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Summary 
 
With traffic getting denser in a fast rate, and trucks carrying heavier loads using less axles, the re-
maining lifetime of concrete decks in viaducts and bridges becomes uncertain. The load of the traf-
fic gets closer and closer to the ultimate bearing capacity of these decks, calculated according to the 
Dutch code. However, no collisions have occurred yet.  
 
Tests on both full scale and small scale reinforced concrete slabs showed that, if the edges of the 
slabs where laterally restrained, the bearing capacity was significantly higher than the slabs that did 
not have laterally restrained edges. After these tests, performed in the 1960’s various people did 
research on this phenomenon. They generally came to the same conclusion: after cracking of the 
slabs a compressive force is introduced which enhances both the shear and bending capacity of the 
slabs. This phenomenon is called compressive membrane action. 
 
The theories however consisted of long and difficult derivations, ending up in big and hard to read 
formulas, which are of no use in practice. Furthermore, different derivations where made for bend-
ing and punching failure, making things even more complex. 
 
With the introduction of faster computers and especially better finite element programs, which can 
include non-linear material behaviour, it can be checked if models can be made which takes into 
account this compressive membrane action. These finite element programs are used more and more 
in practice. Consequently, laterally restrained structures can be designed in a more economical way. 
These models can also be used to demonstrate if certain repairs or replacement are really necessary, 
or that the structure has enough extra bearing capacity to postpone the maintenance. 
 
In this paper it is tried to include this compression membrane action in a finite element analysis and 
the results are compared to a theory for both bending and punching shear that includes compressive 
membrane action. The results are also compared to experimental data, which is presented in various 
articles. The results of the finite element models look very promising, using a concrete strength of 
fcu = 35 N/mm2. For lower values of the concrete strength, the finite element models seem to give 
values that are to high, and for higher values, the finite element model seem to give values that are 
to low.  
 
For bridge decks, which commonly have a concrete strength that is about 35 N/mm2, the finite ele-
ment model gives results that lie in an acceptable range based on experimental found data. The fi-
nite element program is used to predict the ultimate load of bridge decks of a ZIP girder system, 
which is commonly used in the Netherlands. It can be concluded that the enhancement factor for 
this type of deck has a value that lies around 1,5. The enhancement factor is here defined as the col-
lapse load found by the finite element calculation divided by the lowest value of an analytical de-
termined flexural and punching shear capacity calculation according to the Dutch code. 
 
This indicates that laterally restrained bridge decks have more bearing capacity than follows from 
an analytical calculation.
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List of symbols 
 
a radius of a slab         [mm] 
c distance to the neutral axis in the sagging  yield moment    [mm] 
c’ distance to the neutral axis in the hogging yield moment    [mm] 
ck parameter related to the ratio of compressive and tensile strength of concrete [-] 
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mu resisting moment at the mid depth axis at the hogging moment per unit width  [Nmm/mm] 
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p perimeter of cone that is punched out      [mm] 
q distributed load over a length       [N/mm] 
q reinforcement percentage in the code of New Zealand    [-] 
r radius          [mm] 
r function of the failure surface over the height     [mm]  
t outward lateral displacement at the restrained edge     [mm] 
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wi deflection at which membrane action starts, empirical determined as 0,03 h  [mm]  
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M moment          [Nmm] 
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1. INTRODUCTION 
 
Dutch bridges will not collapse yet1.1 
 
De Volkskrant, 4 October 2007  
 
Twelve steel bridges need urgent maintenance.  
1.180 concrete bridges need further investigation.  
Details will be presented next year.  
 

 
 
Fatigued brides 
AMSTERDAM Although metal fatigue and stresses in the concrete assaulted the Dutch bridges at a 
large scale, there is no reason to panic. `There is no immediate security threat`, so the ministry of 
´verkeer en waterstaat´ ensures. Experts approve this statement. ‘I do not believe that bridges in the 
Netherlands will collapse any time soon` claims Leo Wagemans, academic civil engineering at 
Delft University.  
According to a report that was presented yesterday by ´rijkswaterstaat´, 25 of the 274 steel bridges 
suffer from metal fatigue. In the case of twelve of these bridges, including the ´Brienenoordbrug´ 
and the ´Moerdijkbrug´, the problems are so serious that short-term adjustments have to be made. 
From the total of 2.020 concrete bridges, 1.180 have to be examined more closely.   
It is clear that the lifetime of bridges in the Netherlands is less then is assumed in the design. 
Cracks in the steel appear sooner and lumps of concrete fall out.  
The increased traffic intensity, environmental load and the heavier trucks are the cause of the 
shortening in lifetime. In the sixties and seventies a lifetime of at least sixty years was assumed. 
Now it comes true that after just 30 years restoration is required.   
‘Not only has truck traffic doubled, furthermore there is almost no empty truck left on the Dutch 
roads’, thus Dick Schaafsma of ´Rijkswaterstaat´.  
According to his colleague Frans Bijlaard from Delft- academic steel structures – it is not a matter 
of carelessly or ignorance. The good reputation of hydraulics in the Netherlands is not a point of 
discussion.  ‘The Dutch ability to build bridges has not declined.  Many of the problems involve the 
greater rolling resistance of trucks. Due to technological developments the loads that needed to be 
carried by two tires can now be carried by just one tire. This concentrated load results in savings of 
fuel, but also in larger damage of the pavement.’  
Collapsing of bridges happens more then men would suspect; last week in Vietnam, in august in 
Minneapolis. In the United States five bridges have collapsed since 2000, due to heavy rainfall and 
a collision.  
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Bijlaard: ‘Disasters due to a collision can also happen in the Netherlands. But the maintenance 
mode in the United States is drastically worse than in the Netherlands.’ Schaafsma: `Problems at 
the bridge in Minneapolis were already known. But nothing was done about it. This does not hap-
pen in the Netherlands.’  
In May wear was detected at the ´Hollandse Brug´ at the A6 near Muiden and the bridge is now 
closed for all truck traffic. Meanwhile ´rijkswaterstaat´ has inspected 2.020 concrete bridges and 
viaducts and 274 steel bridges in the road infrastructure, which were build before 1975. Of the en-
gineering structures 1.180 need further examination. The remaining lifetime of those bridges might 
be shorter then the lifetime of the original design.   
At 25 of the steel bridges the problems are more urgent. Since necessary reparations have been 
made, no traffic restrictions are needed according to the ministry. ‘On the mid-long period this is 
not enough. To guarantee the traffic flow, the bridges need to be reinforced or replaced in the next 
5 years’, according the ministry.  
In the summer of 2008, a detailed report with all the needed adjustments will be presented. Then the 
total costs of the renovation project will also be known. The renovation of the ´Moerdijkbrug´ itself 
will cost 38 million Euro.”  
 
The above article shows that bridges and viaducts build before 1975 are a point of discussion in the 
Netherlands. The question is whether these structures really do need repairs or have to be replaced. 
Another option is to check whether the structure is actually stronger then the calculations show in 
the originally design. Varies studies have been performed to study the effect of compressive mem-
brane forces in laterally restrained concrete slabs. The conclusions of those studies are in general 
the same: compressive membrane action enhances the ultimate load of laterally restrained slabs. 
However, none of these studies present a calculation model that is usable in practice. Because of 
this the effect of compressive membrane forces is neglected in current calculations. This report de-
scribes the development of a finite element model, which takes into account these compressive 
membrane forces.  
 

 
Figure 1.1: Typical Dutch bridge build-up 
 
A large part of the structures discussed in the above article are build up of inverted T-beams with a 
compression layer of concrete on top (see figure 1.1). The starting point for this study will be this 
type of structure. 
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The traffic becomes denser in a fast rate. To get an indication how much the traffic load has in-
creased since 1975 a comparison is made between the bridge load model used before 1975 (accord-
ing to the VOSB 1963) and the bridge load model that is used nowadays (according to the NEN-EN 
1991-2). 
 
From figure 1.2 it can be concluded that the total load has not increased very much, but the loads 
get more concentrated. This means that the structural integrity as the structure as a whole will 
probably be not an issue, but locale failure (for example in the decks) might become governing. 
This local failure due to higher axle forces will also be taken into account in the finite element 
model. Another difference between the codes is the calculation of cyclic loading. In the VOSB 1963 
no attention is paid to this type of loading, while in the NEN-EN 1991-2 this method is extensively 
described.  
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Figure 1.2: Traffic load of VOSB 1963 compared to the NEN-EN 1991-2 traffic load 
 
1.1. The goal of this study 
  
The goal of this study is to develop a numerical finite element model that is able to calculate the 
ultimate bearing capacity of one-way continuous concrete bridge decks, taking into account com-
pressive membrane action. This model takes into account two modes of failure. The first is due to 
global failure in bending, the second due to local punching failure of the deck by concentrated axle 
loads. This model can be used to define the enhancement due to compressive membrane action in 
existing and new one-way concrete bridge deck structures.  
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1.2. The structure of this study 
 
This study will be build up of three parts: 
 
Part I: The theory 
This part involves 
 
 the theory on compressive membrane action in both bending and punching failure 
 the comparison between analytical and the above mentioned theoretical solutions 
 the comparison between test results presented in various articles and the above mentioned theo-

retical solutions 
 
Part II: The numerical development of the finite element model 
This part involves 
 
 the creation of a numerical finite element model 
 the comparison between the analytical and finite element results 
 the comparison with some test results presented in various articles and the finite element results 
 if necessary adjustments are made to the model 
 
Part III: A practical example 
This part will involve 
 
 the application of the in part II found model on a practical bridge deck 
 an estimation of the enhancement factor for these kind of structures 
 
The study will finish with conclusions and recommendations. 
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2. THEORY OF COMPRESSIVE MEMBRANE ACTION 
 
Compressive membrane action forms when two conditions are met. First the horizontal translation 
has to be (partly) restrained. The greater the restraint, the greater the compressive membrane force 
will be. Secondly the net tensile strain along a longitudinal fibre must be non-zero when there is no 
horizontal restraint 2.1. Figure 2.1 shows a concrete one-way slab, which is in the cracking state. 
Due to the cracking, the slab wants to elongate, but the rigid lateral restrained supports prevent this 
from happening, so a compressive membrane force is introduced. 

Load

compressive
membrane

force

lateral
movement
prevented

 
Figure 2.1: Compressive membrane action in a latterly restrained slab 
 
 
The enhancement of the collapse load by compressive membrane action can be clearly seen in a 
load-deflection diagram, as shown in Figure 2.2 2.5. 
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Figure 2.2: Load-deflection graph for a structure with compressive membrane action 
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2.1. Enhancement of the bending strength by compressive membrane forces 
 
The calculation method used here is derived by Park 2.2. The theory has its starting point as shown 
in Figure 2.3. In this figure t is the outward lateral movement. 

L t
.L .L

t

1

2 3

4

 
Figure 2.3: Starting point for Park’s compressive membrane theory 
 
Assumptions in his model are 
 
 the tension steel in the plastic hinges is yielding 
 the concrete in the plastic hinges has reached its compressive strength 
 the tensile strength of concrete is neglected 
 the rotations and strains are small 
 the top reinforcement is the same on both sides 
 the bottom reinforcement is constant over the length of the strip 
 the top and bottom reinforcement may differ 
 the 3 parts, 1-2, 2-3 and 3-4 of the beam remain straight 
 the axial strain,  (sum of the elastic, creep and shrinkage axial strain) has a constant value over 

the length 
 shear forces are neglected, since their net contribution in virtual work equations is zero 
 
The shortening of the middle part due to the strain is LL )21(32    . So points 2 and 3 will 
move L)21(5,0   to the middle of the system. The distance from point 2 to the boundary now 
becomes tLL  )21(5,0  . The parts 1-2 and 3-4 will shorten to the length L )1(  . These 
values are shown in figure 2.3. 
 



Part I: The theory of compression membrane action 
 

 

8 

 

top steel

bottom steel

1

2

T'

C'c
C's

Cs

Cc

T

hd
c'

d

c

(1- L

d'

d'

L + 0,5 (1-2 )L + t

A

B

 
Figure 2.4: Section 1-2 in the deformed state 
 
The distance between the points A and B can be calculated with the geometry of the deformations 
in two different ways, and so the next equation is derived: 
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Since  and  are small some simplifications can be used in this equation: 
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The second equation is formed using horizontal force equilibrium: 
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Figure 2.5: β1 as a function of f’c 
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With this information equation (3) forms into: 
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Solving equation (2) and (4) simultaneously give the following solutions: 
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In figure 2.6 it can be seen how the forces Cs, Cc and T work on the slab, and which stresses they 
generate for a field moment. A similar figure can be made for the support moment. 
 

h d nu

mu

nu

mu

0,5h
neutral 
axis

c a 0,5a

a= c

Cs

Cc

T

 
Figure 2.6: Forces and moments acting in the middle of the span of the slab 
 
 
With this figure, the quantities ns and ms can be calculated.  
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The sum of the moments of the stress resultants at the yield section about an axis at mid depth at 
one end in the strip is given by the formula: 
 

uuu nmm '  
 
The shear forces are neglected in this equation, since their net contribution to a virtual work analy-
sis will be zero. 
 

(4) 

(5) 

(6) 

(10) 

(9) 

(8) 

(7) 

(11) 
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Substituting equations (5) to (10) in equation (11) gives the next formula: 
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When a virtual rotation  is given to a plastic hinge in the system, the virtual work done in that 
hinge is: 
 
 uuu nmm '  
 
When the virtual work done by the load on a structure is known, a load-deflection relationship can 
be derived. 
A few notes when using this formula: 
 
 the model assumes that plastic hinges form immediately, this is of course not the case 
 the first part of the curve will thus be inaccurate 
 for large deflections, not the compressive but the tensile membrane action (catenary action) will 

be governing (see Figure 2.2) 
 this formula can thus not be used for large deflections  
 this formula gives good results for moderate deflections, when plastic hinges start to form 
 
To get a feeling for the influence of the different input parameters, graphs are made. On the left 
side, the enhancement of the ultimate load provided by Park’s theory, and on the right side the pre-
dicted load by Park is shown. For each set one of the input values is varied, while the other values 
are kept constant. For the basic input values, see the excel sheet in appendix A. Mind that these 
graphs hold for bending action only.  
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variation in the thickness of the slab
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variation in the steel strength
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Figure 2.7: Enhancement factors (left) and absolute values (right) for Park’s theory 
 
From the graphs, the following conclusions can be made: 
 
 the length of the slab is only of influence for short spans, the influence on the enhancement fac-

tor is rather small 
 the thickness of the slabs has great influence on both the enhancement factor and the ultimate 

load 
 the higher the reinforcement ratio, the lower the enhancement factor 
 the higher the yield strength of the steel, the lower the enhancement factor 
 for higher concrete strengths, the enhancement factor and the ultimate load will increase both 
 
2.2. Enhancement of the punching shear strength by compressive membrane action 
 
The enhancement of punching shear failure is discussed in an article published by the American 
Concrete Institute 2.3 and the international journal of mechanical sciences2.4. The theory used in this 
study will follow this method. Assumptions made in this model are: 
 
 the failure mechanism consists of a solid cone-like plug 
 the compressive membrane force has a constant value 
 the behaviour is rigid plastic 
 the energy in hoop expansion outside the plug is neglected 
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Figure 2.8: Punching shear failure model 
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The authors did some tests, but instead of making horizontal restrained clamped edges, they used 
hoop reinforcement to create a similar effect. 
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Figure 2.9: Schematic overview of the test set-up 
 
An upper-bound solution is given by the virtual work theory:  
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Nrs is the sum of the radial compressive membrane forces working on the failure surface of the 
cone. The value for na is derived by using the flow theory. 
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DA is the internal energy dissipation per unit area in the deforming zone and is given by the follow-
ing formula: 
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Substituting all the above equations in the virtual work equation gives the following solution: 
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Minimising the first integral gives an equation that does not contain x and Euler’s equation has the 
first integral. With two boundary conditions this integral can be solved. 
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When  is given, the constants A and B can be determined and the failure load P becomes: 
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To calculate the ultimate load for punching shear failure, the following method can be used: 
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 calculate d1 for a simply supported plate with hc
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P  

 adjust  until  0

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P  

 calculate P 
 reduce d1 and repeat the above steps till a minimum is found for P 
 

According to the article by Salim and Sebastian, realistic values are gained for 400
ct

cc

f
f . This 

factor is used in the calculation model in the maple sheet, see appendix B. Mind that this factor 
should not be used to determine ck, for which the standard value for fct should be used. 
 
This analytical model is presented in a maple sheet, see appendix B.  
 
To get a better understanding of the influence of the different input values, graphs are made. The 
basic values are shown in the maple sheet in appendix B, and for each graph one of the input values 
is varied. Mind that these graphs only hold for failure in pure punch. 
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Figure 2.10 Enhancement factors (left) and absolute values (right) for the Punching failure  theory 
 



Chapter 2: Theory of compressive membrane action 
 

 

19 

Looking at he graphs, the following can be concluded: 
 
 the length of the slab, the reinforcement ratio and the reinforcement yield strength do not have 

much influence on both the enhancement factor and the total ultimate load  
 the height has the largest influence on both the enhancement factor and the ultimate load 
 the higher the slab, the smaller the enhancement factor becomes 
 the concrete strength and the length of the loaded area have a positive influence on both the en-

hancement factor and the ultimate load 
 
2.3. Comparison between bending and punching failure 
 
To get an understanding if failure in bending or failure in punching occurs, the found results will be 
compared to each other. The enhancement factors of the previous sections cannot be used. To com-
pare the results, two new enhancement factors will be used.  
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In other words, the predicted values by the theory presented in chapter 2 are divided by the lowest 
value of the analytic bending and punch failure load.  
 
The starting point or calculations is shown below. For each graph, one of the values is varied. 
 
L 1500 mm
b 1000 mm
h 150 mm
d0 300 mm
fck 35 N/mm2
fs 435 N/mm2
wo 0,37 %  
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Figure 2.11: Enhancement factors (left) and absolute values (right) for both Park’s and the punching failure theory 
  
Conclusions that can be drawn from these graphs are: 
 
 for a low slenderness, punch is governing 
 if punch is governing, the flexural reinforcement is not a factor of influence 
 the steel strength is not much of an influence factor 
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3. ANALYTIC SOLUTIONS  
 
A number of trivial structural cases are discussed and compared to the calculations methods used in 
standard calculations nowadays. Before the comparison can be done these calculation methods will 
be briefly discussed. 
 
3.1. Standard calculations methods used  
 
Both the ultimate load in bending and in punch will be described. 
 
3.1.1. Ultimate bearing capacity in bending 
 
The method to determine the ultimate load will be the virtual work theory 3.1. This theory makes use 
of the fact that the work done internal and external needs to be in equilibrium. This means that the 
work done by the displacements of the loads (external work), needs to be equal to the work done by 
the rotation of the plastic hinges (internal work): 
 

externalernal WW int  
 
How this works for beam-like elements will be illustrated by a simple example, see figure 3.1. 
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Figure 3.1Simple model with its failure mode 
  
 
 
At least 2 plastic hinges need to be introduced to create a failure mechanism. It is assumed that the 
deformations remain small, so the displacement  can be written as the angle times the length of the 
rotated part. The virtual work equation now becomes: 
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If the ultimate moment of the cross-section is known, than the ultimate load Fu  can be easily calcu-
lated. For reinforced concrete, the ultimate moment can be calculated with the help of figure 3.23.2. 
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Figure 3.2: Stress and strain distribution in a concrete cross-section, to determine the moment capacity 
 
 The ultimate moment for the cross section can now be calculated: 
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With Mu known, the ultimate load of system can be calculated. 
 
3.1.2. Ultimate concentrated load 
 
For the maximum concentrated load, the punching model described by Sagel and van Dongen 3.2 

will be used. 
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Figure 3.3: Punching shear failure for a concentrated load 
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The height of the load that induces this failure mechanism can be calculated as follows: 
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In the formulae for kd, d is in meters. 
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Figure 3.4: Difference between a and a1 

 
When there is a normal force acting on the structure, 1 may even be increased by n: 
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4. COMPARISONS BETWEEN THE ANALYTICAL SOLUTIONS AND TEST RESULTS 
 
To check whether the analytical models give an accurate solution, they will be compared to differ-
ent test results, which can be found in various articles.  
 
4.1. The bending model  
 
To calculate the solution by Park, a excel sheet is made (see Appendix A). In this sheet, the theory 
is used as described in chapter 2.1. To calculate Cs and C’s the strain in the compression reinforce-
ment has to be known. The strain however depends on the concrete compression strain and the dis-
tance to the neutral axis. These values are variable as can be seen in the figure below. 
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Figure 4.1: The strain distribution for different neutral axis depths 
 
 
 
To get an estimation of the steel strain in the compression steel, the average of the above shown 
values will be used. The value Cs thus becomes 
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Park presents the following graph in his work 2.2, which shows the difference between an experi-
mental result and his analytical solution. 
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Figure 4.2: Difference between Park’s theory and a test specimen 
 
As can be seen, Park’s theory gives a somewhat lower ultimate load then the actual specimen. This 
graph is roughly the same for all test results. It is thus expected that the value of Park’s model will 
lie in between the analytical virtual work solution and the ultimate strength of the tested specimens. 
 
 
4.1.1. Test results from L. K. Guice and E. J. Rhomberg 
 
The article 4.1 presents test results for a 1-way clamped slab. A sketch with the dimensions of the 
experiment is showed below.  

 
Figure 4.3: Dimensions of the test specimens 
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A table, which compares the virtual work results, the experimental results and results from the 
bending theory presented in chapter 2.1, is presented in Table 4.1.  
 

Slab fcu fy L b h d* w0 Pa Pe Pp Pe/Pa Pe/Pp
N/mm2 N/mm2 mm mm mm mm % kN/m kN/m kN/m - -

1 30,4 344,8 610 610 58,7 45 0,52 115,0 328,1 242,3 2,85 1,35
2 29,4 344,8 610 610 58,7 45 0,52 114,7 218,7 236,3 1,91 0,93
3 30,6 403,2 610 610 58,7 45 0,74 185,6 302,8 274,1 1,63 1,10
4 29,4 403,2 610 610 58,7 45 0,72 178,3 298,6 264,7 1,67 1,13

4A 28,7 403,2 610 610 58,7 45 0,72 177,8 290,2 261,2 1,63 1,11
4B 29,0 403,2 610 610 58,7 45 0,72 178,0 323,9 262,7 1,82 1,23
5 30,7 403,2 610 610 58,7 45 1,06 250,2 412,2 315,5 1,65 1,31
6 29,5 403,2 610 610 58,7 45 1,06 248,3 382,7 310,4 1,54 1,23
7 34,6 464,2 610 610 41,2 30 0,58 79,0 134,6 117,9 1,70 1,14
8 34,3 464,2 610 610 41,2 30 0,58 78,9 96,7 117,3 1,23 0,82
9 34,6 403,2 610 610 41,2 30 1,14 125,5 168,3 137,9 1,34 1,22

9A 34,5 403,2 610 610 41,2 30 1,14 125,4 172,4 137,8 1,38 1,25
10 34,3 403,2 610 610 41,2 30 1,14 125,3 - 137,5 - -

10A 34,2 403,2 610 610 41,2 30 1,14 125,2 - 137,3 - -
11 34,6 403,2 610 610 41,2 30 1,47 152,9 193,5 152,9 1,27 1,27
12 34,3 403,2 610 610 41,2 30 1,47 152,5 92,5 153,5 0,61 0,60

* this value is not mentioned in the article and is an assumption 1,59 1,12
0,49 0,21

Mean value
Standard deviation
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Table 4.1: Test values with the analytical (Pa), experimental (Pe) and predicted (Pp) solutions 
 
As was to be expected, the value of the bending theory gives a better estimation than the analytical 
result. Furthermore it can be seen that Figure 4.2 also holds for these experiments, the estimation of 
Park is in most cases lower then the actual collapse load.. 
 
4.2. The punching model 
 
4.2.1. Tests by J.S. Kuang and T. Morley 
 
The article 4.2 presents the ultimate load for experiments, which failed in punch. The experiments 
consisted of 2-way slabs with different edge beam widths.  Dimensions as shown in Figure 4.4 and 
Figure 4.5. 
 

 
Figure 4.4: Overview of the experimental set-up 
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Figure 4.5: Dimensions of the test specimen 
 
The results are presented Table 4.2. 
 

Slab fcu fy L h d edgebeam w0 c Pa Pe Pp Pe/Pa Pe/Pp
N/mm2 N/mm2 mm mm mm mm % mm kN kN kN - -

S1-C03 48,7 400 1200 60 49 280 0,3 120 36 101 104 2,81 0,97
S1-C10 33,8 400 1200 60 49 280 1,0 120 29 118 64 4,07 1,85
S1-C16 41,2 400 1200 60 49 280 1,6 120 32 149 81 4,66 1,84
S2-C03 48,1 400 1200 40 31 280 0,3 120 20 49 63 2,45 0,78
S2-C10 45,8 400 1200 40 31 280 1,0 120 20 70 59 3,50 1,19
S2-C16 42,6 400 1200 40 31 280 1,6 120 19 68 53 3,58 1,29
S1-B10 45,9 400 1200 60 49 140 1,0 120 35 116 95 3,31 1,22
S1-B03 50,8 400 1200 40 31 140 0,3 120 21 42 67 2,00 0,63
S2-B10 59,5 400 1200 40 31 140 1,0 120 24 69 80 2,88 0,86
S1-A10 46,5 400 1200 60 49 70 1,0 120 36 99 96 2,75 1,03
S2-A03 47,8 400 1200 40 31 70 0,3 120 20 43 62 2,15 0,69
S2-A10 60,3 400 1200 40 31 70 1,0 120 24 63 81 2,63 0,78

Mean value 3,06 1,09
Standard deviation 0,79 0,41  

 
Table 4.2: Test values with the analytical (Pa), experimental (Pe) and predicted (Pp) solutions 
 
The factor Pe/Pp  (Pp stands for predicted ultimate load and NOT Park’s ultimate load, this value is 
calculated with the punch theory described in chapter 2.2) becomes smaller for smaller edge beam 
widths, which is to be expected. The presented bending theory does not include a rate of inclination, 
so for different edge beam widths, the predicted value will be the same. In reality the rate of inclina-
tion decreases for smaller edge beams, which will reduce the compressive membrane forces and 
thus the ultimate collapse load. 
 
4.2.2. Tests by W. Salim and W.M. Sebastian 
 
The authors of the theoretical punch model 2.3 did some experiments. See Figure 2.9 for the test set-
up.  
 

Slab fcu fy L h d w0 c Pa Pe Pp Pe/Pa Pe/Pp
N/mm2 N/mm2 mm mm mm % mm kN kN kN - -

S1 63 500 1200 150 113 1,06 150 156,9 369,4 466,7 2,35 0,79
S2 52 500 1200 150 113 1,06 150 136,3 290,6 367,6 2,13 0,79
S3 56 500 1200 150 113 1,06 150 143,8 402,2 403,4 2,80 1,00
S4 53 500 1200 150 113 1,06 150 138,2 394,1 376,6 2,85 1,05

Mean value 2,53 0,91
Standard deviation 0,35 0,13  

Table 4.3: Test values with the analytical (Pa), experimental (Pe) and predicted (Pp) solutions 
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As we put the data in a graph, we can see some scatter in the test results, since only the concrete 
strength is varied.  
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Figure 4.6: Predicted result versus test results 
 
4.2.3. Tests by Holowka, Dorton and Csagoly 
 
In the article which presents the theoretical punch failure solution 2.2, some test results from other 
parties where included. No information is given on how the test where carried out, but it still some 
good comparison data. One of these test results is shown in Table 4.4. 
 

Slab fcu fy h* d w0 c Pa Pe Pp Pe/Pa Pe/Pp
N/mm2 N/mm2 mm mm % mm kN kN kN - -

A1-A3 27,4 310 48,1 38,1 0,2 127 19,1 42,4 42,1 2,22 1,01
B1-B2 27,7 310 41,8 31,8 0,2 127 15,5 36,8 35,8 2,37 1,03
C1-C3 28,4 310 35,4 25,4 0,2 127 11,8 23,1 30,2 1,96 0,76
D1-D3 25,9 310 48,1 38,1 0,3 127 18,5 49,1 39,3 2,65 1,25
E1-E3 26,9 310 41,8 31,8 0,3 127 15,2 34,9 35,1 2,30 0,99
F1-F3 27,0 310 35,4 25,4 0,3 127 11,7 23,8 29,4 2,03 0,81

G1 28,1 310 48,1 38,1 0,8 127 19,4 44,6 43,1 2,30 1,03
H1 28,2 310 41,8 31,8 0,8 127 15,6 37,9 36,7 2,43 1,03

I1-I3 28,1 310 48,1 38,1 1,0 127 19,4 47,3 42,6 2,44 1,11
J1-J2 27,8 310 41,8 31,8 1,0 127 15,5 37,2 35,8 2,40 1,04
K1-K2 27,9 310 35,4 25,4 1,0 127 11,9 25,2 32,0 2,12 0,79

* this value is not mentioned in the article and is an assumption Mean value 2,29 0,99
Standard deviation 0,20 0,15  

 
Table 4.4: Test values with the analytical (Pa), experimental (Pe) and predicted (Pp) solutions 
 
The span of the specimen is not given, but it is earlier stated that the influence of the length is not of 
much influence for a small d0/L ratio, as is already mentioned in chapter 2.2. It can be seen that the 
predicted value gives a good indication. Only a few of the tested specimens have a somewhat larger 
difference. It can be that the height of the slab is not assumed correctly, or the tests may not have 
been carried out properly.  
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4.2.4. Full scale tests by S.E. Taylor, B. Rankin, D.J. Cleland and J. Kirkpatrick 
 
Experiments done on a full-scale structure is described in the article 4.3. The tests where done on 
several spans with loads up to three times the maximum wheel load of the British standards.  The 
crack widths and the deflection at the midsection of the span where measured.  
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Figure 4.7: Overview of the test setup 
 
Since they did not loaded the bridges till they collapsed, for now it can be only check if the analyti-
cal ultimate load is higher than the load level during the testing. After the finite element calcula-
tions, it can be checked whether the deflection and the crack widths calculated at the loading levels 
is in accordance with reality. 
 

slab fcu fs L h d w0 anaytical collapse maximum test predicted ultimate
N/mm2 N/mm2 mm mm mm % load load load

A1 77,8 501 1740 160 82 0,5 + fibers 128,3 333 1240,1
A2 80,6 501 1240 160 74 0,5 + fibers 178,3 428 1279,6
B1 76,5 501 1740 160 75 0,25 + fibers 66,5 344 1280,5
B2 82,3 501 1240 160 75 0,25 + fibers 92,3 428 1314,9
C1 81,2 501 1740 160 75 0,25 66,6 333 1291,3
C2 78,2 501 1240 160 75 0,25 92,2 428 1239,3
D1 74,6 501 1740 160 75 0,5 127,9 368 1166,2
D2 74,6 501 1240 160 75 0,5 177,3 428 1169,1
E1 67,8 501 1740 160 105 0,6 202,1 392 1040,7
E2 67,8 501 1240 160 105 0,6 280,0 428 1043,1
F1 60,0 501 1740 160 103 0,6 199,5 371 899,8
F2 61,0 501 1240 160 103 0,6 275,2 428 919,8  

 
Table 4.5: Test values and the predicted ultimate load 
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5. FINITE ELEMENT MODELS 
 
The theory describes a one-way laterally restrained slab. Cracking of the concrete is the main rea-
son compressive membrane forces are generated. The finite element package DIANA is capable to 
calculate concrete structures, including the cracking of the concrete. For bending a 2D model will 
be sufficient, but if punch is to be included, a 3D model must be used. 
The loading steps on the structure can be applied in two different ways. There can be a given dis-
placement and displacement steps, at which DIANA calculates the load, or there can be applied a 
load with a loading step and then DIANA calculates the displacement. Since Park’s theory de-
scribes a plate with a distributed load, the input will be a load with a loading step.  
 
Then there is the issue of which elements to use for the calculations. This will be discussed first. 
 
5.1. The geometry of the model 
 
Since the model must describe a reinforced concrete one-way slab with a unit width, the following 
models can be used: 
 
 2D beam model       bending 
 2D plane stress model      bending 
 3D curved shell model      bending 
 axi-symmetric model      bending and punch 
 3D solids model       bending and punch 
 
To make a choice of the above models, they will be used to calculate the following simply sup-
ported beam as shown below. 
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Figure 5.1: Simply supported beam used to determine a suitable finite element model 
 
The analytical solution is 
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To make a choice which model to use the following factors are considered 
 
 the deviation of the analytical solution presented in chapter 3 
 the complexity of the input of the model 
 the calculation time 
 the output 
 
For now the total strain rotating crack model, brittle in tension and ideal in compression will be 
used. The analytical solution is based on brittle cracking without tension softening, so this material 
model should give results close this solution and will be used for these calculations. 
 
5.1.1. 2D beam model 
 
The input model is presented in Figure 5.2. 
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Figure 5.2: Schematic overview and iDIANA input for the finite element model 
 
 The manual of DIANA gives the following overview for beam elements. Only the class-II and 
class-III elements can be reinforced with embedded reinforcement bars. 

 Class Class-I Class-II Class-III
Theory Bernoulli Bernoulli Mindlin-Reissner
Type L6BEN L12BE L7BEN L13BE CL9BE CL12B CL15B CL18B CL24B CL30B
Dimension 2D 3D 2D 3D 2D 2D 2D 3D 3D 3D  

Figure 5.3: Overview of the type of beam elements that can be used by DIANA 
 
The L7BEN elements will be used for this calculation. The number of integration points over the 
height will be increased, so that the cracking will be taken into account more accurately. The differ-
ence is shown in the load-displacement graph below. The calculation stops before reaching the 
horizontal part when using only 2 integration points over the height of the beam. 
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Figure 5.4: Difference between2 and 21 integration points over the height of a beam element 
 
 

 
Figure 5.2 load-displacement graph for the middle node calculated by DIANA 
 
 Advantages 
 
 easy and fast to build model 
 little calculation time 
 analytical and numerical solution are almost equal 
 moment and shear forces as output 
 
Disadvantages 
 
 graphical output is minimal, since it is only a line model 
 loads act over the whole width of the beam 



Part II: The finite element modelling 
 

 

38 

5.1.2. 2D plane stress model 
 
The input is presented below. It is common to make use of symmetry whenever possible, to reduce 
the calculation time.  
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Figure 5.5: Schematic overview and iDIANA input for the finite element model 
 
Plane stress elements are characterised by the fact that the stress components perpendicular to the 
face are zero, σzz = 0. DIANA can use the following regular plane stress elements. For this calcula-
tion, the CQ16M element will be used. 
 

T6MEM CQ8MEM CT12MEM CQ16M CQ18M

 
Figure 5.6: Overview of the type of 2D plane stress elements that can be used by DIANA 
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Figure 5.7: Output of iDIANA, stresses in the concrete and the reinforcement, the crack pattern and the load-displacement graph 
Advantages 
 
 easy and fast to build model 
 little calculation time 
 analytical and numerical solution are almost equal 
 al the wanted output can be graphically presented 
 
Disadvantages 
 
 rotation is not a degree of freedom 
 no moment and shear forces as output 
 loads act over the whole width of the model 
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5.1.3. 3D curved shell model 
 
For this model two symmetry axes will be used. 
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Figure 5.8: Schematic overview of the 3d curved shell model 
 

 
Figure 5.9: iDIANA input of the finite element model 
 
 
The element CQ40S will be used for this calculation. The number of integration points over the 
height will be increased, so that the cracking will be taken into account more accurately, in the same 
way as for the 2D beam model, see chapter 5.1.1. 
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Figure 5.10: Overview of the type of 3D curved shell elements that can be used by DIANA 
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Figure 5.11: Some results, the load-displacement graph and cracking in the top, middle and bottom surface 
 
Advantages 
 
 analytical and numerical ultimate load are almost equal 
 al the output can be graphically presented 
 load can be distributed over an given area 
 
Disadvantages 
 
 rather long calculation time 
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5.1.4. 3D solid model 
 
For the 3D solid model two symmetry axes will be used. 
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Figure 5.12: Schematic overview and iDIANA input for the finite element model 
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Figure 5.13: Overview of the type of 3D solid elements that can be used by DIANA 
 
The element CHX60 is used for this calculation. 

 
Figure 5.14: Output of iDIANA , the load-displacement graph and σxx in a x and y cross-section 
 
Advantages 
 
 the largest collection of output data 
 load can be distributed over an given area 
 
Disadvantages 
 
 long calculation time 
 most complex to build of all the models 
 output can be difficult to understand 
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5.1.5. Axi-symmetric model 
 
The axi-symmetric model will only be used for concentrated loads and will be further discussed in 
chapter 7.2. 
 
5.1.6. Conclusion 
 
The load-displacement graphs of all the models are compared below. All the models give a very 
accurate outcome compared to the analytically found load. 
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Figure 5.15: Comparison of the load-displacement graphs of the four models 
 
It can be seen that all the models give a good approximation of the ultimate analytical load. The 2D 
beam model and the 3D shell model give almost the some solution. The same holds for the 2D 
plane stress and 3D solid model. The latter react somewhat less stiff at large loads.  
An overview of the different models is given in Table 5.1. 
 

input graphical output realistic model punch behaviour calculation time
2D beam model ++ -- + irrelevant ++

2D plane stress model + + + irrelevant +
3D curved shell model o - + -- o

3D solids model - ++ ++ o --
axi-symmetric model + + -* ++ +

* : rectangular slabs cannot be modelled with this model
Table 5.1: overview of the different finite element models 
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5.2. Material properties 
 
The material properties input in DIANA is numerous. Different models can be used for cracking, 
the tensile and compressive behaviour of concrete and the behaviour of the reinforcement steel. All 
of these will be discussed shortly in the next paragraphs. The most realistic material models will be 
used, since the model will be compared to experimental results. 
 
5.2.1. Cracking 
 
There are two cracking models that can be used, smeared cracking or total strain cracking. The 
smeared cracking model is depended on the principal stresses. This can be taken in to account for a 
constant or linear function.  
 

 
Figure 5.16: Two ways of smeared cracking 
 
The total strain crack model describes the tensile and compressive behaviour of a material with one 
stress-strain relationship. This makes the model very well suited for Serviceability Limit State 
(SLS) and Ultimate Limit State (ULS) analyses which are predominantly governed by cracking or 
crushing of the material. Within this model, there can be chosen for rotating or fixed cracking. The 
difference between the two is that for fixed cracking the crack lies in the same direction for all the 
load steps, while by rotating cracking, the direction of the crack is calculated separately for each 
load step. 
 
The total strain rotating crack model will be used for the calculations. 
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5.2.2. Concrete in tension 
 
An overview of the different models DIANA can use for tension in the concrete is presented below. 
 

 
Figure 5.17: Different models for concrete behaviour after cracking 
 
The options (d) till (g) show the possibilities to take into account tension softening.  
 
The Dutch code is based on models with a brittle cracking model, but including tension softening 
may give results that lie closer to the real collapse load. So both options (c), brittle and  (f), the 
Hordijk model will be used for the calculations. 
 
5.2.3. Concrete in compression 
 
An overview of the different models DIANA can use for compression in the concrete is presented 
below. 
 

 
Figure 5.18: Different models for concrete behaviour after the yield strength is reached 
 
Option (b), the ideal model will be used for the calculations. 
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5.2.4. Reinforcement steel 
 
For the reinforcement there are three options, ideal plastic, a work-hardening diagram or a strain-
hardening diagram. The ideal plastic model is used. 
 
5.2.5. Conclusion 
 
The material model that is used looks like this: 
 
 total strain rotating crack model 
 both brittle and Hordijk tension softening in tension 
 ideal plastic model in compression 
 ideal plastic model for the reinforcement 
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6. FINITE ELEMENT MODEL FOR BENDING ACTION 
 
The 2D plane stress model will be used since this is an easy to build model with fast calculation 
time. 
 
6.1. Total horizontal restrained clamped model 
 
The same model as described in chapter 5.1 will be used, but now the edges will be totally clamped 
and horizontally restrained. The analytical and Park’s solution are given below. 
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Figure 6.1: Schematic overview of the structure 
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The schematic input in DIANA looks as follows 
 

0,5L

sy
m

m
et

ry
 a

xi
s

flexural reinforment

shear reinforcment (if needed)
distributed load

CQ16M plane stress 
elements

y  
Figure 6.2: Schematic input of the finite element model 
 
The difference between the earlier shown input is that the edge is now horizontally restrained and 
extra top reinforcement is added. Rotation is not a degree of freedom for these elements, but since 
the whole edge is restrained horizontally and vertically, it can not rotate.  
 
The ultimate load calculated by DIANA is even higher than Park’s prediction. This seems to be a 
good result since Park’s values are in most cases somewhat lower than the experimental data (see 
chapter 4.1). 
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Since the code does not take into account tension softening, the solution with a brittle cracking 
model is compared to the tensile softening solution in the graph below.  
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Figure 6.3: Difference between a calculation with brittle cracking and tension softening 
 

  

 
Figure 6.4: σxx over load steps 23 to 28, from 924 to 997 kN/m 

 
In Figure 6.4, the shifting of the neutral axis can be seen.  

 
Figure 6.5: Stresses in the steel, the steel is loaded in compression and tension 
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6.1.1. Model without shear reinforcement 
 
The maximum analytical solution for the shear failure depends on 1 when no shear reinforcement is 
used.  
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In the bending theory presented in chapter 2.1, a compressive normal force is introduced, and the 
value 1 may be increased by n according to the Dutch code5.1. This value holds only for linear 
elastic calculations, which means it may not be used in this case. Yet it is interesting to see what the 
influence might be on the shear strength. The value of Nu follows for the calculation of the bending 
theory and is calculated with the excel sheet from Appendix A. 
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Figure 6.6: Load-displacement graph for a model without shear reinforcement 
  
The ultimate load calculated by DIANA is the same as for the model with shear reinforcement in 
the case of a model which includes tension softening, which means shear failure is not governing in 
this model. For the brittle material behaviour shear failure is governing. The ultimate load for the 
brittle model is thus less than the model without shear reinforcement.  
 
6.1.2. Variation in reinforcement layout 
 
As can be seen in Figure 6.5 the flexural reinforcement is loaded in both tension and compression. 
The following graph shows the ultimate load for a model with only reinforcement in the tensile 
zones, and for a model with no reinforcements at all. The models are all without any shear rein-
forcement.  
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Figure 6.7: Load-displacement graphs for different reinforcement placements (ts stands for tension softening) 
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First of all, taking into account tension softening enhances the shear capacity considerably. All of 
the tension softening models failed in bending. All the brittle models fail in shear. Noticeable is that 
the model without any reinforcement has the highest shear capacity of the brittle models. This is 
probably due to the fact that large crack widths occur in an un-reinforced structure, which enlarges 
the compressive membrane force that is introduced by the lateral restraint edges. This compressive 
force has a positive effect on the shear capacity of the one-way slab. 
Testing is required to prove that un-reinforced lateral restrained slabs have a greater shear capacity 
then reinforced lateral restrained slabs.  
 
6.1.3. Enhancement factors 
 

The enhancement factor 
analytic

DIANA

q
q

 is calculated for variation in the slenderness, the concrete and steel 

strength and the reinforcement percentage. The reinforcement is taken in both the upper and lower 
layer, according to the first used model, which can be seen in figure 5.12. 
 

0

1

2

3

4

5

6

0 5 10 15 20 25 30

slenderness

en
ha

nc
em

en
t f

ac
to

r

tension softening model

brittle model

0

1

2

3

4

5

6

0 0,2 0,4 0,6 0,8 1 1,2 1,4

reinforcement ratio in %

en
ha

nc
em

en
t f

ac
to

r

tension softening model

brittle model
 

 
 

0

1

2

3

4

5

6

10 20 30 40 50 60

fcu in N/mm2

en
ha

nc
em

en
t f

ac
to

r

tension softening model

brittle model

0

1

2

3

4

5

6

200 300 400 500 600 700

fs in N/mm2

en
ha

nc
em

en
t f

ac
to

r

tension softening model

brittle model  
Figure 6.8: Enhancement factors according to the finite element model 
 
In all cases the brittle material behaviour gives slightly less enhancement factor then the model with 
tension softening, as was to be expected. For low slenderness, the load capacity gets so high that the 
value of τ2 gets exceeded. This means that the slab is failing in the line of pressure thrust, which 
means it fails at a lower load than it would in pure bending. Therefore the enhancement factor pre-
dicted by the theory of chapter 2.1 is not reached for small values of the slenderness.  All other val-
ues are in good comparison with the presented theory. 
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6.1.4. Conclusions 
 
Thus far the following conclusions can be drawn: 
 
 with a simple non-linear finite element calculation it can be shown that the ultimate load of a 

horizontal restrained one-way slab is much higher than the analytical virtual work solution 
 the theory presented by Park gives a better estimation of  the ultimate load than the  virtual work 

theory, and it is a safe approximation 
 even slabs without flexural reinforcement have more capacity then is shown analytically 
 due to introduction of normal compressive forces, the shear capacity is improved greatly 
 even structures with a high slenderness the enhancement is noticeable  
 for high reinforcement ratios and low slenderness, shear failure might become governing 
 the presented model is only useable for totally horizontal restrained slabs, for partly restrained 

slabs, see the next paragraph 
 
6.2. Partly horizontal restrained model 
 
In reality a horizontal restrained edge is, in most cases not totally, but only partly restrained so the 
model will be extended to the model as shown below. 

1
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Figure 6.9: Schematic overview of a slab, which is partly horizontal restrained 
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To convert the schematic of Figure 6.9 to a finite element model, there need to be added springs on 
the left side so that it can translate. Since rotation is not a degree of freedom for 2D plane stress 
elements, a beam element is introduced, which is very stiff and is prevented from rotating at the 
edges, see Figure 6.10. 
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m
m
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Figure 6.10: Schematic input for the finite element model 
 
For the beam elements, the L7BEN element can not be used since this is element has only two 
nodes and a linear shape function. A quadratic beam element with three nodes is needed to get the 
right connectivity. This is explained in Figure 6.11. 
 

CQ16M element
L7BEN element

node can not connect

CL9BE element
CQ16M element

all nodes can connect

1,0

1,0

linear shapefunction (L7BEN)

quadratic shapefunction (CL9BE)  
Figure 6.11: L7BEN elements can not be used 
 
In Figure 6.12 the variation in spring stiffness is plotted against the ultimate load, for both the the-
ory of Park and the finite element model. In the finite element model shear reinforcement is in-
cluded, so that bending failure will be governing. 
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Figure 6.12: Ultimate load for different spring stiffnesses and models 
 

 
Figure 6.13: Horizontal displacement of a horizontal unrestrained edge 
 
In Figure 6.13 it can be seen that the restrained edge does not move horizontally until cracking load 
of the slab is reached. This is in accordance with the theory, which states that compressive mem-
brane forces will be generated after cracking of the concrete. 
 
The normal compressive force that is generated can be calculated by multiplying the maximum 
horizontal displacement of the edge of the slab by the spring stiffness, which is a known parameter 
since it needs to be inputted in the finite element model. These values are shown in Figure 6.14 and 
Figure 6.15. 
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Figure 6.14: Maximum horizontal displacement of the edge 
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Figure 6.15: Compressive normal force in the slab 
 
Now that the restraining edge forced can be calculated, it will be checked if this force is bigger for 
unreinforced slabs, as was suggested by evaluating Figure 6.7.  
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Figure 6.16: restraining edge force for a reinforced and unreinforced slab 
 
The graph starts with a horizontal part with a value of zero. In this part the concrete is not cracked 
yet and the edge does not move laterally.  Then, after the cracking load is reached the restraining 
force starts to develop. The unreinforced slab has indeed a large restraining force for the same load-
ing as the reinforced slab. 
 
6.3. Comparison with test results 
 
The results as in chapter 4.1.1 will be used. See Table 4.1 for an overview.  
 
In Table 6.1 the finite element calculations are compared to experimental and the predicted results. 
This is performed for a model with brittle cracking and a model that takes into account tension sof-
tening.  
If the three slabs with the highest deviations (slab 1, 8 and 12) are excluded from the calculation of 
the mean value and standard deviation, the test results correspond very well with the finite element 
models. Even when these experimental results are included, the results lie in between an acceptable 
range.  
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Slab Pe Pp Pfem,ts Pfem,brit Pfem,ts/Pp Pfem,brit/Pp Pfem,ts/Pe Pfem,brit/Pe
kN/m kN/m kN/m - -

1 328,1 242,3 288 232 1,19 0,96 0,88 0,71
2 218,7 236,3 282 227 1,19 0,96 1,29 1,04
3 302,8 274,1 356 320 1,30 1,17 1,18 1,06
4 298,6 264,7 348 309 1,31 1,17 1,17 1,03

4A 290,2 261,2 343 305 1,31 1,17 1,18 1,05
4B 323,9 262,7 345 309 1,31 1,18 1,07 0,95
5 412,2 315,5 414 380 1,31 1,20 1,00 0,92
6 382,7 310,4 401 376 1,29 1,21 1,05 0,98
7 134,6 117,9 184,0 140 1,56 1,19 1,37 1,04
8 96,7 117,3 182,0 132 1,55 1,13 1,88 1,36
9 168,3 137,9 215 186 1,56 1,35 1,28 1,11

9A 172,4 137,8 215 184 1,56 1,34 1,25 1,07
10 - 137,5 214 178 1,56 1,29 - -

10A - 137,3 214 173 1,56 1,26 - -
11 193,5 152,9 236 193 1,54 1,26 1,22 1,00
12 92,5 153,5 234 188 1,52 1,22 2,53 2,03

Mean value 1,42 1,19 1,31 1,10
Standard deviation 0,15 0,11 0,42 0,30

Mean value, slab 1, 8 & 12 excluded 1,19 1,02
Standard deviation, slab 1, 8 & 12 excluded 0,11 0,05  

Table 6.1: Finite element calculations compared to experimental- and predicted results 
 
Figure 6.17 and Figure 6.18 show the finite element results of a brittle cracking model and the ex-
perimental results. 
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Figure 6.17: Test results versus finite element (brittle model) calculations for the thick slabs of 58,7 mm 
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Figure 6.18: Test results versus finite element (brittle model) calculations for the thin slabs of 41,2 mm 
 
6.4. Brittle versus tension softening cracking model 
 
To get a better view of the difference between the tension softening and the brittle cracking model, 

the factor 
e

fem

P
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of test results is plotted in Table 6.1. It can be clearly seen that the calculations with 

a brittle cracking model lies in between upper and lower 15% boundaries. Further more it can be 
seen that the model that includes tension softening gives results that are around 20% to high.  
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Figure 6.19: The brittle versus the tension softening model 
 



Chapter 6: Finite element model for bending action 
 

 

61

Looking at Figure 6.12 some things can be noticed. The analytical solution is determined without 
the use of tension softening. This corresponds very well with the brittle finite element calculation 
without any spring stiffness. The finite element model with tension softening gives a higher ulti-
mate load of approximately 30% for an unrestrained edge. For a totally horizontal restrained edge 
the following factors can be determined:  
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The last factor is the mean value from the test data as shown in Table 4.1. Comparing those three 
factors and the finite element calculations of the experimental results, it seems that the brittle finite 
element model will give a better approximation of the collapse load then the finite element model 
that includes tension softening.  
 
The difference in ductility between the brittle and tension softening model is very large. Including 
tension softening makes the behaviour of the material much more ductile. This can be clearly seen 
in Figure 6.3, Figure 6.6 and Figure 6.7. 
 
Another difference between the brittle and the tension softening is the calculation time. The brittle 
material model needs more iterations to reach its convergence criterion in each step. This increases 
the calculation time considerably. For this 2D plane stress model it is not much of an influence, the 
calculation time stays within reasonable limits. For a fully 3D solids model however this will be 
something to keep in mind. 
. 
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7. FINITE ELEMENT MODEL FOR PUNCHING FAILURE 
 
A punch cone can only occur in a 3D or an axi symmetric model (the latter is discussed in chapter 
7.2). The 2D plane stress model used in chapter 6 is thus not suitable for punching analysis. First, 
the 3D solid model, as presented in chapter 5.1.4 will be evaluated.  
 
7.1. 3D solids model 
 
The model that will be evaluated is shown in Figure 7.1. The dimensions are chosen equal to the 2D 
plane stress model. 
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Figure 7.1: Dimensions of the 3D solid model, all the edges are clamped and totally horizontal restrained 
 
The analytic solution for this plate is the lowest value of the maximum bending or punching load. 
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See chapter 3.1.1.  



Part II: The finite element modelling 
 

 

64 

l

b = l

yield line
load

 
Figure 7.2: Yield lines in a clamped square slab 
 
The ultimate bending load is determined with the virtual work theory, as presented in a reader 7.1.  
To do the calculation, a few simplifications are made: 
 
 the load is located in one point, and not distributed over the give area 
 the ultimate moment of the slab is the same in all directions 
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The ultimate punching load is calculated as presented in chapter 3.1.2. 
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As was to be expected Fu, punch < Fu, bending, so the punching failure mode is governing. The predicted 
collapse load including compressive membrane action calculated by the method as described in 
chapter 2.2 is 161 kN (calculated with maple). An overview of the found values is shown below. 
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In the figures below, the DIANA output of laterally restrained clamped slab is presented. The load 
is distributed over an area of 100 x 100 mm.  Only a quarter of the slab is modelled, since the slab 
has two symmetry axes. The model will be build up just like the model presented in chapter 5.1.4, 
but now with boundary conditions of the two supported sides fixed in lateral and z-direction. Both 
brittle and tension softening models will compared to each other. To check whether DIANA can 
calculate punch. So four models will be compared to each other: 
 
 brittle material model, all sides simply supported 
 brittle material model, all sides clamped 
 tension softening material model, all sides simply supported 
 tension softening material model, all sides clamped 
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Figure 7.3: The 4 load-displacement graphs of the 3D solids model 
 

no compressive membrane action
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(a) simply supported
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Figure 7.4: Difference between the simply supported and clamped model 
 
As already noticed in chapter 6, there is a big difference in a model with and without tension soften-
ing. Furthermore it can be seen that the brittle material models collapse before reaching the punch-
ing shear load as calculated according the Dutch code. The clamped model with the tension soften-
ing material model comes closest to failure in punching shear. For this model, the load-
displacement graph, the displacement fields and the cracking pattern are shown in Figure 7.5 to 
Figure 7.7. This model seems to give a collapse load that might be too high, as the predicted value 
was more or less in agreement with experimentally found results, see chapter 4.2.  
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Figure 7.5: Load displacement graph for the 3D solid clamped tension softening model, the model fails between loadstep 23 and 24 

      
Figure 7.6: Displacement field in Z-direction and cracking pattern of the slab just before failure (loadstep 23) 
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Figure 7.7: Displacement field in Z-direction and cracking pattern of the failed slab (loadstep 24) 
 
The results of the 3D solids model seem not to correspond to the expected values, see Figure 7.3. 
Varying parameters to see what influence they have is very time consuming, since each calculation 
takes a long time. To spare time an axi symmetric model will be evaluated. Since punch is the gov-
erning failure mode, this model might give good results. 
 
7.2. axi-symmetric model 
 
In this model a 2D slice is modelled in DIANA, and is then rotated 360 degrees around the y-axis. 
See Figure 7.8. To get a good comparison, the input is the same as the 3D solids model. This model 
can only be used to model circular shaped structures. This holds also for the loaded area, which is 
not square, but circular shaped. The diameter of the area is 127,3 mm.  

y

x z
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loaded area
concrete slab

reinforcement grid

axi-symmetric model  
Figure 7.8: axi-symmetric model 
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Figure 7.9: Schematic input of the axi-symetric model 
 
This model is again evaluated for the same four cases as the 3D solids model. For the difference 
between (a) and (b) see Figure 7.4. 
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Figure 7.10: Load-displacement graphs for 4 different models of the axi-symmetric model 
 
The difference between the brittle and tension softening material behaviour can be clearly seen 
again. The tension softening material model is again much more ductile. The simply supported 
variant with a brittle material model seems to fail in bending, this can be seen because it has a hori-
zontal part in load-displacement graph.  
The lateral restrained model with the brittle material behaviour is almost equal to the predicted 
punching load failure as described in chapter 2.2. To check whether this is a coincidence or that the 
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models really give the same results, a parameter study is done and the factor 
fem

p

P
P

 is calculated. The 

values of the steel ratio and steel strength are not taken into account, since these have little influ-
ence on the punching capacity. 
 

d0 Pp Pfem Pa Pfem/Pa Pfem/Pp
mm kN kN kN - -
50 78,5 76,8 74,2 1,04 0,98
100 161 156 100,7 1,55 0,97
150 228,2 222 127,1 1,75 0,97
200 295,3 281 153,6 1,83 0,95
250 362,5 359 180,1 1,99 0,99

1,63 0,97
0,37 0,01

Mean value
Standard deviation    

h Pp Pfem Pa Pfem/Pa Pp/Pfem
mm kN kN kN - -
50 46,3 24,8 24,9 1,00 0,54

100 100,6 92 61 1,51 0,91
150 161 156 100,7 1,55 0,97
200 227,5 222 166,1 1,34 0,98
250 299,4 292 249,2 1,17 0,98

1,31 0,87
0,23 0,19Standard deviation  

Mean value
 

 
fcu Pp Pfem Pa Pfem/Pa Pp/Pfem

N/mm2 kN kN kN - -
15 49,1 87 63 1,38 0,56
25 102,5 128 85 1,51 0,80
35 161 156 100,7 1,55 1,03
45 222,7 188 115,6 1,63 1,18
55 286,1 223 133,1 1,68 1,28

1,55 0,97
0,11 0,29

Mean value
Standard deviation   

Table 7.1: The difference between the predicted, analytical and finite element values 
 
Looking at Table 7.1 it can be seen that for the concrete strength fcu = 35 N/mm2 the predicted value 
and the finite element value correspond very well. Only for very large slenderness (L/h = 24 in this 
cases) the results do not match. The punch load according to the Dutch code for this plate with a 
height of 50 mm is 24,9 kN. This value corresponds very will with the finite element result. This 
indicates that for a finite element calculation in DIANA, in slabs with a large slenderness no com-
pressive membrane action is generated. The theoretical model presented in chapter 2.2 gives a result 
that does include compressive membrane action for a large slenderness. The influence of the con-
crete strength differs. The finite element results show that it has less influence than the predicted 
solution. To determine which model is more accurate, they have to be compared to experimental 
results.  
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Figure 7.11: Difference between the predicted and finite element value for different concrete strengths 
 
In Figure 7.12 and Figure 7.13 the load-displacement graph and the crack patterns are shown for a 
axi-symmetric model with a brittle material behaviour. It can be seen that this model is failing in 
punch.  
 

 
Figure 7.12: Load-displacement graph for the clamped model, with a brittle material behaviour, force controlled 
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Figure 7.13: Crack pattern just before (loadstep 16) and after (loadstep 17) failure 
 
From now on the axi-symmetric model with a brittle material behaviour will be used. This model is 
chosen above the 3D solids model based on the following points 
 
 all tests described in chapter 4.2 failed in punch and the axi-symmetric model predicts punch 

well 
 the model is fast and easy to build 
 the calculation time is much less than that of a 3D solids model 
 
7.3. Enhancement factors 
 
The enhancement factors for variation in the length of the loaded area, the height of the slab and the 
concrete strength are shown in Figure 7.14. 
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Figure 7.14: Enhancement factor Pfem/Pa and Pp/Pa for variation in d0, slenderness and fcu 
 
The theory of chapter 2.2 does not take into account that compressive membrane action is not pre-
sent in slabs with a high slenderness. This can be concluded from the high enhancement factors 
given by this theory for a high slenderness. These values are in contradiction with the finite element 
results. 
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The reinforcement placement is varied from no reinforcement to reinforcement in tension zones to 
continuos reinforcement. The un-reinforced slab has a higher collapse load then the slabs that does 
include reinforcement. A similar result as already been seen for the bending model presented in 
chapter 6.1.2. The higher punch resistance of the un-reinforced slab might be explained by the fact 
that the compressive membrane force generated in the un-reinforced slab is higher than that of a 
reinforced slab, see Figure 6.16. Unfortunately, no experimental data was found that includes dif-
ferent reinforcement layouts, so it can not be verified if these results are right at this moment. 
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Figure 7.15: ultimate punch load for different reinforcement locations 
 
 
7.4. Comparison with test results 
 
The experimental results described in chapter 4.2.1 are compared to a finite element calculation. 
The results are presented in Table 7.2. 
 

Pfem Pfem ts Pe Pp Pfem,ts/Pe Pfem,ts/Pp
kN kN kN kN - -
46 118 101 104 1,17 1,14
35 97 118 64 0,82 1,52
44 105 149 81 0,70 1,30
25 60 49 63 1,22 0,95
23 63 70 59 0,90 1,08
16 61 68 53 0,90 1,15
46 115 116 95 0,99 1,21
24 65 42 67 1,55 0,97
27 73 69 80 1,06 0,91
46 120 99 96 1,21 1,25
25 62 43 62 1,44 0,99
28 83 63 81 1,32 1,02

Mean value 1,11 1,13
Standard deviation 0,26 0,18  

Table 7.2: experimental results presented in chapter 4.2.1 compared to finite element results 
 
The slenderness of the tested slabs are respectively 20 and 30. As already mentioned in chapter 7.2 
the used finite element model does not take into account compressive membrane action for these 
high values of the slenderness. This is not in comparison with the experimental results. Therefore, a 
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second finite element analysis is done, but now with the use of the tension softening model. The 
result from these analyses seems to be in better accordance with the experimental result.  
 
In Table 7.3 the experimental result presented in chapter 4.2.2 are compared to the finite element 
results. Since the concrete strength is rather high in these experiments, the brittle material model 
might give values that might be somewhat lower than the experimental result, see Figure 7.11. 
Therefor the finite element calculation will also be done with a tension softening material model. 
The tension softening material model gives results that lie in acceptable range of the experimentally 
found values. 
 

Pfem Pfem ts Pe Pp Pfem,ts/Pe Pfem,ts/Pp
kN kN kN kN - -
95 416 369,4 466,7 1,13 0,89
79 372 290,6 367,6 1,28 1,01
85 380 402,2 403,4 0,94 0,94
81 368 394,1 376,6 0,93 0,98

Mean value 1,07 0,96
Standard deviation 0,16 0,05  

Table 7.3: experimental results presented in chapter 4.2.2 compared to finite element results 
 
The results of the measurements on the bridge decks presented in chapter 4.2.4 are compared to 
finite element models in Table 7.4. 
 

slab cracking load deflection at deflection at deflection at
kN 112,5 kN in mm 330 kN in mm 430 kN in mm

C1 118 0,35 2,6 -
C2 143 0,25 - 1,2
D1 154 0,4 1,85 -
D2 143 0,25 - 1,75

measured values

 
 

slab cracking load deflection at deflection at deflection at
kN 112,5 kN in mm 330 kN in mm 430 kN in mm

C1 120 0,175 0,815 -
C2 112 0,08 - 0,5
D1 150 0,12 0,55 -
D2 112 0,08 - 0,5

finite element results (totally horizontal restrained)

 
Table 7.4: experimental results presented in chapter 4.2.4 compared to finite element results 
 
The slabs A1 to B2 included reinforcement in the form of fibres, which can not (yet) be included in 
the finite element model. The results of the finite element model do not match at all with the ex-
perimental found values. However, the goal of this study is to predict the ultimate load of the struc-
tures, and not an accurate value for deflections and crack widths. 
 
7.5. Partly horizontal restrained axi-symmetric model 
 
To make the model as described in chapter 7.2 partly horizontal restrained, springs will be added, 
just like is done for the 2D plane stress model as described in chapter 6.2. However, the use of a 
stiff edge beam is not a possibility anymore. These stiff beam elements will be rotated over 360 
degrees, which creates a shell of revolution. This shell of revolution acts as a stiff ring element 
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which can not deform horizontally freely and is thus not useful.  Instead the tying option will be 
used. With this input, a group of nodes can be tied togheter, so they have the same displacement in 
a chosen direction. Tying the nodes of the edge together will create the boundary condition that is 
needed, an edge that can move latterly but does not rotate. 
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For low spring stiffness the slab is failing in bending, which can be identified in the load displace-
ment curve, which ends in a horizontal part if it fails in bending. Shear or punch failure can be iden-
tified by abrupt ending of a rising curve, or by a fallback of the load. For higher spring stiffness the 
slab fails in punching shear. 
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Figure 7.16: Ultimate load of the finite element calculation for different spring stiffnesses  
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With the spring stiffness per m circumference and the horizontal displacement known, the value for 
the force generated by the lateral restraint can be calculated by multiplying the horizontal displace-
ment by the spring stiffness. 
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Figure 7.17: Nrs for an increasing spring stiffness  
 
7.5.1. Ontario experimental results 
 
In Ontario some experiments where done on bridge decks, see appendix D. Some small scale ex-
periments where done, at which the membrane forces where measured by the expansion of a steel 
ring. The test set-up is shown in Figure 7.18. 
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Figure 7.18: test set-up of small-scale test 
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For the calculation of the spring stiffness the linear relationship between spring and force will be 
used, F = k.u. 
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Figure 7.19: deformation in lateral direction before and after loading 
 
In the formula r is the radius and p the perimeter of the slab. 
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For the conversion of radial into tangential stresses, the formula 
t
pr

 , in which p is a pressure 

and not the perimeter, is used7.2. For the input in the finite element model the found value has to be 

multiplied with a factor 1000, since the input is in 
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A finite element model will be used to calculate the restraining force and will then be compared to 
the values presented in the Ontario code, see appendix D Figure 18. It is not clear in the Ontario 
code what dimensions each of the samples have, so for the finite element model, the average of the 
values presented in Figure 7.18 are used.  
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Figure 7.20: restraining force calculated by multiplying the spring stiffness with the lateral displacement 
 
Comparing Figure 7.20 with the one presented in appendix D, a few differences can be noticed. 
 
 the ultimate load of the Ontario specimens is higher than the load found with the finite element 

model 
 the maximum restraining load of both methods is about the same 
 the Ontario specimens started with a restraining load for a unload slabs, which might indicate 

that the steel ring was attached tightly to the specimen, this is not modelled in the finite element 
model 

 
It is not clear why the graph given in the Ontario report does not show a horizontal part at the be-
ginning. Even when a starting with a compression force on the edge, the cracking load still has to be 
reached, before the compressive membrane action starts to form. 
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8. THE DECK OF A COMMON GIRDER BRIDGE 
 
As an example, a ZIP-girder system will be evaluated, which is a commonly used system in the 
Netherlands. This system has already been introduced in chapter 1. The system will be designed 
according to the guidelines of the Dutch company Spanbeton. All information according to dimen-
sions is downloaded from their Internet page 8.1.  The thickness of the compression layer (the con-
crete slab) is the same for every case, 230 mm. This means the span is not an influence factor for 
the height of the slab. Chosen is for a ZIP 1200 system. 
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Figure 8.1: Dimension of the ZIP profile and the edge beam 
 
The system has the following quantities: 
 
 the concrete quality of the deck is C28/35 
 the top reinforcement is Ø12 – 150 and the bottom reinforcement is Ø16 -100 
 the concrete cover is 35 mm (according to the code 5.1) 
 the effective height is 187 mm 
 the area over which the load is spread is 350 x 600 mm 
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Figure 8.2: Cross-section of the bridge and one span of the compression layer zoomed in to 
 
Since punch failure is governing in the most cases, only load configuration 2 (see Figure 1.2) with 
the high axle loads will be discussed here. 
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8.1. Analytical solutions 
 
The ultimate load for both bending and shear will be calculated. Some assumptions that are made 
for these calculations are: 
 
 the top layer does not contribute to the bearing capacity 
 the form work does not contribute to the bearing capacity 
 the length of the mechanical system is the distance between the centre lines 
 
 
8.1.1. Bending 
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Figure 8.3: Model for the calculation of the bending capacity 
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Figure 8.4: Width over which the wheel load has influence  
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Figure 8.5: load positions to calculate the virtual work 
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The analytic value is higher than the 200 kN wheel load which is prescribed in the code. 
 
8.1.2. Punch 
 
The l/b ratio of the loaded area is less then 2, which means the slab will fail in pure punch, and not a 
combination of punch and shear.  

  mma

db
A
db

A

tops
bottomo

tops
topo

8,604350600.2

%08,1
.

%40,0
.

,
,

,
,
















 



Chapter 8: The deck of a common girder bridge 
 

 

85

kNF

k
mmp

wheel

d

9,655187.5,2487.41,1
41,18,0.4,174,0.39,1.4,1.8,0

39,1187,0.6,05,1
5,2487)1878,604(

max,

1
3

1











 

 
The slab will fail in punching shear, and not in bending, at least for the analytic solution. 
 
8.2. solutions including compressive membrane action 
 
The example structure will be calculated with the bending and punch theory described in chapter 2 
and with an axial symmetric finite element model. The example will be calculated according to the 
New Zealand code, which takes into account compressive membrane action by using a restrained 
factor (see appendix E). 
 
8.2.1. Bending 
 
The theory predicts the ultimate distributed load, which is 1436,4 kN/m (calculated with the excel 
sheet presented in appendix A). To calculate the maximum wheel load, it is assumed tat the maxi-
mum bending moment in the middle will be the same for the total distributed load, and the system 
with the more concentrated wheel load, see Figure 8.6. 
 

V = 0,3 x 5,75 + 0,3 x q wheel max

V = 0,6 x 5,75 + 0,3 x q wheel max

M = (1,725 + 0,3q) x 0,3 + 0,5 x (1,725 + 0,3q) x 0,3 + 
0,5 x (1,725) x 0,3 = 232,8 kNm

qmax wheel  = 1716,8 kN/m

q = 5,75 kN/m

M = 1
12 x 1940,4 x 1,2 x 1,2  = 232,8 kNm

q = 1940,4 kN/m

 
Figure 8.6: conversion from a full distributed to a wheel load 
 

NFwheel 1,10306,0.8,1716max,   

Using the compressive membrane action for bending gives an enhancement factor of 57,1
9,655
1,1030
 .  
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8.2.2. Punch 
 
To calculate the ultimate punch load with the theory presented in chapter 2.2, the loaded area has to 
be square. To calculate the length of the square, it is assumed that the square and rectangle have the 
same area. 
 

mm 3,458350.600 2  squaresquare ll  
 
The maximum wheel load calculated with punching shear theory is 1012,8 kN (calculated with ma-

ple, see appendix B). The enhancement factor now becomes 54,1
9,655
8,1012
  

 
8.2.3. Finite element model 
 
The axi-symmetric finite element model will be used. The brittle material model should give rea-
sonable results, as the concrete strength is 35 N/mm2 and the slenderness is 5,2 (see Figure 7.14). 
In the axi-symmetric model, only circular loaded areas can be created. The diameter of the loaded 

area is mm5,5833,458.4



. The fully restrained model will be used. 

The ultimate load of the finite element model is 900 kN. The enhancement factor is 38,1
9,655

910
 . 

8.2.4. New Zealand code 
 
The New Zealand code is one of the first international codes that takes into account compressive 
membrane action in bridge decks (see Appendix E, section 6.5). The empirical method described in 
this code may be used if the following conditions are met: 
 
  the supporting beams are steel or concrete 
 the diaphragms are continuos and present at all supports for pre-stressed concrete beams 
 the slenderness does not exceed 20 
 the span length does not exceed 4,5 meter 
 the concrete strength f’c is not less then 20 N/mm2 
 the minimum slab thickness is 150 mm 
 the overhang of the outer beam is at least 80 mm 
 
The example bridge deck meets all of the above requirements, and may thus be analysed with the 
empirical method.  
 
The maximum wheel load in kg can be calculated with the following empirical method. Since no 
safety factors are taken into account so far, the value for γL will be assumed 1,0 to get a fair com-
parison of the values. 
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The enhancement factor is 04,1
9,655
3,684
  

 
8.3. Overview of results 
 
For the analytical solution, which does not take into account compressive membrane action into 
account, the collapse load is 655,9 kN and the deck fails in punch. 
 
The enhancement factors of the four methods to take compressive membrane action into account 
from low to high are: 
 
 New Zealand code (appendix E)        1,04 
 finite element model (chapter 7.5)       1,38 
 punch theory (chapter 2.2)        1,54 
 bending theory (chapter 2.1)        1,57 
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The minimum concrete strength for the deck subscribed by Spanbeton is C28/35, but in practice 
C50/60 is commonly used. If this concrete strength is used in the calculations, the bearing capacity 
and enhancement factors are: 
 
 bending analytic         887,0 kN 
 punch analytic         888,5 kN 
 New Zealand code        899,3 kN  1,01 
 finite element model      1360,0 kN  1,53 
 bending including compressive membrane action  1415,4 kN  1,60 
 punch including compressive membrane action   1794,7 kN  2,02 
 
8.4.  Existing bridges 
 
Existing bridges are a point of discussion in the Netherlands, as already mentioned in the article in 
chapter 1. To see whether these bridges meet the bearing capacity as prescribed in the NEN-EN 
1991-2, the minimum enhancement factor will be determined and then checked if it can hold the 
wheel load of 200 kN (load configuration 2, see Figure 1.2). The above used dimensions are only 
for new to build bridges, for this calculation commonly used dimensions in the 1970’s will be used. 
These dimensions of are given in Figure 8.7.  A recent study showed that the concrete quality of the 
decks of this existing bridges is at least C50/60.  For more information on this study Dr.ir. C. van 
der Veen from Delft University of Technology can be contacted. 
 

1200

16
0

fcu = 55 N/mm2
fs = 350 N/mm2
d = 117 mm

11
7

10 - 150
12 - 150

 
Figure 8.7: Commonly encountered dimensions of existing bridge decks 
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The bearing capacity and enhancement factors are: 
 
 bending analytic         220,3 kN 
 punch analytic         477,6 kN 
 New Zealand code        488,8 kN  2,22 
 bending including compressive membrane action    597,4 kN  2,71 
 finite element model        600,0 kN  2,72 
 punch including compressive membrane action   1225,4 kN  5,56 
 
It can be concluded that a 200 kN wheel load, as prescribed in the EN-NEN 1991-2 can be carried if 
compressive membrane action is taken into account.  
 
The enhancement factor found by the bending theory lies again between 2,2 and 2,7. Looking at the 
similarity of the bending enhancement factors and taking into account that this method gives a 
lower bound vale, it can be concluded that the enhancement factor for these kind of bridge decks 
and load configuration 2 (see Figure 1.2) is at least 2,7 and increases for higher concrete strengths.  
 
The presented calculation does not include any safety factors for the loading. The load factor for 
live loads on bridges is 1,35 according to the European code 8.2. This means that the deck must have 
the capacity to withstand an wheel load of 1,35 x 200 = 270 kN. The lower-bound value found by 
the theory’s including compressive membrane action is significant higher then this prescribed load. 
It can be concluded that the deck can withstand the 270 kN wheel load if compressive membrane 
action is taken into account. 
 
Not taking into account the load safety factor for the does not chance the value of the enhancement 
factors, since the load safety factors are equal for both calculations. 
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9. CONCLUSIONS AND RECOMMENDATIONS 
 
9.1. Conclusions 
 
The goals as described in chapter 1.1 are met. This rapport describes finite element models, for 
bending and punch failure, to predict the bearing capacity of latterly restrained concrete slabs.  
 
From this rapport the following things can be concluded: 
 
 if a concrete slab is laterally restrained, the bearing capacity is higher than can be shown with a 

linear analytic calculation 
 
 the finite element program DIANA takes into account compressive membrane action and gives 

acceptable results (compared to experimental data) if 
 the calculation method used is non-linear 
 the material is modelled as total strain rotating brittle cracking model 
 the 2D plane stress model is used for bending failure, or the axi symmetric model is used for 

punch or a combination of punch and bending failure 
 the concrete strength fcu lies around 35 N/mm2 
 he slenderness is less than 15 

 
 for lower values of the concrete strength the found values are to high, but compression mem-

brane action is still taken into account. For higher values of the concrete strength the found val-
ues are to low, but compression membrane action is still taken into account 

 
 for higher values of the slenderness DIANA does not take predict compressive membrane ac-

tion, while experimental results show that the phenomenon is still present   
 
 the enhancement factor, which is the ultimate load from the finite element solution divided by 

the ultimate load of the analytic solution, differs for different input parameters 
 for a higher concrete strength the enhancement factor will increases 
 for a higher reinforcement percentage the enhancement factor will decrease 
 for a higher reinforcement yielding strength the enhancement factor will decrease 
 for a higher slenderness the enhancement factor will decrease 
 for a low slenderness failure of the trust relieving arch might become governing (the value τ2 

gets exceeded), in which case the enhancement factor will be lower 
 if a concentrated load is spread over a larger area the enhancement factor increases 
 

 the finite element model can include partly laterally restrained edges, this lowers the enhance-
ment factor 
 

 the decks of the in the Netherlands commonly used ZIP girder structures have a minimum en-
hancement factor of approximately 1,5 

 
 using compressive membrane action to determine the bearing capacity of existing decks of ZIP 

girder bridges shows that these decks can carry the loads prescribed by the newest Euro codes 
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9.2. Recommendations 
 
Recommendations for further research on the following subjects are done. 
 
9.2.1. Tension softening 
 
Using a tension softening instead of a brittle material behaviour, the results seem to be too ductile. 
The model does not fail in punch shear anymore, but fails in bending. Test specimens do fail in 
punch. Research has to be done to verify the different parameters such as the tensile fracture energy 
and the crack bandwidth, to come to a more accurate model. 
 
9.2.2. Reinforcement layout 
 
Finite element results show that an un-reinforced slab has a higher punch capacity than a reinforced 
slab provided that only flexural and no shear reinforcement is included. This might be due to the 
fact that in an un-reinforced slab the generated compression membrane force is larger, which makes 
the enhancement of the punch capacity larger. However, no test results where found to confirm this, 
so it is recommended to do testing on slabs with and without reinforcement to see if the results of 
the finite element model can be verified. 
 
9.2.3. 3D solids model 
 
Doing research on a 3D solids model is still very time consuming due to convergence difficulties 
and is therefore not continued in this thesis. However, this model might give very accurate results if 
the model is build-up in accordance with the specimen (which is not the case in an axi-symmetric 
model, since only circular structures can be modelled with this model). Research has to be done, to 
see if the 3D solids model can give an accurate value for the collapse load. If that is the case, this 
model can be extended for more complex structures, including irregular edges or holes for example. 
 
9.2.4. Serviceability limit state 
 
This study only checks the bearing capacity for bridge decks in the ultimate limit state. The service-
ability limit state has to be checked to see if the decks fulfil all the requirements of the latest Codes.
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General input

L 1200 mm
b 1200 mm
h 150 mm
d0 127,3 mm
l/h 8 -
c (concrete cover) 27 mm
F steel top 8 mm
F steel bottom 8 mm
number of bars top 13 -
number of bars bottom 13 -
d 115 mm
fck 35 N/mm2
fbm 2,8 N/mm2
fc 1,4 N/mm2 Shear failure is governing
f'c 21 N/mm2 Shear failure is NOT governing
T2 4,2 N/mm2
Ec 31000 N/mm2
Es 210000 N/mm2
As,top 653,4512719 mm2
As,bot 653,4512719 mm2
fs 435 N/mm2
S 1,00E+11 N/mm/mm width
wo 0,36% passes
wmin 0,18%
wmax 1,94%

Standaard virtual work theory Including compressive mebrane action (Park's theory) q q/qmax sagg/h
#DEEL/0! #DEEL/0! 0

Ns,sup 284251,3033 N B1 0,85 - 816,6282 2,369098 0,001667
xu,sup 15,0397515 mm  T 236,88 N/mm width 837,1984 2,428774 0,003333
z,sup 109,1344969 mm T' 236,88 N/mm width 844,0778 2,448732 0,005
Mu,sup 31021622,98 Nmm Cs 113,40 N/mm width 845,8533 2,453882 0,006667
Ns,field 284251,3033 N Cs' 113,40 N/mm width 845,4427 2,452691 0,008333
xu,field 15,0397515 mm 844,0147 2,448549 0,01
z,field 109,1344969 mm 842,0917 2,44297 0,011667
Mu,field 31021622,98 Nmm 839,9261 2,436687 0,013333
qmax 344,7 kN/m maxium qpark/qmax 2,45 - 837,6468 2,430075 0,015
Fmax 207 kN 835,3215 2,423329 0,016667

qpark max 845,9 kN/m 832,9869 2,416556 0,018333
Punching sagg at qpark max 1 mm 830,6628 2,409814 0,02
wo,bottom 0,36% 828,3595 2,403132 0,021667
kd 1,431 - 826,0821 2,396525 0,023333
t1 1,12 N/mm2 823,8328 2,389999 0,025
P 761,2079 mm 821,6117 2,383556 0,026667
Fmax 98043,57752 N 819,4185 2,377193 0,028333
Fmax 98 kN 817,2519 2,370908 0,03
Fshear maple kN 815,1105 2,364695 0,031667

812,993 2,358552 0,033333
810,8977 2,352474 0,035

Shear (no shear reinforcement included) 808,8234 2,346456 0,036667
Md max 31021622,98 Nmm 806,7686 2,340495 0,038333
Vd max 206820 N 804,732 2,334586 0,04
λv 1,940869565 - 802,7124 2,328728 0,041667
A0 138000 mm2 800,7089 2,322915 0,043333
gλ 4,77 - 798,7203 2,317146 0,045
kλ 2,52 - 796,7458 2,311418 0,046667
kh 1,45 - 794,7844 2,305728 0,048333
ω0 0,36 % 792,8356 2,300074 0,05
t1,increased 1,46 N/mm2 790,8985 2,294454 0,051667
t1 (0,4fb) 0,56 N/mm2 788,9724 2,288867 0,053333
qmax 335 kN/m 787,057 2,28331 0,055
qmax (t2) 966 kN/m 785,1514 2,277782 0,056667
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Appendix B: Maple sheet for punch capacity 
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The maple sheet in which the ultimate punching shear load is calculated looks as follows: 
 
> restart; 
This sheet works as follows: 
(1) fill in the variables (blue fields) in N and mm  
(2) run the sheet and fill in d1 as a smaller value than d1start 
(3) run again 
(4) change the value 'angle' to the value 'nextangle' (3 decimals)  
(5) run again and repeat step (4) till dP is approximately zero 
(5) write down the value of P (this value is shown in kN!) 
(6) slightly decrease d1 and repeat step 3 till 6 untill a minimum is reached for P 
(7) this minimum is the value P at which the plate will fail in shear mode (mind that d1 can reach d0 closely) 
> L:=2250; 
L := 2250

 

> h:=150; 
h := 150

 

> d:=135; 
d := 135

 

> d0:=300; 
d0 := 300

 

> fcu:=35; 
fcu := 35

 

> fy:=435; 
fy := 435

 

> W0:=0.0075; 
W0 := 0.0075

 

> fca:=0.85*fcu; 
fca := 29.75

 

> fc:=0.85*fca; 
fc := 25.2875

 

> fta:=0.7*(1.05+0.05*fcu); 
fta := 1.960

 

> ft:=fc/400; 
ft := 0.06321875000

 

> Ec:=evalf((4730*sqrt(fca))); 
Ec := 25799.10415

 

> Es:=210000; 
Es := 210000

 

> ck:=sqrt(1+fc/fta)-1; 
ck := 2.728509851
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> d1start:=solve((d1/d0)^d1=exp(ck*h), d1); 
d1start := 596.0873953

 

> d1:=350; 
d1 := 350

 

> angle:=4.988; 
angle := 4.988

 

> beta:=convert(angle*degrees,radians); 

b := 0.02771111111 p
 

> tb:=evalf(tan(beta)); 
tb := 0.08727762478

 

> a:=L/2; 
a := 1125

 

> R:=L/2; 
R := 1125

 

> As:=evalf(W0*L*d); 
As := 2278.1250

 

> x:=1.76*d*W0*(fy/fcu); 
x := 22.14771428

 

> S:=1/((a*R)/(0.8*Ec*L*d+Es*As)+a/(0.5*Ec*(x+h))); 
S := 1440.547813

 

> phi:=(a*fc)/(2*h*S);: 

f := 0.06582782200
 

> wi:=0.03*h; 
wi := 4.50

 

> w0:=0.5*h; 
w0 := 75.0

 

> N0:=0.5*h*fc-(As/L)*fy; 
N0 := 1456.125000

 

> n0:=(N0/(h*fc)); 
n0 := 0.3838853188

 

> k:=(0.5*n0+0.25+0.25*phi-0.25*(wi/h))*exp(wi/(h*phi)); 
k := 0.7112180663

 

> na:=-1*(k*exp(-(w0/h)/phi)-0.5*(n0+0.5+0.5*phi)+0.25*(w0/h)); 
na := 0.3330421055

 

> B:= fsolve(d1/2=(d0/2+tan(beta)/B)*exp(B*h)-tan(beta)/B,B); 
B := 0.0004890077716
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> A:=d0/2+tb/B; 
A := 328.4790137

 

> d0/2=A-tb/B; 
150 = 150.0000000

 

> d1/2=A*exp(B*h)-tb/B; 
175 = 175.0000000

 

> r:=A*exp(B*y)-tan(alpha)/B; 

r := 328.4790137 e 0.0004890077716 y( ) - 2044.957275 tan a( )
 

> dr:=diff(r,y); 

dr := 0.1606287905 e 0.0004890077716 y( )
 

> nr:=na+(w0/(2*h))*(1-(r/a)); 

nr := 0.5830421055 - 0.07299533640 e 0.0004890077716 y( ) + 0.4544349500 tan a( )
 

> Nin:=int(nr*2*Pi*r,y=0..h); 

Nin := 1.629455225 105 - 8.317644672 105 tan a( ) - 8.758446696 105 tan a( )2

 

> Nrscont:=fc*Nin; 

Nrscont := 4.120484900 106 - 2.103324396 107 tan a( ) - 2.214792208 107 tan a( )2

 

> Nrs:=2*Pi*fc*(na+(w0/(2*h)))*((A/B)*(exp(B*h)-1)-(h/B)*tan(alpha))-

Pi*fc*(w0/(a*h))*((A^2/(B*2))*(exp(2*B*h)-1)-((2*A)/B^2)*(exp(B*h)-
1)*tan(alpha)+(h/B^2)*(tan(alpha))^2); 

Nrs := 29.48735448 p 51123.93190 - 3.067435912 105 tan a( )( )

 - 0.01123888889 p 1.743218788 107 - 2.090925128 108 tan a( ) + 6.272775384 108 tan a( )2
( )

 

> diff(Nrs,alpha); 

29.48735448 p -3.067435912 105 - 3.067435912 105 tan a( )2
( ) - 0.01123888889 p (-2.090925128 108

 - 2.090925128 108 tan a( )2
 + 1.254555077 109 tan a( ) 1 + tan a( )2

( ))
 

> F:=r*(dr-tb+(ck^2/4)*((1+dr*tb))^2/(dr-tb)); 

F := 328.4790137 e 0.0004890077716 y( ) - 2044.957275 tan a( )( ) 
æ
ç
ç
ç
è

0.1606287905 e 0.0004890077716 y( )

 - 0.08727762478 + 
1.861191502 1 + 0.01401929931 e 0.0004890077716 y( )( )

2

0.1606287905 e 0.0004890077716 y( ) - 0.08727762478

ö
÷
÷
÷
ø

 

> Pin:=int(F,y=0..h); 

Pin := -7.440824738 106 tan a( ) + 1.238993219 106
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> P:=2*Pi*ft*((A^2/2)*(exp(2*B*h)-1)-((2*A)/B)*(exp(B*h)-
1)*tan(alpha)+(h/B)*(tan(alpha))^2)+Pi*ft*(ck^2/2)*(h/B+((2*A)/B)*(exp(B*h)-

1)*tan(alpha)+(A^2/2)*(exp(2*h*B)-1)*(tan(alpha))^2)+Nrs*tan(alpha); 

P := 0.1264375000 p 8524.475350 - 1.022478638 105 tan a( ) + 3.067435912 105 tan a( )2
( )

 + 0.2353244005 p 3.067435912 105 + 1.022478638 105 tan a( ) + 8524.475350 tan a( )2
( ) + (29.487354\

48 p 51123.93190 - 3.067435912 105 tan a( )( )

 - 0.01123888889 p 1.743218788 107 - 2.090925128 108 tan a( ) + 6.272775384 108 tan a( )2
( )) tan a( )

 

> Pcontr:=evalf(2*Pi*ft*Pin+Nrs*tb); 

Pcontr := -4.791339674 106 tan a( ) + 8.517729766 105 - 1.933018034 106 tan a( )2

 

> dP:=(diff(P,alpha))/(1+(tan(alpha))^2); 

dP := 1

1 + tan a( )2
 (0.1264375000 p (-1.022478638 105 - 1.022478638 105 tan a( )2

 + 6.134871824 105 tan a( ) 1 + tan a( )2
( ))

 + 0.2353244005 p 1.022478638 105 + 1.022478638 105 tan a( )2
 + 17048.95070 tan a( ) 1 + tan a( )2

( )( ) + 

(29.48735448 p -3.067435912 105 - 3.067435912 105 tan a( )2
( ) - 0.01123888889 p (-2.090925128 108

 - 2.090925128 108 tan a( )2
 + 1.254555077 109 tan a( ) 1 + tan a( )2

( ))) tan a( ) + (29.48735448 p 

(51123.93190 - 3.067435912 105 tan a( ))

 - 0.01123888889 p 1.743218788 107 - 2.090925128 108 tan a( ) + 6.272775384 108 tan a( )2
( )) (1

 + tan a( )2
))

 

> rad:=max(solve(dP=0,alpha)); 
rad := 0.08706146960

 

> nextagle:=evalf(convert(rad,degrees)); 
nextagle := 4.988254766 degrees

 

> alpha:=beta; 

a := 0.02771111111 p
 

> dPcontr:=Pi*ft*(ck^2/2)*(((2*A)/B)*(exp(B*h)-1)+A^2*(exp(2*B*h)-1)*tan(alpha))-

2*Pi*ft*(((2*A)/B)*(exp(B*h)-1)-((2*h)/B)*tan(alpha))-
2*Pi*fc*(na+(w0/(2*h)))*(h/B)*tan(alpha)+Pi*fc*(w0/(a*h))*(((2*A)/B^2)*(exp(B*h)-1)-

((2*h)/B^2)*tan(alpha))*tan(alpha)+Nrs; 

dPcontr := 0.2353244005 p 1.022478638 105 + 17048.95070 tan 0.02771111111 p( )( )

 - 0.1264375000 p 1.022478638 105 - 6.134871824 105 tan 0.02771111111 p( )( )

 - 9.045057010 106 p tan 0.02771111111 p( )
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 + 0.01123888889 p 2.090925128 108 - 1.254555077 109 tan 0.02771111111 p( )( ) tan 0.02771111111 p( )

 + 29.48735448 p 51123.93190 - 3.067435912 105 tan 0.02771111111 p( )( ) - 0.01123888889 p 

(1.743218788 107 - 2.090925128 108 tan 0.02771111111 p( ) + 6.272775384 108 tan 0.02771111111 p( )2
)

 

> evalf(Pcontr)/1000; 
418.8716901

 

> evalf(P)/1000; 
418.8716902

 

> evalf(dP)/1000; 
0.2392902344

 

> evalf(dPcontr)/1000; 
0.2392895000

 

> evalf(Nrs)/1000; 
2116.044104

 

> evalf(Nrscont)/1000; 
2116.044103
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The command file for the non-linear DIANA calculations 
 

*FILOS 
INITIA 
*INPUT 
READ 
*NONLIN 
BEGIN EXECUT 
 BEGIN LOAD 
  LOADNR=1 
  BEGIN STEPS 
   BEGIN ITERAT 
    ARCLEN 
    GAMMA=0.25 
    MAXSIZ=10 
    NSTEPS=500 
   END ITERAT 
  END STEPS 
 END LOAD 
 ITERAT MAXITE=500 
END EXECUT 
 
BEGIN OUTPUT 
 DISPLA TOTAL TRANSL 
 DISPLA INCREM TRANSL 
 FORCE REACTI TRANSL 
 STRESS TOTAL CAUCHY GLOBAL 
 STRESS TOTAL CAUCHY LOCAL 
 STRAIN CRACK 
 FORCE  EXTERN TRANSL 
END OUTPUT 
*END 

 
The material properties in the data file 
 

'MATERIALS' 
   1 YOUNG     3.100000E+04 
     POISON    2.000000E-01 
     TOTCRK ROTATE 
     TENCRV BRITTL 
     TENSTR    1.400000E+00 
     COMCRV CONSTA 
     COMSTR    2.100000E+01 
   2 YOUNG     2.100000E+05 
     YIELD  VMISES 
     YLDVAL    4.350000E+02 
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Command file for a phased calculation 
 

*FILOS 
INITIA 
*INPUT 
*PHASE 
BEGIN ACTIVE  
 ELEMEN 1 CIRCLE 
END ACTIVE  
*NONLIN 
BEGIN EXECUT 
 BEGIN LOAD 
  LOADNR=2 
  BEGIN STEPS 
   EXPLIC SIZES 1 (1) 
  END STEPS 
 END LOAD 
 ITERAT MAXITE=500 
 ITERAT LINESE 
END EXECUT 
 
 
BEGIN OUTPUT FEMVIE BINARY 
  file="ph1" 
 DISPLA TOTAL TRANSL 
 DISPLA INCREM TRANSL 
 FORCE REACTI TRANSL 
 STRESS TOTAL CAUCHY GLOBAL 
 STRESS TOTAL CAUCHY LOCAL 
 STRAIN CRACK 
 FORCE  EXTERN TRANSL 
END OUTPUT 
 
*PHASE 
BEGIN ACTIVE  
  ELEMEN 1 CIRCLE 2 ELASTI 
END ACTIVE  
*NONLIN 
BEGIN EXECUT 
 BEGIN LOAD 
  LOADNR=2 
  BEGIN STEPS 
   EXPLIC SIZES 1 (1) 
  END STEPS 
 END LOAD 
 ITERAT MAXITE=500 
 ITERAT LINESE 
END EXECUT 
BEGIN EXECUT 
 BEGIN LOAD 
  LOADNR=1 
  BEGIN STEPS 
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   EXPLIC SIZES 0.5 (5000) 
  END STEPS 
 END LOAD 
 ITERAT MAXITE=500 
 ITERAT LINESE 
END EXECUT 
 
BEGIN OUTPUT TABULA 
 BEGIN SELECT 
  NODES 1106 
 END SELECT 
 displace 
END OUTPUT 
 
BEGIN OUTPUT FEMVIE BINARY 
file="ph2" 
 DISPLA TOTAL TRANSL 
 DISPLA INCREM TRANSL 
 FORCE REACTI TRANSL 
 STRESS TOTAL CAUCHY GLOBAL 
 STRESS TOTAL CAUCHY LOCAL 
 STRAIN CRACK 
 FORCE  EXTERN TRANSL 
END OUTPUT 
*END 
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