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1 INTRODUCTION  
Box and I-beam girders are two types of bridge structure. Compared to the I-beam type, the box girder 

bridge is lightweight and has better torsion rigidity. Besides this, larger girders can be built with box type 

because of the two webs. However, high maintenance and fabrication costs make it not feasible to fully 

replace I-beam girders.  

Although the shear lag effect was first studied by T. von Karman [1], it did not draw bridge designer‟s 

attention until a series of disasters happened from 1969 to 1971. Several steel box girder bridges 

collapsed or lost stability in Europe and Australia. The shear lag effect on flange plates is believed as one 

reason for these disasters [2]. 

Nowadays, when designing a bridge, no matter whether it is a box or I-beam girder, the shear lag effect is 

a must factor which cannot be omitted. By using the effective width of flange plate, the shear lag effect 

can be taken into account. This can be obtained from national design codes, for example Euro-code 3. 

There are different methods for solving the shear lag problem to get an approximate answer of the 

stresses, but almost all of them only take into account normal stress (σxx) in longitudinal direction. The 

transverse normal stress (σyy) is not as important as longitudinal one mainly because, this stress is 

generally far lower than σxx.  However, recently, shear lag effect draws more attentions, as people found 

cracks in the middle of some concrete girder bridges. Transverse tensile stress (σyy) due to shear lag is 

found as the cause of the cracks. 
1
 

The shear lag effect is not only relevant for bridges. It is relevant for any slender box element or plate 

structure such as airplane wings and core walls of high-rise buildings. 

1.1 PROBLEM STATEMENT 
In shear lag situations a transverse tensile stress or compressive stress occurs in the unloaded edge. 

This can lead to unexpected fatigue in steel box-girder bridges and unexpected cracks in concrete box-

girder bridges. There exists no formula to calculate this stress. 

A mathematically exact solution to the shear lag problem has not been found as yet. It is not clear 

whether a mathematically exact solution exists. 

1.2 SOLUTION METHOD 
To solve the above mentioned problems the influence of shear lag has been studied on the transverse 

tensile stress (σyy) of the bottom flange plate of a closed box-girder (see Figure 1-1). The box-girder is 

fixed on one end, free on the other and loaded in pure bending. As shown in Figure 1-1, uniform shear 

forces from webs exert on both sides of the bottom plate. According to traditional simple beam theory, the 

tension stress σyy is null over the whole plate. This is not the case in reality because of shear lag effect. In 

this thesis, σyy of this plate has been calculated and compared with the edge load to find the relationship 
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between them. Several factors which the author thinks could affect the value of σyy (with same external 

load from webs) are defined in section 3. The influence of them on σyy are determined and listed in 

section 3. 

The finite element method has been used to calculate the stresses. The static structure package Ansys 

11.0 (student edition) has been used for building the model and calculating the stresses. A formula has 

been determined for determining the transverse stresses. The finite elements have been made as small 

as possible to determine the transverse stress very accurately. The nature of the transverse stress 

formula (integer, rational, algebraic) gives a clue as to that whether an exact mathematical solution exists. 

1.3 REPORT STRUCTURE   
This report contains the following parts. Section 1 describes the problem of this thesis. In Section 2 theory 

background of the shear lag effect in both transverse and longitudinal direction is given and the 

approximate formula of solving the shear lag is introduced. Subsequently, the finite element modeling and 

analysis of the problem is given in Section 3. The conclusions are presented in Section 4. 

 

  

Figure 1-1 Applied shear force and occurring tensile stress in a slender plate (the top flange of a 

box-girder) 

  shear force    

  shear force    

  tensile stress 
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2 SHEAR LAG EFFECT 

2.1 SHEAR LAG EFFECT IN X DIRECTION  
The traditional beam theory assumes that beam cross sections remain plane after bending, which results 

a uniform normal stress distribution in flange plates and a uniform shear flow in the cross-section. This is 

not the case in reality. Shear stress does not flow uniformly in the cross section at both ends of a box-

girder. At the connection between web and flange, shear stress is higher than in other parts. The 

nonlinear shear flow in the cross-section influences the normal stress in the flange plates. At the 

connection of the flange and web, the normal stress is higher and it decreases away from the connection. 

Due to the nonlinear shear distribution over cross-section, the normal stress presents a “lag” in its 

distribution. This phenomenon is called shear lag.  

X

Y

(a) σxx in beam theory 

X

Y

(b) σxx  with shear lag

 

Figure 2-1 Normal stress without shear lag (a) and with shear lag (b) 

Shear lag was first analyzed by T. von Karman in 1923 [1] by using an analytic method. Since then, 

several scholars solved the shear lag problem in different structures by using different methods. Such as 

the analysis of the shear lag in box beams by the principle of minimum potential energy of E. Reissner [3]. 

He proposes the following approximation to the flange displacement u in the x direction. 

2
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in which,  
h  half of the web height, 
z  the beam deflection, 
w  half of the flange width, 
U(x)  a function to be determined by the principle of minimum potential energy. 

The second term on the right hand side of the equation represents the correction due to shear lag. 

Important to this project is that Reissner‟s method provides an approximate solution. Apparently, the 

mathematically exact solution has not been found. 

In practice, for closed box girders, the shear lag coefficient is used for showing degree of shear lag:  

xx

xx


 


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where, xx  is the stress calculated by the beam theory and xx  is the largest stress with shear lag effect. 

Obviously, a wider flange and a less deep web make the shear lag effect more prominent. It also has a 

relation with the box girder span if this span is small. 

The shear lag effect in x direction and the definition of the effective width for I-section girders and box 

girders are also covered in Eurocode 3 part 1-5. 

2.2 SHEAR LAG EFFECT IN Y DIRECTION  
To analyze the stress in the y direction (transverse stress), the plate is simplified as a truss structure 

shown in Figure 2-2. The external shear forces from webs are substituted by two equal point loads which 

act on two corners of the left truss bar. The reaction force from the fixed end is replaced by two equal 

point loads on two corners of the right truss bar. Due to the shear lag effect, the four bars truss does not 

have a rectangular shape but a trapezoidal shape. Manual calculation of this truss structure with four 

external loads shows that there is a tension force in left truss bar which means, instead of zero transverse 

stress, the free end of the plate has transverse a tension stress σyy. The distribution of this tensile stress 

is shown in Figure 2-3. 

++

-

-X

Y

 

Figure 2-2 Strut-and-tie model of the shear lag situation 

 

Figure 2-3 Typical normal stresses in a longitudinal section  
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3 MODELING  
The bottom flange plate of a cantilever girder is chosen for analysis. Shear forces from web to flange are 

applied as external uniform distributed load. Eight parameters are involved which can affect the max σyy. 

They are described in next sections. Four kinds of models have been built in this project: 

Model 1 

Model 1 has a regular mesh shown in Figure 3-1. It has been used in most of the analysis. In Section 3.2 

all of the models are built as Model 1. The finite elements have been given the following widths 5, 2.5, 

1.25, 0.625, 0.3125, 0.15625 m. Further smaller elements were not possible because the software (Ansys 

11.0 student edition) can process at most 32000 nodes. 

Y

X

read the 

value of σyy 

node load Fx=1/2 read the value of σxy node load Fx=1

 boundary 

condition

ux=uy=uz=0

φx=φy=φz=0

Mesh width from 5 reduce to 

0.15625

 

Figure 3-1 Model 1 

 

Model 2 

Model 2 is a symmetrical model (see Figure 3-2). Compared with Model 1, Model 2 has fewer elements. 

Therefore, it takes less time to run the model. In Model 2 the values of σxy and σyy are the same as those 

in Model 1 (See Section 3.3). The reason for Model 2 was that even smaller finite elements could be 

used. However, an element size of 0.078125 m resulted in still too many degrees of freedom for the 

software. 
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boundary 

condition

ux=uy=uz=0

φx=φy=φz=0

X

Y

node load Fx=1/2

read the 

value of σyy 

node load Fx=1 read the value of σxy 

Mesh width from 5 reduce to 

0.15625

boundary condition uy=0

 

Figure 3-2 Model 2 

Model 3 

In Model 3 the element width of the free end is smaller than elsewhere. The mesh width is 0.1 m at the 

free end and 0.15625 m at the fixed end. 

 

Figure 3-3 Mesh of Model 3 

Model 4 

In Model 4 each node has two degrees of freedom (dofs) instead of six in the other models (See Section 

3.3). To this end element „Plane82‟ has been chosen. Figures 3.4 and 3.5 show the geometries of the 

element types „Shell63‟, „Shell93‟ and „Plane82‟ [4]. The dofs of „Shell63‟ and „Shell93‟ are Ux, Uy, Uz, 

ROTx, ROTy and ROTz. The dofs of „Plane82‟ are Ux and Uy only. The reason for Model 4 was that even 

smaller finite elements could be used. However, an element size of 0.078125 m resulted in still too many 

degrees of freedom for the software. 
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                Figure 3-4a ‘Shell63’ geometry   Figure 3-4b ‘Shell93’ geometry 

 

 

Figure 3-5 ‘Plane82’ geometry 

 

3.1 ANALYSIS METHODOLOGY 
Before building the model, the following parameters are selected: 

Table 3-1 Parameters of model 

Parameters Value 

Width 10m 

Length 100m 

Thickness 0,5m 

Shear force 1kN/m
2 

Yong‟s modulus 200Gpa 

Poisson ratio 0,27 

Element type variable 

Mesh size variable 

 

A model with these parameters has been built in ANSYS in the following steps: 
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1) Model a rectangular plate with certain width, length, thickness, Young‟s modulus, Poisson‟s ratio 

and shear force. 

2) Choose the element type, for example first „Shell63‟ is chosen in the model.  

3) Change one parameter, keep the others constant. 

4) Get the results of yy component of stress of the free end and the xy shear stress in the long edge. 

3.2 MODEL 1 WITH PARAMETERS   
The results from different parameters are shown in the below paragraphs. 

3.2.1 MODEL WITH ELEMENT TYPE „SHELL63‟ 

For the first modelling with Ansys, the element type „Shell63‟ is chosen (see  

Figure 3-6). „Shell63‟ has 4 nodes which have 6 degrees of freedom respectively. The model is built with 

the parameters shown in Figure 3-6. Figure 3-7, Figure 3-8 and Figure 3-9 show the stress contour plot 

and the displacement plot, which are obtained with „Shell63‟ element and an element width of 5 meter. 

 

Figure 3-6 Finite element model with mesh, forces and supports 

 

Figure 3-7 yy component of the stress contour plot 
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Figure 3-8 xy shear stress contour plot 

 

Figure 3-9 Displacement plot 

Subsequently, all parameters are kept constant but the mesh size is changed.  

Table 3-2 shows the results. Figure 3-10 shows the relation between the ratio σyy/ σxy and the element 

width. 

Table 3-2 Result for ‘Shell63’ 

Mesh σyy σxy Ratio σyy/ σxy 

5 0.26933 0.2 1.346665 

2.5 1.26719 0.6 2.111983333 

1.25 2.81677 1.4 2.011978571 

0.625 5.76526 3 1.921753333 

0.3125 11.595 6.2 1.87016129 

0.15625 23.2219 12.6 1.843007937 

 

 

Figure 3-10 Ratio σyy/ σxy as a function of the element width for element type ‘Shell63’ (100*10) 
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3.2.2 MODEL WITH ELEMENT TYPE „SHELL93‟ 

The element type is changed to „Shell93‟, which has 8 nodes. Due to the additional nodes, the result must 

be more accurate than „Shell63‟. For the models of „Shell93‟ the dimensions are changed so that the 

more results are obtained. The results are shown in the following subsections. 

3.2.2.1 Model with dimension 100*10m 

In this subsection the dimensions are the same as the „Shell63‟ model (100*10m).  

Table 3-2 shows the results. Figure 3-11 shows ratio σyy/σxy as a function of the element width for element 

type „Shell93‟. 

Table 3-3 Results for ‘Shell93’ (100*10m) 

Mesh σyy σxy Ratio σyy/ σxy 

5 1.497 0.799979 1.871299122 

2.5 2.819 1.6 1.761875 

1.25 5.76 3.2 1.8 

0.625 11.603 6.4 1.81296875 

0.3125 23.2047 12.8 1.812867188 

0.15625 46.4628 25.6 1.814953125 

 

 

Figure 3-11 Ratio σyy/ σxy as a function of the element width for element type ‘Shell93’ (100*10m) 
 

3.2.2.2 Models with dimension 100*5m 

In the following table and figure the results of the „Shell93‟ models with dimension 100*50m are shown. 

Table 3-4 Results for ‘Shell93’ (100*5m) 

Mesh σyy σxy Ratio σyy/ σxy 

5 0.715982 0.806577 0.88767966 

2.5 2.993 1.6 1.870625 

1.25 5.637 3.2 1.7615625 

0.625 11.538 6.4 1.8028125 

0.3125 23.115 12.8 1.80585938 

0.15625 46.4546 25.6 1.81463281 
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1 

1.5 

2 
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5 2.5 1.25 0.625 0.3125 0.15625 
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Mesh width 

Shell93 (100*10) 
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Figure 3-12 Ratio σyy/ σxy as a function of the element width for element type ‘Shell93’ (100*5m) 

3.2.2.3 Model with dimension 50*10m 

Now keep the width 10 meter and let the length be 50 meter. The results are shown in 

Table 3-5 and in Figure 3-13. 

Table 3-5 Results for ‘Shell93’ (50*10m) 

Mesh σyy σxy Ratio σyy/ σxy 

5 1.49969 0.800326 1.873848907 

2.5 2.81851 1.59997 1.76160178 

1.25 5.37587 3.19991 1.680006625 

0.625 11.603 6.39992 1.812991412 

0.3125 23.2273 12.8 1.814632813 

0.15625 46.4628 25.6 1.814953125 

 

 

Figure 3-13 Ratio σyy/ σxy as a function of the element width for element type ‘Shell93’ (50*10m) 
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3.2.3 COMPARISON OF THE RESULTS 

In Table 3-6 the results from „Shell63‟ (100*10m), „Shell93‟ (100*10m), „Shell93‟ (100*5m) and „Shell93‟ 

(50*10m) are shown. It can be observed that changes in the length and width of the plate do not change 

the transverse tensile stress at an element size of 0.15625 m. The results show that at element width 

0.15625 the ratio of σyy/σxy is 1.815. The accuracy is 4 significant digits. 

Table 3-6 Comparison of the results 

 

5 2.5 1.25 0.625 0.3125 0.15625

Shell63 100*10 1.346665 2.111983333 2.011978571 1.921753333 1.87016129 1.843007937

Shell93 100*10 1.871299122 1.761875 1.8 1.81296875 1.812867188 1.814953125

Shell93 100*5 0.887679664 1.870625 1.7615625 1.8028125 1.805859375 1.814632813

Shell93 50*10 1.873848907 1.76160178 1.680006625 1.812991412 1.814632813 1.814953125

0

0.5

1

1.5

2

2.5

R
at

io

Resluts compare

 

3.3  PARAMETERS STUDY 
In this section all models have an element size of 0.15625 m. The other parameters have been changed. 

The results are shown in Table 3-7. In addition, Table 3-7 shows the results of Models 2, 3, and 4. It is 

noted that Model 3 gives less accuracy despite of the smaller elements. This can be caused by the fact 

that the elements are no longer square. It can also be caused by the loss of accuracy due to the large 

number of equations that are solved. 

3.4 EXACT MATHEMATICAL SOLUTION 
If an exact mathematical solution to the shear lag problem would exist then the factor 1.815 would be the 

evaluation of a fraction or a mathematical constant. It has been tried to find an expression which is equal 

to 1.814 , e have been tried. The best results found are 
49

27

=1.818 and 
3


= 1.813... Clearly, neither of these can be the exact factor. Therefore, it is concluded 

that an exact mathematical solution to the shear lag problem is not likely to exist. 
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Table 3-7 Parameter study results 

Model No.  Element 
type 

Mesh width Length Width Thickness Possion's 
ratio 

Young's 
modulus 

Shear 
force 

σ yy σxy σyy / σxy 

Model1 1 Shell 63 0.15625 100 10 0.5 0.27 2.00E+08 1 23.2219 12.6 1.843007937 

2 Shell 93 0.15625 100 10 0.5 0.27 2.00E+08 1 46.4628 25.6 1.814953125 

3 Shell 93 0.15625 100 5 0.5 0.27 2.00E+08 1 46.4546 25.6 1.814632813 

4 Shell 93 0.15625 50 10 0.5 0.27 2.00E+08 1 46.4628 25.6 1.814953125 

5 Shell 93 0.15625 100 10 0.02 0.27 2.00E+08 1 1161.57 640 1.814953125 

6 Shell 93 0.15625 100 10 0.5 0.3 2.00E+08 1 46.4628 25.6 1.814953125 

7 Shell 93 0.15625 100 10 0.5 0.27 4.00E+07 1 46.4628 25.6 1.814953125 

Model2 8 Shell 93 0.15625 100 5 0.5 0.27 2.00E+08 1 46.4628 25.6 1.814953125 

Model3 9 Shell 93 0.15625(0.1 
for free end) 

100 10 0.5 0.27 2.00E+08 1 46.4512 25.611 1.813720667 

Model4 10 Plane82 0.15625 100 10 0.5 0.27 2.00E+08 1 23.2314 12.8 1.814953125 
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4 CONCLUSIONS 
Based on the results in section 3, following conclusions are obtained: 

1. Finite element analyses show that the perpendicular stress due to shear lag is a factor 1.815 larger 

than the edge shear stress. This factor does not depend on Young's modulus, Poisson's ratio, the 

plate thickness, the plate width and the plate length, provided that the plate is much longer than wide 

and the shear stress is uniformly distributed on the long plate edges. 

2. The factor 1.815 cannot be expressed as a simple fraction or a mathematical constant. 

Therefore, an exact mathematical solution to the shear lag problem is not likely to exist. 

3. The student edition of Ansys can process models up to 32000 nodes. With this a stress accuracy of 

four significant digits can be obtained. 
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Appendix A APDL LANGUAGE CODE OF MODEL 1  

 

FINISH $/CLEAR 
/FILNAM, MODEL93  ! SECIFY JOBNAME 
/PREP7   ! ENTER PREPROCESSOR 
 
W=100    ! DIMENSIONS RECTANGLE, THE PARAMETERS CAN BE 
CHANGED 
H=10 
D=0.5 
MW=0.15625   ! MESHSIZE REDUCE FROM 5 TO 0.15625 
F1=1     
F2=0.5 
E=200E6        
PR=0.27 
 
K,1,0,0    ! CREATE KEYPOINTS 
K,2,W,0 
K,3,0,H 
K,4,W,H 
 
L,1,2    ! CREATE LINES 
L,1,3 
L,2,4 
L,3,4 
 
AL,1,2,3,4   ! CREATE AREAS 
 
ET,1,93   ! SELECT ELEMNT TYPE AS SHELL63/OR93 
 
R,1,D    ! SPECIFY REAL CONSTANT THICKNESS 
 
MP,EX,1,E   ! SPECIFY ELASTIC MODULUS 
MP,NUXY,1,PR  ! SPECIFY POISSON'S RATIO 
 
ESIZE,MW   ! CREATE MESH WITH ELEMENT SIZE 
AMESH,ALL 
 
LSEL,S,LOC,X,W  ! SELECT THE LINES  
DL,ALL,,ALL,0 
 
NSEL,S,LOC,Y,0  !SELECT THE NODES 
NSEL,A,LOC,Y,H 
NSEL,U,LOC,X,0 
F,ALL,FX,F1 
 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,0 
F,ALL,FX,F2 
 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,H 
F,ALL,FX,F2 
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ALLSEL 
 
/SOLU 
SOLVE 
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Appendix B APDL LANGUAGE CODE OF MODEL 2 

FINISH $/CLEAR 
/FILNAM, MODELSHELL93  ! SECIFY JOBNAME 
/PREP7    ! ENTER PREPROCESSOR 
 
W=100     ! DIMENSIONS RECTANGLE 
H=5 
D=0.5 
MW=0.15625    ! MESHSIZE REDUCE FROM 5 TO 0.15625 
F1=1     
F2=0.5 
E=200E6     
PR=0.27 
 
K,1,0,0     ! CREATE KEYPOINTS 
K,2,W,0 
K,3,0,H 
K,4,W,H 
 
L,1,2     ! CREATE LINES 
L,1,3 
L,2,4 
L,3,4 
AL,1,2,3,4    ! CREATE AREAS 
 
ET,1,93    ! SELECT ELEMNT TYPE AS SHELL63/OR93 
 
R,1,D     ! SPECIFY REAL CONSTANT THICKNESS 
 
MP,EX,1,E    ! SPECIFY ELASTIC MODULUS 
MP,NUXY,1,PR   ! SPECIFY POISSON'S RATIO 
 
 
ESIZE,MW    ! CREATE MESH WITH ELEMENT SIZE 
AMESH,ALL 
 
LSEL,S,LOC,X,W 
DL,ALL,,ALL,0 
LSEL,S,LOC,Y,H   ! FOR SYMETERSCHE MODEL 
DL,ALL,,UY,0 
NSEL,S,LOC,Y,0 
NSEL,U,LOC,X,0 
F,ALL,FX,F1 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,0 
F,ALL,FX,F2 
ALLSEL 
 
/SOLU 
SOLVE 
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Appendix C APDL LANGUAGE CODE OF MODEL 3 

FINISH$/CLEAR 
/FILNAM, MODELSHELL93  ! SECIFY JOBNAME 
/PREP7    ! ENTER PREPROCESSOR 
 
W=50     ! DIMENSIONS RECTANGLE 
H=5 
D=0.5 
MW1=0.1    ! MESHSIZE FOR FREE END 
MW2=0.15625   ! MESHSIZE REDUCE FROM 5 TO 0.15625 
F1=1     
F2=0.5 
E=200E6        
PR=0.27 
 
K,1,0,0     ! CREATE KEYPOINTS 
K,2,W,0 
K,3,0,H 
K,4,W,H 
 
L,1,2     ! CREATE LINES 
L,1,3 
L,2,4 
L,3,4 
 
AL,1,2,3,4    ! CREATE AREAS 
 
ET,1,93    ! SELECT ELEMNT TYPE AS SHELL63/OR93 
R,1,D     ! SPECIFY REAL CONSTANT THICKNESS 
MP,EX,1,E    ! SPECIFY ELASTIC MODULUS 
MP,NUXY,1,PR   ! SPECIFY POISSON'S RATIO 
 
LSEL,S,LOC,X,0   ! CREATE MESH AT THE FREE END WITH SMALLER 
MESH SIZE 
LESIZE,ALL,MW1,, 
AESIZE,1,MW2   ! CREATE MESHES ON THE AREA WITH BIGGER 
MESH SIZE 
MSHAPE,0 
AMESH,ALL    
LSEL,S,LOC,X,W 
DL,ALL,,ALL,0 
NSEL,S,LOC,Y,0 
NSEL,A,LOC,Y,H 
NSEL,U,LOC,X,0 
F,ALL,FX,F1 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,0 
F,ALL,FX,F2 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,H 
F,ALL,FX,F2 
ALLSEL 
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/SOLU 
SOLVE 
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Appendix D APDL LANGUAGE CODE OF MODEL 4 

FINISH $/CLEAR 
/FILNAM, MODEL82   ! SECIFY JOBNAME 
/PREP7    ! ENTER PREPROCESSOR 
W=100     ! DIMENSIONS RECTANGLE 
H=10 
D=0.5 
 
MW=0.15625    ! MESHSIZE REDUCE FROM 5 TO 0.15625 
F1=1     
F2=0.5 
E=200E6     
PR=0.27 
 
K,1,0,0     ! CREATE KEYPOINTS 
K,2,W,0 
K,3,0,H 
K,4,W,H 
 
L,1,2     ! CREATE LINES 
L,1,3 
L,2,4 
L,3,4 
AL,1,2,3,4    ! CREATE AREAS 
 
ET,1,82     ! SELECT ELEMNT TYPE AS PLAN 82 
R,1,D     ! SPECIFY REAL CONSTANT THICKNESS 
MP,EX,1,E    ! SPECIFY ELASTIC MODULUS 
MP,NUXY,1,PR    ! SPECIFY POISSON'S RATIO 
 
ESIZE,MW    ! CREATE MESH WITH ELEMENT SIZE 
AMESH,ALL 
LSEL,S,LOC,X,W 
DL,ALL,,ALL,0 
NSEL,S,LOC,Y,0 
NSEL,A,LOC,Y,H 
NSEL,U,LOC,X,0 
F,ALL,FX,F1 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,0 
F,ALL,FX,F2 
NSEL,S,LOC,X,0 
NSEL,R,LOC,Y,H 
F,ALL,FX,F2 
ALLSEL 
/SOLU 
SOLVE 


