Delft University of Technology
Faculty of Civil Engineering and Geosciences
Structural Mechanics Section

Exam CIEM5210-3 Advanced mechanics of structural elements
Thursday 25 June 2024, 13:30 — 16:30 hours

Choose A, B, Cor D.

See figure. What is the largest shear stress? (0.25 point) 20 kNm
U 420 mm
A 0.28 N/mm?
B 2.00 N/mm?
C 2.30 N/mm?
D 2.47 N/mm?

300 mm

Which torsion theory includes a distributed torsion moment load [kNm/m]? (0.25 point)

A Vlasov's

B Saint Venant's
C Circulatory

D Rankine's

For which sections is restrained warping a potential problem? (0.25 point)

A Circular tubes

B I sections

C Multi-cell box-girders
D T sections

What is a ¢ hill? (0.25 point)

A Soap film

B Function of which the slope is the shear stress

C Membrane analogy

D Function of which the volume is the torsion moment

Why are offshore platforms made of tubular sections? (0.25 point)

A High out of plane bending resistance against wave impact
B No stresses due to warping restrained

C Easy to fit onto each other

D Minimal painting, easy cleaning and recyclable
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hollow core slab

What is the torsion moment on the steel section? (0.25 point)

p

A my,= 0.15kNm/m
B my,= 1.05 kNm/m
C m,=-1.28 kNm/m
D my=-2.48 kNm/m

steel section
shear centre

|
\centre of gravity

8570 90 mm

v =15 kN/m

How is the thick plate theory different from the thin plate theory? (0.25 point)

A Strain energy is the x, y and z directions

B Developed by Mindlin instead of Reissner
C Plane sections do not remain plane

D Shear deformation is included

Why do we need such small elements, if we use the thick plate theory for a thin plate?
(0.25 point)

A To compute the deflection accurately

B To compute the edge shear force and edge moments accurately
C To compute the singularities accurately

D To compute the minimally required reinforcement accurately

What do we do when there is a torsion moment on a plate edge? (0.25 point)

A Re-compute with more accurate elements

B Check the load. Is this edge torsion moment applied intentionally?
C Interpret as concentrated shear force

D Accept as numerical error

A plate corner is pulled down by a support reaction. How large is this force?
(Notation as Blaauwendraad’s book.) (0.25 point)

A 2my,
B (vy +v)t
cCv
D fy

)

Where can we expect singularities in plates? (0.25 point)

A In simply supported and fixed edges
B At the end of line supports

C Next to circular holes and openings
D In every corner
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In a point of a plate the following membrane forces are computed.
Ny, = 10 kN/m, ny, =-4 kN/m, Nyy = 3 kN/m

Which reinforcement is sufficient and smallest? (0.25 point)

A ng=11KkN/m, ng, =5 kN/m
B ngy=12kN/m, ng, = 0 kN/m
C ng=12kN/m, ng, =1 kN/m
D ng=13kN/m, ng, =1 kN/m

A frame consists of three members (Fig. 1). The members have a strength Mp .The
members are rigidly connected. The left support is fixed. The right-hand support is a hinge.
The structure is loaded by line load g evenly distributed per member length (self-weight).
The relation of Figure 2 exists between the plastic moment and the plastic normal force.
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Figure 1. Frame structure Figure 2. Yield contour

The influence of shear on the yield contour is neglected. Buckling and second order effects
are not considered.

Assume B — oo, Determine the collapse load g for all possible mechanisms. Write the
collapse loads as functions of Mp and a. What is the decisive collapse load? (1.5 point)

Figure 3. Moments and normal forces of the decisive mechanism



14 Assume B = 6. Choose one of the following problems (You need not do both).
— Determine the largest lower-bound for g.
— Determine the smallest upper-bound for g.
You only need to write down the equations and not solve the equations (1.5 points).

A reinforced concrete plate has simply supported edges and free edges (Fig. 4). It carries an
evenly distributed load p [ kN/m?] on part of it surface. There is no other load on the plate.
The plate is homogeneous and orthotropic.
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Figure 4 Plate dlmen5|ons and relnforcement

15 Consider the yield line patterns of Figure 5. Which of these patterns give kinematically
possible mechanisms? (1 point)
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Figure 5. Yield line patterns



16 Consider the mechanism of Figure 6. Determine an upper-bound for p expressed in m,, and

a (1.5 point).
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Figure 6. Plastic failure mechanism

17 Determine the largest lower-bound for p using torsion free beams (m,,, = 0 ). You need only

to write down the equations and not solve the equations. (1.5 point)
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Answers

86 %
71%
86 %
100 %

O @ m W@ > O

71 % of the answers were correct

43 % ...The section will deform and the cross-section will rotate around the SC. The
concrete plate will be supported by the web.

Alternative answer: A conservative choice is that the concrete plate is evenly
supported by the top flange. This produces answer D. This answer was a
accepted too, provided that the correct calculation was included (29 %).

100 %
100 %
100 %
100 %
86 %
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E=Mpt+Mp(t+1)+Mpt

a-t,

l\)‘h)

A =q3-asqt(2) -

q = solve(E=4, q);

evalf(q):

restart :

E=Mpt+Mp(t+1)+Mp(t+1):

A = g3 asqt(2) ‘%-(m‘;

q = solve(E=4. q):

evalf(q):

E:=4Mpt

0.6285393608 Mp

2

E=5Mpt

4= 27qazﬁf
° 2

SMpy2

g _
274

0.2618914004 Mp

2
a

| étuﬁ

28 % ... (12-10)(1+4)>372 ... A (43 %) is wrong because it requires more steel than C.
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14 Upperbound
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b:=6.
eql =t 6a—tl-—L _(yp) Lt L 36
9" = b sqrt(2) b sqrt(2) ’
a 1 a 1 a
eq2:=1t1-6-a+ tl b sqt(2) + (1 +£2)- b 1(2) = (124 13)- b +12:6-a:

E:= Mptl + Mp (t] +12) + Mp- (£2+13) :

9 a 1
A= q'3<a'sqrt(2)<[tl' 2 a+tl b sqrt(2) ) :
solve({eql, eq2, E= A}, {tl,13,4});

25270235
{g _ 02927023582 Mp 1 9950554563 12, 13— 0.9363241313 12
a

14 Lowerbound
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eql == (1—al) Np=g-3a+ (1—a2) Np:

eq2 = a1<ﬂd{o=q<3'a'sqrt(2)<%‘a—a2<ﬂ@—V2'6‘a'sqrt(2) :

e?-—(l—aZ)N‘il —V7<71 +(l—a3) Np=0:

4= p sqrt(2) 7 sqrt(2) P
1 1

e ( a2) -Np sqrt(2) + sqrt(2)

eq5 == a2 Mp=(1—a3) Np6:a—a3 Mp:
eq6 == a3-Mp=V3-6-a:
solve( {eql, eq2, eq3, eq4, eq5, eq6}, {V2, V3, al, a2. a3, q});
- 0.3430462888 Mp Vi- 0.1575674082 Mp
a a
_ 0.2527023582 Mp

2
a

,al =0.8936842081, a2 =1.020035387, a3 = 0.9454044490, ¢
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There is something wrong in this solution: a2 is larger than 1. We have moved out of the
yield contour. Apparently, the normal force (1 - a2)Np has become tension instead of
compression. Now the solution is

Mp
Np = 6.2 .
p d

eql = (1—al) Np=g-3-a—(1—a2) Np:

eq2 : a]‘Mp=q'3‘a‘sqrt(2)‘%'a— a2 -Mp—V2-6-asqrt(2) :

1 1
g3 =—(1—a2) Np——— — V2 ———— Il —a3)-Np=0:
“d ( a2) Np sqrt(2) sqrt(2) +( a3) Np
1 1
g4 =—(1—a2) Np————— + V2 ————=13:
e ( a2) Np sqrt(2) T sqrt(2)

eqy == a2-Mp=(1—a3) Np-6-a—a3-Mp:

eq6 = a3-Mp=V36a:

solve( {eql, eq2, eq3. eq4, eq5. eq6}, {V2, V3, al, a2, a3, q});

0.3386652192 Mp 3= 0.1577444301 Mp
a a

_ 0.2487596345 Mp

2
a

2=

. al =0.8948836672, a2 =0.9807365155, a3 =0.9464665807, ¢

However, the normal force in the horizontal beam was calculated and it is larger than the
normal force capacity of (1-a2)Np. Consequently, the middle plastic hinge should not be in
the inclined beam but in the horizontal beam. The highest lowerbound is
Mp
Np = 6.- :
P a
eql == (1 —al) Np=g-3-a—(1—a2) Np:
eq2 = al Mp=g-3-asqrt(2) ~%~n —a2Mp—V2.6-a— (1 —a2) Np-Ga:
eq3 == V2=(1—a3) Np:
eqgd:= (1 —a2) Np=V3:
= a2 Mp=(1—a3) Np6-a—a3 Mp:
eqb == a3 - Mp=V3-6-a:

solve({eql, eq2, eq3, eq4, eq5, eq6}, { V2, V3, al. a2, a3, q});
0.3200601052 Mp 0.1577761082 Mp

®
=

fos
|

V2= a V3= a , al =0.9020859751, a2 =10.9737039820, a3 = 0.9466566491, ¢
~0.2484200859 Mp
= .

A B,D

3 right = 0.0 point
4 right = 0.5 point
5 right = 0.8 point
6 right = 1.0 point
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eql = RA-11'a=f4a9a:
eq2 = RA=fx4:

x4 _ .
eq3 = R4 x4 —f-xA-TZJ-mp:
9.

eq4 =:p-7-a-2—a=f-5-a- )

a:

eqS = pT-a=f5a+ RB:
eqb ‘= RB=p-xB:

eq’7 = RB-xB —p-xB-% < mp:

opl == solve({eql. eq2. eq3. eq4. eq5, eq6}. {RA, RB. f. p. x4, xB}); assign(opl) :

5 5 3
opl = | R4 = 11 mp _RB= 605 mp f= 121mp‘ 605 mp 36a _14a

; = —. x4 = .xB=
6a 756 a 216(12'}7 11?6(111; 11 " 9

eq’:

5
7609 ?gip < mp

evalf (p):

0.5144557823 mp

2
a
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