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SUMMARY 

In this paper a general design method is described that can significantly reduce the effort needed for form 
finding grid shells consisting of flexible members. This design method is based on particle-spring models for 
simulating the behaviour of a grid shell during construction. Hereby, the stress limitations that follow from the 
material properties are taken into account to modify the grid shell geometry with a minimal deviation from a 
pre-defined target shape. It is demonstrated how a simple design tool can generate the geometry, internal forces 
and the support reactions with satisfactory accuracy. 
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1. INTRODUCTION 

Grid shells that consist of flexible members have, in 
addition to the favourable properties of shell 
structures in general, the considerable advantage 
that they can be erected in very little time. 
Construction takes place in three steps. First, a flat 
grid of straight members is laid out, making the 
creation of the connections very easy. The joints are 
not fully fixed and allow some sliding of the laths. 
Second, construction struts push the grid to its shell 
form by lifting it from within. Third, the edges and 
connections are fixed and the struts are removed. 
Prominent examples of grid shells that were 
constructed this way are the Mannheim grid shell 
[1] and the Weald and Downland grid shell [2]. 

The downside of this type of grid shell is that due to 
the flexibility of the members the final shape is hard 
to predict with sufficient accuracy. It highly 
depends on equilibrium between the forces in the 
laths. The forces in the laths are introduced by the 
bending process, in addition to self weight and 
external loading. 

Very little is known about the methods that have 
been used to analyse existing grid shell structures. 
In design of the earliest grid shells extensive use 
was made of physical models. Nonetheless, a 
considerable number of laths broke during 

construction. Repairing or replacing broken laths 
was a time consuming and expensive part of the 
construction process [1], In recent grid shell 
projects far less broken laths were reported which 
shows that progress has been made [2]. However, 
most commercially available structural analysis 
software is ill suited for analysing grid shell 
structures. For example, very large displacements 
(nonlinear) are not supported and neither is form 
finding or the application of initial stresses. 
Therefore, at Delft University of Technology in the 
Netherlands, two research projects were undertaken 
on grid shell design and analysis [3], [4]. The latter 
of these projects led to the method proposed in this 
paper. 

Barnes [5] has described how dynamic relaxation 
can be used in form finding tension structures. 
Killian and Ochsendorf [6] elaborated on this by 
describing how particle-spring systems can be used 
in the form finding of shell structures. Hereby they 
considered axial forces only. For grid shells 
consisting of flexible members the bending 
moments are especially important, as shown by 
Adriaenssens and Barnes [7]. Therefore, their 
method needed to be extended. 

In this paper an intelligent design method is 
proposed that is capable of form finding and 
analysing grid shell structures. This method has 
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been implemented in a computer program and has 
been applied as a design tool. The method has been 
demonstrated in several case studies that are 
included at the end of this paper. 

2. GENERAL APPROACH 

The process starts by specifying a target shape for a 
grid shell. This shape can include functional and 
aesthetic requirements of the geometry. However, 
this shape does not need to be structurally feasible. 
The proposed method designs a grid that fits closely 
to this target shape. Hereby, the method takes the 
following requirements into account. 

 Equilibrium of the grid 
 Stress limits of the laths 
 Best approximation to the target shape 

The grid of laths is modelled by a particle-spring 
model [6] which consists of particles that are 
connected by translational and rotational springs 
(Fig. 1). The particles represent the positions of the 
connections between the laths. The self weight and 
the mass of the laths are lumped to these particles. 
The springs represent the elastic properties of the 
lath parts between the connections. Several types of 
springs are possible, where each type corresponds 
to an action that works on the laths of the grid shell. 
In this paper the two main actions, namely normal 
and bending action, are considered. Torsion springs 
that represent torsion action on the laths have not 
been included as yet. 

 
Figure 1. A simply supported lath modelled by particles 

and springs 

First, an initially flat grid is generated. This grid is 
pulled towards the target shape, which causes the 
grid to curve and gives some change of the spacing 
between the grid points. The pulling continues until 
the limit stress prevents a closer agreement with the 
target shape. Second, the grid edges are fixed and 
the pulling forces are removed, after which the final 
equilibrium geometry is obtained. This approach is 
similar to the erection method of a grid shell. 

The first procedure is called shape approximation. 
The second procedure is called spring back analysis 
(Fig. 2). Both procedures are based on dynamic 
relaxation for finding a shape that is in equilibrium. 
The result is the geometry of the grid shell as it can 
stand on its own.   

 
Figure 2. Diagram of the proposed design method 

3. GRID SHELL MODEL 

Each particle has three coordinates representing its 
location in space. The particles are connected by 
translational springs and rotational springs. The 
translational springs have an initial length equal to 
the target spacing of the laths. During computation, 
the actual spring length is the distance between the 
two particles that the spring connects. The spring 
exerts forces F onto the particles in the direction of 
the spring. 

F = k u    (1) 

In this, u is the difference between the current 
spring length and the initial length (negative when 
the distance is smaller than the initial length) and k 
is the spring stiffness.  

Since the deformation of the laths due to bending is 
much larger than due to extension, the extensional 
stiffness of the springs does not need to be the exact 
value of the stiffness of the laths without losing 
much accuracy. Moreover, it appeared to be useful 
to implement a non-linear constitutive relation for 
the translational springs, giving greater speed of 
calculation without losing numerical stability (Fig. 
3). 

In addition, a small translational spring stiffness can 
be specified for simulating sliding of the 
connections when the grid is pushed into shape. The 
rotational springs represent bending of the lath parts 
between the connections. The initial angle of the 
springs is zero. During a computation these angles 
change (Fig. 4) 
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Figure 3. The translational springs can be linear as well as 

non-linear 

 

 
Figure 4. The angle between three particles that are 

connected by a rotational spring 

The moment M due to this angle is 

θ

EI

M  =    (2) 

where EI is the flexural rigidity of the laths and 
 is the lath spacing (see Appendix). The 
moment exerts forces on the three particles 
connected by the rotational spring (Fig. 5).  

 
Figure 5. The moment in a rotational spring is converted 

to equivalent forces acting on the connected particles 

4. DYNAMIC RELAXATION 

For finding equilibrium states of a particle-spring 
model the dynamic relaxation method has been 
applied. Each particle is loaded by internal and 
external forces. If not in equilibrium, the resultant 
of all forces on a particle accelerates this particle in 
the direction of the resultant (Newton’s second law 
of motion). In some time step this will lead to a new 
position of the particle. The basic idea of dynamic 
relaxation is that this dynamic equilibrium will 
come to rest in a static equilibrium. 

In each time step the resultant forces are 
recalculated for every grid point. The resultant force 
consists of forces due to bending in the grid point 
itself, bending in the grid points connected to it, 
forces due to extension and external forces.  

The computation of the particle velocities and 
displacements is performed by the implicit fourth 
order Runge Kutta method [8]. 

The particle mass and the particle damping do not 
need to have the actual values because the objective 
is computing the equilibrium situation and not the 
actual dynamic response. A successful method to 
prevent oscillations around the equilibrium state is 
monitoring the total kinetic energy of the system. 
When a peak is detected all velocities are set to zero 
[5]. 

5. APPROXIMATION TO A TARGET SHAPE 

As explained in Section 2, the particle-spring 
system is fitted to a target shape. This is 
accomplished by adding extra springs – called 
shaping springs – to the system. Each shaping 
spring connects a particle to the surface of the target 
shape. The shaping springs are directed vertically to 
the target shape. The shaping springs have zero 
initial length, therefore, they pull the particles 
towards the target shape (Fig. 6). The bending 
stresses in the laths are computed from the moments 
in the particle-spring system. If somewhere the 
stress limit according to Eurocode 5 [9] is 
exceeded, the stiffness of the connected shaping 
spring is reduced. The procedure continues until the 
internal forces are in equilibrium with the shaping 
forces. The result is a grid geometry that matches 
the target shape as accurately as possible and fulfils 
the stress conditions everywhere (Fig. 7). 
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Figure 6. Shape approximation 

Normal stresses, shear stresses and torsion stresses 
are not checked in the proposed method. However, 
it would not be difficult to implement this too. For 
reducing torsion stresses the stiffness of two 
shaping springs need to be reduced. These are 
located on either side of the grid point on the lath 
perpendicular to the considered lath part. 

6. SPRING BACK ANALYSIS 

After the shape approximation is concluded, the 
edges of the particle-spring system are fixed. The 
equilibrium length of the translational springs is set 
to the current local lath spacing . The stiffness of 
the translational springs can be set to linear elastic 
with a value of  


EA

k =     (3) 

where EA is the axial stiffness of the laths. This 
represents the fact that the lath connections are 
fixed now and cannot slide over each other 
anymore. The shaping springs are removed from the 
particle-spring system and the final equilibrium 
geometry is computed with dynamic relaxation 
(Fig. 8). 

7. CASE STUDIES 

The proposed method has been implemented in a 
design tool and then applied to several case studies. 
Use has been made of the C++ programming 
language with graphic user interface. The run time 
strongly depends on the number of laths. The 
computation times of the examples presented below 

are 1 minute for example 1, 10 minutes for example 
2 and 30 minutes for example 3, on a modern 
computer.  

Example 1  

Figure 9 shows a simple target shape representing a 
dome like structure. 

 
Figure 7. Flow chart of the first calculation procedure 

(shape approximation) 

As input parameters properties are used that are 
based on timber of strength class C18 (Table 1). 
Applying the design tool to this example results in 
the grid geometry shown in Figure 10. The 
geometry has changed only slightly in the spring 
back analysis, nevertheless this cannot be neglected 
(Fig. 11). 

 34 



JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR SHELL AND SPATIAL STRUCTURES: J. IASS 

 
Figure 8. Flow chart of the second calculation procedure 

(spring back analysis) 

 
Figure 9. Target shape of example 1 

Table 1. Input values of example 1 

Grid point spacing 0.8 m 
Lath cross section dimensions 34 x 28 mm 
Elastic modulus (E0;mean) 9000 

N/mm2 

Characteristic bending strength (fm;k) 18 N/mm2  
Initial spring stiffness of shaping 
springs 

10.0 kN/m 

Spring stiffness of translational 
springs 

1100.0 
kN/m 

Density 320 kg/m3 

 
Figure 10. Final grid geometry of example 1 

 
Figure 11. Detail of the grid geometry before (red) and 

after (blue) the spring back analysis 

Example 2 

Figure 12 shows a target shape that consists of two 
intersecting ellipsoids. More detail is not necessary 
for application of the design tool. The calculation is 
run twice with values of the mechanical properties 
corresponding to timber of strength class C22 and 
D35 (Table 2). For these strength classes Young’s 
moduli are equal, but the bending strength differs. 
The lath dimensions are kept equal for both 
calculations. The resulting final geometries are 
shown in Figure 13 and 14. The calculation based 
on C22 shows a larger deviation from the target 
shape than that of D35, because the stiffness of the 
shaping springs has been reduced more during the 
shape approximation procedure. This demonstrates 
that the final geometry depends strongly on the 
timber strength. 

In both instances the design tool has found the grid 
shell geometry that is as close as possible to the 
target shape. 
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Figure 12 Target shape of example 2 

Table 2. Input values of example 2 

Grid point spacing 0.6 m 
Lath cross section dimensions 34 x 28 mm 
Elastic modulus (E0;mean) 10000 

N/mm2 

Characteristic bending strength (fm;k) 
C22 

22 N/mm2  

Characteristic bending strength (fm;k) 
D35 

35 N/mm2  

Initial spring stiffness of shaping 
springs 

10.0 kN/m 

Spring stiffness of translational 
springs 

1100.0 
kN/m 

Density (average) 450 kg/m3 

 
Figure 13. Grid geometry of example 2 for C22 

 
Figure 14. Comparison of generated geometries with 

timber strength class D35 (blue) and C22 (red) 

Example 3 

Spectacular shapes can be constructed as a grid 
shell. The design tool is capable of finding the 
geometry for very elaborate target shapes. An 
example is the grid shell in Fig. 15 and 16. For this 
example the values of the mechanical properties are 
based on that of a composite material with which 
very high bending strengths can be obtained (Table 
3). 

Table 3. Input values of example 3 

Grid point spacing 0.3 m 
Lath cross section dimensions 50 x 50 mm 
Elastic modulus (E0;mean) 25000 

N/mm2 

Characteristic bending strength (fm;k) 450 N/mm2  
Initial spring stiffness of shaping 
springs 

10.0 kN/m 

Spring stiffness of translational 
springs 

6250.0 
kN/m 

Density (average) 1800 kg/m3 

 
Figure 15. Final grid geometry of example 3 

 
Figure 16. Grid shell geometry viewed from within 
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8. DISCUSSION 

The proposed design method assures that the grid 
shell geometry can be build with no laths breaking. 
In general, the final grid geometry needs covering 
with roofing materials. These can also contribute to 
the strength of the grid shell structure. The final 
grid geometry plus roofing materials need checking 
for load combinations related to the serviceability 
limit state and ultimate limit state. For this 
commercially available software for structural 
analysis can be used. The designed grid shell can be 
easily imported as a dxf type file. 

The proposed method might also be applied to grid 
shells with triangular spacing or hexagonal spacing. 
Usually, these shells are made of metal members 
that are not curved and have no intitial stresses. In 
this application of the proposed method the initial 
moments and normal forces have no physical 
meaning but are used to obtain a regularly shaped 
grid. However, this idea needs to be tested. 

As clearly demonstrated in the examples the target 
shape does not need to be a nearly feasible grid 
shell. In fact almost any geometry can be used as a 
starting point of the form finding process. This is 
considered a considerable advantage of the 
proposed method. 

9. CONCLUSIONS 

This paper presents a new design method for grid 
shells consisting of flexible members. The method 
uses particle-spring models that are curved over a 
target shape. When implemented in user-
friendly software the method is fast, reliable 
and easy to apply. Moreover, the target shape does 
not need to be specified in great detail, which 
makes it possible to apply the method in a 
conceptual design stage. 

It is believed that the proposed method removes an 
important obstacle for realising many more 
beautiful and efficient grid shell structures. 
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APPENDIX: DEFORMATION OF A SINGLE 
LATH 

In this appendix the deformed shape of an initially 
straight lath is analytically derived and numerically 
computed. The results have been used to check the 
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implemented particle-spring method. It may also 
serve as a bench mark for future implementations of 
the proposed method. 

where 
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2

2

arcsin

1 ( )






d d d
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ds ds ds

d w
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  (6) 

Figure 17 shows a simply supported lath deformed 
by two horizontal forces F =18093 N. Before 
loading the lath was straight with a length L = 7.6 
m. The flexural rigidity is EI = 95000 Nm2. 

 

and  

2

0

1 ( )



L

s

dw
r = ds

ds
   (7) 

Figure 17. Deformation and loading of the considered lath These functions can be evaluated for different 
values of a and b to find for which the potential 
energy is at a minimum. This is the case for a = 
2.01 m and b = -0.0280 m. The resulting 
deformation w is plotted in Fig. 19. 

 
In the analytical calculation the principle of 
minimum potential energy is used to determine the 
deformed shape. To this end, the deflection w of the 
lath is assumed as 

It is noted that the accuracy of the potential energy 
solution depends on how well the initially assumed 
functions were chosen. 

3
sin sin

s s
w = a b

L L

 
  (4) 

In the numerical calculation the particle-spring 
method has been used. The particle distance is 0.2 
m. The iterations were continued until the force 
resultant was less than 0.05 N for each particle. Fig. 
19 shows the numerical result as well. The 
analytical result and the numerical result agree very 
well. 

Note that w is a function of s, which runs along the 
deformed shape of the lath. Note also that if s = 0 or 
s = L then w = 0, therefore, w fulfils the kinematic 
boundary conditions (Fig. 18), which is necessary 
for application of minimal potential energy. 
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Figure 18 Two components are assumed to make up the 
deformed shape of the lath (a =1, b = 1) 

The values of a and b need to be found for which 
the system has a minimum potential energy. The 
potential energy of the system is 
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Figure 19. Comparison between the analytical and 

numerical deformation [m] of an initially straight lath)   (5) 

 


	portada 171
	2. Contents_171
	Requirements for Cutting Patterns of Smooth Membrane Structures Using an Orthotropic Material Model
	Truss Optimization Using Genetic Algorithm Considering Ultimate Resistance
	Performance Characteristics of Compound Curved Sandwich Shell Structures
	Particle-Spring Method for Form Finding Grid Shell Structures Consisting of Flexible Members
	Robert Maillart's Key Methods from the Salginatobel Bridge Design Process (1928)
	Computational Morphogenesis of Truss Structures –Application to Telescope Structure-
	Buckling Load of Saddle-Shaped HP Reticulated Shells
	3
	COVER: Figure from paper by M. Kuijvenhoven and P.C.J. Hoogenboom
	IASS Secretariat: CEDEX-Laboratorio Central de Estructuras y Materiales


	8. Kuijvenhoven_Hoogenboom (171)

