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Summary

It is well known that the buckling load of structures and structural members strongly
depends on residual stresses and shape deviations. Traditionally, these imperfections are
included in empirical formulas, which correct the buckling load that is computed without
imperfections. The objective of the research presented in this thesis is to study whether
structural models that are extended with realistic physical imperfections can predict
structural capacities accurately. To this end four structural types have been analyzed: a
single column, an unbraced portal frame, a braced portal frame and a braced extended
frame.

Every structural type has been analysed analytically. The results are several formulas to
calculate the additional deflection. Based on the total deflection, the internal stresses can be
calculated. The internal stresses result in an ultimate load. The obtained formulas are
different for each structural type and could not be generalized.

Each structural type has also been analysed numerically by introducing imperfections in a
structural analysis program. This program (Matrix Frame) is often used in engineering
practice. Residual stresses could not be added to the cross-section stresses because we had
no access to the program source code. However, this was circumvented by including residual
stresses as a reduced cross-section stiffness.

The results obtained by the analytical analysis, the numerical analysis and empirical code
equations have been compared. In some situations significant differences occur. The reason
can be modelling inaccuracies, analysis approximations or conservatism in code equations. It
can be concluded that realistic physical imperfections can be used to replace empirical code
equations. However, introducing this in everyday practice might be not easy. More research
is needed in measuring imperfections, numerical analysis and calibrations to current codes
of practice.
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Chapter 1 Introduction

The force flow in most structures can be accurately computed by linear elastic analyses.
However, in some structures second order effects can be important, for example unbraced
frames with a large vertical loading. For these structures second order analyses need to be
performed. In current practice the computations are performed by software. The second
order deformation under service loading is determined by an iterative algorithm. The
member capacities and structural capacity under ultimate loading are checked by applying
the governing code equations.

Note that there is a remarkable difference in the computation for service loading and for
ultimate loading. The computation for service loading is based on “pure structural
mechanics” and the computation for ultimate loading is based on “best practice”. The
reason is that structural mechanics alone strongly overestimates the structural capacity
because it neglects the influence of residual stresses and shape deviations. Organisations
that developed the structural codes recognised the importance of these imperfections a long
time ago. Therefore, the codes are based on extensive experimental programs designed to
determine the true member capacities.

The objective of the research presented in this thesis is to study whether structural models
that are extended with residual stresses and shape deviations can predict structural
capacities accurately. In other words; can pure structural mechanics be extended with clear
physical properties such that we no longer need to use black box code rules for determining
structural capacities?

To this end four structural types have been analyzed:
= Asingle column, loaded by a centric compression force.
= An unbraced portal frame, loaded by a uniformly distributed load.
= A braced portal frame, loaded by a uniformly distributed load.
= Abraced extended frame, loaded by a uniformly distributed load.

Each type has been analysed following an analytical approach. Full use was made of the
modern features of mathematical software. Some types were also analysed by using a
standard frame analysis program. To this end a trick was developed and tested for including
the effects of residual stresses.



Chapter 2 Column

The buckling load of a simply supported column depends on the dimensions and the shape
of the section. In addition, the buckling load strongly depends on shape imperfections and
residual stresses. (Inhomogeneous steel quality is not taken into account in this study.)

2.1  Buckling of a perfect column

Consider a column pinned at both ends and loaded by a compressive normal force N. At a
certain load (the Euler buckling load) there are two equilibrium situations possible. In the
first equilibrium situation the column remains straight. In the second equilibrium situation
the column deflects in a half sine shape. The amount of deflection is unknown. See Appendix
A for the derivation. The Euler buckling load can be calculated by the following formula:

_7PEl

L

where

Fr = Euler buckling load
Lpye = Buckling length

El = Bending stiffness

Suppose a column is loaded by a horizontal load and the deflection results in a half sine
shape. If this column is also loaded by a compressive force, the deflection increases (second
order effect). The following formula can be used to calculate the total deflection of the
column.

u=e Fe
Fe—N
or
u=e— with n= Fe
n- N
where
N = Compression force
Fe = Euler buckling load
e = Initial deflection
u = Total deflection (including initial deflection)

2.2  Imperfections

There are many ways to produce steel sections, for example welding, rolling and cold
forming. This study is based on the HEA series. HEA sections are rolled. In the factory a block
of steal is rolled en flattened. See Figures 2.1 and 2.2 for some illustrations. A perfectly
flattening process is not possible. This results in shape imperfections.



The imperfections vary over the length of the section. In this study it is assumed that the
shape imperfections can be described by a half sine function (Fig. 2.3). The maximum
eccentricity is in the middle of the section. According to the Dutch code this maximum is one
thousands of the column length (NEN 6771 art. 10.2.5).

If the weight of the column is not taken into account, the normal force is constant over the
length. The bending moment is the multiplication of the normal force and the eccentricity.
The bending moment is largest when the eccentricity is largest. Therefore, the most critical
cross-section is the middle of a column. The bending moments result in additional
compressive stress in the right flange and a reduction of the compressive stress in the left
flange (Fig. 2.3).

. O G O I A~
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Figure 2.1:
Flattening

Figure 2.2: Figure 2.3:
Rolling process Imperfections

2.3  Residual stress

Before starting the rolling process, the section is heated. Due to rolling the temperature is

further increased. The cooling down speed is not constant in the section. The cooling down
speed depends on the ratio volume/surface. At the tips of the flanges and in the middle of
the web this ratio is small and the cooling down process is

fast. At the intersection between the flanges and the web +
this ratio is large and cooling down process is slow. This = + AN
results in compression stress in the tips of the flanges and /

tensile stress in the intersection points (Fig. 2.4). These
stresses are called residual stresses, initial stresses or
rolling stresses.

Residual stresses are always in equilibrium. Therefore, \\\

there are no residual section moments or residual section R

normal forces. The rolling stresses are always smaller than = ~J

the yield stress. The production method and the cross-section Figure 2.4:

dimensions influence the amount of residual stress. Residual stress
distributioninal
section



Consider a perfectly straight homogenous | section which has residual stresses. Suppose this
section is loaded by a centric compressive force only. At increasing load, the combination of
residual stress and compressive stress results in local yielding. The tips of the flanges and the
middle of the web yield first. The section yields partially, but will not fail. The structure fails
when the whole section yields. The presents of residual stress does not influence the yield
load.

Consider a homogenous | section with residual stresses and a shape imperfection. When the
column is loaded by a compressive force the deflection increases. The increase of the
deflection depends on the moment of inertia. If the tips of the flanges yield, the effective
moment of inertia decreases. This results in an extra deflection. In a non-linear analysis, the
bending moments depend on the extra deflection of the column. An increase of the
deflection results in an increase of the bending moments. Consequently, due to residual
stresses the buckling load decreases.

It is very complicated to make calculations with the residual T S

stress distribution in Figure 2.4. For simplicity another = =

model for the stress distribution is adopted (Fig. 2.5). The + x

value S is the amount of residual stress. The residual stress

distribution in Figure 2.5 is a conservative approximation. B <

The maximum deflection is in the midsection of the column.

Therefore, the midsection is most loaded. The stresses in tls =

the midsection have been applied over the whole length of = + .

the column. This is a necessary approximation for

performing the mathematical evaluations. Figure 2.5-
Residual stress

The considered section is a double symmetric HEA-section. The load is disttﬁibution inal
section

located in the centre of gravity. If one of the flanges partially yields and
the other flange does not, the effective section is not double symmetric anymore. The
effective centre of gravity has shifted. Due to extending the stress at midsection over the
whole column, the centre of gravity in the whole column has shifted. To compensate this
shift, an eccentric moment at both ends of the column has been introduced (Fig. 2.6). This
eccentric moment results in an extra deflection. This extra deflection results again in an
extra moment in the midsection (see App. C).

Figure 2.6:
Eccentric
moment



2.4  Calculation methods
There are many methods to calculate the deflection of a single column. The results of these
methods can be found in the graph of Figure 2.7.
= First of all is the Euler buckling load (brown line). The deflection is zero till the Euler
buckling load is reached. If the Euler buckling load is reached, the column fails and
the deflection is undetermined.
= Secondly is the geometrical and physical linear (first order) analysis (blue line). This
analysis results in a linear relation between the load and the deflection. The load is
unlimited.
= Asthird, the geometrical non-linear and physical linear analysis (purple line). The
total deflection is inversely proportional to the load. Limit of this analysis is the Euler
buckling load.
= Asfourth, the geometrical linear and physical non-linear analysis (red line). There is
no deflection till the yield load is reached. The deflection at this load becomes
infinity.
= As fifth, the geometrical and physical non-linear analysis (green line). This analysis
contains both the yield load as well as the geometrical non-linear deflections.

The first part of the real load-deflection diagram (black line) follows the geometrical non-
linear physical linear analysis.
After partial yielding, the
deflection increases and the
geometrical non-linear physical
linear analysis is not valid
anymore. The load increases
till the ultimate load has been
reached. The upper limit of the
real load-deflection graph is
the geometrical and physical
non-linear analysis. There is no
description or formula for the
area between first yield and
failure. In Appendix C an
analysis is made to find a
formula for this area. The

Load

Extra deflection

analysis will be discussed in Section 2.6. Figure 2.7:
Load-deflection diagram

(schematic)

2.5 Failure

To calculate the failure load the stresses in the midsection must be calculated. The
compression force results in compression stress in the whole midsection. The bending
moment results in compression stress in the right flange and tension stress in the left flange.
Due to the combination of the force and the moment the right flange yields first. After first
yield, the half of the right flange cannot be used for the effective stiffness.
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The Euler buckling load is the buckling load at ideal circumstances. The Euler buckling load is
an upper limit of the real buckling load. The Euler buckling load can be calculated for the
original section as well for the reduced section. If the section partially yields, the new upper
limit is the Euler buckling load of the reduced section.

If right flange partially yields, there are three possible failure mechanisms (Figure 2.8 is a
diagram of all failure mechanisms). These failure mechanisms are:
= The Euler buckling load of the reduced section is smaller than the load on the
column. The reduced section cannot resist the load and the column buckle. The
stiffness of the reduced section is too small (Fig. 2.9).

= The Euler buckling load of the reduced section is larger than the load on the structure

and the load can increase. There are large deflections. This results in relative large
bending moments. The right flange fully yields before the left flange starts to yield

(Fig. 2.10). If one flange fully yields, the reduction of the stiffness and the eccentricity

become too much. The column fails if the whole right flange yields.

= The Euler buckling load of the reduced section is larger than the load on the structure

and the load can increase. The deflections are small so the bending moments are
small too. The load increase till the left flange partial yields too. The effective section
decreases again. The Euler buckling load can also be calculated for this reduced
section. This possibility only occurs at a stiff section. The Euler buckling load of the
reduced section is still smaller than the load on the column and the load can
increases till the whole right flange yields (Fig. 2.11).

Failure
Partial yield of the Fully yield of the right
: Y I vy 8% ! Failure
right flange flange
Figure 2.8: Partial yield of the left N Fully yield of the right s ol
Yielding and flange flange Failure
failure
z
SR 1] AR SRR S A SO
Calculation single column
Length: 25 m
_____________________________________________________________________________________ HE 450A
S355
"""""""""""""""""""""""""""""""""""""""""""""""""""" €=25mm
100 150 200 250
deflection in the midsection (mm) 11

Figure 2.9:
Failure type 1




Figure 2.9 shows the deflection of the midsection of a column in the first failure type. The
geometrical non-linear eccentricity has a major influence on the failure load. At a certain
load (point A) the tips of the right flange starts to yield. The Euler buckling load of the
reduced section is smaller than the load on the structure and the structure fails.

stress distribution

first yield level
second yield level

]

compression bending
force moment

Calculation single column

Length: 10 m
i HE 450A
5 10 15 20 25 30 35 40
deflection in the midsection {(mm) 5355
Figure 2.10: € =10 mm

Failure type 2

Figure 2.10 shows the deflection of the midsection of a column in the second failure type. At
a certain load (point A) the tips of the right flange starts to yield. The stiffness of the reduced
section is large enough to resist more loads. The slope of the graph continues more slightly.
At another load (point B) the whole right flange yields. This happens before the left flange
starts to yield (see the stress distribution). If the whole right flange yields, the stiffness is
reduced too much and the structure fails.

stress distribution

first yield level
second yield level

_ + _

+

load (MN)

compression bending
force moment

Calculation single column

Length: 5 m
HE 450A
| | $355
i i I I I I —
E)18 5 52 54 56 58 6 6.2 6.4 e0—5mm
deflection in the midsection (mm)
Figure 2.11: 12

Failure type 3



Figure 2.11 shows the deflection of the midsection of a column in the third failure type.
There are three interesting points in this graph. At point A the tips of the right flange start to
yield. The stiffness reduces and the load increases till also the tips of the left flange start to
yield (point B). The displayed stress distribution is the stress in point B. The load increase till
the whole right flange yields and the structure fails.

For a better explanation of the load-deflection graph in the third failure possibility, several
calculation methods are made (Fig. 2.12). Points A, B and Cin figure 2.12 correspond to
points A, B and Cin figure 2.11. Figure 2.12 is a schematic load-deflection graph.

The first part of the load-
deflection graph of the
analysis (black line) is equal to
the geometrical non-linear
physical linear graph. If the
tips of the right flange yields,
the Euler buckling load of the
effective section decreases.
This results in a slighter
geometrical non-linear graph.
Due to the eccentric
moments, the stresses and ; : : : ‘
the deflection increase. The §

graph does not match with

the geometrical non-linear Extra deflection Figure 2.12:
graph. If the tips of the left flange yield too, the stiffness decrease and the (Lgf:é:qeaftl?cc)tlon diagram
geometrical non-linear graph become slighter again. The effective section is

double symmetric again, so the eccentricity moments become zero. The graph match to the

third geometrical non-linear graph till the failure load is reached.

Load

The geometrical and physical non-linear calculation method (green line) is an upper limit of
the failure load. If the deflection increases, the failure load decreases. Due to the yield steps,
the slope of the geometrical and physical non-linear graph changes in points A and B. The
third graph is the lowest upper limit of the ultimate load. The structure fails at point C.

2.6 Differential equation after first yield

The geometrical non-linear physical linear deflection formula (derived in Appendix A) is
based on equilibrium between internal and external bending moments. The analysis in this
Chapter is based on this equilibrium too. The difference between the geometrical non-linear
physical linear calculation method and the analysis is the starting position.

To find a general formula, a general starting position must be taken. The starting position of
the analysis is that the section partially yields. This starting position leads to the following
starting points:

= Thereis an original load

13



= Thereis an original deflection
= Thereis a reduced section
= There is a shift in the centre of gravity

The internal and external bending moments of the original load case are in equilibrium. The
equilibrium of the total internal and total external bending moments changes in the
equilibrium between the increase of the internal and the increase of the external bending
moments. The increase of the internal bending moment is the additional deflection
multiplied by the reduced bending stiffness. The increase of the external bending moments
is the original load multiplied by the additional deflection and the additional load multiplied
by the total deflection.

With the equilibrium condition and the starting points an analysis can be made to calculate
the total deflection. If the total deflection is known, the internal stresses and the ultimate
load can be calculated. The method of calculation will be discussed in Section 2.7. A manual
calculation and a computer-made calculation can be found in respectively Appendix D and
Appendix E.

2.7  Calculation according to the analysis of Appendix C
In Appendix C a formula for the total deflection is derived. This formula is described in
Section 2.6. The total deflection can be found by the following formula.

FzLl® Fz
(Ftotal,i—1+ Fi)ZI"'[QotaJ ,i—1+ 4 jFEJ ~ Cotal j—1FtotaJ i-1

6. = 8El, 8El,
otal i —

t Fei = Foa,i-1~F
with:

Fow i-1 is the original load

F is the increase of the load

Z is the shift of the centre of gravity

€qa i1 IS the total deflection at the original load ( R, ;_;)

F is the Euler buckling load of the reduced section

E,i
The analyzed load case has subscript ‘i'. The total deflection depends on the original load, on
the additional load and on the total deflection in the previous load case. The previous load
case has subscript ‘i-1’. The original deflection in the first load case (i=1) is . This is the
initial deflection. There are no original loads or yielding parts in the first load case. Because
of this, the formula can be simplified to:
q — el')I:E,l

otal,1 —

FE,l -F

The total deflection is a function of the load. The additional deflection and the bending
moments are functions of the load too.

€ = Cotal,i ~ Qotal,i1
M = €&Fga i1+ Qo i Fi

14



The stress in the flanges can be calculated by the following formulas:

_ F_M
Oignti = Tright,i-1 _K _?

_ F_M
Olet,i = a-left,i—l_K-i_?

The amount of residual stress does not change during the calculation. The compression
stress increases if the load increases. The first load case ends if the tips of the right flanges
start to yield. This happens if the summation of gyjgn1 and the residual stress reach the
compression yield stress. The force that is necessary for this yielding is called F;. If Fy is
known, the total deflection and the internal stresses can be calculated.

If the tips of the right flange yield, the effective cross-section decreases, the moment of
inertia decreases and the centre of gravity shifts. The Euler buckling load can be calculated
for the reduced section. If the Euler buckling load of this reduced section is larger than F; the
load can increase. After yield of the tips of the right flange the second load case is started.
The second load case ends if another part of the section starts to yield. The different failure
possibilities are discussed in Section 2.5.

2.8 Calculation according to the Dutch Code

As a reference point, the Dutch Code is taken. The Dutch code is called the “TGB”, Technical
foundation of build constructions (in Dutch: Technische grondslagen bouwconstructies). The
most common building materials have their own part. One volume is about steel structures
in general. The so called: the NEN 6770. The NEN 6771 and the NEN 6772 are respectively
the requirements of steel stability and steel joints. The NEN 6770 and the NEN 6771 are used
as reference points for the buckling calculations.

Both NEN 6770 and NEN 6771 include methods to calculate buckling loads. For a single
column, supported at both ends and loaded by a compression force only, the calculation
methods are the same. For other constructions or other loads, the calculation methods are
different. This will be discussed in the chapter in question.

The buckling calculation method of the NEN 6771 is based on a unity check:
Nc;s;d
—=—<1.0 (art. 12.1.1.1).
%uch;u;d

* N_qis the maximum load on the column.
N....qis the yield load.

* @), is the buckling reduction factor.

The buckling reduction factor (a)ouc) can be found by some stability curves (see App. B for

the derivation). The buckling reduction factor depends on the relative slenderness, the
length and the shape of the section.

15



2.9  Calculation according to Matrix Frame

Another possibility to calculate the ultimate load is the finite element method. There are
many computer programs based on the finite element method. Matrix Frame is one of these
computer programs. Matrix Frame is available for practical use and is specialized on frame
type structures. To compare the buckling results, the calculations are also made with Matrix
Frame.

Matrix Frame can calculate the ultimate load by a geometrical and physical non-linear
analysis. The results of this calculation method should correspond with the NEN results and
should correspond with the results of the analysis in Chapter two.

Matrix Frame has the possibility to calculate with straight sections only. Initial deflections
must insert manually. A possibility to do so is to divide the column in small columns. All
columns are fixed together and every joint has a horizontal displacement. All columns
together illustrate the initial deflection.

Matrix Frame does not take residual stress into account. It is not possible to insert a section
with different yield stresses. If the residual stress distribution of Figure 2.5 will be used the
section must be divided in two equal parts. The section properties of these two parts
separated must be equal to the half of the section properties of the original section. The
influence of residual stress can be approached by using two different yield stresses. Three
possibilities are made to calculate with two different sections.

The first possibility is to use two bars instead of one bar. Both bars have the same working
line and the same deflection. The column should fail if both sections fail. The result of this
calculation has not the desired effect. The buckling load is much lower than expected.

The second possibility is to make two calculations. The section parameters of all sections
have been halved. The first calculation is the calculation with steel grade $235. The second
calculation is the calculation with steel grade S460 (average vield stress is 347.5 N/mm?). The
section properties and the construction are the same in both calculations. In other words:
the geometrical deflections are equal in both calculations. The only difference is the physical
non-linear deflection. The graph of the geometrical and physical non-linear analysis is goes
downwards (Section 2.4). According to this geometrical and physical non-linear analysis, the
ultimate load decreases if the deflection increases. The decrease of the load can be
calculated by the following formulas:

M =wN (w is the deflection after reaching the ultimate load)

M =1.1 l—ﬁ (plastic behaviour of | sections)
M, N

p
118N M,

AN=N,-— PP
PwN, +1.18M

(AN is the decrease of the ultimate load)

16



The summation of the buckling load of both calculations is an upper limit for the real

buckling load (Fig. 2.13). Figure 2.13 exists in three graphs. All graphs show the results of a
geometrical and physical non-linear analysis. The third graph is the summation of first and
the second. It is clear that the deflection of point A is not equal to the deflection of point C.
The ultimate load according to this calculation possibility is the summation of point A and C.
The ‘real’ buckling load is the summation of point B and C. There are small differences

between these values.

x10° x10 x10°
[3 [ 6 T
£ s
L] S L S RETTL ORI [J SR -
5 ‘
4o f """ b
3N LR 5 W O O O N .
B / ]
o / o]
20 25 Bin 3‘5 40 Zin 2i5 Siﬂ ‘ ‘ 00 é 10 Wiﬁ Zin Ziﬁ Siﬂ 3i5 Aiﬂ AiS 50
Total deflection (mm) Total deflection (mm) Total deflection (mm)
Figure 2.13:
Figure 2.14 is the ultimate load distribution for different possibilities to take Load-deflection
residual stress into account. diagrams
z
©
©
o
Figure 2.14:

Load-deflection

column length (mm) x 10 diagram

= Buckling load without residual stress (green line)
= Buckling load with two bars on the same working line (blue line)
=  Buckling load with two separate calculations (red line)

The black line is discussed later on.
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Interesting is the graph for the buckling load with two bars on the same working line. This
graph shows a weird change of direction. In this calculation method, the buckling load of
non-slender structures decreases enormously. The buckling load of slender structures
depends mainly on the Euler buckling load. The yield stress has hardly any influence on the
failure load. The results of all Matrix Frame calculations are close together.

The ultimate load on non-slender structures corresponds with the yield load of the lowest
yield stress. Only one statement is found to explain what happens. Matrix Frame calculates
with two bars with an infinity small distance to each other. Matrix frame divides the load in
two equal parts. Both bars are loaded equally. After partial yielding, the moments will be re-
distributed. There is no re-distribution of the compression force. The load increases till one
section carries all bending moments and the other section is fully yield in compression. If a
section fully yields, all stiffness is lost. The structure cannot resist more loads and the
structure becomes unstable. The load on the column has reached the limit.

The problem of the non-slender structures can be found in the distribution of the normal
forces. The problem can be solved by distribute the normal force manually. This can be done
by using two columns with the same initial deflection and the fixed distance between (third
possibility). The distance can be kept fixed by using hinged struts between the columns. The

load on the bar with steel grade S235 is %’ of the total load and the load on the bar with

steel grade S460 is g—ggof the total load. The total load is properly distributed over the yield

stresses. Different loads result in different deformations. Due to the hinged struts between
the columns, the deflections of both columns are equal. The elongation of the column has no
influence on the buckling calculation of a single column. The only point of attention is the
distance between the columns. Matrix Frame cannot find equilibrium in elongation if the
distances between the columns are too short.

With this calculation method, the buckling load can be calculated. The results are displays in
Figure 2.14 too (black line). The results of this calculation method are very close to the
calculation method of using two calculations (second possibility). For the comparison of the
buckling load of a single column the third possibility is used. For the calculation of the
ultimate load of a portal frame (Chapter three and Chapter four) the second calculation
possibility is used.

2.10 Conclusions

Chapter two was about buckling of a single column. A column loaded by a centric normal
force can deflect because of the shape imperfections of the column and the residual stress in
the column. Different methods have been used to calculate the buckling load of a single
column. The results are shown as stability curves in Figure 2.15 (page 20).

The Euler buckling load is the buckling load of an ideal column. An ideal column is perfectly

straight, homogeneous and free of residual stresses. In practice an ideal column does not
exist. The Euler buckling load is an upper limit of the real buckling load (black curve).
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The buckling load can be calculated by formulas in the Dutch code (NEN 6771). The NEN
6771 is used in the whole of the Netherlands and can be used as referential point for other
calculation methods (red curve).

The Matrix Frame calculation is based on the finite element method. Matrix Frame does not
automatically include initial deflections or residual stresses. The initial deflection and the
residual stresses must be inserted manually.

The column can be divided in small columns. All of these columns are fixed together. The
joints of the columns have a (different) horizontal displacement. Using this, the shape
imperfections can be introduced.

The residual stress can be introduced by splitting the column into two columns. The
separated columns are connected by hinged struts. These struts are used to obtain the same
deflections in both columns. The section properties of each separated column must be equal
to the half of the section properties of the original section. The steel grades of the two
columns must be different (one column steel grade S235 and one column steel grade S460,
average 347.5). The loads on the column must be distributed over the columns in proportion
to the yield stresses. The buckling load can be calculated by a geometrical and physical non-
linear analysis. The result of the Matrix Frame calculation is the green curve in Figure 2.15.

A non-linear analysis is made to find a formula for the total deflection of the column. The
total deflection is necessary to calculate the buckling load. The following formula is the
result of the differential equation.

15 Fz
(Ftotal,i—l + I:i )ﬁ +[Qotal ,i—l+ 8EZ| j FEJ' ~ Gotal j-lFtotaJ i-1
Fe, = Foa,i-1~F

Cotali =

The index ‘i’ corresponds to the i" load case. The index ‘i-1’ corresponds to the load on the
column before the i load case starts. Force F:; results to yielding in a part of the section.
The result of the formula (esq,) is the total deflection in the i load case.

To calculate the buckling load, not only the total deflection has to be calculated, but also the
stresses in the section. The stresses can be calculated by the following formulas.
€ = CQatai ~ Qotai-1
M; =&Fga i1t Qo i F
F
= a't [ B

op,i-1 -
A

_ F
a-bottom,i - Jbottom,i -1 K
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M;
Z
S

M,
Zi

It is possible to take the residual stress into account with these formulas. The buckling load
can be calculated by the following steps.

a) The first yield point must be found.

b) Stressin right flange and in left flange must be calculated
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c) Calculated a reduced Euler buckling load for the reduced section

d) The next yield point must be calculated
e) Repeat step b and c till the Euler buckling load of the reduced section is lower than

the load on the structure

reduction factor

H H |
0 05 1 1.5 2 25 3
relative slenderness

Figure 2.15:
Stability curve for several
calculations methods

For four different calculation methods the stability curve is drawn.
These curves can be found in Figure 2.15. The calculation methods are:

= The black curve is the load according to Euler

= The red curve is the load according to the Dutch code

= The green curve in the load according to the Matrix Frame

= The blue curve is the load according to the analysis in Appendix C

The Euler buckling load is the upper limit of the real buckling load. The stability curve of all
other buckling calculations is smaller. The upper limit is not exceeded.

The results of the Matrix Frame calculations for non-slender structures are very
conservative. According to the Matrix Frame calculation, a non-slender structure will never
reach the yield load. The buckling loads according to the Dutch code and the results of the
analysis in Appendix C are more realistic for non-slender structures.
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The curve according to the analysis in Appendix C (blue curve) is divided in three parts. The
stiffness of the first part (part AB) is large. Also the reduced stiffness (after partial yielding) is
large enough to resist the loads. The deflections are small. The whole right flange and the
half of the left flange yields before the column fail. The deflections in the second part (part
BC) are larger than the deflections in part AB. In this second part, the left flange does not
yield. The column fails if the right flange fully yields. The columns in the third part of the
curve (part CD) are slender. The stiffness of the reduced section is too small to resist more
loads and the column fails if the right flange partial yields.
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Chapter 3 Unbraced Portal Frame

In this chapter an unbraced Portal Frame will be analysed (Fig.
3.1). The portal frame system includes two column sections and
one rafter section. The columns are supported by two hinges.
The frame is loaded by a uniformly distributed vertical load on
the rafter. Self-weight has been neglected.

n)

Llct

3.1  Structure

As discussed in Chapter 2.2 a section has an initial deflection
due to the production. This initial deflection is idealised as a half sine function shape. g'tgrﬁz‘:ua’r;
Beside production imperfections there are also construction imperfections. The

construction imperfection of an unbraced structure is an angle between the designed

structure and the real structure (Fig. 3.1). According to the NEN 6771 (art. 10.2.5) this angle

(w) is 0.004 rad. Clearly, due to construction imperfections the structure is not symmetrical.

. Ldomd ,

The influence of the construction imperfections is larger than
the influence of the production imperfections. Figure 3.2
shows the production imperfections and the construction
imperfections in one structure. Due to the production
imperfections the bending moments in the middle of the
columns increase. The bending moments in point B and in
point C do not change due to the production imperfections.
The bending moments in these points are larger than the
bending moments in the middle of the column. In practice,
the influence of the production imperfections is taken into account by Figure 3.2:
applying the governing code equations. The construction imperfections are Imperfections
taken into account by manually adding them to the frame model.

Lclnd

Ldom)

The analysis in this Chapter (App. H till K) is based on the failure mechanism of the columns.
It is assumed that the columns are critical. Lateral buckling or other failure mechanisms in
the beam has been ignored. This assumption has been checked afterwards.

Due to asymmetry of the portal frame, the bending moment in point C is larger than the
bending moment in point B. Column CD is heavier loaded than column AB. Column CD fails
first. The analysis in this Chapter is based on the failure mechanism of column CD. The
structure is a statically indeterminate structure to the first degree. The portal frame fails if
two parts of the structure yield. The first part is joint C and the second part is joint B. It is
assumed that the structure fails if the right hand column fails at joint C.

3.2  Different types of analysis
In this section four analyses are made (see also Section 2.4).

= Geometrical linear analysis
= Geometrical linear analysis with residual stress
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= Geometrical non-linear analysis
= Geometrical non-linear analysis with residual stress

The easiest analysis is the geometrical linear analysis without residual stress (App. H). This
analysis assumes in a linear relation between the deflection and the load. The deflection of
the portal frame does not influence the reaction forces. The graph of this analysis can be
limited by the plastic collapse load. This results in a bi-linear load-deflection graph.

A little bit more difficult is a geometrical linear analysis where residual stress is taken into
account (App. I). At a certain load, one of the columns will partial yield. The stiffness of this
column decreases and the deflection increase. At a second load another part of the section
starts to yield. The deflection increases again. The failure mechanism depends on the section
properties and the lengths. The different failure mechanisms are discussed in Section 2.5.
The linear analysis is made to better understand the non-linear analyses.

In a geometrical linear analysis the deflections do not influence the reaction forces. In a
geometrical non-linear analysis the deflections do influence the reaction forces. The total
deflection influences on the internal stresses. If the deflection increases, the internal
moments increase. If the moments increase, the ultimate load decreases. In Appendix J, the
geometrical non-linear analysis for the portal frame is calculated without influence of
residual stress. Residual stress is taken into account in the analysis of Appendix K. The
formulas as results of the analysis in Appendix K are very complex. Computer programs like
Excel or MatLab must be used to make calculations with these formulas.

3.3  Calculation method
The portal frame is loaded by a uniformly distributed load. The load results in bending
moments and in normal forces. It is assumed c

that the beam will not fail. The column is critical. ¢ deflection

The largest moment in the column is the | ﬂw maximum deflection
moment at the end of the column. This moment
depends mainly on the deflection of the column.
The deflection that will be calculated is the
deflection in point C. This is not the maximum
deflection (Fig. 3.3). The location of the
maximum deflection is not constant. It is not
necessary to calculate the maximum deflection
and the location of the maximum deflection because this is not the critical cross-section. The
critical cross-section is point C.

Figure 3.3:
Deflection

The total deflection depends on the stiffness of the beam and the stiffness of the column.
The total deflection has been split is two parts. The first part depends on the beam and the
second part depends on the column.

The beam is loaded by a uniformly distributed load and a bending moment at both ends of

the beam. Due to this load, the beam deflects and rotates. The rotation at the end of the
beam is the same as the rotation of the end of the column. The deflection of the column is
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the multiplication of the rotation at the end and the column length. This part of the
deflection depends on the stiffness of the beam.

The second part of the deflection depends on the column. Both ends of the column have a
degree of freedom. One end of the column is connected to the beam. The rotation is limited
by the beam. The rotation of the beam is already taken into account at the first part of the
deflection. The beam is not supported horizontally. The horizontal displacement of the beam
is only limited by the column. The other end of the
column is the support. The support is a hinge and
can rotate freely. The support cannot displace.
Both ends together can be schematized as a
cantilever beam with a free end (Fig. 3.4). The
loads on this cantilever beam are the reaction
forces of the support. The portal frame is out of
square. In other words: the horizontal and vertical

Licln)

//
A

reaction forces are not perpendicular or parallel to A

the working line of the cantilever beam. A

remaining force perpendicular to the cantilever

beam is introduced. This remaining force depends VA

on the reaction forces and the total deflection. )
Figure 3.4:
Deflections

The total deflection of column AB and the total deflection of column CD can be

calculated. Both columns are part of one structure. The difference in deflection is the
elongation of the beam. The elongation of the beam is very small compare to the deflection
of the columns and can be neglected. In other words: the deflection of column AB is equal to
the deflection of column CD. This equilibrium is the basic of the analyses in Appendices H, I, J
and K.

3.4  Calculation according to the analysis of Appendices ] and K

As discussed before four analyses have been made. Two geometrical linear analyses and two
geometrical non-linear analyses. These analyses can be found in appendices H till K. The
physical properties result in an upper limit of the load. The geometrical non-linear analyses
are closest to reality. Because of this, the geometrical non-linear analyses are most
interesting. The geometrical linear analyses are made to better understand the geometrical
non-linear analyses. The geometrical linear and the geometrical non-linear analyses have the
same starting point.

The calculation method is discussed in Section 3.3. All analyses are based on transversal and
rotation equilibrium conditions and on equilibrium in the deflection of the columns. In the
geometrical linear analyses the deflections do not have any influence on the moment
distribution in the structure. In the geometrical non-linear analyses the deflections do
influence the moment distribution. Because of this influence the analyses and the formula
become very complex.
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Two geometrical non-linear analyses are made. One with and one without residual stress.
The analysis with residual stress is divided in two parts. In total there are three sets of
formulas to calculate the ultimate load. The different parts correspond to the yield parts.

The first set of formulas can be used to calculate the deflections and the stresses till the
section starts to yield. Due to the combination of a compression force and a positive bending
moment, the right flange of the section yields first.

The second part can be used if the right flange partial yields and the stiffness of the reduced
section is large enough to resist more loads. The stiffness of the reduced section is large
enough if the denominator of the formula to calculate the additional deflection results in a
positive value. In this part also the shift of the centre of gravity in the effective section must
be taken into account. The second part ends if the left flange partial yields too or the right
flange fully yields.

The third part can only be used if both flanges partial yield and the stiffness is large enough
to resist more loads. In the most calculations the third part does not occur. In the third part,
the midsection of the column has changed in a symmetric section. Due to the generalisation
of the stress, the whole section is symmetric. The load is located in the effective centre of
gravity again.

It is important to know that one column is heavier loaded than the other column. Due to this
difference only one column will (partial) yield. The stiffness of only one column decreases.
The stiffness of the other column remains constant.

The following formulas can be used to calculate the reaction forces, the bending moments
and the additional deflections in several load cases.

The first load case:

Vo = Gy (¥elim *+ €a )

Vai= ql(]/Zme ~ Qota ,1)

Mg, = ql(l/Zme ~ Qota ,1) Gota 2~ Ha dan
M1 = (Yoo * € 1) B 4+ Ha o

q = lzl/ILcInEI meI cin,1
ot 12E| meI cn,1 - qlme2 I-(:InEI cn,1 - Zqll-meanEI bm
— me3LcInEI cn,1 121/1E| meI cln,1 ’
H a1 — O 2 3 —QqLyn — 2 — 2
12meLcIn EI cln,1+ 8L(:In EIbm 125' meI cn,1 qlme I-(:InEI cn,1 211I-bm|-cln EI bm

The second load case:

Vo, =0€,+0,( %L, +ete,)

V., =-0e,+0,(%L,,—e~-¢)

Mc, = Q2(}/2me +el+ez)(e1+ez+ Zz) + Q?z(}/z Lom +2€ 7€+ 2 ) +H, Lo,
Mg, = CI2(}/2 Lom _el_eZ)(el+ ez) + CIPZ(}/Z Lom — 291_99 —H, L,
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_qtotaJ,ZmeLdnez[lzeZ + 2Lbl-‘- &2+ 2'bm] EI cln ,2+ qtotal ,J—clnzez{ 4‘bm - 161_ 8 J EI bm

H _ +24e2E| meI cln,2 + qZmeLcIn |:me2 - 2meel_ 1$12 - Lme 2= &; 2:' EI cln ,2_ q l‘dnze[ 4me + SlEI bm
A 12meLcIn2E|c|n,2 + a—<:Ir13EI bm
6meze.l.EI dn,lEI cn,2 + 3me222E| cln 1EI cn ,2+ 6mee; EI cn EI cn ,2

qZmeLcIn +8meLcIne.I.E| bm ( El cln,1 +El cln ,2) + mezLdnEI bm ( El dn1” El cln 2) + 8Lclnzel( El bm)2
+2Lcln22 (me + 2e.|.) EI bm (_EI cn,1 + 2EI cln ,2)
_gqtotaj meaLcInEI cln,lEI cln,2 - &qtotal meZLcInzzEI

eZ:

El

cn,~"cln,2

2 _4qtotal mechIanI bm ( EI cln,1 + EI cln,z) - 2qtota| meLcInZZZEI bm (_EI cln ,1+ 2EI cln ,2)

_4qtotal meLcIn3 ( EI bm)2 + 12Ldn ( EI bm)2 ( EI cln,1 + EI cln,Z) + 36'meI meI cln ,lEI

cln,2

The third load case:

Vos =&(0+a,) +ay( L T €17 €, )

Vs =—&(0+d,) +ay( %L —€1-€,- 8y

M, =60, +a,) (%L, +26,+ 2e,+e) +q %L, tete,re)(efre e )+H, L,

Mg, =60, +d,) (%L, —26,- 26,—e) +q %L, —e~e,~e)(efee)-H, L,

~Ohoa sbombon| 2L + 2408, + 22+ 127 |E,, |

~Ohorar 3L [4mee3 +16ee + 1e,+ 8332] El,..

Lo Lan | Lo’ ~ 2Lin ~ 2Ly€,— 1227 — 24~ 12 |El,,

g ~Oolan’ [ ALy + ALy €, + 827 + 162p,+ &7 |El,, +24eEl, El,
As 121, Ly 2El g g + 8L El

6|‘bm2 (e.l. + eZ) El cln,lEI cln,3+ 8meLcIn (el+ e2) El bm(EI +El cln ;

cn 1

mLcn
e_:, = qSLb | +8|—c|n2 (e.l. +e2)(EI bm)2 + mezl‘clnEI bm(EI dnl El cln,3)

2
2 _3me3|—dnqtotal EI cln,lEI cn,3 - 4I‘bm2 Lclnzqtotal EI bm ( EI cn,1 + EI cln,3) - 4meLcIn3qtotal (EI bm)
+36meE| meI cln,lEI cn,3 + 12‘c|n ( EI bm)2 ( EI cln ,1+ EI cn ,3)

An example of the total deflection of the non-linear analysis is shown in Figure 3.5.
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3.5 Calculation according to the Dutch code

In Section 2.8 a buckling calculation of a single column is made according to the Dutch code
(NEN 6771). This code also contains a calculation method for the ultimate load calculation
for the column of a portal frame. If the portal frame is only loaded by a vertical point load on
each column, the ultimate load calculation of an unbraced portal frame is almost the same
as the buckling calculation of a single column. The only difference is the buckling length. In
this study is chosen for a uniformly distributed load on the beam. This load results in
compression forces and in bending moments. The formula to calculate the buckling load for
a structure with a point load only is not valid anymore. Another formula must be used. A
linear analysis must be made to transform the uniformly distributed load in point loads and
bending moments. With these values a code check can be made.

A very important issue to calculate the ultimate load is the buckling length. The buckling
length of the column of the portal frame depends (beside the length of the column) on two
aspects.
= First (at the most important) is the type of the portal frame. Is the portal frame
braced or not. The buckling length of a braced portal frame is maximum the column
length. The buckling length of an unbraced portal frame is at least twice the column
length.
= Second the buckling length depends on rotation freedom. The rotation freedom
depends on the stiffness of the column, the stiffness of the beam and the type of
support.

After a linear analysis, the column of the portal frame can be schematized as a single column
(with a buckling length instead of a system length) loaded by a normal force and a bending
moment. Because of the presence of the bending moments, the formula for the buckling
load in Chapter two is not valid anymore. The following formula must be used.
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n M

c;sd + y y;equ;s;d

+N__.e
csid 7y <1.0 (NEN 6771 art. 12.3.1.2.1)

In this formula is:

Nesar My equis The loads on the column

Ne.u.q Plastic normal force

n, Relation between the Euler buckling load and the load on the structure
(Note: for the Euler buckling load, the buckling length must be taken)

My Plastic bending moment

e; Imperfection parameter

e; must be calculated by the following formula:

e; = ak (/]y;rel _/]0) I\lill

c;u;d

3.6  Calculation according to Matrix Frame

Matrix Frame has been used to calculate the failure load of an unbraced portal frame. The
beam has been made strong enough to be sure that the column is critical. The columns of
the portal frame have been split in four points. For the calculation it is not necessary to split
the column in parts. This has been done to get a better understanding on the deflections and
the moment distribution. Using small elements, the maximum deflection and the maximum
bending moment can be found easily. As discussed before the maximum bending moment is
at the end of the column and the location of the maximum deflection is variable. The
calculation file of Matrix Frame can be found in Appendix L.2.

In Section 2.9 three calculation methods have been discussed to take care of the residual
stress. One problem is the amount of residual stresses. In Chapter two a HE 450A section is
chosen to calculate the ultimate load. The amount of residual stress in this section is 30% of
the yield stress. For the calculations in this Chapter a HE 360A section is chosen. This section
is chosen to be sure that the column is critical. A heavier column results in failure of the
beam. The amount of residual stress in this section (50% of the yield stress) is larger than the
amount of residual stress in a HE 450A section. For a better result the stresses in Matrix
Frame the yield stress must be changed. This is not possible. As comparison the amount of
residual stress of 30% is taken to calculate the ultimate load by Matrix Frame. The
differences will be discussed in Section 3.7.

In the calculation of the single column, the first calculation method did not result in correct
values. This calculation method will not be discussed in this Chapter.

The second calculation method was to bisect the section properties of all elements. The
calculation is made twice. The steel grade of the first calculation is S235 and the steel grade
of the second calculation is S460. (For a real comparison the yield stresses must be 177
N/mm2 and 532 N/mmz). The summation of these calculations is the ultimate load. The
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sections and the loads at both calculations are the same, so the geometrical deflections are
equal in both calculations. According to the geometrical and physical non-linear analysis, the
ultimate load decreases if the deflection increases. This can result in differences in the total
ultimate load. The real ultimate load is slightly less that the ultimate load calculated by this
method. In Section 2.9 is proofed that these differences are negligible.

The third calculation method was to split the sections and connect the sections with a
hinged strut. The total load must be properly distributed over the yield stresses. For a single
column it was relative easy to distribute the load. It is very complicated to distribute the
loads of a portal frame. Two portal frames must be made. Using hinged struts the normal
forces can be divided properly. The bending moments depends on the loads and on the
deflections. The deflections in both sup-structures are equal. The distribution of the bending
moments cannot be steered easily.

It is very complicated to get proper results of the third calculation method. The second
calculation method has been used to calculate the ultimate load.

Unbraced Portal Frame

Figure 3.6 shows two load-deflection 1400 ,
graphs. The blue curve is the l
calculation without residual stress. 1200 - - - :+ e
The red curve is the calculation with |
residual stress (according to the
second calculation method).

1000 - - -/~ - -

O s Tt e S

T T TS T T T T T T T T T

load (N/mm)

The curve with residual stress is lower 6001 - - -
than the curve without residual stress.
For slender structures these
differences are very small. For non-
slender structures the difference is | | |
. . | | |
about five percent. The curve with 0 ‘ ‘ ‘
. . 0 2000 4000 6000 8000 10000 12000 14000 16000
residual stress will be used to column length (mm)
compare with other calculation Figure 3.6:
Load-deflection
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3.7  Conclusions

Chapter three was related to an unbraced portal frame. The ultimate load has been
calculated by three calculation methods. The results of the calculations are expressed in a
load-deflection graph (Fig. 3.7).

An analysis is made to find three sets of formulas to calculate the additional deflection.
These sets correspond to different yield phases of the structure. These formulas can be used
to calculate the ultimate load. This calculation method is the blue curve in Figure 3.7.

To calculate the ultimate load according to the Dutch code (red curve) a linear analysis must

be made. The uniformly distributed load must be transform to normal forces and bending
moments. These values can be used as input for the unity checks.
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Ultimate load (N/mm)

The Matrix Frame calculation is divided in two parts. Both parts have a different yield stress.
Both parts together illustrate the residual stress. The real amount of stress cannot be
schematized in Matrix Frame. The result of this calculation method is the green curve in Fig.
3.7.

Unbraced portal frame
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Column length (mm)
= The red curve is the load according to the Dutch code
= The green curve in the load according to the Matrix Frame
= The blue curve is the load according to the analysis in Appendices J and K

The shape of all graphs in Figure 3.7 is the same. One aspect is interest enough to explain. All
graphs show a maximum load at a certain column length. This illustrates that a short column
can resist less load than a longer column. This cannot be explained by normal forces. The
explanation of the strange shape can be found in the bending moments. The bending
moments depend on the rotation at the end of the beam and the deflection of the column. A

short column cannot deflect easily (¢ = % - M :%J . If the column length

cln In
deceases, the bending moment increases. The stress in the column due to the bending
moments increases. This results in a lower ultimate load.
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Chapter 4 Braced portal frame

This Chapter is about a braced portal frame. The
unbraced portal frame has been discussed in Chapter
three. The main difference between the braced portal
frame and the unbraced portal frame is the horizontal
displacement of the beam. The horizontal
displacement is limited in a braced situation.

L{cln>

The construction imperfections have been discussed in
Chapter three. In an unbraced structure, the

construction imperfections are very important for the e o
stability calculations. In a braced situation the S
horizontal deflection is limited. The influence of the production Figure 4.1:

imperfections is very small. Te production imperfections can be neglected. Structure

The initial deflection of a braced portal frame is the same as the initial

deflection of a single column. The column of the portal frame is curved (Fig. 4.1). As same as
the unbraced portal frame (Chapter three) the braced portal frame is supported by hinges.

The columns and the beam are fixed together. The rotation at the end of the column is equal
to the rotation at the end of the beam. A rotation of the beam results in a deflection of the
column and a rotation of the column results in a deflection of the beam. The portal frame is
loaded by a uniformly distributed load. Because of the load, the beam deflects, the end of
the beam rotates and the column deflects.

The presence of the beam limits the deflection of the column in a second order calculation.
The deflection of the first order calculation of the column of a braced portal frame is larger
than the deflection of the first order calculation of a single column. This relation can be
changed in the second order calculation.

4.1  Failure of the structure

It is assumed that the columns are critical.

< MCtot) A MCtotah_

The beam will not fail. This assumption

must be checked afterwards. The columns ]
are loaded by normal forces and bending e |
moments. If the dead loads of the ‘
columns are neglected, the normal forces |

|
Mcnidlale> |q

Mmicldled |

in the columns are constant. The bending VAN
moments are variable over the length of Figure 4.2:
the column. These moments depend on Moment
the reaction forces and on the deflection of the column. The distribution of the distribution

bending moments is not predictable at the start of the calculation. There are a few moment
distributions possible (Fig. 4.2). A column can fail on many locations.

The boundary conditions for both ends of the column are not equal. The support is free of
bending moments and can rotate easily. The other end of the column is connected to the
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beam and has a rotation limitation. This end can resist some bending moments. Due to these
different ends, the maximum deflection is not exactly in the middle of the column. The
differences between the real maximum deflection and the deflection in the middle of the
column are very small. It is assumed that the maximum deflection is in the middle of the
column.

A non-slender column has a small deflection. The location of the maximum bending moment
is at the end of the column. A slender column has a large deflection. The location of the
maximum bending moment is (more or less) in the middle of the column. The relative
slenderness depends on the section properties and on the length of both the column and
the beam. The middle of the column and the end of the column are two logical failure
locations. These two locations will be analyzed. The lowest load is the ultimate load of the
structure.

4.2  Calculation according to the analysis of Appendices N and O

The portal frame is a two degrees statically undetermined structure. Because of symmetry,
the horizontal support in point C can be taken zero. The other reaction forces can be
calculated by equilibrium conditions and rotational equilibrium. The columns AB and CD are
loaded equally. Both columns fail at the same load. In the analyses, the columns are critical.
Failure of the beam must be checked afterwards.

The column of the portal frame can be schematized as a single column. The uniformly
distributed load on the beam results in a formal force and a bending moment on the column
and a rotation of the column. The beam limits the rotation of the column. This limitation can
be schematized as a rotational spring.

For the calculation of the ultimate load a geometrical linear analysis and a geometrical non-
linear analysis have been made. As same as the analyses of the unbraced portal frame, the

results of the analyses will be limited by physical properties. The geometrical linear analysis
can be found in Appendix M. The geometrical non-linear analysis can be found in Appendix
N. In Appendix O the geometrical non-linear analysis has been extended by the influence of
residual stress.

The geometrical linear analysis (based on equilibriums) results in a formula of the bending
moments and in a formula of the maximum deflection. The results of the geometrical linear
analysis together with the imperfection are used as initial position for the geometrical non-
linear analysis.

The geometrical non-linear analysis is based on the equilibrium between the internal and the
external bending moments. The internal moments are partial the bending of the column
multiplied by the stiffness of the column and partial the bending of the beam multiplied by
the stiffness of the beam. This last part is included in the rotational spring. The external
moments are the total load multiplied by the total deflection and the bending moment at
point C.
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The geometrical non-linear analysis results in three sets of formulas to calculate the ultimate
load. The first set can be used till the right flange starts to yield. The second set can be used
till the right flange fully yields or till the left flange starts to yield. The third set can be used if
both flanges partial yield. The different parts are equal to the different parts in the unbraced
portal frame. The different parts are discussed in Section 3.4. Due to the different moment
distributions, the third set of formulas is hardly used.

The following formulas can be used to calculate the additional deflections:
qll‘bml—cln2 ((:]1I‘bm3|‘(:ln2 + 6480( 3‘meI cn,1 + 2‘(:InEI bm) + 16'bm2E| cln,l)
e.l. =
8|:3nql|‘bm|‘cln3E| bm + (1672EI dn1” 8]mel-clnz)( 3'meI cn,1 + chnEI bm):|

(o + ) Lol + 261 4, ) (BimBl a1+ 2l ) Lo El g 2+ EgnZ El )
40 + ) Loy b Zo( BB g 1+ 2Bl )
(LBl g + 2L Bl )| +Lan Bl g o ( Qi Ly — 2471, )
+64E1 g, 5 (Al gz + Aol ) (& +6)
31( 0 + Gy ) Ll El oy

+8( 2772E| cln,2 - (ql + q2) meLcInz)( a‘meI cln,2 + 2—cInEI bm)

q2 me Lcl n2

%:

8El cln,2 (3meE| cn,1 + 2|—cInEI bm){

q(il‘bmsl‘clanI cIn,Z((ql+ q2 + q3) meLcan +16El cn 3)( 3‘meI cn ,1+ Z‘cInEI bm)( 3'meI cn ,2+ chnEI bm)

q L 3(q2|‘bm|‘cln (me2E| cln,2 + 6LcInZZEI bm)

I3=bm™=cln —2477E‘2E| mel J(BmeEI cln,1+ 2I‘cInEI bm)

cln,2

+ +q3meLcIn2 (3meE| cln,2 + 2|‘clnEI bm) (3meE|
I‘cInEI cn,2 (qlmeBLcln - 24nelEI bm)
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8El cln,2 (3meE| cn,1 + 2|—(:InEI bm)( 3‘meI + chnEI bm)

3”(q1 + q2 + q3) I‘bml‘cln3EI bm
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+ 2I—cln El bm)
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The formulas for the total deflections are:

3 2 )
Yiotal 1 = qLme Ldn +te - ¢e><tfavlyX=0Lcln El bm
64( Ay,El gy + 2 Ely) 8L, El

cln,1
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cln EI bm
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The additional rotation:
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¢e<tra,l,><=0 - Ly, (3meE| ana T 2L,El bm)

¢ _ BﬂmeezEl cln,2
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The horizontal reaction forces:

E = qlme3E| cln,1
' 4|—cln (3meE| cn,1 + 2|—cInEI bm)

AFl = 3¢e¢raLLx:§El cn,1
cln

- qZme ( me2E| cln,2 + 6|—canZEI bm)
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I—cln
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The vertical reaction force:
N, =0.5q,L,
N, =0.30,L,
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Load (N/mm)

Load (N/mm)

N = 0.505Ly,

The additional bending moments can be calculated by the follow formulas.
Mtop,l = (Fl - AFl) I—cln

M iddes = 0-5( F - AFl) Lyn + 0.3 L80ta 2

My, = (F, = AF,)L

top,2 cin

Mmiddle,z = 0-5(F2 _AFz) Lan + O'@l"bm(%otal 2~ Cota J) + 0.9 Ly8otal ¥

M5 = (Fs = AF,) L

top,3 ~ cin

M igde,s = 0-5( F _AFs) Lan + 0-5(q1+ Q2) me(%otal 3~ Soal 2) + 0.9 Lynoa

A calculations example has been made in Appendix P.
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Figure 4.3 shows two load-deflection graphs for a braced portal frame. For the top graph the
first and the second set of formulas have been used. For the lowest graph only the first set is
used. After partial yield, the stiffness was reduced too much. Another difference between
the graphs is the location of the largest bending moment. In the top graph, the maximum
bending moment is at the end of the column. The maximum bending moment in the lowest
graph is located in the middle of the column.

4.3  Calculation according to the Dutch code

According to the NEN 6771 the calculations of a braced portal frame is the same as for an
unbraced portal frame (Section 3.5). The main difference between the braced and the
unbraced calculation method is the buckling length. The buckling length of a braced portal
frame is maximum the column length. The buckling length of an unbraced portal frame is at
least twice the column length. Other differences are the input parameters (See App. G for
more details).

The uniformly distributed load on the portal frame must be transformed to a bending
moment and a normal force. This can be done by a linear calculation. (See App. P.3 for a
calculation example according the Dutch code.) The ultimate load can be calculated by the
following formula:

N, N, M, ousqt Neoo€
oso Ty Myewse "Rese® g o (art,12.3.12.)
n, -1 M

cu;d y y;u;d

In this formula is:

Nesar My euisia The loads on the column

Ne.o.q Plastic normal force

n, Relation between the Euler buckling load and the load on the structure
(Note: for the Euler buckling load, the buckling length must be taken)

M, Plastic bending moment

e; Imperfection parameter

e; must be calculated by the following formula:
M.

e; = ak (Ay;re! - /10)

4.4  Calculation according to Matrix Frame

Matrix Frame has been used to calculate the ultimate load of a braced portal frame. The
beam has been made strong enough to be sure that the columns are critical. The columns
are split is small elements. Different horizontal displacements of the joints simulate the
initial deflection. This schematization of the imperfections is as same as in the calculation of
the single column (Section 2.9 or App. F). Imperfections of the beam are not taken into
account.
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Two different calculations are made. One calculation with residual stresses and one
calculation without residual stresses. The residual stress is inserted by using two
calculations. The section properties of all construction elements are bisected. In the first
calculation of the ultimate load, all sections have steel grade S235. In the second calculation
of the ultimate load, all sections have steel grade S460. The summation of these calculations
is the total ultimate load. The amount of residual stress in the Matrix Frame calculation does
not correspond with the amount of residual stress in the analysis. The amount of residual
stress must be larger. This cannot be done because of the input limitations of Matrix Frame.

Figure 4.4 shows two load- ' ‘ _ Braced Portal Frame
deflection graphs. The red curve is 1600~ 5= =~ f -~ }
the calculation without residual ool /. o i
stress. The blue curve is the /j !
N

| |

calculation with residual stress. 1200
1000 - - - - -1 - - —
The curve with residual stress is
lower than the curve without
residual stress. The difference
between the calculation with and
without residual stresses decreases
from fifteen percent for non- ! !

slender structures till zero for o l l Load-deflection
slender structures. The curve for ° Comn loth oy 4'5”045 graphics

the ultimate load calculation

including residual stress will be used as comparison for calculation methods.

800 — —

600 - -

Ultimate load (N/mm)

400F - - - --F---

200 - - .
Figure 4.4:

oL __1___

3

The calculation file of Matrix Frame can be found in Appendix P.4.

4.5 Conclusions

Chapter four was related to a braced portal frame. The ultimate load has been calculated by
three calculation methods. The results of the calculations are expressed in a load-deflection
graph (Fig. 4.5).

An analysis is made to find three sets of formulas for the additional deflection. These sets
correspond to different yield phases of the structure. These formulas can be used to
calculate the ultimate load. This calculation method is the blue curve in Figure 4.5.

To calculate the ultimate load according to the Dutch code (red curve) a linear analysis must
be made. The uniformly distributed load must be transformed to normal forces and bending
moments. These values can be used as input for the unity checks.

The Matrix Frame calculation is divided in two parts. Both parts have a different yield stress.
Both parts together illustrate the residual stress. The real amount of stress cannot be
schematized in Matrix Frame. The result of this calculation method is the green curve in
Figure 4.5.
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Braced Portal Frame
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Column length (mm) x 10 Figure 4.5:

Ultimate load
graphs

= The red curve is the load according to the Dutch code

= The green curve in the load according to the Matrix Frame

= The blue curve is the load according to the analysis in Appendices N and O

The graphs of figure 4.5 shows some points of attention.

The first point of attention is the curve according to the Dutch code. The calculation
according to the Dutch code does not always results in the lowest ultimate load. For the
lengths between five and thirteen meters (for this calculation example) the results of the
code calculation are larger than the results of the Matrix Frame calculation. In the Matrix
Frame calculation the amount of residual stress is lower than it should be. The calculated
ultimate load is the summation of two calculations. Due to the geometrical and physical
deflections, the calculated ultimate load is
a bit larger than the real ultimate load.
This should contain that Matrix Frame
calculation is an upper limit for the real
ultimate load.

reduction factor

The same problem has been seen in the
buckling calculations of the single column.
Figure 2.15 (repeated in Figure 4.6) shows
stability curves for several calculation
methods. According to Matrix Frame
(green curve), the structure cannot reach ' elative Slondemess

Figure 4.6:
Stability curve for several
calculations methods
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the plastic yield load. For non-slender structures, the results of the buckling calculations
according to Matrix Frame are smaller than the results of the code calculations (red curve).

The cut down top of the graph (Fig. 4.5) can be explained by not reaching the plastic yield
load in the Matrix Frame calculation

The second point of attention is the comparison between the code calculations and the
analysis calculations (Fig. 4.5). The differences are very small. For slender structures the
analysis calculation results in a higher ultimate load and for non-slender structures the
analysis calculation results in a smaller ultimate load. The analysis calculation can be used to
calculate the ultimate load for a braced portal frame.
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Chapter 5 Extended Frame

The last analyzed structure of this study is a braced Y N 0
extended frame. The extended frame has three floors
and three bays. The frame is vertically supported on
four hinges (Fig. 5.1).

All construction elements are fixed together. The

structure will be loaded by some point loads and some
uniformly distributed loads. Due to these loads, the E F G H
beams and the columns deflect.

If the columns deflect, the connected ends rotate and IVA J\B I\C IND
the connected construction elements deform. The Figure 5.1
whole structure will resist if the columns deflects due to second order effects. sy ucture

5.1 Initial deflections M N |0 ‘\JE
The frame exists in many columns and many beames. ‘ J | :\
It is assumed that the columns are critical. Failure ‘ | <‘E
mechanisms of the beams are not taken into L |- ‘K I
account. The initial deflections of the beam have no ‘\ \‘ | ‘
effect on the stress distribution of the columns. The i‘E
initial deflections of the beams are neglected. 4 E ‘F (G ‘H
I I .
The extended frame is braced. In other words: the 7
ends of the column will not displace in lateral AV VAN AV O AN
direction. The initial deflection of the columns in =y

Figure 5.2:

this frame is taken equally to the initial deflection of a single column (Chapter Imperfections

one). The initial deflection of the column is a half sine shape. The maximum
deflection is one over thousand times the column length (NEN 6771 art. 10.2.5..1.3). See
Figure 5.2 for the starting deflections.

The direction of the initial deflections is taken in the most unfavourable direction. The most
unfavourable direction is the direction in which the column deflects due to the load on the
structure. The loads on the structure will be discussed in Section 5.2.

5.2 Loads

The loads on the structure are based on the requirements of the Dutch code. The NEN 6702
is about loading rules and safety rules. This volume of the Dutch code is used to calculate the
ultimate load. The NEN 6702 describes three types of loads: permanent loads, variable loads
and special loads. The different loads are worked out in Appendix Q.

The permanent load of the column is the dead load of the column only. The permanent load

of the beam is partial the dead load of the beam, partial the dead load of a floor and partial
the dead load of a partition wall. Wind load have a positive influence on the stability of the
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structure. The influence of wind load is neglected. Special loads are not taken into account in
this study. The permanent loads and the variable loads are uniformly distributed loads on
the floors. Due to symmetry, the permanent loads can be schematized as point loads. Some
floors are loaded by a heavy vertical variable load. The variable loads are not located on
every floor. It is not allowed to schematize these loads as point loads.

The extended frame is heaviest loaded if all floors are loaded. The probability that all floors
are maximum loaded is very small. According to the Dutch code (NEN 6702) it is not
necessary to calculate with this extremely load-situation. It is allowed to keep some floors
free of variable loads. For the second order analysis the largest deflection is most
interesting. For the highest deflections, the frame is loaded symmetrically. Two load
combinations are calculated (see Fig. 5.3 and Fig. 5.4 for the different load combinations).

F1 Fe Fe F1 F1 Fe Fe F1
M N O E M N O E
F3 F4 F4 F3 F3 F4 F4 F3
arickle loa
BN Y1 Y VA 1 A
I ‘J K L I J K L
F3 || F4 ‘ F4 F3 F3 F4 F4 F3
\‘ | ariokle loa ariable loa
VA L g LU WL
[ " \e H IF—IF lo— [\
| ‘ | ‘ ‘
N I I |
LA NB AT AD LA B AT AD
Figure 5.3: Figure 5.4:
Load combination Load combination

In the first load combination only one floor is loaded by a variable load. Due to this load, the
columns are loaded by normal forces and by bending moments. The maximum normal force
can be found in column BF and in column CG. The difference between the normal force in
column BF and the normal force in column FJ is the required load F4. The required loads are
very small compare with the variable loads. There is only a small difference between the
normal forces.

The bending moments in column FJ and the bending moments in column GK are much larger
than the bending moments in other columns of the structure. Taken the combination
between the bending moments and the normal forces, column FJ and column GK are loaded
heaviest. The analysis and the calculation are about failure of column FJ.

In the second load combination two floors are loaded by a variable load. Again there is a
difference between the largest normal forces and the largest bending moments. Column BF
and column CG are loaded by the largest normal forces. Column AE and column DH are
loaded by the largest bending moments. Because of time limit and complexity the second
load combination has not been analyzed. The different load cases are compared together
using of a computer made finite element analysis (App. U.4).
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For only the first load combination, an analytical solution is found. This Chapter is mainly
concentrated on the first load combination.

5.3  Elongations

The most important issue of the non-linear analysis is the deflection. The moment
distribution in the frame is related to the deflections of the frame. Instead of other
structures, the columns of the extended frame are not loaded equally. The columns in the
middle of the structure are heavy loaded while the loads on the columns at the sides of the
structure are very small. This results in elongation differences.

The study is based on a strong beam/weak column analysis. A weak column contains a small
moment of inertia and a small cross-section. A small cross-section results in large

elongations (5 = %] .

In

Due to the uniformly distributed load, all beams contain bending moments. These bending
moments result in a rotation at the end of the beam. Elongation differences result in a
rotation of the beam too. The following formulas can be used to calculate the rotations.

_ ML,
% =3 .

— I:Lcln
¢2 B meEA:In

The rotation due to the bending moments depends on the section properties of the beam.
The rotation due to the elongation differences depends on the section properties of the
column. A combination of a slender column and a non-slender beam results is a major
influence of the elongation differences. For slender columns, the elongation differences
must be taken into account.

Figure 5.5 shows two structures. In both structures the bending moment distribution is
displayed. In the left structure, the elongation is neglected. In the right structure, the
elongation is taken into account. The differences between these structures are the
numerical value of the bending moments. In the structure of figure 5.5, the bending
moments in the column increase with 35% if elongation is taken into account. This difference
cannot be neglected.
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Figure 5.6 contains two graphs.

Both graphs contain the ultimate 2000
load for the extended frame,
calculated by the analysis of
Appendices S and T (Section 5.4).
In the blue curve, the elongation
differences are not taken into
account. The elongation
differences are taken into account
at the green curve. Both curves
have the same shape (will be
discussed in Section 5.7). The
numerical differences between the 200
curves are about 15%. The 0
elongation differences are taken ~ Column length (mm) X 10"

into account at the ultimate load Figure 5.6:
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graphics
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5.4  Calculation according to the analysis of Appendices S and T

For the calculation of the ultimate load, a geometrical linear (App. R) and a geometrical non-
linear analysis (App. S and App. T) are made. As same as in the braced portal frame (Chapter
four), the results of the linear analysis is the input for the non-linear analysis. Physical
properties are used as limitations for the results of the ultimate load calculation.

Due to the load, column FJ and column GK are heaviest loaded. It is assumed that only these
columns yield and fail. Due to the symmetry of the structure and the symmetry of the load,
column FJ and column GK are loaded equally. Column FJ and column GK yield at the same
moment.

All elements of the structure are connected together. If one element of the structure is
loaded, all elements deflect. The load will be carried by the whole structure. The stiffness of
all structure elements has effect on the deflection of the loaded element. It is nearly
impossible to take the deflection of all elements into account in a manual analysis. Some
virtual hinges are used to make the analysis manageable. The loaded element is beam JK.
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The column JN and FJ and beam IJ have a major influence on the deflection of beam JK. The
bending moments on both sides of these construction elements are taken into account. For
simplicity the deflections of other construction elements are neglected. In other words: a
virtual hinge is taken in the points E, H, M and P.

As same as in the analysis of the braced portal frame, the column has been schematized as a
single column. The initial deflection for the geometrical non-linear analysis is partial the
starting deflection (imperfections) and partial geometrical linear deflection (due to the
uniformly distributed load). The influence of all construction elements has been schematized
as a rotational spring on both sides of the column. The stiffness of these springs depends on
the different construction elements. Because of safety only one fourth of the stiffness of the
structure is taken into account.

The non-linear analysis of the frame is based on the equilibrium between the internal
bending moments and the external moments in column FJ. The internal moments are partial
the bending of the column multiplied by the stiffness of the column and partial the bending
moments of the rotational spring. The external bending moments are partial the normal
force multiplied by the total deflection and partial the bending total bending moments at the
ends of the column.

The required loads are much smaller than the ultimate loads. The influences of the required
loads on the additional deflection are very small. The analysis becomes much more complex
if the required loads are taken into account. At the analysis of the residual stress the
formulas become unmanageable if the required loads are taken into account. For simplicity
and because of the small influence the required loads are neglected in the analysis. The
required loads are taken into account at the calculation of the stresses.

Uo , Yo b

The residual stress distribution has been discussed in Chapter one. S

The same residual stress distribution will be used in the analysis of o

the extended frame (Fig. 5.7 as reminder). Due to the presence of = + =Fs <

residual stress, a loaded section will partial yield before the

structure fails. The stiffness decreases if the section partial yields. B

A reduced stiffness results in larger deflections. N -

The spring stiffness does not depend on the stiffness of yielded Tl s <

columns (FJ and GK), but on the stiffness of the other construction - )

elements. The stiffness of these elements remains constant. The =] =Fs

stiffness of the rotation spring remains constant too. Figure 5.7:
Residual stress
distribution

In Appendix S a geometrical non-linear analysis of an extended frame has been

made. In Appendix T the geometrical non-linear analysis is extended by the influence of
residual stress. The physical properties limit the result of the geometrical non-linear
calculation. The analysis of Appendix T results in much more complex formulas than the
analysis in Appendix S. Totally three sets of formulas are found.
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The following formulas can be used to calculate the additional deflection:
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To calculate the ultimate load, the formulas for the geometrical linear rotations, the
geometrical linear bending moments and the additional rotation must be calculated too.
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A calculation example can be found in Appendix U.

5.5  Calculation according to the Dutch code

The ultimate load calculation for a braced extended frame is equal to the ultimate load
calculation of the braced portal frame. This is clearly discussed in Section 4.3. The calculation
of the ultimate load according to the Dutch code is based on the results of a geometrical
linear analysis. Because of time limitation only a few calculations has been made. The results
of the calculation can be found in Section 5.7.

5.6  Calculation according to Matrix Frame

As comparison, the ultimate load is calculated by Matrix Frame too. For a real comparison
the initial deflection and the residual stress should be inserted manually in Matrix Frame. For
the manual input of the imperfections every column must be split in four parts. Every joint
must have a different horizontal displacement. The input of the Matrix Frame calculation is
time consuming (every part must be changed if the length changes). The calculation time of
Matrix Frame is time consuming too. It is chosen to calculate just a few lengths to make it
possible to compare the results with the results of other calculation methods.
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Extended Frame

To take residual stress into account, 2000
two extra Matrix Frame calculations
are needed. One with steel grade
$235 and one with steel grade S460.
The calculation method is the same
as in other constructions and is
clearly discussed in Section 2.9.
Without the Matrix Frame
calculation with residual stress, the
comparison is not completed.

1800

1600

1400

1200

1000

800

Ultimate load (N/mm)

600

400

The amount of residual stress is (as
same as in the portal frames) less 0 : :
than it should be. This is because of Column length (mm) % 10°
the input limitations of Matrix Figure 5.8:
Frame. The results of both Matrix Frame calculations can be found in Figure 5.8.  Uftimate load
The red curve is the ultimate load without residual stress and the blue curve is graphs

the ultimate load with residual stress. As seen before in the calculation of a braced portal
frame, the residual stress reduces the ultimate load.

The green curve is the calculation of another load combination (Fig. 5.4). The ultimate loads
of this load combination are much lower (especially for slender structures). For the ultimate
load calculation in this structure the wrong load combination is chosen. As academic model,
this correct load combination is chosen.

For the chosen load combination a bending moment at both ends and an elongation
difference must be taken into account. This is quite different as the analysis of a braced
portal frame. The analysis of the second load combination can be made by the same way as
did in Chapter four (braced portal frame). This analysis does not have an extra contribution
to this study.

The blue curve will be used to compare the ultimate load with other calculation methods.

5.7  Conclusions

Three calculation methods are used to calculate the ultimate load of the extended frame.
First a geometrical non-linear analysis is made. In this analysis residual stress is taken into
account. The results of this calculation method are the blue curve in figure 5.9. Secondly the
ultimate load is calculated according to the Dutch code (red curve). As third the ultimate
load is calculated by Matrix Frame (green curve). Because of input limitations only a part of
the residual stress is taken into account at the Matrix Frame calculations. The calculation
according to the Dutch code and the calculations according to Matrix Frame are time
consuming. Due to this, only a few calculations are made (every five meter instead of every
two meter). This results in a less curved graph. The shape of the graphs is well visible.
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Extended Frame

2000
Calculation braced
1800 extended frame
1600 Column:
1400 Length: variable
E HE 360A
g 1200 Beam: Length: 5m
= HE 900A
= 1000
Lk
=
600
400
200 Z : : Z :
0 i i i i i i i i i Figure 5.9:
0 0.5 1 1.5 2 2.5 3 35 4 45 5 Ultimate load
Column length (rmm) w10 graphics

= The red curve is the load according to the Dutch code
= The green curve in the load according to the Matrix Frame
= The blue curve is the load according to the analysis in Appendices N and O

Two striking points of the graphs in Figure 5.9 will be discussed. These points are marked by
the characters A and B.

Point A is a strange course of the graph. For a column length of ten meters, the ultimate load
is smaller than for a column length of eight meters but also lower than for a column of
twelve meters. This shape can be explained by looking at the internal stresses. The internal
stresses for a column length of ten and twelve meters are given in Figure 5.10 and Figure
5.11.

O -
; | | | | | | | Calculation braced
qook Lo tm~e v | extendedframe
g N
2-200**"1**"l""l""l*\*x‘; U Column:
g ; ; ; ; N ; ; Length: variable
E | | | | | :\ | | Beam: Length: 10 m
%_400,,,,;,,,;,,,,;,,,,;,,,,;,,,,;,,,x,,,;,,,, HE 900A
N
_500,,,,;,,,,;,,,,;,,,,;,,,,;,,,,;,,,,;,,&,,,, 5355
| | | | | | | I
2C‘)0 4C‘)0 6C‘)0 860 10‘00 12‘00 14‘00 1(;00 1800

-5000 Figure 5.10:

Load (N/mm) Internal 48
stresses



. | | | | | | | .
\7\\ | | | | | | | Calculation braced
MO0k WIS T ] extended frame
100 I [ | \ | | |
s A NN e
£ | | | \\1\ | | | I
) E E O B S [ I N Column:
g | | | | | | | |
s ! ! ! | \} ‘ | | Length: variable
o \\
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Sao0l b HE 900A
a | | | | | | N |
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| | | | | | | |
i N
| | | | | | | |
| I I I I I I I Figure 5.11:
-600 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 Internal
Load (N/mm) stresses

= The red curve corresponds with the stress in the right flange
= The blue curve corresponds with the stress in the web
= The green curve corresponds with the stress in the left flange.

The first critical stress is 177.5 N/mm?. This value is half of the yield stress (the residual
stress is the other half). The stress in the
left flange (for the column length of
twelve meters) does not reach the first
critical stress. The column fails if the
whole right flange yields. This occurs at a
stress of 532.5 N/mm? (1.5 times the
yield stress). The stress in the left flange
of the column of ten meters reaches the
first critical stress. According to the
chosen residual stress distribution (Fig.
5.7), the half of the left flange yields.
Due to this yielding, the effective cross-
section decreases. The stress in the
effective cross-section increases. A Figure 5.12:

lower ultimate load can be found. The same situation had been found  s;ability curve for several
in the analysis of the single column (see the blue curve of Fig. 5.12). calculations methods

reduction factor

relative slendemness

The second striking point is the large difference between the calculation according to the
Dutch code and the calculation according to the other calculation methods. The explanation
of this is the safety in the Dutch code. The beam is very stiff compared with the column. This
results in almost fixed ends of the column. This very stiff connection is used in the ultimate
load calculation of the analysis and in the Matrix Frame calculations. According to the
ultimate load calculation according to the Dutch code, it is not possible to create such a
connection. The connections are taken less stiff. This results in a larger buckling length. For
slender structures, the buckling length is an important factor of the ultimate load
calculation. Due to this increase of the buckling length, the ultimate loads deceases.
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With the exception of the ultimate load of the non-slender structures, the results of the
analysis correspond with the results of the Matrix Frame calculations. The residual stress of
the Matrix Frame calculation is less than the residual stress in the analysis. This cannot be
solved because of input limitations of Matrix Frame. The analysis results in proper ultimate
loads and can be used.
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Chapter 6 Conclusions and recommendations

The buckling loads of four steel frame structures have been derived analytically and
numerically. The analyses included physical modelling of shape deviations and residual
stresses. The results have been compared to those of code equations. These code equations
also include the effect of shape deviations and residual stresses due to an extensive
experimental program.

Conclusions

Due to residual stresses, a frame structure partially yields before it fails. If the structure
partial yields, the effective cross-section and the effective stiffness decrease. A decreased
section changes the course of the deflection. For every yielding part another formula must
be derived. A realistic residual stress distribution is smooth and results in infinite numbers of
formulas. The applied residual stress distribution has three yield levels. The analyses result in
three formulas of the additional deflection.

An analytical non-linear analysis of a steel frame structure is very time consuming. However,
the resulting formulas are very attractive. Computer programs like Excel and MatLab can be
used to calculate the ultimate load. Using variable parameters, the section properties and
the length of the sections can be changed easily. This is very helpful in a design situation.

Without imperfections the ultimate load predicted with non-linear finite element computer
programs (such as Matrix Frame) are considerably larger than the ultimate load according to
the Dutch code. With shape derivations and residual stresses will be introduced, the results

of the Matrix Frame calculation are close to the results of the code rules.

Matrix Frame cannot calculate with curved sections. The initial geometrical imperfections
can only be introduced by splitting the column in small parts. All these parts are fixed
together and every joint has a different location. Using initial geometrical imperfections
influence the deflections that are computed in a geometrical non-linear analysis.

Residual stresses result in partial yielding of a section. To take residual stresses into account
a section can be modelled by two elements (with different yield stresses and half the original
cross-section properties). However, Matrix Frame does not properly calculate sections with
different yield properties. It does not distribute the load properly over the two elements. A
consequence of this is that an overall analysis is not possible. As a solution the geometrical
and physical non-linear analyses can be performed for each cross section half. The
summation of these analyses is approximately the ultimate load.

Special attention is needed for the calculations of very non-slender columns with fixed ends.
Due to the partial yielding (as a result of the residual stresses) the column can deflect easier
and the bending moment at the end of the column decreases. This results in a larger
ultimate load.

Recommendations
As yet it was not possible to find a general buckling formula for all structures. For a general

formula more analyses must be made. Also all analyses need to have the same boundary
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conditions. Using proper boundary conditions, it could be possible to find a general formula
in further analyses. This is an interesting object for another master thesis.

Matrix Frame has an input limitation. It is not possible to choose the yield stress freely. Only
the usually steel grades can be chosen. Because of this, it is not possible to take care of all
residual stresses for all steel grades. For small HEA sections the amount of residual stress is
larger than for large HEA sections. The amount of residual stress for small HEA sections
cannot be inserted. Steel grade S355 is the only steel grade that can be used for the
calculations including residual stresses. For checking the analysis results, it would be better
to make a possibility to insert the yield stress manually.

The differences in ultimate loads between different calculation methods are largest for non-
slender structures. Matrix Frame ‘solved’ this problem by using a smaller yield stress. It is
recommended to check the ultimate loads for frames with non-slender columns.

Matrix Frame is commonly used in current practice and is specialized in Frame type
structures. Because of this Matrix Frame is used in this study. Unfortunately, residual
stresses and also reduced stiffness cannot be modelled in Matrix Frame. Other (more
complex) computer programs without these limitations could give in better results. Because
of time limitation no other computer programs has been used.
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