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1. Introduction

The software SCIA Engineer computes the behaviour of structures, for example deformation,
stresses, buckling load and natural frequencies. The software is used in the course Shell Analysis
at Delft University of Technology [1]. The software has two types of finite element: beam
elements and shell elements, with which all structures are modelled. At the start of this project,
the accuracy of the shell elements was not known.

Research objective
Determine the order of the error of the shell elements in SCIA Engineer.
Approach

In this project, a shell canopy (figure 1) has been modelled in SCIA Engineer. Computed were
membrane forces, moments and shear forces at four edge locations for several element sizes.
From this the orders of the errors were derived.

The computation results are presented in a table so that they can be checked easily. The table will
be added to the course reader for future reference.

2. Canopy dimensions

A linear elastic analysis of a canopy has been performed in this project. The canopy was assumed
as reinforcement concrete (elastic material behaviour), with the material properties as:
E = 10’kN/m?, v = 0.15, unit mass m = 2500 kg/m?3.

The dimensions of the canopy are:
Radius a = 2 m, shell, thickness t = 0.2 m, slenderness a/t = 2/0.2 = 10,
length = 6 m, width = 2a = 4 m.

This is a thick shell according to reference [1], page 3. Consequently, membrane force, out of
plane bending moments and out of plane shear forces occur. All associated deformations need to
be included in modelling its structural behaviour including in-extensional deformation.

The load condition is:

A point load F = 100 kN in one corner as shown in figure 1. Self-weight is not applied.
Boundary conditions on fixed curved edge have been posed as shown in figure 1. The results on
the free curved edge are computed by the finite element method. The latter results need to be



checked for modelling mistakes by comparing with the theoretical derived shell boundary
conditions shown in reference [1], page 82, based on Sanders-Koiter equations 6.

The model was meshed with standard shell elements (shell 98), isotropic materials and member
coordinate system plane at center. Shell in this case is thick one based on geometrical analysis
above shown, which means shear flexibility is quite important to be studied. However, to simplify
this project as thin shell theory, bending theory performed on Kirchhoff shell analysis.
Meanwhile, Shear deformation should be switched off in this case, with Kirchhoff shell theory
consider vertical deformation only from bending moment. If the shear deformation is switched
on, shear locking will influence on displacements of nodes as finite element error by using
Kirchhoff shell theory analyze thick shell with 8-node shell elements, leading to wrong numerical
results.
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Figure 1. Canopy, point load and boundary conditions

3. Modelling checks
Element size check

According to reference [1], page 69 the influence length can be used to choose a finite element
mesh. If we use elements that approximate a solution linearly, we need at least 6 elements in a
length [; in order to obtain solutions with some accuracy (see [1], figure 91). Clearly, more
elements will improve the accuracy.

The influence length of this canopy is:

1; < 3.4Vatl3 = 3.4 x Y2000 x 200 X 60002 = 6623.23 mm, which means the maximum
element size is: h = 6623'23/ ¢ = 1103.87 mm. (see [1], page 69) Therefore, the element sizes
of table 1 are suitable for linear analysis of this canopy.

Boundary condition check



The finite element results of this canopy can be seen in the following figures (with element size

of 50 mm). It can be observed that, on the curved fixed edge the deformation is zero, which
agrees with the specified boundary conditions. On the straight edges ny,,, (1, + ny,)/2 and m,,,,
are approximately zero. This is correct for these free edges. On the curved free edge nyy, (nyy +
TNy, )/2 and m,, are approximately zero, which is also correct. The shear forces vy, and v, are not

zero, which can be explained as that they are equal to the gradient of my,,.
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Figure 2. Definitions of model in SCIA (set local system rotated 90 degrees for set u-v system)
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Figure 3. Vertical displacement in global Z direction [mm]
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Figure 4. Normal force ny, [KN/m]
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Figure 7. Bending moment m,,, [KNm/m]
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Figure 10. Out of plane shear force v, [KN/m]

9.13
6.00
4.00
200
0.00
-2.00
-4.00
-5.00
-3.00
-10.00
-12.00
-14.00
-16.00
-18.76

my [kNm/m]

0.78
-1.00
-2.00
-3.00
-4.00
-5.00
-6.00
-7.00
-3.00
-9.00
-10.00
-11.00
-12.93

ey (kN /m ]

402.35
8.00
4.00
2.00
0.00
-2.00
-4.00
-6.00
-10.00
-46.51

ve [kNm]




2D internal forces

Values: w X

Linear calculation

Load case: LC2

Extreme: Global

Selection: All

Location: In nodes avg. on macro.
Rotation of the planar system:
LCS-Member 2D

Figure 11. Out of plane shear force vy, [KN/m]
Singularity check

Figures 4, 5, 6, 10 and 11 show that singularities occur at the position of point load, which is at
the location of (u, v) = (6, m) as well as the corners of connection where (u, v) = (0, +m).

4. Analyses

Four finite element analyses were performed with each a different finite element size. The
results in four locations were recorded (figure 12) These results are presented in in table 1.

edge location (u, v) = (0, 0)
global system (x, y, z) = (0, 6, 2)
edge location (u, v) = (12, 0)
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edge location (u, v) = (0, n)
l global system (x,y, z) = (2, 6, 0)
F=100kN

Figure 12. Check point locations in model



Table 1. Computation results at four edge locations for four element sizes

e.lement Ty nyy %(”xy + ) | Max my,, Myy | Vx vy
size
[KN/m] | [KN/m] | [kKN/m] [KN] | [KN] | [KN] | [KN/m] | [KN/m]
edge location (u, v) = (0, 0)
200 mm 124.34 19.41 1.18 -2.09 | -0.34 | -0.04 | -6.31 5.24
100 mm 124.26 18.80 1.32 -2.11 | -0.33 | -0.02 | -6.34 5.61
50 mm 124.27 18.66 1.34 -2.12 | -0.32 | -0.01 | -6.33 5.76
25 mm 124.27 18.63 1.35 -2.12 | -0.32 | -0.01 | -6.33 5.82
edge location (u, v) = (0, m)
200 mm | -1553.23 | -254.39 176.30 -16.97 | -1.93 | 0.11 | -29.49 | 4.71
100 mm | -1680.81 | -281.00 212.40 -16.65 | -1.75 | 0.51 | -35.79 | -3.93
50 mm -1836.26 | -315.82 248.41 -15.59 | -1.53 | 0.78 | -24.80 | -28.81
25 mm -2025.54 | -355.75 286.32 -13.86 | -1.27 | 0.94 | 39.09 | -89.53
edge location (u, v) = (3, m)
200 mm -623.36 | -0.77 0.06 -4.42 | -0.07 | -8.21 | -0.51 -1.53
100 mm -624.47 | -0.18 -0.42 -4.37 | -0.04 | -8.19 | -0.51 -1.51
50 mm -624.75 | -0.05 -0.35 -4.34 | -0.02 | -8.18 | -0.51 -1.51
25 mm -624.82 | -0.01 -0.21 -4.33 | -0.01 | -8.18 | -0.51 -1.51
edge location (u, v) = (6, 0)
200 mm 0.07 -56.89 -5.24 -0.04 | -17.23 | -5.08 | -4.11 5.53
100 mm 0.07 -55.85 -5.01 -0.01 [ -17.23 | -5.06 | -4.37 5.41
50 mm 0.03 -55.57 -4.99 0.00 |-17.24|-5.05| -4.42 5.35
25 mm 0.01 -55.50 -5.01 0.00 |-17.24|-5.05| -443 5.33

4. Calculation of the orders

According to reference [1] page 78, the order of the error in the displacement can be solved as:

U, —u
b =log, ( 2 1),
Uz — U,
where u4, U, and u; are the displacements for different element sizes. We can use the same

equation to calculate the order of errors of table 1. The result can be seen in table 2 , where A;=
N100~M200 — Ms07M100 b1

, = log,(A,), b, =log,(A,). The normal forces n in the equations
M50~ M100 N20—Mso

were replaced by moments m and by shear forces v.

Values of b;, always are integer, should always be positive as well. To achieve this requirement,
values of A, or/and A, considered as integer as well. However, A position without value or with
zero value, means the values did not change by changing the element size, where values of b; at
those position should be co. This happens when the arithmetic accuracy is too small and when the
number of displayed digits is too small.




Table 2. Calculation results of order of errors

Calculation Components of internal forces
Ayx nyy %(”xy + ”yx) Myx myy Myy Vy ¥

edge location (u, v) = (0, 0)

Ay 8 4 7 2 1 2 3 2

A, 0 5 2 0 00 co 00 2

by 3 2 3 1 0 1 2 1

b, o 2 1 0 co 0 o 1
edge location (u, v) = (0, m)

Ay 1 1 1 0 1 2 1 0

A, 1 1 1 1 1 2 0 0

b, 0 0 0 © 0 1 0 ©

b, 0 0 0 0 0 1 © o
edge location (u, v) = (3, ©)

Ay 4 4 7 2 2 2 o o

A, 4 3 1 3 2 o o o

b, 2 2 3 1 1 1 0 o

b, 2 2 0 2 1 © o o
edge location (u, v) = (6, 0)

Ay 0 4 12 3 0 2 5 2

A, 2 4 1 00 00 00 5 3

by o) 2 4 2 e 1 2 1

b, 1 2 0 © 0 0 2 2

5. Conclusions

A shell structure has been analysed with the software SCIA Engineer. The displacements,
membrane forces, moments and shear forces appear to correctly fulfil the applied boundary

conditions. The results in four edge points have been recorded for four element sizes.

In location (0, ) the results diverge for smaller elements due to a singularity. The order of the

error could not be determined there. An exception is m,,, which does converge with an error

o(h).

In the other three locations the errors vary between 0 (1) and O(h*). This does not agree with

reference [1] page 78, where it is stated that the error is O (h?) for all results with reduced solid
element applied. A possible explanation is that small computation inaccuracies have a large
influence on the perceived order of an error. More research is required to explain the difference.

It is recommended that in further research larger loads or a larger number of displayed digits are
used.
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