,388 3,56 3,987 4,841 5,374 5,269 5,422 5,278 5,906
height 240 300 370 430 500 560 630 700 760 830 900 960 1030
width 200 200 200 200 200 200 200 200 200 200 250 250 250
diameter 12 16 16 25 25 25 32 32 32 32 32 32 32
number of bars 3 3 3 2 2 2 2 2 2 2 3 3 3
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 41,8 80,16 112,76 182,76 229,39 279,42 42371 49391 56698 64628 97551 108618 1205327
cost continuous var. 40,911 70,21 108,83 15505 209,94 275,18 3482 430,54 524,33 626,09 737,82 862,14 994,63

The results of the same tests with different loads are similar. The width stays very small while the
height increases a lot. The diameter of the bars increases first from low values and when it is at 32
mm it will stay very high so that the width can be kept minimal. The results for the other loads can be
found in the appendices.

B. van Kessel

BSc Thesis

22

6 — Conclusion

The aim of this research was to determine the calculation time and limitations of a computer
model that gives the cost-optimal dimensions of a concrete beam. The calculation time has been
recorded and was presented in section 5 of this report. Limitations that were found during this
research were reported here.

Now that the calculation time of the model designing a single beam is known we can finally say
something about how long it would take to design an entire structure using such software. The
model is able to design a beam with a maximum of 2 minutes time, making it useful for engineers as
this could be done many times on a single working day. However, when the number of components
increases, the number of combinations increases exponentially. So using the same method as used in
model 1, checking every combination and saving the cheapest option, would require a lot of time.
Assuming that the calculation time increases linearly with the number of combinations, then model 1
would not be suitable for the design of a structure with many components. A structure of 5
components can have a calculation time of up to 100° s, which is too long to be of any use in practice.

Both models only take into account the strength requirements of the beam. The stability of all
the components and the entire structure is not checked. A lot of extra formulas are needed to check
the stability of a structure. Though the checks should be possible to program, this would add a lot of
extra checks that have to be performed. Also designing and checking the connection between
different components is not implemented in the models. With all these extra checks that should be
performed the calculation time would again increase substantially, and the current method would
not be of any use in practice.

While these models or potential further developed models would not be able to replace
engineers and design a whole structure independently. They could be used by engineers during the
design process to dimension separate components, while the overall layout of the structure is
designed by the engineers themselves.

6.1 Discussion

Some choices that were made during the design of the computer models could be considered as
wrong choices. The costs of the beams designed by model 2 were often a lot higher than the prices
for the beams designed by model 1. This was mainly caused by the way that the values are rounded
up. The optimal value that was found, with the continuous variables, was just rounded up to the
closest valid values. This could be more efficient if the program would make small arrays around
these values to find the optimal solution, as the design is now often over dimensioned. The choice
for optimisation with discrete variables could also be made. This wasn’t done because there are no
packages in python that can easily optimize a function with discrete variables, while there are some
mathematical methods to do this (Rajeev & Krishnamoorthy, 1992). When this would be
implemented in the program, the results could be closer to the cost-optimal design.

The width that model 1 designs for beams with a large length is now often higher than required,
which unnecessarily increases the cost of the designed beams. The program now makes a width

B. van Kessel BSc Thesis 23

array based on the height of the beam with a minimum value of 1/3 of the height. This is not a
requirement given in the Eurocode and if it was omitted, then the width would be closer to those
found by model 2.

6.2 Recommendations

Based on the results in this report, some new discussion points emerged. Recommendations for
further research are:

e A better design is obtained if the used optimisation method in the program makes use of a
discrete optimisation algorithm instead of a continuous method.

e Use of other types of beams could be included in the program to give better alternatives if
the load or span becomes too high. And to reduce the amount of materials that is needed to
fulfil the strength requirements. The design of prefabricated concrete with prestressed
reinforcement could for example be implemented in the program.

o The shape of the beam could be made variable. This could lead to designs that make better
use of the materials, increasing the internal lever arm with the same amount of materials.

e The ranges of height and width of the beam could be improved. That will improve the
calculation speed of the models. When defining this range, the load on the beam should also
be included in the function. Some research should be done to get a function that gives an
accurate estimation.

B. van Kessel BSc Thesis 24

7 - Bibliography

Arafa, M. A. (2011). Early stage cost estimation of buildings construction projects using artificial
neural networks. Journal of Artificial Intelligence, 4(1), 63-75. Retrieved from
http://hdl.handle.net/20.500.12358/24892

Chakrabarty, B. (1992). Models for optimal design of reinforced concrete beams. Computers &
Structures, 42(3), 447-451. doi:https://doi.org/10.1016/0045-7949(92)90040-7

de Medeiros, G., & Kripka, M. (2014). Optimization of reinforced concrete comlumns according to
different environmental impact assessment parameters. Engineering Structures, 59, 185-194.
doi:https://doi.org/10.1016/j.engstruct.2013.10.045

Esfandiari, M., Urgessa, G., Sheikholarefin, S., & Dehghan Manshadi, S. (2018). Optimum design of 3D
reinforced concrete frames using DMPSO algorithm. Advances in Engineering Software, 115,
149-160. doi:https://doi.org/10.1016/j.advengsoft.2017.09.007

European Union. (2004, April). Eurocode 2: Design of concrete structures - Part 1-1 : General rules
and rules for buildings. EN 1992-1-1 9.2.

Hartsuijker, C. (1999). Toegepaste Mechanica, deel 1 - Evenwicht. Academic Service.

Hordijk, D., & Lagendijk, P. (2017, November 21). CTB2220 Beton & Staalconstructies. Retrieved from
B2 Buiging: https://brightspace.tudelft.nl/d2l/le/content/49671/viewContent/684155/View

Hordijk, D., & Lagendijk, P. (2017, December 4). CTB2220 Beton & Staalconstructies. Retrieved from
B5 Dwarskracht:
https://brightspace.tudelft.nl/d2l/le/content/49671/viewContent/696872/View

Huang, M. R. (2018). Artificial Intelligence in Service. Journal of Service Research, 21(2), 155-172.
doi:https://doi.org/10.1177/1094670517752459

Kaveh, A., & Behnam, A. (2013). Design optimization of reinforced concrete 3D structures
considereing frequency constraints via a charged system search. Scientia Iranica, 20(3), 387-
396. doi:https://doi.org/10.1016/j.scient.2012.11.017

Kaveh, A., & Talatahari, S. (2010). Novel heuristic optimization method: charged system search. Acta
Mechanica, 213(3), 267-289. doi:https://doi.org/10.1007/s00707-009-0270-4

NEOS. (2019). neos-guide.org. Retrieved from Sequential Quadratic Programming: https://neos-
guide.org/content/sequential-quadratic-programming

Rajeev, S., & Krishnamoorthy, C. (1992). Discrete Optimization of Structures Using Genetic

Algorithms. Journal of Structural Engineering, 118(5), 1233-1250.
doi:https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1233)

B. van Kessel BSc Thesis 25

SciPy. (2019, May 17). scipy.org. Retrieved from scipy.optimize.curve_fit:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

SciPy.org. (2019, May 17). scipy.org. Retrieved from scipy.optimize.minimize:
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

SciPy.org. (2019, May 17). scipy.org. Retrieved from Optimization and Root Finding:
https://docs.scipy.org/doc/scipy/reference/optimize.html

van Rotterdam, E. (2005). Sterkteleer 1: toegepaste mechanica. Delta Press.

Wagemans, L., Soons, F., & Raaij, B. v. (2014). Quick Reference. Delft: Section Structural and Building
Engineering.

Wubs, T. (2016). De mogelijkheden en beperkingen van een computermodel dat het optimale

ontwerp bepaalt van een uitkragende, viakke vakwerkligger. Delft University of Technology.
Retrieved from http://homepage.tudelft.nl/p3r3s/BSc_projects/eindrapport_wubs.pdf

B. van Kessel BSc Thesis 26

B. van Kessel

Appendices

BSc Thesis

27

A - Test case A

Model without optimisation algorithm

Input
Left support Hinge
Right support Moveable 10.00
Y Y ¥ v ¥ Y
Ll 5
Length 10 [m]
Load 10 [kN/m?]
1ed
0.00
Output £ -0
Z 050
Height 500 mm § o1
Width 210 | mm £ -L00
Used diameter 25 mm g
Number of cables 2 - s L
o 2000 4000 6000 B0OO 10000
Distance from left support [mm]
Moment capacity 167 kNm
60000
Max shear resistance | 444 kN 40000
Spacing shear reinf. 300 mm £ 20000
5 0
Cost 336 | € § oo
Calculation time 34 5 50000
E) 20‘00 40‘00 60‘00 BOICID 10{;00
Distance from left support [mm]
Verification
Output MatrixFrame: Hand calculations:
65.75 1
VZW\ AS=2-Z-1I-252=981.75mm2
r I n
65.75"
5.000 5.000 ., Ng = 981.75-434.78 = 426846.83 N
426846.83 13551
X, =——————— = S51mm
My S1 “=20-210-0.75
164.38 -
10.000 z=500—-35—-—8-0.5-25-0.39-135.51 = 391.65mm

Mgy = 427060.25-391.65- 107 = 167.176 kNm

B. van Kessel BSc Thesis 28

Output model 2

Hand calculations:

Height 520 mm

: 1
Width 200 | mm Ag = 2> w252 = 981.75 mm?
Used diameter 25 mm 4
Number of cables 2 -

Ng = 981.75-434.78 = 426844.27 N
Moment capacity 175 kNm
- 426844.27

Max shear resistance | 357 kN Xy = —————— = 14228 mm
Spacing shear reinf. 300 mm 20-200-0.75
Cost 335 € z=520—-35—8—-0.5-25—-0.39-142.28 = 409.01 mm
Calculation time 3 S

B. van Kessel

Mgy = 426844.27 - 409.01 - 107° = 174.584 kNm

BSc Thesis 29

B-TestcaseB

Input
Left support Hinge o o
Right support Moveable
10{00
Length 15 [m] B L Y Y Y L L
Distributed load 10 [kN/m?]
Point loads 20 [kN]
1eB
o
Output model 1 T,
Height 680 | mm i~
& -3
Width 290 mm 2.,
Used diameter 32 mm -
Number of cables 3 - : : : :
o 2000 4000 6000 8000 10000 12000 14000
Distance from left support [mm]
Moment capacity 553 kNm 150000
Max shear resistance | 856 kN | 1omoe
Spacing shear reinf. 300 mm Y 0o
2 0
E 50000
Cost 1051 | € " oooon
Calculation time 118 s “1s0000 L
o 2000 4000 BOOD 8000 10000 12000 14000
Distance from left support [mm)]
Verification
Output MatrixFrame:
139.37 1
7939 79 As =377 322 = 2412.74 mm?
Vz r
w
- 500 -139.37 N, = 2412.74-434.78 = 1049012.47 N
1049012.47 24115
X, =—— = . mm
1 “20-290-0.75
My
= Ed ”” z=680—-35—8—-0.5-32—-0.39-241.15 = 526.95 mm
15.000 .
Hand calculations: Mg, = 1049012.47 - 526.95 - 107° = 552.778 kNm
B. van Kessel BSc Thesis 30

Output model 2

Height 870 mm
Width 250 mm
Used diameter 32 mm
Number of cables 3 -
Moment capacity 736 kNm
Max shear resistance 790 kN
Spacing shear reinf. 300 mm
Cost 1108 | €
Calculation time 13 S

B. van Kessel

Hand calculations:

Ag =3-—-m-32% = 2412.74 mm?

N

Ng = 2412.74-434.78 = 1049012.47 N

1049012.47

= 97974
*u=30-250-0.75 mm

z=870—-35—-8-0.5-32-0.39-279.74 = 701.90 mm

Mg, = 1049012.47 - 526.95 - 106 = 736.305 kNm

BSc Thesis 31

C-Testcase C

Input
50.00 50.00
Left support Hinge
Right support Moveable
30{00
Length 3 [m] ¥). ¥ L j ¥
Distributed load 30 [kN/m?] v -
Point loads 50 [kN]
1e8
0.0
Output model 1 =
é -0.2
Height 420 | mm § o4
Width 200 | mm E s
Used diameter 20 mm 2 »
Number of cables 2 - L : . : : : :
o 500 1000 1500 2000 2500 3000
Distance from left support [mm]
Moment capacity 91 kNm 100000
Max shear resistance | 349 kN
—_ 50000
Spacing shear reinf. 253 mm 5
5 0
Cost 76 € E ~50000
Calculation time 0.05 |s 100000
EI) 5(50 1060 1560 20‘00 25‘00 30‘00
Distance from left support [mm]
Verification
Output MatrixFrame: Hand calculations:
83.78 1 2 2
. 61.26 As=2'z'ﬂ'20 = 628.32 mm
1.26
Vz r
-11.26) 5T _ _
w Ng = 628.32-434.78 = 273180.33 N
: -83.78
) 1.500 } 1.500)
' ’ _ 273180.33 9106
*u=%0-200-075 o mm
My S1
s z=420—35—8—-0.5-20—-0.39-91.06 = 331.49 mm
75.34
3.000) _ 6 _
Mps = 273180.33-331.49-107° = 90.556 kNm

B. van Kessel BSc Thesis 32

Output model 2

Height 410 mm
Width 200 mm
Used diameter 25 mm
Number of cables 2 -
Moment capacity 128 kNm
Max shear resistance 282 kN
Spacing shear reinf. 245 mm
Cost 92 €
Calculation time 2 s

B. van Kessel

Hand calculations:

Ag =2-=-m-25% =981.75 mm?

B

Ng = 981.75-434.78 = 426844.27 N

426844.27

= R 14228
= 30-.200-0.75 mm

z=410—-35—-8-0.5-25-0.39-142.28 = 299.01 mm

Mgy = 426844.27 - 299.01- 107 = 127.631 kNm

BSc Thesis 33

D - Code computer model 1

limpcrt numpy as np

2 import matplotlib.pyplot as plt
mport math

mport time

ef lo-enl _capacity (beam_height, beam_width, concrete_cover, stirrup_diameter, steel_diameter, number_of_cables):
As 25 * np.pi * steel diameter ** 2 * number_of cables

AS * steel_fyd

Ns / (alpha * beam_width * concrete_fcd)

= beam_height - concrete cover - stirrup_diameter - 0.5 * steel diameter

Ns
Xu

if (xu 7 d) = ((3.5 = 10 == 3) 7 (3.5 * 10 *= 3 + 7 = steel_fyd)):
return @

rho = As / (beam_height * beam_width)

if (rho > 0.04) or (rho < (B.26 * concrete_fctm / steel_fyk)):
return

=d - beta * xu
return Ns * z

costs(beam_height, beam width, beam_length, concrete_cost, steel_diameter, number_of_cables, number_of_stirrups, stirrup_diameter, concrete_cover):

volume_concrete = beam_height * beam_width * beam_length / 16 ** 9

weight_steel = 8.25 * np.p1 * steel_diameter ** 2 * number_of_cables * beam_length ; 10 ** 9 = 7850

weight_stirrups = (0.25 * np.pi * stirrup_diameter ** 2 * number_of_stirrups * (2 * (beam_height - 2 * concrete_cover) + 2 * (beam_width - 2 * concrete_cover))) / 10 ** 9 * 7850

return volume_concrete * concrete_cost + weight_steel * 2 + weight_stirrups * 3

shear_resistance _no_stirrups(beam width, beam height, concrete_cover, steel diameter, number_of cables):
effective_height_d = beam_height - concrete_cover - 0.5 * steel_diameter

k = min(1 + np.sqrt(200 / effective_height_d), 2)

As = 0.25 * np.p1 * steel diameter ** 2 * number_of_cables

rhe = minlAs / (beam_width * effective_height_d), ©.02)

maximum_allowable_shear_stress = max(6.12 * k * (108 * rho * concrete_fck) == (1/3), 8.835 * k ** 1.5 * np.sqrt(concrete_fck))
maximum_allowable_shear_force = maximum_allowable_shear_stress * beam_ width * effective_height_d

return maxinum_allowable_shear_force

determine_spacing_stirrups(beam_height, concrete_cover, steel_diameter, stirrup_diameter, max_shear_force, theta, fywd):
Asw = 0.5 * np.p1l * stirrup_diameter ** 2

z = 0.9 * (beam_height - concrete_cover - stirrup_diameter - 0.5 * steel_diameter]

return min{Asw * z * fywd / (np.tan(math.radians(theta)) * max_shear_force), 308)

max_shear_resistance(beam_width, beam_height, concrete_cover, steel_diameter, stirrup_diameter):
vl =0.6 * (1 - concrete_fck / 250)

z = 0.9 * (beam_height - concrete_cover - stirrup_diameter - 0.5 * steel diameter)

return beam_width * z # v1 * concrete_fed / 2

def _init_ (self, name, loadtype, location, value):
Self.name = name
self.loadtype = loadtype
self.location = location
self.value = value

61

class support:

def _init__(self, supporttype, location):
self.supporttype = supporttype
self.location = location

ef create_line(load, support_left, support_right):
1f load.location == support_right.location or load.location <= support_left.location:
print(‘wrong location for’, load.name

shear_line = np.ones(abs(support_right.location - support_left.location) + 1)
moment_line = np.zeros(abs(support_right.location - suppert_left.location) + 1)

a = abs(support_left.location - load.location)
b = abs(support_right.location - load.location)
length = support_right.lecation - suppert_left.location

1f load.loadtype == ‘point':
if (support_left.supporttype == ‘hinge' or support_left.supporttype == 'moveable') and (support_right.supporttype == ‘moveable' or support_right.supporttype == 'hinge'):
shear_force_left_support = load.value * b / (a + b)

shear_line[0 : load.location] = shear_line[0:load.location] * shear_force_left_support
shear_Line[load. location] =
shear_Line[load.location + l:support_right.location - support_left.location + 1] = shear_line[load.location + lisupport_right.location - support left.location + 1] * (shear_force left_support - load.value)

for 1 in range(len{mement_line) - 1):
moment_line[i + 1] = moment_line[i] - (shear_line[i] + shear_line[i + 1]) / 2
return [shear_line, moment_line]

3f (sypport_lefr supportiype — -faxed: and support_right.supporttype = 'hinge:) or (support_Left.supporttype — “Fixed' and support_right.supportiype — ‘moveable'):
Shear force Teft support = (load.value = b « Tength * b *x 2)) 7 (2 * length **73)
ShearTineld : Toad iocation] = shesr linalo:lasd.locarion] + shaar force st suppart
shear_line[load.location : suppert_right.location - support_left.lecation] = shear_line[load.location : support_right.location - suppert_left.location] * (shear_force_left_support - load.value)

moment_line[0] = load.value * b * (length ** 2 - b == 2) / (2 * length ** 2)
for 1 in range(len(moment_line) - 1):

moment_linel[i + 1] = moment_lineli]l - (shear_linel[il + shear_linel[i + 11) / 2
return [shear_line, moment_line]

1f (support_left.supporttype == 'hinge' and support_right.supporttype fixed') or (support_left.supporttype moveable® and support_right.supporttype == *fixed'):
shear_force_right_support = (load.value * a * (3 * length ** 2 - a #= 2)) 7 (2 * length ** 3)
shear_line[d : load.location] = shear_line[6:load.location] * (shear_force_right_support - load.value)
shear_line[load.location : support_right.location - support_left.location] = shear_line[load.lecation : suppert_right.location - support_left.lecation] = (shear_force_right support)

B. van Kessel BSc Thesis 34

108 moment_line[0] = ©
109 for 1 1n range(len(moment_line) - 1):
116 moment_line[1 + 1] = moment_line[1] + (shear_line[i] + shear_lineli + 1]) / 2
111 return [shear_line, moment_linel
112
113
114
115 if (support_left.supporttype == 'fixed' and suppnrt rlght suppnrttypa == 'fixed'):
116 shear_force_left_support = load.value * (2 b) / (length == 3)
117 shear_line[0:load.location] = shear 'Lms[e luad lucatmn] * shear_force_left_support
118 shear_Line[load.location:suppert_right.lecatien] = shear_line[load.location:support_right.location] * (shear_force_left_support - load.value)
119
126 moment_line[0] = load.value * a * b ** 2 / length ** 2
121 for 1 1n range(len{moment_line) - 1):
122 moment_line[1 + 1] = moment line[1] - (shear_line[i] + shear_lineli + 1]) / 2
123 return [shear_line, moment_line]
124
125
126
127 if load.loadtype == 'distributed':
128 if (support_left.supporttype hinge' or support_left. suppnrttype == 'moveable') and (support_right.supporttype == 'moveable’ or support_right.supporttype == ‘hinge’):
120 shear_force_left_support = 6.5 * load.value * length
130 shear_line[@:support_right.lecation + 1] = np.linspace(shear_force left_suppert, - shear force left_support, length + 1)
131
132 moment_line[o] = @
133 for i in ranges(len(moment_line) - 1):
134 moment_line[i + 1] = moment_line[i] - (shear_line[i] + shear_line[i + 1]) / 2
135 return [shear_line, moment_line]
136
137
138
139 1f (support_left.supporttype == 'fixed' and support_right. suppurttype == 'hinge') or (support_left.supporttype == *fixed' and support_right.supporttype == ‘moveable'):
140 shear_force_left_support = 5 7 8 * load.value * length
141 shear_force_right_support = - 3 / 8 * load.value * length
142 shear_line[08:] = np.linspace(shear_force left_support, shear_force_right_support, length + 1)
143
144 moment_line[0] = 1 / 8 * load.value * length ** 2
145 for 1 1n range(len(moment_line) - 1):
146 moment_line[1 + 1] = moment_line[1] - (shear_line[i] + shear_lineli + 1]) / 2
147 return [shear_line, moment_linel
148
149
if (support_left.supporttype == 'hinge' and support_right.supporttype == 'fixed') or (support_left.supporttype == ‘movezble’ and support_right.supporttype == 'fixed'):
shear_force_left_support = 3 / 8 * load.value * length
shear_force_right_support = - 5 / 8 * load.value * length

shear_line[@:] = np.linspace(shear_force_left_support, shear_force_right_support, length + 1)

moment _line[0] =
for i In rangs(lsn(mument line) - 1):

moment_line[1 + 1] = moment_lineli] - (shear_linelil + shear_lineli + 11) / 2
return [shear_Lline, moment_lineT

if (support_left.supporttype fixed' and support_right.supporttype == 'fixed'):
shear_force_left_support = 0.5 * load.value * length
shear_line[0:] = np.linspace(shear_force_left_support, - shear_force_left_support, length + 1)

moment_linel0] = 1 / 12 * load.value * length ** 2
for 1 In range(len(moment_line) - 1):

moment_lineli + 1] = moment_lineli] - (shear_line[il + shear_linel[i+1]) / 2
return [shear_line, moment_linel

176 optimal_design = [1, 1, 1, 1, 1]
177 lowest_price = 1009900000000000
178

179

180

181 alpha = 8.75

182 beta = 0.39

187 steel_fyk = soe

188 concrete_fck =

189 concrete_fctm = 2.9
190

192
192 gamma_s = 1.15
194 gamma_c = 1.5
195

19
197

192 steel_fyd = steel_fyk / gamma_s

199 concrete_fcd = concrete_fck / gamma_c
200 steel_fywd = 435

201

202

203

204 theta = 30

205 stirrup_diameter = 8

266 concrete_cover = 35

207dg = 30

208k2 =5

209

210

211

212 concrete_cost = 130

213

214

B. van Kessel BSc Thesis

215
216

217

218 start = time.time()

219

220

221 suppert left = support('hinge’, @)

support_right = support('moveable®, 30808)

2 beam_length = support_right.location - suppert_left.location

loads = []

oad_2 = load('load 2*, 'distributed’, 1060, 30)
oads . append (load_2)

—_

for i in range(len(loads)):
lines = create_line(loads[1], support_left, support_right)

i==o0:
moment_line

40 ines[1]]
shear_Tine = lines([0]

if 1> 0:
2 for j 1in range(len(moment line)):
2 moment_line[j line[j] + lines[1][j]
2 shear_Tine[j] = shear_line[j] + lines[ollj]
2
2
2
249 beam_height_max = 0
250 beam_height_max_free = True
251
252 beam_height_min = 0
253 beam_height_min_free = True
254
255 beam_width_max = 0
256 beam_width_max_free = True
257

258 beam_width_min = 0

250 beam_width_min_free = True

260

diameter = [12, 16, 28, 25, 32]

if beam_height_max_free:
beam_height_max = beam_length / 10 * 1.5

65 beam_height_max = round(beam_height_max / 18) * 10

5 1f beam_height_min_free:

max(beam_length / 15 * 0.5, 200)

beam_height_min = round(beam_height_min / 10) = 16

76 height = np.arange(beam_height_min, beam_height_max, 18)
71

for beam_height in height:
if beam_width_max_fre
beam_width_max = max(round((beam_height / 2) / 18) * 18, 228)

if beam_width_min_free:
beam_width_min = max(round((beam_height s 3) / 18) * 1@, 2@8)

width = np.arange(beam width_min, beam width_max, 16)

for beam_width in width:
self_weight = load('self weight', 'distributed’, 1, beam_height * beam_width * ©.000025 * 1.2)
lines_weight = create_line(self weight, support_left, support_right)
moment_line_temp = moment_line.copy()
shear_Tine_temp = shear_line.copy()

for j in range(len(lines_weight[e])):
moment_Line_temp[j] = moment_line_temp[j] + lines_weight[1][]]
shear_Tine_temp[j] = shear_line_temp[j] + lines_weight[0][j]

maximum_moment = min(moment_line_temp)
maxinum_shear = max(abs (shear_line_temp))

for steel_diameter in diameter:
max_shear_beam = max_shear_resistance(beam_width, beam_height, concrete_cover, steel diameter, stirrup_diameter)
1f (max_shear_beam < maximum_shear):
continue

max_number = round((beam_width - 2 * concrete_cover - 2 * stirrup_diameter + dg + k2) / (steel_diameter + dg + k2))
number = np.arange(2, max_number, 1)

for number_of_cables in number:
moment_capacity _beam = moment_capacity(beam | hslght beam_width, concrete_cover, stirrup_diameter, steel_diameter, number_of cables)
if moment_capacity_beam < abs(maximum_moment
continue

spacing = determine_spacing_stirrups(beam_height, conerete_cover, steel_diameter, stirrup_diameter, maximum_shear, theta, steel_fywd)
number_of_stirrups = round(beam_length / spacing

cost = costs(beam_height, beam width, beam_length, concrete_cost, steel_diameter, number_of_cables, number_of_stirrups, stirrup_diameter, concrete_cover)
1f cost < lowest_price:

optimal_design = [beam_height, beam width, steel_diameter, number_of cables, spacing, moment_capacity beam, max_shear_beaml

lines_optimal_design = [moment_line_temp, shear_line_temp

lowest_price = cost

RGN Le 8RN RN E e e aRENESE8IeRRENES e

end = time.time()
6print(runtime:*, end - start)

STttt Rop R e R g e g e R R e R)

7 print(‘Height: ', optimal_designlol)

318 print('width:*, optimal_design[1])

319 print('Diameter reinforcement:', optimal deslgn[z])

320 print('Number of cables:', optimal_design
print('Spacing shear reinforcement:', upt;mal_demgnm)
print(‘'Cost:’, lowest_price)
print(moment capacity:', optimal_design[s])

print('shear force capacity:', optimal_design[6])
x = np.arange(®, beam_length + 1, 1)

figure(figsize=(7,3))

_plot(x, lines_optimal_designl6])
.xlabel('Distance from left support [mm]')
.ylabel('Bending moment [Nmm]')

.figure(figsize=(7,3))

‘plot(x, lines_optimal _designi1])
.xlabel('Distance from left support [mm]')
.ylabel(*shear force [N]

B. van Kessel BSc Thesis 36

E - Code computer model 2

1 from scipy.optimize import minimize
2 import numpy as np
import math
4 import time
5 deT nonent_capacity (bean height, bean width, concrete cover, stirrup dianster, steel dimeter, mumber_of cables):
As *np.pi * steel diameter #+ 2 + number of cables
As * steel_fyc
Ns / (alpha * bean_width * concrete fcd)
= beam_height - concrete_cover - stirrup_diameter - 0.5 * steel_diameter

if (w / d) > ((3.5 * 10 ** 3) / (3.5 * 10 ** 3 + 7 * steel_fyd)):
return

rho = As / {bean_height * bean width}

if (rho > 0.84) or (rho < (9.26 * concrete fctn / steel fyk)):|
return ©

-d - beta * Xu
return Ns * z
def costs (bean, heioht, bean width. bean length. concrete_cost, steel diameter. number_of cables. nusber_of_stirrups. stirrup dianeter. concrete cover):
= bean_height * beam_width * beam_length / 1
5,23 ¢ 7 pi * stoel Gimeter 4+ 27+ number. of cables + bean length / 10 *+ 9 + 7850
(0.25 + np.p1 + stirrup_diameter * 2 * number_of stirrups + (2 * (beam_height - 2 * concrete cover) + 2 * (beam width - 2 + concrete_cover))) / 10 *+ § + 7850

volume_concrets
weight steel =
weight stirrups =

return volume_concrete * concrete_cost + weight_steel * 2 + weight_stirrups * 3

of shear_resistance mo_stirrups(beam_width, beam_height, concrete_cover, steel diameter, number_of cables):
effecTive height_d = beam_height - concrete_cover - 0.5 * steel diameter
k = min{17+ np.sgrt(2ee / effective_height_d), 2)
As = 0.25 * -2 * steel_diameter ¥ 2 * number of cables
rho = min{As / (beam_width * effective height d)> 0.62)
maximun_allowable_shear_stress = max(0.12 * k * (100 * rho * concrete_fck) ** (1/3), 8.835 * k ** 1.5 * np.sqrt(concrete_fck))
maximum_allowable_shear_force = maximun_allowsble_shear_stress * beam_width * effective_height_d

return maxinun_allowable_shear_force
of determine spacing stirrups(bean height, concrete cover, steel dianeter, stirrup dianeter, max shear force, theta, fywd):

Asw = 0.5 * np.p1 * stirrup diameter *
2= 0.0 (bean height - concrete Cover - stirrup dianeter - 0.5 * steel diamster)
return min(Asw ® z * fywd / (np.tan(math.radians(theta}) * max_shear_force). 300)

ef max shear resistance(beam_width, heam _height, concrete_cover, steel_diameter, stirrup_diameter):
50)

(1 - concrete Fck / 2
* lbez el - conerete_cover - stirrup dianeter - 2.5+ stesl digneter)
d/

o
return beam width * z * v1 * concrete_fc

2 class load:
def _init_(self, none, Toadtype. location. value)
SeLf.name = name
i Toadtype = loadtype
self.location = location

self.value = value

1lass support:
def _init (self. supporttype, location)
SeLf.supporttype = supporttype
self.location = location

def create line(load, support_left, support_right
$F Toad. Tocation = cuppoTt righs.tocation or Toad.location <= support_left.location:

print(wrong location for'. load.nane)

shear_line = np.ones(sbs{support_right.location - support_left.location) + 1)
moment_Line = np.zeros(abs{support_right.location - support_left.location) + 1)

a = abs(support_left.location - load.location)
b = abs(support_right.location - load.location)
Tength = supporf_right.location - support_left.location

if Toad.loadtype == ‘point’:
if {support_left,supporttype == ‘hinge’ or support left.suppartiype == o) and {support_right.supporttype == ‘moveable’ or support_right.supporttype == ‘hing
hear_force left_support = Load.
shearline[8 : 1gad. Locstion] = shear 1m[o Sosd docationt - shear_force left_support
shear_Line[load. location] =
shear_Line[load. location + ¥ support_right.location - support_left.location + 1] = shear_Llinelload.location + l:support_right.location - support_left.location + 1] * (shear_force left support - load.value)

for 1 in range(len{noment_line) -
moment_line[i + 1] = Roment 'LJne[l] - (shear_line[i] + shear_lineli + 11) / 2

return [shear_line. moment_lineT

i Gsupport Left supporttype — fixed” and support right, supportiype — hings') or, (supgort eft.supporciype ~= fixed and support_right supportiye = o
shear_force left_support = (load.value * b * (37« length *r 2 - b *+ 2)) / (2 * length == 3)
el s Rorstion 2 ettt inar0-Load 1oetion] © shoar: foree 108t - support
shear_Linel[load.location : support_right.location - support_Left.location] * (shear_force_left_support - Lload.value)

shear_Line[load.location : support_right.location - support_left.location]

moment_line[@] = load.value * b * (length ** 2 - b ** 2) / (2 * length ** 2}

for i In range(len{moment_line} - 1):
moment_line[i + 1] = moment line[i] - (shear_line[i] + shear_line[i + 1]) / 2

return [shear_line. moment_line]

and support_right.supporttype — ‘fixed):

£ (support Left.supportiype —— hinge: and suppor right.supporttype — Fixed) or [support left.suportiype - no
ight_support = (load.value * a * (3 gth * a o 3)) / (2 * length *+ 3)
shesrﬁhne[o Cloma tocrtion] = dhear Tineor load Location) © (shear forbe. - right support - Lload.value)
shear_Line[load. location : support_right.location - support_left.location] = shear_line[load.location : support_right.location - support_left.location] * (shear_force_right_support)

mement_linelel = ©
for 1 In range(len(moment_Line} - 1):
moment_line[i + 1] = moment _line[i] + (shear_line[i] + shear_line[i + 11) / 2

return [shear_line. moment_line

B. van Kessel BSc Thesis

3T (suppor lefr.cupportoype — fLied. and Support right.supRortiyee)
e left support = load.value * 7 (3 +7a) / (leng e
e hne[ﬂ Toad. Locatiol a Tineto-oad ocation]. & shear farce left_support
Shear_Line(load . location: support. right.location] = shear_Line[l0ad. ocaTion:Support.right. location] * (shear_force_Left_support - Load.value)

moment_line[6] = load.value * a * b ** 2 / length ** 2
for 1 In range(len(moment_Line) - 1):

moment_Lineli + 1] = moment line[i] - (shear_lineli] + shear_lineli + 11) / 2
return [shear_Line. moment linel

if load.loadtype == ‘distributed’

31 (sUppoTE et supportoype — 1inge’ o SUpport ef.supporteype — moveable') and (sUPpOrT_FGHE.SUBPOFTEyRe = MoveEble of SUPROTT FIONT.SUPpOTTIypE = hings')s
ar_force_left_su 0.5 * load.value * Len

Shear Line(Bauppors. vighe. location 4 11 = np. 11n5pace(5hearjnrcejeftjuppnrt, - shear_force left_support, length + 1)

moment_line[@] =
for i in range(len(mumenl line) - 1):

moment_lineli + 1] = moment_line[i] - (shear_line[i] + shear_lineli + 1]} / 2
return [shear_line, moment_lineT

if (support_left,supporttype — ‘fixed and suppert_right.supporttype — ‘hinge’) or (support_left.supporttype — “fixed' and support_right.supporttype — ‘movesble):
shear_force left_support = 5 / & * load.value * Llength
shear_force_right_support 8 * load.value * length

g
shear_line[:] = np.linspace(shear_force_left_support, shear_force right_support, length + 1)

moment_linel8] = 1 / & * load.value * length *+ 2
for i In range(len(moment_Line) - 1):

moment_Lineli + 1] = moment_lineli] - (shear_linelil + shear_lineli + 11) / 2
return [shear_Line, moment_line]

if (support_left.supporttype
shear_force_left_support
shear_force_right_support = - 5 / 8 + load.value * lenglh
shear_line[:] = np.linspace(shear_force left support, shear force right support. length + 1)

“hinge and support,right supporttype — “fixed) o (support_Left.supportiype == ‘moveable’ and support_right.supparttype == 'fixed):

moment_line[e] = @
or i In range(len(moment_line) -

moment_lineli + 1] = moment, 11ne[1 - (shear_line[i] + shear_line[i + 1]) / 2
return [shear_line, moment_linel

3T (support lefr.cupporttype — f1ed 3G support rigNE.suppartIype — Tiied)
shear_force left_support = 6.5 * load.value *
shear_Line[B:] = np. hnspacetshear_fnr:e_'lefl_suppnrl - shear_force_left_support, length + 1)

moment_line[8] = 1/ 12 * load. va'lue * length ** 2
for i In range(len(noment_line) -

moment_lineli + 1] = moment 117\5[1] - (shear_line[i] + shear_lineli+1]) / 2
return [shear_Line, moment_line]

5
def mainfunction(array:
self weight = load('sslf weight', 'distributed’. 1, arrayl[ol * array[1] * .000025 + 1.2)
Lines_weight = create_Line(self_weight, support left, support_right)
moment_Line_temp = moment_Line.copy()
shear_Tine tenp = shear_Line.copy()

for j in range(len(lines_weightle])):

moment_Line_temp[j] = moment_line templjl + lines weight[11[j]
shear_Tine_tenp[j] = shear_line_temp[j] + Lines_weight[e][;]

maximun_shear = max(abs (shear_line_temp))

spacing - determine_spacing stirrupsiarrayla], concrete_cover, array[2], stirrup_diameter, maximum_shear, theta, steel_fywd)
number_of_stirrups = round(beam_length / spacing)

cost = costsfarraylel, array[1], bean_length, concrete cost, array[2], array[3], number_of stirrups, stirrup_diameter, concrete_cover)

return cost

def constraint 1(array:
SeLf gt - oad{ ol f wesgne discribuced 1 arrayl0] * arrayl] * 0.006625 * 1.2)
LineS_velght = create_Line(self_weight, support left, support_right)
moment_Line temp = moment Line.copy()
shear_Tine_tenp = shear_Line.copy()

for j in range(len(lines weightle])):
moment_Line_temp[j] = moment_Line_temp[j1 + lines weight[11[j]
shear Tine Temp(j] - shear 1ine tanp (7] + lines weignilo](j]

maximum_monent = min (moment_
moment_capacity_bean - momen

e_tenp)
_capacity(arrayle], array[ll, concrete_cover, stirrup_diameter, arrayl2l, array[3])

return moment_capacity_beam - abs(maxinun_moment)

def constraint_2(array):

self weight - load('self weight', ‘distributed’, 1, array[0] * array[1] * 0.006025 * 1.2}
lines_weight = create line(self weight, support left, support_right)

shear_Lline_tenp = shear_line.copyl()

for j in range(len{lines_weight[0])):
ear_line temp[j] = shear_line temp[j] + Llines weight[01[j]

maximum_shear = max(abs(shear_line_temp)
max_shear_bean = max_shear_resistance(array[1], arrayl8]. concrete cover, arrayl2]. stirrup_diameter)

return max_shear_beam - maxinum_shear

def constraint_3(array}

¥

2 return arrayl[l] - (array[3] * (dg + k2 + array[2])) - 2 * concrete_cover + dg + k2
221

222

223 def round_output.to_goud values (optinal_array):

224 ray = [0,0,0,8]

225 array[D] ath.ceil(optinal_array[0]/10.0 - 6.608001) * 10
226 array[1] - math.ceil(optimal_array[11/10.0 - 0.000001) * 10
227 optimal_area = optimal_array[3] * ©.25 * np.pi * optimal_array[2] ** 2

best_fit = [10, 10, 10000000, 1]

for extra mdth in [o, lD 20, 30, 40, 501:
t_fitl1] |
Continue

for i in [12 16, 20, 25, 32]:
ar 3 an m.arange(2. 9, 1):
F(j * (dy + k2 + 1)) + 2 * concrete cover - dg + k2 > (optimal array[1] + extra width):
Contanue
area = j * 0.25 * np.pi * i ** 2
3f (area > optimal_srea - 0.60061) and (area < best_fit[2]):
best_fit = [i, . area, extra width]

array[2] = best_fit[o]
array(3] = best fit[1]
array[1] = arrayl[1] + best_fit[3]
return array

251
252 alpha = 0.75
253 beta = 0.39

258 steel_fyk = 560
259 concrete_fok = 30
260 concrete_fctm = 2.9

260 steel_fyd - steel_fyk / gamma_s
270 concrate fod = concrete fck /gama_c
271 steel_fywd =

275 theta = 38
276 stirrup_diameter
277 concrete_cover = 35

283 concrete_cost = 130

B. van Kessel BSc Thesis

285
286

387

223 support_left = support(hinge’, 0)

289 support_right = support('moveable’, 7000)

250 bean_length = support_right.location - support_left.location

3

291

292 Toads = []

293

294

295

296

297 load_2 = load('load 2', 'distributed’, 1600, 5)
298 1oads . append (load_2)

99

for 1 in range(len(loads)):
lines = create_line(loads[il, support_left. support_right)

ifi=
moment_line = lines[1]
shear_Tine = linesle]
if 1> es

for J in range(len(moment_Line)):
foment_Lline[3] = moment_linelj] + lines(11(j]
shear_Tinelj] = shear_1ine[}] + lines[01[}

ound_height low = max{bean_length / 15 * 6.5, 260)
ound_height_high = max(beam_length / 10 * 1.5, 220)
ound_width_Tow = max(260, bound_height low / 3)
ound_width_high = max{bound_height_high / 2, 226)

start = time.time()

321 constraints = ({"type':’ineq’, ‘fun':constraint_1}, { type':"ineq’, 'fun:constraint_2}, {'type':'ineq’. ‘fun':constraint_s})
2

323 optimal = minimize(mainfunction, x0 = [max(beam_length / 15, 200), max(beam_length / 50, 200), 16, 3], bounds=[(bound_height_low, bound_height_high), (bound_width_low, bound_width_high), (12, 32), (2, 10)], constraints= constraints)
324 optimal_array = optimal.x

325 print(optimal)

326 new_optimal_array = round_output_to_good_values(optimal_array)

27

328
329 end = time.time()
print(calculation time:', end - start)

2
3
s

e
335 self_weight = load('self weight', ‘distributed’, 1, new_optinal arrayle] * new optinal array[1] * ©.000025 * 1.2)
336 lines_weight - create_Line(self_weight, support left, support_right)
337 moment_Line_temp = moment_line.copy()

8 shear_Tine_Temp = shear_line.copy(}

for § in range(len(lines_weight[0]}):
moment_line_templj] = moment_line_temp[j] + lines weight[11[j]
shear_Tine_tenp(j] = shear_line_temp[3] + lines_weight[01(]]

3
4 maximun_shear = max(abs(shear_Line_temp))

S spacing = determine spacing stirrups(new optimal array[6]. concrete cover, new optimal array[2]. stirrup_diameter, maximum_shear, theta, steel fywd)
5 number_of_stirrups = round(beam_length / spacing]

5 cost - costs(new_optinal_array[el, new_optinal_array[1], beam_length, concrete_cost, new_optimal_array[2], new_optinal_array[3], number_of stirrups, stirrup_diameter, concrete_cover)

350 print(*beam height:',new_optimal_array[0])

351 print(*beam widin:',new optimal_array[11)

352 print("diameter:’,new_optimal_arra

353 print(‘number of cables:',new_optimal_array[3])
354 print(‘spacing: ', spacing)

355 print("costs:*, cost)

B. van Kessel BSc Thesis

F — Results of the tests

L= 3 4 5 6 7 8 9 10 11 12 13 14 15
g=5kN/m
Model 1
time 0,374 1,157 3,258 5,485 11,043 17,130 24,477 38,724 43578 60291 77417 97483 119842
height 200 200 280 240 320 290 360 440 370 440 520 620 500
width 200 200 200 200 200 200 200 200 210 210 210 210 220
diameter 1z 1z 1z 16 16 20 20 20 25 25 25 25 32
number of bars 2 2 2 2 2 2 2 2 2 2 2 2 2
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 32,41 43,01 67,84 89,53 123,13 161,61 202,85 252,11 319,20 377,40 44499 529,53 661,96
Model 2
time 0,910 0,861 1,024 2,765 12,783 4,720 5,287 4,009 4852 5,785 11,780 12,563 7,740
height 200 200 210 250 280 320 360 390 430 470 500 540 580
width 200 200 200 200 200 200 200 200 200 200 200 200 200
diameter 12 12 12 16 16 16 20 25 25 25 32 32 32
number of bars 2 2 3 2 3 3 2 2 2 2 2 2 2
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 32,41 43,01 64,80 51,56 135,76 166,61 202,85 250,69 335,45 381,79 554,30 616,87 680,76
cost continuous var. 32,41 43,01 62,82 88,85 120,068 15747 1596 24748 302,48 362,634 42923 50393 58422
g =10kN/m
Model 1
time 0,363 1,109 2,805 5,885 9,646 15801 22,119 30,783 4194 53,48 69016 88561 108,2
height 200 210 290 290 370 470 410 500 500 490 560 540 780
width 200 200 200 200 200 200 210 210 210 220 220 220 260
diameter 1z 16 16 20 20 20 5 5 25 32 32 32 32
number of bars 2 2 2 2 2 2 2 2 2 2 2 2 2
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 32,41 55,4 83,35 121 158,81 210,56 273,55 335,17 408,42 525,19 601,66 689,92 880,8
Model 2
time 0,727 1,787 1,766 493 3,572 55 5,872 3,408 5,501 6,338 7,065 13,787 8,518
height 200 230 280 330 370 420 470 520 570 620 670 720 770
width 200 200 200 200 200 200 200 200 200 200 200 200 200
diameter 12 12 16 16 20 25 25 25 32 32 32 32 32
number of bars 2 3 3 3 2 2 2 2 2 2 2 2 2
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 32,41 54,15 57,43 126,77 159,81 241,35 286,34 334,65 495,99 560,88 829,07 702,42 777,35
cost continuous var. 32,41 53,02 81,69 116,11 15708 20554 260,77 32281 35375 470,88 556,08 651,14 752381
B. van Kessel BSc Thesis 40

L= 3 4 5 6 7] 9 10 11 12 13 14 15
q=20kN/m

Model 1

time 0,314 1,182 3,157 5,493 10,774 16,885 25,655 33888 45131 55424 76,394 596547 124154
height 220 330 350 470 440 550 700 570 670 810 680 780 910
width 200 200 200 200 210 210 230 220 220 270 290 280 300
diameter 16 16 20 20 25 25 25 32 32 32 32 32 32
number of bars 2 2 2 2 2 2 2 2 2 2 3 3 3
spacing 300 300 300 300 300 300 300 2932 300 300 2513 262,1 2744
cost 43,73 71,58 111,32 157,86 219,75 285,06 3832 467 88 554,27 733,23 927,89 1058,7 123988
Model 2

time 2,091 2,607 2,473 3,456 4,388 3,56 3,987 4,841 5,374 5,269 5,422 5,278 5,906
height 240 300 370 430 500 560 630 700 760 830 900 Se0 1030
width 200 200 200 200 200 200 200 200 200 200 250 250 250
diameter 1z 16 16 5 25 25 32 32 32 32 32 32 32
number of bars 3 3 3 2 2 2 2 2 2 2 3 3 3
spacing 300 300 300 300 300 300 300 300 300 300 300 300 300
cost 41,8 80,16 11276 18276 22535 27942 42371 453591 56653 646,28 97551 108618 120527
cost continuous var. 40,911 70,21 108,83 155,05 20994 27518 348,2 43054 52433 62089 V3782 Be2l1l4 99463
g=30kN/m

Model 1

time 0,328 1,215 3,256 5,289 10,593 16,625 23,628 34872 47,081 51,99 78,97 98,14 123,327
height 280 330 470 450 500 530 540 780 570 790 930 850 980
width 200 200 200 210 210 220 220 260 250 250 310 360 360
diameter 16 20 20 25 25 32 32 32 32 32 32 32 32
number of bars 2 2 2 2 2 2 2 2 3 3 3 4 4
spacing 300 295,2 300 2794 300 239,63 257,17 272,42 211,37 225,24 136,35 156,61 208,27
cost 43,83 86,7 131,75 15413 25504 370595 45168 59501 79548 52951 112291 144387 1652585
Model 2

time 3.2 4,145 3,746 2,424 2,562 3,301 5,033 7,415 7,66 9,124 7422 11,276 4,382
height 280 360 440 510 580 570 750 830 910 980 1070 1240 1440
width 200 200 200 200 200 200 200 200 250 250 250 250 250
diameter 16 16 25 25 32 32 32 32 32 32 32 32 32
number of bars 2 3 2 2 2 2 2 2 3 3 3 3 3
spacing 300 300 300 300 300 300 300 300 28643 283,64 278,84 29285 300
cost 48,83 88,25 154,39 199 319,55 388,05 480,31 537,87 833,77 950,04 107582 124794 145368
cost continuous var. 48,36 83,52 129,72 185,05 250,67 328,54 41559 513,59 525,02 748,21 883,36 102914 120114

B. van Kessel BSc Thesis 41

