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ABSTRACT 

In this paper requirements are derived for the width of fabric parts in tent cutting patterns in case the tent 
surface needs to be particularly smooth. The result follows from nonlinear elastic analyses of membranes with 
imposed Gaussian curvatures. It is shown that the maximum width depends on the prestress, the fabric stiffness, 
the seam stiffness and the curvature of the design surface. 
 
Keywords: Membrane structures, cutting pattern, Gaussian curvature, elasticity theory, large deformations 

 

1. INTRODUCTION 

Some architects require very smoothly curved 
surfaces for their tent structures. To this end, the 
tent fabric needs to be cut in the right pattern, sewn 
together and stretched to the designed curvatures. 
Clearly, in normal loading conditions the fabric 
should not be floppy or wrinkle. Consequently, 
there are two requirements, 1) small deviations 
from the design surface and 2) only tension in the 
fabric. One of the ways to fulfil these requirements 
is a cutting pattern with small fabric widths. 
However, small fabric widths result in many seams 
and high production costs. Therefore, it is important 
to know which fabric width is necessary to just 
fulfil the design requirements. 

In this paper the theory of elasticity is applied to 
structural membranes. It is shown that the 
membrane stresses depend on Young’s modulus of 
the fabric, the curvatures of the design surface, the 
shape of the cutting pattern parts, the stiffening 
effect of the seems and the prestressing of the tent 
structure. The stresses in the fabric are solved 
analytically for a circular fabric part and a long 
rectangular fabric part. These solutions are 
interpreted to obtain remarkably simple formulas 
for the required width of the fabric parts of tent 
cutting patterns. 

 

2. CURVATURES 

Consider a particular point on a tent structure (Fig. 
1). In this point a local coordinate system is applied 
with the z axis perpendicular to the surface. The 
surface curvatures xk , yk , xyk  are defined as [1] 

2 2 2

2 2
∂ ∂ ∂

= = =
∂ ∂∂ ∂

x y xy
z z zk k k

x yx y
.  (1) 

The principal curvatures are calculated with 

( ) ( )
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Figure 1. Local coordinate system on a curved surface 
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The Gaussian curvature is defined as 1 2=Gk k k  
which can be evaluated to 

2= −G x y xyk k k k .    (3) 

For tent structures the Gaussian curvature has a 
value smaller than zero. For inflatable structures the 
Gaussian curvature can be also a value larger than 
zero. 

3. COMPATIBILITY 

The strains in an initially flat membrane are [2]  

2
1
2

2
1
2

,

,

.

∂ ∂⎛ ⎞= + ⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= + ⎜ ⎟∂ ∂⎝ ⎠
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

xx

yy

xy

u z
x x

v z
y y
u v z z
y x x y

ε

ε

γ

    (4) 

Where u is the displacement of a material point in 
the x direction, v is the displacement of a material 
point in the y direction and z is the displacement of 
a material point in the z direction. Therefore, z is a 
function of x and y. This formulation includes large 
deformations. The displacements u, v can be 
eliminated from these equations which gives the 
compatibility equation. 

22 22 2 2 2

2 2 2 2

⎛ ⎞∂ ∂∂ ∂ ∂ ∂
− + − = − ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ⎝ ⎠

xy yyxx z z z
x y x yy x x y

γ εε
 (5) 

From equations (1) and (3) it follows that the right-
hand side of Eq. (5) is equal to the Gaussian 
curvature, therefore, 

2 22

2 2
∂ ∂∂

− + − =
∂ ∂∂ ∂

xy yyxx
Gk

x yy x

γ εε
.   (6) 

This equation is the bases of this paper. In a flat 
membrane 0=Gk . Equation (6) shows that curva-
ture can accommodate deformations that would be 
incompatible in a flat membrane. 

 

 

4. STRESS FUNCTION 

The constitutive equations for linear elastic 
behaviour are [2] 

1 ( ),

1 ( ),

2(1 ) .

= −

= −

+
=

xx xx yy

yy yy xx

xy xy

n n
Et

n n
Et

n
Et

ε ν

ε ν

νγ

    (7) 

Where E is Young’s modulus, ν is Poisson’s ratio, t 
is the fabric thickness, xxn , yyn , xyn are cross-
section forces per unit length (For example N/m). In 
this paper we will refer to them as the membrane 
stresses. Substitution of (7) in (6) gives 

2 22

2 2

2 22

2 2

2 +

2 .

∂ ∂∂
− + −

∂ ∂∂ ∂

⎛ ⎞∂ ∂∂⎜ ⎟+ + + =
⎜ ⎟∂ ∂∂ ∂⎝ ⎠

xy yyxx

xy yyxx
G

n nn
x yy x

n nn
Et k

x yx y
ν

  (8) 

The membrane equilibrium equations are [2]  

2 0+ + + =x xx xy xy y yy zk n k n k n p  (9) 

0
∂∂

+ =
∂ ∂

xyxx nn
x y

 (10) 

0
∂ ∂

+ =
∂ ∂

yy xyn n
y x

 (11) 

where it is assumed that there is only loading zp  
perpendicular to the surface. Eq. (10) and (11) are 
fulfilled by Airy’s stress function φ  [2]. This 
function is defined such that 

2 2 2

2 2, , .∂ ∂ ∂
= = = −

∂ ∂∂ ∂
xx yy xyn t n t n t

x yy x
φ φ φ     (12) 

Substitution of Eqs (12) in (8) gives the differential 
equation 

4 4 4

4 2 2 42∂ ∂ ∂
+ + = −

∂ ∂ ∂ ∂
GE k

x x y y
φ φ φ . (13) 
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5. CIRCULAR SHEET 

Consider a thin flat sheet that is cut in a circular 
pattern (Fig. 2). The radius is a. The thickness is t. 
A Gaussian curvature Gk is imposed to the sheet. 

 

Figure 2. Circular sheet and membrane stresses on an 
elementary part 

The boundary conditions after deformation are zero 
load imposed onto the edge and equilibrium in any 
section of the sheet. The solution to differential 
equation (13) and the boundary conditions is 

2 2 2 21
64 ( )= − − −Gk E a x yφ . (14) 

This can be written as 

2 2 21
64 ( )= − −Gk E a rφ  (15) 

where r is the radial coordinate of the sheet. The 
membrane stresses are 

2
2 21

162 2

2
2 21

162

( ),

( 3 ),

1( ) 0.

θθ

θ

∂φ ∂ φ
= + = −

∂ ∂θ

∂ φ
= = −

∂
∂ ∂φ

= − =
∂ ∂θ

rr G

G

r

t tn E t k a r
r r r

n t E t k a r
r

n t
r r

 (16) 

These stresses are shown in Figure 3. Since rn θ = 0, 
the stresses rrn and nθθ are also the principal 
stresses. 

The stresses in the middle of the sheet are 

21
16rr Gn n a E t kθθ= = . (17) 

The stresses in the edge of the sheet are  

0rrn = ,     21
8 Gn a E t kθθ = − . (18) 

To compensate for compressive stresses in case of a 
negative Gaussian curvature, the sheet needs to be 
tensioned to the value 21

16 Ga E t k−  perpendicular 

to the edge. To compensate for compressive stresses 
in case of a positive Gaussian curvature, the sheet it 
needs to be tensioned to the value 21

8 Ga E t k  

perpendicular to the edge. 

 

Figure 3. Membrane stresses in an initially flat circular 
sheet due to an imposed Gaussian curvature 

The loading zp  perpendicular to the surface can be 
found by substituting Eqs (14) in Eqs (12). The 
result is substituted in Eq. (9). This gives 

2 2 2 21
8 [ 2 ( )],= − + − −z G x xy y mp E t k k y k xy k x k a r  

where mk  is the mean curvature 1
1 22 ( )= +mk k k . 

This loading is necessary to force the sheet into the 
curved shape. The resultant of the loading is zero. 

2 2

2 2
0

−

=− =− −
=∫ ∫

a a y
z

x a y a y
p dydx  

When zp  is removed from the sheet its shape will 
change again. To prevent a large change the sheet 
needs to be tensioned perpendicular to the edge. 

rrn

θθn

r0 a−a

21
16 Ga Etk

21
8− Ga Etk

a

x

y

r
θ

rrn
θrn

θθn
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6. CIRCULAR SHEET WITH AN EDGE RING 

Consider a thin flat sheet that is cut in a circular 
pattern (Fig. 4). The sheet thickness is t. The sheet 
radius is a. The sheet has an edge ring. The ring 
cross-section area is A. The ring is made of the 
same material as the sheet. A Gaussian curvature 

Gk is imposed to the sheet and the edge ring. The 
sheet and ring are not loaded externally. 

 

Figure 4. Circular sheet with an edge ring and the 
interaction between the sheet and the ring 

Equilibrium of the deformed ring gives 

== − rr r aN an . (19) 

The deformed sheet is attached to the deformed 
ring. Therefore, at the edge, they have the same 
strain in the circumferential direction. 

θθ =ε = ε ringr a  (20) 

The constitutive equation of the ring is 
= εringN EA . The constitutive equation of the sheet 

is 1 ( )θθ θθε = − ν rrn n
Et

. Substitution in Eq. (20) 

gives 

θθ == − ν =rr r ar a
Ntn n
A

.  (21) 

Substitution of (19) in (21) gives the boundary 
condition 

( )θθ == = ν − rr r ar a
atn n
A

. (22) 

The solution to differential equation (13) and 
boundary condition (22) is 

2 2
2 2 21

64
4( )

(1 )

⎡ ⎤
φ = − − −⎢ ⎥

+ − ν⎢ ⎥⎣ ⎦
G

Aa rk E a r
at A

.      (23) 

The membrane stresses are 

2
2 21

16

2
2 21

16

2( ),
(1 )

2( 3 ),
(1 )

0.

θθ

θ

= − +
+ − ν

= − +
+ − ν

=

rr G

G

r

a An E tk a r
at A

a An E tk a r
a t A

n

 (24) 

These stresses are shown in Figure 5. The stresses 
in the middle of the sheet (r = 0) are 

21
16

(3 ) ,
(1 )

0.

θθ

θ

+ − ν
= =

+ − ν
=

rr G

r

a t An n a E t k
at A

n
 (25) 

 

Figure 5. Membrane stresses in an initially flat circular 
sheet with an edge ring due to an imposed Gaussian 

curvature 

The stresses in the edge of the sheet (r = a) are  

rrn

θθn

r0 a−a

21
16

(3 )
(1 )

+ − ν
+ − νG

at Aa Etk
at A

21
8 (1 )

− ν
−

+ − νG
at Aa Etk
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a

x

y

r

θ

rrn

θθn
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21
8

21
8

,
(1 )

,
(1 )

0.

θθ

θ

=
+ − ν

− ν
= −

+ − ν
=

rr G

G

r

An a E t k
at A

at An a E t k
at A

n

 (26) 

 

7. RECTANGULAR SHEET 

Consider a thin flat sheet that is cut in a rectangular 
pattern (Fig. 6). The sheet width is 2a. Its length is 
infinite. The sheet thickness is t. A Gaussian 
curvature Gk is imposed to the sheet. The sheet 
edges are not loaded. 

The boundary condition on the edges (y = a, y = -a) 
are 

0=yyn ,   0=xyn . (27) 

The solution to differential equation (13) and 
boundary conditions (27) is 

2 2 21
24 ( )= − −Gk E a yφ . (28) 

The membrane stresses are 

 

 

Figure 6. Rectangular sheet and membrane stresses 

2
2 21

62

2

2

2

( 3 ),

0,

0.

∂
= = −

∂

∂
= =

∂

∂
= − =

∂ ∂

xx G

yy

xy

n t Etk a y
y

n t
x

n t
x y

φ

φ

φ

 (29) 

These stresses are shown in Figure 7. The stresses 
in the middle of the sheet (y = 0) are 

21
6=xx Gn a E tk ,   0=yyn ,   0=xyn . (30) 

The stresses in the edges of the sheet (y = a, y = -a) 
are 

21
3= −xx Gn a E tk ,   0=yyn ,   0=xyn . (31) 

Surprisingly, yyn  is zero everywhere in the sheet. 
This result can be tested by pressing a 40 mm wide 
strip of aluminium foil onto a football. Doing so, 
wrinkles occur in the y direction along the long 
edges of the strip. Apparently, stresses would occur 
in the x direction; compression along the edges and 
tension in the middle. The pressed strip shows no 
wrinkle in the x direction. Therefore, there would be 
no stresses in the y direction. This simple test 
confirms the analytical result. 

The loading zp  perpendicular to the sheet is found 
by substituting Eqs (29) into Eq. (9). 

2 21
6 ( 3 ).= − −z G xp Etk k a y  (32) 

 

Figure 7. Membrane stresses in an initially flat 
rectangular sheet due to an imposed Gaussian curvature 
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Consider again the thin flat sheet of Figure 6. This 
time a Gaussian curvature is not imposed. Instead, 
the sheet is tensioned in the y direction and the 
loaded by − zp . The differential equation of this 
situation is 

2

2 =yy z
d zn p
dy

. (33) 

The boundary conditions at y = 0 are 

0, 0.= =
dzz
dy

 (34) 

The solution to this differential equation is 

2 2 2(2 )
24

= − −G x

yy

Etk k
z y a y

n
. (35) 

The largest displacement ẑ  (in absolute value) 
occurs at y = a and y = –a, 

4
ˆ

24
= − G x

yy

Etk k a
z

n
. (36) 

8. RECTANGULAR SHEET WITH CABLE 
EDGES 

Consider a thin flat sheet that is cut in a rectangular 
pattern (Fig. 8). The sheet width is 2a. Its length is 
infinite. The sheet thickness is t. The sheet has 
cable edges. The cable cross-section area is A. The 
cable is made of the same material as the sheet. A 
Gaussian curvature Gk is imposed to the sheet and 
the cable. The sheet and cable are not loaded 
externally. 

The sheet and edge cable are connected. Therefore, 
the strain of the cable is equal to the strain of the 
sheet. The cable normal force is. 

== xx y aN EAε  (37) 

Substitution of Eq. (7) into Eq. (37) and using 
0

=
=yy y a

n  gives 

 

Figure 8. Rectangular sheet with edge cables and 
membrane stresses on an elementary part 

==
xx y anN

A t
. (38) 

Since there is no edge loading, in a vertical section 
(x is constant) the section resultant needs to be zero. 

2 0
−

+ =∫
a

xxa
N n dy  (39) 

Substitution of Eq. (38) in Eq. (39) gives 

2 0= −
+ =∫

a
xx xxy a a

A n n dy
t

. (40) 

The solution to differential equation (13) and 
boundary condition (40) is 

2 2
2 2 21

24
4[( ) ]= − − −

+G
a y Ak E a y
at A

φ . (41) 

The membrane stresses are 

2 2
2 21

62

2

2

2

2( 3 ),

0,

0.

∂
= = − +

+∂

∂
= =

∂

∂
= − =

∂ ∂

xx G

yy

xy

a An t Etk a y
at Ay

n t
x

n t
x y

φ

φ

φ

 (42) 
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These stresses are shown in Figure 9. The stresses 
in the middle of the sheet (y = 0) are 

21
6

3 ,

0.

+
=

+
= =

xx G

yy xy

at An a Etk
at A

n n
 (43) 

The stresses in the edges of the sheet (y = a, y = -a) 
are 

21
3 ,

0.

= −
+

= =

xx G

yy xy

atn a Etk
at A

n n
 (44) 

The normal force in the edge cables is 

21
3= −

+G
a AN a Etk

at A
. (45) 

The largest displacement due to the loading− zp on 
a flat sheet is 

4 5ˆ
24

+
= −

+
G x

yy

Etk k a at Az
n at A

 (46) 

9. DESIGN FORMULAS 

The prestressing in a tent structure is computed in a 
form finding analysis or a finite element analysis. 
When the form is obtained also the Gaussian 
curvature can be computed. 

 

Figure 9. Membrane stresses in an initially flat 
rectangular sheet with edge cables due to an imposed 

Gaussian curvature 

 

Therefore, in every point of the design the Gaussian 
curvature Gk , the principal directions and the 
principal membrane stresses 1n and 2n are known. 
For designing the cutting pattern the rectangular 
sheet is considered that is analysed in Section 7. 
The sheet stresses – Eqs (29) – occur due to the 
curvature in which it is forced. Onto these stresses 
the prestressing stresses are superimposed. The 
resulting stress needs to be larger than zero in order 
to prevent wrinkles and a floppy fabric. 

Suppose that the Gaussian curvature is positive, for 
example an inflatable fabric structure. Then the 
largest compressive stress due to pushing the fabric 
into shape is 21

3= −xx Gn a E tk Eq. (31). Wrinkles 

would occur next to the seams. The prestress pxn in 
the seam direction needs to be at 
least 21

3≥px Gn a E tk  because this way, when we 

add xxn and pxn there are no compressive stresses. 
The latter equation can be rewritten as 

12
2 ≤ px

G

n
a

E tk
. 

2a is the width of the rectangular sheet. Therefore, 
this provides the maximum width mw of the fabric 
cutting pattern. 

12
= px

m
G

n
w

Etk
 (47) 

This width is a local value since the curvature Gk  
and the prestress pxn are local values (Fig 10). 

 

Figure 10. Interpretation of the derived design formula 
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The seams are stiffer than the fabric and do not 
deform into the desired shape. Consequently, for 
positive Gaussian curvatures the seams need to be 
as small as possible. If possible they should be on 
the inside of the structure because there they deform 
less than the fabric. 

The sheet solutions are also valid for negative 
Gaussian curvatures. Then the fabric tends to be 
floppy in the midst between the seams. For this case 
Eq. 30 is rewritten to obtain the maximum fabric 
width. 

24−
= px

m
G

n
w

Etk
 (48) 

The seams that join the fabric parts have an 
influence. The membrane stress due to forcing into 

the Gaussian curvature is 21
6

3+
=

+xx G
at An a Etk
at A

 

(Eq. 42). The average prestress in the fabric 
direction is pxn . Part of this is carried by the 
seams. The real prestress in the fabric is 

+px
atn

at A
. To prevent a floppy fabric it needs to 

be tensioned. The requirement to fulfil is 

21
6

3+
≥ −

+ +px G
at at An a Etk

at A at A
. 

This can be rewritten as 

24

6

−
=

+

px m
m

G m

n w
w AEtk w

t

. (49) 

Note that mw occurs both on the left-hand side and 
on the right-hand side of the equation. It can be 
solved iteratively, starting with an estimate of  mw  
– Eq. (48) – and applying Eq. (49) as many times as 
needed. 

A loading zp  is needed to impose a Gaussian cur-
vature onto the flat sheet. In a tent structure this 
loading does not occur. When the load is removed 
the sheet will deform again. This deformation can 
be calculated with Eq. (36). Suppose that the 
architect accepts a deviation ẑ  from the design 
surface. Eq. (36) can be rewritten to obtain the 

maximum fabric width that fulfils this requirement. 

1
4ˆ384⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

py
m

G x

n z
w

Et k k
. (50) 

This formula is valid for both positive and negative 
Gaussian curvatures. The influence of the seams 
can be included by rewriting Eq. (46) 

1
42ˆ384

10

⎛ ⎞+⎜ ⎟
= ⎜ ⎟
⎜ ⎟+
⎝ ⎠

mpy
m

G x m

Awn z tw AEt k k w
t

 (51) 

The formulas show that the maximum width w of a 
fabric part does not depend on Poisson's ratio. 
Poisson's ratio of fabrics can be very high and 
depends strongly on the loading state [3]. In fact, 
many fabrics cannot be modelled as a linear elastic 
material. Instead an advanced model needs to be 
used that includes crimp interchange. Fortunately, 
in the previous analysis Poisson’s ratio drops out of 
the equations and has no influence on the 
determined maximum fabric width. Therefore, there 
is no compelling need for using an advanced model. 
Moreover, the advantage of a higher accuracy 
would be lost in far more complicated formulas. 

10. EXAMPLE 

The cutting pattern of a tent needs to be determined 
such that the fabric will accurately follow the 
smooth design surface (Fig. 11, 12). A deviation of 
just 3 mm is acceptable. In a particular point the 
Gaussian curvature is Gk  = -0.111 m-2. The curva-
ture in the direction of the seams is xk  = -0.205    
m-1. The principal membrane stress in this point is 

pxn  = 1.07 kN/m in the direction of the seams and 
pyn  = 1.37 kN/m perpendicular to the seams. The 

stiffness of the fabric is Et = 1000 kN/m. 

The tension requirement Eq. (48) gives 

24 24 1.07 0.481
1000 0.111

− − ×
= = =

×−
px

m
G

n
w

E t k
 m. 

The seams consist of 4 layers of fabric of 10 mm 
width (Fig. 13). The area that stiffens the fabric is A 
= 3 x 0.005 m x t = 0.015 t m. Applying Eq. (49)  
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Figure 11. Canopy at the European patent office in 
Rijswijk (Tentech) 

 

Figure 12. Detail of the canopy of Figure 11 (Tentech) 

we obtain 

24

6

24 1.07 0.481 0.441 m.
1000 0.111 0.481 6 0.015

−
=

+

− ×
= =

×− + ×

px m
m

G m

n w
w AEtk w

t   

An extra iteration of the latter equation gives mw  = 
0.438 m. The influence of the seams is 9% in this 
example. 

The shape requirement Eq. (50) gives 

1
4

1
4

ˆ384

384 1.37 0.003 0.513m.
1000 0.111 0.205

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

× ×⎛ ⎞= =⎜ ⎟× ×⎝ ⎠

py
m

G x

n z
w

Et k k
 

Applying Eq. (51) we obtain 

1
42ˆ384

10

⎛ ⎞+⎜ ⎟
= ⎜ ⎟
⎜ ⎟+
⎝ ⎠

mpy
m

G x m

Awn z tw AEt k k w
t

1
4384 1.37 0.003 0.513 2 0.015

1000 0.111 0.205 0.513 10 0.015
0.488 m.

× × + ×⎛ ⎞= ⎜ ⎟× × + ×⎝ ⎠
=

 

An extra iteration of the latter equation gives mw = 
0.487 m. Consequently, the tension requirement is 
decisive in this situation. 

The calculation was performed for several critical 
points in the design. The cutting pattern width is 
smaller or just smaller than required by Eq. 48 and 
Eq. 50 everywhere. No wrinkles were observed 
during serviceability loading. No flapping was 
observed in moderate to strong winds. 

11. IMPLICATION 

In most tent structures the warp and weft directions 
of the fabric will be the directions of the principal 
curvatures. Consider the situation of Figure 14 in 
which the weft direction has a radius of curvature b 
and the warp direction has a radius of curvature c. 
The angle α is the angle of the tangents at the 
seams. 

In this situation /180= απw co  and =Gk  1/( )− bc . 
When these are substituted in Eq. 47 the maximum 

 

Figure 13. Seam cross-section 
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angle αm can be solved   

24180
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π
px

m
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E t c

o
. 

For most tent structures the prestress pxn varies 
between 1.0 and 2.0 kN/m. The membrane stiffness 
Et varies between 500 and 1500 kN/m. The ratio b/c 
varies between 1/5 and 5. Substitution in the latter 
equation gives 3º < αm < 40º. Consequently, if the 
angle α is smaller than 3º the cutting pattern fulfils 
the tension requirement. This provides a quick 
geometrical check for tent cutting patterns that can 
be carried out without calculations. However, any 
angle up to 40º can provide a satisfactory design. 
Therefore, a 3º limit would be very conservative in 
general. 

12. CONCLUSIONS 

An initially flat fabric will follow a Gaussian 
curvature with a deviation less than ẑ  if the width 
of the cutting pattern in a particular point is less 
than 
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where pyn is the principal membrane prestress 
perpendicular to the seams (N/m). Et is the fabric 
stiffness (N/m) Gk is the Gaussian curvature (m-2) 
and xk  is the curvature in the direction of the seams 
(m-1). 

An initially flat fabric deformed in a positive 
Gaussian curvature will be tensioned everywhere 
when the width of the cutting pattern in a particular 
point is less than 
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, 

where pxn  is the principal membrane prestress in 
the direction of the seams. A wider cutting pattern 
will give wrinkles in the fabric next to the seams. 

An initially flat fabric deformed in a negative 
Gaussian curvature will be tensioned everywhere if 
the width of the cutting pattern in a particular point 
is less than 

24−
= px

m
G

n
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. 

A wider cutting pattern will result in floppy fabric 
in the middle between the seams. The influence of 
the seams can be included in the formulas.  

Experiments are planned to further validate the 
derived design rules. 
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Figure 14. Typical fabric part of tent a tent structure  
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