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Summary

The finite element method is widely used in modelling shell structures. However, the finite element method
does not solve the shell differential equations because shell finite elements are derived from solid elements.
Currently, there is not software available for solving the shell differential equations. For plates, a novel finite
difference method has been recently explored by the author (Li, 2020). This Python algorithm does not solve
the fourth-order plate differential equation directly. Instead, it solves eleven first-order differential equations
simultaneously. The advantage of the method is in the boundary conditions; no edge or corner molecules are
involved. Can this plate algorithm can be extended to shell structures? The general shell differential equations
(Sanders-Koiter equations) have never been solved by the finite difference method. If possible, this would
provide an independent way of checking shell finite element results.

The objective of this project was to develop and test a finite difference algorithm called shell code that can
solve the 21 Sanders-Koiter equations. The idea was to use first-order finite-difference approximation only
because this gives a simple discretization and modern computers may be able to handle the large number of
equations.

To this end, a 1200-line Python program has been built. In the process many versions of shell code were
considered, including

1) Two programming languages (Python and R)

2) Three interpolations for approximating gradients (three-point and five-point with two end slopes)

3) Determined and over-determined systems of equations (square and rectangular matrices)

4) Four solvers for the systems of equations

Important constraints are required memory and computation time and they were recorded for each test. Five
shell models with various geometries, loads, and boundary conditions have been analyzed. The results of these
model tests (displacement, bending moment, and shear force) were compared to finite element results.
Discussions on the comparisons have shown that almost all versions produced incorrect results and the most
important factor for affecting results is the solving method.

The version that works well has the following features; five-point interpolation with zero end slope, rectangular
matrix, solver Im.fit.sparse (R). Approximately 80% of the shell code results match the finite element results
with a deviation less than 5% (see Test BLM1-5). The deviation may be removed in the near future by a finer
grid on a powerful computer or by applying an advanced solver. The main conclusion is that it is not only
theoretically possible but also practically possible to solve the Sanders-Koiter equations by the finite difference
method.
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1. Introduction

1.1 Problem Statement

The finite element method is the industry standard for analysing shell structures due to its generality and
sophistication. In popular commercial finite element software, the most used shell element type has been
derived from a solid, therefore, the shell differential equations (for example, Sanders-Koiter equations) have
not been used. In fact, currently, there is not a method available for solving the shell differential equations.
Solutions to those equations could be used to perform independent checks of finite element results. It can be
expected that the finite difference results will be the same as the finite element results, however, there might
be theoretically interesting differences, for example in edge stresses. This can provide insight into both the
Sanders-Kaoiter equations and the applied finite elements. Although the finite element method is a mature
method with a long history of application, it is always good to try and falsify theories. For this purpose, a
direct way to solve the shell differential equations is required.

The simplest way to solve differential equations is the finite difference method. This method has a long history
of application. For example, for plate problems the finite difference method was applied long before the finite
element method (Figure 1). The finite difference method was already used in hand calculations before the
development of electronic computers (Thomée, 2001). However, its application to shell theory was always
considered impractical. In shell theory many higher-order differentiations occur and the grid is curvilinear,
which means that the discretized form of those equations is large and different for every grid point.
Nonetheless, there must be a practical, even simple manner to apply the finite difference method to shell
theory.
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Figure 1: Result plots of uniformly loaded two-way slab 30*30 nodes (Li, 2020)

One simple finite difference method is applied in a Python algorithm, called plate code, that has been recently
developed by the author (Li, 2020). The method is simple because only first-order derivatives are used instead
of the common forth-order derivatives. The advantage is that few simple molecules need to be implemented
for the various boundary conditions. The disadvantage is that the matrix constructed is very large, which gives
memory capacity problems and is time-consuming. This method was shown to work well, however, there was
still an unsolved challenge: The number of discretized equations exceeds the number of unknown, which leads
to a rectangular matrix, which is solved in a least square approximation. The least square approximation may
cut off peaks in the solution, for example it may cut of moment peaks or membrane force peaks. It should be
possible to remove some of the equations and make the matrix square without it becoming singular.

1.2 Objective

Based on the previously explored method of solving plates, the objective of this research is 1) to develop a

practical finite difference algorithm for solving the Sanders-Koiter equations for any shell model for available

orthogonal parameterization and 2) understand how the algorithm results can be affected by various factors.
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This shell code should have the following key features:

1. Use the finite difference method to approximate the Sanders-Koiter equations

2. Results (extreme values, contour plots) agree with finite element solutions or analytical solutions

3. Universally applicable to shell models with different geometries, loads, and boundary conditions

4. Practical computation time and memory usage

5. Square matrix to avoid computing over-determined systems

6. Easy to modify in case of future changes in the Sanders-Koiter equations or the boundary conditions

1.3 Approach

To develop an algorithm with the above key features, the development process of this code is mainly divided
into the following steps. These steps describe the internal logic of the shell code and the work method
experienced by the author. The methodology and encountered difficulties mentioned below are summarized
from daily testing and coding the shell code program. At later stage of shell code development, many plots
and much data were obtained. To understand how the algorithm results can be affected by various factors, a
number of tests were organized and their results were compared. Those results and comparisons were evidence
of the feasibility of this algorithm. Based on those results, errors in the code were spotted and corrected.
Meanwhile, new methods and new concepts were tried to improve the performance of the algorithm.

a) Build the code

The first step to develop this new shell code is to extrapolate the verified method from the plate code (Li,
2020). Many ideas to develop this algorithm have been verified in the previous plate code including ideas on
how to add model equations, define boundary conditions, and correctly approximate differentiation with the
finite difference method. It is worth mentioning that the fundamental concept of solving Sanders-Koiter
equations by finite difference method is from an algorithm developed by Dr. Hoogenboom which was not
successful yet at early development. The number of implemented equations in shell code is nearly twice that
used in plate code and they have more components involved. In shell code, the model body requires 21
Sanders-Kaoiter (S-K) equations (plates 11) and every edge requires 4 boundary equations (plates 2). As the
most fundamental part of shell code, correctly adding equations for every node on the grid of the model is the
first challenge to be solved. Meanwhile, if a square matrix is required for testing, the specific method of
replacing model equations should be studied. After finishing constructing the matrix, a proper type of solver
should be selected to solve the system which may directly determine the quality of results. During this phase,
most time was spend on the mathematical interpretation of finite difference method and the S-K equations and
how to implement them in Python coding. The challenging part was on how to use programming to realize
the mathematical concepts and structural mechanics concepts.

b) Test the code

In order to prove the general universality of shell code, this new algorithm should be able to solve different
shell model problems with various material properties, geometry shapes, boundary conditions, and load cases.
For this reason, a number of tests was set up for testing shell code with different shell model problems to
prove the shell code can correctly convert models into matrix systems and solve them. Meanwhile, tests were
also organized to investigate other potential factors which might affect the code results like the number of
nodes, type of solvers, and type of matrices. If the shell code could work properly, plots of displacement,
shear force, bending moment, and other results were generated and collected after each test. Other information
like the setup of tests, spent time, and memory usage of the shell code were also recorded. A large group of
extreme values from every generated plot was collected and analyzed.

c) Validate the results

The above test results were used to prove three properties of code results: accuracy, reliability, and efficiency.
To prove accuracy, test results were used to compare with external finite element results. Those finite element
results were obtained from a popular commercial finite element software (SCIA Engineer) where the same
shell models were analysed. The difference between extreme values of displacement, shear force, bending
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moment results from shell code and finite element software were calculated. They are listed and categorized
in terms of the type of model, the number of nodes, type of matrix, and types of solver in order to show the
accuracy of shell code results and extent of participation of each factor in affecting the accuracy. To prove the
reliability of results, the collected extreme values of displacement, shear force and bending moment were plot
and reviewed for any possible spike in the trend toward an infinite value (singularity). If such a case occurred,
this extreme value should be considered as a computational error and be excluded from comparing with finite
element results. To prove efficiency, spent time and memory usage for each running test were collected and
listed in terms of the type of model, the number of nodes, type of matrix, and types of the solver. By comparing
them with each other, factors that affect the efficiency of code were identified. Spent time and memory usage
were also compared with those of a popular commercial finite element software to show whether the shell
code is efficient for practical use.

d) Improve the code

After obtaining results from the initial version of the workable shell code, the performance of shell code,
including accuracy, reliability, and efficiency mentioned above, were improved if they were not in an
acceptable range. Clearly, this is a common issue at the initial stage of code development. The first step is to
check with the basic setting for shell model parameters or the adding process of S-K equations for model body
and boundary condition to ensure that the purposed model is correctly described. By iterating this step for
different tests which have various setting and requirement, those basic error related to describing model were
revised. Then the next step is to select a proper solver for solving the matrix system. The selection of the
solver is based on the properties and formation process of input matrices. If a square matrix is not required,
then the constructed matrices will be rectangular matrices, an overdetermined linear sparse system. If the
square matrix is needed, this square matrix is still a linear sparse system, but possibly a singular matrix. Further
research needs to be done to understand the characteristics of different solvers in order to select a suitable
solver for each test. The third step is to optimize the application of the S-K equations by applying additional
definitions for parts of the model. It is possible that the application of the S-K equations might be limited by
the mathematic property of the finite difference method or other factors. Therefore, additional equations were
used as theoretic reinforcement for correcting a potential error in edge or corner behaviour. For example, the
free corners or edges of models require additional equations for defining boundary conditions. Additionally,
new finite difference methods were tried since the performance of shell code is directly related to the finite
difference method applied. At the early stages of code development, a two-point difference approximation
was used to replace first derivative in Sanders-Koiter equations. To investigate the effect of computing
truncation errors arising in this process, a five-point difference approximation was also tested and its results
were compared to that of the previous method.

e) Compare the results

After going through the above development process, the shell code produced massive data and plots. In order
to display them in an orderly manner, the main results are categized into four test groups: rectangular matrix
tests, square matrix tests, solver tests, and five-point difference approximation tests. For each group of tests,
five shell models with various material properties, geometry shapes, boundary conditions, and load cases are
used. Meanwhile, at least two levels of the number of nodes were used for each model. In the rectangular
matrix tests, the matrix type is rectangular matrix and the selected solver is Ismr which can solve a linear
model by least square estimation (Fong and Saunders, 2011). In square matrix tests, there are three types of
square matrices generated by different methods and the selected solver was the same as that of rectangular
matrix tests. In solver tests, rectangular matrix and square matrix were both used and two types of the solver
(pinv, Im.fit.sparse) were used. The Im.fit sparse solver can solve the system as a sparse linear fitting problem.
The pinv solver aims to provide approximated inversion of matrices by SVD decomposition (Davis,
Rajamanickam and Sid-Lakhdar, 2016). In the above tests, only two-point difference approximation was used.
In five-point difference approximation tests, two types of five-point approximation and two types of solvers
(Ismr, Im.fit.sparse) were used. To show those results more properly, the first step is to calculate the deviation
of the obtained extreme values by using finite element results as the reference values. The following
comparisons were made: between shell code results and finite element results, between rectangular matrix test
and square matrix test results, between pinv solver and Im.fit.sparse solver results, and between five-point and
two-point difference approximation results. By reviewing those comparisons, it was found how those factors
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could affect shell code results. Additionally, the calculated deviation of shell code results was also categized
by the type of model, to investigate how the model setting parameters could affect shell code results.

1.4 Research workflow

As shown in the above section, the shell code development can be divided into five sections: build the code,
test the code, validate the results, improve the code, and compare the results. In the workflow, those sections
are repeated a number of times until the shell code satisfies the purposed key features. The below flow chart
shows how the work has been done for the shell code development.
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2. Literature review

This section aims to provide more information on the theoretical knowledge applied to this algorithm. The
below content includes a short review of general plate and shell theories and a short description of the
development of the S-K equations. Those equations are bounding rules for the behavior of the shell model
which can provide an argument when discussing abnormality among the generated shell code results. There
is also a short review on the finite difference method and its application. Those equations are the mathematical
tools used to approximate first-order derivatives that appear in the S-K equations. The inherited computational
error of the finite difference method could be important for shell code result analysis. The theoretical
knowledge on types of matrix systems is also included. Some explanation on major methods of solving sparse
overdetermined linear system through programming language is also included. That information can be used
to determine the proper solver for different types of matrices and predict the solver capacity in order to select
the best solver.

2.1A short review on the development of plate and shell theories

The term shell refers to a physical body bounded by two curved surfaces whose distance is smaller than other
dimensions. The distance between the surfaces is called the thickness of the shell (t). The imaginative surface
that divide the thickness into equal halves is called middle surface. Such geometry structure makes the shell
structure has excellent performance in terms of strength / weight ratio and bearing efficiency.

The study on shell started can be dated back to the free vibration analysis of plate problems performed by
Euler (1766). Plate can be viewed as the shell without the curvature brought by curved surfaces. Then J.
Bernoulli (1789) presented a plate model in an attempt to theoretically explain those results. In his model,
plates were described as the combination of mutually perpendicular Euler—Bernoulli beams at right angles.
Furthermore, French mathematician Germain (1826) developed a plate differential equation which
mathematically describe the deformation of plate. The missing term for warping behaviour was added later
by her reviewer Lagrange (1828). The completed form of this equation is the well-known Germain—Lagrange
equation:
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where D is the flexural rigidity of the plate, W is the deflection of the plate, h is the plate’s thickness, and

is the uniform distributed load.

This equation as the governing differential equation for deflections can also be formulated based on general
equations of theory of elasticity. Cauchy (1828) and Poisson (1828) were the first to do so. The theory of
bending of plates was improved by Navier (1823), who considered flexural rigidity of the plate D in the above
equation as a function of the plate thickness. Later, Kirchhoff published an important thesis on the theory of
thin plates where he introduced physical meaning into the theory of plates by the famous “Kirchhoff’s
hypo