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Preface 
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calculation methods and results for several stability problems. The background, the analyses 

and the calculations can be found in an Appendix report. 
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� Dr. ir. P. C. J. Hoogenboom 

 

Delft, July 2009 
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Summary 
 

It is well known that the buckling load of structures and structural members strongly 

depends on residual stresses and shape deviations. Traditionally, these imperfections are 

included in empirical formulas, which correct the buckling load that is computed without 

imperfections. The objective of the research presented in this thesis is to study whether 

structural models that are extended with realistic physical imperfections can predict 

structural capacities accurately. To this end four structural types have been analyzed: a 

single column, an unbraced portal frame, a braced portal frame and a braced extended 

frame. 

 

Every structural type has been analysed analytically. The results are several formulas to 

calculate the additional deflection. Based on the total deflection, the internal stresses can be 

calculated. The internal stresses result in an ultimate load. The obtained formulas are 

different for each structural type and could not be generalized. 

 

Each structural type has also been analysed numerically by introducing imperfections in a 

structural analysis program. This program (Matrix Frame) is often used in engineering 

practice. Residual stresses could not be added to the cross-section stresses because we had 

no access to the program source code. However, this was circumvented by including residual 

stresses as a reduced cross-section stiffness. 

 

The results obtained by the analytical analysis, the numerical analysis and empirical code 

equations have been compared. In some situations significant differences occur. The reason 

can be modelling inaccuracies, analysis approximations or conservatism in code equations. It 

can be concluded that realistic physical imperfections can be used to replace empirical code 

equations. However, introducing this in everyday practice might be not easy. More research 

is needed in measuring imperfections, numerical analysis and calibrations to current codes 

of practice. 
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Chapter 1 Introduction 
 

The force flow in most structures can be accurately computed by linear elastic analyses. 

However, in some structures second order effects can be important, for example unbraced 

frames with a large vertical loading. For these structures second order analyses need to be 

performed. In current practice the computations are performed by software. The second 

order deformation under service loading is determined by an iterative algorithm. The 

member capacities and structural capacity under ultimate loading are checked by applying 

the governing code equations. 

 

Note that there is a remarkable difference in the computation for service loading and for 

ultimate loading. The computation for service loading is based on “pure structural 

mechanics” and the computation for ultimate loading is based on “best practice”. The 

reason is that structural mechanics alone strongly overestimates the structural capacity 

because it neglects the influence of residual stresses and shape deviations. Organisations 

that developed the structural codes recognised the importance of these imperfections a long 

time ago. Therefore, the codes are based on extensive experimental programs designed to 

determine the true member capacities. 

 

The objective of the research presented in this thesis is to study whether structural models 

that are extended with residual stresses and shape deviations can predict structural 

capacities accurately. In other words; can pure structural mechanics be extended with clear 

physical properties such that we no longer need to use black box code rules for determining 

structural capacities? 

 

To this end four structural types have been analyzed:  

� A single column, loaded by a centric compression force.  

� An unbraced portal frame, loaded by a uniformly distributed load.  

� A braced portal frame, loaded by a uniformly distributed load.  

� A braced extended frame, loaded by a uniformly distributed load. 

 

Each type has been analysed following an analytical approach. Full use was made of the 

modern features of mathematical software. Some types were also analysed by using a 

standard frame analysis program. To this end a trick was developed and tested for including 

the effects of residual stresses. 
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Chapter 2 Column 
 

The buckling load of a simply supported column depends on the dimensions and the shape 

of the section. In addition, the buckling load strongly depends on shape imperfections and 

residual stresses. (Inhomogeneous steel quality is not taken into account in this study.) 

 

 

2.1 Buckling of a perfect column 

Consider a column pinned at both ends and loaded by a compressive normal force N. At a 

certain load (the Euler buckling load) there are two equilibrium situations possible. In the 

first equilibrium situation the column remains straight. In the second equilibrium situation 

the column deflects in a half sine shape. The amount of deflection is unknown. See Appendix 

A for the derivation. The Euler buckling load can be calculated by the following formula: 

 
2

2E
buc

EI
F

L

π=  

 

where  

FE = Euler buckling load 

Lbuc = Buckling length 

EI = Bending stiffness 

 

Suppose a column is loaded by a horizontal load and the deflection results in a half sine 

shape. If this column is also loaded by a compressive force, the deflection increases (second 

order effect). The following formula can be used to calculate the total deflection of the 

column. 

 

E

E

F
u e

F N
=

−
 

or 

1

n
u e

n
=

−
 with EF

n
N

=   

 

where 

N = Compression force 

FE = Euler buckling load 

e = Initial deflection 

u = Total deflection (including initial deflection) 

 

 

2.2 Imperfections 

There are many ways to produce steel sections, for example welding, rolling and cold 

forming. This study is based on the HEA series. HEA sections are rolled. In the factory a block 

of steal is rolled en flattened. See Figures 2.1 and 2.2 for some illustrations. A perfectly 

flattening process is not possible. This results in shape imperfections.  
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The imperfections vary over the length of the section. In this study it is assumed that the 

shape imperfections can be described by a half sine function (Fig. 2.3). The maximum 

eccentricity is in the middle of the section. According to the Dutch code this maximum is one 

thousands of the column length (NEN 6771 art. 10.2.5).  

 

If the weight of the column is not taken into account, the normal force is constant over the 

length. The bending moment is the multiplication of the normal force and the eccentricity. 

The bending moment is largest when the eccentricity is largest. Therefore, the most critical 

cross-section is the middle of a column. The bending moments result in additional 

compressive stress in the right flange and a reduction of the compressive stress in the left 

flange (Fig. 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3 Residual stress 

Before starting the rolling process, the section is heated. Due to rolling the temperature is 

further increased. The cooling down speed is not constant in the section. The cooling down 

speed depends on the ratio volume/surface. At the tips of the flanges and in the middle of 

the web this ratio is small and the cooling down process is 

fast. At the intersection between the flanges and the web 

this ratio is large and cooling down process is slow. This 

results in compression stress in the tips of the flanges and 

tensile stress in the intersection points (Fig. 2.4). These 

stresses are called residual stresses, initial stresses or 

rolling stresses. 

 

Residual stresses are always in equilibrium. Therefore, 

there are no residual section moments or residual section 

normal forces. The rolling stresses are always smaller than 

the yield stress. The production method and the cross-section 

dimensions influence the amount of residual stress. 
Figure 2.4: 

Residual stress 

distribution in a I 
section 

Figure 2.1: 

Flattening 

Figure 2.2: 

Rolling process 
Figure 2.3: 

Imperfections 
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Consider a perfectly straight homogenous I section which has residual stresses. Suppose this 

section is loaded by a centric compressive force only. At increasing load, the combination of 

residual stress and compressive stress results in local yielding. The tips of the flanges and the 

middle of the web yield first. The section yields partially, but will not fail. The structure fails 

when the whole section yields. The presents of residual stress does not influence the yield 

load.  

 

Consider a homogenous I section with residual stresses and a shape imperfection. When the 

column is loaded by a compressive force the deflection increases. The increase of the 

deflection depends on the moment of inertia. If the tips of the flanges yield, the effective 

moment of inertia decreases. This results in an extra deflection. In a non-linear analysis, the 

bending moments depend on the extra deflection of the column. An increase of the 

deflection results in an increase of the bending moments. Consequently, due to residual 

stresses the buckling load decreases.  

 

It is very complicated to make calculations with the residual 

stress distribution in Figure 2.4. For simplicity another 

model for the stress distribution is adopted (Fig. 2.5). The 

value S is the amount of residual stress. The residual stress 

distribution in Figure 2.5 is a conservative approximation.  

 

The maximum deflection is in the midsection of the column. 

Therefore, the midsection is most loaded. The stresses in 

the midsection have been applied over the whole length of 

the column. This is a necessary approximation for 

performing the mathematical evaluations. 

 

The considered section is a double symmetric HEA-section. The load is 

located in the centre of gravity. If one of the flanges partially yields and 

the other flange does not, the effective section is not double symmetric anymore. The 

effective centre of gravity has shifted. Due to extending the stress at midsection over the 

whole column, the centre of gravity in the whole column has shifted. To compensate this 

shift, an eccentric moment at both ends of the column has been introduced (Fig. 2.6). This 

eccentric moment results in an extra deflection. This extra deflection results again in an 

extra moment in the midsection (see App. C).  

 

Figure 2.6: 

Eccentric 

moment 

Figure 2.5: 

Residual stress 

distribution in a I 
section 
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2.4 Calculation methods 

There are many methods to calculate the deflection of a single column. The results of these 

methods can be found in the graph of Figure 2.7.  

� First of all is the Euler buckling load (brown line). The deflection is zero till the Euler 

buckling load is reached. If the Euler buckling load is reached, the column fails and 

the deflection is undetermined. 

� Secondly is the geometrical and physical linear (first order) analysis (blue line). This 

analysis results in a linear relation between the load and the deflection. The load is 

unlimited.  

� As third, the geometrical non-linear and physical linear analysis (purple line). The 

total deflection is inversely proportional to the load. Limit of this analysis is the Euler 

buckling load.  

� As fourth, the geometrical linear and physical non-linear analysis (red line). There is 

no deflection till the yield load is reached. The deflection at this load becomes 

infinity.  

� As fifth, the geometrical and physical non-linear analysis (green line). This analysis 

contains both the yield load as well as the geometrical non-linear deflections.  

 

The first part of the real load-deflection diagram (black line) follows the geometrical non-

linear physical linear analysis. 

After partial yielding, the 

deflection increases and the 

geometrical non-linear physical 

linear analysis is not valid 

anymore. The load increases 

till the ultimate load has been 

reached. The upper limit of the 

real load-deflection graph is 

the geometrical and physical 

non-linear analysis. There is no 

description or formula for the 

area between first yield and 

failure. In Appendix C an 

analysis is made to find a 

formula for this area. The 

analysis will be discussed in Section 2.6.  

 

 

2.5 Failure 

To calculate the failure load the stresses in the midsection must be calculated. The 

compression force results in compression stress in the whole midsection. The bending 

moment results in compression stress in the right flange and tension stress in the left flange.  

Due to the combination of the force and the moment the right flange yields first. After first 

yield, the half of the right flange cannot be used for the effective stiffness.  

 

Figure 2.7: 

Load-deflection diagram 

(schematic) 
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The Euler buckling load is the buckling load at ideal circumstances. The Euler buckling load is 

an upper limit of the real buckling load. The Euler buckling load can be calculated for the 

original section as well for the reduced section. If the section partially yields, the new upper 

limit is the Euler buckling load of the reduced section.  

 

If right flange partially yields, there are three possible failure mechanisms (Figure 2.8 is a 

diagram of all failure mechanisms). These failure mechanisms are: 

� The Euler buckling load of the reduced section is smaller than the load on the 

column. The reduced section cannot resist the load and the column buckle. The 

stiffness of the reduced section is too small (Fig. 2.9).  

� The Euler buckling load of the reduced section is larger than the load on the structure 

and the load can increase. There are large deflections. This results in relative large 

bending moments. The right flange fully yields before the left flange starts to yield 

(Fig. 2.10). If one flange fully yields, the reduction of the stiffness and the eccentricity 

become too much. The column fails if the whole right flange yields. 

� The Euler buckling load of the reduced section is larger than the load on the structure 

and the load can increase. The deflections are small so the bending moments are 

small too. The load increase till the left flange partial yields too. The effective section 

decreases again. The Euler buckling load can also be calculated for this reduced 

section. This possibility only occurs at a stiff section. The Euler buckling load of the 

reduced section is still smaller than the load on the column and the load can 

increases till the whole right flange yields (Fig. 2.11).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial yield of the 

right flange 

Failure 

Fully yield of the right 

flange 

Partial yield of the left 

flange 
Figure 2.8: 

Yielding and 

failure 

Figure 2.9: 

Failure type 1 

Fully yield of the right 

flange 

Failure 

Failure 

Calculation single column 

Length: 25 m 

HE 450A 

S355 

e0 = 25 mm 
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Figure 2.9 shows the deflection of the midsection of a column in the first failure type. The 

geometrical non-linear eccentricity has a major influence on the failure load. At a certain 

load (point A) the tips of the right flange starts to yield. The Euler buckling load of the 

reduced section is smaller than the load on the structure and the structure fails.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10 shows the deflection of the midsection of a column in the second failure type. At 

a certain load (point A) the tips of the right flange starts to yield. The stiffness of the reduced 

section is large enough to resist more loads. The slope of the graph continues more slightly. 

At another load (point B) the whole right flange yields. This happens before the left flange 

starts to yield (see the stress distribution). If the whole right flange yields, the stiffness is 

reduced too much and the structure fails.  

 

 

 

 

 

 

 

 

Figure 2.10: 

Failure type 2 

Calculation single column 

Length: 10 m 

HE 450A 

S355 

e0 = 10 mm 

Calculation single column 

Length: 5 m 

HE 450A 

S355 

e0 = 5 mm 

Figure 2.11: 

Failure type 3 
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Figure 2.11 shows the deflection of the midsection of a column in the third failure type. 

There are three interesting points in this graph. At point A the tips of the right flange start to 

yield. The stiffness reduces and the load increases till also the tips of the left flange start to 

yield (point B). The displayed stress distribution is the stress in point B. The load increase till 

the whole right flange yields and the structure fails.  

 

For a better explanation of the load-deflection graph in the third failure possibility, several 

calculation methods are made (Fig. 2.12). Points A, B and C in figure 2.12 correspond to 

points A, B and C in figure 2.11. Figure 2.12 is a schematic load-deflection graph.  

 

The first part of the load-

deflection graph of the 

analysis (black line) is equal to 

the geometrical non-linear 

physical linear graph. If the 

tips of the right flange yields, 

the Euler buckling load of the 

effective section decreases. 

This results in a slighter 

geometrical non-linear graph. 

Due to the eccentric 

moments, the stresses and 

the deflection increase. The 

graph does not match with 

the geometrical non-linear 

graph. If the tips of the left flange yield too, the stiffness decrease and the 

geometrical non-linear graph become slighter again. The effective section is 

double symmetric again, so the eccentricity moments become zero. The graph match to the 

third geometrical non-linear graph till the failure load is reached.  

 

The geometrical and physical non-linear calculation method (green line) is an upper limit of 

the failure load. If the deflection increases, the failure load decreases. Due to the yield steps, 

the slope of the geometrical and physical non-linear graph changes in points A and B. The 

third graph is the lowest upper limit of the ultimate load. The structure fails at point C.  

 

 

2.6 Differential equation after first yield 

The geometrical non-linear physical linear deflection formula (derived in Appendix A) is 

based on equilibrium between internal and external bending moments. The analysis in this 

Chapter is based on this equilibrium too. The difference between the geometrical non-linear 

physical linear calculation method and the analysis is the starting position.  

 

To find a general formula, a general starting position must be taken. The starting position of 

the analysis is that the section partially yields. This starting position leads to the following 

starting points: 

� There is an original load 

Figure 2.12: 

Load-deflection diagram 

(Schematic) 
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� There is an original deflection 

� There is a reduced section 

� There is a shift in the centre of gravity 

 

The internal and external bending moments of the original load case are in equilibrium. The 

equilibrium of the total internal and total external bending moments changes in the 

equilibrium between the increase of the internal and the increase of the external bending 

moments. The increase of the internal bending moment is the additional deflection 

multiplied by the reduced bending stiffness. The increase of the external bending moments 

is the original load multiplied by the additional deflection and the additional load multiplied 

by the total deflection.  

 

With the equilibrium condition and the starting points an analysis can be made to calculate 

the total deflection. If the total deflection is known, the internal stresses and the ultimate 

load can be calculated. The method of calculation will be discussed in Section 2.7. A manual 

calculation and a computer-made calculation can be found in respectively Appendix D and 

Appendix E. 

 

 

2.7 Calculation according to the analysis of Appendix C 

In Appendix C a formula for the total deflection is derived. This formula is described in 

Section 2.6. The total deflection can be found by the following formula.  

( )
2

, 1 , 1 , , 1 , 1

,
, , 1

8 8
i i i i

total i i total i E i total i total i
i i

total i
E i total i i

F z L F z
F F e F e F

EI EI
e

F F F

− − − −

−

 
+ + + − 

 =
− −

 

with: 

, 1total iF −   is the original load  

iF   is the increase of the load  

iz   is the shift of the centre of gravity  

, 1total ie −   is the total deflection at the original load ( , 1total iF − ) 

,E iF  is the Euler buckling load of the reduced section 

 

The analyzed load case has subscript ‘i'. The total deflection depends on the original load, on 

the additional load and on the total deflection in the previous load case. The previous load 

case has subscript ‘i-1’. The original deflection in the first load case (i=1) is e0. This is the 

initial deflection. There are no original loads or yielding parts in the first load case. Because 

of this, the formula can be simplified to: 

0 ,1
,1

,1 1

E
total

E

e F
e

F F
=

−
 

 

The total deflection is a function of the load. The additional deflection and the bending 

moments are functions of the load too.  

, , 1i total i total ie e e −= −  

, 1 ,i i total i total i iM e F e F−= +  
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The stress in the flanges can be calculated by the following formulas: 

, , 1
i i

right i right i
i i

F M

A Z
σ σ −= − −  

, , 1
i i

left i left i
i i

F M

A Z
σ σ −= − +  

 

The amount of residual stress does not change during the calculation. The compression 

stress increases if the load increases. The first load case ends if the tips of the right flanges 

start to yield. This happens if the summation of σright,1 and the residual stress reach the 

compression yield stress. The force that is necessary for this yielding is called F1. If F1 is 

known, the total deflection and the internal stresses can be calculated.  

 

If the tips of the right flange yield, the effective cross-section decreases, the moment of 

inertia decreases and the centre of gravity shifts. The Euler buckling load can be calculated 

for the reduced section. If the Euler buckling load of this reduced section is larger than F1 the 

load can increase. After yield of the tips of the right flange the second load case is started. 

The second load case ends if another part of the section starts to yield. The different failure 

possibilities are discussed in Section 2.5.  

 

 

2.8 Calculation according to the Dutch Code 

As a reference point, the Dutch Code is taken. The Dutch code is called the “TGB”, Technical 

foundation of build constructions (in Dutch: Technische grondslagen bouwconstructies). The 

most common building materials have their own part. One volume is about steel structures 

in general. The so called: the NEN 6770. The NEN 6771 and the NEN 6772 are respectively 

the requirements of steel stability and steel joints. The NEN 6770 and the NEN 6771 are used 

as reference points for the buckling calculations. 

 

Both NEN 6770 and NEN 6771 include methods to calculate buckling loads. For a single 

column, supported at both ends and loaded by a compression force only, the calculation 

methods are the same. For other constructions or other loads, the calculation methods are 

different. This will be discussed in the chapter in question.  

 

The buckling calculation method of the NEN 6771 is based on a unity check: 

 
; ;

; ;

1.0c s d

buc c u d

N

Nω
≤   (art. 12.1.1.1). 

 

� ; ;c s dN is the maximum load on the column.  

� ; ;c u dN is the yield load. 

� bucω is the buckling reduction factor. 

 

The buckling reduction factor ( )bucω can be found by some stability curves (see App. B for 

the derivation). The buckling reduction factor depends on the relative slenderness, the 

length and the shape of the section.  
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2.9 Calculation according to Matrix Frame 

Another possibility to calculate the ultimate load is the finite element method. There are 

many computer programs based on the finite element method. Matrix Frame is one of these 

computer programs. Matrix Frame is available for practical use and is specialized on frame 

type structures. To compare the buckling results, the calculations are also made with Matrix 

Frame.  

 

Matrix Frame can calculate the ultimate load by a geometrical and physical non-linear 

analysis. The results of this calculation method should correspond with the NEN results and 

should correspond with the results of the analysis in Chapter two.  

 

Matrix Frame has the possibility to calculate with straight sections only. Initial deflections 

must insert manually. A possibility to do so is to divide the column in small columns. All 

columns are fixed together and every joint has a horizontal displacement. All columns 

together illustrate the initial deflection.  

 

Matrix Frame does not take residual stress into account. It is not possible to insert a section 

with different yield stresses. If the residual stress distribution of Figure 2.5 will be used the 

section must be divided in two equal parts. The section properties of these two parts 

separated must be equal to the half of the section properties of the original section. The 

influence of residual stress can be approached by using two different yield stresses. Three 

possibilities are made to calculate with two different sections.  

 

The first possibility is to use two bars instead of one bar. Both bars have the same working 

line and the same deflection. The column should fail if both sections fail. The result of this 

calculation has not the desired effect. The buckling load is much lower than expected.  

 

The second possibility is to make two calculations. The section parameters of all sections 

have been halved. The first calculation is the calculation with steel grade S235. The second 

calculation is the calculation with steel grade S460 (average yield stress is 347.5 N/mm
2
). The 

section properties and the construction are the same in both calculations. In other words: 

the geometrical deflections are equal in both calculations. The only difference is the physical 

non-linear deflection. The graph of the geometrical and physical non-linear analysis is goes 

downwards (Section 2.4). According to this geometrical and physical non-linear analysis, the 

ultimate load decreases if the deflection increases. The decrease of the load can be 

calculated by the following formulas: 

 

M wN=   (w is the deflection after reaching the ultimate load) 

1.18 1
p p

M N

M N

 
= −  

 
 (plastic behaviour of I sections) 

1.18

1.18
p p

p
p p

N M
N N

wN M
∆ = −

+
  ( N∆  is the decrease of the ultimate load)  
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The summation of the buckling load of both calculations is an upper limit for the real 

buckling load (Fig. 2.13). Figure 2.13 exists in three graphs. All graphs show the results of a 

geometrical and physical non-linear analysis. The third graph is the summation of first and 

the second. It is clear that the deflection of point A is not equal to the deflection of point C. 

The ultimate load according to this calculation possibility is the summation of point A and C. 

The ‘real’ buckling load is the summation of point B and C. There are small differences 

between these values.  

 

Figure 2.14 is the ultimate load distribution for different possibilities to take  

residual stress into account.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� Buckling load without residual stress (green line) 

� Buckling load with two bars on the same working line (blue line) 

� Buckling load with two separate calculations (red line) 

The black line is discussed later on. 
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Load-deflection 

diagram 

Figure 2.13: 

Load-deflection 

diagrams 
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Interesting is the graph for the buckling load with two bars on the same working line. This 

graph shows a weird change of direction. In this calculation method, the buckling load of 

non-slender structures decreases enormously. The buckling load of slender structures 

depends mainly on the Euler buckling load. The yield stress has hardly any influence on the 

failure load. The results of all Matrix Frame calculations are close together. 

 

The ultimate load on non-slender structures corresponds with the yield load of the lowest 

yield stress. Only one statement is found to explain what happens. Matrix Frame calculates 

with two bars with an infinity small distance to each other. Matrix frame divides the load in 

two equal parts. Both bars are loaded equally. After partial yielding, the moments will be re-

distributed. There is no re-distribution of the compression force. The load increases till one 

section carries all bending moments and the other section is fully yield in compression. If a 

section fully yields, all stiffness is lost. The structure cannot resist more loads and the 

structure becomes unstable. The load on the column has reached the limit.  

 

The problem of the non-slender structures can be found in the distribution of the normal 

forces. The problem can be solved by distribute the normal force manually. This can be done 

by using two columns with the same initial deflection and the fixed distance between (third 

possibility). The distance can be kept fixed by using hinged struts between the columns. The 

load on the bar with steel grade S235 is 
235

695
 of the total load and the load on the bar with 

steel grade S460 is 
460

695
of the total load. The total load is properly distributed over the yield 

stresses. Different loads result in different deformations. Due to the hinged struts between 

the columns, the deflections of both columns are equal. The elongation of the column has no 

influence on the buckling calculation of a single column. The only point of attention is the 

distance between the columns. Matrix Frame cannot find equilibrium in elongation if the 

distances between the columns are too short.  

 

With this calculation method, the buckling load can be calculated. The results are displays in 

Figure 2.14 too (black line). The results of this calculation method are very close to the 

calculation method of using two calculations (second possibility). For the comparison of the 

buckling load of a single column the third possibility is used. For the calculation of the 

ultimate load of a portal frame (Chapter three and Chapter four) the second calculation 

possibility is used.  

 

 

2.10 Conclusions 

Chapter two was about buckling of a single column. A column loaded by a centric normal 

force can deflect because of the shape imperfections of the column and the residual stress in 

the column. Different methods have been used to calculate the buckling load of a single 

column. The results are shown as stability curves in Figure 2.15 (page 20).  

 

The Euler buckling load is the buckling load of an ideal column. An ideal column is perfectly 

straight, homogeneous and free of residual stresses. In practice an ideal column does not 

exist. The Euler buckling load is an upper limit of the real buckling load (black curve).  
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The buckling load can be calculated by formulas in the Dutch code (NEN 6771). The NEN 

6771 is used in the whole of the Netherlands and can be used as referential point for other 

calculation methods (red curve).  

 

The Matrix Frame calculation is based on the finite element method. Matrix Frame does not 

automatically include initial deflections or residual stresses. The initial deflection and the 

residual stresses must be inserted manually.  

 

The column can be divided in small columns. All of these columns are fixed together. The 

joints of the columns have a (different) horizontal displacement. Using this, the shape 

imperfections can be introduced.  

 

The residual stress can be introduced by splitting the column into two columns. The 

separated columns are connected by hinged struts. These struts are used to obtain the same 

deflections in both columns. The section properties of each separated column must be equal 

to the half of the section properties of the original section. The steel grades of the two 

columns must be different (one column steel grade S235 and one column steel grade S460, 

average 347.5). The loads on the column must be distributed over the columns in proportion 

to the yield stresses. The buckling load can be calculated by a geometrical and physical non-

linear analysis. The result of the Matrix Frame calculation is the green curve in Figure 2.15.  

 

A non-linear analysis is made to find a formula for the total deflection of the column. The 

total deflection is necessary to calculate the buckling load. The following formula is the 

result of the differential equation.  

( )
2

, 1 , 1 , , 1 , 1

,
, , 1

8 8
i i i i

total i i total i E i total i total i
i i

total i
E i total i i

F z L F z
F F e F e F

EI EI
e

F F F

− − − −

−

 
+ + + − 

 =
− −

 

 

The index ‘i’ corresponds to the i
th

 load case. The index ‘i-1’ corresponds to the load on the 

column before the i
th

 load case starts. Force Fi-1 results to yielding in a part of the section. 

The result of the formula (etotal,i) is the total deflection in the i
th

 load case.  

 

To calculate the buckling load, not only the total deflection has to be calculated, but also the 

stresses in the section. The stresses can be calculated by the following formulas.  

, , 1i total i total ie e e −= −  

, 1 ,i i total i total i iM e F e F−= +  

, , 1
i i

top i top i
i i

F M

A Z
σ σ −= − −  

, , 1
i i

bottom i bottom i
i i

F M

A Z
σ σ −= − +  

 

It is possible to take the residual stress into account with these formulas. The buckling load 

can be calculated by the following steps.  

a) The first yield point must be found.  

b) Stress in right flange and in left flange must be calculated 
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c) Calculated a reduced Euler buckling load for the reduced section 

d) The next yield point must be calculated 

e) Repeat step b and c till the Euler buckling load of the reduced section is lower than 

the load on the structure 

 

 

 

 

For four different calculation methods the stability curve is drawn. 

These curves can be found in Figure 2.15. The calculation methods are: 

� The black curve is the load according to Euler 

� The red curve is the load according to the Dutch code 

� The green curve in the load according to the Matrix Frame 

� The blue curve is the load according to the analysis in Appendix C 

 

The Euler buckling load is the upper limit of the real buckling load. The stability curve of all 

other buckling calculations is smaller. The upper limit is not exceeded.  

 

The results of the Matrix Frame calculations for non-slender structures are very 

conservative. According to the Matrix Frame calculation, a non-slender structure will never 

reach the yield load. The buckling loads according to the Dutch code and the results of the 

analysis in Appendix C are more realistic for non-slender structures.  

 

Figure 2.15: 

Stability curve for several 

calculations methods 
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The curve according to the analysis in Appendix C (blue curve) is divided in three parts. The 

stiffness of the first part (part AB) is large. Also the reduced stiffness (after partial yielding) is 

large enough to resist the loads. The deflections are small. The whole right flange and the 

half of the left flange yields before the column fail. The deflections in the second part (part 

BC) are larger than the deflections in part AB. In this second part, the left flange does not 

yield. The column fails if the right flange fully yields. The columns in the third part of the 

curve (part CD) are slender. The stiffness of the reduced section is too small to resist more 

loads and the column fails if the right flange partial yields.  
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Chapter 3 Unbraced Portal Frame 
 

In this chapter an unbraced Portal Frame will be analysed (Fig. 

3.1). The portal frame system includes two column sections and 

one rafter section. The columns are supported by two hinges. 

The frame is loaded by a uniformly distributed vertical load on 

the rafter. Self-weight has been neglected.  

 

 

3.1 Structure 

As discussed in Chapter 2.2 a section has an initial deflection 

due to the production. This initial deflection is idealised as a half sine function shape. 

Beside production imperfections there are also construction imperfections. The 

construction imperfection of an unbraced structure is an angle between the designed 

structure and the real structure (Fig. 3.1). According to the NEN 6771 (art. 10.2.5) this angle 

( )ψ  is 0.004 rad. Clearly, due to construction imperfections the structure is not symmetrical.  

 

The influence of the construction imperfections is larger than 

the influence of the production imperfections. Figure 3.2 

shows the production imperfections and the construction 

imperfections in one structure. Due to the production 

imperfections the bending moments in the middle of the 

columns increase. The bending moments in point B and in 

point C do not change due to the production imperfections. 

The bending moments in these points are larger than the 

bending moments in the middle of the column. In practice, 

the influence of the production imperfections is taken into account by 

applying the governing code equations. The construction imperfections are 

taken into account by manually adding them to the frame model.  

 

The analysis in this Chapter (App. H till K) is based on the failure mechanism of the columns. 

It is assumed that the columns are critical. Lateral buckling or other failure mechanisms in 

the beam has been ignored. This assumption has been checked afterwards.  

 

Due to asymmetry of the portal frame, the bending moment in point C is larger than the 

bending moment in point B. Column CD is heavier loaded than column AB. Column CD fails 

first. The analysis in this Chapter is based on the failure mechanism of column CD. The 

structure is a statically indeterminate structure to the first degree. The portal frame fails if 

two parts of the structure yield. The first part is joint C and the second part is joint B. It is 

assumed that the structure fails if the right hand column fails at joint C. 

 

 

3.2 Different types of analysis 

In this section four analyses are made (see also Section 2.4).  

 

� Geometrical linear analysis  

� Geometrical linear analysis with residual stress  

Figure 3.1: 

Structure 

Figure 3.2: 

Imperfections 
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� Geometrical non-linear analysis 

� Geometrical non-linear analysis with residual stress 

 

The easiest analysis is the geometrical linear analysis without residual stress (App. H). This 

analysis assumes in a linear relation between the deflection and the load. The deflection of 

the portal frame does not influence the reaction forces. The graph of this analysis can be 

limited by the plastic collapse load. This results in a bi-linear load-deflection graph.  

 

A little bit more difficult is a geometrical linear analysis where residual stress is taken into 

account (App. I). At a certain load, one of the columns will partial yield. The stiffness of this 

column decreases and the deflection increase. At a second load another part of the section 

starts to yield. The deflection increases again. The failure mechanism depends on the section 

properties and the lengths. The different failure mechanisms are discussed in Section 2.5. 

The linear analysis is made to better understand the non-linear analyses.  

 

In a geometrical linear analysis the deflections do not influence the reaction forces. In a 

geometrical non-linear analysis the deflections do influence the reaction forces. The total 

deflection influences on the internal stresses. If the deflection increases, the internal 

moments increase. If the moments increase, the ultimate load decreases. In Appendix J, the 

geometrical non-linear analysis for the portal frame is calculated without influence of 

residual stress. Residual stress is taken into account in the analysis of Appendix K. The 

formulas as results of the analysis in Appendix K are very complex. Computer programs like 

Excel or MatLab must be used to make calculations with these formulas.  

 

 

3.3 Calculation method 

The portal frame is loaded by a uniformly distributed load. The load results in bending 

moments and in normal forces. It is assumed 

that the beam will not fail. The column is critical. 

The largest moment in the column is the 

moment at the end of the column. This moment 

depends mainly on the deflection of the column. 

The deflection that will be calculated is the 

deflection in point C. This is not the maximum 

deflection (Fig. 3.3). The location of the 

maximum deflection is not constant. It is not 

necessary to calculate the maximum deflection 

and the location of the maximum deflection because this is not the critical cross-section. The 

critical cross-section is point C.  

 

The total deflection depends on the stiffness of the beam and the stiffness of the column. 

The total deflection has been split is two parts. The first part depends on the beam and the 

second part depends on the column.  

 

The beam is loaded by a uniformly distributed load and a bending moment at both ends of 

the beam. Due to this load, the beam deflects and rotates. The rotation at the end of the 

beam is the same as the rotation of the end of the column. The deflection of the column is 

Figure 3.3: 

Deflection 
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the multiplication of the rotation at the end and the column length. This part of the 

deflection depends on the stiffness of the beam. 

 

The second part of the deflection depends on the column. Both ends of the column have a 

degree of freedom. One end of the column is connected to the beam. The rotation is limited 

by the beam. The rotation of the beam is already taken into account at the first part of the 

deflection. The beam is not supported horizontally. The horizontal displacement of the beam 

is only limited by the column. The other end of the 

column is the support. The support is a hinge and 

can rotate freely. The support cannot displace. 

Both ends together can be schematized as a 

cantilever beam with a free end (Fig. 3.4). The 

loads on this cantilever  beam are the reaction 

forces of the support. The portal frame is out of 

square. In other words: the horizontal and vertical 

reaction forces are not perpendicular or parallel to 

the working line of the cantilever beam. A 

remaining force perpendicular to the cantilever 

beam is introduced. This remaining force depends 

on the reaction forces and the total deflection.  

 

The total deflection of column AB and the total deflection of column CD can be 

calculated. Both columns are part of one structure. The difference in deflection is the 

elongation of the beam. The elongation of the beam is very small compare to the deflection 

of the columns and can be neglected. In other words: the deflection of column AB is equal to 

the deflection of column CD. This equilibrium is the basic of the analyses in Appendices H, I, J 

and K.  

 

 

3.4 Calculation according to the analysis of Appendices J and K 

As discussed before four analyses have been made. Two geometrical linear analyses and two 

geometrical non-linear analyses. These analyses can be found in appendices H till K. The 

physical properties result in an upper limit of the load. The geometrical non-linear analyses 

are closest to reality. Because of this, the geometrical non-linear analyses are most 

interesting. The geometrical linear analyses are made to better understand the geometrical 

non-linear analyses. The geometrical linear and the geometrical non-linear analyses have the 

same starting point. 

 

The calculation method is discussed in Section 3.3. All analyses are based on transversal and 

rotation equilibrium conditions and on equilibrium in the deflection of the columns. In the 

geometrical linear analyses the deflections do not have any influence on the moment 

distribution in the structure. In the geometrical non-linear analyses the deflections do 

influence the moment distribution. Because of this influence the analyses and the formula 

become very complex.  

 

Figure 3.4: 

Deflections 
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Two geometrical non-linear analyses are made. One with and one without residual stress. 

The analysis with residual stress is divided in two parts. In total there are three sets of 

formulas to calculate the ultimate load. The different parts correspond to the yield parts.  

 

The first set of formulas can be used to calculate the deflections and the stresses till the 

section starts to yield. Due to the combination of a compression force and a positive bending 

moment, the right flange of the section yields first.  

 

The second part can be used if the right flange partial yields and the stiffness of the reduced 

section is large enough to resist more loads. The stiffness of the reduced section is large 

enough if the denominator of the formula to calculate the additional deflection results in a 

positive value. In this part also the shift of the centre of gravity in the effective section must 

be taken into account. The second part ends if the left flange partial yields too or the right 

flange fully yields.  

 

The third part can only be used if both flanges  partial yield and the stiffness is large enough 

to resist more loads. In the most calculations the third part does not occur. In the third part, 

the midsection of the column has changed in a symmetric section. Due to the generalisation 

of the stress, the whole section is symmetric. The load is located in the effective centre of 

gravity again.  

 

It is important to know that one column is heavier loaded than the other column. Due to this 

difference only one column will (partial) yield. The stiffness of only one column decreases. 

The stiffness of the other column remains constant.  

 

The following formulas can be used to calculate the reaction forces, the bending moments 

and the additional deflections in several load cases. 

 

The first load case: 

( ),1 1 ,1½D bm totalV q L e= +  

( ),1 1 ,1½A bm totalV q L e= −  

( ),1 1 ,1 ,1 ,1½B bm total total A clnM q L e e H L= − −  

( ),1 1 ,1 ,1 ,1½C bm total total A clnM q L e e H L= + +  

,1
,1 2 2

,1 1 ,1 1

12

12 2
cln bm cln

total
bm cln bm cln cln bm cln bm

L EI EI
e

EI EI q L L EI q L L EI

ψ
=

− −
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,1 ,1

,1 1 2 3 2 2
,1 ,1 1 ,1 1

12

12 8 12 2
bm cln cln bm cln

A cln
bm cln cln cln bm bm cln bm cln cln bm cln bm

L L EI EI EI
H q qL

L L EI L EI EI EI q L L EI q L L EI

ψ 
= −   + − − 

 

 

The second load case: 

( )
( )

( )( ) ( )
( )( ) ( )

1
2,2 1 2 2 1 2

1
2,2 1 2 2 1 2

1 1
2 2,2 2 1 2 1 2 2 1 2 1 2 2 ,2

1 1
2 2,2 2 1 2 1 2 1 2 1 2 ,2

2

2

D bm

A bm

C bm bm A cln

B bm bm A cln

V q e q L e e

V q e q L e e

M q L e e e e z q e L e e z H L

M q L e e e e q e L e e H L

= + + +

= − + − −

= + + + + + + + + +

= − − + + − − −
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The third load case: 

( ) ( )
( ) ( )
( )( ) ( )( )
( )( ) ( )( )

1
2,3 3 1 2 3 1 2 3

1
2,3 3 1 2 3 1 2 3
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An example of the total deflection of the non-linear analysis is shown in Figure 3.5.  
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3.5 Calculation according to the Dutch code 

In Section 2.8 a buckling calculation of a single column is made according to the Dutch code 

(NEN 6771). This code also contains a calculation method for the ultimate load calculation 

for the column of a portal frame. If the portal frame is only loaded by a vertical point load on 

each column, the ultimate load calculation of an unbraced portal frame is almost the same 

as the buckling calculation of a single column. The only difference is the buckling length. In 

this study is chosen for a uniformly distributed load on the beam. This load results in 

compression forces and in bending moments. The formula to calculate the buckling load for 

a structure with a point load only is not valid anymore. Another formula must be used. A 

linear analysis must be made to transform the uniformly distributed load in point loads and 

bending moments. With these values a code check can be made.  

 

A very important issue to calculate the ultimate load is the buckling length. The buckling 

length of the column of the portal frame depends (beside the length of the column) on two 

aspects.  

� First (at the most important) is the type of the portal frame. Is the portal frame 

braced or not. The buckling length of a braced portal frame is maximum the column 

length. The buckling length of an unbraced portal frame is at least twice the column 

length.  

� Second the buckling length depends on rotation freedom. The rotation freedom 

depends on the stiffness of the column, the stiffness of the beam and the type of 

support.  

 

After a linear analysis, the column of the portal frame can be schematized as a single column 

(with a buckling length instead of a system length) loaded by a normal force and a bending 

moment. Because of the presence of the bending moments, the formula for the buckling 

load in Chapter two is not valid anymore. The following formula must be used.  

Figure 3.5: 

Load-deflection 
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 (NEN 6771 art. 12.3.1.2.1) 

 

In this formula is: 

; ; ; ; ;,  c s d y equ s dN M  The loads on the column 

; ;c u dN    Plastic normal force 

yn    Relation between the Euler buckling load and the load on the structure 

   (Note: for the Euler buckling load, the buckling length must be taken) 

; ;y u dM    Plastic bending moment 

*
ye    Imperfection parameter 

 
*
ye must be calculated by the following formula: 

( ) ; ;*
; 0

; ;

y u d
y k y rel

c u d

M
e

N
α λ λ= −  

 

 

3.6 Calculation according to Matrix Frame 

Matrix Frame has been used to calculate the failure load of an unbraced portal frame. The 

beam has been made strong enough to be sure that the column is critical. The columns of 

the portal frame have been split in four points. For the calculation it is not necessary to split 

the column in parts. This has been done to get a better understanding on the deflections and 

the moment distribution. Using small elements, the maximum deflection and the maximum 

bending moment can be found easily. As discussed before the maximum bending moment is 

at the end of the column and the location of the maximum deflection is variable. The 

calculation file of Matrix Frame can be found in Appendix L.2.  

 

In Section 2.9 three calculation methods have been discussed to take care of the residual 

stress. One problem is the amount of residual stresses. In Chapter two a HE 450A section is 

chosen to calculate the ultimate load. The amount of residual stress in this section is 30% of 

the yield stress. For the calculations in this Chapter a HE 360A section is chosen. This section 

is chosen to be sure that the column is critical. A heavier column results in failure of the 

beam. The amount of residual stress in this section (50% of the yield stress) is larger than the 

amount of residual stress in a HE 450A section. For a better result the stresses in Matrix 

Frame the yield stress must be changed. This is not possible. As comparison the amount of 

residual stress of 30% is taken to calculate the ultimate load by Matrix Frame. The 

differences will be discussed in Section 3.7.  

 

In the calculation of the single column, the first calculation method did not result in correct 

values. This calculation method will not be discussed in this Chapter. 

 

The second calculation method was to bisect the section properties of all elements. The 

calculation is made twice. The steel grade of the first calculation is S235 and the steel grade 

of the second calculation is S460. (For a real comparison the yield stresses must be 177 

N/mm
2
 and 532 N/mm

2
). The summation of these calculations is the ultimate load. The 
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sections and the loads at both calculations are the same, so the geometrical deflections are 

equal in both calculations. According to the geometrical and physical non-linear analysis, the 

ultimate load decreases if the deflection increases. This can result in differences in the total 

ultimate load. The real ultimate load is slightly less that the ultimate load calculated by this 

method. In Section 2.9 is proofed that these differences are negligible.  

 

The third calculation method was to split the sections and connect the sections with a 

hinged strut. The total load must be properly distributed over the yield stresses. For a single 

column it was relative easy to distribute the load. It is very complicated to distribute the 

loads of a portal frame. Two portal frames must be made. Using hinged struts the normal 

forces can be divided properly. The bending moments depends on the loads and on the 

deflections. The deflections in both sup-structures are equal. The distribution of the bending 

moments cannot be steered easily.  

 

It is very complicated to get proper results of the third calculation method. The second 

calculation method has been used to calculate the ultimate load.  

 

Figure 3.6 shows two load-deflection 

graphs. The blue curve is the 

calculation without residual stress. 

The red curve is the calculation with 

residual stress (according to the 

second calculation method).  

 

The curve with residual stress is lower 

than the curve without residual stress. 

For slender structures these 

differences are very small. For non-

slender structures the difference is 

about five percent. The curve with 

residual stress will be used to 

compare with other calculation 

methods.  

 

 

3.7 Conclusions 

Chapter three was related to an unbraced portal frame. The ultimate load has been 

calculated by three calculation methods. The results of the calculations are expressed in a 

load-deflection graph (Fig. 3.7). 

 

An analysis is made to find three sets of formulas to calculate the additional deflection. 

These sets correspond to different yield phases of the structure. These formulas can be used 

to calculate the ultimate load. This calculation method is the blue curve in Figure 3.7.  

 

To calculate the ultimate load according to the Dutch code (red curve) a linear analysis must 

be made. The uniformly distributed load must be transform to normal forces and bending 

moments. These values can be used as input for the unity checks. 
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The Matrix Frame calculation is divided in two parts. Both parts have a different yield stress. 

Both parts together illustrate the residual stress. The real amount of stress cannot be 

schematized in Matrix Frame. The result of this calculation method is the green curve in Fig. 

3.7.  

 

 

 

 

 

 

 

 

 

 

 

� The red curve is the load according to the Dutch code 

� The green curve in the load according to the Matrix Frame 

� The blue curve is the load according to the analysis in Appendices J and K 

 

 

The shape of all graphs in Figure 3.7 is the same. One aspect is interest enough to explain. All 

graphs show a maximum load at a certain column length. This illustrates that a short column 

can resist less load than a longer column. This cannot be explained by normal forces. The 

explanation of the strange shape can be found in the bending moments. The bending 

moments depend on the rotation at the end of the beam and the deflection of the column. A 

short column cannot deflect easily  
3

3
cln cln

cln cln

ML EI
M

EI L

ϕϕ
 

= → = 
 

. If the column length 

deceases, the bending moment increases. The stress in the column due to the bending 

moments increases. This results in a lower ultimate load.  

 

Figure 3.7: 

Load-deflection 
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Chapter 4 Braced portal frame 
 

This Chapter is about a braced portal frame. The 

unbraced portal frame has been discussed in Chapter 

three. The main difference between the braced portal 

frame and the unbraced portal frame is the horizontal 

displacement of the beam. The horizontal 

displacement is limited in a braced situation.  

 

The construction imperfections have been discussed in 

Chapter three. In an unbraced structure, the 

construction imperfections are very important for the 

stability calculations. In a braced situation the 

horizontal deflection is limited. The influence of the production 

imperfections is very small. Te production imperfections can be neglected. 

The initial deflection of a braced portal frame is the same as the initial 

deflection of a single column. The column of the portal frame is curved (Fig. 4.1). As same as 

the unbraced portal frame (Chapter three) the braced portal frame is supported by hinges.  

 

The columns and the beam are fixed together. The rotation at the end of the column is equal 

to the rotation at the end of the beam. A rotation of the beam results in a deflection of the 

column and a rotation of the column results in a deflection of the beam. The portal frame is 

loaded by a uniformly distributed load. Because of the load, the beam deflects, the end of 

the beam rotates and the column deflects.  

 

The presence of the beam limits the deflection of the column in a second order calculation. 

The deflection of the first order calculation of the column of a braced portal frame is larger 

than the deflection of the first order calculation of a single column. This relation can be 

changed in the second order calculation.  

 

 

4.1 Failure of the structure 

It is assumed that the columns are critical. 

The beam will not fail. This assumption 

must be checked afterwards. The columns 

are loaded by normal forces and bending 

moments. If the dead loads of the 

columns are neglected, the normal forces 

in the columns are constant. The bending 

moments are variable over the length of 

the column. These moments depend on 

the reaction forces and on the deflection of the column. The distribution of the 

bending moments is not predictable at the start of the calculation. There are a few moment 

distributions possible (Fig. 4.2). A column can fail on many locations.  

 

The boundary conditions for both ends of the column are not equal. The support is free of 

bending moments and can rotate easily. The other end of the column is connected to the 

Figure 4.1: 

Structure 

Figure 4.2: 

Moment 

distribution 
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beam and has a rotation limitation. This end can resist some bending moments. Due to these 

different ends, the maximum deflection is not exactly in the middle of the column. The 

differences between the real maximum deflection and the deflection in the middle of the 

column are very small. It is assumed that the maximum deflection is in the middle of the 

column.  

 

A non-slender column has a small deflection. The location of the maximum bending moment 

is at the end of the column. A slender column has a large deflection. The location of the 

maximum bending moment is (more or less) in the middle of the column. The relative 

slenderness depends on the section properties and on the length of both the column and 

the beam. The middle of the column and the end of the column are two logical failure 

locations. These two locations will be analyzed. The lowest load is the ultimate load of the 

structure.  

 

 

4.2 Calculation according to the analysis of Appendices N and O 

The portal frame is a two degrees statically undetermined structure. Because of symmetry, 

the horizontal support in point C can be taken zero. The other reaction forces can be 

calculated by equilibrium conditions and rotational equilibrium. The columns AB and CD are 

loaded equally. Both columns fail at the same load. In the analyses, the columns are critical. 

Failure of the beam must be checked afterwards. 

 

The column of the portal frame can be schematized as a single column. The uniformly 

distributed load on the beam results in a formal force and a bending moment on the column 

and a rotation of the column. The beam limits the rotation of the column. This limitation can 

be schematized as a rotational spring.  

 

For the calculation of the ultimate load a geometrical linear analysis and a geometrical non-

linear analysis have been made. As same as the analyses of the unbraced portal frame, the 

results of the analyses will be limited by physical properties. The geometrical linear analysis 

can be found in Appendix M. The geometrical non-linear analysis can be found in Appendix 

N. In Appendix O the geometrical non-linear analysis has been extended by the influence of 

residual stress.  

 

The geometrical linear analysis (based on equilibriums) results in a formula of the bending 

moments and in a formula of the maximum deflection. The results of the geometrical linear 

analysis together with the imperfection are used as initial position for the geometrical non-

linear analysis.  

 

The geometrical non-linear analysis is based on the equilibrium between the internal and the 

external bending moments. The internal moments are partial the bending of the column 

multiplied by the stiffness of the column and partial the bending of the beam multiplied by 

the stiffness of the beam. This last part is included in the rotational spring. The external 

moments are the total load multiplied by the total deflection and the bending moment at 

point C.  
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The geometrical non-linear analysis results in three sets of formulas to calculate the ultimate 

load. The first set can be used till the right flange starts to yield. The second set can be used 

till the right flange fully yields or till the left flange starts to yield. The third set can be used if 

both flanges partial yield. The different parts are equal to the different parts in the unbraced 

portal frame. The different parts are discussed in Section 3.4. Due to the different moment 

distributions, the third set of formulas is hardly used.  

 

The following formulas can be used to calculate the additional deflections: 
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The formulas for the total deflections are: 
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The additional rotation: 
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The horizontal reaction forces: 
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The vertical reaction force: 

1 10.5 bmN q L=  

2 20.5 bmN q L=  
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3 30.5 bmN q L=  

 

The additional bending moments can be calculated by the follow formulas. 

( ),1 1 1top clnM F F L= − ∆  

( ),1 1 1 1 ,10.5 0.5middle cln bm totalM F F L q L e= − ∆ +  

 

( ),2 2 2top clnM F F L= − ∆  

( ) ( ),2 2 2 1 ,2 ,1 2 ,20.5 0.5 0.5middle cln bm total total bm totalM F F L q L e e q L e= − ∆ + − +  

 

( ),3 3 3top clnM F F L= − ∆  

( ) ( ) ( ),3 3 3 1 2 ,3 ,2 3 ,30.5 0.5 0.5middle cln bm total total bm totalM F F L q q L e e q L e= − ∆ + + − +  

 

A calculations example has been made in Appendix P.  
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Figure 4.3 shows two load-deflection graphs for a braced portal frame. For the top graph the 

first and the second set of formulas have been used. For the lowest graph only the first set is 

used. After partial yield, the stiffness was reduced too much. Another difference between 

the graphs is the location of the largest bending moment. In the top graph, the maximum 

bending moment is at the end of the column. The maximum bending moment in the lowest 

graph is located in the middle of the column.  

 

 

4.3 Calculation according to the Dutch code 

According to the NEN 6771 the calculations of a braced portal frame is the same as for an 

unbraced portal frame (Section 3.5). The main difference between the braced and the 

unbraced calculation method is the buckling length. The buckling length of a braced portal 

frame is maximum the column length. The buckling length of an unbraced portal frame is at 

least twice the column length. Other differences are the input parameters (See App. G for 

more details).  

 

The uniformly distributed load on the portal frame must be transformed to a bending 

moment and a normal force. This can be done by a linear calculation. (See App. P.3 for a 

calculation example according the Dutch code.) The ultimate load can be calculated by the 

following formula: 
*

; ; ; ; ;; ;

; ; ; ;

1.0
1

y y equ s d c s d yc s d

c u d y y u d

n M N eN

N n M

+
+ ≤

−
 (art. 12.3.1.2.1) 

 

In this formula is: 

; ; ; ; ;,  c s d y equ s dN M  The loads on the column 

; ;c u dN    Plastic normal force 

yn    Relation between the Euler buckling load and the load on the structure 

   (Note: for the Euler buckling load, the buckling length must be taken) 

; ;y u dM    Plastic bending moment 

*
ye    Imperfection parameter 

 
*
ye must be calculated by the following formula: 

( ) ; ;*
; 0

; ;

y u d
y k y rel

c u d

M
e

N
α λ λ= −  

 

 

4.4 Calculation according to Matrix Frame 

Matrix Frame has been used to calculate the ultimate load of a braced portal frame. The 

beam has been made strong enough to be sure that the columns are critical. The columns 

are split is small elements. Different horizontal displacements of the joints simulate the 

initial deflection. This schematization of the imperfections is as same as in the calculation of 

the single column (Section 2.9 or App. F). Imperfections of the beam are not taken into 

account.  
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Two different calculations are made. One calculation with residual stresses and one 

calculation without residual stresses. The residual stress is inserted by using two 

calculations. The section properties of all construction elements are bisected. In the first 

calculation of the ultimate load, all sections have steel grade S235. In the second calculation 

of the ultimate load, all sections have steel grade S460. The summation of these calculations 

is the total ultimate load. The amount of residual stress in the Matrix Frame calculation does 

not correspond with the amount of residual stress in the analysis. The amount of residual 

stress must be larger. This cannot be done because of the input limitations of Matrix Frame.  

 

Figure 4.4 shows two load-

deflection graphs. The red curve is 

the calculation without residual 

stress. The blue curve is the 

calculation with residual stress.  

 

The curve with residual stress is 

lower than the curve without 

residual stress. The difference 

between the calculation with and 

without residual stresses decreases 

from fifteen percent for non-

slender structures till zero for 

slender structures. The curve for 

the ultimate load calculation 

including residual stress will be used as comparison for calculation methods. 

 

The calculation file of Matrix Frame can be found in Appendix P.4. 

 

 

4.5 Conclusions 

Chapter four was related to a braced portal frame. The ultimate load has been calculated by 

three calculation methods. The results of the calculations are expressed in a load-deflection 

graph (Fig. 4.5). 

 

An analysis is made to find three sets of formulas for the additional deflection. These sets 

correspond to different yield phases of the structure. These formulas can be used to 

calculate the ultimate load. This calculation method is the blue curve in Figure 4.5.  

 

To calculate the ultimate load according to the Dutch code (red curve) a linear analysis must 

be made. The uniformly distributed load must be transformed to normal forces and bending 

moments. These values can be used as input for the unity checks. 

 

The Matrix Frame calculation is divided in two parts. Both parts have a different yield stress. 

Both parts together illustrate the residual stress. The real amount of stress cannot be 

schematized in Matrix Frame. The result of this calculation method is the green curve in 

Figure 4.5. 
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� The red curve is the load according to the Dutch code 

� The green curve in the load according to the Matrix Frame 

� The blue curve is the load according to the analysis in Appendices N and O 

 

The graphs of figure 4.5 shows some points of attention.  

 

The first point of attention is the curve according to the Dutch code. The calculation 

according to the Dutch code does not always results in the lowest ultimate load. For the 

lengths between five and thirteen meters (for this calculation example) the results of the 

code calculation are larger than the results of the Matrix Frame calculation. In the Matrix 

Frame calculation the amount of residual stress is lower than it should be. The calculated 

ultimate load is the summation of two calculations. Due to the geometrical and physical 

deflections, the calculated ultimate load is 

a bit larger than the real ultimate load. 

This should contain that Matrix Frame 

calculation is an upper limit for the real 

ultimate load.  

 

The same problem has been seen in the 

buckling calculations of the single column. 

Figure 2.15 (repeated in Figure 4.6) shows 

stability curves for several calculation 

methods. According to Matrix Frame 

(green curve), the structure cannot reach 

Figure 4.5: 
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the plastic yield load. For non-slender structures, the results of the buckling calculations 

according to Matrix Frame are smaller than the results of the code calculations (red curve).  

 

The cut down top of the graph (Fig. 4.5) can be explained by not reaching the plastic yield 

load in the Matrix Frame calculation  

 

The second point of attention is the comparison between the code calculations and the 

analysis calculations (Fig. 4.5). The differences are very small. For slender structures the 

analysis calculation results in a higher ultimate load and for non-slender structures the 

analysis calculation results in a smaller ultimate load. The analysis calculation can be used to 

calculate the ultimate load for a braced portal frame. 
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Chapter 5 Extended Frame 
 

The last analyzed structure of this study is a braced 

extended frame. The extended frame has three floors 

and three bays. The frame is vertically supported on 

four hinges (Fig. 5.1). 

 

All construction elements are fixed together. The 

structure will be loaded by some point loads and some 

uniformly distributed loads. Due to these loads, the 

beams and the columns deflect.  

 

If the columns deflect, the connected ends rotate and 

the connected construction elements deform. The 

whole structure will resist if the columns deflects due to second order effects. 

 

 

5.1 Initial deflections 

The frame exists in many columns and many beams. 

It is assumed that the columns are critical. Failure 

mechanisms of the beams are not taken into 

account. The initial deflections of the beam have no 

effect on the stress distribution of the columns. The 

initial deflections of the beams are neglected.  

 

The extended frame is braced. In other words: the 

ends of the column will not displace in lateral 

direction. The initial deflection of the columns in 

this frame is taken equally to the initial deflection of a single column (Chapter 

one). The initial deflection of the column is a half sine shape. The maximum 

deflection is one over thousand times the column length (NEN 6771 art. 10.2.5..1.3). See 

Figure 5.2 for the starting deflections.  

 

The direction of the initial deflections is taken in the most unfavourable direction. The most 

unfavourable direction is the direction in which the column deflects due to the load on the 

structure. The loads on the structure will be discussed in Section 5.2.  

 

 

5.2 Loads 

The loads on the structure are based on the requirements of the Dutch code. The NEN 6702 

is about loading rules and safety rules. This volume of the Dutch code is used to calculate the 

ultimate load. The NEN 6702 describes three types of loads: permanent loads, variable loads 

and special loads. The different loads are worked out in Appendix Q.  

 

The permanent load of the column is the dead load of the column only. The permanent load 

of the beam is partial the dead load of the beam, partial the dead load of a floor and partial 

the dead load of a partition wall. Wind load have a positive influence on the stability of the 

Figure 5.2: 

Imperfections 

Figure 5.1: 

Structure 
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structure. The influence of wind load is neglected. Special loads are not taken into account in 

this study. The permanent loads and the variable loads are uniformly distributed loads on 

the floors. Due to symmetry, the permanent loads can be schematized as point loads. Some 

floors are loaded by a heavy vertical variable load. The variable loads are not located on 

every floor. It is not allowed to schematize these loads as point loads.  

 

The extended frame is heaviest loaded if all floors are loaded. The probability that all floors 

are maximum loaded is very small. According to the Dutch code (NEN 6702) it is not 

necessary to calculate with this extremely load-situation. It is allowed to keep some floors 

free of variable loads. For the second order analysis the largest deflection is most 

interesting. For the highest deflections, the frame is loaded symmetrically. Two load 

combinations are calculated (see Fig. 5.3 and Fig. 5.4 for the different load combinations).  

 

 

 

In the first load combination only one floor is loaded by a variable load. Due to this load, the 

columns are loaded by normal forces and by bending moments. The maximum normal force 

can be found in column BF and in column CG. The difference between the normal force in 

column BF and the normal force in column FJ is the required load F4. The required loads are 

very small compare with the variable loads. There is only a small difference between the 

normal forces.  

 

The bending moments in column FJ and the bending moments in column GK are much larger 

than the bending moments in other columns of the structure. Taken the combination 

between the bending moments and the normal forces, column FJ and column GK are loaded 

heaviest. The analysis and the calculation are about failure of column FJ.  

 

In the second load combination two floors are loaded by a variable load. Again there is a 

difference between the largest normal forces and the largest bending moments. Column BF 

and column CG are loaded by the largest normal forces. Column AE and column DH are 

loaded by the largest bending moments. Because of time limit and complexity the second 

load combination has not been analyzed. The different load cases are compared together 

using of a computer made finite element analysis (App. U.4). 

 

Figure 5.3: 

Load combination 

Figure 5.4: 

Load combination 
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For only the first load combination, an analytical solution is found. This Chapter is mainly 

concentrated on the first load combination.  

 

 

5.3 Elongations 

The most important issue of the non-linear analysis is the deflection. The moment 

distribution in the frame is related to the deflections of the frame. Instead of other 

structures, the columns of the extended frame are not loaded equally. The columns in the 

middle of the structure are heavy loaded while the loads on the columns at the sides of the 

structure are very small. This results in elongation differences.  

 

The study is based on a strong beam/weak column analysis. A weak column contains a small 

moment of inertia and a small cross-section. A small cross-section results in large 

elongations cln

cln

FL

EA
δ
 

= 
 

.  

 

Due to the uniformly distributed load, all beams contain bending moments. These bending 

moments result in a rotation at the end of the beam. Elongation differences result in a 

rotation of the beam too. The following formulas can be used to calculate the rotations. 

1 3
bm

bm

ML

EI
ϕ =  

2
cln

bm cln

FL

L EA
ϕ =  

 

The rotation due to the bending moments depends on the section properties of the beam. 

The rotation due to the elongation differences depends on the section properties of the 

column. A combination of a slender column and a non-slender beam results is a major 

influence of the elongation differences. For slender columns, the elongation differences 

must be taken into account.  

 

Figure 5.5 shows two structures. In both structures the bending moment distribution is 

displayed. In the left structure, the elongation is neglected. In the right structure, the 

elongation is taken into account. The differences between these structures are the 

numerical value of the bending moments. In the structure of figure 5.5, the bending 

moments in the column increase with 35% if elongation is taken into account. This difference 

cannot be neglected.  
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Figure 5.6 contains two graphs. 

Both graphs contain the ultimate 

load for the extended frame, 

calculated by the analysis of 

Appendices S and T (Section 5.4). 

In the blue curve, the elongation 

differences are not taken into 

account. The elongation 

differences are taken into account 

at the green curve. Both curves 

have the same shape (will be 

discussed in Section 5.7). The 

numerical differences between the 

curves are about 15%. The 

elongation differences are taken 

into account at the ultimate load 

calculation according to the analysis.  

 

 

5.4 Calculation according to the analysis of Appendices S and T 

For the calculation of the ultimate load, a geometrical linear (App. R) and a geometrical non-

linear analysis (App. S and App. T) are made. As same as in the braced portal frame (Chapter 

four), the results of the linear analysis is the input for the non-linear analysis. Physical 

properties are used as limitations for the results of the ultimate load calculation.  

 

Due to the load, column FJ and column GK are heaviest loaded. It is assumed that only these 

columns yield and fail. Due to the symmetry of the structure and the symmetry of the load, 

column FJ and column GK are loaded equally. Column FJ and column GK yield at the same 

moment. 

 

All elements of the structure are connected together. If one element of the structure is 

loaded, all elements deflect. The load will be carried by the whole structure. The stiffness of 

all structure elements has effect on the deflection of the loaded element. It is nearly 

impossible to take the deflection of all elements into account in a manual analysis. Some 

virtual hinges are used to make the analysis manageable. The loaded element is beam JK. 
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The column JN and FJ and beam IJ have a major influence on the deflection of beam JK. The 

bending moments on both sides of these construction elements are taken into account. For 

simplicity the deflections of other construction elements are neglected. In other words: a 

virtual hinge is taken in the points E, H, M and P.  

 

As same as in the analysis of the braced portal frame, the column has been schematized as a 

single column. The initial deflection for the geometrical non-linear analysis is partial the 

starting deflection (imperfections) and partial geometrical linear deflection (due to the 

uniformly distributed load). The influence of all construction elements has been schematized 

as a rotational spring on both sides of the column. The stiffness of these springs depends on 

the different construction elements. Because of safety only one fourth of the stiffness of the 

structure is taken into account.  

 

The non-linear analysis of the frame is based on the equilibrium between the internal 

bending moments and the external moments in column FJ. The internal moments are partial 

the bending of the column multiplied by the stiffness of the column and partial the bending 

moments of the rotational spring. The external bending moments are partial the normal 

force multiplied by the total deflection and partial the bending total bending moments at the 

ends of the column.  

 

The required loads are much smaller than the ultimate loads. The influences of the required 

loads on the additional deflection are very small. The analysis becomes much more complex 

if the required loads are taken into account. At the analysis of the residual stress the 

formulas become unmanageable if the required loads are taken into account. For simplicity 

and because of the small influence the required loads are neglected in the analysis. The 

required loads are taken into account at the calculation of the stresses.  

 

The residual stress distribution has been discussed in Chapter one. 

The same residual stress distribution will be used in the analysis of 

the extended frame (Fig. 5.7 as reminder). Due to the presence of 

residual stress, a loaded section will partial yield before the 

structure fails. The stiffness decreases if the section partial yields. 

A reduced stiffness results in larger deflections.  

 

The spring stiffness does not depend on the stiffness of yielded 

columns (FJ and GK), but on the stiffness of the other construction 

elements. The stiffness of these elements remains constant. The 

stiffness of the rotation spring remains constant too.  

 

In Appendix S a geometrical non-linear analysis of an extended frame has been 

made. In Appendix T the geometrical non-linear analysis is extended by the influence of 

residual stress. The physical properties limit the result of the geometrical non-linear 

calculation. The analysis of Appendix T results in much more complex formulas than the 

analysis in Appendix S. Totally three sets of formulas are found.  

 

 

 

Figure 5.7: 

Residual stress 

distribution 
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The following formulas can be used to calculate the additional deflection: 
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To calculate the ultimate load, the formulas for the geometrical linear rotations, the 

geometrical linear bending moments and the additional rotation must be calculated too.  
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A calculation example can be found in Appendix U. 

 

 

5.5 Calculation according to the Dutch code 

The ultimate load calculation for a braced extended frame is equal to the ultimate load 

calculation of the braced portal frame. This is clearly discussed in Section 4.3. The calculation 

of the ultimate load according to the Dutch code is based on the results of a geometrical 

linear analysis. Because of time limitation only a few calculations has been made. The results 

of the calculation can be found in Section 5.7. 

 

 

5.6 Calculation according to Matrix Frame 

As comparison, the ultimate load is calculated by Matrix Frame too. For a real comparison 

the initial deflection and the residual stress should be inserted manually in Matrix Frame. For 

the manual input of the imperfections every column must be split in four parts. Every joint 

must have a different horizontal displacement. The input of the Matrix Frame calculation is 

time consuming (every part must be changed if the length changes). The calculation time of 

Matrix Frame is time consuming too. It is chosen to calculate just a few lengths to make it 

possible to compare the results with the results of other calculation methods.  
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To take residual stress into account, 

two extra Matrix Frame calculations 

are needed. One with steel grade 

S235 and one with steel grade S460. 

The calculation method is the same 

as in other constructions and is 

clearly discussed in Section 2.9. 

Without the Matrix Frame 

calculation with residual stress, the 

comparison is not completed.  

 

The amount of residual stress is (as 

same as in the portal frames) less 

than it should be. This is because of 

the input limitations of Matrix 

Frame. The results of both Matrix Frame calculations can be found in Figure 5.8. 

The red curve is the ultimate load without residual stress and the blue curve is 

the ultimate load with residual stress. As seen before in the calculation of a braced portal 

frame, the residual stress reduces the ultimate load.  

 

The green curve is the calculation of another load combination (Fig. 5.4). The ultimate loads 

of this load combination are much lower (especially for slender structures). For the ultimate 

load calculation in this structure the wrong load combination is chosen. As academic model, 

this correct load combination is chosen.  

 

For the chosen load combination a bending moment at both ends and an elongation 

difference must be taken into account. This is quite different as the analysis of a braced 

portal frame. The analysis of the second load combination can be made by the same way as 

did in Chapter four (braced portal frame). This analysis does not have an extra contribution 

to this study.  

 

The blue curve will be used to compare the ultimate load with other calculation methods.  

 

 

5.7 Conclusions 

Three calculation methods are used to calculate the ultimate load of the extended frame. 

First a geometrical non-linear analysis is made. In this analysis residual stress is taken into 

account. The results of this calculation method are the blue curve in figure 5.9. Secondly the 

ultimate load is calculated according to the Dutch code (red curve). As third the ultimate 

load is calculated by Matrix Frame (green curve). Because of input limitations only a part of 

the residual stress is taken into account at the Matrix Frame calculations. The calculation 

according to the Dutch code and the calculations according to Matrix Frame are time 

consuming. Due to this, only a few calculations are made (every five meter instead of every 

two meter). This results in a less curved graph. The shape of the graphs is well visible.  
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� The red curve is the load according to the Dutch code 

� The green curve in the load according to the Matrix Frame 

� The blue curve is the load according to the analysis in Appendices N and O 

 

Two striking points of the graphs in Figure 5.9 will be discussed. These points are marked by 

the characters A and B.  

 

Point A is a strange course of the graph. For a column length of ten meters, the ultimate load 

is smaller than for a column length of eight meters but also lower than for a column of 

twelve meters. This shape can be explained by looking at the internal stresses. The internal 

stresses for a column length of ten and twelve meters are given in Figure 5.10 and Figure 

5.11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9: 

Ultimate load 

graphics 

0 200 400 600 800 1000 1200 1400 1600 1800
-600

-500

-400

-300

-200

-100

0

S
tr

es
s 

in
 t

he
 m

id
-s

ec
tio

n 
(N

/m
m

2)

Load (N/mm)

Figure 5.10: 

Internal 

stresses 

graphics 

Calculation braced 

extended frame 

 

Column: 

 Length: variable 

HE 360A 

Beam: Length: 5 m 

 HE 900A 

 

S355 

Calculation braced 

extended frame 

 

Column: 

 Length: variable 

HE 360A 

Beam: Length: 10 m 

 HE 900A 

 

S355 



49 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� The red curve corresponds with the stress in the right flange 

� The blue curve corresponds with the stress in the web  

� The green curve corresponds with the stress in the left flange.  

 

The first critical stress is 177.5 N/mm
2
. This value is half of the yield stress (the residual 

stress is the other half). The stress in the 

left flange (for the column length of 

twelve meters) does not reach the first 

critical stress. The column fails if the 

whole right flange yields. This occurs at a 

stress of 532.5 N/mm
2
 (1.5 times the 

yield stress). The stress in the left flange 

of the column of ten meters reaches the 

first critical stress. According to the 

chosen residual stress distribution (Fig. 

5.7), the half of the left flange yields. 

Due to this yielding, the effective cross-

section decreases. The stress in the 

effective cross-section increases. A 

lower ultimate load can be found. The same situation had been found 

in the analysis of the single column (see the blue curve of Fig. 5.12).  

 

The second striking point is the large difference between the calculation according to the 

Dutch code and the calculation according to the other calculation methods. The explanation 

of this is the safety in the Dutch code. The beam is very stiff compared with the column. This 

results in almost fixed ends of the column. This very stiff connection is used in the ultimate 

load calculation of the analysis and in the Matrix Frame calculations. According to the 

ultimate load calculation according to the Dutch code, it is not possible to create such a 

connection. The connections are taken less stiff. This results in a larger buckling length. For 

slender structures, the buckling length is an important factor of the ultimate load 

calculation. Due to this increase of the buckling length, the ultimate loads deceases.  
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With the exception of the ultimate load of the non-slender structures, the results of the 

analysis correspond with the results of the Matrix Frame calculations. The residual stress of 

the Matrix Frame calculation is less than the residual stress in the analysis. This cannot be 

solved because of input limitations of Matrix Frame. The analysis results in proper ultimate 

loads and can be used. 
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Chapter 6 Conclusions and recommendations  
 

The buckling loads of four steel frame structures have been derived analytically and 

numerically. The analyses included physical modelling of shape deviations and residual 

stresses. The results have been compared to those of code equations. These code equations 

also include the effect of shape deviations and residual stresses due to an extensive 

experimental program. 

 

Conclusions 

Due to residual stresses, a frame structure partially yields before it fails. If the structure 

partial yields, the effective cross-section and the effective stiffness decrease. A decreased 

section changes the course of the deflection. For every yielding part another formula must 

be derived. A realistic residual stress distribution is smooth and results in infinite numbers of 

formulas. The applied residual stress distribution has three yield levels. The analyses result in 

three formulas of the additional deflection. 

 

An analytical non-linear analysis of a steel frame structure is very time consuming. However, 

the resulting formulas are very attractive. Computer programs like Excel and MatLab can be 

used to calculate the ultimate load. Using variable parameters, the section properties and 

the length of the sections can be changed easily. This is very helpful in a design situation.  

 

Without imperfections the ultimate load predicted with non-linear finite element computer 

programs (such as Matrix Frame) are considerably larger than the ultimate load according to 

the Dutch code. With shape derivations and residual stresses will be introduced, the results 

of the Matrix Frame calculation are close to the results of the code rules.  

 

Matrix Frame cannot calculate with curved sections. The initial geometrical imperfections 

can only be introduced by splitting the column in small parts. All these parts are fixed 

together and every joint has a different location. Using initial geometrical imperfections 

influence the deflections that are computed in a geometrical non-linear analysis.  

 

Residual stresses result in partial yielding of a section. To take residual stresses into account 

a section can be modelled by two elements (with different yield stresses and half the original 

cross-section properties). However, Matrix Frame does not properly calculate sections with 

different yield properties. It does not distribute the load properly over the two elements. A 

consequence of this is that an overall analysis is not possible. As a solution the geometrical 

and physical non-linear analyses can be performed for each cross section half. The 

summation of these analyses is approximately the ultimate load.  

 

Special attention is needed for the calculations of very non-slender columns with fixed ends. 

Due to the partial yielding (as a result of the residual stresses) the column can deflect easier 

and the bending moment at the end of the column decreases. This results in a larger 

ultimate load.  

 

Recommendations 

As yet it was not possible to find a general buckling formula for all structures. For a general 

formula more analyses must be made. Also all analyses need to have the same boundary 



52 

 

conditions. Using proper boundary conditions, it could be possible to find a general formula 

in further analyses. This is an interesting object for another master thesis.  

 

Matrix Frame has an input limitation. It is not possible to choose the yield stress freely. Only 

the usually steel grades can be chosen. Because of this, it is not possible to take care of all 

residual stresses for all steel grades. For small HEA sections the amount of residual stress is 

larger than for large HEA sections. The amount of residual stress for small HEA sections 

cannot be inserted. Steel grade S355 is the only steel grade that can be used for the 

calculations including residual stresses. For checking the analysis results, it would be better 

to make a possibility to insert the yield stress manually.  

 

The differences in ultimate loads between different calculation methods are largest for non-

slender structures. Matrix Frame ‘solved’ this problem by using a smaller yield stress. It is 

recommended to check the ultimate loads for frames with non-slender columns.  

 

Matrix Frame is commonly used in current practice and is specialized in Frame type 

structures. Because of this Matrix Frame is used in this study. Unfortunately, residual 

stresses and also reduced stiffness cannot be modelled in Matrix Frame. Other (more 

complex) computer programs without these limitations could give in better results. Because 

of time limitation no other computer programs has been used. 
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