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Abstract

This thesis concerns the computational aspects of non-linear finite element analysis (NLFEA)

for shear critical reinforced concrete beams. This implies, modeling the behavior of reinforced

concrete beams under shear loading up to failure using the finite element method. The objective

was to investigate a number of aspects of NLFEA, such as: material parameters, constitutive

model parameters, spatial discretization aspects, and incremental-iterative procedure aspects.

Furthermore, an objective was to investigate the possibilities and limitations of smeared and

discrete crack analysis. To this end, two benchmark studies were performed on two shear critical

beams.

Both benchmarks beams were obtained from a recent workshop on the assessment of the shear

strength of concrete structures [26]. The beams are identified as benchmark beam A and bench-

mark beam B. Benchmark A is a normal size and strength beam loaded by a 3-point bending

test. The beam is only reinforced with longitudinal reinforcement at the underside and in the

web of the beam. The second benchmark, beam B, is a normal strength beam loaded by a

4-point bending test. The cross-section of the beam can be considered slender, with only one

layer of reinforcement at the underside of the beam. A characteristic of both beams is that they

do not contain shear reinforcement, this proved to be of significant importance for the structural

response.

It was concluded that the very nature of the shear critical beams leads to a more problematic

non-linear analysis than for example, a bending beam. The main structural characteristics of

shear critical beams were found to be: brittle behavior, bi-axial stress states, and rotations of

principal directions upon crack formation. These structural responses had a strong effect on

the convergence characteristics of the incremental-iterative procedure. Only through extensive

measures could a numerical equilibrium be obtained in every instance. These measure included:

using a displacement controlled procedure, using small increment-size, allowing for a large num-

ber of iterations, using line searches, and using a secant stiffness based iteration method.

After a variational study of the constitutive models and material parameters, it was found

that the tensile strength has a significant influence on the structural behavior of the beam,

the failure mode and the ultimate shear load. It was also concluded that, next to the tensile

behavior, it is necessary to include compressive softening in the constitutive model of concrete.

Including compressive softening is important for the accurate representation of the formation

and degradation of the compression struts.



vi

Due to the bi-axial stress fields and the reinforcement action, the principal stress and strain

directions showed rotation during the entire loading process. This rotation of principal directions

proved to be of importance for the selected crack models. The crack models used in this thesis

were based on the principles of the so-called smeared crack formulations. In total three crack

models were investigated, namely: fixed, fixed multidirectional and rotating crack models. The

followings conclusions were established after analyzing benchmark A. The fixed crack model

in combination with a constant shear retention factor proved to lead to very poor structural

behavior. This was mainly due to excessive stress-locking through shear stresses on the crack

faces. A fixed crack model based on variable shear retention, displayed slightly less stress-locking

than compared to a constant shear retention, but not to such a degree that it constituted

an accurate representation of the behavior of the beam. The multidirectional proved to be

numerically unstable, and a structural response could not be obtained. The rotating crack

model exhibited good structural responses and provided a reasonable approximations of the

experimental results regarding the failure modes and ultimate failure loads. The predicted crack

patterns of the rotating crack model were however substandard. And although the rotating crack

model was not affected by stress-locking, it did prove to lead to the over-rotation of cracks in

which the consequences were un-realistic strain-localizations.

Benchmark B could not be properly analyzed with a smeared crack formulation, therefore, a

discrete crack approach was applied. The structural results from the discrete crack model were

in good agreement with the experimental results, in both the failure mode as well as the failure

load. The discrete crack analysis also displayed the formation of a very large bending crack

constituting a severe snap-through in the load-displacement behavior. This crack formation

corroborated the conclusions why the smeared crack models could not lead to correct structural

response. The discrete crack analysis was extended with two different formulations for the

modeling of aggregate interlock. It was found that, for this particular benchmark, that the

aggregate interlock models had little influence on the overall behavior of the beam.

In relation to the spatial discretization, it was found that for benchmark beam A, quadrilat-

eral elements perform optimally when the aspect ratio is close to 1.0 [-]. The crack formation

and propagation with these types of elements, were in good agreement with the experimental

results. However, from analyzing different mesh dimensions it was concluded that a significant

dimensional bias exist, leading to large differences (' 20%) in ultimate shear load. Next to the

standard rectangular quadrilateral mesh, it was found that a slanted quadrilateral mesh dis-

played poor structural results in crack formation, crack propagation as well as failure modes and

failure loads. The use of triangular elements for the modeling of concrete fracture displayed a

distinct directional bias, leading to unrealistic structural results. As a final aspect, the structural

results of an entire beam model was investigated and compared versus the structural results of

the symmetric model. It was found that the load-displacement behavior was affected on all

occasions.
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1. Introduction

1.1 Background

A number of uncertainties have recently risen regarding the shear capacity of concrete structures

that were built during the period between the 1960’s and the 1980’s. These uncertainties arose

from recent investigations into the (remaining) service-life of these concrete structures [18]. The

main focus of the investigations was placed upon on bridge structures and similar types of

structures such as viaducts and tunnels.

The reasons for these uncertainties are the fact that: building codes, traffic loads and traffic

concentrations have undergone considerable changes since the period of time in which these

structures were built. For example, there have been significant changes in the understanding

of the materials and the mechanics involved with these structures. Also, traffic concentration

increased, load per vehicle increased, and safety standards have risen to a stricter level. All of

these factors combined have lead to questions whether these concrete structures have sufficient

or additional load-carrying capacity.

To provide an answer for these question, a need was expressed to assess structures on their

shear capacity using modern numerical methods such as the non-linear finite element analysis

(NLFEA). In using numerical methods, the aim is to accurately predict the shear capacity, and

assess whether the current safety standards are met and whether structures have additional

load-carrying capacity.

At the moment, the use of NLFEA is becoming more and more widespread within the everyday

practice of the structural engineer. This increase in use is mainly related to the previously stated

circumstances regarding the strength and structural integrity of the damaged or deteriorated

concrete structures. Despite this increasing use and accompanying sophistication of non-linear

methods and computational abilities, the reliability of the results are very dependent on the

expertise of the user and the selected models. This was particulary visible in a recent workshop

on the shear strength concrete structures subjected to shear loading [26]. In this workshop two

different NLFEA were compared with several analytical methods to provide an estimate for the

ultimate shear load of several shear critical RC beams. Although both finite element analysis

considered the same RC beams, the results showed significant differences between the analysis.

The predicted ultimate shear loads ranged from 30 to 60% in comparison to the experimentally

obtained ultimate shear load values.

One of the main reasons why the results of NLFEA lack in consistency, is a consequence of the

fact that, to accurately predict the cracking of concrete, extensive models are necessary to ensure

proper structural results. Over the years, a number of approaches were developed for non-linear

modeling of concrete. Among the available options are: non-linear elasticity, plasticity, damage

continuum, and smeared crack formulations. Most of these approaches are suited for certain

1
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structures or loading situations. But there is no approach that performs well over the entire

range of structural applications [23]. Selecting the correct constitutive and crack model for the

given situation is therefore of critical importance.

Not only the lack of one single approach has hampered the analysis of shear critical RC beams,

but also the very nature of shear beams has been the cause for large difficulties. This is because,

unlike bending (mode I) failure, stress-states in shear critical beams tend to be particulary bi-

axial. The consequence of this being that intricate algorithms are necessary to properly portray

these stress-states. Furthermore, the crack formations in shear critical beams are generally

appear sudden which leads to brittle load-displacement behavior. Next to the brittle behavior,

a number of complex load-carrying mechanisms occur in the cracked concrete, such as aggregate

interlock and dowel action.

The consequence of these sudden crack formations and brittle behavior, is that a number of

problems are encountered with regards to obtaining an equilibrium situation and the accu-

rateness of this equilibrium situation. Because non-linear finite element analysis requires an

incremental-iterative procedure to find a solution, the calculation process becomes considerably

more complex. One of the main reason for this is the fact that the iterative procedure are based

on stiffness formulation that rely on a reasonable prediction of the structure stiffness in the fol-

lowing loading increment. When this stiffness is strongly affected, for example due to large and

sudden crack formations, or when multiple cracks localize in the same increment, convergence

is difficult to obtain. Therefore, finding a solution within the boundaries of the error margin,

requires a detailed strategy to assure the correctness of the solution.

1.2 Aim of the study

As was stated in the introduction, large variations are present in the results of finite element

analysis of shear critical RC beams. These variations are related to: the accurateness of the

obtained solutions, the identification of critical constitutive model parameters, the suitableness of

the employed crack models, and the dependency of structural results on the spatial discretization.

To obtain insight into these factors, two benchmark studies of different shear critical beams will

be employed to systematically map out the mentioned aspects. To clarify the assumptions that

are inherent to the title and the aim of this study, we consider the following definitions:

• A shear critical beams is a beam that fails due to a shear failure mechanism, these mech-

anisms have described in section 3.2.

• With the definition non-linear finite element analysis only physically non-linear material

behavior is implied.

• The RC beams in question will be proportionally loaded to their moments of failure.
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1.3 Outline of the thesis

The thesis will start with a short introduction of the general behavior of concrete. Plain and

reinforced concrete under axial and biaxial loading are discussed, and the principles of tension

softening and tension stiffening. Following the general behavior of concrete an overview will

be given, regarding the characteristics of concrete beams under shear loading. This includes:

shear failure mechanisms, and shear stress transfer mechanisms. Next to the characteristics of

the behavior of RC beams, an overview will be given on the numerical crack models that are

applied in this thesis. There will be a main subdivision between discrete and smeared crack

formulations. Discrete modeling will include the treatment of the constitutive relations for the

use of line interfaces and the application of dilatancy models. The section on smeared crack

modeling will treat models based on the total strain and decomposed strain formulations as

well as the fixed and rotating crack models. As a final aspect, an overview will be given on the

principles behind the incremental-iterative analysis. This includes the applied iterative methods,

convergence criteria, load versus displacement control and the available acceleration techniques

to improve convergence.

These preliminary chapters will form the basis for the first benchmark study which has been

identified as beam A. Following pre-processing aspects this beam will be scrutinized on a number

of different aspects, namely: the incremental-iterative procedure and its solution strategies,

constitutive model parameters, crack model evaluation and the aspects of spatial discretization.

The second benchmark study has been identified as beam B. The analysis of this beam consist

of a so-called discrete crack analysis in which the crack have been implemented into the finite

element model at a predefined location. The discrete crack analysis will consider different shear-

formulations, and modeling aspects. The final chapter of this thesis contains the conclusions and

recommendations regarding the findings of the benchmark studies.

The analysis in this thesis will be performed using the DIANA finite element code version 9.2.





2. Characteristics of concrete behavior

This chapter will shortly discuss a number of principles relating to the structural behavior of

concrete and reinforced concrete. These principles include uniaxial and biaxial behavior and

tension softening and stiffening phenomena.

2.1 Uniaxial behavior of plain concrete

When concrete is loaded in uniaxial tension, the starting load-path is governed by the elastic

stiffness Ec. At approximately 60 to 80% of the tensile strength ft, micro-cracks begin to form

reasonably uniform through-out the specimen, resulting in a reduced stiffness. Due to the quasi-

brittle nature of concrete, the tensile stresses do not reduce to zero upon reaching the ultimate

tensile load. After the peak, the damage in the concrete starts to localize into a fracture zone at

the weakest section while the remaining part of the specimen undergoes unloading. This behavior

is known as strain-localization. Upon further loading the tensile stress reduces gradually with

increasing deformation until a complete separation occurs. The negative branch of the stress-

strain curve is known as the tension softening branch. A typical stress-strain curve of this

behavior is depicted in figure 2.1a.

Concrete in uniaxial compression shows similar behavior as uniaxial tension. The response of

concrete is linear-elastic up to about 30 to 40% of the peak stress fc. Beyond this point, concrete

behaves non-linear up to the peak stress with a decreasing stiffness due to micro cracking. When

the maximum compressive strength has been reached, the formation of several macro cracks will

occur, and the element will exhibit a growing deflection and a reduction in load bearing capacity.

This will then lead to the total failure of the element under compression. The reduction of load

bearing capacity after the formation of macro cracks leads to a descending branch of the stress-

strain curve, which is characteristic for the softening behavior of concrete. Figure 2.1b shows a

typical uniaxial compression stress-strain curve.

2.2 Biaxial behavior of plain concrete

Concrete subjected to biaxial loading exhibits a different response than in comparison with

uniaxial loading. The biaxial stress states can be divided into three loading combinations,

namely: tension-tension, tension-compression, and compression-compression. When a specimen

is loaded in tension-tension the behavior is similar to uniaxial loading in both directions and can

be modeled as such. For loading in tension-compression, the behavior of reinforced concrete is

usually modified after cracking. The main reason for this is that the compressive strength of

the concrete is affected by the stress-state in the tensile direction. The maximum compressive

stress and strain increase with lateral compressive stress. In the compression-tension state,

the compressive strength decreases almost linearly as the applied tensile stress increases. The
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Figure 2.1: Uniaxial behavior of plain concrete

concrete strength in the compression-compression state, is higher by approximately 20% than

compared to uniaxial compression. For biaxial tension, the strength is almost independent of

the stress ratio.

2.3 Reinforced concrete under axial loading

When reinforced concrete is loaded in tension the linear-elastic behavior is similar as to plain

concrete. When the tensile strength is approached, the existing micro cracks in the reinforced

concrete will cause the formation of macro cracks. But due to the bond between the concrete

and the reinforcement, a gradual redistribution of internal forces occurs. The redistribution

of internal forces leads to a stiffer response than in comparison to only the stiffness of the

reinforcement. This effect of increasing stiffness is called tension stiffening. An typical stress-

strain curve of this phenomenon has been depicted in figure 2.2.

ε

σ σ

σ

ft

σ σ

Only reinforcement

Reinforced element

Tension stiffening

Figure 2.2: Behavior of concrete under uniaxial tensile loading



3. RC beams subjected to shear loading

This chapter will discuss the internal force distribution in shear loaded beams. Furthermore, the

shear failure mechanisms as well as the shear transfer mechanisms will be discussed.

3.1 Force distribution

In general, RC beams are reinforced with two types of reinforcement, namely longitudinal bars

and transverse stirrups. To illustrate the internal force transmission, the RC beam can be

represented as a strut and tie model, as is displayed in figure 3.1. The strut and tie analogy

represents the concrete beam as a truss with compression diagonals. In this model, the upper

chord consist of concrete loaded in compression, and the lower chord consist of reinforcement

loaded in tension. The forces between the upper and lower chord are transmitted via compression

diagonals and vertical tension elements. The diagonals consist of concrete loaded in compression,

while the stirrups act as the vertical tension elements.

compression

fc

fs

F

F

tension

Figure 3.1: Strut and tie model for a concrete beam reinforced with longitudinal and transversal
reinforcement

Using the strut and tie analogy, we can derive the conditions for the occurrence of the different

failure mechanisms. In a recent workshop [26], four different global shear failure mechanisms

were identified which can occur in ultimate limit state analysis. The mechanisms are depicted in

figure 3.2 and will be treated in the following sections. There are also a number of local failure

mechanisms possible, but these will not be considered in this thesis.

3.2 Shear failure mechanisms

3.2.1 Flexural shear failure

Flexural shear failure is a mechanisms in which flexure induced cracks grow at an angle into

the web. To illustrate this type of fracture, we consider a beam that is loaded by a four point

bending test. Between the support and the point load, a shear force and a moment is present.

The moment decreases linearly over the distance from the point load to the support. If a
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(a) Flexural shear failure
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(b) Shear tension failure
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Figure 3.2: Failure mechanisms of reinforced concrete under shear loading

uniform longitudinal reinforcement is applied, which is considered standard, the beam has an

increasing bending moment capacity near the support due to the diminished bending moment.

Therefore instead of cracks perpendicular to the longitudinal reinforcement, a crack rotation will

occur. Increasing the load leads to larger crack and eventually causes the beam to fail due to this

mechanisms. In general flexural shear is caused by a standard load situation, with a normal ratio

between the flexural and shear stresses. The use of transverse reinforcement such as stirrups will

prevent the propagation of cracks into the web.

3.2.2 Shear Tension failure

Shear tension is a mechanisms in which a diagonal crack occurs due to the tension component of

the principal stress. When we consider the strut and tie analogy, this failure can be considered

as failure of the compression diagonal due to a biaxial tension-compression state. The main

crack occurs at a varying angle of approximately 30◦ to 45◦ to the longitudinal axis, and is

characterized by a sudden (brittle) development into the web of the beam. This means that this

type of shear fracture can be considered to be a failure type without warning. In general this

type of failure occurs for beam structures that have a high level of shear stress and a relative

low level of flexural stress. For example, beam regions near supports are sensitive to this type

of fracture.
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3.2.3 Web crushing

Web crushing occurs when a structure has a high shear reinforcement ratio and a small amount

of web surface. This implies that if a beam is reinforced with a large amount of stirrups, the

compression diagonal may fail due to crushing of the concrete, before the stirrups have the

possibility of reaching their yield strength. In principle this mechanisms is the equivalent of

failure of the compression zone in heavily reinforced structures loaded in flexure. There are no

typical loading situations where only this type of failure occurs. However, this failure does tend

to occurs in I-beams with large flanges and small web dimensions.

3.2.4 Yielding of the shear reinforcement

Yielding of the shear reinforcement is a mechanisms that is to be expected if the structural design

of the beam is correct. In this case the stirrups will yield before failure occurs. This failure will

be accompanied by a considerable deformation, implying that the failure mechanisms provides

warning before reaching the moment of failure. This type of failure has a smeared crack pattern,

with a small number of dominating cracks. There are no typical load situation in which only

this type of failure occurs. This type of mechanisms is dependent on the type of structure and

how it has been designed.

3.3 Shear transfer in cracked concrete

The transfer of shear force in cracked reinforced concrete is characterized by a number complex

phenomena [16], consisting of: aggregate interlock, dowel action, axial steel stress, and residual

tensile stresses across the crack. These mechanisms are strongly dependent on the state of stress,

the opening of the crack, and the restraint conditions.

The shear transfer capacity is also strongly dependent on the interaction between the mentioned

transfer mechanisms. When shear stresses arise across a crack surface, a displacement (slip)

tangential to the crack face occurs and the crack surfaces tend to separate. The reinforcing bars

provide resistance against the separation of this crack face via the dowel mechanism and the

axial steel stress. These mechanisms cause a strain in the steel and a decreased bond action,

this than permits a crack to increase in width. The amount of reinforcement is therefore of large

influence in the constrainment of the crack face. The shear transfer mechanisms described are

depicted in figure 3.3 and are elaborated on in the following sections.

3.3.1 Aggregate interlock

In normal strength concrete, the strength of the aggregate material will exceed the strength of the

cement matrix material. Therefore cracking in concrete will commonly occur trough the matrix

and the bond zone between the matrix and the aggregate, as is depicted in figure 3.3a. Because

the protruding aggregate particles on the crack face are larger than the crack width, the crack

plane is considered to be rough. Therefore the crack plane provides resistance against slip, and is
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(a) Aggregate interlock (b) Dowel action (c) Axial steel stress

Figure 3.3: Shear transfer Mechanisms in cracked concrete

capable of transmitting shear force. This principle is called aggregate interlock. The magnitude

of the aggregate interlock mechanism is dependent on the width of the crack. A larger crack

width means a reduction of aggregate interlock because of the decrease of contact area between

the aggregate particles. Another parameter that influences the aggregate interlock mechanism is

the aggregate size itself, smaller particles will provide a smoother crack plane and therefore less

friction. When considering high strength concrete, the aggregate interlock contribution becomes

even less, due to smoother crack faces. This is caused by the fact that the crack will not only

propagate through the cement matrix, but also through the aggregate particles.

3.3.2 Dowel action

A dowel is a reinforcement bar that is loaded by a transverse force. The mechanism of dowel

action is based upon the behavior of the bar and the surrounding concrete. The dowel action

consist of two components, namely: bending action, and shear action of the reinforcing bar. The

contribution of dowel action to the shear resistance is a function of the amount of concrete cover

of the longitudinal bars and the degree to which the vertical displacements of those bars at the

inclined crack are restrained by transverse reinforcement.

3.3.3 Axial steel stress

Reinforcing bars generally cross cracks at different angles, this is particularly the case for trans-

verse shear reinforcement. The component of the steel stress normal to the crack plane provides

a contribution to the transfer of stresses across a crack. The magnitude of this force is strongly

dependent on the amount of reinforcement and the bond properties. In members with shear

reinforcement, a large portion of the shear is carried by the shear reinforcement after diagonal

cracking has occurs. Next to the contribution to the shear capacity, shear reinforcement also

provides a level of restraint against the growth of inclined cracks and thus helps to ensure a more

ductile behavior.
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3.3.4 Residual stresses

When cracks are formed in concrete, the concrete still has the ability to transfer tensile stresses

across the crack face. These so-called residual stressed are present until the crack width becomes

too large. This behavior is described by the strain softening diagram as was discussed earlier in

section 2.1.

3.3.5 Shear-stress in the compression zone

Shear stresses that are present in the compression zone of the concrete, contribute to the shear

resistance in a concrete member. The magnitude of that shear resistance is limited by the depth

of the compression zone. Therefore, in a relative slender beams without axial compression, the

shear contribution becomes relatively small, due to the minimal height of the compression zone.





4. Numerical modeling of concrete frac-

ture

The following sections will treat different approaches for the modeling of fracture in concrete. A

discrete interface formulation, a smeared total strain formulation, and decomposed strain formu-

lation will be discussed. Furthermore, the governing constitutive relations, and their parameters

will be discussed.

4.1 Introduction

In order to model the fracturing behavior of reinforced concrete, a large number of different

approaches were developed over the last decades [23]. The main subdivision that can be made

between the fracture models consists of continuum, discrete and mixed models. Continuum

models are developed upon the framework of continuum mechanics, implying that an infinitesimal

volume is considered with the material behavior being described by a stress-strain relation.

Different fracture models in the continuum approach are: smeared cracking with decomposed or

total strain models, plasticity based models, continuum damage models, and other frameworks.

In case of modeling cracks in a discrete manner, interface elements with a finite lengths are

used, and a relation is established between internal forces and the relative displacement and/or

rotations. As a final option, mixed models combine both the continuous and the discontinuous

models. The models applied in this thesis will be discussed in the following sections.

(a) discrete crack
modeling

(b) smeared crack
modeling

Figure 4.1: Representation of two types of crack modeling

Because the thesis will focus on the behavior of beam elements, rather than plate like elements,

the discussed principles are defined in two dimensional coordinate systems. The global system

is defined as a orthogonal (x, y) system, and the local system is defined as an orthogonal (n, t)

system. In the local system, (n) is the direction normal to the crack face and (t) is the direction

tangential to the crack face. Both systems are depicted figure 4.2, with figure 4.2a representing

plane stress elements and figure 4.2b representing interface elements.

13
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(a) Global (x, y) and local (n, t)
coordinate system definitions
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(b) Interface element (n, t)
coordinate system definitions

Figure 4.2: Coordinate system definitions

4.2 Discrete crack modeling

Discrete crack modeling creates a discontinuity (i.e. crack) by means of a separation of an

element edge, see figure 4.1a. In order to make this separation, the user constructs interface

elements at the desired crack location. One of the main drawbacks of this method is the fact

that the separation of an element edge does not fit the nature of the finite element because

of its discontinuity in nodal connectivity. A second disadvantage, inherent to the modeling of

interfaces, is that only predefined crack paths along element edges are possible∗. This however,

can also be viewed as an advantage. For concrete structures that are characterized by the

formation of dominant cracks at known locations, the discrete crack approach can offer a realistic

results. Nevertheless, concrete structures are usually characterized by diffused crack patterns,

especially in heavy reinforced structures. In such cases the smeared crack approach is often

considered to advantageous over the discrete crack approach.

4.2.1 Interface modeling

The discrete crack approach is based on the construction of a interface element between the

plane stress elements. In case of a two-dimensional configuration, line interface elements are

used. These elements relate the forces acting on the interface to the relative displacement of

the two sides of the interface (total relative displacement theory). The forces are defined in the

traction vector t and are defined in the (n, t) direction as:

t =


 tn

tt


 (4.1)

The relative displacement vector ∆u is defined as:

∆u =


 ∆ un

∆ut


 (4.2)

∗This statement is not entirely true. The reason for this is that, discrete crack models exist in which the
cracks can grow into an element or where automatic re-meshing procedures are applied. These models however,
are not considered in this thesis.
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In which ∆un is the displacement in the normal direction of the crack and ∆ut the displacement

in the tangential direction. The linear elastic relation between the vectors is given by:


 tn

tt


 =


 kn 0

0 kt





 ∆ un

∆ut


 (4.3)

The diagonal terms kn and kt are given high initial dummy stiffness, in order to recreate the

actual rigid connection between the nodes of the plane stress elements. The behavior of the

interface elements upon cracking is defined by two functions:

tn = fn(∆un) (4.4)

tt = ft(∆ut) (4.5)

When equations (4.4) and (4.5) are linearized by means of the Jacobian, a tangential stiffness

matrix is formed, relating the displacement vector with the force vector as:


 dtn

dtt


 =




∂fn

∂∆un
0

0
∂ft

∂dt





 d∆un

d∆ut


 (4.6)

The basis for the two functions represented in equations (4.4) and (4.5), are the tension softening

relations, these will be discussed in section 4.4.

4.2.2 Crack dilatancy

In the previous section, a constitutive relation was presented (equation (4.6)) that describes

the concrete behavior upon crack formation. In this relation, there is no coupling between the

normal and tangential component of the traction vector t. For a more sophisticated analysis,

non diagonal terms can be introduced to couple both traction components. The reason for this

coupling is to model the sliding (shear-slip) across a crack face. With the modeling of this

shear-slip, an aggregate interlock formulation can be constructed.

There are a number of constitutive models available for this type of analysis, these models are

based on two main configurations: an empirical formulation or a physical formulation. Both

types of models define a non-linear relation as:

tn = fn(∆un, ∆ut) (4.7)

tt = ft(∆un,∆ut) (4.8)

When equations (4.7) and (4.8) are linearized the following stiffness matrix K is formed:

K =




∂fn

∂∆un

∂fn

∂∆ut

∂ft

∂∆un

∂ft

∂∆ut


 (4.9)
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The stiffness matrix K in equation (4.9) shows the non-diagonal terms that couples the crack

normal traction with the tangential traction component

4.3 Smeared crack modeling

The need for a crack model that offers automatic generation of cracks and corresponding behav-

ior, without a redefinition of the finite element topology, has lead to extensive use of the smeared

crack approach. Rather than representing a single crack, the smeared crack model represents

an area of the concrete that is cracked, as is illustrated in figure 4.1b. Modeling the crack by

a representative area (i.e. an element area) was first developed in the factitious crack model of

Hillerborg [12], after which Bažant & Oh [2] extended it to finite element modeling by developing

the crack band model. The fracture process in a smeared crack model is treated as a reduction

of the material stiffness in the direction of the principal stress over the representative area. This

reduction is related to the tension softening behavior of the concrete. Crack initiation occurs

when the principal stress or a combination of principal stresses exceeds the tensile strength.

Within the context of the smeared crack models, two different stress-strain representations were

developed, namely: a total strain based model and the decomposed strain model. A constitutive

model based upon total strain describes the stress as a function of the strain, this means that the

stresses are evaluated in the directions that are given by the crack directions. The decomposed

strain model, represents the total strain as the summation of the elastic strain and the crack

strain. with the latter strain made up out of several crack strains components, this is however not

a requirement. The advantage of the strain decomposition is that other non-linear phenomena

such as creep and shrinkage, can also be included.

4.3.1 Smeared crack principle

Before elaborating on the fixed, fixed multidirectional, and rotating smeared crack models, the

basis for the constitutive models of the respective models is outlined. The models are based

on the assumption that the constitutive relations are evaluated in a rotated, local coordinate

system. This coordinate system is defined by the angle for which the crack is initiated, see figure

4.2a.

Concrete is initially represented as a linear elastic isotropic material, in which the relation be-

tween the stresses and strains are defined as:




σnn

σtt

σnt


 =

E

1− ν2




1 ν 0

ν 1 0

0 0
(1− ν)

2







εnn

εtt

γnt


 (4.10)

With E denoting the Young’s modulus and ν the Poisson’s ratio. When the major principal stress

exceeds the tensile strength of the concrete or, in more general terms, when the combination of

principal stresses violates the cut off criterion, a crack is initiated perpendicular to the direction

of the principal stress. Upon this violation, A orthotropic relation is substituted for the initial
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isotropic stress strain relation. The orthotropic relations is expressed through the secant stiffness

matrix Dnt
sec, which is defined as:




σnn

σtt

σnt


 =




µE

1− ν2µ

ν µE

1− ν2µ
0

ν µ E

1− ν2µ

µ E

1− ν2µ
0

0 0
β E

2 + 2 ν







εnn

εtt

γnt


 (4.11)

in which µ (mode I reduction) and β (mode II reduction) are related via the tension softening

curve to the secant stiffness parameter.

4.3.2 Fixed total strain model

In a fixed smeared crack model, the crack is fixed upon initiation. The consequence of fixing

the crack direction implies that upon rotating of the principal strain direction, a shear stress is

generated across the crack face to ensure equilibrium. The consequence of this shear stress, is

that a shear stiffness needs to be defined. Early attempts modeled the cracked concrete with

a shear stiffness of zero, this however, resulted in number of numerical difficulties. Therefore a

shear stiffness factor for cracked concrete was introduced: βG with 0 < β < 1. This factor is

called the shear retention factor and could be interpreted as the modeling of aggregate interlock.

Most researchers adopt a constant shear retention factor, but there has been some use of a crack

strain dependent retention factor.

To elaborate on the numerical algorithms behind the fixed crack model, the formulation of

the total strain model is firstly discussed. The constitutive model of the total strain model is

developed on the formulations of the Modified Compression Field Theory, originally proposed by

Vecchio & Collins [24]. The basic concept of the total strain models is that the stress is evaluated

in the directions that are given by the crack direction. The update of the strain increment in

the total strain models is defined as:

εxy = εxy + ∆ε (4.12)

The local strain vector εns is related to the global strain vector εxy through:

εns = Tε(tθ)εεxy (4.13)

And the local stress vector σns is related to the global strain vector σxy in a similar manner:

σns = Tσ(tθ)σxy (4.14)

In both formulations, T (tθ) represents the transformation matrix with angle θ at time t. In case

of the fixed crack model, the rotation matrix is formed only once upon crack initiation. In case

of the rotating crack model, the rotation matrix is constantly updated. To provide a general

framework for the elaboration of the total strain model, the following derivations will implicitly

consider the angle and the moment of rotation without using the respective notations.



Numerical modeling of concrete fracture 18

The transformation matrix Tσ,ε defines the rotation between the global (x, y) and local (n, t)

coordinate systems. Given the angle θ the strain transformation matrix is given by:

Tσ,ε =




cos2θ sin2θ sin θ cos θ

sin2θ cos2θ − sin θ cos θ

−2 sin θ cos θ 2 sin θ cos θ cos2θ − sin2θ


 (4.15)

The stress vector σns in the local coordinate system is given by the general relation:

σns = Ds
nsεns (4.16)

Which can also be defined in the global coordinate system by substituting equation 4.13:

σns = Ds
nsTεεxy (4.17)

Upon substituting equation 4.14, the relation between the global stress vector σxy and the global

strain vector εxy is obtained:

σxy = T−1
σ Ds

nsTεεxy (4.18)

In which the matrix Ds
ns represent the secant stiffness matrix of equation (4.11).

4.3.3 Rotating total strain crack model

A number of problems are related to the fixed crack model, which are the consequence of stress

build up on the crack face. This build up of stress may lead to over-stiff response and un-realistic

results [19]. The rotating crack model does not suffer from stress build-up because of the constant

alignment of the principal strain directions with the crack direction.

The underlying smeared crack formulation of this model is essentially not different from the

fixed crack model. In the rotating model, a crack is also formed to the normal of the principal

stress, when a principal stress criterion is violated. However, in this model the crack directions

are constantly updated to rotate with the principal strain directions during the loading process.

Although this approach may seem physically incorrect, (because cracks in concrete cannot rotate,

only principal directions can) the model has proven to be successful in the modeling of reinforced

concrete. Also, there is no need for a shear retention factor, which simplifies the numerical

implementation and provides more practicality for the user.

The rotating crack model is formulated in the principal strain directions. The reason for this is

that, similar to the fixed model, the rotating model is in this case also based on the total strain

formulation. This implies that the stress is evaluated in the directions that are given by the crack

direction. And because the crack directions are kept orthogonal to the principal directions, the

formulation can be given in the principal directions. This will facilitate with the definition of

the co-axiallity principle.
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The incremental form of the constitutive relation between the principal stress ∆σ12 and principal

strain ∆ε12 is therefore defined as:


 ∆ σ1

∆ σ2


 =




∂σ1

∂ε1

∂σ1

∂ε2

∂σ2

∂ε1

∂σ2

∂ε2





 ∆ ε1

∆ ε1


 (4.19)

At the moment of crack initiation, both the shear stress σxy and shear strain γxy parallel to the

cracks are zero. But after crack formation, a shear strain will occur on the surface of the crack.

Due to this shear strain, the subsequent principal strain direction rotates from the previous

principal direction. This rotation can be formulated using Mohr’s circle with the definitions of

the principal stresses and strains:

θσ =
1
2

arctan
2∆τ12

σ1 − σ2
(4.20)

θε =
1
2

arctan
∆γ12

ε1 − ε2
(4.21)

For the rotating crack model it is required that the principal direction of the stresses and the

strains coincide with each other to preserve co-axiallity. This implies that θσ = θε. Evaluating

this formulation leads to:

∆τ12 =
σ1 − σ2

2 (ε1 − ε2)
∆γ12 (4.22)

In equation (4.22) the shear modulus G can be identified as:

G =
σ1 − σ2

2 (ε1 − ε2)
(4.23)

Combining (4.19) and (4.23) leads to the total formulation of the tangential stress-strain law for

the rotating crack model:




dσ1

dσ2

dσ12


 =




∂σ1

∂ε1

∂σ1

∂ε2
0

∂σ2

∂ε1

∂σ2

∂ε2
0

0 0
σ1 − σ2

2(ε1 − ε2)







dε1

dε2

dγ12


 (4.24)

The tangential stress-strain law as presented in equation (4.24) implies that upon crack formation

a negative pivot will occur in the tangential stiffness matrix. This negative pivot can has the

consequence that the convergence of the iterative procedure can be lost. To avoid the loss of

convergence a secant-stiffness matrix Dsec can also be constructed in the principal direction in

the following manner:
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Dsec =




E1 0 0

0 E2 0

0 0 G


 (4.25)

The secant stiffness matrix will be used throughout the numerical analysis in this thesis.

4.3.4 Fixed multidirectional crack model

The fixed multidirectional crack models is a refined version of the fixed crack model. The aim

of this model is to improve the simulation of the change in principal strain direction. The basic

concept is the same as the fixed crack model, however, in the multidirectional model, new cracks

are allowed to develop if the principal stress criterion is again violated in a different direction.

The difference between the standard fixed model is that the crack do not necessarily have to be

orthogonal, but can be formed under different angles that are controlled via a threshold angle.

The implication of allowing cracks to form under different angles is that more than two cracks

can be described within a single integration point.

In order to model multiple cracks, the total strain formulation cannot be used. The fixed

multidirectional model will therefore be described using the decomposed strain model [19, 5].

The basic feature behind decomposed crack modeling is to decompose the total strain into an

elastic and crack strain:

ε = εe + εcr (4.26)

Because we are now modeling multiple cracks, the crack strains are assembled in a vector in the

following manner:

∆ecr = 〈∆ecr
1 , ∆ecr

2 , . . . , ∆ecr
i , . . . , ∆ecr

n 〉T (4.27)

The crack strains in (4.27) are composed out of two components:

∆ecr
i = 〈∆εcr

nn;i, ∆γcr
nt;i〉T (4.28)

With the subscript i representing the individual crack. To relate the crack strain to the global

strain the transformation matrix N is applied in the following manner:

∆εcr = N∆ecr (4.29)

Since this model consider a number of non-orthogonal crack, the transformation matrix N also

needs to be defined per crack strain.

N = 〈N1, N2, . . . , Ni, . . . , Nn〉T (4.30)
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In using the similar principles as the crack strain formulation the crack stresses per crack are

also assembled in a vector:

∆scr = 〈∆scr
1 , ∆scr

2 , . . . , ∆scr
i , . . . , ∆scr

n 〉T with ∆scr
i = 〈∆σcr

nn;i, ∆σcr
nt;i〉T

∆σcr = N∆scr (4.31)

The elastic stress-strain relationship is defined as:

∆σ = De∆ε (4.32)

And the elastic stress-strain relationship is defined as:

∆scr
i = Dcr

i ∆εcr
i (4.33)

The matrix in (4.33) is a relation between the crack stress and crack strain. In this matrix the

normal and shear stresses are un-coupled, therefore, the crack stresses are only governed by the

corresponding crack strains. The un-coupling implies that the matrix only has non-zero term on

the diagonals. These terms are DI and DII , and represent the tension softening diagram and

the shear retention factor.

At this point, we have established the constitutive relations in the local coordinate systems for

the crack stresses and strains. The constitutive relations between the stresses and the strains

in the global coordinate system, can be determined from the original strain decomposition in

(4.26). This results in the following relation for an arbitrary direction:

∆σ = De(∆ε−∆εcr) (4.34)

Upon substitution of the relation for the elastic and crack strain, and multiplying by NT we

end up with the following formulation:

∆σ =
[
De −DeN [Dcr + NT DeN ]−1NT De

]
∆ε (4.35)

After the first crack, another crack is allowed to form if the tensile strength is again violated by

the major principal stress, and if the angle between the existing crack and the direction of the

major principal stress exceeds a certain angle. Usually, this threshold angle is set at a value of

60◦, which implies a maximum number of crack which are formed to six [6].

4.4 Tension softening

The shape of the tension softening curve determines the behavior of the concrete upon cracking.

Although many experiments have been performed on determining the exact shape of the curve,

there is no consensus on the application of one specific curve. The used FE code offers three

different types of softening curve, namely: linear, bi-linear, and non-linear. In order to define

the strain softening behavior of concrete in a smeared crack formulation, three parameters need
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to be defined, namely: (1) tensile strength of concrete, (2) the fracture energy, and (3) shape of

the softening diagram.

ft

s
cr
nn

ε
cr
nn;ult

ε
cr
nn

Gf

h

(a) Linear mode I softening curve for
smeared crack formulation

ft

tn

∆uu;ult

∆un

Gf

(b) Linear mode I softening curve for
discrete crack formulation

Figure 4.3: Softening diagrams for different crack representations

In a smeared crack formulation the mode I softening diagram is a function of the crack strain

εcr
nn and the crack stress scr

nn, see figure 4.5. In case of a discrete crack formulation the mode I

softening is a function of the relative displacement ∆u and traction vector t, see figure 4.3b.

The area under the softening curve divided by the crack bandwidth, and represents the fracture

energy Gf . This quantity defines the total energy release when an element is fully cracked, with

fully cracked implying that either the relative displacement ∆u or εcr
nn is larger than the ultimate

value of these respective quantities∗. The area under the softening curve can be integrated,

this leads to the following expression regarding the ultimate value in case of a linear softening

diagram. For a smeared crack formulation this is:

εcr
nn;ult =

2Gf

hft
(4.36)

For a discrete crack formulation this is:

∆uult =
2Gf

ft
(4.37)

The set of parameters that are present in equation (4.36) and (4.37) are defined by the user. The

crack bandwidth h is defined by a representative dimension of the element size. The bandwidth

depends in general on the chosen element type, element size and integration scheme. The fracture

energy should be released over this width in order to obtain results that are objective with respect

to mesh refinements.

4.5 Shear retention

Defining a shear retention factor is necessary in case of the fixed crack model. The reason for this

lies within the assumption of a fixed crack. Upon the moment of crack formation, and therefore
∗This definition is only valid for linear softening. Exponential softening function does not contain a ultimate

crack strain because the function goes to infinity when approaching zero stress. When the term ultimate crack
strain is used, it will be implied that this is the ultimate crack strain as is calculated with a linear softening
diagram
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crack fixation, the principal direction tend to rotate due to an unbalance caused by the reduced

mode I stiffness of the crack. To ensure equilibrium a shear stress on the face of the crack is

generated. The quantity of this shear force can be modeled in a number of different approaches:

constant shear retention (figure 4.4a), variable shear retention based on shear strain (4.4b), and

a full shear stress-strain relation (not depicted).

βG

γxy

τxy

(a) Constant shear retention

β

γxy

(b) Variable shear retention

Figure 4.4: Shear retention formulations for fixed crack model

Defining a shear stiffness for the shear stress on the crack face can be interpreted a modeling

aggregate interlock. However, a disadvantage of a constant and variable shear retention factor is

that is does not accurately represent shear dilation and the dependence on the cracks shear on

the crack opening displacement. The shear formulation in the fixed crack models are therefore

limited in its representation of the physical reality.

4.6 Unloading and Reloading

The unloading and reloading behavior of cracks in concrete is a complicated phenomenon and is

characterized by hysteris loops [3]. The correct modeling of the unloading-reloading path is of

particular importance in case of cyclic loading, where the unloading-reloading model dominates

the behavior [10]. However, in case of non-linear analysis of shear critical RC beams under pro-

portional loading, the unloading and reloading only occurs locally and is therefore less dominant.

However, selecting the correct structural path is still of importance.

The unloading-reloading of cracks can occur through a two main approaches, namely: an elastic

or secant approach (see figure 4.5). The elastic approaches consists of using the elastic stiffness

to return to the unloaded state. The result of which, is that a part of the strain remains. This

implies that the crack does not actually close upon load reversal. The second approach consist

of unloading through a secant relation to the origin. This approach has proven to be successful

in the non-linear analysis of concrete structures and will be applied through-out the thesis.
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ε

σ

Secant unloading/reloading

Elastic unloading/reloading

Figure 4.5: Unloading and reloading prin-
ciples

αlat

ε0

βσcr
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Figure 4.6: Reduction compressive
strength

4.7 Compressive response of cracked reinforced concrete

Reinforced concrete that is loaded in compression and lateral crack formation due to tension,

exhibits a lower strength and stiffness than uniaxially compression loaded concrete [25]. This

compressive softening has a significant influence on the strength, ductility and load-deformation

response of concrete. To accurately model this phenomenon a reduction factor βσcr is applied.

This value of this reduction is related to the amount of damage that occurs in the lateral direction,

see figure 4.6. This damage is monitored by the internal variables governing the tensile damage

in the lateral directions, αl,1 and αl,2. An average lateral damage αlat is computed and related

to the initial strain ε0 to represent the damage that has occurred.
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The following sections will briefly discuss the principles behind the incremental-iterative method.

These principles consist of: imposing the load on the FE model, iteration methods, convergence

criteria, and acceleration techniques.

5.1 The incremental-iterative procedure

The solution procedure of a non-linear finite element analysis is based on an incremental-iterative

formulation. This implies that the external load is divided into a number of increments, which

are than imposed on the finite element model. Within each increment an iterative procedure

is applied to obtain the equilibrium solution, hence the name incremental-iterative procedure.

The application of load-increments with internal iterations instead of applying the entire load at

once, is based on the following reasons:

• The algebraic equations that arises from the discretization of a non-linear continuum model

are non-linear, these equations therefore necessitate an iterative procedure for its solution.

• Experiments show that most structural materials are path dependent, meaning that dif-

ferent levels of stress can be obtained, depending on the strain path that is followed.

• To ensure the convergence of the iterative procedure, the size of the load or displacement

increment needs to be constrained. Otherwise, convergence will be difficult to obtain.

5.2 Load and displacement control

In case of an incremental-iterative analysis, there are two methods of imposing an external load

and achieving convergence within each load step. The first method consist of applying a load

divided into a number of increments, i.e. load control. The second method is based on applying a

prescribed displacements divided into increments, i.e. displacement control. The choice for either

of these methods can, in some cases, be determined by the nature of the problem. For example,

with creep problems, the load will be prescribed and not the displacements. However, when there

is no direct preference for either method from a physical point of view, the displacement control

is usually applied. There are two main reasons for this choice, namely: (1) the tangential stiffness

matrix is better conditioned for displacement control than for load control and (2) in using load

control, the tangential stiffness matrix becomes singular at limit points in the load-deflection

diagram.

To elaborate on the first statement, we consider the main distinction between load and displace-

ment control, which is that load control procedure requires the inversion (LDU decomposition)

of the stiffness matrix, while the displacement control procedure, only requires the inversion of

25
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a reduced stiffness matrix. For symmetric matrices, which is very common for structural com-

putations, it is possible to show that the spectral radius the reduced stiffness matrix is always

smaller of at least equal to the full stiffness matrix [6]. This leads to the conclusion that a bet-

ter conditioned tangential stiffness matrix leads to faster convergence, and since displacement

control involves iterations with a better conditioned tangential stiffness matrix, the result is a

faster converging iteration process.

The second reason basis itself on the fact that displacement control does not become singular

at a local of global peak in the load-displacement curve. Singularities can however occur if load

control is applied. The main reason for this is not the fact that the matrix is ill-conditioned but

more due to finding an intersection between the imposed load and the load-displacement path

at peak loads.

Although load-control has two major disadvantages over displacement control, it does has the

advantage of overcoming a snap-back behavior in the load-displacement curve when using an

arc-length control. This is not possible when using a displacement controlled procedure.

5.3 Iterative procedures

Two main classes of iteration methods are available for iterative part of the incremental-iterative

procedure. The first class assumes that the stiffness matrix varies so slowly, that it can be set-up

only once for the initial iteration and can be used throughout all of the subsequent iterations.

These iteration methods are known as the linear and constant stiffness method. Because of the

strong non-linear response of concrete, it can be expected that the stiffness varies greatly upon

crack formations. Therefore, the stiffness matrix of these methods deviates considerably from

the actual stiffness of the RC beam. The consequence being, that convergence will be very slow

or will never occur at all. These methods are therefore considered to be unsuitable for non-linear

finite element analysis involving concrete cracking.

The second class of iteration methods are based on a tangential stiffness matrix with or without

subsequent updates to this tangential stiffness, the so-called Newton class iteration methods.

The first one of these methods is the Regular Newton-Raphson method (rN-R), the tangential

stiffness matrix Kt is formulated as:

Kt =
∂g

∂∆u
(5.1)

In which g represent the out-of-balance force vector and ∆u the incremental displacement vector.

The rN-R method sets-up a new tangential stiffness matrix with every iteration, this theoretically

means that the convergence of the numerical error is quadratic. However, the rN-R suffers from

convergence problems due to sudden non-linearities, such as local unloading from an inelastic

state to an elastic state, that can arise during the increment.

Next to the rN-R the modified Newton-Raphson (mN-R) is frequently used for the non-linear

analysis of structural problems. The stiffness matrix of mN-R is also based on the tangential

stiffness as was formulated in equation (5.1). However, when comparing both methods, the
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mN-R has the advantage that it is un-sensitive to non-linearities that arise during the loading

increment. This is caused by the fact that the tangential stiffness matrix Kt is only formed once

per increment for the first iteration.

Next to both the Newton-Raphson iteration methods, the Secant-Newton (S-N) method is avail-

able. In the S-N method, the tangential stiffness matrix is approximated by a secant formulation.

These methods replace most of the Newton-Raphson iterations with a cheaper update to the

stiffness matrix, sacrificing convergence performance but making the average equilibrium itera-

tion less expensive. In solving the non-linear equations, a secant method will perform the first

iteration with the tangent formulation of (5.1). The following updates of the stiffness matrix

will be based on the Secant Newton formulation. In this thesis the S-N iteration methods used

consisted of the BFGS method, with the BFGS method defining its updated stiffness matrix

inverse K−1
i+1 as:

K−1
i+1 =

(
I +

δuiδg
T
i

δuT
i δgi

)
K−1

i

(
I − δuiδg

T
i

δuT
i δgi

)
+

δuiδu
T
i

δuT
i δgi

(5.2)

In which δui in the iterative part of the incremental displacement vector, gi the out of balance

force vector for the particular iteration, and Ki the previously obtained stiffness matrix.

5.4 Convergence criteria

In order to determine whether the iterative procedure has reached an equilibrium state, a cri-

terium is needed to define the quantity of this state. Such a criterion generally formulates that

when a norm of a certain quantity, e.g. force or displacement is within a certain user set bound-

ary, the iteration process is considered to be converged. The most strict global criterion is the

force norm. The force norm defines convergence when the current norm of the out-of-balance

force vector gi has a value of less than a user-defined percentage of the original norm of the

out-of-balance force vector g0, as was determined at the start of the increment. The force norm

is formulated as:
√

gT
i gi√

gT
0 g0

< ε (5.3)

with ε being the measured quantity for defining convergence. Next to the force norm, the

displacement norm can be used. This norm bases itself on the same principles as the force norm,

but the measured quantity consist of the incremental displacement vector δui:

√
δuT

i δui√
∆uT

0 ∆u0

< ε (5.4)

As a final option the energy norm can be applied, which combines the incremental displacement

vector δui with the internal force vector fint;i:

∣∣∣∣
δuT

i (fint;i+1 + fint;i)
∆uT

0 (fint;1 + fint;0)

∣∣∣∣ < ε (5.5)
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As mentioned before, the force norm can be considered to be the most strict norm. The reason

for this is that the displacement norm as well as the energy norm are less strict. This difference

in strictness is caused by the presence of the incremental displacement vector δui in both norms

which can indicate convergence more easily. The reason behind this, is that the incremental

displacement vector represents the iterative change in displacement as calculated by the iterative

procedure. When this value becomes small, for example due to a ill-conditioned stiffness matrix,

the norm could indicate an untrue equilibrium.

The value of the convergence tolerance ε must be selected carefully, a too loose convergence norm

may lead to inaccurate an unreliable results. On the other hand a too strict norm will lead to

excessive computations, without improving on the results. The significance of the norm value is

discussed in section 6.4.2.

5.5 Acceleration and arc length techniques

To accelerate and improve the convergence rate of the iterative procedures, a number of acceler-

ating and arc length algorithms have been developed. These techniques will be shortly discussed

in the following sections.

5.5.1 Arc length control

The arc-length technique has been developed for successfully finding convergence in case of

snap-through and snap-back behavior in the load-displacement behavior of structures. The arc-

length techniques uses a load factor ∆λi to constrain the incremental displacement vector δui

by adapting the size of the load-increment. This is formulated in the following manner:

δui = K−1
i

(
∆λif̂ + f t

int − fint,i

)
(5.6)

Subsequently, the incremental displacement vector can be split into two parts:

δuI
i = K−1

i

(
f t

int − fint,i

)
and δuII

i = K−1
i f̂ (5.7)

The total iterative increment is than derived from:

δui = δuI
i + ∆λiδu

II
i (5.8)

With the superscript I denoting the contribution from the iterative procedure and superscript II

denoting the contribution of the constraint equation. Two different formulations are available,

in the used FE code, which define the load factor ∆λi, namely the spherical path arc length

method and the updated normal plane method. For further elaboration the reader is referred

to [9, 13].
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5.5.2 Line search algorithm

The previously described iteration methods are based on an initial prediction. It is not un-

common for this prediction to be ”too far” from the actual equilibrium situation because of a

strong non-linear response. In these cases it is therefore difficult to obtain convergence at all.

To alleviate these problems the line search algorithm was introduced. The line search algorithm

scales the incremental displacement vector δui+1, obtained through the iterative method, to

increase the convergence rate. The incremental displacement vector ∆ui+1 with line searches is

formulated as:

∆ui+1 = ∆ui + ηδui+1 (5.9)

The scale factor η is obtained through minimization of the energy potential Π as following:

s(η) =
∂Π
∂η

= g(η)T δu = 0 (5.10)

The solution of s(η) = 0 can be calculated by determining s at various values of η. The first

two values are readily derived from the original iteration process. With these values the search

direction can be obtained, and further calculations can be made. The line search algorithm

usually does not continue until a value of s = 0 is found but terminates the line search is the

absolute value is less than Ψ times the value s(0). For further elaboration the reader is referred

to [8, 13].





6. Benchmark: Beam A

The first benchmark study will be performed on a beam that was part of a recent workshop

on the shear strength of concrete beams. The workshop was initiated by the Dutch Ministry of

Transport, Public Works and Water management, and was organized by the Dutch Organization

for Applied Scientific Research (TNO). The main objective was to obtain an accepted set of

methods and guidelines for the assessment of concrete structures with respect to the shear

capacity [26]. In this workshop the beam in question was identified as beam 5, for uniformity, it

will now be referred to as beam A.

6.1 Beam A properties

6.1.1 Geometry

The benchmark object consists of a simply supported beam loaded by a single concentrated load

in the center of the beam, see figure 6.1. The loading scheme results in a constant shear force

over the length of the beam. The bending moment distribution varies bi-linearly over the length

with its maximum value at the center of the beam. Longitudinal reinforcement is distributed

over the height of the beam, with varying diameters. The bottom reinforcement consists of 2∅20

[mm] and 1∅25 [mm]. The web reinforcement consists of 5 layers of 2∅10 [mm]. This leads to

a total reinforcement ratio ρs of 1.27%. No shear reinforcement is present in the beam.

3000
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x

Figure 6.1: Geometry characteristics and crack pattern at moment of failure, the critical crack for
which the beam ultimately fails is highlighted. Dimensions are in [mm].

6.1.2 Materials

The material properties have been provided by the workshop document. Properties that were

not given have been computed using the CEO-FIP 1990 model code (MC90). This includes the

tensile strength ft, the modulus of elasticity of concrete Ec and the mode I fracture energy Gf .

The material properties have been submitted to table 6.1.

31
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Concrete Reinforcement

fck 37.0 [N/mm2] ν 0.15 [-] fy 398 [N/mm2]
ft 3.35 [N/mm2] Gf 0.075 [Nmm/mm2] Es 210000 [N/mm2]
Ec 35494 [N/mm2] dmax 10 [mm] ν 0.3 [-]

Table 6.1: Material properties beam A for concrete and reinforcement

6.1.3 Load carrying capacity

The flexural moment-capacity of the beam is dependent on the amount of reinforcing bars that

will contribute to the ultimate load by reaching their yield strength. It is therefore not possible

to analytically determine an exact value for the flexural moment capacity, therefore an estimate

is computed. The premise is considered that the bottom reinforcement and three layers of web

reinforcement will reach their yield strength in case of flexural failure. This results in a moment

capacity of 288.1 [kNm], with an applied load of 2V =426.8 [kN]. The linear elastic capacity of

the concrete section was determined at 2V =124.1 [kN].

To analytically compute a shear capacity for this particular beam is not a simple task and

depends strongly on the method in question. This is mainly due to the fact that the benchmark

object is not reinforced with shear reinforcement. The analytical models that were presented

in the shear workshop showed large differences in both the applied method and the predicted

ultimate load [11]. We therefore provide an estimate for the ultimate shear load based on the

shear capacity of the concrete section with an maximum allowable shear stress of 0.4ft. This

leads to a maximum shear load of V =201.0 [kN].

6.1.4 Experimental results

The results were obtained from experiments performed by Podgorniak-Stanik in 1998 [15]. Al-

though the beam was identified as beam 5 in the aforementioned workshop, the identification in

the experimental results was ”specimen BN50D”. The ultimate shear load was determined at

V =162.7 [kN]. From the experimental observations, the following comments were recorded:

The first flexural cracks occurred at a total load level of 2V =50 [kN]. Thereafter, new

crack developments consisted mainly of flexural cracks. On average, the flexural crack

were spaced at 200 [mm]. At approximately 2V =200 [kN] the maximum width of the

flexural cracks was 0.25 [mm]. At this stage of the test it was evident that the tips of

the flexural cracks were beginning to rotate in, toward the point of load application.

by load stage 6 existing flexural crack on both ends of the beam had noticeable

rotated to become primary diagonal crack. The flexural-shear crack extended for

more than half of the specimen depth. The beam ultimately failed in shear at a

shear load V =162.7 [kN]. The failure crack developed on the south end. This crack

formed abruptly as it intersected the tips of the existing cracks. The beam displayed

no warning as to imminent failure and did not possess any post cracking capacity

once the failure crack developed.
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6.2 Pre-processing aspects

6.2.1 Modeling environment

In accordance with one of the main assumptions of the beam theory e.g. the stress (σzz) in the

out of plane direction is zero, the beam will be modeled with 2D plane stress elements. This will

lead to an accurate solution without the use of an elaborate 3D model. Modeling in 2D will also

reduce pre- and postprocess as well as the computational expenses. Because the beam and the

loading scheme are symmetric, only half the beam can be used as a model, provided that the

failure mode is also symmetric. In this particular benchmark, a symmetric model will be used

throughout the study. To assess whether a possible non-symmetric failure mode is overlooked,

a study will also be performed on a entire model in section 6.7.3.

6.2.2 Boundary conditions

Modeling only half the beam has consequences for the application of boundary conditions. In the

centerline of the beam, the condition is enforced that the cross-section will remain perpendicular

to the x-axis. To achieve this, all the nodes in the centerline are constrained in the x-direction.

In order to let the beam expands and displace freely, the support condition consists only of a

constrained y-direction.

The load and support forces are introduced via loading plates. The modeling of these loading

plates is an essential part of the correct introduction of forces into the plane stress elements of

the beam. Not applying load plates will lead to unrealistic stresses and unstable behavior of the

incremental-iterative procedure. To avoid that the load plate of the concentrated load acts as a

compression element together with the concrete, an interface element is applied. This interface

element is constructed between the load plate and the concrete and represents a connection

between the two materials. The interface describes a relationship between the tractions t and

the relative displacements ∆u across the interface. In the normal direction of the interface, the

stiffness modulus kn was defined as 8.4e5 [N/mm3]. This stiffness is derived with the premiss

that the interface element represents a part of the load plate. This implies that the shortening

of the load plate is the same as the relative displacement of the load-plate, thus:

∆u = εsd (6.1)

with εs being the strain and d defining the thickness of the load plate. Upon substituting the

relationship between the stress and strain and rewriting the equation we obtain an equivalent

stiffness for the interface in the normal direction:

kn =
Es

d
(6.2)

This formulation represents an interface element with the same relative thickness as the entire

load-plate. This would therefore lead to a doubling of the thickness of the load-plate. Because

this is not correct, the stiffness of the interface element was selected at 1% of the thickness of the

load-plate: 8.4e5 [N/mm3]. The stiffness of the tangential direction kt was chosen small, namely:
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kn=50 [N/mm3]. This proved to lead to correct results and the avoidance of compression forces

in the load plate.

6.2.3 Element selection

The concrete is modeled using iso-parametric eight-node quadrilateral plane stress elements with

3×3 Gauss integration and quadratic interpolation.

The reinforcement will be modeled using an embedded formulation. The reason for this is

that there are a number of bars at varying depths of the beam. Integrating these bars into

the mesh lines would lead to a more difficult meshing procedure and an irregular sized mesh.

These problems are avoided when embedding the reinforcement elements in a normal sized mesh.

The embedded reinforcement formulation implies that the reinforcement strains are computed

from the displacement field of the mother elements. Within each mother element the embedded

elements are integrated using a 2-point Gauss integration.

A consequence of using the embedded principle is that a bond-slip model cannot be introduced.

Another important consideration, when using an embedded or discrete truss formulation, is that

the reinforcing bars have no bending stiffness. This means that the dowel action mechanism of

the longitudinal reinforcement does not contribute to the shear capacity.

6.2.4 Spatial discretization

As a first estimate the mesh was designed with dimensions b× h = 50× 50 [mm], with all of the

elements having an aspect ratio of 1 [-]. The chosen dimension represents a normal sized mesh.

Figure 6.2 displays the finite element model.

Plane stress element with embedded reinforcement

Plane stress element without embedded reinforcement

y

x

Interface element

Figure 6.2: Finite element model beam A

6.2.5 Material modeling

The concrete will be modeled with linear softening in tension and parabolic softening in com-

pression, unless indicated otherwise. The reinforcement will be modeled using the Von-Mises

elastic-perfectly plastic constitutive model. See figures 6.3a and 6.3b.
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Figure 6.3: Constitutive models reinforcement and concrete

6.3 Preliminary analysis

Severe numerical difficulties are often encountered in the non-linear analysis of reinforced con-

crete structures. Structures that are characterized by softening material behavior therefore

require advanced solution techniques to ensure that the incremental-iterative procedure pro-

vides correct results [7]. Therefore, in order to analyze the behavior of this benchmark object,

the preliminary analysis consisted of a displacement controlled analysis in combination with a

line-search technique and a force controlled analysis∗ in combination with a line search and an

arc-length technique. The line search technique is designed to increase the convergence rate while

the arc-length technique can trace the equilibrium path in both ’snap-back’ and ’snap-through’

behavior.

The incremental step-size in the displacement controlled analysis was set at 0.02 [mm]. Further

aspects of the analysis process were: a regular Newton-Raphson procedure, with a maximum

of 25 iterations. The convergence was governed by the force norm with a tolerance of 0.01 [-].

The force controlled analysis consisted of the same characteristics as the displacement controlled

analysis, the only addition was the use of the updated normal plane arc-length method.

Both analysis consisted of the rotating total strain model, with a linear softening in tension. To

avoid possible numerical complications with bi-axial stress states, a perfect-elastic model could

be applied for concrete in compression. In this particular case however, this would have the

consequence that the compressive concrete stresses would exceed the compressive yield strength.

Not considering compressive strain softening would therefore lead to un-realistic results. There-

fore, parabolic strain softening in compression was applied. The results from the analysis are

presented through load-displacement diagrams†, figure 6.4, that were monitored at the node of

the applied displacement. Next to the load-displacement diagrams the crack patterns at failure

of the respective analysis are depicted.
∗From this point on, the term force controlled analysis always implies a force control procedure including an

arc length method, although this may not be explicitly mentioned. The reason for this is that it is impossible
for force control to overcome snap-through or snap-back behavior without an arc length. The use of only a force
controlled analysis would therefore lead to poor results in the non-linear analysis of shear critical beams.

†From this moment on, all the load-displacement diagrams will imply shear-load V versus applied displace-
ment. The depicted load-displacement behavior will always be monitored at the point of load application
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Figure 6.4: Load-displacement diagrams for two analysis with different control procedures

(a) Displacement controlled procedure (b) Load controlled procedure

Figure 6.5: Crack patterns at moment of failure of respective analysis

When comparing the two load-displacement curves and the corresponding crack pattern devel-

opment, we can distinguish reasonably similar behavior. Cracking is initiated when the linear-

elastic capacity of the concrete section is reached. In the initial loading stage, the crack pattern

consists of small cracks at the underside of the beam due to flexure. These cracks coalesce and

form a number of large cracks, that grow diagonally into the web of the beam. After this stage of

initial crack formation, the load displacement curves start to follow a stable path towards the ul-

timate failure load. For the displacement controlled procedure this is approximately V =190 [kN],

while the force controlled procedure gives approximately V =210 [kN]. Although both beams fail

at different load levels, the failure mode remains the same. In both analysis, the beams show

failure due to a large crack, occurring approximately 650 [mm] from the support, leading up-

wards at an angle of roughly 45◦. This crack is more prominently visible in the displacement

controlled procedure, which also shows a more brittle failure than the force controlled analysis.

When considering the manner in which the crack pattern evolved and the fact that the bottom

reinforcement bars do not reach their yield strength, we can establish that the beam failed due

to flexural shear. When comparing the experimental ultimate load value and the estimates made

in the previous sections versus the numerical experiments, the load levels and failure modes are

in good agreement.
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The incremental-iterative processes of both analysis were characterized by high amounts of non-

convergent increments∗. When comparing the convergence characteristics of both analysis, little

difference was distinguished between the force and displacement controlled analysis. The dis-

placement controlled procedure lead to 42% of the increments failing to converge. while the load

controlled analysis showed 46% of the increment failing to converge†. The main issue with a

non-convergent increment is that it represents a un-true equilibrium situation, which has conse-

quences for the accurateness of the solution. Therefore, the reliability of the solution devaluates

considerably when large amounts of non-convergent increments are present. In this case, the

non-convergent increments are seen as the main cause of the differences between the two per-

formed analysis. In order to perform a consistent parameter analysis it needs to be ensured

that the non-convergent increment do not compromise the results. The following sections will

therefore consist of assessing different techniques for improving the incremental-iterative process,

before continuing with a parameter variation.

6.4 Solution strategies

As was established in the preliminary analysis, finite element calculations involving strain soft-

ening often times lead to numerically unstable behavior of the incremental-iterative procedure.

Even the application of line-search techniques and arc-length algorithms did not provide fully

converged solutions.

The main objective of this section is to assess whether the incremental-iterative procedure can

be ensured to result in a numerically stable and convergent process. This objective will be

applied to both types of analysis that were presented in the preliminary analysis through a

variational study. The displacement controlled procedure will be assessed on four parameters,

namely: (1) The iteration procedure, (2) the number of iterations, (3) the norm tolerance and,

(4) the increment size. The force controlled procedure will be extended with the findings of the

displacement control variational study and through the use of indirect displacement control.

6.4.1 Iteration procedure

The characteristics of the available iteration procedures were discussed earlier in section 5.3. To

investigate the effect of the different methods on shear critical beams, a comparison was made

between the iterative procedure consisting of the Newton class methods‡. Included in this class

are: the regular Newton-Raphson (rN-R), the modified Newton-Raphson (mN-R) and the Secant

Newton (S-N) procedures, in which the Secant Newton method consisted of the BFGS method.

A comparison was made in relation to two different aspects, namely: the convergence rate and

the required number of iterations. The analysis consisted of the same characteristics as the
∗A non-convergent implies that the iterative procedure did not reach the value specified by the convergence

norm within the maximum amount of iterations. This means that although no convergence occurred, the iterative
procedure also did not diverge.

†Only the non-convergent increments that occur pre-peak are considered for the computations of the given
percentages. Post-peak failed increments are not considered. This definition will be used through-out the thesis

‡Other possibilities include the constant stiffness and the linear stiffness method, but these are considered
unsuitable for non-linear finite element analysis
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preliminary displacement controlled analysis. The only difference was the maximum number of

iterations, which was increased to 50 [-]. The reason for increasing the number of iterations is

motivated by the fact that the mN-R as well as the BFGS procedure in general, require more

iterations because the stiffness matrix is set-up only once at the beginning of the increment in

case of the mN-R and the BFGS shows an oscillating type of convergence. The results from the

analysis are displayed in table 6.2.

Iterative procedure Non convergent increments Total number of iterations
[%] [−]

Regular Newton-Raphson 57.6 17182
Modified Newton-Raphson 31.6 15046
BFGS 3.0 3930

Table 6.2: Performance characteristics Newton class iterations methods

The performance of the Regular Newton-Raphson with regards to the convergence characteristics

was very poor. In total, ' 58% of the increments failed to converge. The performance of the

modified N-R, when compared to the regular N-R, was slightly more successful in relation to the

convergence rate. Although the number of iterations is similar, the number of failed increments

was only half that of the rN-R.

The behavior of the rN-R and mN-R generally showed two distinct patterns in case of a non-

convergent increment (see figure 6.6), namely: (1) an initially converging behavior, changing

to diverging behavior in a later stage, and (2) an initially converging behavior leading to an

iterative process in which the iterative contribution δu to the incremental displacement was

very small (< 0.001%), with therefore no progress towards convergence. The first pattern was

more prominently present in case of the rN-R, in which the tangential stiffness matrix KT

is reformulated every iteration. This reformulation generally leads to faster convergence. In

this particular case however, the newly formed tangential stiffness matrix often times lead to

the wrong search direction and moved away from the actual solution. This behavior was less

prominent in case of the mN-R where the tangential stiffness matrix is only set-up once, and in

which the right search direction was obtained more often. The second pattern was exhibited by

both procedures. Again the tangential stiffness matrix, which forms the relation between the out-

of-balance force vector and the update in displacement was not configured properly. Therefore

large numbers of iterations occurred in which the change of the incremental displacement update

vector δu were very small.

A possible reason why the Newton-Raphson methods seems to fail is that the tangential stiffness

matrix is not properly conditioned. The main reasoning for this statement is that a iteration

method based on a secant stiffness, in this case the BFGS, provides significantly better results.

The BFGS algorithm lead to a far more convergent numerical process, which in terms lead to a

more computationally efficient calculation. The BFGS algorithm does however show, a distinct

oscillating behavior towards convergence, with often times large variations (' 5%) between the

iterated values of the norm of the out-of-balance force vector. The reasons for this oscillating

behavior could possibly be caused by the fact that the stiffness matrix is updated every iteration.

The BFGS method starts with a tangential stiffness matrix. After performing one iteration with
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Figure 6.6: Characteristic behavioral patterns for different iterations methods of the Newton class.
The force norm was applied for the analysis shown

this tangent, the subsequent iterations are evaluated with an updated tangential stiffness matrix

using the Secant Newton formulation. The BFGS formulation, as was presented in section 5.3,

uses previously calculated solution vectors and out-of-balance force vectors to achieve a better

approximation. This update is particularly effective in many circumstances because the update

to the tangent matrix is inexpensive and is done to a previously determined inverse so that no

matrix inversion is necessary in most equilibrium iterations.

Although the application of the BFGS method was successful in achieving convergence, a small

percentage non convergent increments remained. To eliminate this, the maximum number of

iterations was increased to a 150 [-], which lead to a fully converged solution. Another essential

aspect of the success of the BFGS procedure is the use of an explicit line search technique.

The term explicit is used because the BFGS has an implicit line search technique built in to

the iterative algorithm. The convergence characteristics of the BFGS procedure were not that

different with or without the explicit line search. There was however a difference (' 20%)

between the number of iterations needed per increment, which was larger when an explicit line

search was not applied.

6.4.2 Norm tolerance

The norm tolerance is a quantity that defines whether the iterative process has reached an

equilibrium state. When selecting stricter or slacker tolerances, the reached equilibrium states

represent different levels of accurateness. Therefore the user of the finite element programme

can determine the accurateness of the solution. In general, the tolerances are changed are for

two reasons: (1) improving computation time by selecting a slacker tolerance and (2) selecting

a more strict norm to ensure that the structural behavior is not affected by the accurateness of

the equilibrium state of the previous increment. The second reasons bases itself on the fact that

a slack tolerance leads to a build up of errors in the equilibrium states.
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The preliminary analysis were governed by the force norm, with a standard tolerance of 0.01 [-].

Meaning that the remaining norm of the out-of-balance force vector, has a value of less than

1% of the norm of the out-of-balance force vector, determined at the start of the increment.

This standard tolerance is used for a wide range of geometrically and physically non-linear

calculations. In general it is not advised to adapt a slack tolerance, certainly not in the case of

softening materials [13]. But the question is, as to what defines a strict or slack tolerance.

To assess the effect of different tolerances the displacement controlled analysis of the preliminary

section was considered with varying norm tolerances. The selected tolerances consisted of a

stricter value of 0.005, a more slack value of 0.02 and the standard value of 0.01 [-]. The analysis

process were improved by applying the BFGS procedure from the previous section with 150

iterations. The force norm was applied because it is considered to be the most strict norm, and

should provide results that can be considered to be as, or more accurate than the displacement or

energy norm. The results are presented through load-displacement diagrams depicted in figure

6.7a
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Figure 6.7: Load-displacement diagrams with norm and increment variation

When examining the load-displacement diagram, we can distinguish only little differences be-

tween the standard (tol = 0.01) and the more strict tolerance (tol = 0.005). Both analysis

follow an almost identical path, with small variations in the range of 0.5-4.0 [mm]. The less

strict norm (tol = 0.02) also displayed large similarities. However, with the slacker tolerance the

beam failed earlier in comparison with the other analysis. Although the larger tolerance showed

earlier failure, the accompanying load level was approximately similar. Besides this difference

in displacement at the moment of failure, all of the analysis showed similar failure modes and

crack patterns, see figure 6.8a and 6.8b.

When comparing the smallest tolerance with the standard tolerance, we can conclude that se-

lecting a stricter norm tolerance generally does not lead to a stricter behavior of the rest of the

incremental-iterative procedure. Meaning that the accurateness of the reached equilibrium state

does not has a large influence on equilibrium states in the following increments. The levels of

the out-of-balance force vector are more dependent on actual structural behavior than on previ-

ous levels of accuracy. All of the selected tolerances showed similar convergence characteristics
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(a) Norm tolerance 0.020 [-] (b) Norm tolerance 0.005 [-]

Figure 6.8: Crack patterns at respective moments of failure

with regards to the number of non-convergent increments. In all of the analysis the number

of non-convergent increments was below 3%. The difference however, lies with the amount of

computational cost, which was higher in case of a stricter tolerance. The standard and the more

slack tolerance showed negligible differences but the strictest norm doubled the computation

time due to the large number of iterations needed.

The general conclusion for this particular case, that choosing a more strict tolerance does not

provide a more accurate solution and only leads to a greater computational cost. The second

option of applying a more slack tolerance does not lead to increased convergence rate. It will

lead to a slightly different structural behavior in relation to the ultimate load, that does not

agree with the more accurate calculations.

6.4.3 Increment size

In general, a smaller increment size will be used for two main reasons, namely: (1) selecting a

smaller increment size will provide a more stable and convergent numerical process, and (2) a

smaller increment size will provide more accurate results. The first statement is based on the

fact that when selecting a smaller step-size, the degree of non-linear response per increment is

smaller and therefore the iterative procedure converges more easily. The second statement is

motivated by that local strain localizations are better assessed and are not over-stepped which

can be the case with larger increments. However, selecting a smaller step-size also leads to a

larger computational expense, due to more increments being calculated. The large number of

increments also lead to larger post-process files and accompanying post-process times.

To establish validity for the statement made above, a number of analysis were performed with

varying increment sizes. Furthermore, to establish that the BFGS method is more numer-

ically stable and more consistent with results than the (frequently used) modified Newton-

Raphson, a variation was made between these iteration methods. Figures 6.9 and 6.10 display

the load-displacement behavior of different increment-size and the accompanying percentage of

non-convergent increments.

Upon examining the convergence characteristics of the BFGS procedure (figure 6.9b), a trend

can be clearly distinguished that a smaller increment-size leads to a more stable and convergent

numerical process. Next to this, it can also be distinguished that the load-displacement curves
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of smaller increment-sizes tend to remain consistent with earlier analysis of large increment-

sizes. The only difference occurs for the ductility of the beam, but the ultimate shear-load

remain largely similar with an increasing number of increments. The modified Newton-Raphson

however, does show a largely different behavior when compared to the BFGS method. First of all,

the mN-R does not support the trend that, with a smaller increment-size the numerical stability

is improved. Furthermore, large differences are encountered when using different increment-

size. These differences lead to large variation in ultimate shear load (' 40%) and in ductility

(' 75%)of the beam. The main reason for this difference between both iteration methods is the

fact that the mN-R sets up a tangential stiffness matrix only once per load increment. When this

tangential stiffness matrix is poorly conditioned, convergence is not obtained and the load-path

may be influenced. This is not the case for the BFGS method, which applies a constant update

to the initial tangential stiffness matrix.
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Figure 6.9: Performance characteristics BFGS method with varying increment-sizes
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Figure 6.10: Performance characteristics mN-R method with varying increment-sizes
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6.4.4 Indirect displacement control

The standard arc-length method, as used in the preliminary analysis, constrains the load vector

by a constraint equation based on all the degrees of freedom in the model. In general, this does

not lead to faster convergence in case of a strong non-linear response in reinforced concrete. This

is because the global constraint equation cannot sense the local strain-localizations [6]. This was

evident in the preliminary analysis in which the arc-length load controlled procedure did not

provide better results than a standard displacement controlled procedure. To overcome these

problems, indirect displacement control was introduced. In using indirect displacement control,

only single nodal displacements or linear combinations of nodal displacements are selected that

control the constraint equation. The only drawback is that by the use of indirect displacement

control, the finite element calculation process looses its generality, because of the user selection

of displacements.

Next to the loss of generality, the selection of an appropriate nodal displacement is usually not

very straight-forward. In general, displacement are monitored at the edge of a structure, or

in the case of large single cracks, at the tip of the crack. In this case, the crack pattern is

to diffused to use the latter option. We therefore opt to constrain the arc-length through the

nodal displacement at the location of concentrated load in the y-direction. A second analysis

was performed with the monitored nodal displacement in the middle of the beam also in the

y-direction.

The force controlled analysis was extended with the findings of the previous section to ensure

that convergence would be reached. However, the convergence improving measures, that proved

successful in the previous sections, did not provide better results for this particular case. Both

analysis showed non-convergent increments (' 10%), even though the secant Newton procedure

was employed with a large number of iterations. Furthermore, because the arc-length method

constrains the length of the load vector to the degree of non-linearity, the number of load steps

even increased to a 1050 [-]. These numerical difficulties lead to excessive calculations times,

that were tripled when compared to the standard displacement procedure.

6.4.5 Summary

Benchmark beam A showed strong non-linear responses which lead to large numerical difficulties.

One of the main reasons for this is that the brittle responses, severely influences the stiffness

of the structures. The incremental-iterative does not have the intrinsic qualities to deal with

these types of crack formations. Another main cause for these numerical problems are the

occurrence of multiple cracks, limit points and bifurcations, which are usually associated with

strain-localizations and alternative equilibrium states [8].

To overcome these difficulties the following measures proved to effective in achieving convergence

(1) using a displacement controlled analysis (2) applying an iteration methods based on a secant

stiffness formulation (3) applying small increment sizes and (4) allowing for a large number of

iterations. The use of an load-controlled procedure in combination with an arc-length control

did not provide full convergence, this was also established by [7, 8]
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To underline the significance of reaching a fully converged solution, the displacement controlled

procedure from the preliminary analysis was plotted versus the fully converged solution from the

previous sections (figure 6.11). From this load-displacement diagram it is clearly visible that there

are some significant differences. The main difference is that in case of the non-fully convergent

solution, the ultimate load is underestimated by approximately 15%. There are also differences

regarding the overall stiffness of the structure and the displacement at the moment of failure

(ductility). The non-fully converged solution also displays a more smooth load-displacement

trajectory than in comparison to the fully converged solution. When comparing the ultimate

shear load of the converged solution to the analytical and experimental values, we find better

agreement than in case of the non-convergent solution.
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Figure 6.11: Load-displacement diagram for a fully converged solution and a non-full converged solution

From these conclusions the following is important to understand that: true snap-back behavior

cannot be captured by a displacement controlled analysis and reaching a converged equilibrium

only means that the finite element calculation has reached a solution deemed accurate enough by

the user with the set of parameters used. Whether this holds in relation to the actual structural

behavior can only be verified through experimental testing with large number of specimens.

6.5 Constitutive model parameters

6.5.1 Tensile behavior

Correct modeling of the tensile behavior of concrete constitutes one of the main objectives for

obtaining a correct structural response of the finite element model. The reason for this is that

crack formations due to tensile stresses are the main cause for failure of concrete under tension or

compression loading conditions. In a smeared crack configuration, three main parameters need

to be input for the constitutive model of concrete under tensile loading, namely: (1) the tensile

strength of concrete, (2) the shape of softening function and (3) the amount of mode I fracture

energy.
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ft Gf Softening function Ultimate load Failure mode
[ N/mm2 ] [ Nmm/mm2 ] [ - ] [ kN ] [ - ]

3.35 0.075 linear 212.1 flexural shear
2.85 0.075 linear 177.5 flexural shear
3.85 0.075 linear 211.6 flexural shear*
5.00 0.075 linear 213.5 flexural shear*
3.35 0.150 linear 210.1 flexural shear
3.35 0.075 exponential 200.3 flexural shear

Table 6.3: Results from numerical analysis with variations of tensile strength, fracture energy and
tension-softening function. The bold items are the varied parameters within the analysis. *Although
the global failure mechanisms remains the same the stress-state for which these analysis fail is a tension-

compression state, the other analysis fail solely due to tension
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Figure 6.12: Load-displacement diagram for different constitutive model parameters

6.5.2 Tensile strength

The tensile strength of concrete is a material property that has a significant influence on the per-

formance of RC beams. However, the exact value of the tensile strength can only be determined

with a high degree of variation. When analyzing existing structures on their shear strength, the

value of the tensile strength is even more difficult to obtain due to aging factors endured by the

concrete structure during its life-time. Therefore, the objective of this section is to analyze the

beam with the same material properties, but with a variation of the tensile strength. The reason

for this is to assess the influence of the intrinsic uncertainty regarding the tensile strength. The

tensile strength was varied with 2.85, 3.85 and 5.00 [N/mm2], the results have been submitted

to table 6.3. The variation in tensile strength represent a variation of 30%. The largest tensile

strength is chosen to be significantly higher to establish the following conclusions.

The analysis with the smallest tensile strength showed a significantly smaller ultimate shear

load in combination with a less ductile behavior, e.g. less displacement before failure, than

the standard analysis. The beam failed at V =175.5 [kN] with a displacement of approximately

12.0 [mm]. The analysis with the second largest tensile strength, 3.85 [N/mm2], resulted in a

similar ultimate shear load as the original tensile strength, but displayed a more ductile post-

peak behavior. To assess whether a more extreme value would lead to larger differences a tensile
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strength of 5.0 [N/mm2] was applied. This analysis also proved to lead to a more ductile behavior

but to only a negligible difference (1%) in the ultimate load.

It is interesting to see that in this particular case there is no proportionality between the ultimate

load and the tensile strength. The smaller tensile strength lead to a reduced ultimate load, but the

larger tensile strength did not lead to an increase in the ultimate load. The non-proportionality

of the failure load is caused by the fact that, although the critical crack occur at the same

location, the corresponding stress states are different. For the normal and reduced value of the

tensile strength, the failure is solely due to tension. But in case of the larger tensile strength,

the critical crack is formed under a bi-axial stress state∗ in which compressive and tensile strain

localize. With this bi-axial stress-state the beam finally fails due to compressive failure of the

compression diagonal. To illustrate the stress states, the magnitude of the principal strains

are plotted in figures 6.13 and 6.14. The figures displayed consist of the analysis with tensile

strengths 2.85 and 3.85 [N/mm2].
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Figure 6.13: Principal tensile strain ε1 at moment of failure of respective analysis.
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Figure 6.14: Principal compressive strain ε2 at moment of failure of respective analysis.

When comparing the principal tensile strains we can distinguish that both analysis exhibit similar

strain localizations for the ultimate crack. The difference between the analysis, is that in case of

the smaller tensile strength the strain localizes more extensively. This more extensive localization

leads to a smaller ultimate load than the standard analysis. The principal compressive strains

show that the smaller tensile strength has almost no compressive strain localization, and that

the compressive strain remains largely in the linear-elastic branch of the compression diagram.

This behavior however, is not present in case of the larger tensile strength where the principal

compressive strain localize in a similar manner as the principal tensile strains. This compressive

strain shows extensive softening, and leads to failure of the beam.
∗Although the beam fails due to failure of the compression diagonal it is important to mention that the

bi-axial stress state contributes to this failure mode. The reason for this is the reduction of compressive strength
due to lateral cracking according to the model of Vecchio and Collins
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To further establish the conclusion that including compressive softening has significance influ-

ence on the structural behavior, a number of different analysis were performed in which the

compressive fracture energy Gc was varied. The performed analysis consisted of using the ten-

sile strengths 2.85 and 3.85 [N/mm2], with varying compressive fracture energies of 25.0 and

50.0 [N/mm]. Following the line of reasoning in the previous paragraph, the smaller tensile

strength should encounter only a small influence from the difference in compressive fracture.

While the larger tensile strength should encounter significant differences in structural behavior

because of the failure of the compression diagonal. The performed analysis are presented through

load-displacement diagrams in figure 6.15.
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Figure 6.15: Load displacement diagrams for analysis with varying tensile strength and compressive
fracture energy

Upon examining the load-displacement behavior of the tensile strength value of 2.85 [N/mm2],

largely similar behavior can be distinguished. Only minor differences occur when the analysis

reach their respective ultimate values. At this point, some compressive softening occurs and the

influence is visible as a difference in ultimate load of approximately 5%. When examining the

large tensile strength of 3.85 [N/mm2], the beginning stages also no real differences. However,

at approximately 10.0 [mm] displacement, the analysis consisting of the smaller fracture energy

shows failure at approximately 12% smaller value than the larger fracture energy. However, what

is more important is that the ductility of the beam is severely affected by the smaller fracture

energy, constituting a difference of roughly 80%.

The cause for this failure, is that the formation of a compression strut is not possible because of

the low value of compressive fracture energy. The beam therefore fails in reasonable conjunction

with the analysis consisting of the lower tensile strength. The analysis consisting of the smaller

fracture energy, show a difference of 11% in the ultimate load value. The difference between

displacement before failure is approximately 30%.
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6.5.3 Tension softening function

As was outlined in section 4.4, there are a number of tension softening functions available. The

linear softening function used in the previous sections is generally considered to be useful for

overall structural applications. The reason for this being that the error introduced by using a lin-

ear diagram instead of non-linear diagram remains only small in case of normal sized beams [20].

The linear model however is considered to be a rough approximation of the actual behavior,

which is captured more realistically by the non-linear models. These models based their respec-

tive softening functions on direct tension tests. For this section the used non-linear softening

model was developed by Reinhardt [17].

When comparing the linear and non-linear softening functions, a difference of 5% was observed

in the ultimate load value (see figure 6.12a). The reason for this seems to be that in the stage of

extensive softening, right before failure, the non-linear softening function provided less stiffness

leading to a smaller ultimate load. This reduced amount of stiffness was a consequence of more

extensive softening that was observed in the later stages of the loading history.

6.5.4 Mode I fracture energy

The fracture energy is a measure for the amount of energy required to fully fracture a unit area

of concrete. The mode I indication implies that the loading condition is pure tension only. The

fracture energy that was used in the previous sections was determined with the use of the CEO-

FIP model code 1990 (MC90). This code bases the fracture energy for concrete in tension as a

function of the compressive strength and an experimentally obtained reference fracture energy.

The amount of fracture energy can also be seen as a measure for the ductility of the concrete. A

zero energy value will lead to complete separation of the concrete upon violation of the tensile

strength. Increasing the amount of fracture energy will lead to larger strains and more ductility.

The amount of fracture energy can therefore be of importance in shear critical beams, where

sudden crack formation are more likely to appear. To assess the effect of varying the fracture

energy we compared the MC90 value of 0.075 versus a doubled value 0.15 [Nmm/mm2].

The influence of the larger fracture energy is clearly visible in the early stages of the tension

stiffening of the beam. The large value provide a far more stiff behavior, after which a snap-

through occurs and both the analysis follow an almost identical path. The analysis with the larger

fracture energy does show a difference in the amount of displacement before failure. Although

the ultimate load is very similar, 1% difference, the failure occurs prematurely in comparison to

the standard analysis. One of the reasons for this behavior is that the beam has sustained more

damage because of the initial drop in the load-displacement curve.

6.6 Evaluation of crack models

The smeared crack model used in the previous section was the rotating total strain model. Next

to this smeared crack model, a fixed total strain model and a fixed multidirectional model are

available. The main difference between the fixed and rotating total strain models are the manner
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in which the cracks evolve under their respective loading history. Whereas the rotating crack

model allows the crack to rotate with the axis of the principal strain, the fixed models constrain

the cracks at the moment of formation and does not allow for rotation. The consequence of

this latter approach is that the constrainment of the cracks leads to a build-up of shear stresses

on the face of the crack when the principal directions undergo rotation. The amount of shear

stresses can be predetermined by a shear retention factor, that is defined either as a constant or

a variable value. The description and details of the models were discussed in section 4.3.

This section will consider the performance of the rotating crack model versus the fixed crack

model and multiple fixed crack model in combination with a constant shear retention of β=0.05

and 0.005∗[-]. This implies that upon rotation of the principal directions, a constant reduced

shear modulus of respectively 5 or 0.5% of the original value was used. Next to the constant shear

retention, a variable shear retention was investigated, that gives a relation for the shear retention

factor in relation to the strain εcr
nn perpendicular to the crack. This implies that with increasing

strain (crack width) there is a reduction in shear stresses. This appears to be a valid assumption

since the amount of shear stresses are consequence of aggregate interlock, which is dependent

on the constrainment of the crack. Figure 6.16 displays the load-displacement diagrams that

resulted from the different analysis.
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Figure 6.16: Load-displacement diagram with fixed and rotating smeared crack models

6.6.1 Fixed crack model with constant shear retention

In general the fixed crack model, in combination with a small (<0.05) constant shear retention,

provides reasonable structural responses. However, due to shear stresses on the crack face,

the ultimate load tends to be overestimated by these models. This shear stress occurs as a

consequence of the rotation of the principal strain directions. In using a constant shear retention,
∗This value for the shear retention can be regarded as zero. An actual value of zero would lead to numerical

difficulties because of the fact that this value would constitute zero’s on the main diagonal of the stiffness matrix.
Therefore this value is chosen as very small
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the shear stresses do not ’soften’ down to zero upon increasing normal strain, which is more in

agreement with the physical reality.

(a) εnn, 7.0 mm displacement (b) εnn, 14.0 mm displacement

(c) snt, 7.0 mm displacement (d) snt, 14.0 mm displacement

Figure 6.17: Crack patterns for fixed crack model with shear retention β=0.05 (top) and β=0.005
(bottom). Only cracks are portrayed that have either undergone full mode I softening or display crack

shear stresses snt of larger than 0.5 N/mm2

In this particular case, the analysis that consisted of the fixed crack model and a shear retention

of 0.05 [-] lead to large shear stresses on the crack faces. The fixed model analysis with a shear

retention of 0.005 [-], showed similar responses regarding crack formations and shear stress build-

up as the larger shear retention factor. Only the degree of the stress-build up was slightly less

severe.

The consequence of this shear build up is that the entire load-displacement behavior of the beam

is compromised. From the load-displacement diagram in figure 6.16 we can clearly see a very

different response when compared to the rotating crack model. The reason that the fixed model

analysis do not end with a downward branch at the end of the diagram, is a caused by the

fact that the entire load was carried by shear stresses on the crack-faces. The large build-up of

shear stresses on the crack faces has two main consequences. Firstly the crack patterns are very

extensive even in early loading stages, and secondly the beam exhibits additional load-carrying

capacity only through shear stresses on the crack faces. To illustrate this the crack normal strain

εnn and the crack shear stresses snt are depicted in figure 6.18. Only cracks are portrayed that

have either undergone full mode I softening or display crack shear stresses snt of larger than 0.5

N/mm2 When examining the crack patterns we can establish that the extent of the cracks is

much larger when compared to the rotating crack model

6.6.2 Fixed crack model with variable shear retention

Next to the constant shear retention a variable shear retention factor can be used that is related

to the amount of shear strain, see section 4.5. A linear descending variable shear retention factor

and non-linear shear retention factor that descended exponential with increasing shear strain
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were analyzed using the fixed crack model. Both these model however, did not lead to less

stress-locking than in relation to a constant shear retention.

The response of both shear retention functions was similar. In the early stages of the loading

process (<4.0 [mm]) both shear retention models showed crack pattern development that was in

good agreement with the experimental results. However during subsequent loading, the principal

directions start to rotate, and both models show excessive locking compromising the entire load-

displacement behavior. A failure peak could therefore not be obtained and the analysis were

ended.

(a) εnn, 7.0 mm displacement (b) εnn, 14.0 mm displacement

(c) snt, 7.0 mm displacement (d) snt, 14.0 mm displacement

Figure 6.18: Crack patterns for fixed crack model with shear retention β=0.005. Only cracks are
portrayed that have either undergone full mode I softening or display crack shear stresses snt of larger

than 0.5 N/mm2

To overcome the problems with excessive stress locking, a number of researchers have adopted

different shear formulations. A widely used variant consists of shear retention factor based on

the crack normal strain. This model is physically appealing since the shear transfer across crack

is dependent on the aggregate interlock mechanism, and aggregate interlock is, among others,

dependent on the width of the crack. However no such model is directly available in the used

FE code, and is therefore not further investigated.

6.6.3 Fixed multi-directional crack model

The fixed multi-directional crack model allows for the formation of multiple fixed cracks under a

predefined angle. This model constitutes a intermediate between fixing orthogonal cracks (fixed

crack model) and allowing for constant rotation (rotating crack model) of orthogonal cracks.

The fixed multidirectional is not based on the total strain formulation but uses the decomposed

strain formulation in order to overcome certain difficulties regarding the correct representation

of multiple cracks. In this particular analysis the angle for which a new crack may be formed

was set at 60◦, and the linear tension cut-off criterion was used.
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Upon performing the analysis it was found that the model provided a good initial representation

of the crack pattern (figure 6.19) and the accompanying load-path. However, at approximately

4.0 [mm] displacement, the iterative procedure would diverge. When examining the model for

a possible cause for this problem, no real indications such as irregular deformations or sudden

extensive crack patterns were found. It was therefore concluded that the divergence was solely

caused by a numerical issue. To stabilize the numerical procedure, a number of measures were

applied to improve and possibly ensure convergence. As a first measure, the increment size was

decreased to 1/2 and 1/4 times the original increment-size. This measure however, did not lead

to any improvement divergence still occurred. As a second measure the linear tension cut-off

criterion was replaced by a constant cut-off criterion, this however also did not lead to the avoid-

ance of divergence. Further measure included linear softening instead of exponential softening,

and omitting the use of compressive softening. Both these measures did not lead to improved

behavior of incremental-iterative procedure. As a final measure, a restart of the incremental-

iterative procedure was performed with a different stiffness. This measure was motivated by

the fact that the iterative procedure diverged at the very first iteration. The BFGS method

used a tangential stiffness at the very first increment, therefore the restart was performed with

a stiffness obtained from previous convergent increment. However, again no improvements were

obtained. Therefore the fixed multidirectional crack model was abandoned as a feasible crack

model for this particular beam.

Figure 6.19: Crack-pattern at the moment of last converged increment for the multi-directional fixed
model

6.6.4 Rotating total strain crack model

The rotating crack model for has proven to be reasonably successful in modeling reinforced struc-

tures that are dominantly loaded in mode I [22,14,20]. In this particular case, the performance

of the rotating crack model was also in good agreement with the experimental results. An ul-

timate shear load of V =200.3 [kN] was found, with a crack pattern that corresponds with the

experimentally obtained crack pattern. Figures 6.20a and 6.20b depict the crack pattern for two

different load-stages. Only cracks that have undergone full mode I softening (i.e. εcr
nn > εcr

nn;ult)

are portrayed. From these crack patterns we can distinguish that the rotating crack model gives

a far less extensive crack pattern, than in comparison with the fixed model. However, the crack

pattern of the rotating model is still far more extensive than for in comparison with the ex-

perimental crack patterns. A more detailed elaboration of the rotating crack model versus the

experimental results is given in section 6.8.

The application of the rotating crack model does show one drawback, that is a consequence of

the rotation of the principal directions. Because cracks rotate constantly in order to remain
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(a) εnn, 7 mm displacement (b) εnn,14.5 mm displacement

Figure 6.20: Crack patterns for rotating crack model, only cracks that have undergone full mode I
softening are depicted

perpendicular to the principal strain directions, they can also exhibit an over-rotation. An over-

rotation in this case, is a rotation of a crack to such a degree that is does not conform with

the physical reality. The main issue with rotating cracks is that, because of the nature of the

smeared cracking concept, cracks represent a reduced stiffness in the directional to the normal of

the crack. That means that if a crack is formed and undergoes softening, it represent a reduced

stiffness in its initial direction. When this crack rotates, the direction of the reduced stiffness

also rotates leading to a reduced or even zero stiffness in an initially un-cracked direction.

To illustrate the over-rotation of cracks, the crack-patterns of the fixed and rotating crack model

are depicted in figure 6.21a and 6.21a. Because the fixed crack does not allow for rotating we

see that the cracks remain virtually perpendicular to the reinforcement and only show different

angles in elements above the reinforcement. The rotating crack model however, shows crack

that have aligned with the reinforcement. This rotation is physically un-realistic because cracks

generally stay perpendicular to the reinforcement.

(a) Rotating crack model (b) Fixed crack model

Figure 6.21: Crack patterns at the location of the main longitudinal reinforcement of the beam near
the support, only cracks that have undergone full mode I softening are depicted. The blue lines indicate

the reinforcement.

The over-rotation of crack has two main consequences, namely: (1) unrealistic strain and there-

fore deformation localizations and (2) unrealistic crack propagation in element containing rein-

forcement. To illustrate the first statement, figure 6.22a and depicts the deformed mesh of the

rotating crack model analysis at the moment of failure. The deformed mesh shows the failure

of the beam through the shear-band caused by the critical crack. However, it is also visible

that the deformation is localized in element containing reinforcement (red lines) and that these
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localizations extent horizontally over a number of elements. The exact extent of the influence of

these strain-localizations on the ultimate load and failure mode is difficult to assess. The main

reason for this is that there are no other smeared crack models, used in this thesis, that could

provide results for comparison. When comparing the deformations and crack-pattern formation

between the analysis and the experimental results, some differences can be distinguished. The

main difference is that the ultimate crack in the experimental results is a reasonably continuous

crack without horizontal cracks in the web section of the beam. The analysis results of the

rotating crack model on the other hand, predict horizontal cracks in the web section of the beam

and more extensive horizontal cracking at the location of the bottom reinforcement.

(a) Mesh 50×50 b × h [mm]

(b) Mesh 25×25 b × h [mm]

Figure 6.22: Deformed mesh plots at moment of failure, deformations are exaggerated

When analyzing the behavior of the crack that over-rotate, it was found that the over-rotation

occurs only in particular cases. The main observation was that the cracks only rotate in elements

containing reinforcement. Upon further analysis it was found that using triangular element in-

stead of quadrilateral element did not prevent rotation of cracks towards reinforcement. Another

aspect of the rotating crack model is that upon mesh refinement, the strain localizations remain

within the reinforced element. It was also found that the strain-localizations are more extensive

with more element undergoing shear deformation. This is illustrated in figures 6.22a and 6.22b

through deformed mesh plots, and the strain evolution of a typical element containing reinforce-

ment is shown in figures 6.23a and 6.23b. Another important observation was the fact that

cracks, for the large part, rotate while softening. Upon crack formation, the crack are perpendic-

ular to the reinforcement, with during softening a gradual rotation towards the reinforcement.

At the moment that the crack are fully softened there directions remain reasonably unchanged.
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Figure 6.23: Strain evolution of an element containing reinforcement using the rotating crack model

The exact cause for this phenomenon of over-rotating cracks and the accompanying strain local-

ization is difficult to assess. However, as a tentative conclusion, two main reasons are considered

to be the cause of the problem, namely: (1) experimental of panels with large shear stresses

show that the rotation of principal stress directions lag behind the rotation of principal strain

directions [21], and (2) the transfer of concrete stresses to steel stresses is considered to be not

properly configured for element that are reinforced in only one direction. To elaborate on the

first statement, experiments have shown that principal stress and strain directions do not al-

ways coincide. The rotating crack model however enforces that the principal directions always

coincide with the so-called co-axiallity principle, as was presented in section . To enforce this

coincidence of principal directions, rotating crack model generates a shear stiffness. This shear

stiffness would explain the typical strain-deformations. The second statement is motivated by

the fact that upon the moment the concrete stresses are normally transferred to the steel, the

rotations occur. It is probable that the strain and stress directions deviate from each other,

creating the earlier mentioned shear increment. This would again explain the shear stiffness and

why this only happens in element containing reinforcement.

When discussing whether the rotating crack model can made more physically correct by not

allowing over-rotation of crack we come a few possible measures. First off all, it is possible to

allow the crack to rotate only over a predefined range, this would circumvent a possible over-

rotation of the cracks. However, defining such an angle is difficult to physically justify. Another

possibility could be to include the dowel-action mechanism. The inclusion of this mechanism

could play an important role on element stiffness level, because it provides a resistance against

the shear deformation of the element.

6.6.5 Summary

From the previous sections, the following conclusions can be drawn regarding benchmark A. The

tensile strength has a large influence on the structural behavior of the beam. It has an influence
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on the ultimate shear load and the stress-states for which the failure crack is developed. The

fracture energy and the shape of the softening function do not have significant influence than

the tensile strength.

For this particular benchmark the use of the fixed crack models with a constant shear retention

did not provide correct results. The combination of the fixed model with the constant shear

retention will lead to a build-up of shear stresses on the crack face, which influence the structural

behavior of the beam. In this case the stress-locking caused excessive crack patterns and over-

stiff behavior. Selecting a very small value of the shear retention factor or using a variable

shear retention factor did not improve the structural results. The fixed multidirectional model

showed divergence for this particular benchmark, extensive measure could not avoid divergence

and therefore, proper results could not be obtained. The rotating crack model provides results

that are structurally in good agreement with the experimental results. However, the rotating

crack model suffers from over-rotating of cracks leading to un-realistic shear localizations.

6.7 Spatial discretization

Spatial discretization or mesh design, is an important part of a correct finite element model.

However, guidelines for the type of element and their respective dimensions are not widely

available for specific structural problems. The objective of this section is to map out the influence

of the different mesh characteristics such as element choice and dimensional properties of the

mesh design. These characteristics will be compared on three different aspects, namely: (1)

objectiveness of results upon mesh refinement, (2) crack formation and propagation in relation

the mesh alignment and (3) differences between triangular and rectangular mesh designs. The

investigated mesh-designs are depicted in figure 6.24. As a final aspect of spatial discretization,

an analysis will be performed on a model of the entire beam.

(a) Triangular mesh aligned with expected crack
direction

(b) Triangular mesh counter-aligned with
expected crack direction

(c) Slanted quadrilateral mesh

Figure 6.24: Investigated mesh designs
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6.7.1 Mesh dimension

In general it can be established that there are three criteria for defining the dimensions of a

mesh (1) a too course mesh size (2) a correct mesh size and (3) a too fine mesh size. The

consequences of a too course mesh size are that general accuracy requirements are not met.

The obtained results may therefore lead too wrong conclusions regarding the shear capacity

of the beam. The consequence of selecting a too small element size is that although accuracy

increases, the calculation process may become computationally very expensive, since a larger

stiffness matrix requires more computations to set-up and solve the set of linear equations.

Selecting the correct mesh dimension is therefore not a straightforward task. Therefore, in this

section the standard quadrilateral mesh (b× h = 50× 50 [mm]) as used in the previous sections

was examined and compared to finer mesh designs of b × h = 35 × 35 and b × h = 25 × 25

[mm]. The mesh designs will be assessed on their structural response with particular attention

for the objectiveness of the results upon mesh refinement. This objectiveness implies that upon

selecting a smaller mesh dimension the structural response remains the same. In a smeared

crack formulation using the fracture energy approach, the mesh objectivity is obtained through

an equivalent crack bandwidth h. This crack bandwidth relates the energy dissipation during

fracture to the dimension of the element to ensure objective results. The bandwidth was defined

as
√

A, with A defining the element area, for a quadrilateral plane stress elements.
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Mesh b*h=50*50
Mesh b*h=35*35
Mesh b*h=25*25

Figure 6.25: Load-displacement diagram for three different mesh dimensions

After analyzing the standard mesh dimension versus both the finer mesh dimensions, it was found

that a pronounced mesh bias was distinguishable. The bias is particulary visible in the load-

displacement diagram as depicted in figure 6.25. From this diagram we can observe that after

6.0 [mm] displacement the curves start to follow different load-paths, which eventually results in

a difference of approximately 40.0 [kN] between the largest and the smallest ultimate load value.

Upon further investigation of the differences between the analysis, two main observations were

made: (1) the strain localizations tends to localize in single elements only and (2) the deformation

consequences of the over-rotation of cracks near reinforcement layers is more pronounced in case

of a finer mesh.
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To illustrate the first observation, the contour plots of the principal strain ε1 are depicted in figure

6.26a for the largest mesh dimension and 6.26b for the smallest mesh dimension. The depicted

strain-contour represents an early stage of loading, in which the flexural cracks start to grow

into the web. From these figures, the strain-localization in only single elements is clearly visible.

In general, mesh objectivity is obtained through the use of the fracture energy approach. In this

particular case, this objectivity does not seem to be compromised. The reason for this is that

although the strain localizations are smaller, the strain peaks are significantly higher. Because

the fracture energy represents the area under the softening branch, the ultimate strain varies

with different mesh dimensions. The consequence is that the strain should be larger for a smaller

mesh dimension to dissipate the same amount fracture energy as a larger mesh dimension. In

this case the strain of the b×h = 25× 25 [mm] should be approximately 1.75 times the strain of

the larger mesh dimension, b×h = 50× 50 [mm]. This statement however cannot be completely

verified.

(a) Mesh 50×50 (b) Mesh 25×25

Figure 6.26: Principal tensile strain ε1 for two different mesh dimensions at 2.50 [mm] displacement

The second observation that is made with a finer mesh dimension is that the rotation of the

principal directions is more pronounced. From the crack patterns in figure 6.27a and 6.27b we

can observe an interesting difference between the analysis. The smallest mesh design shows a

more distinct crack pattern (as could be expected) than the larger mesh designs, who show a

more blunt crack formation with less distinction between different cracks.

(a) Quadrilateral mesh design b× h = 50× 50[mm] (b) Quadrilateral mesh design b× h = 25× 25[mm]

Figure 6.27: Crack patterns at 2.0 [mm] displacement for different quadrilateral mesh dimensions

What is also visible, is that the over-rotation of the principal directions and the accompany-

ing crack formation along the bottom reinforcement in case of the 50 × 50 [mm] mesh. This

over-rotation leads to a crack formation along the entire underside of the beam. In normal

circumstances this is not the expected crack pattern. In the case of the two smaller mesh di-

mensions the over-rotation occurs not only for the bottom reinforcement but also for the web

reinforcement.
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In section 6.6.4, it was elaborated that the over-rotation of the principal directions expresses

itself in shear and transversal strains. To show that a finer mesh is more sensitive for over-

rotation, the shear strains have been depicted in figure 6.26a. The large mesh dimension shows

only significant shear strains localizations at the location of the bottom reinforcement. The

overall picture of shear strain localizations is one of a very blunt nature. The smaller mesh

dimension however also shows more pronounced shear strain localizations at the locations of the

main as well as the web reinforcement. The question could be posed whether these localizations

are actual behavior of the RC beam. However, in normal circumstances a crack will not likely

propagate horizontally into the web. When we disregard these localizations around the web

reinforcement, we can distinguish a fairly good agreement between the critical crack formations

of the experimental results and of these results.

(a) Mesh 50×50[mm] (b) Mesh 25×25[mm]

Figure 6.28: Contour plot shear strains εxy at moment of failure of respective analysis are portrayed.
The reinforcement is indicated with blue lines

6.7.2 Mesh alignment

Because of the nature of quadrilateral elements and their selected orientation, the respective mesh

designs generally consist of reasonably square elements aligned with the orthogonal x−y system.

When applying triangular elements, the mesh is also by nature aligned or counter-aligned with

the expected crack pattern. Crack formation in concrete however, has the tendency to rotate

after formation and propagate at an angle towards the compression zone of the beam. This is

certainly the for flexural crack that form in the shear spans of RC beams. To assess the influence

of the alignment of the elements in relation to the crack formation and propagation, a comparison

is made between a number of different mesh designs. The mesh designs with triangular elements

are depicted in figure 6.24a and 6.24b. These figures display two mesh designs using triangular

elements but differ in the direction of the mesh lines. Furthermore, a comparison will be made

between the standard mesh design as used in the previous sections, and an slanted (aligned)

quadrilateral mesh. The slanted mesh designs consists of a model of the entire beam, this was

necessary for a correct mesh design

The quadrilateral meshes consisted of the standard eight-node element with 3×3 Gauss integra-

tion. For the triangular mesh, six-node elements were applied. These triangular element were

integrated using 7-point Gauss integration. This integration scheme proved to give numerical

stable results, unlike the 3 and 6-point Gauss integration schemes that resulted in numerical

problems due to spurious energy modes.
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(a) Triangular mesh aligned with expected crack
directions

(b) Triangular mesh counter-aligned with expected
crack directions

(c) Aligned triangular mesh (d) Counter-aligned triangular mesh

Figure 6.29: Crack patterns and strain εxx contour plots for triangular mesh designs at 2.0 [mm]
displacement

One of the main observations in comparing the analysis results, is that there is a significant

directional bias when using triangular elements. The crack formations in case of the aligned

triangular mesh show a very different crack pattern in comparison to the counter-aligned mesh.

The aligned triangular mesh shows a crack formation, in which the main cracks slope upwards

towards the loading plate. In this stage of the load application the beam is in the starting stages

of tension-stiffening, the cracks that follow from this tension-stiffening are expected to be formed

due to flexure, and form perpendicular to the longitudinal axis. This crack patterns is much

more visible in case of the counter-aligned mesh. To further illustrate the directional bias, the

strain εxx contour is plotted in figures 6.31c and 6.29d. The contour plots clearly show how the

strain in the aligned mesh has the tendency to localize in the direction of the element lines.

As a consequence of this dimensional bias, the ultimate shear load is affected. In case of the

aligned mesh, the beam fails due to reaching its flexural moment capacity, V =218.3 [kN]. This is

an interesting fact because although aligned meshes show easier crack propagation, the ultimate

load is not lower. The counter-aligned mesh shows a ultimate load and failure mode that is

consistent with a rectangular mesh. An important observation is that the crack direction of

the individual integration points are very similar, in both triangular mesh designs. The main

difference occurs for the direction in which the crack grows over the elements.

When comparing the standard quadrilateral mesh design versus the slanted mesh design, we can

again distinguish a directional bias. This bias however is less pronounced when compared to

the triangular elements. Figures 6.30a to 6.30c show three crack patterns. From these crack

patterns a number of observations can be made. In the beginning load stages, we see that the

cracks have the tendency to align with the mesh, with a large crack at the left-side of the beam.

Upon further loading, the main crack however develops on the right-side of the beam, in the

counter-aligned direction. This crack also leads to final failure. The accompanying failure load
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(a) 2.0 [mm] displacement

(b) 4.0 [mm] displacement

(c) Moment of failure

Figure 6.30: Crack pattern for slant quadrilateral mesh

V =225.7 [kN], with a failure occurring through the beam reaching its flexural moment capacity.

This means that the beams behaves stiffer than a normal aligned mesh.

Both the slanted quadrilateral mesh and the aligned triangular mesh show failure by reaching

the moment capacity of the beam.

6.7.3 Symmetrical modeling

The model that was used in all of the previous sections consisted of only half the beam (except

for the slanted mesh design), as was depicted in section 6.2.1. In order to determine whether this

choice for using symmetry has any influence on the structural response of the beam, an analysis

was performed with a model of the entire beam. The results of this analysis are depicted through

the crack-patterns in figures 6.31a, 6.31b and 6.31c.

From the first crack-pattern it can distinguished that there are a number of symmetrical flexural

cracks, and one large diagonal crack on the right-side of the beam (figure 6.31a). The formation of

this crack leads to a redistribution of forces, and to the formation of another large diagonal crack

(figure 6.31b), making the crack pattern symmetrical. After this symmetric crack formation the

crack propagates only on the left-side of the beam. After an initial drop the beam finally fails

abruptly due to the major crack at the left-side of the beam.

From this analysis it is interesting to see that there are large differences as well as large similarities

between the analysis. When comparing the symmetric model versus the entire model, the failure

mechanisms and crack patterns are very similar. The value for the ultimate shear load differs
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(a) 4.00 [mm] displacement

(b) 4.50 [mm] displacement

(c) Moment of failure

Figure 6.31: Crack patterns of entire beam model

only slightly (1%). Another key similarity is that the moment of failure is very brittle for both

models. Besides these similarities, there are significant differences in the total structural behavior

up to failure of the beam, as is clearly visible in the load-displacement diagram. The model of

the entire beam behaves stiffer in the stages initial cracking, and over the beam also shows a

large number of snap-through’s that do not occur at all for the symmetry model. The leads to

the conclusion that with this particular benchmark, the modeling a symmetric model leads to

an a similar failure mode and ultimate shear load value. But is also has a large consequence on

the behavior of the entire beam.

Another important aspect is that the entire beam model fails a-symmetrically, this means that

the failure mechanisms could also occur in the right-hand-side of the beam. Therefore it is

important to rule out the possibility of the randomness of the crack pattern and failure mode, to

ensure that we have obtained the correct results with this particular model and set of parameters.

The analysis was therefore repeated, and the exact same results were obtained at every instant.

6.7.4 Summary

For this particular benchmark, a directional as well as an dimensional bias is present in case of

the application of the rotating crack model. This bias implies that structural response of the

numerical analysis, are different in case of differing spatial discretizations. To summarize both

the dimensional and directional bias, table 6.4 displays the obtained ultimate load values and

the accompanying failure modes. It is clear that large variations occurs and even different failure

modes are possible.
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Mesh design Ultimate shear load V Failure mode
[kN] [−]

quadrilateral mesh 50×50 [mm] 200.3 flexural shear
quadrilateral mesh 35×35 [mm] 186.9 flexural shear
quadrilateral mesh 25×25 [mm] 166.3 flexural shear
triangular mesh aligned 218.3 flexural moment
triangular mesh counter aligned 198.4 flexural shear
quadrilateral mesh slanted 225.0 flexural moment
experimental result 162.7 flexural shear

Table 6.4: Summary ultimate shear loads V and failure modes for different mesh designs

An important fact to consider when reviewing the directional bias, is that the rotating total strain

model was applied. Because the fixed model allows no rotating of the cracks the directional bias

may be of less significance for triangular elements. As was established in the previous section,

the fixed model provides results that were of such a poor quality, that an objective comparison

could not be made.

6.8 NLFEA versus experimental results

As a final aspect of the first benchmark study, a comparison will be made between the ex-

perimental results and the results obtained from the previous sections. The reason that this

comparison will be made in the final section, is because the comparison used the information

that was obtained in the previous section. The focus will therefore be on the structural aspects

to establish the validity of the obtained NLFEA results in comparison with the real-life behavior

of concrete beams.

To compare the results, the rotating crack model was selected due to the fact that it was the

only smeared crack model that provided consistent results. The constitutive model consisted of

exponential softening in tension and parabolic softening in compression. Furthermore, the entire

beam was modeled. The reason for this was the earlier discussed differences between a symmetric

and entire beam model. Also, the use of the entire beam model will give a better comparison

with the experimental results. The mesh was designed with dimensions b× h = 25× 25 [mm].

Figure 6.32 depicts the load-displacement behavior as obtained from the experimental results [15]

and from the numerical analysis. As can be observed the load-displacement behavior of the

experiment differs strongly in comparison to the numerical analysis. Only in the later stage of

loading, close to the moment of failure, a similarity is observed in the load-displacement path.

The large differences are of unknown origin since the experimental results only mention the

normalized displacement and not the exact displacement of the mid-point versus the applied

load, as with the performed FE analysis. After verifying with the linear elastic stiffness, the

numerical analysis shows the correct stiffness, while the experimental linear elastic stiffness is

too small.

Although the load-displacement behavior was very different between the numerical and experi-

mental results, the obtained ultimate load and displacement at moment of failure was similar.
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Figure 6.32: Load-displacement diagram for experimental results and numerical analysis results

The numerical analysis failed at a load of 174.3 [kN], which is a difference of 7.0% in relation to

the experimentally obtained ultimate load. The displacement at failure is also reasonably similar

with a difference of 18.9%. The experimental results also recorded that the beam ”displayed no

warning as to imminent failure and did not posses any post cracking capacity”. This was also

recorded as the failure mode in the finite element analysis. However, the possibility exist that

the failure of the finite element analysis was due to numerical factors and not due to structural

factors. In this particular case however, the sudden failure of the analysis is considered to be

caused by structural failure. This conclusion was drawn from three main observations/assump-

tions, namely: (1) beam already shows extensive cracking, and was expected to reach failure,

(2) the experimental results also indicate sudden failure with no post-cracking capacity.

Figures 6.33a to 6.34d depict the crack patterns as obtained from the experimental as well as

the numerical results. When considering the initial crack patterns, figures 6.33a and 6.33b, we

can distinguish that a number of bending cracks have developed in both the figures. One of

the first observations is the blunt formation of the crack pattern for the rotating crack model.

The center of the beam shows a somewhat half circle with all the element being cracked, and

undergoing softening to certain degree. It can also be observed that the number of cracks that

have propagated into the web are fewer in number than in comparison with the experimental

crack pattern. The cracks from the rotating crack model also show some significant rotation

inwards towards the load-plate. When we continue to the following load-stage, we can see that

within a small load increment (25 kN), a large number of cracks have developed in both analysis.

However, where the numerical analysis shows large cracks propagating at angles into the web,

the experimental crack pattern shows only cracks that just start to rotate towards the load plate.

What is also interesting to see is that the numerical analysis shows a crack formation along the

entire underside of the beam, while the experimental cracks shows no indication whatsoever of

horizontal crack formation. This crack formation at the underside of the beam, was discussed

earlier and is considered to be a crack anomaly of the rotating model.
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At 150.0 [kN], the experimental crack pattern shows flexural cracks that start to propagate

towards the load plate at their crack tips. When comparing this crack pattern with the nu-

merically obtained crack pattern, we distinguish that the crack pattern is more extended than

the experimental pattern. Also the critical crack, for which the beam is going to fail, already

propagated to the underside of the load plate. At the respective moments of failure of both the

experimental and numerical analysis, figures 6.34c and 6.34d, it is visible that the failure modes

are very similar. Experimental as well as numerical results show a single large shear crack which

propagates from the load plate towards the bottom of the beam. The only difference consist of

the shape of this crack. While the numerical analysis shows an straight crack, at approximately

30-40◦ with the longitudinal axis, the experimental crack pattern shows a crack with a concave

form. Both crack-patterns also show a horizontal crack formation near the reinforcement as part

of the failure mechanism.

When reviewing the overall performance of the numerical analysis, in this case the rotating crack

model, versus the experimental results, the following conclusions were established. It can be con-

cluded that the prediction of the ultimate load, in both the displacement and load value, are in

good agreement with the experimental results. Also the failure mode and accompanying crack

pattern prediction are reasonably similar. The main drawback of the rotating crack model, as

was established earlier, is the over-rotation of the cracks. This over-rotation leads to an unre-

alistic crack pattern at the underside of the beam. Another issue facing the numerical analysis

is the bluntness of the crack pattern, in which little distinction can be made between crack and

intact concrete.
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(a) 100 kN

(b) 100 kN

(c) 125 kN

(d) 125 kN

Figure 6.33: Crack patterns obtained from experimental results and from numerical analysis



Benchmark: Beam A 67

(a) 150 kN

(b) 150 kN

(c) Failure 161.0 kN

(d) Failure 174.3 kN

Figure 6.34: Crack patterns obtained from experimental results and from numerical analysis





7. Benchmark: Beam B

The second benchmark study will be performed on a beam that was also a part of the earlier

mentioned workshop on the shear strength of concrete beams. In this workshop the beam was

identified as beam #3061, for an uniform approach in this thesis, we will refer to this beam as

beam B.

7.1 Beam B properties

7.1.1 Geometry

The beam in question is a simply supported beam, loaded by two concentrated loads. It has a

rectangular cross-section, with only longitudinal reinforcement consisting of two bars, no shear

reinforcement is present. The total area of reinforcement is 1355 [mm2], which leads to a rein-

forcement percentage ρs of 0.8%. Further geometrical properties are presented in figure 7.1, also

included is the crack pattern at moment of failure as was available from the experimental data.

The governing crack at which the beam fails is highlighted.
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Figure 7.1: Geometry characteristics and crack pattern at moment of failure, the critical crack for
which the beam ultimately fails is highlighted. Dimensions are in [mm].

From the geometrical properties it can be concluded that the beam selected for the second

benchmark study is a slender beam resulting in a relative large bending stiffness. The absence

of shear reinforcement in combination with this large stiffness leads to the probability that the

beam will exhibit strong brittle behavior. When regarding the width of the beam, we can also

conclude that the formation of a compression strut may be difficult.

7.1.2 Materials

The material properties have been derived from the information provided by the workshop doc-

ument, values that were not given have been calculated using the CEO-FIP 1990 model code.

69
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Concrete Reinforcement

fck 27.4 [N/mm2] ν 0.15 [-] fy 398 [N/mm2]
ft 2.74 [N/mm2] Gf 0.062 [Nmm/mm2] Es 210000 [N/mm2]
Ec 32766 [N/mm2] dmax 16 [mm] ν 0.3 [-]

Table 7.1: Material properties beam B for concrete and reinforcement

7.1.3 Load bearing capacity

The flexural moment capacity of beam B has been determined at 562.4 [kNm] which means

an applied load of V =166.5 [kN] per loading point. When considering self weight the load is

reduced to V =153.8 [kN]. The linear elastic capacity of the concrete section, is determined at

101.6 [kNm] which implies a load level of V =30.1 [kN].

Using similar reasoning as with the first benchmark beam A, only an estimate is provided for

the ultimate shear load based on the shear capacity of the concrete section with an maximum

allowable shear stress of 0.4ft. This leads to a maximum shear load of V =73.9 [kN].

7.1.4 Experimental results

The experimental data was supplied from a test conducted by Prof. Kani at the university

of Toronto in 1968 [4]. From these results it was determined that the total load at failure

was V =97.7 [kN]. Following the remarks [11] that this value represents the lower boundary of

the experimental range, an average ultimate value was computed of V =127.0 [kN]. From the

experimental observations, the following comments were recorded:

Sudden diagonal failure occurred at the west end with a diagonal crack at steel level,

the underside crack was approximately 1350 [mm] from the support while the topside

of the crack extended under the loading plate”. The crack pattern that occurred at

failure is depicted in figure 7.1.

When considering the development of the crack pattern, we can distinguish that the first cracks

are formed vertically in the region with constant moment. Upon further loading flexural cracks

start to appear in the shear span of the beam. These crack eventually grow at angle into the web

of beam, leading to the failure of the beam as was recorded. This type of failure is considered

to be flexural-shear failure.

7.2 Pre-processing aspects

7.2.1 Modeling environment

Using similar reasoning as was used in the previous benchmark, the second benchmark object

will also be modeled using a 2D plane stress state.
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7.2.2 Boundary conditions

The boundary conditions of the second benchmark are similar to the previous benchmark. In the

centerline of the beam, the condition is enforced that the cross-section will remain perpendicular

to the x-axis. To achieve this, all the nodes in the centerline are constrained in the x-direction.

In order to let the beam expands and displace freely, the support condition consists only of a

constraint in the y-direction.

The load and support forces are introduced via loading plates. The load plates will be connected

through an interface element to the concrete. The stiffness of the interface element in the normal

direction was set at 8.4e5 [N/mm3], and the stiffness of tangential direction was set at kn=50

[N/mm3]. The derivation of these quantities was performed in a similar manner as in the first

benchmark, see section 6.2.2.

7.2.3 Element selection

The concrete is modeled using iso-parametric eight-node quadrilateral plane stress elements with

3×3 Gauss integration and quadratic interpolation.

The reinforcement will be modeled using discrete truss elements in which the two bars will be

modeled as one truss element with the total area of the reinforcement. These elements consists

of a 3-node element with two degrees of freedom ux, uy per node. The numerical integration

occurs through a 2 point Gauss integration scheme.

The discrete option is chosen in favor of the embedded option because the concrete is only

lightly reinforced with longitudinal bars. When structure are densely reinforced, an embedded

reinforcement is more suitable. Another advantage of discrete modeling is that a bond-slip model

can be introduced. Representing the reinforcement with truss elements has the consequence

that the bars do not incorporate a possible bending stiffness that can be derived from the bars.

Therefore the dowel mechanism does not contribute to the shear capacity.

7.2.4 Spatial discretization

As a first estimate the mesh was designed with dimensions of approximately b × h of 90 × 90

[mm], with all of the elements having an aspect ratio of above 0.93 [-]. The chosen dimension

represents a normal sized mesh, figure 7.2 displays the finite element model.

7.2.5 Material modeling

The concrete will be modeled with linear softening in tension and parabolic softening in com-

pression (figure 7.3a), unless indicated otherwise. The reinforcement will be modeled using the

Von-Mises elastic-perfectly plastic constitutive model, see figure 7.3b.
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Figure 7.2: Finite element model beam B
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Figure 7.3: Constitutive models reinforcement and concrete

7.3 Preliminary analysis: smeared cracking

A preliminary analysis was performed with the objective of validating the conclusions stated in

the previous benchmark study. The beam will therefore be modeled with the same principles

that ensured convergent and consistent results in the previous benchmark.

The characteristics of the previous benchmark are defined as following: Rotating crack model in

combination with a parabolic softening function for in compression and exponential softening in

tension. The iterative method will consist of BFGS method in combination with an explicit line

search algorithm. The increment-size will be 0.03 [mm] with convergence governed by the force

norm with standard tolerance.

Numerical stability of the previous benchmark was only obtained after applying extensive mea-

sures to the incremental-iterative procedure. This particular benchmark proved to lead to even

more severe numerically difficulties, which was mainly due to the geometrical properties of the

beam. As stated before, the beam has a very slender cross-section in combination with a very

small amount of flexural reinforcement and no shear reinforcement. These geometrical properties

in combination with the selected crack model would prove to lead to un-realistic crack patterns

and failure modes.

Figure 7.4 shows the load-displacement behavior that was found upon analysis. The non-linear

part of the structural behavior of the beam starts of with small flexural crack at the bottom

of the beam. At a certain moment a crack propagates from the bottom of the beam up to
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underside of the compression zone in a single increment. This crack is depicted in figure 7.5a.

The increment in which the crack occurs show a high degree (>15%) of out-of-balance force and

consequently, convergence was not obtained. In the load-displacement behavior of the beam, the

crack is visible as a large snap-through (see indication figure 7.4). After the formation of this

crack, the analysis only shows only a slight increase in load-carrying capacity, before failing at a

load of V =67.3 [kN]. Failure is caused by a large separation in the y-direction and a large shear

displacement of the elements above the reinforcement. The crack pattern of the moment of failure

is depicted in figure 7.5c. From this crack-pattern it is also clearly visible that the structural

response is very poor. Only a single bending crack has formed in the constant moment region of

the beam while no cracks have propagated into the shear span of the beam. Furthermore, due

to the over-rotation of the cracks, the entire underside of the beam shows cracks, aligning with

the reinforcement.
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Figure 7.4: Load-displacement diagram with indication of critical events

7.3.1 Improving preliminary results: rotating crack model

To improve on the results that were found in the preliminary analysis a number of measures were

taken to ensure convergence and improved results. These measures consisted of three categories,

namely: (1) selecting different parameters for the incremental-iterative procedure, (2) Selecting

different material parameters in order to reduced brittle, e.g. strong non-linear, responses, and

(3) Applying a different spatial discretization.

The first category consisted of improving the convergence characteristics through the parameters

of the incremental iterative procedure. To achieve this objective a number of parameters were

investigated. Firstly, the iterative procedure was investigated whether using a different Secant-

Newton formulation or even a standard Newton formulation would lead to a more convergent

process. This measure did not prove to be successful. Secondly a smaller increment-size (>0.001)

was used to improve convergence. Because of the formation of the critical crack in a single

increment, the small increment size was particularly enforced in the neighborhood of the critical
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(a) 1.5 [mm] displacement

(b) 4.0 [mm] displacement

(c) 13.3 [mm] displacement

Figure 7.5: Crack patterns during loading of smeared crack analysis beam B

crack formation. But this also proved to be unsuccessful. Furthermore the maximum number

of iterations was increased (>750) and a line search technique was applied. Allowing for a very

large number of iterations did prove to lead to a fully converged solution, but the structural

response corresponding with this fully converged solution was very poor.

In addition to the displacement controlled procedure a force controlled procedure was applied

with a crack mouth opening displacement control (CMOD). The CMOD is an extended arc-length

method in which the constraint equation is based on the nodal displacements at both sides of

a (large) crack. In this particular case, the major crack, as was described in the preceding

paragraph, was monitored. This measure however did not improve convergence, but only shifted

the crack into the adjacent elements. To avoid this shifting of the crack a consecutive number

of CMOD controls were applied. This however proved to be highly numerically unstable.

The second category of measures was applied to the material parameters of the concrete. The

main objective of these measure was to decrease the brittle behavior of the beam because of the

numerical difficulties that generally accompany this type of behavior. First of all, the concrete

tensile strength was varied, but this proved to lead to no significant differences. Next the fracture

energy value was doubled (0.15 Nmm/mm2) but this also proved to be unsuccessful. Following

these measure, a Poisson ratio of zero was applied in order to alleviate any numerical problems

caused by bi-axial stress-states, but no improvements were realized. Finally the concrete stiffness
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Ec was varied. This measure proved to postpone the formation of the critical crack, but eventu-

ally all of the analysis performed equally poor with no improvement regarding the convergence

and the structural performance. In addition to varying the material parameters there was also

a variation between the fixed crack model and the rotating crack model, this however also did

not improve convergence or structural response.

As a final set of measures the spatial discretization was scrutinized to improve convergence. These

measures consisted of the following aspects: selecting a smaller mesh dimension, using triangular

elements, using linear elements and using a model of the entire beam instead of a symmetric

model. All of these measures did not improve the numerical stability and the structural response.

Although a fully converged solution was obtained with a large number of iterations, the structural

response was very poor. When examining the crack patterns we can distinguish that cracks have

only formed in the center of the beam, for which a constant moment is present. The shear span

of the beam is completely free of any flexural crack that may have propagated into the web.

because the center of the beam is loaded with a constant moment, vertical cracks are expected.

In this particular case however, the crack are sloping towards the center-line of the beam. Next

to the aforementioned crack, large crack formations are present along the length of the beam

at the location of the reinforcement. These crack are considered to be the consequence of the

rotating crack model and are not physically justifiable.

7.3.2 Improving preliminary results: fixed crack model

Because some researchers [26] had been able to present better results in using similar crack

models and finite element models as used in this thesis, there might be some question regarding

the results of the above described analysis. This section will provide an answer to these questions.

One of the objectives of this thesis was to consistently provide numerically correct results. Mean-

ing that in every instance numerical equilibrium was obtained and that the results were not

compromised by the choices made in the parameters of the incremental-iterative procedure. One

of the main parameters choices in the incremental-iterative procedure is the selection of the size,

and the corresponding number, of increments. In using larger increment, difficulties such as the

critical crack formation can be overstepped, leading to a different solution.

Therefore, in order to simulate the results of the workshop, an analysis was performed using an

increment size of 0.1 [mm]. Further aspects were a fixed crack model with β=0.001, since the

rotating would still lead to incorrect results. Next to the fixed crack model, the fracture energy

was doubled and a restart with a previous stiffness matrix was applied in case of the critical crack

formation. In using these different aspects the analysis deviate slightly from the initial analysis

of the beam. However, the results that were obtained are similar as to the results obtained in

the workshop on the shear strength of concrete beams.

To illustrate this, the load displacement diagram has been depicted in figure 7.6 and the crack

pattern at various stages of loading are depicted in figures 7.7a to 7.7c. Upon examining the

load-displacement diagram, it can be distinguished that the findings of the fixed crack model,

even with a very small β, are corroborated through this analysis. After the linear elastic branch,
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the fixed crack model displays a slight snap-through. After this initial snap-through, the load-

displacement follows a stable load-displacement path towards the moment of failure at V =170.0

[kN]. At this load-level the load-displacement path has a horizontal direction, which constitutes

the moment capacity of the beam. Upon examining the crack patterns, it can be distinguished

that the formation of cracks is in reasonable agreement with the experimental results. Figure

7.7c shows the shear crack for which the beam is expected to fail. The reason that the beam does

not fail due to this crack is again caused by the fixed model. Even with a small shear retention

factor, the results are considered to be over-stiff with the consequence that failure occurs through

reaching the moment capacity of the beam.

However one of the main differences is that, also after extensive loading, the crack patterns of the

second benchmarks remain limited, unlike benchmark A. It is viewed, that the main reason for

this is the absence of horizontal reinforcement in the web of the beam. Because of the view that

the rotation of crack is mainly caused by an incorrect transfer of concrete to steel stresses, this

rotation does not occur, simply because there is no reinforcement. And because both the rotating

crack model and the fixed crack model are based on the total strain model, both models respond

the same with different results. While the rotating crack model allows for over-rotation, leading

to incorrect strain localizations. The fixed model uses a shear stresses to control the rotating of

the cracks. Therefore this analysis corroborates the findings in the previous benchmark study.
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Figure 7.6: Load-displacement diagram using a fixed model and ’forcing’ the analysis

7.3.3 Summary

The smeared crack analysis of benchmark B did not lead to structural results that show any

similarities with the experimental results. The rotating crack model showed an un-realistic

failure mode with accompanying load-displacement behavior. A large number of measures, to

improve numerical convergence and the structural behavior, were investigated. However, no

improvements were found to be present.
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(a) 2.5 [mm] displacement

(b) 15.0 [mm] displacement

(c) 35.0 [mm] displacement (failure)

Figure 7.7: Crack patterns during loading of rotating crack model beam B

Because a correct structural response could not be obtained from the rotating crack model, the

incremental-iterative process was adjusted to ’force’ the analysis into a certain direction. This

’forcing’ was performed using large increment sizes and a fixed crack model. The crack pattern

obtained from this analysis showed more agreement with the experimental results. However, in

using the fixed crack model, the structural behavior was over-stiff and the failure was caused by

reaching the moment capacity.

The main finding from the analysis of benchmark B, is that the smeared crack formulations

have large difficulties in representing the structural behavior of a slender beam with no shear

reinforcement, that fail due to flexural shear.

7.4 Preliminary analysis: discrete cracking

As was concluded from the preliminary analysis, a correct structural response could not be

obtained when using a smeared crack model. Therefore, the second benchmark was continued

with a discrete crack modeling study. The principle of discrete crack formulation, were elaborated

earlier in section 4.2. In the following section the discrete crack formulation will be applied to

obtain an approximation of the experimental failure load and failure pattern.
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The preliminary analysis was performed using an approximation of the experimentally obtained

crack pattern, as depicted in figure 7.1. The used crack spacing of the flexure induced cracks

were set at 200 [mm]. The crack in the center of the beam were allowed to propagate approxi-

mately 850 [mm] into the web of beam. The cracks in the shear span were allowed to propagate

approximately 670 and 200 [mm] into the web of the beam. The critical crack was modeled using

an concave line approximately 1450 [mm] from the support up to the underside of the load-plate,

as in correspondence with the experimental comments. The concave shape of the critical crack

was selected to improve the mesh process of the beam. Because of the nature of the interface

element, e.g. two nodes at either side of the crack, the mesh has to be accommodated for the

interface elements. From the experimental crack pattern, it is also observed that the concave

crack pattern provides a better estimation, because the crack tend to rotate towards the load

plate at a later stage of loading, forming a concave curve.

The constitutive model of the interface element was modeled with linear softening in tension

and with a shear stiffness of zero upon cracking. The initial values of the stiffness matrix kn and

kt were both defined at 10000 [N/mm3], this value proved to sufficiently stiff to model a rigid

connection.

Figure 7.8: Discrete crack-pattern used in preliminary analysis

It was found that the model responds in good agreement with the experimental results and

corroborates the findings of the previous section in which a smeared crack analysis was performed.

Similar as to the smeared crack analysis, the discrete analysis of the beam showed a large single

crack formation in the center of the beam. This flexural crack again propagated violently within

a single increment. The consequence of this crack and its extent on the structural behavior is

visible in figure 7.10a. In this figure the crack-formation is visible as a snap-through in the load-

displacement diagram of the beam, at the end of the elastic capacity of the beam. It is noted that

the represented load-displacement diagram was obtained from a fully converged solution. After

a number of less severe snap-throughs the analysis find a stable load-displacement path towards

failure. The failure load was determined at V =121.3 [kN] and was caused by the formation of the

critical crack, see figure 7.10d. The ultimate failure load and failure mode show good agreement

with the experimental results.

The displacement controlled procedure showed a large and almost vertical snap-through. Al-

though full convergence was obtained, it is important to verify whether this is the actual load-

displacement behavior and that the structure does not snap-back. Therefore, a force controlled

analysis with arc-length control was applied. From the load-displacement behavior of the force
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Figure 7.9: Load-displacement diagram for discrete crack model

(a) 1.1 [mm] (b) 20.0 [mm]

(c) 40.0 [mm] (d) 63.5 [mm] (failure)

Figure 7.10: Crack patterns a various stages of loading

controlled procedure, it is visible that a very small snap-back occurs. However, after this snap-

back, the load-path is almost identical to that of the displacement controlled analysis. Overall,

there are no significant differences between both analysis. Only when approaching the moment

of failure, the force controlled shows a higher ultimate load (' 10%). It may therefore be con-

cluded that the force control and displacement control both provide proper structural results in

this instance. However, the force control procedure, similar as with the first benchmark, was

characterized by high numbers of non-convergent increments. In total 35% of the increments

failed to find convergence within the maximum amount of 150 iterations. Because of these high

numbers of non-convergent increments, the force controlled analysis is deemed less accurate.
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7.5 Shear formulations for discrete cracking

The preliminary analysis consisted of pure mode I fracture, with upon crack formation, a re-

duction of the shear stiffness G to zero. The elimination of shear stresses does not constitute

an accurate representation of the actual behavior of the beam. Certainly not when cracks are

loaded in shear and the aggregate interlock mechanisms occurs. The aggregate interlock mech-

anisms is in general one of the main load carrying mechanisms in beam with little or no shear

reinforcement. In case of the large critical crack, the shear stresses may be significant due sliding

across the crack-face.

To investigate the influence of the modeling of a shear stiffness, two different shear formulations

were analyzed. The model of the preliminary analysis was extended with a constant shear

stiffness and a dilatancy model. The numerical aspects of crack dilatancy were discussed in

section 4.2.2. The principle of dilatancy models is to provide a relation between the shear slip

∆ut and crack width ∆un with the shear stress on the crack face. The model used for the

analysis consisted of the rough crack model as developed by Bažant and Gambarova [1].
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Figure 7.11: Load-displacement diagram for discrete crack model with shear stiffness formulations

Figure 7.11 shows the load-displacement response of the discrete model with the different shear

formulations The analysis with the constant shear stiffness consisted of a stiffness of 50 [N/mm3].

The analysis was ended at 70.0 [mm] displacement because of excessive shear stresses on the

critical crack, while the crack was completely softened in mode I (see figure 7.12. This behavior

is one of the main drawbacks of a constant shear stiffness, as was also visible in the previous

benchmark study with the application of the fixed total strain model. Although failure was

not obtained, it can still be concluded that there is very little difference between the load-

displacement behavior of both models. From this it can also be concluded that the flexural

cracks show little to no resistance against shear displacement.

The analysis including the rough crack model, showed very little difference with regards to the

preliminary analysis. In fact it showed almost similar load-displacement behavior. Only in
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Figure 7.12: Crack-width and shear-stress on crack-faces with constant shear stiffness, at 70.0 [mm]
displacement

the beginning stages in which flexural cracks are forming, some slight differences in the load-

displacement behavior are present. After this initial tension-stiffening phase, the rough crack

model analysis follows a similar load-displacement path towards failure. The accompanying

ultimate shear-load showed little difference (1%) with the experimental ultimate shear-load.

It was expected that the flexural cracks would undergo only negligible shear displacement, and

that the large shear crack was expected to show more extensive shear displacements and conse-

quently shear-stress. One of the main reasons why the aggregate interlock mechanisms did not

fully develop was due to the brittle nature of the beam. Because of this brittle nature the forma-

tion of the critical crack coincides with the failure of the beam. This is illustrated in figures 7.13a

to 7.13f. These figures display the crack-width and the shear-slip during the two increments in

which the critical crack is formed and the beam fails. Figure 7.13a and 7.13b show the moment

right before the formation of the critical crack in which the flexural crack are open, the critical

crack is at that moment still closed. The following increment, figures 7.13c and 7.13d, show

the opening of the critical crack to a maximum crack-width of approximately 5.8 [mm], at this

moment a shear-slip is also present of approximately 0.8 [mm]. This ratio of crack-width and

shear-slip does lead to significant shear stresses on the crack face. However, when examining

the subsequent increment, it can be distinguished that the crack-width has already increased

to a maximum of 11.8 [mm]. The consequence of this being, that the crack-width has such a

magnitude that it would be un-realistic to model aggregate interlock. The rough crack model

also considers this and uses a limit of ∆u >1 /2Dmax, in which ∆u is the crack-width and Dmax

is the maximum aggregate size. Beyond this limit there is considered to be no aggregate interlock

mechanism. Another important aspect, next to the sudden failure, is that the failure crack is

un-constrained. The aggregate interlock mechanism has therefore limited influence.

7.6 Symmetrical modeling

From the previous benchmark it was concluded that there is a significant difference in case of

modeling the entire beam or modeling only the symmetric half. It was found that the load-

displacement behavior was affected by cracks that occur in both shear spans in an entire beam

model. In relation to the ultimate shear load, the analysis showed mixed results. One analysis

showed a small difference (1%) while a finer mesh dimension showed a larger difference (13%).

This section will investigate the influence of modeling only the symmetric half of the structure or

modeling the entire structure with discrete cracks. To this end, two finite element models with
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Figure 7.13: Crack-width and shear-slip on crack-faces employing the rough crack model. Displayed
increments represent the moment of failure

discrete cracks were developed. The first model consisted of a mirrored discrete crack pattern

as used in the preliminary analysis. The second model also consisted of a mirrored version of

the discrete bending cracks, but included a smaller critical crack and the left-hand side of the

beam. The reason for this was that the failure of the perfect symmetrical model, was indeed

symmetrical.
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Figure 7.14: Load-displacement diagram for entire beam and symmetric beam models

The load-displacement diagram in figure 7.14 displays three analysis, next to the described com-

plete beam models, the symmetric model of the preliminary analysis was included for comparison.
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From the load-displacement diagrams it is clearly visible that the complete beam models show

a significantly lower ultimate shear load than compared to the symmetric model. The ultimate

shear load is V =97.6 [kN] which implies a difference of approximately 21% with the preliminary

analysis. Another observation is that the overall stiffness of the entire beam model is consistently

smaller after the initial snap-throughs.

The finite element model in which the discrete crack were perfectly mirrored, showed a failure

of both critical cracks at the same time. This failure is visible in figure 7.15c which shows the

deformed beam at the moment of failure. Although the beam fails symmetrically, the crack

development does exhibit consecutive crack formations. Meaning, that first a crack will appear

in one side of the beam followed by a crack propagation in the opposing side. This is also the case

for the critical crack formation, which begins on the right-hand side of the beam. To investigate

whether this symmetric cracking pattern has a large influence on the load-displacement behavior,

an imperfect model was analyzed. This model consisted of a smaller critical crack at the left-

hand side of the beam. Upon analyzing the imperfect model, it was found that the differences

are negligible, and that the ultimate shear load value has a similar value of V =94.5 [kN].

(a) 1.1 [mm]

(b) 40.0 [mm]

(c) 51.3[mm](failure)

Figure 7.15: Deformed models at respective moments of failure, deformations are exaggerated.





8. Conclusions and recommendations

The following conclusions regard the findings of the two investigated benchmark beams. The

conclusions consist of five different categories, namely: (1) structural behavioral characteristics

of shear critical beams, (2) the incremental-iterative procedure, (3) constitutive models, material

parameters and crack models, (4) spatial discretization, and (5) discrete crack models.

8.1 Structural behavior of shear critical RC beams

The shear critical beams that were analyzed in this thesis exhibited strong non-linear responses,

leading to irregular load-displacement behavior with large snap-throughs. No snap-back behavior

was found to be present in both benchmarks. Analysis of both beams exhibited no warning as

to imminent failure and did not posses any post-cracking capacity, once the failure crack had

developed. This behavior was supported by the experimental results and by the fact that no post-

cracking load carrying mechanisms were included such as aggregate interlock or dowel action.

The main cause for these brittle responses were sudden crack formations within single increments.

Analysis of both beams also were characterized by bi-axial stress states in the shear spans of the

beams. These stresses were caused by the formation of compression diagonals, the reduction of

element stiffness due to cracking, the relatively high level of shear stresses, and the reinforcement

action (if present). One of the main consequences of all these components is that a rotation of

principal directions occurs. This is of particular importance for the smeared crack models.

8.2 Numerical aspects incremental-iterative analysis

Convergence of the incremental-iterative procedure was difficult to obtain, this was caused by two

main reasons: (1) the brittle nature of shear critical beams, and (2) the strain-localizations associ-

ated with crack formations. With regards to the first reason, the brittle nature of the shear beams

leads to large and sudden crack formation. The consequence being that the stiffness is severely

affected, as can be derived from the load-displacement behavior. The incremental-iterative pro-

cedure does not have the intrinsic qualities to cope with strong non-linear behavior, therefore

convergence was difficult to obtain. In relation to the second reason, the strain-localization

phenomenon leads to high levels of out-of-balance force caused by limited number of degrees of

freedom. These localizations may not be accurately sensed by the global stiffness matrix that

is constructed in the iterative procedures. Another issue with the strain-localizations is that

multiple cracks undergo loading, unloading and reloading. This may lead to varying levels of

the out-of-balance force, which can lead to a more numerical problematic incremental-iterative

process

Although convergence is difficult to obtain, it is not impossible. The following measures proved

to be successful in reaching convergence. Using an iterative method based on a Secant-Newton
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formulation (in this case the BFGS method) proved to lead to full convergence in all instances.

It was also concluded that the BFGS method could provide consistent results with varying

increment-sizes. This iterative procedure however, was characterized by a distinct and strongly

oscillating convergence behavior. The use of an iterative method based on tangential stiffness,

e.g. regular or modified Newton-Raphson, did not lead to full convergence in any of the performed

analysis.

Furthermore, if convergence is to be achieved, the incremental-iterative procedure should consist

of small increment-sizes, and large numbers of iterations. The large number of iterations are

particulary necessary because of the oscillating behavior of the Secant-Newton procedure. Exact

values for the number of iterations or the increment-sizes cannot be given, because these quan-

tities are very problem dependent. However, as an indication, full convergence was obtained

with approximately 1000 increments and the maximum amount of iteration set at 150 [-] for

both benchmarks. It was also concluded that the combination of a small increment-size with a

smaller amount of iterations is more computationally efficient than a large increment-size (fewer

load-steps) with a larger number of iterations.

It was also found that only displacement-controlled procedures could provide a fully converged

incremental-iterative procedure. Force control, with or without arc-length control, could not lead

to full convergence. The application of local constraint techniques such as indirect displacement

control or crack-mouth opening control could not improve convergence. From this conclusion it

is important to understand that true snap-back behavior in the load-displacement curve cannot

be captured by a displacement controlled analysis. It was therefore verified that this behavior

did not occur for the investigated benchmarks.

8.3 Constitutive model parameters

The behavior of concrete in tension was defined by three main parameters: (1) the tensile

strength, (2) the fracture energy, and (3) the shape of the softening curve. It was found that the

tensile strength has a significant influence on the structural behavior of the beam, the failure

mode and the ultimate shear load. The other parameters proved to be of less significance, only

leading to small variations in stiffness and ultimate load values.

Next to the tensile behavior is was concluded that it is also important to include compressive

softening in the constitutive model of concrete. Including compressive softening is important

for the accurate representation of the formation and degradation of the compression struts. Not

including compressive softening also lead to compressive stresses that exceeded the compressive

yield strength.

8.4 Crack model evaluation

This thesis investigated three smeared crack models, namely: (1) the fixed model, (2) the fixed

multidirectional model, and (3) the rotating model. From these investigations the following

conclusions were reported.
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In benchmark A, the fixed crack model in combination with a constant shear retention factor

proved to result in very poor structural behavior. Although the fixed models provided good

structural responses in the early stages of crack formations, the rotation of the principal strain

directions in later stages of loading severely corrupted the results. This rotation of principal

directions lead to excessive stress-locking through shear stresses on the crack faces. This excessive

stress-locking lead to widespread and unrealistic crack patterns, with the beam exhibiting load-

carrying capacity completely through shear stresses on the crack faces. Selecting a shear retention

factor that approaches zero (β = 0.005) did not improve the structural response. As a final aspect

for benchmark A, a fixed crack model based on variable shear retention was applied. Although

slightly less stress-locking was found to be present, it was to such a degree that it constituted

an accurate representation of the behavior of the beam.

After analysis of benchmark B with the fixed crack model, it was observed that the cracks did not

propagate to the same extent as with benchmark A. However, for elements containing the bottom

(and only layer of reinforcement) the crack pattern did show excessive propagation. Although

the second benchmark was not corrupted by excessive cracking, the structural response remained

too stiff because of stress-locking and caused the beam to fail by reaching it’s moment capacity.

The rotating crack model analysis of benchmark A, exhibited good structural responses and

provides a reasonable approximations of the experimental results regarding the failure modes

and ultimate failure loads. However, the crack patterns that were obtained from the rotating

crack showed little distinction between individual cracks. Another drawback, intrinsic to the

rotating crack model, is that over-rotation of crack occurs near reinforcing bars. The consequence

of over-rotation of crack is that unrealistic crack patterns and strain-localizations occur near

reinforcing bars. These strain-localizations lead to vertical and shear deformation of elements

along reinforcing bars. It was found that the influence of the over-rotation was displayed more

excessively in case of a finer mesh dimension.

In case of the second benchmark, it was not possible to obtain correct structural results using

the rotating crack model. The reason for this was the brittle nature of the beam, caused by the

dimensions of the beam and the small amount of reinforcement. A large number of measures

were applied to ensure convergence of the incremental iterative procedure. And although full

convergence was obtained, the structural response remained very poor with only one single

bending cracks in the constant moment area of the beam. No cracks had developed in the shear

span of the beam, except for cracks along the entire underside of the beam. This part of the

beam contains the bottom reinforcement and shows extensive crack-rotation.

In relation to the over-rotation of cracks, it was found that the total strain models (fixed and

rotating) have the tendency to show rotation of principal strain directions, and therefore cracks,

near reinforcement. The fixed total strain model responds to rotating principal directions by

fixing the crack through a shear stress. It is viewed that this generation of shear stress leads

to the extensive crack pattern in the fixed crack model. The rotating crack model does allow

for rotating of crack, however this leads to incorrect stiffness properties in initially un-cracked

directions, which leads to large shear deformations in elements containing reinforcement. It is

viewed that this large shear deformation leads to the extensive crack propagation in the rotating

crack model. The rotation of principal strain directions is viewed to be caused by: the co-axiallity
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principal between principal directions, a poor transfer of concrete stresses to steel stresses, and

the loading conditions present in shear critical beams. The first two statements however, could

not be fully verified.

The fixed multidirectional crack model was not numerically robust enough for the analysis of

both benchmark beams, and caused divergence of the incremental-iterative process. Measures to

avoid this behavior included using a constant tension cut-off instead of a linear tension cut-off,

the use of smaller increments, the use of a zero poisson ratio and the use of linear softening.

However, all of the measures failed in avoiding divergence.

8.5 Spatial discretization

With regards to the spatial discretization of the benchmarks, the following conclusions were

established regarding three categories, namely: (1) dimensional bias, (2) directional bias, and

(3) symmetric modeling.

The strain-localizations tends to occur in rows of single elements, regardless of the element size.

The objectivity of energy consumption appears to be remain valid because the strain values are

higher in case of a finer mesh dimension, this however was not verified. A significant difference

('30%) in ultimate failure load was discovered upon analyzing different mesh dimensions.

In general it was found that the quadrilateral element perform optimally when the aspect ratio

is near 1.0 [-]. The crack formation and propagation with these types of elements were in good

agreement with the experimental results. Next to the standard rectangular quadrilateral mesh, it

was found that a slanted quadrilateral mesh displayed poor structural results in crack formation,

crack propagation as well as failure modes and failure loads.

The use of triangular elements for the modeling of concrete fracture displayed a distinct direc-

tional bias, leading to unrealistic structural results. This directional bias was particulary visible

upon comparison of crack-aligned triangular elements with counter crack-aligned triangular ele-

ments. In both cases the crack formation and propagation were severely influenced.

As a final aspect, the structural results of an entire beam model was investigated and compared

versus the structural results of a symmetric model. On one occasion it was found that the

ultimate load was not affected, and on two occasions a difference of 20-25% was found for the

ultimate shear load. Although no consistent results were obtained with regards to the ultimate

shear load, the load-displacement behavior was severely affected on all occasions.

8.6 Discrete cracking

Because of the earlier described poor structural responses of beam B in using the smeared crack

model, a discrete crack model was employed. The discrete fracture pattern was based on the

experimentally obtained fracture pattern, with a number of bending crack and one single shear

crack for which the beam ultimately fails.
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The first analysis of the discrete crack pattern only consisted of mode I softening with upon

crack formation a reduction of the shear stiffness to zero. The structural results from this model

were in good agreement with the experimental results. Both in failure mode as in failure load.

The first analysis also displayed the formation of a very large bending crack constituting a

severe snap-through in the load-displacement behavior. This crack formation corroborates the

conclusions why the smeared crack models could not lead to correct structural behavior.

Because the reduction of shear stiffness to zero upon crack formation, does not constitute a

correct portrayal of the actual behavior, two different shear formulations were investigated. It

was found that the constant shear stiffness provides over-stiff results because the shear stress

remains on the crack-face. The other shear formulation consisted of a dilatancy model to account

for the aggregate interlock mechanism on the crack face. However, the structural response when

this model was included, displayed no significant differences between the model with zero shear

stiffness. This was mainly due to the fact that the crack-face of the critical shear crack was

unconstrained, and the fact that the failure was sudden with large crack-widths and small amount

of shear-slip.

8.7 Recommendations

The following sections will shortly discuss what in the view of the author constitutes a correct

(or least incorrect) non-linear analysis of a shear critical beam.

8.7.1 Recommendations for the NLFEA for shear critical RC beams

The incremental-iterative analysis should consist of a Secant-Newton procedure, with an explicit

line search technique. If the user has a choice whether to apply load or displacement control,

the latter should always be selected. Only in the case when snap-backs are a possibility, should

the force controlled procedure be used in favor of the displacement controlled procedure. Other

aspects of the incremental iterative procedure are: small increment sizes, large number of itera-

tions and the use of the force norm with a tolerance of 0.01 [-]. In both benchmark an average of

approximately 1000 increments was used for consistent and convergent results. The maximum

number of iterations for both the benchmark beams was 150 [-].

The most viable model for smeared crack modeling is the rotating total strain model. To verify

the results of smeared crack modeling, or if smeared crack modeling fails, discrete crack modeling

should be applied. The tensile behavior of concrete should be modeled with a exponential

softening function. The concrete compression model should consist of a softening branch to

account for the formation and degradation of the compression struts. The tensile strength of the

concrete structure in question is of critical importance, if there are uncertainties regarding the

exact value, multiple analysis should be performed.

For an accurate representation of the structural behavior of the model, it is recommended to

use an entire beam model. The used element should preferably be 8-node quadrilaterals with an

aspects ratio of ' 1.0 [-] and should be integrated using a 3× 3 Gauss integration. If the use of
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triangular elements is inevitable than these elements should be integrated using a 7-point Gauss

integrations scheme. The mesh dimensions should be selected relative small, in benchmark A

this constituted a dimension of b = h being approximately 1/20 of the height of the beam.

To accurately model the introduction of forces into the concrete, load-plates should be applied.

To avoid un-realistic stresses and structural behavior, interface element need to be constructed

to model the actual connection between the concrete and the load-plate.
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