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Abstract

Fatigue is an important issue for orthotropic steel deck (OSD) bridges and therefore a design criterium. Cracks
will initiate at several locations of the bridge deck. It is likely that a crack at the trough web to deck plate joint
at the crossbeam will initiate first. This crack initiates at the weld root and propagates through the deck plate.
A crack at this location is harmful because it is not optically visible and therefore hard to detect.

The first part of the report focuses on the fatigue assessment of the trough web to deck plate joint at the
crossbeam. Fatigue assessment of this joint is possible with different assessment methods which are the
nominal stress method and the hot spot stress method as given in the Eurocode, and the effective notch stress
method, described by the IIW. A hand calculation using a simple 2D model is made and a finite element (FE)
model is used for the assessment. Both a shell and solid element model are build. The fatigue life of the
joint for a deck segment is made. Experimental results for the same deck segment are available and used for
validation of the FE models. The fatigue life of each method is compared to the determined load cycles to
failure from the experiment. There is concluded that the hot spot stress method results in the most accurate
fatigue life prediction and a solid element model gives a slightly longer fatigue life than using shell elements.
The effective notch stress method results in a conservative fatigue life for this specific joint.

Stresses in the zone near the weld root of the rib-to-deck plate joint at the crossbeam are in compression,
while fatigue cracks will initiate due to tensile stresses. During welding, residual stresses appear in the joint.
Therefore, a fatigue life prediction is made which includes these residual stresses. An approximation of the
residual stresses is included in the initial state of the finite element model. Using the Smith Watson, Topper
parameter, which is a local critical plane based fatigue assessment, the amount of load cycles to failure is
determined. The result is comparable to the experimental result.

The second part of the report is focused on the geometry of the deck segment. A shell element model and the
hot spot stress method are used to analyse different parameters. When the width between the trough webs is
larger, a thicker deck plate thickness is required.

Four alternatives for a bridge deck are made. The alternatives have a different amount of troughs over the
width, which means that the width between the trough webs differs per alternative. The deck plate thickness
is chosen so that each alternative results in a damage value just below 1 for traffic category 2 and a design life
of 50 years. Fatigue load model 4 is considered. The weight of the alternatives is determined. There can be
concluded that reducing the amount of troughs over the width results in a heavier deck. This is because the
weight of the deck plate is a large part of the total weight of the OSD and if more troughs are used, a thicker
deck plate is applied.

There was assumed that the stress in the joint only is affected by deformation of the deck plate. However, the
in-plane deformation of the crossbeam has a negative effect on the stress range in the trough web-to-deck
plate joint.

Besides the geometry, the effect of some assumptions for modeling are investigated. Including a load dispersal
through the surface layer by applying a larger wheel contact area results in a reduced fatigue damage value of
about 50% and is therefore beneficial to take into account in the design calculations. The stress range in the
joint is highest if a wheel load is placed in the center of the trough. A transverse shift of the wheel results in
a large decrease in stress. Therefore it is important to take into account the design load cycles per transverse
wheel position.
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1
Introduction

1.1. Background information
An orthotropic steel deck (OSD) is a popular structure for a bridge deck. It is an integral deck, consisting of
the deck plate, longitudinal stiffeners and crossbeams. The deck is generally supported by two main girders.
The stiffeners can be open or closed. The decks are often applied because of the light weight, its slenderness
and a high load bearing capacity. It is used both in fixed and movable bridges.

Because of cyclic loading due to traffic and a large amount of welding, the decks are sensitive to fatigue.
Fatigue cracks are detected in several bridges with an OSD. In The Netherlands, cracks are only found in
highway bridges [8]. An example is the Van Brienenoord bridge in Rotterdam [17].

The fatigue life depends on the intensity of load cycles and the stress range. Highways are more sensitive
to fatigue because the heavy traffic intensity, and thus the amount of load cycles, is much higher than for
secondary- and local roads.

Fatigue cracks are detected at different locations of the OSD. These locations are in the trough web to deck
plate joint between two crossbeams or at the crossbeam, see figure 1.1. Other locations are in the joint
between the trough and crossbeam and in the trough splice joint.

Figure 1.1: Locations of fatigue cracks in the deck plate [9]

Cracks in deck plate at the rib-to-deck plate and crossbeam joint can be seen as most harmful. The crack
is not visually observable because it generally initiates at the weld root, which is at the inside of the trough.
Therefore, this crack type should be prevented or limited. The deck plate acts as the top flange of the crossbeam.
If there is a crack in the deck plate, the bearing capacity of the crossbeam may is not sufficient anymore.

1
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Therefore, de Jong [8] states that a crack at this location can be a treat for traffic safety. This will be the case if
the crack is over the full thickness and has a length of approximately 50 cm in longitudinal direction. Except
from this joint, fatigue cracks will not lead to a safety risk for traffic, because if the dimension of the crack is
limited, redistribution of loads is possible [8].

1.1.1. Deck plate thickness
The fatigue resistance of OSDs is influenced by the geometry of the deck structure. For older bridges, the
resistance of the decks was not determined by fatigue resistance but by static capacity under maximum wheel
loads. For this reason, most of the bridges in The Netherlands have a deck plate thickness of 10 mm (fixed
bridges) to 12 mm (movable bridges) [9]. However, in different studies it is proven that a thicker deck plate
results in an increased fatigue life [24], [11], [6]. Therefore, the deck plate thickness of new bridges is 18 to 22
mm.

Eurocode 3 part 2 [30] and the Dutch National Annex [31] give information about the minimum deck plate
thickness. The heavy traffic intensity of different road types differs, which results in a difference of the amount
of load cycles per year. Therefore, the minimum required deck plate thickness depends on the traffic category.

The deck plate thickness is the only parameter which is determined for all traffic categories separately. According
to the Eurocode, the width between the troughs should always be less than 300 mm. This value is independent
of the traffic categories. Information about the trough shape is not given in the code, but this will may have
an influence on the fatigue life as well.

1.1.2. Fatigue assessment methods
Different methods to predict the fatigue life are developed. The methods described in Eurocode 3 part 1-9
[29] are the (modified) nominal stress method and the hot spot stress method. Both methods have some
limitations and therefore, a third method, the effective notch stress method, is developed. This method is
described by the International Institute of Welding (IIW)[12] but is not yet included in the Eurocode.

The nominal stress method is generally seen as a conservative way of calculating and it is difficult to apply for
details with a complex geometry. The hot spot stress and effective notch stress method are less conservative
methods. However, the accuracy is dependent on the finite element model, because the type and size of
the elements have an influence on the resulting stress range. How more detailed the model is, how more
accurate the fatigue strength calculation will be. However, a more detailed model is more labor intensive and
more computation time is required.

The fatigue assessment according to the Eurocode is based on the S-N curves. These S-N curves are determined
by laboratory tests. Over the years, the weld methods and steel quality are improved, which results in an
improved quality of OSDs. Because the detail categories are based on the available tests, this improvement
is not taken into account yet and can lead to a conservative prediction of the fatigue life [5]. A local critical
plane model can be used as alternative for the S-N curve. This method does not consider a detail category for
each detail.

1.2. Problem definition and objectives
1.2.1. Research question
This report is divided in two objectives. As mentioned in the introduction, fatigue cracks are generally found
in highway bridges. But if focusing on movable bridges in urban area, does fatigue still be a big problem for
smaller heavy traffic flow? Nevertheless, except for requirement of the deck plate thickness, the requirement
of the design of the orthotropic steel bridge decks is the same for all traffic categories. An optimization of the
decks per traffic category may result in less material use. Especially for movable bridges, this is beneficial,
because of the reduction of the weight of the bridge deck. Therefore, the first objective of this report focuses
on the possibility to optimize the design to reduce the amount of weight of the bridge deck.
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This leads to the following research question:

Can there be found a combination of parameters for the OSD which results in a reduced weight of the
structure compared to general dimensions with respect to the rib-to-deck plate and crossbeam joint.

To give an answer on this question, the following sub question should be answered first:

Which parameters affect the fatigue life of the rib-to-deck plate joint at the crossbeam?

The second objective is the fatigue assessment of the rib-to-deck plate joint near the crossbeam. To find an
optimized design of the detail, an accurate fatigue assessment is preferred. This results in the second research
question and should be used to find an answer on the first question.

For which fatigue assessment method, the prediction of the amount of load cycles to failure is most close to
experimental results if the rib-to-deck plate joint at the crossbeam is considered?

In the end, an overview of the accuracy and ease of applicability of the assessment methods will be given and
recommendations about dimensions of OSDs for traffic category 2 will be described.

1.3. Methodology
For this research, two finite element (FE) models are build in ABAQUS software. The first model consists of
shell elements. The second model is a small solid element sub model of the joint and is included in the shell
element model to provide enough boundary conditions. Validation of the models is provided according to
available experimental results, carried out by Wu et al. [37]. This validation makes sure that the outcomes are
reliable. The fatigue life of a bridge deck segment is determined with different fatigue assessment approaches.
Approaches which are used are the nominal, hot spot and effective notch stress method, which are based on
the S-N curve and an assessment based on a local critical plane approach using the swt-curve is applied.

For a standard design of the bridge segment, different influencing parameters are analyzed. Using a case
study, four alternatives for a design of the bridge deck are determined. The damage value for these alternatives
is calculated. Fatigue assessment methods, discussed in the first part of the report are used. The alternatives
are used to draw conclusions about the possibilities for weight reduction of an OSD for traffic category 2.

1.4. Limitations
The focus of fatigue assessment will be on the trough web-to-deck plate joint near the crossbeam, because,
as stated in paragraph 1.1, this joint is most frequently observed and is seen as most harmful.

Only movable bridges are considered in this report. This is because of the importance of reduction of self
weight. Reduction of self weight is important for bridges in general, because it will lead to reduced load in
the foundation and therefore, in an overall reduction of weight and thus a reduction of costs. For movable
bridges, it is extra beneficial during opening and closing of the bridge. The required counterweight will reduce
as well which leads to an extra reduction of weight at the foundation.

Stresses in the bridge deck due to opening and closing are not considered. These stresses are mainly in the
longitudinal direction while the stress in the detail is affected by stresses in transverse direction caused by
local wheel loads.

1.5. Report outline
Chapter 2 gives an overview of the literature study. For understanding of the problem, some general information
about OSDs and about fatigue is collected. Subsequently, literature related to the rib-to-deck plate joint at
the crossbeam is discussed and an overview of the fatigue assessment methods is provided.

After the literature study, the FE model is discussed in chapter 3. A deck segment with ’standard’ dimensions is
used. Experimental data from a deck segment with same dimensions is available [37] and used for validation
of the FE model. Two models are created, one with shell elements and one with solid elements. The size of
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the elements which results in a stable result is investigated so that a reliable FE model is created.

A simplified 2D model, the shell element model and the solid element sub model are used to determine the
load cycles to failure for a certain load range in chapter 4. The fatigue life is determined with different fatigue
assessment methods. In the end, the results are compared to each other and to the experimental results
which makes it possible to find an answer on the research question.

An assumption for taking care of residual stresses is discussed in chapter 5. Fatigue assessment which is
based on the swt model is made.

In chapter 6, the load for fatigue is given, the most unfavorable wheel location and the influence on the
transverse wheel position is discussed and the effect of different parameters on the hot spot stress is analyzed.

The outcomes from the parameter study are used to determine some alternatives for a case bridge, discussed
in chapter 7. The damage values for these alternatives is determined and the possibilities for weight reduction
is discussed. Influences for some assumptions which are made in the report are analysed and discussed.

In the end, the conclusions are drawn and recommendations are given in chapter 8.



2
Literature review

In this chapter, information from literature is given. The literature study can be divided into three parts.
In the first part, the behaviour of an OSD during loading is described. Some general information about
fatigue is given and the fatigue crack initiation with respect to the rib to deck plate joint at the crossbeam
is discussed. The second part gives information about the design of an OSD according to the Eurocode and
some improvements and recommendations from literature is given. The last topic of the literature study
provides an overview of different methods to determine the stress at the weld root and describes how the
fatigue life of a detail can be assessed.

2.1. Behaviour of OSDs
An orthotropic steel deck is an integral deck, consisting of a deck plate, troughs, crossbeams, and main
girders. In figure 2.1, a typical deck is shown. The troughs are continuous or welded between two crossbeams.
A cope hole in the crossbeams is sometimes applied.

During traffic loading, the deck deforms. This causes axial, bending and shear stresses in the global system
including the main girders. Because the deck consists of different elements, all elements behave different and
should be checked locally.

Figure 2.1: Standard OSD. 1. Deck plate, 2. Connection trough web to deck plate, 3. Connection trough web
to crossbeam, 4. Cope hole, 5. Splice joint connection [EC3-2 C.1]

5
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The crossbeam is a beam supported between two main girders. Loading of the crossbeam results in in-plane
deformation, figure 2.2(a).

The trough can be seen as a continuous beam supported between the crossbeams. If a load is applied at the
trough in span between crossbeams, the trough web rotates near the crossbeam. Because the troughs are
welded to the crossbeams, the crossbeam will deform as well, which is out-of-plane deformation, as shown
in figure 2.2(b).

(a) In-plane (b) Out-of-plane

Figure 2.2: Crossbeam deformation [3]

The deck plate is supported by the troughs. Due to a local wheel load, the deck plate will deform locally
between the trough webs, 2.3. This results in bending stresses at the connection of the deck plate with the
trough. At the location of the crossbeam, the connection is much stiffer than in span. As a consequence, the
deck plate will deform between the trough webs only and the local bending stress is higher, see figure 2.4.

Figure 2.3: Local deflection of deck plate and trough
in span between crossbeams [11]

Figure 2.4: Local deflection of deck plate at the
crossbeam

2.2. Introduction to fatigue
Fatigue in steel structures is the phenomenon which occurs if a structure is exposed to cyclic loading. Traffic
load leads to a variation in stresses during life. The height of this stress range is the most important factor for
the fatigue life. Fatigue damages is caused before the yield stress is reached. Therefore, only elastic stresses
should be considered in fatigue calculations generally.

Fatigue crack growth takes place in three phases; crack initiation, crack propagation and the final fracture.
An overview is given in figure 2.5. Crack initiation takes place at points where the stress range is large. Local
increase in stress range is caused by stress concentration effects due to geometric discontinuities in the detail,
the shape and size of the weld and local weld defects [1].
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After the crack is initiated, it grows to a macro crack. Among other things, the way the crack will propagate
depends on the geometry and stiffness of the detail and on the material properties. Other important influencing
factors are the stress range and number of load cycles.

Generally speaking, final failure is the point in which the crack will grow unstable. This point is reached if
the stress intensity factor is equal to or larger than the fracture toughness factor (K IC ).

Figure 2.5: Fatigue phases - overview

2.3. Fatigue cracks in the rib-to-deck plate joint
Due to a wheel load from a vehicle, the deck plate deforms locally between the trough webs as discussed in
paragraph 2.1. As a result, bending stresses will arise at the connection between the deck plate and trough
web. The height of the stress range at the joint is influenced by the transverse wheel location and the wheel
contact area.

There are four different crack paths for the trough web-to-deck plate joint near the crossbeam or in span,
shown in figure 2.6. Location a and b initiates at the weld root and toe respectively and propagates through
the deck plate. The crack at location c initiates at the weld toe and propagates through the stiffener and at
location d, the crack initiates at weld root and grows through the weld bead.

The crack paths at location b and c are visible during inspection. The crack in the weld will be visible if it
is propagated through the weld bead. A crack at location a is not visible. It will only become visible if there is
a crack in the surface layer as well.

Figure 2.6: Crack paths in the rib-to-deck joint [26]

2.3.1. Crack initiation
The initiation and propagation of the crack types for the rib-to-deck plate joint are investigated by many
researchers. A summary of some studies is given in this section.

The research of Leendertz [18] contains a description of different crack possibilities in OSD bridges. A conclusion
is that in existing bridges as well as in test specimens cracks are found in the weld bead, figure 2.6 location
d, and in the deck plate, location a. Both cracks initiates at the weld root. The crack through the weld bead
is found in the joint in span between two crossbeams and is dominant in bridges which have a high truck
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intensity. The crack propagation through the deck plate is present near the crossbeam and is detected in
bridges where a thin wearing course is applied. In some cases, if the value of heavy traffic is high, this crack
type is also found in bridges with a thick wearing course.

Murakoshi et al. [24] and Nagy et al. [26] stated that cracks will initiate at the weld root and propagation will
take place in the deck plate or the weld. In a couple of existing bridges, these cracks are found in span between
two crossbeams.

According to a research of Murakoshi et al. [24], both the joint at mid span and near the crossbeam are
investigated and there can be concluded that the minimum principal stress is much higher in the joint near
the crossbeam. Therefore, the fatigue life will be lower for this detail. This conclusion is similar to the
statement of Wu et al. [37], which says that fatigue cracks in the trough web-to-deck plate joint will initiate
and propagate earlier near the crossbeam than in span.

According to the different studies, there can be concluded that the crack initiates at weld root and propagation
is expected in the weld bead for the joint in span and through the deck plate for the joint near the crossbeam.
It is likely that the crack at the crossbeam initiates first.

2.3.2. Crack propagation and final failure
The crack through the deck plate in the rib-to-deck plate joint near the crossbeam, which initiates at weld
root, propagates through the deck plate in vertical direction first. Subsequently, it will grow in longitudinal
direction, parallel to the longitudinal trough. The crack usually has a semi elliptical surface [8]. The crack in
the deck plate between the crossbeams propagates in a similar way. The difference is that this crack grows in
vertical and longitudinal direction at the same time.

2.4. OSD design according to NEN-EN 1993-2
Eurocode 3 part 2 [30] and the corresponding Dutch national annex [31] give some limitations about the
design of OSD bridges. For the deck plate thickness, the surface wearing influences the fatigue performance
and therefore, it is taken into account in the recommendation. The minimum thickness of the deck plate (t)
for heavy traffic is:

t ≥ 14 mm if the asphalt layer is ≥ 70 mm
t ≥ 16 mm if the asphalt layer is ≥ 40 mm.

The fatigue strength of a detail is influenced by the number of heavy vehicles which enters the bridge. A
thicker deck plate results in a longer fatigue life for the same heavy vehicle intensity. Because this intensity
differs per road type, the deck plate thickness is determined for each traffic category separately. The values
are given in table 2.1. For traffic category 1, the design life is 100 years and for the other categories 50 years.

In some cases, a reduced traffic load can be used for traffic category 2, 3 and 4. For these cases, the deck
plate thickness can also be reduced.
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Table 2.1: Deck plate thickness according to NEN-EN 1993-2/NB table NB.5 and NB.6 [31]

Traffic category Design life Deck plate thickness (mm)
Asphalt or hpc layer,
minimum thickness

of 60 mm

Epoxy layer,
minimum thickness

of 8 mm
1. Highways and roads with two or
more lanes per direction and with
heavy truck intensity

100 years 18 22

2. Roads with average truck
intensity

50 years 18 / 16* 20 / 18*

3. Roads with low truck intensity 50 years 16 / 14* 18 / 16*
4. Roads with low truck intensity
and only traffic for destination

50 years 14 / 12* 15 / 14*

* Reduced value of the deck plate thickness

According to Eurocode 3 part 2 [30], the distance between the troughs web at the top (e) should be e ≤ 300
mm. The relation between the distance between the trough webs and the deck plate thickness (t) should be
limited to e/t ≤ 25. The thickness of the trough should always be tst i f f ≥ 6 mm.

Eurocode 3 part 2, Dutch national annex, chapter C.1.2.2 [31] gives recommendations about the distance
between the crossbeams related to the moment of inertia of the longitudinal stiffener including the deck
plate. This recommendation should prevent cracks in the surface layer due to deformations of the deck plate.
The maximum distance between the crossbeams can be found in figure 2.7. Curve B should be used for
longitudinal stiffeners within a distance of 1.20 meter from the main girder web and which are loaded by a
heavy traffic lane and. For other cases, curve A is sufficient.
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Figure 2.7: Relation moment of inertia and distance between crossbeams

2.5. Design parameters with respect to fatigue performance
The dimensions of the OSD influence the fatigue life. Besides this, the geometry of the weld may also influence
the local peak stresses in the details prone to fatigue. Different geometrical aspects of the decks are already
investigated by many researchers. A description of a couple of studies is given below.

The deck plate and trough thickness, the width between trough webs and the penetration ratio are related to
the rib-to-deck plate weld at the crossbeam and in span. The trough shape and influence of cope holes are
related to the trough-to-crossbeam weld at the bottom of the trough and the crossbeams is related to both
joints.
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2.5.1. Deck plate thickness and thickness of troughs
Murakoshi et al. [24] studied the rib-to-deck plate joint at the crossbeam and in span. A finite element model,
made of solid elements, is used to analyze the local principal stresses at the joints for different parameters.
Eight alternatives are considered. Half of the alternatives have a trough thickness of 6 mm and the other half
a thickness of 8 mm. The deck plate thickness is equal to 12 mm, 14 mm, 16 mm and 19 mm.

The deck segments are loaded with a double tyre and a wheel load of 150 kN both at the crossbeam location
and in the middle between two crossbeams. Resulting minimum principal stress at the weld root is given in
figure 2.8.

Figure 2.8: Minimum principal stress versus deck plate thickness [24, fig. 11]

A conclusion of the research is that an increased deck plate thickness results in lower maximum principal
stresses and the trough thickness does not have a large influence on the principal stress. Highest stresses are
found in the rib-to-deck plate joint at the crossbeam.

Another study to the rib-to-deck plate joint is made by de Backer et al. [6]. A full-scale finite element model
made of shell elements is used. Three alternatives are compared at the location at the crossbeam and in span
between the crossbeams. All alternatives have a same trough thickness of 8 mm. A deck plate thickness of 14
mm, 16 mm and 18 mm are considered. A cope hole is applied in the crossbeam.

The fatigue life is determined using the nominal stress method and the hot spot stress method according to
the Eurocode. Fatigue load model 4 is used to determine the fatigue life. The conclusion for both locations of
the joint is that a thicker deck plate thickness results in an increased fatigue life.

Terao (as cited in Kolstein [17, p. 267]) investigated the influence of the deck plate thickness and trough web
thickness on the stress range near the weld root using a finite element model. The trough web and deck plate
are connected with a filled weld and a gab between the element of 0.5 mm. a load of 10 kN is applied at a load
area of 500 x 200 mm2. The results for a deck plate thickness of 12 mm and 24 mm and a trough thickness of
6 mm and 8 mm is given in table 2.2.
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Table 2.2: Peak stress at the weld root of the rib-to-deck plate joint at the crossbeam. (Reproduced from
Kolstein [17])

Deck plate
thickness [mm]

Trough thickness [mm]

6 8
12 580 MPa 580 MPa
24 300 MPa 300 MPa

There can be concluded that a deck plate thickness of 24 mm results in lower peak stresses compared to a
deck plate thickness of 12 mm. The trough web thickness does not have an influence on the stress if a same
deck plate thickness is considered.

Summary

An overall conclusion from the different studies is that the bending stresses in the deck plate influence the
fatigue life of the detail. An increased deck plate thickness results in an decreased bending stress. Increase of
the thickness of the trough web does not significantly affect the bending stress in the deck plate both at the
crossbeam location and between crossbeams and thus has no influence on the fatigue life.

2.5.2. Width between troughs
Fettahoglu [11] investigated different parameters of an OSD. A finite element model made with shell elements
is used. Welds are not included in the model. An oval cope hole is present. For a reference deck plate thickness
of 12 mm, a distance between the trough webs of 150, 225, 300, 375 and 450 mm are compared. For all
alternatives, the displacement and the Von Mises stress at the rib-to-deck plate joint in span between two
crossbeams are analyzed. Results are shown in figure 2.9.

(a) Displacement versus rib spacing (b) Von Mises stress versus rib spacing

Figure 2.9: Effect of rib spacing [11, p. 18]

The Von Mises stress increases for a distance between the webs of 150 mm to 300 mm. A distance larger than
300 mm leads to only a bit higher Von Mises stress compared to the distance of 300 mm.

For the deformation, it is the other way around. For 150 mm to 300 mm distance between the webs, the
deformation does not increase significant, while if the distance becomes larger than 300 mm, the deformation
increases a lot. On the other hand, the deformation becomes smaller if the deck plate thickness increases,
because the moment of inertia of the deck plate increases. The deformation for an increased deck plate
thickness in combination with a larger trough web space is not investigated.

2.5.3. Trough to deck plate weld design
In the past, a fillet weld without penetration was used generally. Nowadays, a full penetrated weld is required.
For the ease of welding, a lack of penetration is acceptable but should be smaller than 1 mm according to
table NB.7 of the Ducth national annex of Eurocode 3 part 2 [31].
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Miki (as cited in Kolstein [17, p. 263]) did research to the penetration ratio of the weld root for the rib-to-deck
plate weld. A deck plate thickness of 12 mm and a trough thickness of 6 mm are used. The penetration depth
of 1.5, 3.0, 4.5 and 6 mm are compared. The 6 mm depth is full weld penetration. Terao (as cited in Kolstein
[17, p. 267]) studied the penetration ratio in a similar way using same dimensions for the deck segment which
is used for the experiment. The penetration depths which is considered is 0 mm (no penetration), 2 mm, 3
mm, 4 mm and 6 mm (full penetration). From both studies, the conclusion was that full penetration results
in the lowest stress range at the deck plate. According to Terao, a full penetration can reduce the stress with
25% compared to a fillet weld.

Dung et al. [10] did research to the influence on the stresses for different weld penetration ratios in the rib to
deck plate and crossbeam joint. The specimens have a deck plate thickness of 12 mm and a trough thickness
of 6 mm.

A finite element model, consisting of a global shell element model and solid element sub model, are used for
the analysis of the weld penetration. The effective notch stress at the weld root is determined. Results are
given in figure 2.10. Concluded can be that increase of the weld penetration ratio results in slightly higher
stresses. However, a full penetration results in lowest effective notch stress. The difference between the
models is small. A full penetrated weld results in only a 3.8% lower stress value compared to 75% penetration
ratio.

Figure 2.10: Effective notch stress versus weld penetration ratio. (Effective notch stress evaluated at 0, 10,
and 20 mm from the midpoint of the weld line). [10, fig. 20]

Summary

From the different studies, there can be concluded that a full penetrated weld results in lower stresses compared
to a filled weld. As discussed above, a lack of penetration of 1.5 mm (75% penetration ratio) leads to only a
small increase of stress. However, according to the Eurocode, the lack of penetration should be limited to a
maximum of 1 mm.

2.5.4. Trough shape
Closed stiffeners used in an OSD generally have a V-, U-, or trapezoidal shape, as shown in figure 2.11. For
engineers and the world wide steel industry, the trapezoidal shape is the most useful one, and therefore most
common applied [3]. However, from test results [15] it is clear that this profile is susceptible to higher stress
concentrations in the crossbeam around the lower corner of the trough compared to the other two shapes.
The stresses in the rib-to-deck plate detail are not considered.

For the experiment, a full scale finite element model made of shell elements is used. No cope hole is considered.
Two single tire wheel loads are applied with a contact area of 200 mm x and a distance of 1200 mm between
them. A load of 250 kN is applied. The principal stress in the crossbeams is analysed. There can be concluded
that from the three shapes, the V-shaped profile results in the lowest maximum stress in longitudinal and
transverse direction. The relation between the stress distribution for all types if a cope hole is used is not
considered.
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Figure 2.11: Typical trough shapes; left: trapezoidal, middle: U-shape, right: V-shape [3]

Generally, continuous troughs are used. However, it is possible to use troughs which are welded between
the crossbeams. In this case, the welded trough-to-crossbeam connection is more sensitive to fatigue than if
continuous troughs are used. Therefore, it can be applied only for specific cases, like if the overall depth of
the deck must be minimized and if the amount of load cycles from heavy traffic is limited [17].

2.5.5. Crossbeams
The in-plane deformation of the crossbeam affects the stress range in the deck plate at the rib-to-deck joint at
the crossbeam [17]. Due to in-plane deformation of the crossbeam, the deck plate has to deform as well. This
results in relatively high peak stresses in the deck plate at the connection to the crossbeam and thus affects
the fatigue life of the rib-to-deck plate joint. According to the research, there is concluded that for a relative
shallow crossbeam, this in-plane deformation should be taken into account in the fatigue life calculation for
the rib-to-deck plate joint.

The distance between and the thickness of the crossbeams may influence the stresses in the bridge deck
[38]. If the distance between crossbeams becomes larger, the deflection of the deck becomes larger which
leads to larger out-of-plane deformation of the crossbeam. As a consequence, the stress range around the
rib-to-crossbeam joint at the bottom of the trough will increase. By increasing the thickness of the crossbeam,
the in-plane stresses may decrease. From tests made by Wang [36], it follows that the out-of-plane distortion
still determines the fatigue strength of the rib-to-crossbeam joint.

2.5.6. Use of cope holes
In some cases, it is beneficial to include a cope hole in the crossbeam. This cut-out leads to lower peak
stresses around the lower corner of the trapezoidal trough, and should increase the fatigue life of that detail.
However, this detail is still prone to fatigue cracks. If a cope hole is present, cracks may initiate at the bottom
end of the weld toe of the rib-to-crossbeam joint [36].

It is recommended to use a cope hole only if the depth of the crossbeam is larger than 1200 mm and the
crossbeam thickness is larger than 12 mm. For example, this is often the case in box girders. The shape of the
cope hole can be oval. An improved shape is the ‘Haibach’ type, which is recommended to use by the [32].

Kolstein [17] investigated the benefits of using a cope hole and he stated that it may is never preferable to
use. A cope hole in the crossbeam at the rib-to-deck plate connection should always be avoided.

2.6. Examples of dimensions of OSD
For a couple of bascule bridges with an OSD, the dimensions of the bridge deck and crossbeams are given in
table2.3. Information is derived from Iv-infra, unless otherwise stated.
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2.7. The S-N curve
The stress ranges determined according to the approaches discussed in this chapter can be assessed according
to the S-N curve given in Eurocode 3 part 1-9 [29]. The S-N curve gives a relation between the stress range (S)
and the load cycles to failure (N). It describes the resistance limit and is determined for each specific welding
detail separately.

A detail category gives the stress range which causes failure at 2 million load cycles. For each specific joint,
the detail category should be determined from experimental results. All influencing factors which are not
included in the design stress range are taken into account in the detail category. Factors which are taken into
account are the weld imperfections and residual stresses due to welding. Depending on the method used to
determine the stress range, the structural stress concentrations due to the geometry of the detail and due to
weld geometry are taken into account either by the design stress or the detail category.

The S-N curve is determined from the experimental results. The mean curve is the averaged line between
the experimental results. These experimental results generally give a large scatter. Therefore, a design or
characteristic curve with a survival probability of 97.7% is statistically determined from the mean curve.
Figure 2.12 gives an example of the mean and design curve. The detail categories are determined for the
design curve.

Figure 2.12: SN curve mean and 97.7% survival probability [2]

Figure 2.13 gives standard S-N curves for different details. The points 1, 2 and 3 are the detail category, the
constant amplitude fatigue limit (CAFL) and the cutt-off limit respectively. The stress range at CAFL (∆σD )
corresponds to ND = 5∗ 106 load cycles. The stress range at cut-off limit (∆σL) should be determined at
NL = 1∗108 load cycles. The stress ranges can be calculated according to equations 2.1 and 2.2.

When a stress range with constant amplitude is considered, the fatigue life will be infinite if the stress range
is below the stress value at the CAFL. When the amplitude is variable, fatigue life will be infinite if the stress
range is lower than the cut-off limit and the value of m changes after the CAFL is reached.

∆σD = (
2

5
)

1
3 ∗∆σC (2.1)

∆σL = (
5

100
)

1
5 ∗∆σD (2.2)
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Figure 2.13: Standard S-N curves according to the Eurocode [29, fig 7.1]

The design fatigue life NR corresponding to the design stress range ∆σR can be determined according to
equations 2.3.

NR = min


(∆σC
∆σR

)3 ∗NC for ∆σR ≤∆σD

(∆σD
∆σR

)5 ∗ND for∆σD <∆σR ≤∆σL

∞ for ∆σR ≥∆σL

(2.3)

Palmgren-Miner cumulative damage rule

Most structures have a variable stress range. Each stress range results in a different value of load cycles to
failure. The total damage of the detail is a summation of all different damage values corresponding to the
stress ranges and is called the Palmgren-Miner cumulative damage rule, as given in equation 2.4 [29, p 39].

D ≤ ni

Ni
=∑ n1

N1
+ n2

N2
+ n3

N3
+ n4

N4
+ ... ≤ 1.0 (2.4)

where:
D is the damage value,
ni is the design number of load cycles for load Fi,
Ni is the number of load cycles corresponding to the design stress rangeΔσi for load Fi.

2.8. Stress based fatigue assessment procedures
To determine the fatigue life of details based on the S-N curve, the stress range at the weld root and toe should
be determined. Therefore, different methods are developed to calculate the stress range which can be used to
estimate the fatigue life. Eurocode 3 part 1-9 [29] describes two methods, which are the (modified) nominal
stress method and the hot spot stress method. The nominal stress method is generally used for simple details
and if the geometry of a detail is more complex, the structural hot spot stress is recommended. An improved
method, described by the International Institute of Welding (IIW) [12], is the effective notch stress method.

For all three methods, a prediction of the stress range will be made. Figure 2.14 shows the distribution of the
different stresses. Dependent on the method, the geometry of the structure, the geometry of the weld and
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welding defects are taken into account in the calculated stress or in the S-N curve.

Figure 2.14: Stress in detail according to different methods [20]

2.8.1. (modified) Nominal stress method
The nominal stress method discussed in this paragraph is according to Eurocode 3 part 1-9 [29].

The nominal stress method uses the nominal stress in the weld or parent material of the considered detail
to determine the fatigue life. Because only the nominal stresses are take into account, the local stress raising
effect at notches is not included in the stress range. Stress concentrations due to the local weld profile and
weld imperfections are also not included and should therefore be included in the detail category.

The modified nominal stress method can be used if stress raising factors should be taken into account. These
factors are eccentricities, misalignment’s and geometric discontinuities, like a hole or a plate with fillets and
are included in the stress concentration factor k f . To determine the modified nominal stress, the nominal
stress should be multiplied by the stress concentration factor.

Detail category

The value of the detail categories for the nominal stress method for OSDs with closed stiffeners are given in
table 8.8 of EC 3 part 1-9 [29]. For the trough web-to-deck plate joint near the crossbeam, a distinction is
made between a full penetrated butt weld, 2.15 detail 7 and a fillet weld, 2.15 detail 8. The detail category for
the butt weld is equal to 71 MPa and for the filled weld it is 50 MPa.

Figure 2.15: Detail 7 and 8 [29, table 8.8]
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2.8.2. Hot spot stress method
The hot spot stress is an extrapolated stress at the weld toe and can be determined by hand or by using a
finite element model. For the last option, no recommendations about using it are available in the Eurocode.
However, the IIW gives some recommendations about it. Generally, the method is only applicable at the weld
toe. However, for the rib-to-deck plate joint with a butt weld, it is also possible to estimate the hot spot stress
at the weld root.

The hot spot stress range includes the stress raising effects due to geometric complexity. Local weld discontinuities
and imperfections are excluded and therefore, it is included in the S-N curve [4]. The weld geometry can
easily be applied in a solid element model. For a model with shell elements, it is more difficult and therefore,
generally not taken into account.

Detail category

Table NB.7 of the Dutch national annex of NEN-EN 1993-2 [31] give values for the detail categories for OSDs.
For the rib-to-deck plate joint near the crossbeam which satisfies the limitations as given in 2.16, the detail
category is 125 MPa. There is made no distinction for the detail category for models which includes the weld
geometry and which do not.

Figure 2.16: Detail 2 [31, table NB.7]

The detail category given in the Eurocode is equal to the characteristic detail category determined by Kolstein
[17]. This characteristic value is equal to the mean value minus two times the standard deviation. The mean
value for the detail category is 180 MPa. The failure criterion which is assumed for determining the detail
category is a change of the strain value near the crack of 10%.

Finite element modelling

A 3D finite element model can be used for the calculation of the hot spot stress. Both a model with shell or
solid elements is suitable. The hot spot stress is the extrapolated stress determined using reference points
which are located at a certain distance from the weld toe or root.

In the report of Kolstein [17], some requirements for the reference points which corresponds to the detail
category from the Eurocode are given. According to experimental results, these points should be at a distance
0.4t and 1.0t from the weld root. This results in a linear extrapolation of the hot spot stress.

The IIW [12] gives some more options for extrapolation of the hot spot stress. The hot spot stress can be
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extrapolated in two ways, using type a or type b. The measuring points, and thus the stress range, determined
using type a are dependent on the plate thickness, while the stress is independent of the plate thickness for
type b.

The location of the reference points depends on the mesh of the model. There is made a distinction between
a relative coarse and fine mesh. Table 2.4 gives the reference points.

Table 2.4: Requirements extrapolation hot spot stress according to the IIW

Relative coarse mesh Relative fine mesh
Shell Solid Shell Solid

Element size t t x t ≤ 0.4t ≤ 0.4t x t
Type a Reference points 0.5t and 1.5t 0.4t and 1.0t

Hot spot stress σhs = 1.5σ0.5t −0.5σ1.5t σhs = 1.67σ0.4t −0.67σ1.0t

Element size 10mm 10mm x 10mm 4mm 4mm x 4mm
Type b Reference points 5mm and 15mm 4mm, 8mm and 12mm

Hot spot stress σhs = 1.5σ5mm −0.5σ1.5mm σhs = 3σ4mm −3σ8mm +σ12mm

From different studies [4], [1], it follows that the results of the hot spot stress method may depend on the
element type and mesh size of the FE model. The presence of welds in the model also has an influence on the
results [35].

Hand calculation for the rib-to-deck plate joint

To determine the fatigue life for the rib-to-deck plate joint by hand, a 2D simplification of the real structure
is used. The Dutch national annex of Eurocode 3 part 2 [31] describes how to apply the method.

The deck plate between the trough webs, figure 2.17(a), is assumed as a beam and the connection between the
trough web and deck plate is taken as a fixed support. Figure 2.17(b) gives the resulting mechanical scheme.
The distributed wheel load should be applied at the middle of the trough. The stress range is determined per
1 mm width of the deck plate.

The distributed wheel load is equal to equation 2.5.

qwheel =
Qk

2∗bwheel ∗ lwheel
(2.5)

where:
Qk is the axle load
bwheel is the width of the wheel contact area
lwheel is the length of the wheel contact area

(a) Location (b) Mechanical scheme of simplified
structure

Figure 2.17: 2D simplification
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The bending stress in the fixed supports should be calculated. This bending stress is the nominal stress. To
determine the hot spot stress, this bending stress is multiplied by a stress concentration factor (SCF). If no
asphalt layer is considered, the SCF is equal to equation 2.6. The hot spot stress can be determined with
equation 2.7

SC F = 1.2975−0.00938∗ t (2.6)

∆σ= SC F
M

W
= SC F

6∗M

t 2 (2.7)

2.8.3. One point hot spot stress
A simple variation of the hot spot stress method is the one point hot spot stress method. The stress at a point
0.5 times t from the weld toe should be determined, where t is the deck plate thickness. Instead of general
extrapolation, the hot spot stress is determined by multiplying the reference point by a factor 1.12 [1].

A same FE model as used for the general hot spot stress approach is suitable to use. Quadratic elements
with a size t x t should be applied. This element size corresponds to the type a extrapolation method with a
relative coarse mesh as described by IIW.

Figure 2.18: One point hot spot stress method [1]

2.8.4. Effective notch stress method
The effective notch stress method is included in the recommendations from the IIW [12]. It is an alternative
method for the methods described in the Eurocode. It is applicable at both the weld toe and root. Normally,
it is more time consuming than the hot spot stress method.

At the weld root and toe in a FE model, stress singularities may appear. Therefore, a realistic stress at these
points is difficult to determine computational. To prevent singularities, a notch at these points is applied,
figure 2.19. The effective notch stress is thus the maximum elastic stress at the notch [1].

Local stress raising effects due to geometry of the detail and geometry of the weld are included in the effective
notch stress. Stress concentrations due to misalignment’s and welding defects should be taken into account
in the detail category.
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Figure 2.19: Effective notch stress method [12]

Finite element modelling

A finite element model should be used to determine the effective notch stress. Generally, this model is a 3D
solid element model. However, a simplified 2D model can be used. This is possible if the stresses are mainly
perpendicular to the weld and if the weld continuous, without variety of loading and geometry, over the area
which is considered. [12].

The IIW recommends a notch radius of 1 mm. Like for the hot spot stress method, the value of the effective
notch stress depends on the mesh size of the elements. Table 2.5 gives the required element sizes according
to the IIW for a notch radius of 1mm.

Table 2.5: Element size around the notch[12]

Element type Element size
Linear elements ≤ 0.15mm

Quadratic elements ≤ 0.25mm

Detail category

Only one detail category is needed for the effective notch stress method and can be used for each specific
detail. The IIW prescribes to use a detail category of 225 MPa if the principal stress is used and 200 MPa if the
von Mises stress is determined. These values are valid for filled welds with a flank angle of 45°and butt welds
with a flank angle of 30°. It is limited to plates with a thickness t ≥ 5mm. The recommendations for modelling
as discussed in this section should be applied.

2.8.5. Accuracy of the assessment methods
For the nominal stress method, each detail needs a specific S-N curve. More factors are taken into account
by the calculation of the hot spot stress than by the nominal stress. If more factors are taken into account by
the calculation of the stress range, a more accurate prediction can be made and therefore, a more accurate
fatigue life may can be determined [19].

The hot spot stress method and effective notch stress method are compared with each other in several studies.
According to Wang [36], analysis of the fatigue strength of fillet welds leads to similar results for both methods.

A comparison of the methods for an open stiffener-to-crossbeam joint in an OSD was made by Al-Emrani
and Aygül [1]. The results for the effective notch stress where conservative. The determined value of load
cycles was less than half of the cycles which was determined with the hot spot stress method (with quadratic
extrapolation). The nominal stress method was analysed as well. The calculated amount of load cycles to
failure was 20% lower compared to the hot spot stress method.

If a finite element model is used for the calculation of the fatigue strength, the accuracy is may influenced by
the model. The mesh size and element type have a large influence on the calculated stress range. For example,
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Swierstra [35] found that the hot spot stress method results in a more accurate solution if solid elements are
used instead of shell elements. If the weld is included in the solid element model, the results are even more
improved.

2.9. Local critical plane based fatigue assessment
Different local critical plane based models are developed. In this report, a description of the swt-parameter
is given, first mentioned by Smith, Watson and Topper [33]. This model is based on the strain amplitude and
the maximum stress value in a plane. Due to this maximum stress value is taken into account, not only the
stress range is important for this approach but it also corrects for the maximum stresses in the material. A
steel detail which is partly in compression has for example a larger fatigue life than a detail which is fully in
tension.

Instead of different detail categories, this method considers one formula which determines the amount of
load cycles to failure. Therefore, local material parameters should be known. The swt-parameter is described
with equation 2.8.

sw t =∆ε∗σmax =
(σ′

f )2

E
(2N f )2b +σ′

f ε
′
f (2N f )b+c (2.8)

where:
σmax is the maximum stress.
∆ε is the strain range.
2Nf is the number of reversals to failure (and two reversals is equal to one load cycle).
σ′

f is the fatigue strength coefficient.

the fatigue strength exponent.
ε′f ductility coefficient.

c fatigue ductility exponent.

Values for the coefficients and exponents for steel S355 are determined by de Jesus et al. [7]. Results are
summarized in table 2.6.

Table 2.6: cyclic elasto-plastic and fatigue properties [7]

σ′
f b ε′f c

Steel S355 952.2 -0.089 0.7371 -0.664





3
Finite element reference model

This chapter provides a description of the reference finite element (FE) model, built in Abaqus. A study to
a suitable element sizes is made. To prove that the strain range near the joint derived from the FE model is
similar to real values, the strain range is validated with test results from a full scale OSD specimen, performed
by Wu et al. [37].

3.1. Model description
3.1.1. Dimensions
The dimensions of the FE model are the same as the dimensions of the test specimen used by Wu et al.
[37], which will be used for validation. For their research to the rib-to-deck plate joint at the crossbeam, an
experiment is performed at the Stevinlab II Laboratory at Delft University of Technology.

The OSD segment consists of a deck plate with a thickness of 20 mm, 8 troughs and 3 crossbeams. The
total height of the deck including crossbeams is 1000 mm. The crossbeam webs have a thickness of 16 mm
and the thickness of the flanges is 12 mm. By four troughs, ’Haibach’ shape cope holes are included in the
crossbeam. The other four troughs are fully welded to the crossbeam. An overview of the dimensions is given
in figure 3.1. The red rectangle indicates the load position.

Continuous troughs are applied. Each trough has a height of 350 mm and a thickness of 6 mm. The width
between the trough webs is 300 mm at the top and the flange at the bottom is 105 mm. The troughs are spaced
300 mm from each other. Figure 3.2 shows the dimensions of the trough including a cope hole.

The deck plate and trough web are connected to each other with a butt weld. The lack of penetration of
the weld is 1.5 mm, see figure 3.3. The crossbeam-to-deck plate weld and the crossbeam-to-trough weld are
filled welds with a throat thickness of 5 mm.

25
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(a) Front view

(b) Side view

Figure 3.1: Overview of the deck segment (mm) (Reproduced from Wu et al. [37])

Figure 3.2: Dimensions of the trough (mm)
(Reproduced from Wu et al. Wu et al. [37]

Figure 3.3: Detail A: Geometry of the weld [mm]

Figure

3.4 shows the global FE model. If a load is placed at the center of the trough, right above the crossbeam, the
deck segment deforms only locally in a zone near the applied load. Therefore, it is possible to model a small
part of the total segment, as shown in figure 3.5. The small part consists of only three troughs and a part of
one crossbeam.
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The experiment of Wu et al. [37] is performed on a trough which is automatically welded to the deck plate and
a cope hole in the crossbeam is present. Therefore, this part of the model is used for the smaller FE model.

Figure 3.4: Complete global model

(a) 3D view (b) Top view

Figure 3.5: Three trough model part

3.1.2. Material properties
The material properties which are used for the reference model are given in table 3.1. Because fatigue problems
will appear before the yield strength is reached, elastic material properties are considered only.

Table 3.1: Material properties

Modulus of elasticity 210,000 MPa
Poison ratio 0.3

3.1.3. Boundary conditions
The crossbeam flange is fixed in translation in y-direction, see figure 3.5(a). This is similar to the test specimen,
which is supported over the full length of the crossbeam by a beam with an IPE-profile. At one point, the FE
model is translational fixed in x- and z-direction.

3.1.4. Load
The load from the static loading test is modelled as a distributed load. The contact area of the loading plate is
180 mm x 320 mm. The loading range is 140 kN, which leads to a distributed load equal to 2.43 N/mm2. The
load is placed in the center of the trough, right above the crossbeam, see figure 3.5(b).

3.1.5. Element mesh
Shell elements of the type S8R, which is quadratic interpolation, are applied. The global element size is 100
mm. To make it possible to find the increased concentrated stresses at the joint, a local finer mesh is used at
the trough where the load is put on. There are two options considered, a relative coarse mesh, figures 3.6 and
a relative fine mesh, figure 3.7.
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Figure 3.6: Global model with relative coarse shell element size

Figure 3.7: Global model with relative fine shell element size

3.1.6. Solid element sub model
For a better prediction of the strain ranges, a solid element model is build. A solid element model generally
needs more computational time. To limit this, only a small part of the deck segment is modelled with solid
elements. To create a good support, the model is included in the global shell element model, see figure 3.8.
The solid elements are connected to the shell element model with a special shell-to-solid coupling constraint.
The weld geometry is included in the sub model. In paragraph 2.5.3 is concluded that the effect of the weld
penetration ratio only has a small effect on the total stress in the joint. For simplicity of the model, the lack of
penetration of 1.5 mm is not taken into account in the first place. In paragraph 3.3.2, it is investigated if this
assumption is acceptable.

Linear (C3D8R) or quadratic (C3D20R) brick elements are used. The difference between the two element
types is analysed in chapter 4. To create a good mesh in the welds and the rest of the sub model, a global
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mesh size of 2 mm is applied.

Figure 3.8: Global model and solid element sub model

3.2. Analysis global shell element model
A general analysis of the stress distribution in the global model and the model with three troughs is made.
The deformation of the bridge deck due to a wheel load is given in figure 3.9. From figure 3.10, it follows that
the deformation of the lower surface of the deck plate is similar for both models. This is the region which will
be used for the fatigue analysis of the rib-to-deck plate joint at the crossbeam. The maximum deformation of
the deck plate is found in the middle of the two trough webs and is 0.56 mm.
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Figure 3.9: Deformation of the global and simplified model
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Figure 3.10: Deformation of the deck plate along the crossbeam for the global and simplified model

Because there is only a load in vertical direction, the reaction forces in horizontal direction are zero. The
contour plots of the vertical reaction force of the complete and the three trough model are shown in figure
3.11.

For the complte model, there is only a reaction force in the crossbeam where the load is put on. This force is
spread over a larger length than the length of the crossbeam of the model with only three troughs. However,
the reactions forces in the middle of the crossbeam of the smaller model are equal to the complete model,
see figure 3.12.
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Figure 3.11: Reaction force of the global and simplified model
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Figure 3.12: Reaction force in the crossbeam for the global and simplified model

The strain range at the bottom surface of the deck plate in longitudinal direction (z-axis) and in transverse
direction (x-axis) is determined for both models, see figures 3.13 and 3.14.
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For the complete model, there is no difference in strain at the left and the right joint of the trough. The strain
value is similar to the strain in the joints of the three trough model. This means that the support of the rest of
the model does not have an influence on the local strain range in the deck plate at the rib-to-deck plate joint.

At the crossbeam, the behaviour of the rib-to-deck plate joint at the crossbeam in the three trough model is
similar to the complete model if a wheel load is placed above the center of the crossbeam. The length and
support of the deck plate and troughs are not affecting the strain range and deformation. This means that the
load is transferred from the deck plate, only locally in the trough around the crossbeam and directly into the
crossbeam.
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Figure 3.13: Strain range in x-direction along bottom surface of the deck plate at the center line of the
crossbeam
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Figure 3.14: Strain range in z-direction along bottom surface of the deck plate at the center line of the
crossbeam

3.3. Strain analysis near the rib-to-deck plate joint
The strain range at the lower surface of the deck plate is analyzed for the shell and solid element model and
for different element sizes. A stable element size is determined for both element types.

3.3.1. Shell element model
The influence of the element size on the strain in the bottom surface of the deck plate near the weld root is
analyzed. The strain range is determined for models with a local element size of 1 mm, 2 mm, 4 mm, 8 mm
and 20 mm. Results are given in figure 3.15.

From the figure, it follows that a smaller element size results in a higher strain range at the weld root. A strain
singularity appears at that location and if the element becomes smaller, the value of the singularity becomes
larger. At a distance 4 mm away from the weld root, the models with an element size of 1 mm, 2 mm and 4
mm have a similar strain range. At 8 mm from the weld root, the model with an element mesh of 8 mm has a
comparable strain range as well. The strain range of the model with an element size of 20 mm is less precise
than the other models. However, at least 30 mm away from the weld root, it gives a similar strain range as the
other element sizes. Therefore, the relative fine element mesh is only required for the local strain range near
the weld root. A larger element size is sufficient for the rest of the model.
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Figure 3.15: Strain range at the bottom surface of the deck plate for the shell models with different element
sizes

3.3.2. Solid element sub model
Weld penetration

As mentioned in paragraph 3.1.6, the influence of the ratio of the weld penetration is analyzed. A lack of
penetration of 1.5 mm, which is a 75% weld penetration ratio in this case, is added to the model, see figure
3.16. The gab between the deck plate and the trough web is modelled as 0.2 mm.

Figure 3.16: Geometry weld with 75% weld penetration ratio

The strain at the bottom surface of the deck plate for this model is compared to the model with a full penetrated
weld. Contour plots of the strain are given in figures 3.17 and 3.18. The strain is shown at the location where
the stress value is highest, which is section AA’. The strain range at the bottom surface of the deck plate is
given in figure 3.19.
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(a)

(b) Zoomed in at the weld root

Figure 3.17: Strain value in x-direction at section AA’ -
full weld penetration

(a)

(b) Zoomed in at the weld root

Figure 3.18: Strain value in x-direction at section AA’ -
75% weld penetration
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Figure 3.19: Strain range at the lower surface of the deck plate of the solid element sub models
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From literature, a small increase of 3.8% in strain value was expected if the weld is not fully penetrated.
However, there is found no difference between the strain range in both models.

Elements

The element size of the solid element model with 75% weld penetration is investigated. Alternatives with
quadratic elements with a size in the zone around the weld is 4 mm, 2 mm, 1 mm and 0.5 mm are compared.
The strain range at bottom surface of the deck plate is determined and given in figure 3.21.

In figure 3.20, the strain in the solid element model with an element size of 0.5 mm is given. The global strain
in the model is similar to the strains in the models with an element size of 2 mm. However, around the weld
root, the strain is much larger.

Like for the shell element model, a higher strain range at the weld root is found for a smaller element size.
Therefore, a same conclusion about the strain singularity as for the shell element model can be made. Smaller
elements leads to a larger singularity but at a certain distance from the weld root, the strain values are similar
to larger element sizes.

The models with an element size of 0.5 mm and 1 mm result in a strain range which is similar to each other
till a distance of about 2 mm away from the weld root. At a distance 4 mm away from weld root, the model
with 2 mm mesh results in a comparable result as well. At 8 mm distance from the weld root, the 4 mm mesh
gives a good comparison with the other models.

(a) Contour plot (b) Zoomed in on the weld root

Figure 3.20: Strain value in x-direction at the section AA’. Local element size is 0.5 mm
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Figure 3.21: Strain range at the bottom surface of the deck plate for the solid models with different element
sizes

3.3.3. Strain validation
Bottom surface of the deck plate

Strain values measured during the experiment of Wu et al. [37] are used for validation of the FE models both
with shell and solid elements. The strains during loading are measured with strain gauges which are placed
at the top and bottom surface of the deck plate, see figure 3.22. At the bottom surface, location c, the strain
gauges are placed at a distance 0.2t, 0.6t and 1.0t from the weld root, where t is the deck plate thickness which
is 20 mm. The strain gauges are placed in the center line of the crossbeam. This is also the case for the strain
gauge at the top surface right above the trough, location a. At location b, 25 mm away from the trough, the
strain is measured not only at the center line but also at 25, 50, 75 and 100 mm away from the center in
longitudinal direction

(a) Side view (b) Top view

Figure 3.22: Locations of the strain gauges during the experiment of Wu et al. [37]

The computational results are compared to the experimental results. The experiment is done on one trough,
which results in two test specimens. Both results and an averaged value of the strain from the two joints is
used for validation. The strain range derived from the FE model is acceptable if the deviation is not more than
10% from the experimental results.

Figure 3.23 shows the strain range for a shell element model with a relative coarse mesh of 20 mm and relative
fine mesh of 4 mm and for a solid element model with 2 mm. For the solid element model, an analysis with
linear and quadratic elements is made. Because the lack of weld penetration does not influence the strain
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range, the model with a full weld penetration is considered.

The strain range of the solid element model with quadratic elements is in agreement with the result from the
experiment. Using linear elements results in a strain range which is lower than the strain in the test specimen.
This means that calculations with this model results in unconservative stress and strain values.

The shell element model with a relative fine mesh gives a good strain range, except at a distance 4 mm from
the weld root. At this point, the strain range is higher than the 10% deviation.

The shell element model with an element size of 20 mm results in a higher strain range compared to the
model with a fine mesh. At 20 mm away from the weld root, the strain range is comparable to other values,
but closer to the weld root, the strain is higher. Therefore, the increase of the strain value (slope of the graph)
is larger compared to the other graphs.

Because of the presence of a singularity in all models, it is not possible to determine the strain range at the
weld root directly from the FEM output.
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Figure 3.23: Strain validation of the FE model at the lower surface of the deck plate

Top surface of the deck plate

The strain at the top surface of the deck plate is compared to the test results. This is done for the solid element
sub model with quadratic solid elements with and without including the lack of penetration. Figures 3.24(a)
and 3.24(b) show the strain range right above the middle of the trough, figure 3.22 location a, and at a distance
of 25 mm from the trough web, figure 3.22 location b. A contour plot of the strain value is added in appendix A

The strain range right above the trough web is higher for the model with a penetration ratio of 75%. A reason
for this is because the maximum strain range at the weld root is more close to the middle of the trough and
therefore, also more close to the measure point at the top of the deck plate. At location b, the strains are
similar for the two models. At both locations, the computed strain is slightly lower than the experimental
result but for both models, it is within 10% of the strain range measured during experiment, which means
that the results from the FE model are acceptable.
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Figure 3.24: Strain validation top surface of deck plate





4
Stress based fatigue assessment of the

reference model

In this chapter, there is searched for an answer on the question which fatigue assessment method results in
a fatigue life most close to experimental results. A simple 2D model and the reference models, discussed in
chapter 3, are used. The nominal, hot spot- and effective notch stress method, as described in paragraph
2.8.1, 2.8.2 and 2.8.4, are considered. The amount of load cycles to failure is determined using the S-N curve,
see paragraph 2.7.

Table 4.1 gives an overview of which assessment procedures per model are discussed in this chapter.

Table 4.1: Overview methods used to determine load cycles to failure

Nominal stress Hot spot stress Effective notch stress
Hand calculation X X

Shell element model X
Solid element model X X

4.1. Nominal stress method
A simple 2D model, as described in paragraph 2.8.2, is used to determine the load cycles to failure of the rib
to deck plate and crossbeam joint.

The bending moment in the deck plate at the joint is determined with MatrixFrame Software, see appendix
B, and is equal to 14.4*103 Nmm.

The nominal stress at the connection is determined with equation 4.1.

∆σnom = M

W
= 6∗M

t 2 = 6∗14.4∗103

202 = 217N /mm2 (4.1)

The detail category is 71 MPa, figure 2.15. The fatigue life is determined in eq 4.2:

Nnom = (
∆σc

∆σnom
)3 ∗2∗106 = 7.1∗104 (4.2)

Table 4.2: Hot spot stress and load cycles to failure for the analytical model

Approach ∆σhot spot [MPa] N - mean N - mean-2sd
Nominal stress 217 - 7.1*104

41
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4.2. Hot spot stress method
For different models, the hot spot stress is determined and the amount of load cycles to failure is calculated.
Because there are only two experimental results, it would be conservative to determine a design value from
the experimental results. Therefore, the mean value for the detail category determined by Kolstein [17] as
discussed in section 2.8.2 is used to determine the mean fatigue life. This detail category is 180 MPa and a
change in strain range of 10% is assumed as failure criterion. This is also the case for the experimental result
used for comparison. The design detail category is 125 MPa.

4.2.1. 2D model
The stress concentration factor (SCF) for a deck plate thickness of 20 mm is determined with equation 4.3 [31,
table NB.10]) and is equal to 1.11.

SC F = 1.2975−0.00938∗ t (4.3)

The hot spot stress at the connection is determined with equation 4.4.

∆σhs = SC F ∗ 6∗M

t 2 = 1.11∗ 6∗14.43

202 = 240N /mm2 (4.4)

In table 4.3, the hot spot stress value and corresponding amount of load cycles are given.

Table 4.3: Hot spot stress and load cycles to failure for the analytical model

Approach ∆σhot spot [MPa] N - mean N - mean-2sd
Hot spot stress 240 8.4*105 2.8*105

4.2.2. Finite element model
In chapter 3, concluded is that there will be a singularity at the weld root. The hot spot stress method uses the
reference points at a certain distance from the weld root. As a consequence, stresses which are not dependent
on a singularity can be used for fatigue assessment.

Extrapolation of the stresses is possible for different element sizes and using different reference points, as
discussed in paragraph 2.8.2. Kolstein [17] suggests to use the measure points at a distance of 0.4t and 1.0t
from the weld root, where t is the deck plate thickness. This extrapolation method is the same method as the
’type a’ method with a relative fine element mesh from the IIW [12]. Another suggestion for the extrapolation
points given by the IIW is called ’type b’ extrapolation. The first reference point is located at 4 mm from the
weld root. Discussed in paragraph 3.3.3 is that the strain value is not accurate determined with the FE model
at that location compared to the strain measured during the experiment. Therefore, this extrapolation type is
not considered in this report. Because both Kolstein and the IIW suggests to extrapolate according to type a,
this method is used.

For a comparison of a relative fine and coarse mesh, the extrapolation type a method with a relative coarse
element size is analyzed as well. The element size is equal to the deck plate thickness. This method is applied
at the shell element model only, because for the solid element model, it is not possible to create a mesh with
this element size.

Figures 4.1(a) and 4.1(b) show the locations of the reference points for the shell element models and in figure
4.1(c) for the solid element model. The equation which is used for the extrapolation of the stress are given in
table 2.4.
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(a) Shell elements, coarse mesh (b) Shell elements, fine mesh

(c) Solid elements, fine mesh

Figure 4.1: Overview extrapolation of the hot spot stress

For the shell element model, the strain at the lower surface of the deck plate is not dependent on the element
size anymore if an element size of 8 mm or smaller is used, as discussed in paragraph 3.3.1. An element size
of 4 mm is used for the fine mesh for the shell element model and a size of 20 mm for the coarse mesh.

Concluded in paragraph 3.3.2 is that the solid element model gives a stable strain range at 8 mm from the
weld root if an element size smaller than 4 mm is chosen. The amount of load cycles for the solid element
model is determined for the solid element model which has full weld penetration and 75% weld penetration.
To create a good element shape around the weld root if the 75% penetration ratio is taken into account, an
element size of 2 mm instead of 4 mm is chosen for the solid element models.

The hot spot stress for the two shell element models and the solid element model is determined and the
amount of load cycles to failure is calculated. For the shell element model with 4 mm element size, the
minimum principal stress at the lower surface of the deck plate is shown in figure 4.2. The stress output,
calculated hot spot stress and corresponding load cycles to failure for all models is summarised in table 4.4.

To determine the one point hot spot stress, a shell element model with an element size equal to the deck plate
thickness is recommended to used, see paragraph 2.8.3. Therefore, the shell element model with a relative
coarse mesh is used to calculate the hot spot stress. The result is given in table 4.4 as well.

Table 4.4: Hot spot stress and load cycles to failure

∆σ1.5t

[MPa]
∆σ0.5t

[MPa]
∆σhot spot

[MPa]
N - mean N - mean-2sd

Shell - ’Coarse’ mesh 85 195 250 7.5∗105 2.5∗105

Shell - 1 point hot spot 195 218 1.1∗106 3.7∗105

∆σ1.0t

[MPa]
∆σ0.4t

[MPa]
∆σhot spot

[MPa]
N - mean N - mean-2sd

Shell - ’Fine’ mesh 128 198 245 7.9∗105 2.7∗105

Solid - full penetration 118 177 216 1.2∗106 3.9∗105

Solid - 75% penetration 120 178 217 1.1∗106 3.8∗106
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Figure 4.2: Stress at the lower surface of the deck plate for the shell element model with 4 mm element size.

The lowest hot spot stress value, which causes the highest stress range, is found in the center of the crossbeam
for the shell element model. For the solid element model, the highest strain range is found at the location
where the crossbeam is welded to the deck plate and trough web.

4.2.3. Hot spot stress method for the test specimen
Wu et al. [37] determined the hot spot stress from the extrapolated strains. The hot spot stress is equal to 206
MPa.

Using the S-N curve and a detail category of 125 MPa, the load cycles to failure is equal to 4.5*105. For a detail
category of 180 MPa, the amount of load cycles to failure is 1.3*106.

4.3. Effective notch stress method
According to the recommendations described by the IIW, as given in paragraph 2.8.4, a notch with a radius of
1 mm is made in the solid element model. This notch is placed exactly at the weld root, see figure 4.3. The
lack of penetration is taken into account.

Figure 4.3: Location of the effective notch (not on scale)

The IIW [12] suggests to use an element size around the notch of 0.25 mm for a model with quadratic elements,see
paragraph 2.8.4. Therefore, this size is used in this report. The minimum principal stress in the notch
is determined. Figure 4.4 shows the stress in the solid element sub model. Like for the hot spot stress
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determined with a solid element model, the highest stress range is found at the location where the crossbeam
is welded to the deck plate and trough web. The effective notch stress range (∆σe f f ) is equal to 1080 MPa.

Figure 4.4: Minimum principal stress in the effective notch. Top: solid sub model. Bottom: zoomed in on
the notch

Using a detail category of 225 MPa, see paragraph 2.8.4, the amount of load cycles to failure is determined.
The result is summarized in table 4.5

Table 4.5: Stress range and load cycles to failure for the analytical model according to the effective notch
stress approach

Approach ∆σe f f [MPa] N - mean-2sd
Effective notch stress 1080 1.8*104

4.3.1. Improvement of method
Concluded can be that the determined load cycles to failure is low compared to the results from the hot
spot stress method and the experimental results. According to the IIW, the detail category is valid for a butt
weld which has an flank angle of 30°. In this case, the angle is 46°. A greater flank angle results in an other
stress value and therefore, the detail category may is not applicable for this specific joint. The method can be
improved by increasing the value of the detail category. The amount of load cycles to failure determined with
the experiment is used.

For the mean value, the new detail category is equal to 796 MPa, see appendix C.

Two methods are used to determine the design load cycles to failure and a new corresponding detail category.
The most easy method is to determine the standard deviation from the experimental result and subsequently,
determine the amount of load cycles, which is equal to the mean value minus two time the standard deviation.
The method should give a survival probability of 97.7%.

According to this method, the design life is equal to 4.5*104. The new proposed design detail category is 305
MPa. For calculations, see appendix C.1.
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Chapter 4.5 of the IIW [12] describes another method to determine the design amount of load cycles to failure
from experimental results. Equation 4.5 should be used.

Nd ≤ NT

F
(4.5)

where:
Nd is design value for the amount of load cycles to failure.
NT is the amount of load cycles to failure of the test specimens.
F is a factor dependent on the number of test results available.

The design life is equal to 1.5*105. The new proposed detail category is 418 MPa. See appendix C.2 for the
calculation.

4.4. Comparison of the approaches
Results from the FE model are compared to the experimental results from Wu et al. [37]. The result for the hot
spot stress is shown in figure 4.5 and for the effective notch stress, it is given in figure 4.6

10

100

1000

1.0E+05 1.0E+06 1.0E+07

H
o

t 
sp

o
t 

st
re

ss
 r

an
ge

 [
M

P
a]

Cycles to failure [-]

Experiment Wu et al.

125 Mpa (Mean-2sd)

180 Mpa (Mean)

Shell - 'fine' mesh (Mean-2sd)

Shell - 'fine' mesh (Mean)

Shell - 'coarse' mesh (Mean-2sd)

Shell - 'coarse' mesh (Mean)

Shell - 1 point hs (Mean-2sd)

Shell - 1 point hs (Mean)

Solid (Mean-2sd)

Solid (Mean)

Hand calculation (Mean-2sd)

Hand calculation (Mean)

Figure 4.5: Relation hot spot stress and load cycles to failure
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Figure 4.6: Relation effective notch stress and load cycles to failure

Table 4.6 gives an overview of which factors are taken into account in the stress value of each model. The hot
spot stress is abbreviated to HHS. If a factor is not included in the stress range, it is taken into account in the
SN-curve.

Table 4.6: Summary of the approaches

Stress raising effect due to:
Geometry

joint
Geometry

weld
Weld

discontinuities
Nominal

stress
Analytical x x x

HSS
Analytical Yes x x

FEA -
Shell

elements

Yes x x

FEA -
Solid

elements

Yes Yes x

1point
HSS

Shell
elements

Yes x x

Effective
notch
stress

FEA -
Solid

elements

yes Yes x

Experiment
HSS

Measured
strain

Yes Yes Yes*

*If is present in specimen

The mean value for the load cycles to failure is used to compare the computational result with experiments.

The hand calculation and the shell element model with a relative coarse or fine mesh give all a similar fatigue
life. The mean value is in between the two experimental results. There should be noticed that the hand
calculation approach does not take into account influences of the shape of the bridge deck, except from the
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deck plate thickness and the width between the trough webs at the top.

The hot spot stress approach with a relative coarse mesh results in a slightly higher hot spot stress than when
the fine mesh is used, because the model gives a less precise stress range as mentioned in paragraph 3.3.3.
However, the difference in hot spot stress is only 2%, which results in 6% less load cycles.

Use of a solid element model for the hot spot stress method results in a longer fatigue life than when shell
elements are used. The determined fatigue life is 44% longer compared to the shell element model with a
relative fine mesh. This solid model includes not only the geometry of the joint but also the geometry of the
weld, as can be seen in table 4.6.

The fatigue life determined with the one point hot spot stress method is similar to the fatigue life determined
with the solid element model. However, the fatigue life determined according to this approach is dependent
on a factor. This factor is independent on the geometry of the weld. As a consequence, the fatigue life is less
reliable than the fatigue life determined with the solid element model.

Expected is that taking into account more stress raising effect in the stress range instead of in the detail
category should lead to a more accurate fatigue life and this is true for the hot spot stress method. Nevertheless,
the fatigue life determined with the effective notch stress method is less than 10% of the fatigue life determined
with the hot spot stress approach. Because no mean value for the detail category is available, the design
values from both methods are compared. There can be concluded that the effective notch stress method is
conservative for the assessment of the rib-to-deck plate joint at the crossbeam.

After improvement of the detail category used for the effective notch stress method, the predicted amount of
load cycles is still conservative, because the fatigue life is still less than half of the value of the hot spot stress
with shell elements.

There are only two specimen available from experimental results. These results are lower than the S-N curve
for the detail category 180 MPa (mean value) determined by Kolstein [17]. Those two reasons makes the new
proposed detail category still conservative. More experimental data is required to determine a more accurate
design detail category.

If the design detail category of 125 MPa is used for the hot spot stress method, all models give a shorter
fatigue life than the experiment. This means that no model results in an unsafe estimation. Because the solid
element model results in longest fatigue life, this model is most accurate compared to the experimental result.

There should be noticed that the stresses used for the stress range are all stresses in compression. However,
fatigue cracks will grow due to load cycles which cause tension in the detail. Therefore, it is likely that there are
residual stresses in the joint due to welding. These residual stresses cause a tensile stress range in unloaded
situation.
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Residual stresses

It follows from chapter 4 that there is only a compressive stress range in the rib-to-deck plate joint at the
crossbeam. However, fatigue crack initiation is caused by tensile stress cycles. Therefore, it is likely that there
are residual stresses due to welding in the detail.

In this chapter, an estimation of the fatigue life of the deck segment as discussed in chapter 3 is made and
the residual stresses due to welding are included. The detail category used for assessment with the S-N curve
includes the residual stresses already. Therefore, these stress based models are not suitable to use. The Smith,
Watson, Topper (swt) local critical plane method, see paragraph 2.9, is used as alternative. In this model, the
residual stresses can be included in the stress range.

This method is dependent on the strain range and maximum stress as discussed in paragraph 2.9. Using this
method without including residual stress results in an infinite fatigue life, because the maximum principal
stress is almost zero. However, from the experiment it follows that a fatigue crack will initiate.

5.1. Introduction to residual stress
Due to the presence of residual stress, there are initial tensile stresses in the zone around the weld which can
be equal to the yield strength. The stress range in the joint will be similar, but the mean stress value increases
if the residual stresses are considered. Figure 5.1 gives an overview of the effect of residual stresses on a stress
range in general.

Figure 5.1: Effect of the residual stress on the total stress range [22]
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5.2. Input in the FE model
Spyridoni et al. [34] did research to the residual stresses in the rib-to-deck plate joint in span. An approximation
of the residual stress value in longitudinal direction in the deck plate and trough webs is proposed, see figure
5.2. This is valid for automatic welding.

Figure 5.2: Approximation of the residual stress in the trough and deck plate [34]

Assumed is that the residual stress around the rib-to-deck plate joint at the crossbeam is similar to the stress
range for the joint in span. The possibility of the presence of extra residual stresses due to welding of the
crossbeam to the deck plate and trough is neglected. Because of this assumption, it is possible to use the
residual stress value as given in figure 5.2.

The residual stress value is included in the total FE model by applying a prescribed stress value, see figures 5.3
and 5.4. This stress value is included in the shell element and solid element model part. To avoid the stress
singularity at the weld root, the solid element model with effective notch is used.

After the prescribed stress is applied, the stress and strain value for the unloaded situation is determined,
called step 1. Then, the deck segment is loaded with a wheel load of 140 kN on a load area of 180 mm x 320
mm, step 2. This load is similar to the load used in chapter 4.
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Figure 5.3: Including the residual stress in the deck plate

Figure 5.4: Including the residual stress in the trough

The output from the model is given in figures 5.5 and 5.6. A summary of stress and strain output which
results in the largest swt-parameter is given in table 5.1. The maximum value is found at the location where
the crossbeam is welded to the trough web. This is the same location as where maximum stress values are
found for the hot spot stress approach with the solid model and the effective notch stress approach based on
the S-N curve.
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Figure 5.5: Maximum principal strain around the notch at section AA’

Figure 5.6: Maximum principal stress around the notch at section AA’

Table 5.1: Strain and stress output at location which results in highest swt-parameter

εmaxPr i nci pal [-] σmaxPr i nci pal [MPa]
Step 1 6.2*410-4 362
Step 2 1.93*10-3 90

∆ε= 9.97∗10−4 σmax = 362 MPa
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Using equation 2.8 and the material factors from table 2.6, the swt parameter is calculated and equal to 0.36.
This results in the value for the reversals 2Nf is *106 and thus is the amount of load cycles to failure N = 7.4*105.

5.3. Conclusion
The averaged amount of load cycles to failure determined from experiments made by Wu et al. [37] is 8.0 * 105.
The calculated amount of load cycles to failure is within 10% of the result from the experiment. Therefore,
this method is a suitable approach for the prediction of the fatigue life if residual stresses are included.

After the initial stress input is applied, an equilibrium for the stresses and strains is found by the FE software.
A stress of 362 MPa instead of 355 MPa is found at the location where the maximum swt-parameter is found.
This is because the applied stress value is only an assumption of the residuals stress and no initial strain input
is considered. Assumed is that the stress value is equal over the total thickness, while from experiments made
by Kainuma et al. [14] there is found that it will differ over the thickness.

To improve the input for residual stress, the initial deformation instead of initial stress input can be used.
Another option is applying the heat input in the model. However, this last method is time consuming and
weld information should be available.
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Parameter study

In this chapter, the influence of the size of different parameters on the fatigue life is investigated. Therefore,
the most unfavourable wheel position is determined and different wheel types are analysed.

In chapter 4 it is concluded that the effective notch stress method results in a conservative fatigue life prediction
of the rib-to-deck plate joint at the crossbeam. The hot spot stress method is a suitable method for the fatigue
assessment of the joint. Using a solid element sub model including the weld geometry results in a slightly
better fatigue life prediction than if a shell element model is used. However, this way of modelling is more
time consuming. The hand calculation using a simple 2D model results in a similar amount of load cycles
compared to the shell element model, but only the deck plate thickness and width between the troughs are
considered in this model. In this chapter, the influence of other parameters on the stress range in the joint is
investigated and therefore, a 3D FE model is required.

The shell element model with a relative fine element size of 4 mm is used in this chapter because it results
in an accurate fatigue life prediction and is more easy to apply compared to solid elements. The model as
discussed in chapter 3 is used. To make it more easy to change parameters and because it is expected that it
has negligible influence on the hot spot stress in the rib to deck plate joint, the cope hole is not modelled.

6.1. Traffic load on bridge decks
6.1.1. Traffic categories
The Eurocode 1 part 2 makes a distinction between four traffic categories, varying from a low to a high heavy
traffic intensity. The traffic intensity (N) is the value of lorries per year for a slow-lane with a maximum lorry
load larger than 100 kN. For each category, the value of N is estimated and for the Netherlands, the values are
given in the Dutch national annex table NB.5-4.5(n) of Eurocode 1 part 2 [28], see table 6.1.

Table 6.1: Value of lorries per lane per year [28]

Traffic category N
1. Highways and roads with two or more

lanes per direction and with heavy truck
intensity

2∗106

2. Roads with average truck intensity 0.5∗106

3. Roads with low truck intensity 0.125∗106

4. Roads with low truck intensity and only
traffic for destination

0.05∗106

6.1.2. Fatigue load models
If road bridges are considered, there are 5 different fatigue load models which can be used to determine
fatigue life according to NEN-EN 1991-2 [27]. Fatigue load model (FLM) 1 and 2 should be used to determine
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an infinite fatigue life for a given constant amplitude fatigue limit. FLM 3, 4 and 5 should be used to design a
safe life.

In this report, a safe life design will be analyzed and therefore, FLM 1 and FLM 2 are disregarded in this
chapter. FLM 5 is based on measured truck intercity and will therefore also not be discussed further. FLM 3
determines fatigue life using a constant stress range with a minimum and maximum stress. FLM 4 include a
spectrum of stresses considering loads of different trucks on the bridge.

Eurocode 1 part 2 [27] states that FLM 4 is more accurate than FLM 3, assuming that the presence of more
vehicles on the bridge can be neglected. The ROK [32] prescribes to use always FLM 4. For these reasons,
FLM 4 will be used as load model for fatigue in this report.

Fatigue load model 4

This load model represents a composition of 5 common used truck types, which should be considered all
separately. The damage due to stress cycles can be determined for each truck. Using a cumulative damage
model, the total damage can be determined. This should be smaller than 1. In this FLM, it is assumed that
each lorry enters the bridge without the presence of another vehicle.

Each truck has his own specifications, which are the distance between the axles, load per axle, wheel type and
the percentage of that lorry type from the total amount of lorries per year. All information is collected in table
6.2. The wheel contact area for the wheel types is given in figure 6.3.

Table 6.2: Lorry type, load and percentage of total amount - FLM4a (reproduced from NEN-EN 1991-2 table
NB.6 [28]

Lorry type Percentage of lorries
Image Distance

between
axles

Axle
load

Traffic
category

1

Traffic
category
2 and 3

Traffic
category

4

Wheel
type

[m] [kN] [%] [%] [%]
4.50 70 20 50 80 A

130 B

4.20 70 5 5 5 A
1.30 120 B

120 B

3.20 70 40 20 5 A
5.20 150 B
1.30 90 C
1.30 90 C

90 C
3.40 70 25 15 5 A
6.00 140 B
1.80 90 C

90 C
4.80 70 10 10 5 A
3.60 130 B
4.40 90 C
1.30 80 C

80 C
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Table 6.3: Wheel types and load

Wheel type Wheel contact area [mm] and corresponding distributed load [N/mm2]

A

B

C

FLM 4 gives the axle loads for each truck. For the rib-to-deck plate joint, the local stress due to wheel loading
is important. This distributed wheel load (qwheel) can be determine with equation 6.1.

qwheel =
Qk

2∗ l1 ∗ l2
(6.1)

where:
Qk is the axle load.
l1 is the width of the wheel.
l2 is the length of the wheel.

Eurocode 1 part 2 paragraph 4.3.6(3) states that the local load dispersal from the top of the surface layer till
the middle plane of the structural steel plate can be taken into account. This load is spread under an angle
of 45°, which means that for every centimeter surface layer the wheel contact area will become 1 centimeter
larger at each side. Figure 6.1 shows the resulting wheel contact area, where s is the thickness of the surface
layer and t is the deck plate thickness. This should be taken into account both in the length and width of the
wheel contact area and therefore, b is the width or length of the wheel print mentioned in 6.3.

For movable bridges, an epoxy layer of 8 mm is a common surface layer. Therefore, this value is used as the
thickness of the surface layer in this report.

Figure 6.1: Wheel contact area due to load dispersal through epoxy layer and steel plate
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The wheel contact area and distributed load for the different wheel types from table 6.2 are given in table 6.4.
It includes the contact size from the Eurocode and the one which takes into account the load dispers.

Table 6.4: Wheel contact area and load distribution load

General wheel contact area Including load dispersal
Wheel

type
Axle load

[kN]
Wheel

contact area
q [N/mm2] Wheel

contact area
q [N/mm2]

A 70 220x320 0.50 256x356 0.38

B

120

220x320

0.43

256x356

0.33
130 0.46 0.36
140 0.50 0.38
150 0.53 0.41

C
80

270x320
0.46

306x356
0.37

90 0.52 0.41

The transverse wheel position has a large influence on the fatigue life of OSDs. According to Eurocode 1 part
2 paragraph 4.6.1(5), an approximation of the transverse distribution of trucks is given, see figure 6.2.

Figure 6.2: Distribution of the vehicle position in transverse direction [27, fig 4.6]

6.1.3. Stress range
The stress in transverse direction is responsible for the fatigue cracks. The bending moment and resulting
stresses in transverse direction are largest if the wheel load is placed right above the crossbeam. In this report,
there is assumed that the stress will become zero after one axle is passed and before the second axle will pass.
As a consequence, each axle results in an individual stress range independent of another wheel axle. In this
way, the stress range per truck is determined. In paragraph 7.5, this assumption is analyzed.

6.1.4. Partial safety factor
According to paragraph 9.3 of the Dutch national annex of Eurocode 3 part 2 [31], a partial safety factor (γMf)
of 1.15 should be used for fatigue calculations of OSDs. This factor is valid for a safe life assessment method
and the consequences of failure should not influence the main structure. The partial factor for fatigue loads
γF f is given in Eurocode 3 part 2 paragraph 9.3 [30] and should be taken as 1.
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6.2. Damage value calculation
The damage value gives how much damage the detail will give for the chosen design life. If the damage value
is larger than 1, fatigue failure will occur.

Combining the information for extrapolation of the hot spot stress method with a relative fine mesh, section
2.8.2, the calculations for the amount of load cycles, section 2.7 and the design amount of load cycles according
to FLM 4, section 6.1.2, the following flow chart is used for calculations of the damage value.

Total amount of load cycles per 
wheel type 𝑛𝑖

Amount of load cycles per wheel type 
per transverse wheel position 𝑛𝑖.𝑗

Total amount of load cycles N

Detail category, CAFL 
and cut-off limit

Output FE model: 𝜎0,4𝑡 and 𝜎1,0𝑡

Hot spot stress range per wheel type and 
position:

∆𝜎𝐻𝑜𝑡𝑠𝑝𝑜𝑡= 1.67 ∗ ∆𝜎0.4𝑡 − 0.67 ∗ ∆𝜎1.0𝑡

Damage value per wheel per year: 

𝐷𝑖,𝑗 =
𝑛𝑖,𝑗

𝑁𝑖,𝑗

Total fatigue damage: 



𝑗=1

5

𝐷𝑖,𝑗

(
∆𝜎𝐶

∆𝜎𝑅
)3 ∗ 𝑁𝐶 for ∆𝜎𝑅≤ ∆𝜎𝐷

𝑁𝑖,𝑗 = (
∆𝜎𝐷

∆𝜎𝑅
)5 ∗ 𝑁𝐶 for ∆𝜎𝐷< ∆𝜎𝑅≤ ∆𝜎𝐿

∞ for ∆𝜎𝑅> ∆𝜎𝐿

Design fatigue life Resistance fatigue life 

Figure 6.3: Flow chart calculation of damage value

The damage values in this chapter are calculated in Excel, see appendix D for the in- and output.

6.3. Wheel positions
The most unfavourable wheel position in transverse direction is determined using an influence line. The
wheel loads are placed at locations above the crossbeam. The assumed center position of the wheel is shown
in figure 6.4(a) for a single tyre, which corresponds to wheel type A and C, and in figure 6.4(b) for a double
tyre, wheel type B. The hot spot stress at the deck plate of the rib-to-deck plate joint, figure 6.4 point A, is
determined. The influence lines for wheel type C with an axle load of 90 kN and wheel type B with an axle
load of 150 kN are given in figure 6.5.

For a single tyre, the bending stress at the lower surface of the deck plate is highest if the wheel is places in the
center of the trough. If a wheel is placed not in the center of the trough, the stress range decreases drastically.
Therefore, this center position is the most unfavourable wheel position for a single tyre.

For the double tyre, loading of each tyre in the center of the trough results in a peak stress at the joint. This
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position results in the most unfavourable wheel location.

(a) Single tyre (b) Double tyre

Figure 6.4: Wheel positions
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Figure 6.5: Influence lines of the hot spot stress at location A

The total damage value, including all wheel types and axle loads as discussed in table 6.2 is determined, see
table 6.5. It follows that the center position is responsible for 93% of the total damage value of the deck plate.
The other damage is caused by the position -100 mm from the center. The rest of the transverse positions
does not influence the fatigue damage.

The center position is responsible for only 50% of the total amount of design load cycles. Because of the large
difference between the stresses if the load is placed in the center or at another position, it is important to
take into account the transverse wheel positions. It results in almost half of the fatigue life compared to if all
design load cycles are considered in the center.
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Table 6.5: Damage value per transverse load position for a=300mm and t=20mm. γM f = 1.15

a=300mm - t=20m
Location from center [mm]

-200 -100 0 100 200
A - 70kN 0 0 0.47 0 0

B - 120 kN 0 0 0.02 0 0
B - 130 kN 0 0 0.17 0 0
B - 140 kN 0 0.01 0.07 0 0
B - 150 kN 0 0.01 0.12 0 0
C - 80 kN 0 0.01 0.11 0 0
C - 90 kN 0 0.09 0.97 0 0

Total 0 0.13 1.9 0 0

Total damage: 2.05

Percentage of total 0 7 93 0 0

6.4. Influence of parameters on the hot spot stress
The effect of different parameters on the deck segment is discussed in this section. Wheel type C, table 6.3, is
considered and a uniform distributed wheel load qwheel = 0.52 N/mm2 is applied which corresponds to an axle
wheel load of 90 kN. The load dispersal through the epoxy layer is not taken into account in this parameter
study.

6.4.1. Cope hole
A model with the troughs fully welded to the crossbeam is compared to a model which has a cope hole in the
crossbeam. Figure 6.6 shows the stress range for both models. A cope hole results in 3% increase of the hot
spot stress. This difference is small. However, there should be noticed that a small increase in stress results in
a much larger increase of the fatigue life.
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Figure 6.6: Influence of a cope hole on the hot spot stress range at the bottom surface of the deck plate

6.4.2. Thickness trough and crossbeam
Figure 6.7(a) shows the hot spot stress for the standard model which has a trough thickness of 6 mm and for
a thickness of the trough of 8 mm. There is no difference in hot spot stress. This means that the fatigue life
is not dependent on the trough thickness because the load is directly transferred from the deck plate to the
crossbeam.

The effect on the hot spot stress for a thinner crossbeam thickness is analyzed. A crossbeam thickness of 16
mm, which is the reference model, and 12 mm are compared. The results for the hot spot stress are given in
figure 6.7(b). A thinner crossbeam thickness results in a less stiff connection. As a consequence, the bending
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stress is lower at the joint. The hot spot stress value reduces with 4.5%.
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Figure 6.7: Influence of parameters on the hot spot stress range

6.4.3. Trough shape
A trapezoidal shape is mostly used as trough shape. The influence of the angle of the trough web is investigated.
Therefore, two alternatives for the standard model are built. The first alternative is a V-shape model which
means that the width of the bottom flange is equal to zero and angle between the deck plate and trough web
becomes smaller. The second alternative is a trapezoidal model with a bottom flange of 210 mm, which is 2
times the length of the standard model. See figure 6.8 for the two trough shapes.

Figure 6.8: Design of a trough with b = 0 and b = 210 mm [mm]

The value of the hot spot stress is determined for the models, see figure 6.9. A larger bottom width of the
trough results in a slightly lower hot spot stress range of 5% and no bottom flange results in an increase of 3%
of the hot spot stress range.
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Figure 6.9: Hot spot stress due to loading with wheel type C for a trough with different width of the bottom
flange

6.4.4. Deck plate thickness and width between the troughs
The influence of the width between the trough webs related to the hot spot stress range is analyzed. Four
different alternatives are build which have all same parameters as the reference model as discussed in chapter
3, except for the width between the trough webs. A width of 250 mm, 300 mm, 350 mm and 400 mm are
compared. The width of the bottom flange is decreases or increased with the same value as the width between
the trough webs. Different deck plate thicknesses, varying between 16 mm to 24 mm, are analysed per
alternative. The resulting hot spot stress due to loading is given in figure 6.10.

A larger distance between the trough webs gives a larger span between the webs and thus results in a higher
hot spot stress at the rib to deck plate joint. The increase of the deck plate thickness results in lower bending
stresses and as a consequence, in a lower hot spot stress. This compares to the conclusions from literature,
see paragraph 2.5.1.
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Figure 6.10: Hot spot stress at the rib-to-deck plate and crossbeam joint for varying parameters

For these parameters, the damage value per year (Dyear) is determined. Therefore, the load dispersal through
the epoxy layer is taken into account. Wheel contact area and distributed load as given in table 6.4 is used as
input in the FE models. The damage value is determined only for the center position of the wheels. The
transverse wheel position is taken into account by assuming that the center position is 93% of the total
damage value as determined in table 6.5.

The resulting fatigue life is the amount of years for which the damage value is equal to 1. The resulting fatigue
life is given in figure 6.11. The fatigue life for a deck plate thickness of 24 mm is larger than 100 years for all
these situations and therefore not included in the graph.
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The Eurocode gives a limitation ratio for the width between troughs (e) and the deck plate thickness (t),
as discussed in paragraph 2.4. This value should be smaller than 25. Table 6.6 gives the ratio for different
parameter options. A ratio of 25 corresponds to a deck plate thickness of 12 mm for the 300 mm standard
width between troughs. From the table, it follows that to reach a ratio 25, the deck plate thickness should
increase if a larger width between the troughs is chosen. This corresponds to the results found in this chapter.

For traffic category 2, a design life of 50 years is generally considered. For a width between the troughs (e)
of 250 mm, a deck plate thickness (t) of 18 mm meets the requirement to have a fatigue life longer than 50
years, see figure 6.11. The requirement for e = 300 mm and e = 350 mm is met if respectively t = 20 mm and
t = 22 mm are chosen. Considering these parameters, the ratio e/t is much lower than 25. The ratio given in
the Eurocode is valid for traffic category 4 and a bridge deck which includes a thick asphalt layer. However,
for higher traffic categories, a lower ratio is required and the ratio of 25 results in an unconservative fatigue
design.

A suggestion is to make the ratio dependent on the traffic category, like the deck plate thickness is. For traffic
category 2, the ratio e/t should be smaller than 17. However, the ratio gives only an approximation and should
not be decisive.

Table 6.6: Ratio e/t. Green numbers: Possible parameters for traffic category 2.

t \e 250 300 350 400
12 20.8 25.0
14 17.9 21.4 25.0
16 15.6 18.8 21.9 25.0
18 13.9 16.7 19.4 22.2
20 12.5 15.0 17.5 20.0
22 11.4 13.6 15.9 18.2
24 10.4 12.5 14.6 16.7



7
Case study - Fatigue analysis for a couple of

alternatives

In the previous chapter, different parameters which influence the fatigue performance of the rib-to-deck
plate joint at the crossbeam are analyzed. In this chapter, there is searched for a design which combines
the different influencing factors to see in which way it is possible to reduce weight. For the same reasons as
mentioned in 6, the hot spot stress method for a shell element model with a relative fine mesh is used for the
fatigue assessment, unless otherwise stated.

7.1. Case description
Dimensions of an existing bridge design are used for the design of four alternatives. This bridge is a bascule
truss bridge in Terneuzen with a span of 55.8 meter. The bridge is designed for two lanes between the main
girders. A standard distance between the troughs of 300 mm is used, which results in 12 troughs over a width
of 7.2 meter. A front view of the design is shown in figure 7.1. A part of the side view is provided in figure 7.2.

In this report, the bridge deck is designed for traffic category 2. FLM 4, see paragraph 6.1.2, is used as fatigue
load model. Damage values are determined for a design life of 50 years.

Figure 7.1: Dimensions bridge deck design. Front view (mm)

65



66 7. Case study - Fatigue analysis for a couple of alternatives

Figure 7.2: Dimensions bridge deck design. Side view (mm)

7.1.1. Design alternatives
The design of the trough as discussed in chapter 3 is used as the standard design. This design, with a width
between the troughs of 300 mm and a deck plate thickness of 20 mm results in 12 troughs, see figure 7.3.
Three alternatives are given for the design, all with a different amount of troughs. From paragraph 6.4.3 it
followed that the influence of the trough shape only has a small effect on the hot spot stress. However, 3%
stress increase results in a much larger fatigue life decrease. To exclude this effect in the design of the different
alternatives, the angle between the deck plate and trough webs remains the same. As a consequence the width
of the bottom flange increases or decreases with the same value as the width between the trough webs. For
each alternative, the width within the trough webs is equal to the width between two webs.

The first alternative has 14 troughs. The width between the trough webs (a) is 257 mm and the deck plate
thickness (t) is 18 mm, figure 7.4(a). The second alternative consists of 10 troughs, which results in a trough
web distance of 360 mm and a deck plate thickness of 22 mm, figure 7.4(b). The last alternative is a variant
with 9 troughs, a width of 400 mm between the trough webs and a deck plate thickness of 24 mm, figure 7.4(c).
Because the stress range in the joint increases if the width between the troughs becomes larger, the deck plate
thickness is increased as well. The deck plate thickness is determined using the results from figure 6.11.

Figure 7.3: Dimensions for the design with 12 troughs [mm]
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(a) (b) (c)

Figure 7.4: Dimensions of the four alternatives [mm]

In this report, the crossbeam thickness is taken as 16 mm and the trough thickness is 6 mm, which corresponds
to the model as discussed in chapter 3.

A 3D view of the alternative with 12 troughs is shown in figure 7.5.

Figure 7.5: 3D view of the case model

When the load is placed right above the crossbeam and the crossbeam is fully fixed over the bottom flange,
only a small part of the total bridge deck can be modelled, as discussed in paragraph 3.2. Therefore, only
three troughs and one crossbeam are modelled for the different alternatives.

7.2. Damage values
In this parapgrah, the damage value is determined for the four alternatives and a design life of 50 years. To
determine the damage values, the most unfavourable wheel positions as given in figure 6.4 are considered.

The influence of the load dispersal on the stress range is analyzed. The damage value is determined for the
shell element model without taking into account the load dispersal, which means that the wheel contact area
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as described by the Eurocode is applied and with taking into account the load dispersal. For both options,
see table 6.4 for the wheel contact area and distributed load input.

To compare the results for using shell and solid elements for fatigue assessment, the damage value is determined
for the model with a solid element sub model. Because of the presence of the solid element model, the
increase of the wheel contact area due to load dispersal is only taken into account for the epoxy surface layer
and not in the steel plate. In chapter 4, there is concluded that considering a lack of penetration of 1.5 mm
does not influence the hot spot stress value. Therefore, this is not taken into account in the solid element
model.

Table 7.1 gives a summary of the damage values for the different approaches. For the shell element model
which includes the load dispersal, the transverse displacement in considered and loads are placed at all
five positions. For the other two models, the wheel load is only applied at the center position, right above
the trough. Transverse displacement is taken into account in the total amount of design load cycles to
failure. Because the total damage is not only due to the center position, total damage is corrected using
the percentages given in table 7.2.

Table 7.1: Damage value for traffic category 2 - γM f = 1.15

a - t (mm) Shell model -
Standard wheel

contact area

Shell model Solid model

257 - 18 2.0 0.93 0.51
300 - 20 2.1 0.96 0.61
360 - 22 1.8 1.1 0.63
400 - 24 0.97 0.49 0.41

7.2.1. Transverse wheel position
The influence of the transverse location of the wheel on the hot spot stress at the joint is investigated for the
four alternatives. For wheel type B with an axle load of 150 kN and wheel type C with an axle load of 90 kN, the
hot spot stress range is given in figure 7.6. The shell element model and taking into account the load dispersal
is considered.

If the distance between the troughs becomes larger, the presence of the second wheel has a larger influence
on the hot spot stress if the double tire wheel is considered. Therefore, influence of this double tyre on the
transverse wheel position has a larger influence on the hot spot stress range than for the single tyre wheel.
Unlike for the other models, for the model with a = 400 mm, the most unfavourable position is the location
at -100 mm from the center of the trough. However, there should be noticed that the positions between the
center and position -100 mm from the center are not considered, so it is possible that the exact position which
leads to the highest stress value is somewhere in between these two locations.
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Figure 7.6: Influence lines of the hot spot stress range in detail A.

In section 7.2.1, the influence of the transverse wheel position on the total damage value is investigated for
the alternative with a = 300 mm and there is concluded that the center position takes care of 93% of the total
damage value. However, for this situation, the load dispersal was not taken into account. The percentage for
the center position from the total damage is similar if the load dispersal is taken into account in the wheel
contact area, see annex E. The result of the damage per transverse position for the other alternatives is also
given in annex E. The percentage of the damage value caused by the center position relative to the total
damage is given in table 7.2 for the four alternatives.

Table 7.2: Influence of the transverse wheel position on the total damage value

a=257 - t=18 a=300 - t=20 a=360 - t=22 a=400 - t=24
Damage center / total damage [%] 95 93 90 83

7.2.2. Load dispersal
Taking into account the load dispersal through the surface layer by applying a larger wheel contact area
generally is beneficial for bridge decks with a thick asphalt layer. However, table 7.1 shows that it is beneficial
to take into account for movable bridges with a thin asphalt layer as well. Because of the load dispersal,
the wheel contact area becomes larger, while the same axle load is applied. Therefore, the distributed load
becomes smaller and is less concentrated. This results in a reduced hot spot stress.

For wheel type B with an axle load of 150 kN and for wheel type C with an axle load of 90 kN, the resulting stress
range in the rib-to-deck plate joint, figure 6.4 point A, is given in figure 7.7. Including the load dispersal results
in a stress ranges which is 10 to 15% lower at the center position than if the load dispersal is not considered.
A small decrease of the stress results in a large decrease of the damage value, which is in this case reduced by
about 50%, see table 7.3.
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Figure 7.7: Hot spot stress at the deck plate

Table 7.3: Load dispersal reduction

a - t (mm) DShell/DShell-standard

257 - 18 52%
300 - 20 46%
360 - 22 61%
400 - 24 50%

The applicability of the load dispersal as described by the Eurocode is a discussion point. Ming et al. [23] and
de Jong [8] concluded that the reduced stress range is caused by the composite action between the asphalt
surface layer and the steel plate, more than due to the load dispersal. de Jong [8] states that the load dispersal
as given in the Eurocode covers the load dispersal as well as the composite action of the deck plate with the
surface layer. Because the last one is dependent on temperature, taking into account the load dispersal can
result in an unsafe stress range prediction.

According to site measurement of a movable bridge deck with an epoxy layer of 8 mm, Kolstein [16] found
for an air temperature between 0°and 7°lower stress ranges in the bride deck compared to when the air
temperature was 20°to 33°. Therefore, there can be concluded that there is composite action between the
epoxy layer and the steel deck plate and this influences the stress in the rib-to-deck plate joint.

de Backer [5] did research to the a thin surface layer. There is found no large difference between the fatigue life
of a variant without considering a surface layer and a variant with a 7 mm surface layer with asphalt material
properties. In his research, solid elements are used and the asphalt surface layer is included.

From the different studies, there can be concluded that there is a small reduction of stresses due to the surface
layer, but it is likely that this is not because of the load dispersal but due to the composite action. Including
the load dispersal gives an approximation of the increase of the stress but may is unconservative. Therefore,
more research can be done to the actual reduction of the stress due to the epoxy layer.

7.2.3. Use of the solid element sub model
In chapter 4, there is concluded that the hot spot stress approach with a solid element sub model results
in a less conservative fatigue life than using a shell element model. The ratio between the damage value
determined with a solid element model and shell element model is given in table 7.4.
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Table 7.4: Solid element model vs. shell element model

a - t (mm) DSolid/DShell

257 - 18 55%
300 - 20 64%
360 - 22 64%
400 - 24 82%

Considering the alternative with a = 360 mm and t = 22 mm, the damage value is larger than 1 if the shell
element model is used. From table 7.1, it follows that using the solid model results in a damage value smaller
than 1. Therefore, the solid element sub model is beneficial to use in this case.

For a = 300 mm and a = 400 mm, the possibility to reduce the deck plate thickness if the detailed solid element
model is used is investigated. The damage value for these alternatives is determined for a deck plate thickness
of 18 mm and 22 mm respectively. The damage value is given in table 7.5. Using a solid element model instead
of the shell element model leads not to a thinner deck plate thickness for these alternatives.

There can be concluded that the solid element model results in a reduced damage value compared to the
shell element model. However, this method is more time consuming so it is recommended to first use the
shell element model. If a damage value above 1 is found and a reduction of the damage by 50 to 80% will
result in a damage value smaller than 1, then the solid element model can be used for fatigue assessment of
the detail.

Table 7.5: Damage value - thickness reduction possibility

a - t (mm) Damage value
300 - 18 2.4
400 - 22 1.8

7.2.4. Comparison to the Eurocode
The recommended value for the deck plate thickness determined by the Eurocode is 20 mm for traffic category
2, see table 2.1. If a shell element model is used and load dispersal through the surface layer is neglected, the
damage value is larger than 1 for a model with a = 300 mm and t = 20. But taking into account one of the
improvements results in a damage value smaller than 1. A deck plate thickness of 18 mm does not suffice,
and therefore, the recommendation from the Eurocode is correct for a width between the troughs of 300 mm.

According to the Eurocode, the width between the troughs should be smaller than 300 mm. A larger width is
possible as well for this joint. Nevertheless, if the width between the trough webs becomes larger, a thicker
deck plate thickness is required to find a damage value smaller than 1 for traffic category 2. This should be
considered if a design for an OSD bridge is made.

7.3. Weight of the bridge deck
A larger width reduces the cross section area, but a thicker deck plate thickness results in an increased cross
section area. However, to reach a damage value below 1, a thicker deck plate thickness is required if the
width between the trough webs is increased. In this paragraph, the effect on the weight of the bridge deck is
discussed.

The weight of the elements and the total weight of the bridge deck are determined for the four alternatives. A
crossbeam thickness of 12 mm and thickness of the troughs of 8 mm are assumed. The center to center span
between the crossbeams is 3100 mm. These values correspond to the general design of the bascule bridge
used in this case study. The main girders are not taken into account.

For the four discussed alternatives, the total weight of the bridge deck increases if less troughs are used and
thus the width between the trough webs is larger. This is because the weight of the deck plate gives a large
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contribution to the total weight of the bridge deck and this deck plate thickness is increased as well. Generally
speaking, there can be concluded that how thinner the deck plate thickness is, how lighter the total bridge
deck will be. When a deck plate thickness of 24 mm is used, the weight of the deck plate increases with
20% compared to a deck plate thickness of 20 mm and 33% compared to a deck plate thickness of 18 mm.
However, the increase of the heaviest total design compared to the lightest design is only 8.5%.

From table 7.1 it follows that the damage value is not exactly the same for all models. For the case study,
general thicknesses for the deck plate are chosen. The alternative with a = 400 mm and t = 24 mm has a
smaller damage value which means that the fatigue life is longer compared to the other alternatives. To reach
a same damage value (around D=0.95), the deck plate thickness can be made smaller, for example 23 mm or
23.5 mm. This results in a lighter deck plate and thus, a reduced total weight of the bridge is reached. The
8.5% increase of the weight compared to the lightest alternative becomes smaller. By a decrease of the deck
plate thickness of 0.5 mm, the total weight is only 6.5% higher instead of 8.5%.

The design with 10 troughs and a = 360 mm has a higher damage value than around 0.95. Therefor, this
alternative needs a slightly thicker deck plate to make a fair comparison. This has a negative effect on the
weight, which means that the total weight will increase to almost the weight of the alternative with a = 400
mm.
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Figure 7.8: Weight of the elements of the bridge deck

Improvement possibilities

An optimization of the designs is still possible because in these designs there is assumed that the bottom
flange increases with a same value as the width between the trough webs. However, the most contribution
to the total weight of the bridge deck is from the deck plate. A reduction of the trough design results only in
a small reduction of the total weight and thus will not have a large influence on the final conclusions of the
weight reduction.

Another parameter which can be optimized further is the width between and within the webs. These values
are similar to each other in this case. Because the rib-to-deck plate joint is only dependent on the width
within the troughs and not on the width between two troughs, this last parameter can be increased. The
fatigue life of the joint in span will be more important then. Because this joint is less susceptible for fatigue
failure, higher stress ranges are acceptable for the joint at this location and therefore, an weight reduction of
the deck plate may is possible.
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7.3.1. Costs versus weight
Although the weight of the bridge deck increases if less troughs are used, the amount of welds for the trough
web to deck plate connection decreases. In this section, an approximation of the costs for welding and for
the amount of steel is made. The estimations for the costs are received from Iv-Infra and are only a rough
approximation.

The welding speed it about 100 to 125 cm3 / hour. This value is dependent on the shape of the weld and on
if it is welded manually or automatically. In this report, an automatic weld is considered which will increase
the speed. However, the shape of the weld is more complex than a simple filled weld which results in slower
welding. Therefore, the conservative value of about 100 cm3 per hour is assumed for the welding volume. A
rough estimation of the price for labor is €80.0 per hour. Therefore, the price of one weld is about €0.80 per
cm3.

The surface area of the weld is 0.24 cm2 and the length per trough is 55.8 m. The total volume of the weld per
trough web is 1339 cm3. Total price for the weld per web is €857 and thus €1714 per trough.

The purchase prise of 1 kilogram steel is about €1.00. The final price is about €6.00/kg steel. Then the steel
structure is in the factory made ready to install at the building site. Because of the amount of welding, an
OSD is relatively labor intensive to build. Therefore, this value may is a bit higher. However, the welding
is considered separately in this calculation and therefore, the steel price may should be taken a bit lower.
Therefore, the steel purchase price and estimated final price are considered.

Per alternative, the price for the OSD is determined by multiplying the amount of steel with the steel price.
For the total weight, the deck plate and troughs are considered only. The amount of troughs is multiplied by
the price of the weld per trough. Results for the total price of the deck is given in figure 7.9 for the final steel
price and in figure 7.10 for the steel purchase price.
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Figure 7.10: Costs per alternative - steel purchase price

When the final price for the steel is considered, the steel price has a larger influence on the total price than
the welding price. Small changes in the assumptions for the weld price does not have a significant influence
on the total steel price, because it is only a small value of the total price of the deck. However, if the steel price
is taken much lower, the welding price is more important and a design with less troughs can reduce the total
price.

There should be noticed that if the crossbeams and main girders and other elements of the bridge are also
taken into account, the influence of the price of the welds becomes only smaller. As a consequence, the
percentage of the costs for the welding of the trough web to deck plate joint are will become only smaller and
therefore, less important, if more elements parts of the bridge are considered..

7.4. Crossbeam deformation
In this report, a fully supported crossbeam is used in the calculations. However, in a normal bridge design,
the crossbeam is supported by the side edges only. The crossbeam will deform due to a truck load. Majlaars
et al. [21] states that a simply supported beam results in a small increase of the hot spot stress at the deck
plate compared to a crossbeam which is fully supported at the bottom flange.

The effect of the deflection of the crossbeam on the stress range for the design a = 300 mm and t = 20 mm
is analyzed. For this calculation, the total width of the bridge is considered instead of the small model with
only three troughs. Therefore, the total bridge part is used, see figure 7.5. Wheel contact area which includes
the load dispersal is used, table 6.4. The axle wheel is considered. The end of the axle is placed in the most
unfavourable wheel position right above the second trough. Because the transverse displacement only had a
small influence on the damage value, only the center position is used in this section.

Three options are compared. The first option is a fully supported crossbeam in y-direction, the second option
is a crossbeam which is fixed in translation in x- y- and z-direction at the side edges of the crossbeam. The
last option is similar to the second option, but only one wheel at the second trough is considered instead of
the wheel axle. For all options, the crossbeam thickness is 16 mm, which is the crossbeam thickness used for
the alternatives. For option 2, a crossbeam thickness of 12 mm is considered as well. Table 7.6 gives the hot
spot stress in trough 2 (T2) at the left and right side due to an axle load of 90 kN and wheel type C. Figure 7.11
shows the vertical deformation (y-direction) of the crossbeam of the first 2 options. The resulting damage
value considering all wheel types and axle loads from FLM 4 is given in table 7.6 as well.

Considering the deformation of the crossbeam results in a damage value 2.5 times the damage value if the
crossbeam is fully fixed over the crossbeam length. There should be noticed that applying a load only at T2
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results in a lower stress at the left side and a higher stress at the right side of the trough than if the full axle
load is applied. A conclusion is that it is important to consider the wheel axle of the truck instead of only
one wheel. The in-plane deformation of the crossbeam has a large influence on the damage value of the
rib-to-deck plate joint and should therefore always be taken into account in the fatigue calculation.

Expected is that increasing the thickness of the crossbeam will reduce the deformation. In paragraph 6.4.2,
an increase in stress of 4.5% was found if the crossbeam thickness is 16 mm instead of 12 mm and when
the deformation of the crossbeam is not considered. If the in-plane deformation is taken into account, the
difference in stress is only 3%, which means that the thicker crossbeam thickness decreases the in-plane
deformation and has a positive effect on the fatigue life. However, using a crossbeam thickness of 16 mm still
results in a 12% shorter fatigue life than a crossbeam thickness of 12 mm.

From the calculations, there can be concluded that a simplified 2D model is not suitable for a final damage
calculation of the rib-to-deck plate joint at the crossbeam. Not only the bending stress due to the local
deformation of the crossbeam has an influence on the hot spot stress in the joint, but the deformation of
the crossbeam is important to consider as well. This can not be taken into account in the simple 2D hand
calculation.

According to paragraph 2.5.5, the in-plane deformation is only important to consider if a relative shallow
crossbeam is used. No dimensions of this crossbeam is given. According to the results from the study in this
report, the in-plane deformation has a large negative effect on the hot spot stress at the deck plate. Therefore,
more research to the dimensions of the crossbeam is required for reduction possibilities of the effect of the
in-plane deformation on the stress range at the deck plate.

Table 7.6: Hot spot stress in T2

T2 - Left T2 - Right Damage value
[MPa] [MPa]

Full support -53.8 -53.7 0.89

Support at edges
-65.5 -48.3 2.3

Tcrossbeam = 12 mm 63.7 46.0 2.0
One wheel instead of axle -58.6 -51.9 1.3



76 7. Case study - Fatigue analysis for a couple of alternatives

(a) Crossbeam edges supported

(b) Crossbeam full support

(c) Detail 1 and 2

Figure 7.11: Deformation of the crossbeam (Deformation scale factor is 500)

7.5. Stress range assumption
In the report, the wheel axles of a truck are considered separately and there is assumed that the stress range
becomes zero at the moment between loading of the first and second axle of the truck. The most unfavourable
wheel position is chosen for each wheel type, which means that the single tyre and double tyre are not in line
of one truck, see figure 7.12 for truck 3 from FLM 4, table 6.2. In this section, this assumption is called option
1. However, if a truck enters the bridge, the position of the wheels are in a line as shown in figure 7.13 for the
third truck from FLM 4. This is option 2 in this section.

Due to passing of a truck, a certain stress range will remain in the deck plate at the crossbeam at the moment
the different axles of the truck passes the bridge deck. This will have an influence on the stress ranges and
thus on the total damage value of the joint, called option 3.
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Figure 7.12: Wheel axles of truck 3 - most unfavourable wheel position assumption

Figure 7.13: Wheel axles of truck 3

The effect of the assumptions made in this report on the damage value is analyzed in this section. The total
deck segment of the model with a = 300 mm and t = 20 mm is used. The stress range and damage value is
determined for truck 3 from table 6.2. Wheel contact areas from the Eurocode, table 6.4, are used. Because
of considering the transverse displacement of the loads results in only a small increase of the total damage
value, only the center position is considered.

The load positions which are used to determine the hot spot stress in the joint for option 3 are given in
appendix F. The reservoir counting method is used for determining the stress ranges. Results are shown
in figures 7.14, 7.15 and 7.16.

Considering the position of each axle in one line relative to each other results in a slightly lower damage value
than when the most unfavourable positions are taken. This is because the stress range caused by the double
tyre is lower. There should be noticed that the transverse displacement of the truck is more important now
than for option 1. Because 50% of the total damage is related to the center position, expected is that the
damage value still will be smaller for options 2 compared to option 1.

Considering the passing of a truck and the remaining stress in the deck plate, the stress ranges becomes
different. The total damage value is lower than when all axles are considered separately because the remaining
stress range between passing of the axles has a positive effect on the value of the stress ranges.
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Figure 7.14: Stress range due to truck 3, option 1

Stress range Load cycles Damage value
Δσ1= 57.3 2.7 *107 0.09
Δσ2= 60.0 2.1 *107 0.12
Δσ3= 66.3 1.3 *107 0.19
Δσ4= 66.3 1.3 *107 0.19
Δσ5= 66.3 1.3 *107 0.19

Total Damage value: 0.80

Table 7.7: Damage values, options 1

Figure 7.15: Stress range due to truck 3, option 2

Stress range Load cycles Damage value
Δσ1= 57.3 2.7 *107 0.09
Δσ2= 37.8 ∞ 0
Δσ3= 66.3 1.3 *107 0.19
Δσ4= 66.3 1.3 *107 0.19
Δσ5= 66.3 1.3 *107 0.19

Total Damage value: 0.68

Table 7.8: Damage value, option 2

Figure 7.16: Stress range due to truck 3, option 3

Stress range Load cycles Damage value
Δσ1= 49.8 5.4 *107 0.05
Δσ2= 26.4 ∞ 0
Δσ3= 52.9 4.0 *107 0.06
Δσ4= 71.7 8.7 *106 0.29
Δσ5= 53.0 4.0 *106 0.06

Total Damage value: 0.46

Table 7.9: Damage value, option 3

7.6. Stress range in the joint at mid span
The effect of rib spacing on the trough web-to-deck plate joint between two crossbeams is investigated.
Therefore the stresses in the joint for the alternatives with a = 300 mm and a = 400 mm as provided in this
chapter are analyzed. The larger model, see paragraph 7.4, is used.

The maximum stresses in the trough web will be found if the load is placed in the middle of the span [13].
Therefore, the load is placed at this position. All wheel loads of the trucks are considered separately, which
means that there is assumed that the stress range becomes zero after one wheel is passed and the second will
pass the joint. Wheel contact areas as give in the Eurocode are used.

The influence lines at location A, see figure 7.17, are determined at the deck plate either weld root or toe,
which results in the largest value, and the trough at the weld root at the inner surface of the trough web, and
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the weld toe, the outer surface. Figures 7.18, 7.19 and 7.20 gives the influence lines for a model with a = 300
mm and t = 20 mm and a trough thickness of 6 mm and 8 mm. Figures 7.21, 7.22 and 7.23 shows the influence
lines for a model with parameter a = 400 mm, trough thickness is 6 mm and deck plate thickness is 20 mm or
24 mm.

Figure 7.17: Wheel center positions

Because of the absence of the crossbeam in this detail, there is no point where stresses will concentrate so
there will be no singularities in the FE model. Therefore, instead of the hot spot stress, the nominal stress can
be derived from the FE model.

In span, the transverse wheel location has more influence on the stress in one joint compared to the location
at the crossbeam. Because the trough-to-deck plate joint is less stiff, the peak stresses are lower than at the
crossbeam.

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

-600 -300 0 300 600

St
re

ss
 in

 x
-d

ir
ec

ti
o

n
 [

M
P

a]

Distance load from center of trough [mm]

t_st=6
t_st=8

(a) Wheel type B

-30.00

-25.00

-20.00

-15.00

-10.00

-5.00

0.00

5.00

10.00

-600 -300 0 300 600

St
re

ss
 in

 x
-d

ir
ec

ti
o

n
 [

M
P

a]

Distance load from center of trough [mm]

t_st=6
t_st=8

(b) Wheel type C

Figure 7.18: Influence line for the nominal stress in point B at the deck plate. a=300 mm
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Figure 7.19: Influence line for the nominal stress in point B at the inner surface of the trough. a=300 mm
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Figure 7.20: Influence line for the nominal stress in point B at the outer surface of the trough. a=300 mm
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Figure 7.21: Influence line for the nominal stress in point B at the deck plate. a=400 mm
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Figure 7.22: Influence line for the nominal stress in point B at the inner surface of the trough. a=400 mm
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Figure 7.23: Influence line for the nominal stress in point B at the outer surface of the trough. a=400 mm

The stress range at the deck plate causes a fatigue crack through the deck plate. Detail 1 in table NB.7 of
the Dutch national annex of Eurocode 3 part 2 [31] states that the detail category is 125 MPa for this crack
location. Besides the stresses at the deck plate, the stress at the trough web should be checked. This stress
is responsible for the weld bead crack, both at weld root (inner side of the trough) and weld toe (outer side
of the trough). The detail category which should be used for this crack type is ∆σC = 100 MPa, see detail 3 in
table NB.7 of Eurocode 3 part 2 [31].

The damage values for the alternatives is determined and summarized in table 7.10. The values in red indicate
a damage value larger than 1.

Table 7.10: Damage value at mid span for traffic category 2

a - tdp - tst [mm] Location Damage value Centre distance from 0-point

300 - 20 - 6
Deck plate - weld root 0 0

Trough - weld root 0.24 -300
Trough - weld toe 1.3 200

300 - 20 - 8
Deck plate - weld root 0.15 0

Trough - weld root 0 -300
Trough - weld toe 0 300

400 - 20 - 6
Deck plate - weld root 0.52 0

Trough - weld root 0.24 -300
Trough - weld toe 1.8 300

400 - 24 - 6
Deck plate -weld root 0 0

Trough - weld root 0 -200
Trough - weld toe 0.70 300

Unlike stated in literature, the thickness of the trough web does influence the fatigue performance of the joint
at mid span. Because the joint becomes stiffer if the trough thickness increases, stresses in the deck plate
slightly increase and the stress in the trough web decreases. The last one will cause a fatigue crack initiation
first, and therefore, the increase of the trough thickness can lead to a longer fatigue life for the joint in span.

The fatigue life of the joint in span is longer than the joint at the crossbeam. The joint at the crossbeam is
only dependent on the width within the troughs and not in the width between two troughs. Those reasons
makes it possible to chose a larger width between the trough webs compared to the width within the trough
webs. This may result in extra material reduce.
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Conclusion and discussion

In this chapter, several conclusions are drawn on the results presented in the report.

8.1. Conclusions
8.1.1. Fatigue analysis
In the first part of the report, results for the stress based fatigue assessment using the nominal, hot spot or
effective notch stress and for the local critical plane based method using the swt-parameter are presented.
Different FE modelling techniques are used. An answer is found on the following research question:

For which fatigue assessment method, the prediction of the amount of load cycles to failure is most close to
experimental results if the rib-to-deck plate joint at the crossbeam is considered?

For the considered fatigue assessment methods, the hot spot stress method gives a most accurate prediction
compared to the experimental result. All results are on the safe side if a detail category of 125 MPa is used,
which corresponds to a 97.7% failure probability.

• For the hot spot stress approach, a detailed solid element model which includes the weld geometry
gives a 44% longer fatigue life compared to the shell element model.

• The hand calculation using a 2D model gives a similar fatigue life prediction as using the hot spot stress
approach for a shell element model.

• Fatigue life determined with the effective notch stress method results in a fatigue life less than 10% of
the fatigue life determined with the hot spot stress method. Therefore, there can be concluded that this
method is conservative if the recommendations for modeling given by the IIW are used.

• A local critical plane based approach using the swt-curve results in an infinite fatigue life if the residual
stresses are not considered. Including the residual stress by applying a prescribed stress value in the
weld region gives a comparable fatigue life compared to the experimental value.

• Observed is that when a FEM analysis is used for the fatigue assessment of the joint at the crossbeam,
stress singularity will always appear at the root of the rib-to-deck plate weld. Therefore, it is not possible
to get the stress value directly from the FE model. The stress range determined using the hot spot stress-
or effective notch stress method are not affected by this singularity if a good element mesh is chosen.
To determine the swt-parameter, the effective notch can also be applied to prevent the appearance of a
stress singularity.

8.1.2. Design optimization
In the second part of the report, a parametric study and four alternatives for a case design are described. The
results from the first part are used to determine which fatigue assessment method should be used. The results
provide an answer on the following research question:

83
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Can there be found a combination of parameters for the OSD which results in a reduced weight of the structure
compared to general dimensions with respect to the rib-to-deck plate and crossbeam joint?

When a larger width between the trough webs is chosen, the deck plate thickness should be increased as well.
The cross section area and thus the weight of the trough will reduce. However, the weight of the deck plate
has most contribution to the total weight of the bridge deck and increasing this deck plate thickness results
in a larger bridge deck weight. Therefore, the increased rib spacing will not result in a reduced weight of the
bridge deck. For the considered alternatives, the difference in weight is 10% for the lightest and most heaviest
option.

Further conclusions about the optimization possibilities of the joint with respect to the fatigue performance
are given below. There should be kept in mind that a small increase in stress results in a much larger decrease
in fatigue life.

Design:

• The in-plane deformation of the crossbeam influences the stresses in the detail. If deformation of the
crossbeam is taken into account, a damage value 2.5 times the damage value for the crossbeam which
is fully fixed over the length is found.

• The trough web thickness does not affect the fatigue stress range and the trough shape results in a
difference of maximum 5% in stress value.

Loading assumptions:

• The transverse wheel position has only a small influence on the total damage value for the joint at
the crossbeam. The transverse wheel position is more important to consider if the width between the
trough webs becomes larger. For a width between the troughs of 300 mm, the transverse location gives
only 7% of the total damage value. While if the width between the troughs is 400 mm, 17% of the damage
value is caused by the transverse position.

• Because the center position contributes most to the total damage value, it is important to take into
account that only 50% of the total design load cycles as stated in the Eurocode will pass the center.

• Like for fixed bridges with a thick asphalt layer, for movable bridges with a thin surface layer it is
beneficial for the fatigue life to take into account the load dispersal through the surface layer by applying
a larger wheel contact area. A damage value which is half of the damage value if the load dispersal is
not taken into account can be reached if a shell element model is considered.

• For truck 3 of FLM4, the damage value decreases with 15% if all wheels are placed in the same line
instead of if the most unfavourable position of each wheel is chosen. An even more reduced damage
value can be reached if the stress range in the deck plate is considered during passing of the truck
instead of assuming that the stress range becomes zero after passing of each axle. Considering the
truck passing instead of each axle separately, 30% lower damage is found for truck 3 of FLM4. For a
final conclusion about the total damage, all trucks from FLM4 should be included in the calculation.

Assessment method:

• For the case alternative with a width between the troughs of 360 mm and a deck plate thickness of
22 mm, the damage value is 1.1 if shell elements are used and 0.63 if a solid sub model is used. A
reduced damage value of 35% is reached. Due to using the solid element model, the alternative meets
the required damage value smaller than 1, while this requirement is not met if the shell element model
is used. Therefore, in some situations, it is beneficial to use a solid element sub model instead of shell
elements.

• From the first part of the report, there can be concluded that the hand calculation gives a similar fatigue
life prediction as using the hot spot stress approach with a shell element. However, the method has
some limitations which results in conservative and non conservative prediction of the fatigue life if it is
used for assessment of a real bridge, which are:
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– Shape of the troughs is not considered.

– In-plane deformation of the crossbeam is not taken into account, while this results in an increase
of the stress range.

– Loading only directly on the crossbeam is considered. Therefore, a conservative stress range is
determined.

8.2. Recommendations
Based on the results presented in this report, some new discussion points are appeared. Recommendations
for further research are:

• A suitable detail category for the effective notch stress approach can be determined if more experimental
data is obtained.

• To take care of the residual stresses in the weld zone, investigation of a prescribed displacement instead
of a prescribed stress range can be made. This can result in a more accurate stress and strain range for
the unloaded situation.

• According to the Eurocode, the load dispersal can be included by taking a larger wheel contact area.
However, the strength reduction due to a surface layer is not only dependent on the load dispersal but
also on the composite action of the surface layer and steel deck plate. Therefore, the assumption should
be validated to a FE model which includes the surface layer in the design or to experimental results of
an OSD which includes the surface layer for a typical movable bridge.

• The effect on the damage value if the epoxy layer is taken into account is large. Therefore, a thicker
epoxy layer and thinner steel plate may can be applied which results in an overall reduction of the
weight of the bridge. Therefore, the possibilities for the epoxy layer thickness should be investigated.

• The design can be improved further if the width between and within troughs have not the same value.
For the rib-to-deck plate joint, the width between the troughs is important, but the width within two
troughs does not affect the fatigue life of the joint. In span between the crossbeams, both widths are
important. However, the fatigue life is longer for this detail, and therefore, an improvement of the
deck segment is possible. If a smaller with between the trough webs is chosen, but the amount of
troughs remains the same, a decrease of the deck plate thickness may is possible and therefore, a weight
reduction can be reached.

• There can be done more research to the possibility to reduce the stress range in the rib-to-deck plate
joint due to the in-plane deformation of the crossbeam is.
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A
Strain validation

Figure A.1: Strain at top of the deck plate for the reference and 75% weld penetration
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B
2D model - bending moment

Figure B.1: Input in MatrixFrame (in mm and N/mm2) and bending moment line (in Nmm)
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C
Improved detail category for the effective

notch stress method

Strandard deviation:

σn =
√∑n

i=1(xi −µ)2

n

Where:
σn is standard deviation
n is amount of specimen
xi is value/result of one specimen
µis averaged result of all specimens

Fatigue life
Specimen 1 4.2*106

Specimen 2 1.2*106

Table C.1: Result experiment[37]

n = 2
µ= 8.0∗105

σn =
√∑n

i=1(xi−µ)2

n = 3.75∗105

Mean:

∆σ= Nexper i ment

NC

1
3

∗∆σe f f .notch = 8.0∗105

2.0∗106

1
3

∗1080 = 796MPa

C.1. method 1
Design load cycles:
Nmean−2sd =µ−2∗σn = 4.5∗104

Detail category:

∆σ= Nexper i ment

NC

1
3

∗∆σe f f .notch = 4.5∗104

2.0∗106

1
3

∗1080 = 305MPa
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96 C. Improved detail category for the effective notch stress method

C.2. method 2
A failure of all test specimen method is assumed because both test specimen has reached the 10% change
in strain range, which is assumed as failure criteria. The standard deviation of 0.25 can be used for complex
structures at fatigue endurance up to 1 million load cycles. (IIW). The value of factor F is now determined
according to table 4.4 from IIW and is equal to 6.86.
Design load cycles:

Nd = NT

F
= 8∗105

6.86
= 1.2∗105

Detail category:

∆σ= Nexper i ment

NC
∗∆σe f f .notch = 5.0∗104

2.0∗106 ∗1080 = 316MPa



D
Load cycles and damage value

Table D.1: Load cycles per axle from EC1-2 NB.6

Traffic category 1 2 3 4

N 2000000 500000 125000 50000

Load cycles per wheel type per traffic category 

Wheeltype Axle load Traffic category

1 2 3 4
20% 50% 50% 80%

A 70 400000 250000 62500 40000

B 130 400000 250000 62500 40000

5% 5% 5% 5%

A 70 100000 25000 6250 2500

B 120 100000 25000 6250 2500

B 120 100000 25000 6250 2500

40% 20% 20% 5%

A 70 800000 100000 25000 2500

B 150 800000 100000 25000 2500

C 90 800000 100000 25000 2500

C 90 800000 100000 25000 2500

C 90 800000 100000 25000 2500

25% 15% 15% 5%

A 70 500000 75000 18750 2500

B 140 500000 75000 18750 2500

C 90 500000 75000 18750 2500

C 90 500000 75000 18750 2500

10% 10% 10% 5%

A 70 200000 50000 12500 2500

B 130 200000 50000 12500 2500

C 90 200000 50000 12500 2500

C 80 200000 50000 12500 2500

C 80 200000 50000 12500 2500

Table D.2: Load cycles per wheel (ni)

Wheel type Axle load [kN] Total load cycles Center position +/- 100 mm +/- 200 mm

50% 18% 7%

A 70 500000 250000 90000 35000

120 50000 25000 9000 3500

130 300000 150000 54000 21000

140 75000 37500 13500 5250

150 100000 50000 18000 7000

80 100000 50000 18000 7000

90 500000 250000 90000 35000

B

C
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98 D. Load cycles and damage value

Table D.3: Stress value for the detail category and value at the cut-of limit and CAFL for detail category is 125
MPa and partial safety factor is 1.15

Detail category is 125 Mpa

Load cycles Stress value Ym 1.15

2.0E+06 ds_C = 108.7 N/mm2

5.0E+06 ds_D = 80.1 N/mm2 m 3

1.0E+08 ds_L = 44.0 N/mm2 m 5

Table D.4: Calculation of damage value. Blue area’s is output from the FE model. Other values are
automatically calculated in excel.

s_1.0t s_0.4t s_hotspot N D_i,tc2

A - 70 kN -24.8 -39.7 49.7 5.44E+07 0.0046

B - 120 kN -21.1 -33.9 42.5 1.00E+99 0.0000

B - 130 kN -23.1 -37 46.3 7.73E+07 0.0019

B - 140 kN -24.3 -39 48.8 5.92E+07 0.0006

B - 150 kN -26.3 -42.1 52.7 4.06E+07 0.0012

C - 80 kN -24.3 -40.1 50.7 4.92E+07 0.0010

C - 90 kN -26.9 -44.4 56.1 2.96E+07 0.0085

Design life 

1 0.02

50 0.89

100 1.79

Damage value is determined for all 5 transverse locations and total damage value is the sum of all locations.



E
Transverse wheel location

Table E.1: Damage value per transverse load position for a=257mm and t=18mm. γM f = 1.15

a=257mm - t=18m
Location from center [mm]

-200 -100 0 100 200
A - 70kN 0 0 0.25 0 0

B - 120 kN 0 0 0 0 0
B - 130 kN 0 0 0.09 0 0
B - 140 kN 0 0 0.03 0 0
B - 150 kN 0 0 0.06 0 0
C - 80 kN 0 0 0.04 0 0
C - 90 kN 0 0.05 0.039 0 0

Total per position 0 0.05 0.88 0 0

Total damage: 0.93

Percentage of total 0 5 95 0 0

Table E.2: Damage value per transverse load position for a=300mm and t=20mm. γM f = 1.15

a=300mm - t=20m
Location from center [mm]

-200 -100 0 100 200
A - 70kN 0 0 0.23 0 0

B - 120 kN 0 0 0 0 0
B - 130 kN 0 0 0.10 0 0
B - 140 kN 0 0 0.03 0 0
B - 150 kN 0 0.01 0.06 0 0
C - 80 kN 0 0 0.05 0 0
C - 90 kN 0 0.05 0.42 0 0

Total per position 0 0.06 0.89 0 0

Total damage: 0.96

Percentage of total 0 6 93 0 0
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100 E. Transverse wheel location

Table E.3: Damage value per transverse load position for a=360mm and t=22mm. γM f = 1.15

a=360mm - t=22m
Location from center [mm]

-200 -100 0 100 200
A - 70kN 0 0 0.23 0 0

B - 120 kN 0 0 0 0 0
B - 130 kN 0 0 0.09 0 0
B - 140 kN 0 0 0.03 0 0
B - 150 kN 0 0.02 0.07 0 0
C - 80 kN 0 0 0.06 0 0
C - 90 kN 0 0.08 0.55 0 0

Total per position 0 0.11 1.03 0 0

Total damage: 1.14

Percentage of total 0 10 90 0 0

Table E.4: Damage value per transverse load position for a=400mm and t=24mm. γM f = 1.15

a=400mm - t=24m
Location from center [mm]

-200 -100 0 100 200
A - 70kN 0 0 0 0 0

B - 120 kN 0 0 0 0 0
B - 130 kN 0 0 0 0 0
B - 140 kN 0 0 0 0 0
B - 150 kN 0 0 0.02 0 0
C - 80 kN 0 0.01 0.05 0.01 0
C - 90 kN 0 0 0.04 0 0

Total per position 0 0.06 0.31 0 0

Total damage: 0.49

Percentage of total 0 14 83 3 0



F
Load input for stress range option 3

Load positions for truck 3 to determine the stress range for option 3. Stress range is determined in crossbeam
2 (cb2).

Figure F.1: FLM4 truck 3

Figure F.2: Position 1
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102 F. Load input for stress range option 3

Figure F.3: Position 2

Figure F.4: Position 3

Figure F.5: Position 4
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Figure F.6: Position 5

Figure F.7: Position 6

Figure F.8: Position 7



104 F. Load input for stress range option 3

Figure F.9: Position 8

Figure F.10: Position 9
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