Annex 0

Reinforcement Configurations of specimens Slender and Deep Beams

Slender Beams

Important Note:

For detailed elaborated Scia Engineer design step refers to the following chapters,

- Specimen 1 is the specimen with reinforcement configuration based on applied SLS load of 200 kN (SLS factor is 1).
- Specimen 2 is the specimen with reinforcement configuration based on applied SLS load of 400 kN (SLS factor is 1).
- Specimen 3 is the specimen with reinforcement configuration based on applied SLS load of 580 kN (SLS factor is 1).
- Specimen 4 is the specimen with reinforcement configuration based on applied SLS load of 450 kN (SLS factor is 1).
- Specimen 5 is the specimen with reinforcement configuration based on applied SLS load of 540 kN (SLS factor is 1).
- This chapter is also include the method of optimization

Naming of the different reinforcement configurations

- All reinforcement configurations are based on 2D finite element model in SCIA engineer.
- After optimization which is done by using Beam 1D model in SCIA Engineer. Whenever for horizontal and vertical reinforcement optimization process is done, one can call that specific horizontal or vertical reinforcement as 1d.
- In the following table the Naming of the different specimens are presented.
- Naming of the reinforcement configuration has two parts, and each part can have two values, 1d or 2d. The first part of the reinforcement configuration is about horizontal reinforcement and the second part is about shear (vertical) reinforcement (table 0-1)

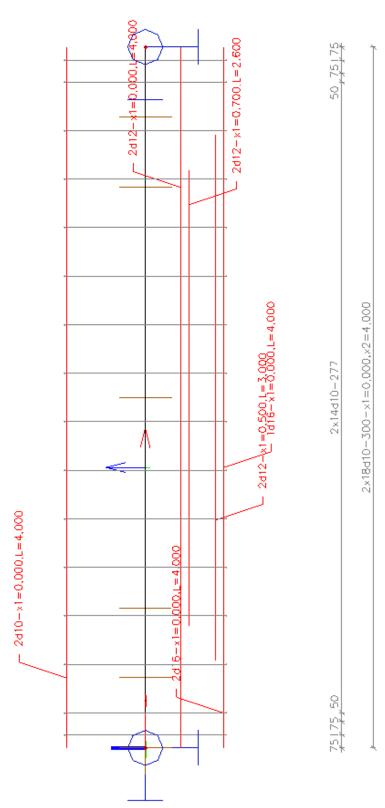
Reinforcement configuration	Description
1d1d	In which both horizontal and vertical reinforcements are optimized
1d2d	In which <u>only horizontal</u> reinforcements are optimized (1d) and <u>vertical</u> reinforcements are still based on (2D) Scia finite element model
2d1d	In which <u>only Vertical</u> reinforcements are optimized (1d) and <u>horizontal</u> reinforcements are still based on (2D) Scia finite element model
2d2d	In which none of the horizontal and vertical reinforcements are optimized can be called 2d2d.(this is directly comes from 2D finite element model in SCIA.

Table 0-1

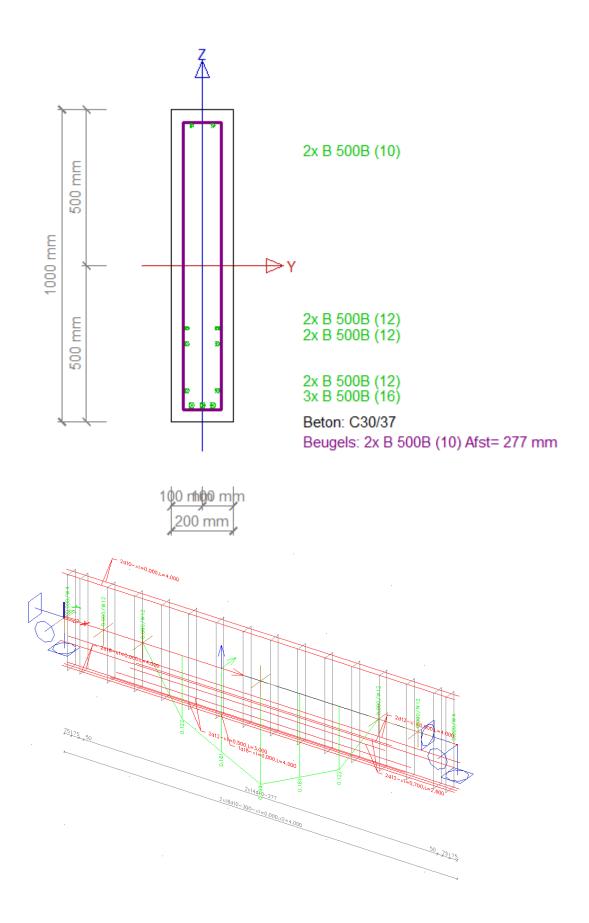
Specimen	Rein. config	Length[mm]	a=L/2 [mm]	Height(h)[mm]or depth(d)	L/h	App a/d	Width[mm]
1-1-1	1d1d						
1-2-1							
1-3-1							
1-4-1							
1-5-1							
1-1-2	1d2d	4000	2000	1000	4	2	200
1-2-2							
1-3-2							
1-4-2							
1-1-3	2d1d						
1-2-3							
1-3-3							
1-4-3							
1-1-4	2d2d						
1-2-4							
1-3-4							
1-4-4							

Table 0-2

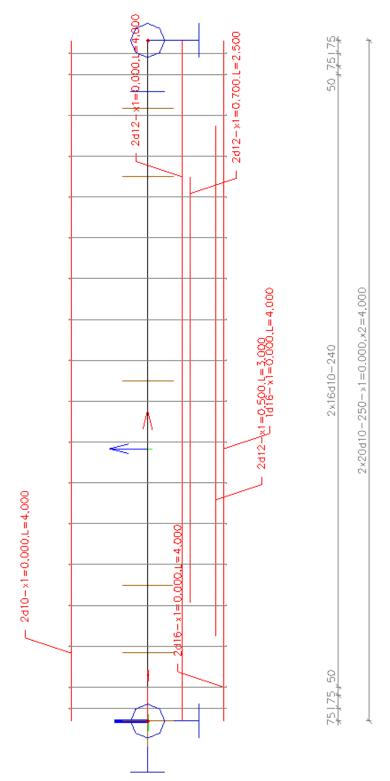
Specimen	Applied point load (SLS)[kN]	Reinforcement configuration	Skin reinforcements	Distance shear reinforcements
1-1-1	200	1d1d	NO	10-300
1-1-2		1d2d	NO	10-250
1-1-3		2d1d	YES	10-300
1-1-4		2d2d	YES	10-250
1-2-1	400	1d1d	NO	10-200
1-2-2		1d2d	NO	10-130
1-2-3		2d1d	YES	10-200
1-2-4		2d2d	YES	10-130
1-3-1	580	1d1d	NO	12-150
1-3-2		1d2d	NO	12-130
1-3-3		2d1d	YES	12-150
1-3-4		2d2d	YES	12-130
1-4-1	450	1d1d	NO	10-170
1-4-2		1d2d	NO	12-150
1-4-3		2d1d	YES	10-170
1-4-4		2d2d	YES	12-150
1-5-1	540	1d1d	NO	-

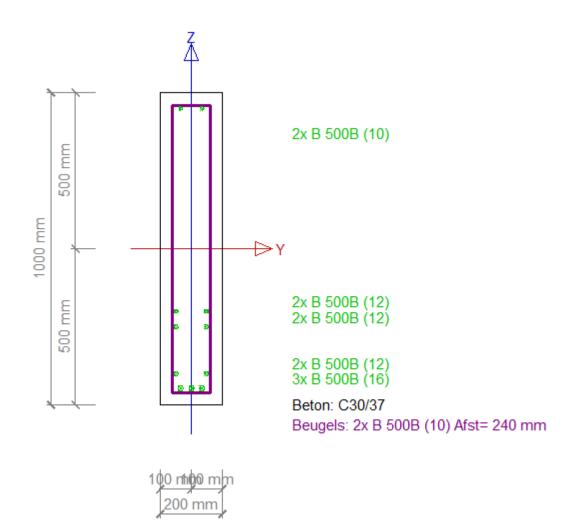

Table 0-3

SPECIMENS


Applied SLS load (factor 1) of 200 kN

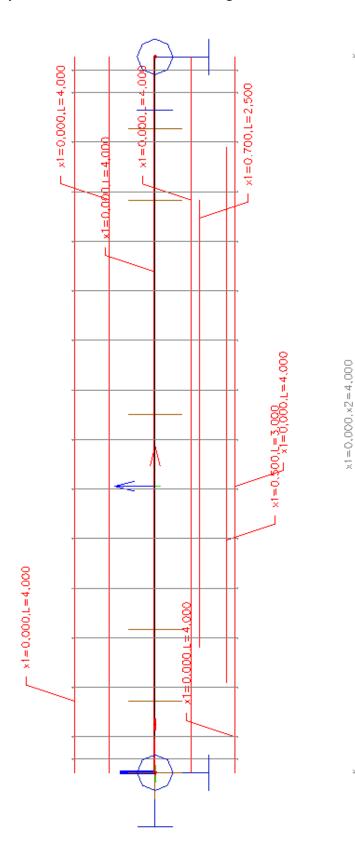
1-1-1

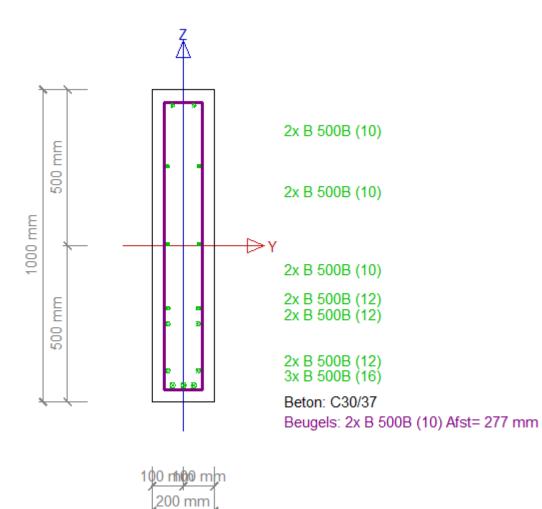

- 1-1-2
- 1-1-3
- 1-1-4



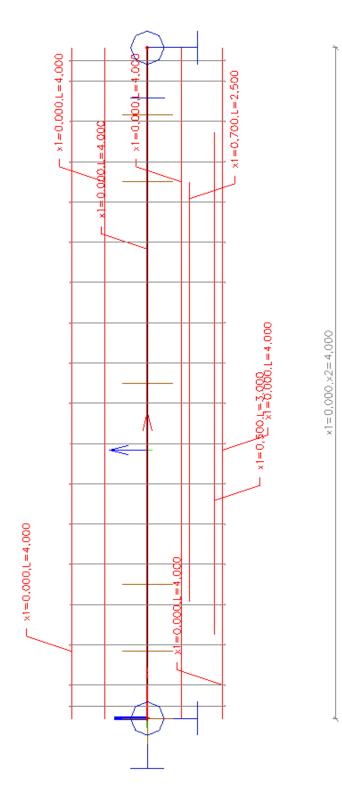
Specimen 1-1-1 reinforcement configuration 1d1d

Specimen 1-1-2 reinforcement configuration 1d2d



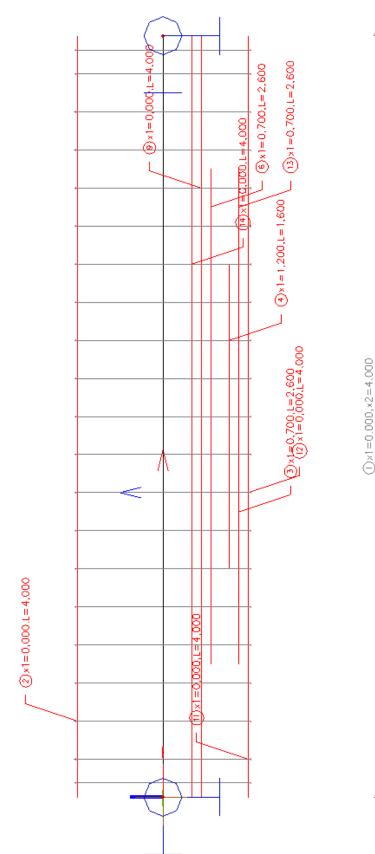

(2D finite element model)

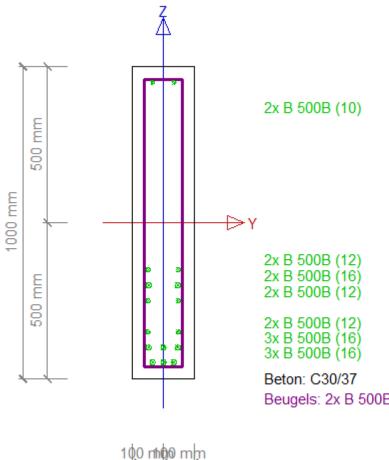
VVV





Specimen 1-1-3 reinforcement configuration 2d1d

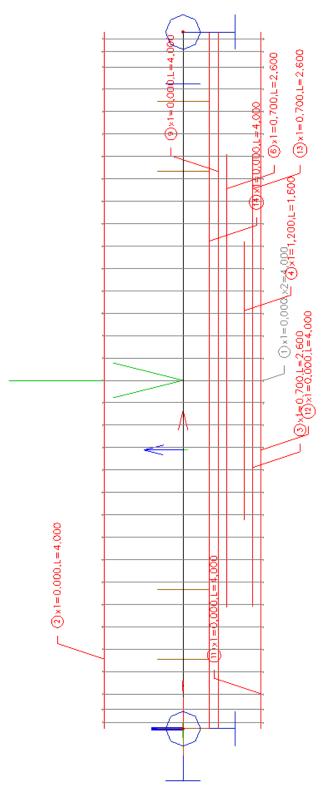

Applied SLS load (factor 1) of 400 kN

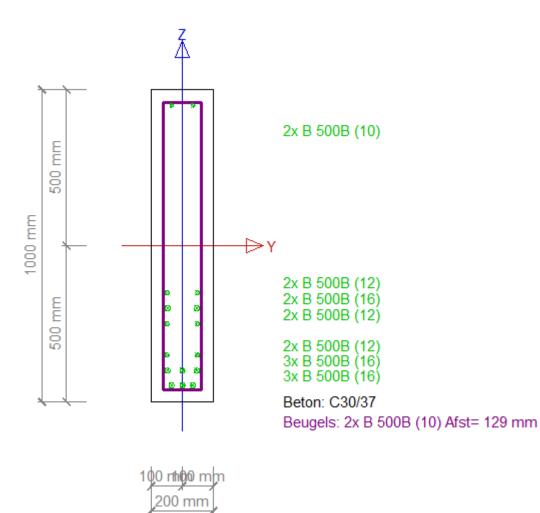

1-2-1

1-2-2

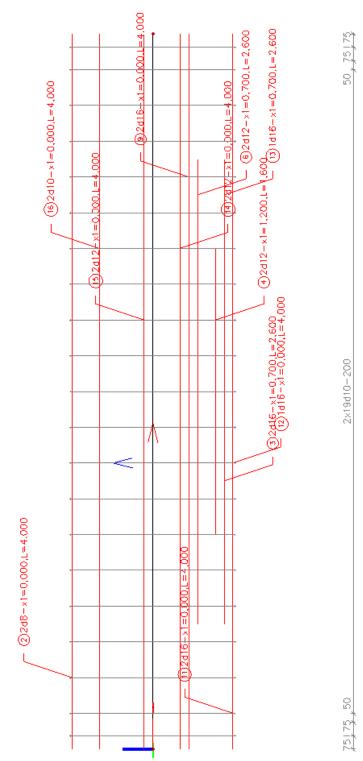
- 1-2-3
- 1-2-4

Specimen 1-2-1 Reinforcement configuration 1d1d

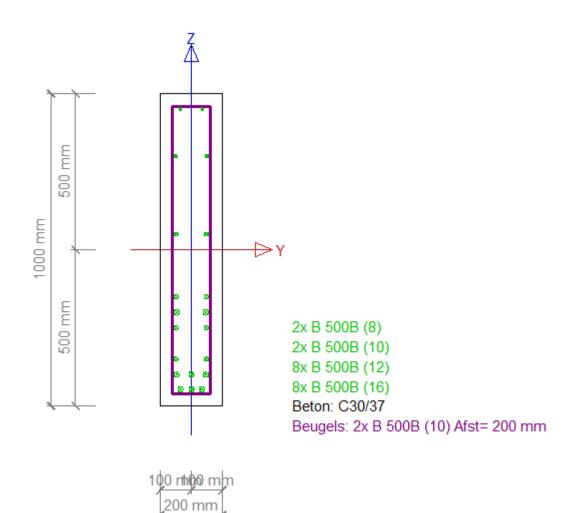


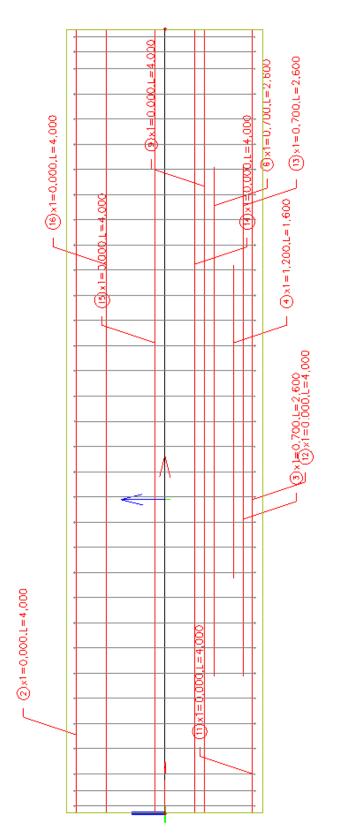


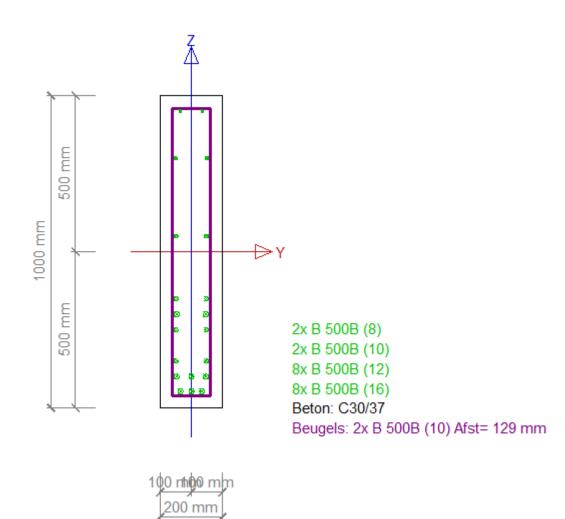
200 mm



Specimen 1-2-2 reinfrocment configuration 1d2d

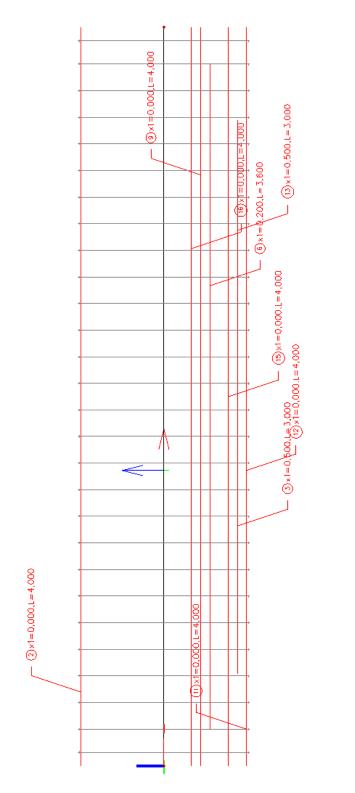



Specimen 1-2-3 2d1d


①2×23d10-200-x1=0,000,x2=4,000

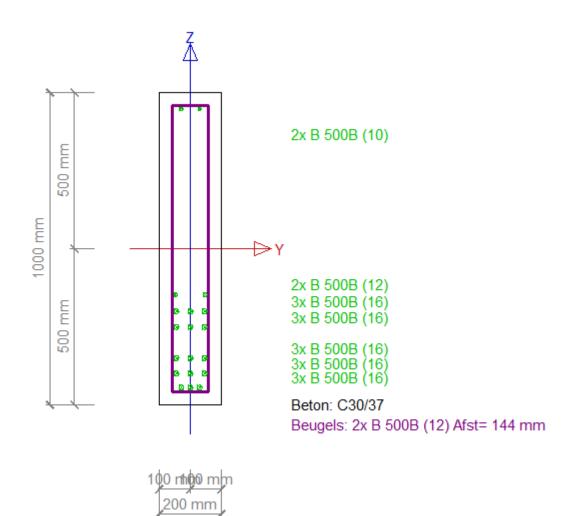
Specimen 1-2-4 2d2d

①×1=0,000,×2=4,000

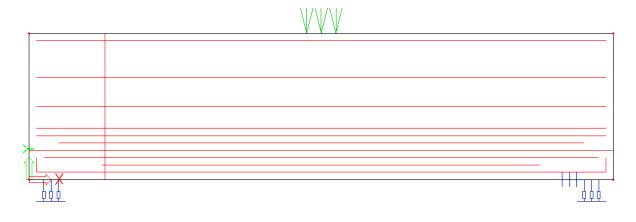


Applied SLS load (factor 1) of 580 kN

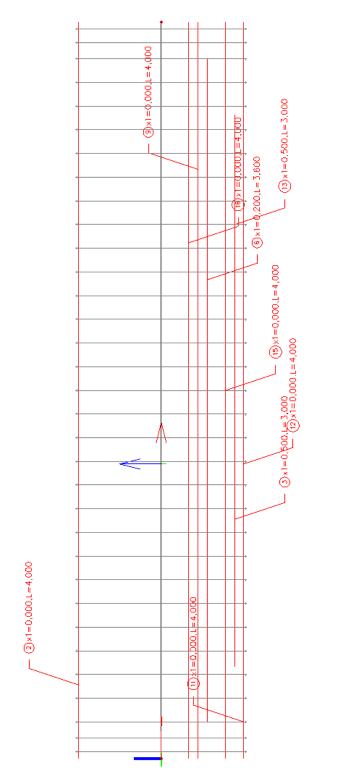
1-3-1


1-3-2

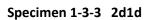
- 1-3-3
- 1-3-4

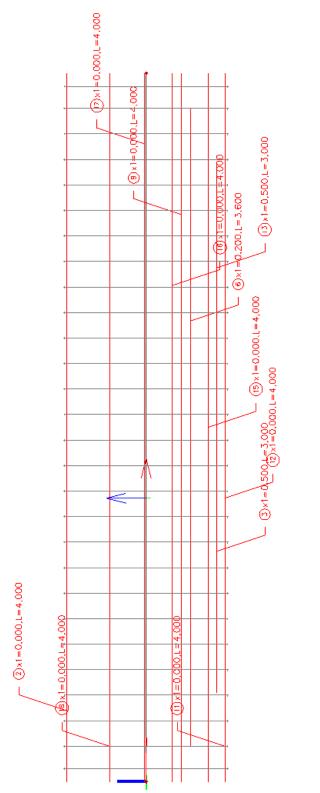


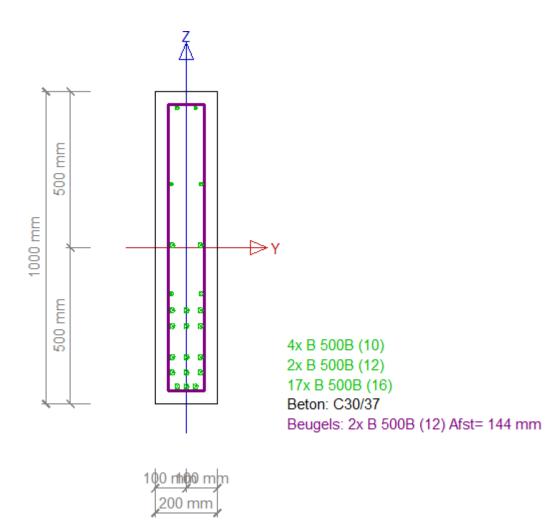
①×1=0.000,×2=4.000

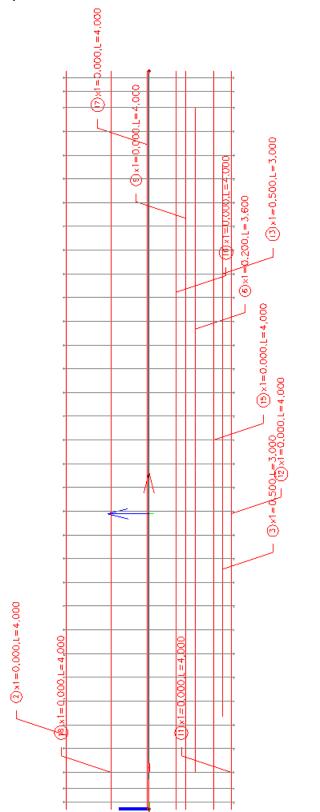

Specimen 1-3-1 1d1d

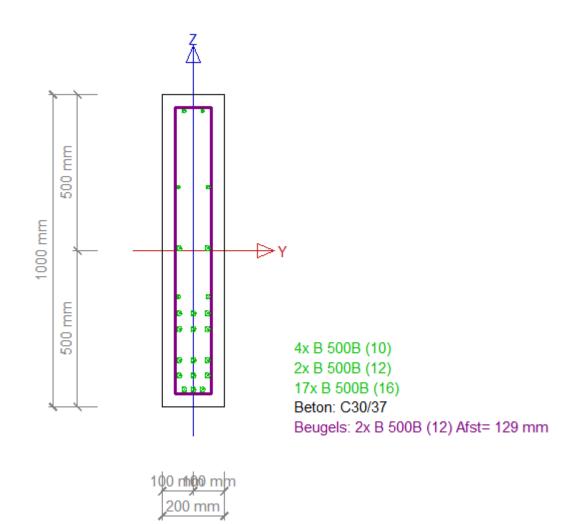
2d finite element model




Specimen 1-3-2 1d2d

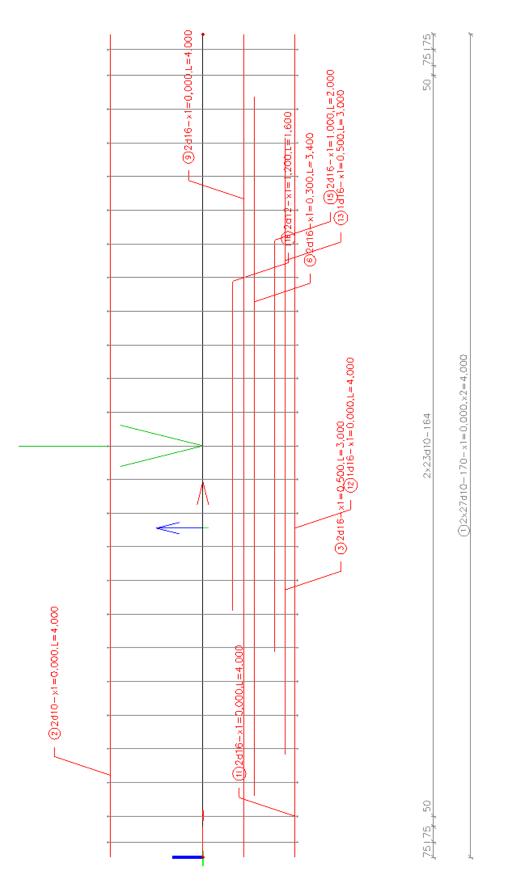

①×1=0.000,×2=4.000

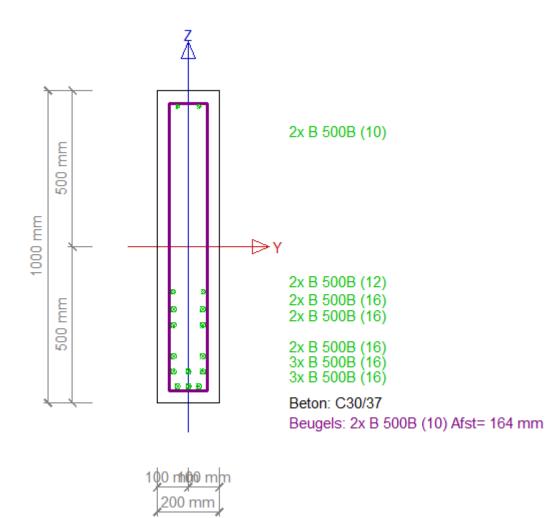



①×1=0,000,×2=4,000

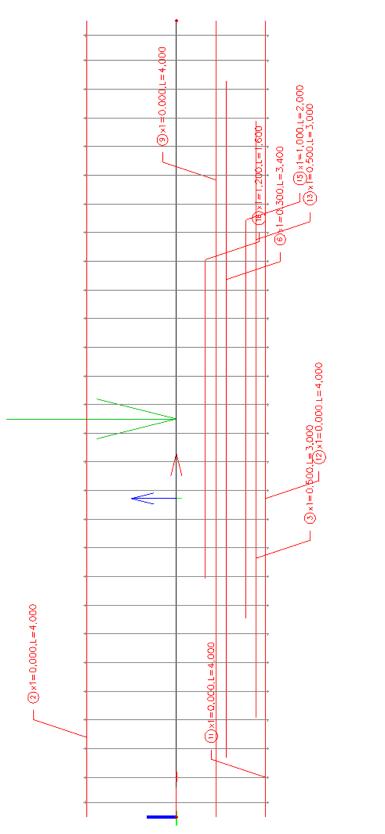
①×1=0,000,×2=4,000

Specimen 1-3-4 2d2d

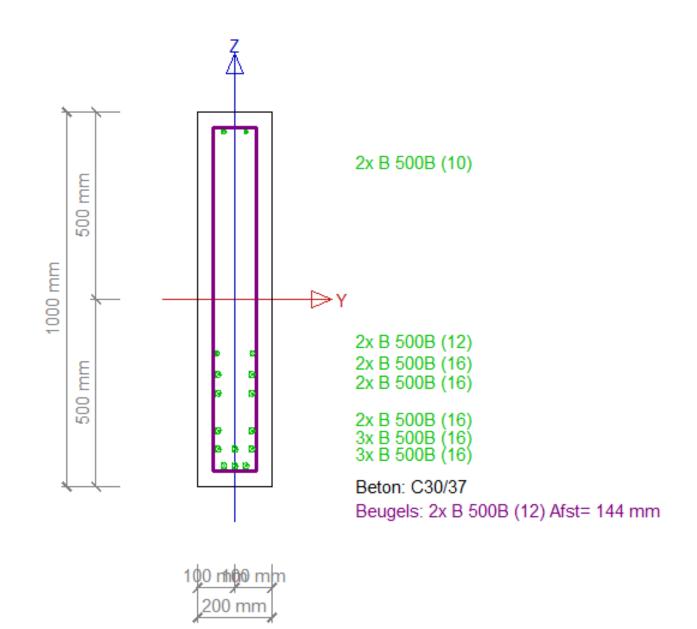

Applied SLS load (factor 1) of 450 kN

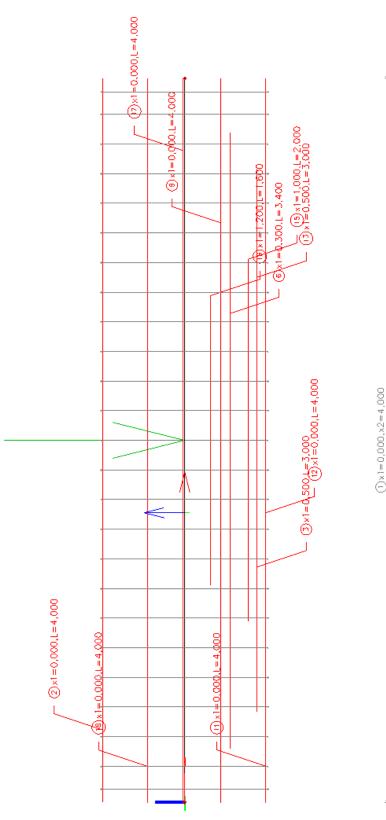

1-4-1

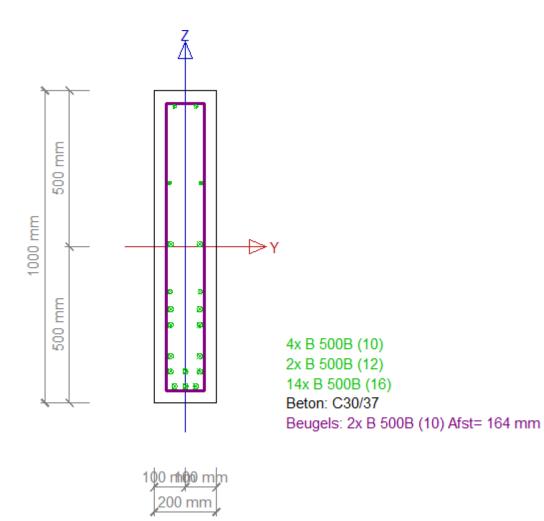
1-4-2

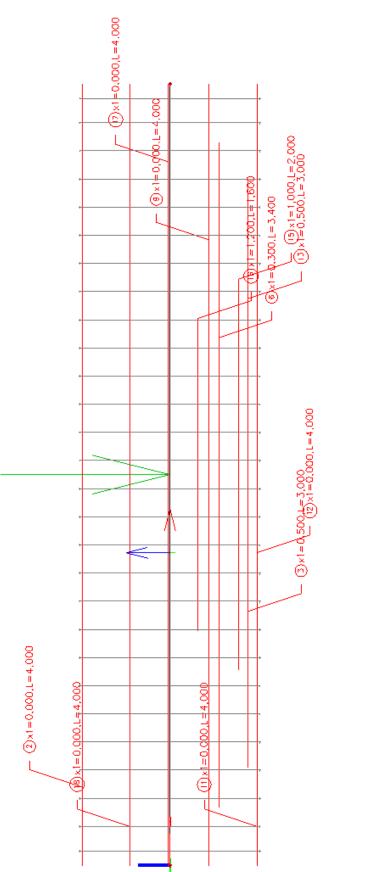

- 1-4-3
- 1-4-4

SPECIMEN 1-4-1 1d1d

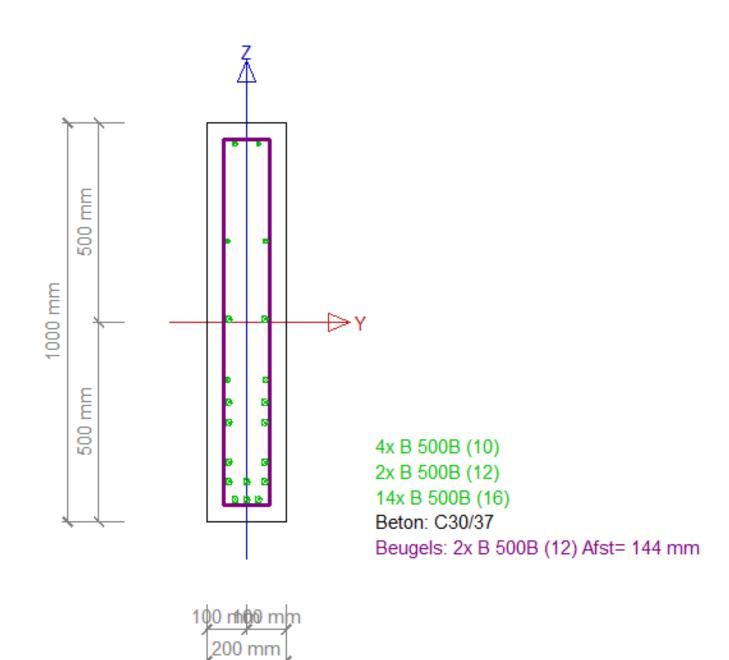


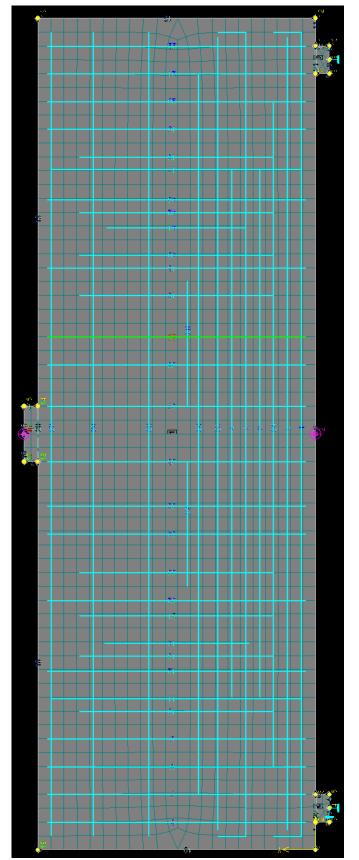

SPECIMEN 1-4-1 1d2d

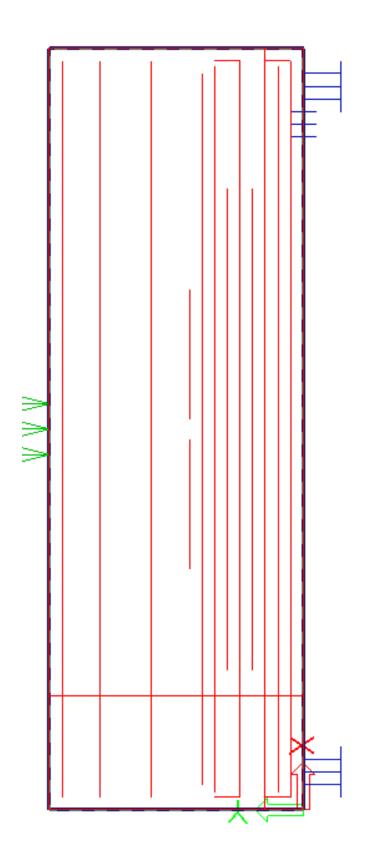


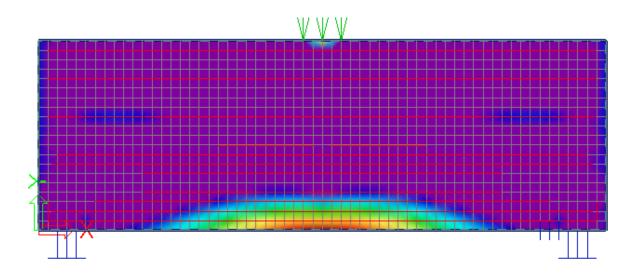

①×1=0.000,×2=4.000

SPECIMEN 1-4-1 2d1d








SPECIMEN 1-4-1 2d2d

SPECIMEN(mesh net of 5-150 is also in the specimen)S-4-2

At 464kN applied load design load off 646 kN chek kon

Design of reinforcements Slender BEAMS

Process of reinforcing

1-First by using 2D finite element model in Scia engineer, the needed reinforcement configuration is found

"Scia Engineer gives its output per element for required reinforcement mm^2/m . To obtain the actual required reinforcement area A_s in longitudinal direction, the output must be multiplied by the height of the finite element in the specific height. For the transversal direction the output must be multiplied by the width of the finite element at the specific width.

- For verifications the reinforcement configuration as a result of 2D finite element model analysis by Scia Engineering, the reinforcement configuration is applied into 1D Model in Scia Engineering.
- In applying the reinforcement from 2D to 1D model the following options are investigated
 - ✓ Longitudinal and vertical reinforcement is optimized
 - ✓ Only vertical reinforcement is optimized
 - ✓ Reinforcement configuration based on 2D Scia finite element model

Note: Optimization is also elaborated in chapter 4.4.2 of the thesis.

Important design considerations in using 2D finite element model,

1)

In 2D models, it can be seen that Scia engineering required reinforcement bars almost along the whole height of the slender beams. This is because of the finite element calculations which are done by Scia in the scale of mesh elements. In this thesis the effect of these top reinforcements are going to be investigated.

2) Optimization process of the reinforcement configuration is done by the following two options

- ✓ First ignoring the longitudinal skin reinforcements
- ✓ Vertical reinforcement based on 1D beam model in Scia Engineering and hand calculations
- ✓ As it is already mentioned before, in 2D model, there is no possibility to add Stirrups for Shear stresses, so it is decided to just add vertical mesh only. As it is seen in the verification steps by hand and by 1D modeling in Scia, the results are reliable and correct.

The method of configurations

There are two possibilities for reinforcing the specimens

1. Normal method

Generally this method is based on "one time reinforcing", so the user based on the required reinforcement which is given by Scia, can put the reinforcements in to the specimen in one time. The

following loop is the procedure for this method.

- Calculation is done by Scia Engineer
- Find required dimensions of reinforcement
- Put the reinforcement in to the specimen
- Check it again , if Scia needed more reinforcement adjust the reinforcements

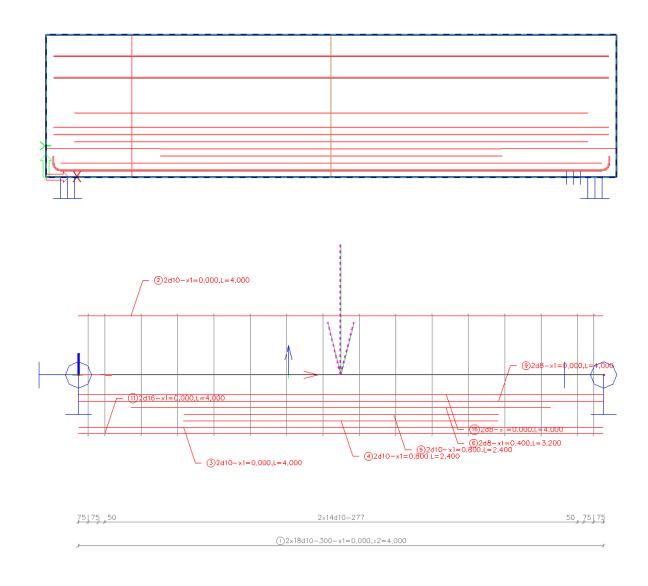
2. Step by step method or SSM

In this method, the general argument about the calculating reinforcement which is mentioned in Normal method is also valid.

SSM is based on the behavior of the material and redistribution of stresses after putting one layer of the reinforcements. This method can be formulated as the following loop:

- Calculation
- Find dimensions of the required reinforcement at the bottom edge of the specimen, with a required specific height(depends on the stresses)
- Putting one bottom reinforcement layer
- Again calculation
- Find dimension of the additional required reinforcement at the second layer from bottom with a specific height.
- Putting another layer above the firsts layer of reinforcement
- run the calculation again
- After putting 2 or 3 layers of reinforcement, Scia might require more reinforcement in layer 1 or 2. Here user can adjust some parameters of that specific layer for example choosing higher diameter of reinforcement, or putting extra reinforcements
- Run the calculation again
- This procedure of adding reinforcement layer by layer and running the calculation after each step will be continued. At the end Scia Engineer doesn't need any more reinforcement.
- These procedure should be done both in x and y direction. (direction 1 and 2 in Scia)

Note: Sometimes in 2D FEM analysis in Scia which is based on linear finite element method. At the end of configuration Scia still require some reinforcements at the bottom edge or top edge of the specimens, which can be ignored. The reason Scia calculates the amount of reinforcement for each small finites mesh elements, so consequently also at the edge of the slender beam Scia requires reinforcement which is only due to the finite element calculations and can be safely ignored. For the same reason Scia requires also some reinforcements in the free space between bottom and top reinforcements, which also can be safely ignored. (This is based on the 1D Linear hand calculations, also 1D linear Beam calculation with Scia for SLENDER beams specimens)


(Refer also to the chapter 8 conclusions and recommendations)

Note: for the first layer of reinforcement full anchorage is assumed based on the Eurocode and the results of the Romans work.

Optimization Process and defining different reinforcement configurations

Scia Engineer considers all detailing rules according to Eurocode or none-Eurocode to determine in 2D finite element model the amount of required reinforcements. In 1D beam model also Scia takes into account too many detailing provisions. Consequently theses extra measurements causes conservative results from Scia Engineer both in 2D finite element model and also in 1D beam model. One can get some errors in the results or capacity checks which should be studied and if necessary ignored.

As an example the "step by step method" is done for specimen under 200 kN SLS loading.

200 kN 1D model (normal method)

Controle - Wapeningcapaciteit EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : ULS Methode van bezwijkdiagrammen voor geselecteerde staven

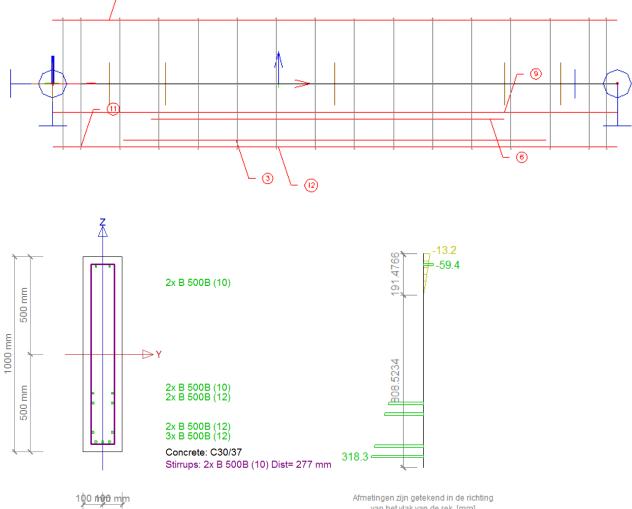
Staaf	d _x [m]	BG	Controleer type	N [kN]	My [kNm]	M _z [kNm]	N [kŇ]	M _{yu} [kNm]	M _{zu} [kNm]	Controle _{ber}	Contr
				N _(r) [kN]	M _{y(r)} [kNm]	M _{z(r)} [kNm]	N _{u2} [kN]	M _{yu2} [kNm]	M _{zu2} [kNm]	Controle _{lim} [-]	
B1	0,000	ULS/1	Mu	0,00	71,15	0,00	0,00	284,67	0,00	0,25	OK
				0,00	71,15	0,00	0,00	-98,01	0,00	1,00	
B1	0,400	ULS/1	Mu	0,00	126,04	0,00	0,00	284,67	0,00	0,44	OK
				0,00	126,04	0,00	0,00	-98,01	0,00	1,00	
B1	0,400	ULS/1	Mu	0,00	126,04	0,00	0,00	313,48	0,00	0,40	OK
				0,00	126,04	0,00	0,00	-106,59	0,00	1,00	
B1	0,400	ULS/1	Mu	0,00	126,04	0,00	0,00	313,48	0,00	0,40	OK
				0,00	126,04	0,00	0,00	-106,59	0,00	1,00	
B1	0,800	ULS/1	Mu	0,00	180,15	0,00	0,00	313,48	0,00	0,57	OK
				0,00	180,15	0,00	0,00	-106,59	0,00	1,00	
B1	0,800	ULS/1	Mu	0,00	180,15	0,00	0,00	411,35	0,00	0,44	OK
				0,00	180,15	0,00	0,00	-120,34	0,00	1,00	
B1	0,800	ULS/1	Mu	0,00	180,15	0,00	0,00	411,35	0,00	0,44	ок
				0,00	180,15	0,00	0,00	-120,34	0,00	1,00	
B1	1,200	ULS/1	Mu	0,00	233,31	0,00	0,00	411,35	0,00	0,57	ок
	· · ·			0,00	233,31	0,00	0,00	-120,34	0,00	1,00	
B1	1,600	ULS/1	Mu	0,00	271,77	0,00	0,00	411,35	0,00	0,66	ок
				0,00	271,77	0,00	0,00	-120,34	0,00	1,00	
B1	2,000	ULS/1	Mu	0,00	271.77	0,00	0,00	411,35	0,00	0,66	ок
	_,			0,00	271 77	0,00	0,00	120.34	0,00	1.00	

Controle - Wapeningcapaciteit EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : ULS **Dwarskrachtcontrole voor geselecteerde staven**

Staaf	d _x [m]	BG	V _{ED} [kN]	beugel afst [mm]	diam. [mm]	A [mm ²⁵ /m]	V _{Rd.c} [kN]	V _{Rd} [kN]	Controleber [-]	Controle
				dwarsafst [mm]			V _{Rdmax}		Controle _{lim}	
B1	0,000	ULS/1	141,77	125	10,0	1257	73,59	520,36	0,27	ок
				120			831,09		1,00	
B1	0,400	ULS/1	139,42	277	10,0	567	73,59	234,88	0,59	ок
				120			831,09		1,00	
B1	0,400	ULS/1	139,42	277	10,0	567	76,14	231,49	0,60	ок
				120			819,09		1,00	
B1	0,400	ULS/1	139,42	277	10,0	567	76,14	231,49	0,60	ок
				120			819,09		1,00	
B1	0,800	ULS/1	137,06	277	10,0	567	76,14	231,49	0,59	ок
				120			819,09		1,00	
B1	0,800	ULS/1	137,06	277	10,0	567	83,90	228,47	0,60	ок
				120			808,41		1,00	
B1	0,800	ULS/1	137,06	277	10,0	567	83,90	228,47	0,60	OK
				120			808,41		1,00	
B1	1,200	ULS/1	134,71	277	10,0	567	83,90	228,47	0,59	ок
				120			808,41		1,00	
B1	1,600	ULS/1	132,35	277	10,0	567	83,90	228,47	0,58	ок
				120			808,41		1,00	
B1	2,000	ULS/1	130,00	277	10,0	567	83,90	228,47	0,57	ок
				120			808,41		1,00	

- 🛄 📖


- II II

🐚 💹 📑 🚑 📘 🕂 🔲 💻 200 % 👻 🖬 🔲 default

Controle - Scheurvorming EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : SLS Scheurwijdte berekening voor geselecteerde staven

Staaf	d [m]	BG	N [kN]	M [kNm]	M [kNm]	σ [MPa]	s _{r,max} [mm]	w [mm]	Controle	Controle
			N, [kŃ]	M _{yr} [kNm]	M _{zr} [kNm]	f _{ct.eff} [MPa]	^و esm ^{-E} ecm [1e-4]	w _{lim} [mm]	Controle _{lim} [-]	
B1	0,400	SLS/2	0,00	43,53	0,00	0,0	0	0,000	0,00	OK
			0,00	103,32	0,00	0,00	0,0		1,00	
B1	0,800	SLS/2	0,00	86,28	0,00	0,0	0	0,000	0,00	OK
			0,00	105,08	0,00	0,00	0,0		1,00	
B1	1,200	SLS/2	0,00	128,24	0,00	160,3	300	0,144	0,48	OK
			0,00	105,08	0,00	2,90	4,8	0,300	1,00	
B1	1,600	SLS/2	0,00	169,42	0,00	211,7	300	0,191	0,64	OK
			0,00	105,08	0,00	2,90	6,4	0,300	1,00	
B1	2,000	SLS/2	0,00	209,81	0,00	262,2	300	0,236	0,79	OK
			0,00	105,08	0,00	2,90	7,9	0,300	1,00	
B1	2,400	SLS/2	0,00	169,42	0,00	211,7	300	0,191	0,64	OK
			0,00	105,08	0,00	2,90	6,4	0,300	1,00	
B1	2,800	SLS/2	0,00	128,24	0,00	160,3	300	0,144	0,48	OK
			0,00	105,08	0,00	2,90	4,8	0,300	1,00	
B1	3,200	SLS/2	0,00	86,28	0,00	0,0	0	0,000	0,00	OK
			0,00	105,08	0,00	0,00	0,0		1,00	
B1	3,600	SLS/2	0,00	43,53	0,00	0,0	0	0,000	0,00	ОК
			0,00	103,32	0,00	0,00	0,0		1,00	

200 kn Optimized (method 2- Sep by Step Method)

[200[°]mm]

van het vlak van de rek. [mm]

Controle - Scheurvorming EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : SLS

Scheurwijd te berekening voor geselecteerde staven

Staaf	d _x [m]	BG	N [kN]	M _y [kNm]	Mz [kNm]	σ, [MPa]	s _{r,max} [mm]	w [mm]	Controle _{ber} [-]	Controle	Info nummer
	11		Nr [kN]	M _{yr} [kNm]	M _{zr} [kNm]	fot err [MPa]	ε _{esm} [*] eom [1e-4]	Wim [mm]	Controle _{lim}		
B1	0,400	SLS/2	0,00	43,53	0,00	0,0	0	0,000	0,00	ок	12
			0,00	101,10	0,00	0,00	0,0		1,00		
B1	0,800	SLS/2	0,00	86,28	0,00	0,0	0	0,000	0,00	ок	12
			0,00	103,73	0,00	0,00	0,0		1,00		
B1	1,200	SLS/2	0,00	128,24	0,00	194,6	292	0,170	0,57	ок	
			0,00	103,73	0,00	2,90	5,8	0,300	1,00		
B1	1,600	SLS/2	0,00	169,42	0,00	257,0	292	0,225	0,75	ок	
			0,00	103,73	0,00	2,90	7,7	0,300	1,00		
B1	2,000	SLS/2	0.00	209,81	0.00	318.3	292	0.279	0,93	ок	
			0.00	103,73	0,00	2,90	9,5	0,300	1,00		
B1	2,400	SLS/2	0.00	169,42	0.00	257,0	292	0,225	0,75	ок	
	,		0.00	103,73	0.00	2,90	7,7	0,300	1,00		
B1	2,800	SLS/2	0,00	128,24	0,00	194,6	292	0,170	0,57	ок	
			0,00	103,73	0,00	2,90	5,8	0,300	1,00		
B1	3,200	SLS/2	0,00	86,28	0,00	0,0	0	0,000	0,00	ок	12
			0,00	103,73	0,00	0,00	0,0		1,00		
B1	3,600	SLS/2	0,00	43,53	0,00	0,0	0	0,000	0,00	ок	12
			0,00	101,10	0,00	0,00	0,0		1,00		

Verklaring van fouten en waarschuwingen

12 De scheuren traden niet op.

Controle - Wapeningcapaciteit EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : ULS

Me thod e van be zwijk dia grammen voor geselecteerde staven

Staaf	d _x [m]	BG	Controleer type	N [kN]	M _y [kNm]	Mz [kNm]	Nu [kN]	M _{yu} [kNm]	M _{zu} [kNm]	Controle _{ber} [-]	Controle
	find			No	M _{y(r)}	M _{z(r)}	N _{u2}	M _{yu2}	M _{zu2}	Controleim	
				[kN]	[kNm]	[kNm]	[kN]	[kNm]	[kNm]	[-]	
B1	0,000	ULS/1	Mu	0,00	71,15	0,00	0,00	181,74	0,00	0,39	OK
				0,00	71,15	0,00	0,00	-82,73	0,00	1,00	
B1	0,400	ULS/1	Mu	0,00	126,04	0,00	0,00	181,74	0,00	0,69	OK
				0,00	126,04	0,00	0,00	-82,73	0,00	1,00	
B1	0,500	ULS/1	Mu	0,00	139,61	0,00	0,00	181,74	0,00	0,77	OK
				0,00	139,61	0,00	0,00	-82,73	0,00	1,00	
B1	0,500	ULS/1	Mu	0,00	139,64	0,00	0,00	264,73	0,00	0,53	ОК
				0,00	139,64	0,00	0,00	-87,38	0,00	1,00	
B1	0,700	ULS/1	Mu	0,00	166,78	0,00	0,00	264,73	0,00	0,63	OK
				0,00	166,78	0,00	0,00	-87,38	0,00	1,00	
B1	0,700	ULS/1	Mu	0,00	166,81	0,00	0,00	331,08	0,00	0,50	OK
				0,00	166,81	0,00	0,00	-105,74	0,00	1,00	
B1	0,800	ULS/1	Mu	0,00	180,15	0,00	0,00	331,08	0,00	0,54	OK
				0,00	180,15	0,00	0,00	-105,74	0,00	1,00	
B1	1,200	ULS/1	Mu	0,00	233,31	0,00	0,00	331,08	0,00	0,70	ОК
				0,00	233,31	0,00	0,00	-105,74	0,00	1,00	
B1	1,600	ULS/1	Mu	0,00	271,77	0,00	0,00	331,08	0,00	0,82	OK
				0,00	271,77	0,00	0,00	-105,74	0,00	1,00	
B1	2,000	ULS/1	Mu	0,00	271,77	0,00	0,00	331,08	0,00	0,82	OK
				0,00	271,77	0,00	0,00	-105,74	0,00	1,00	

Controle - Wapeningcapaciteit EN 1992-1-1

Lineaire berekening, Extreem : Snede Selectie : Alle Combinaties : ULS

Dwarskrachtcontrole voor geselecteerde staven

Staaf	d M	BG	v ⊯RB	beugelafst [mm]	diam. (mm)	A [mm ³⁵ m]	v RMp°	v ₽\$¶	Controle [-]	Controle	
				dwarsafst [mm]			V _{Rd,max} [kN]		Contro le _{llim} [-]		Me th ode
B1	0,000	ULS/1	141,77	125 120	10,0	1257	63,95 833,97	522,16	0,27	ок	formule 6.2a.b) EN1992-1-1
B1	0.400	ULS/1	139.42	277	10.0	567	63.95	235,70	-	ок	IOTITUTE 0.28.0) EN1992-1-1
	0,400	OCON1	103,42	120	10,0		833.96	200,10	1.00	U.	formule 6.2a.b) EN1992-1-1
B1	0.500	ULS/1	138.83	277	10.0	567	63.95	235,70	-	ок	
				120			833,96		1,00		formule 6.2a.b) EN1992-1-1
B1	0,500	ULS/1	138,83	277	10,0	567	72,64	236,72	0,59	ок	
				120			837,58		1,00		formule 6.2a.b) EN1992-1-1
B1	0,700	ULS/1	137,65	277	10,0	567	72,64	236,72		ок	
				120			837,58		1,00		formule 6.2a.b) EN1992-1-1
B1	0,700	ULS/1	137,65	277	10,0	567	78,28	229,34		ок	
				120			811,49		1,00		formule 6.2a.b) EN1992-1-1
B1	0,800	ULS/1	137,06	277	10,0	567	78,28	229,34	0,60	OK	
				120			811,49		1,00		formule 6.2a.b) EN1992-1-1
B1	1,200	ULS/1	134,71	277	10,0	567	78,28	229,34	-,	ок	
				120			811,49		1,00		formule 6.2a.b) EN1992-1-1
B1	1,600	ULS/1	132,35	277	10,0	567	78,26	229,24	0,58	ок	
				120			811,11		1,00		formule 6.2a.b) EN1992-1-1
B1	2,000	ULS/1	130,00	277	10,0	567	78,26	229,24		ок	
				120			811,11		1,00		formule 6.2a.b) EN1992-1-1

Deep Beams

Naming of the different reinforcement configurations

For deep beam specimens the naming of the specimens is based on the following factors:

Analysis method

Deep beams are analyzed by using the following methods

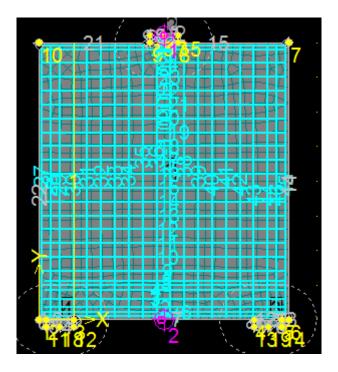
- 1. Standard beam method (SBM)
- 2. Strut and Tie Method (STM)
- 3. Linear finite element method with Scia Engineer (L FEM)
- 4. Nonlinear finite element method with Scia Engineer (NL FEM)
- Dimension of specimens

In the category Deep beams there are three specimens considered in this thesis specimen 1 or D1 and specimen2 or D2 and specimen 3 or D3.

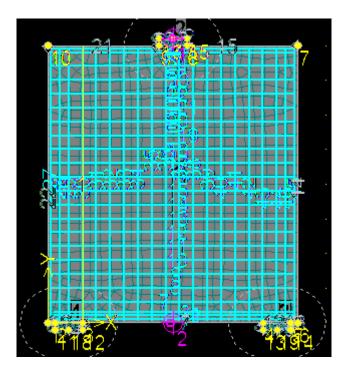
Specimens	Length[mm]	Effective length[mm]	Height [mm]	Width[mm]
D1	3600	3000	4000	250
D2	7600	7000	3000	250
D3	3600	3000	8000	250

Load

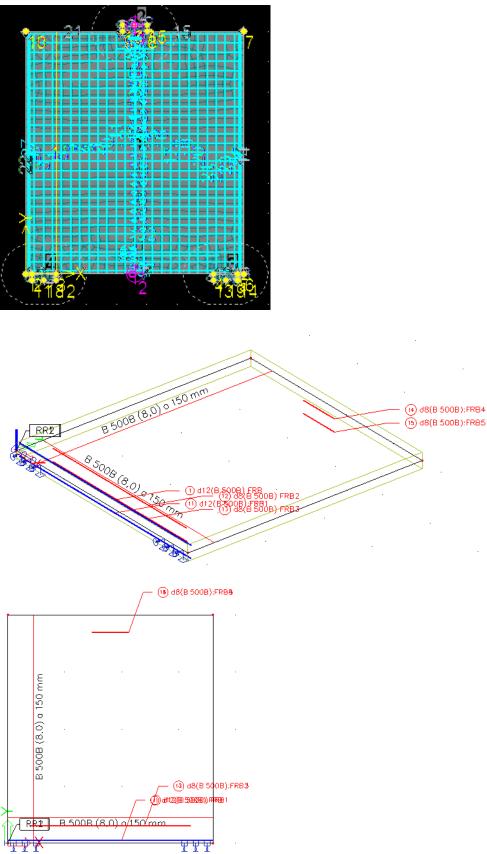
There are two load cases which as following

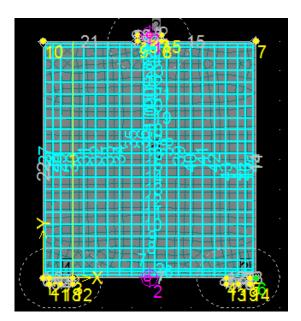

P1	Point load 800 kN applied load (SLS factor 1)
P2	Point load 1500 kN pplied load (SLS factor 1)

- Method of reinforcing
 - a) SBM
 - b) STM
 - c) LE-FEM(Scia)
 - d) NL-FEM(Scia)
 - e) ATENA
- Naming of the specimens

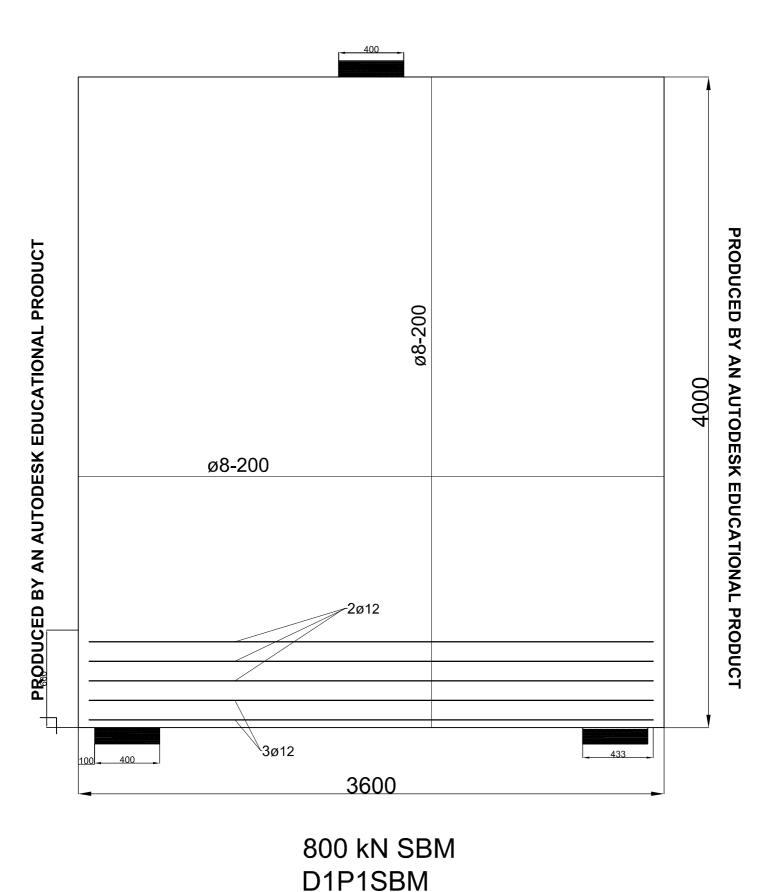

The naming of the specimens is as following

0	•	-	
	D1P1	D1P2	D2P1
SBM	D1P1SBM	D1P2SBM	D2P1SBM
STM	D1P1STM	D1P2STM	D2P1STM(1)
			D2P1STM(2)
			D2P1STM(3)
LE FEM	D1P1LFEM	D1P2LFEM	D2P1LFEM
NL FEM	D1P1NLFEM	D1P2NLFEM	D2P1NLFEM

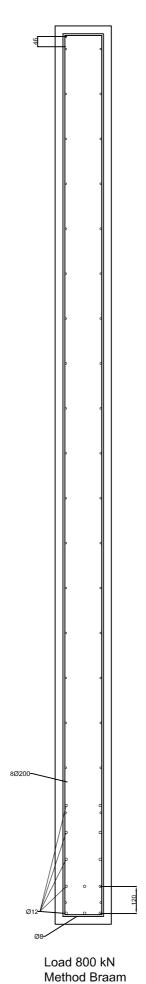

D1P1SBM


D1P1STM

D1P1LEFEM

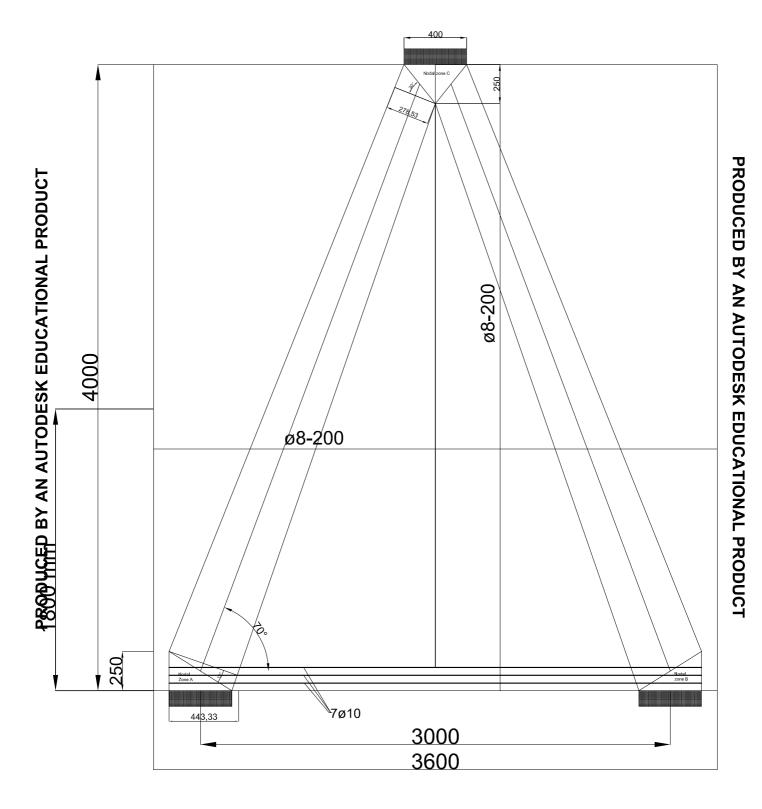

D1P1NLFEM

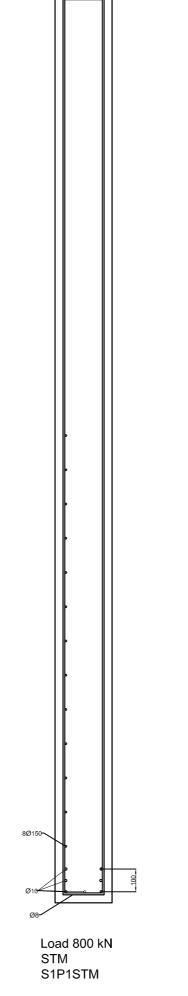
D1P1SBM


Spec 1 – Point load 1(800 kN applied load) – standard beam method-

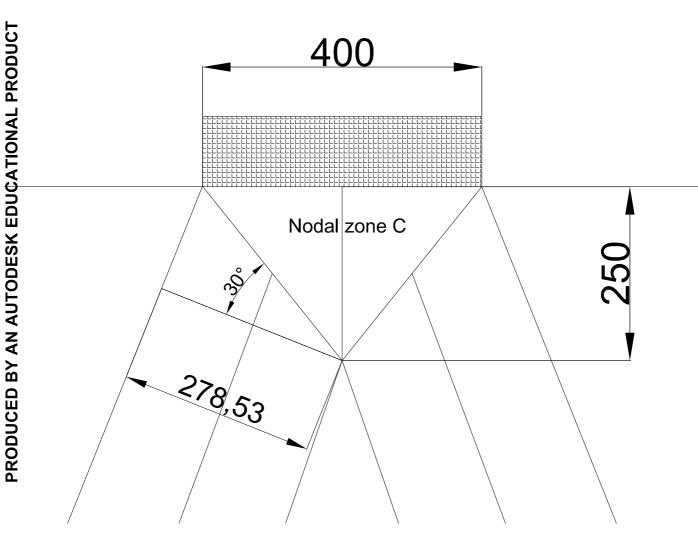
PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

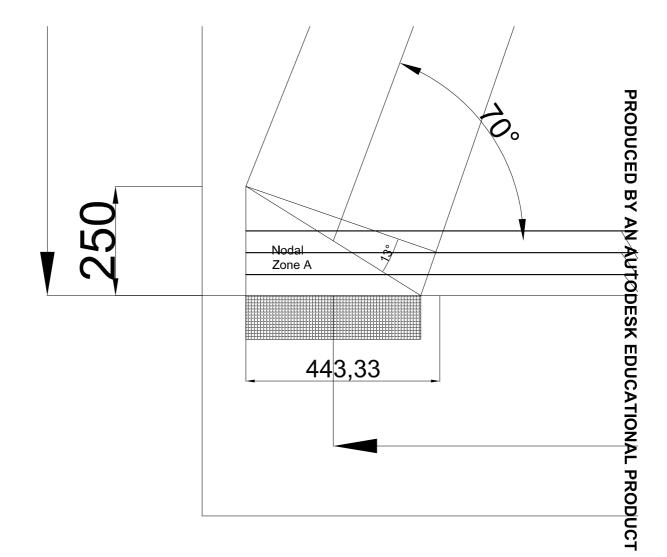
ТООООЯ ВҮ АИ АUTODESK EDUCATIONAL PRODUCT


PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT


PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

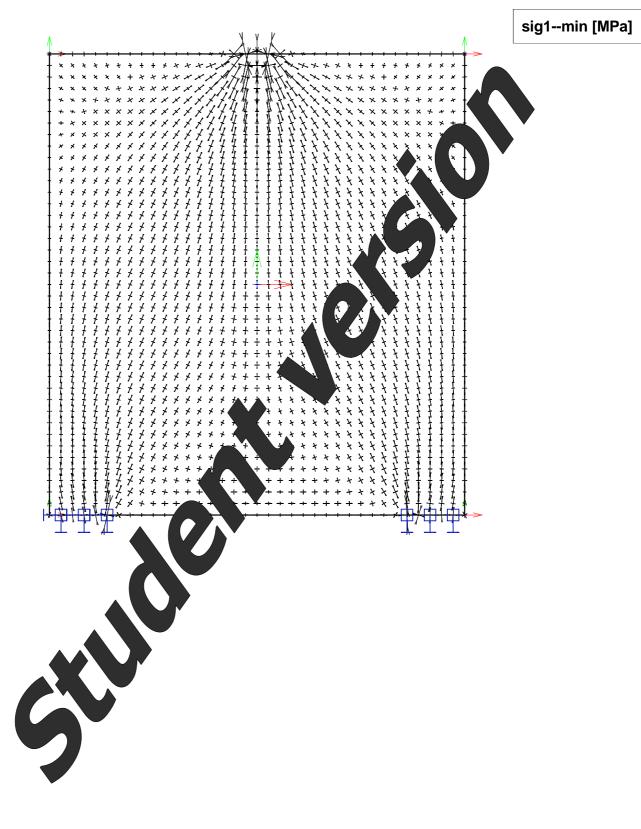
D1P1STM


Spec 1 – Point load 1(800 kN applied load) – Strut and Tie Model

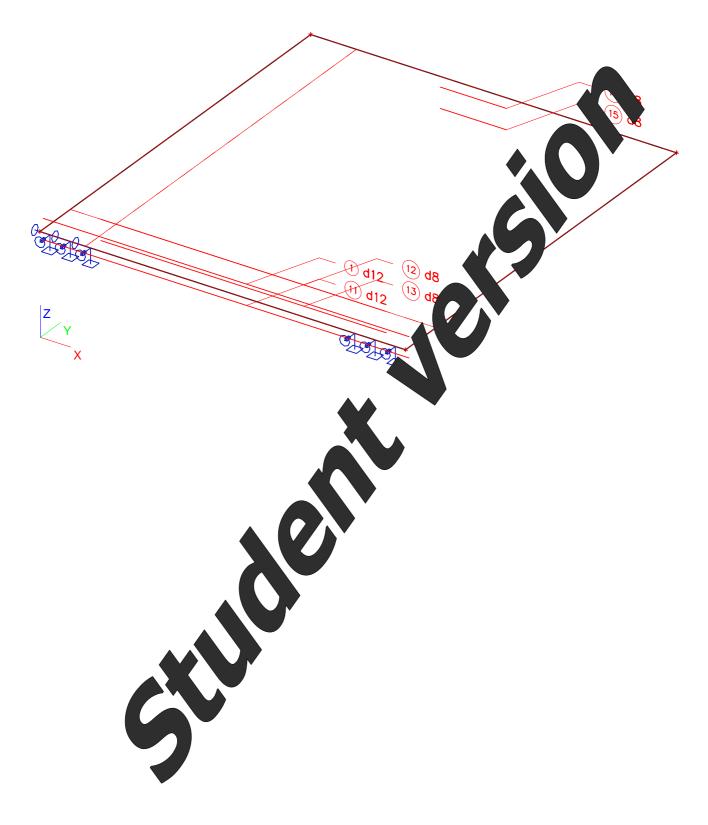


PRODUCED BY AN AUTOPESK EDUCATIONAL PRODUCT

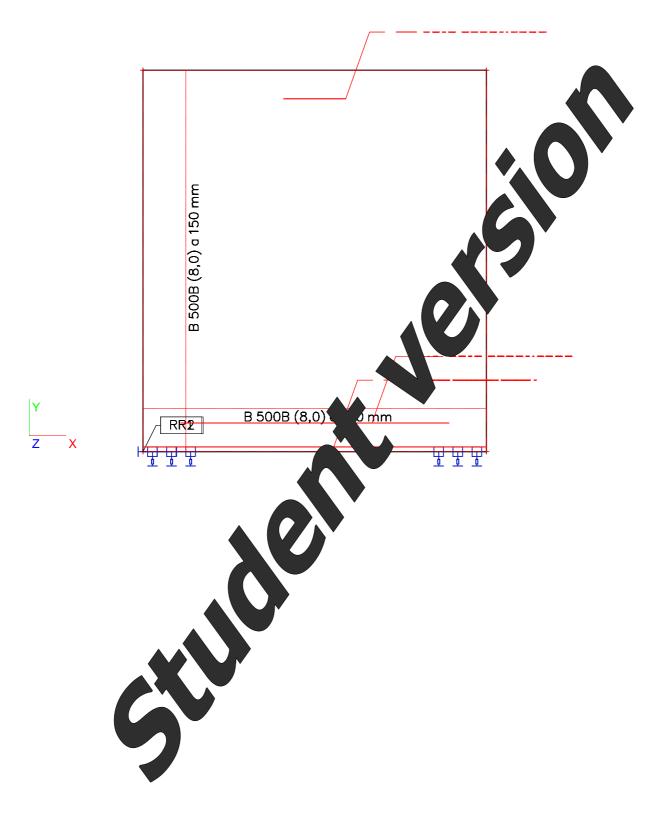
ТООООЯ ЛАИОПТАООВУ К Е В ОСТОИА И А У В ОВООСТ


D1P1LFEM

Spec 1 – Point load 1(800 kN applied load) – LE FEM


1. 2D member - Stresses; sig1-

Ζ

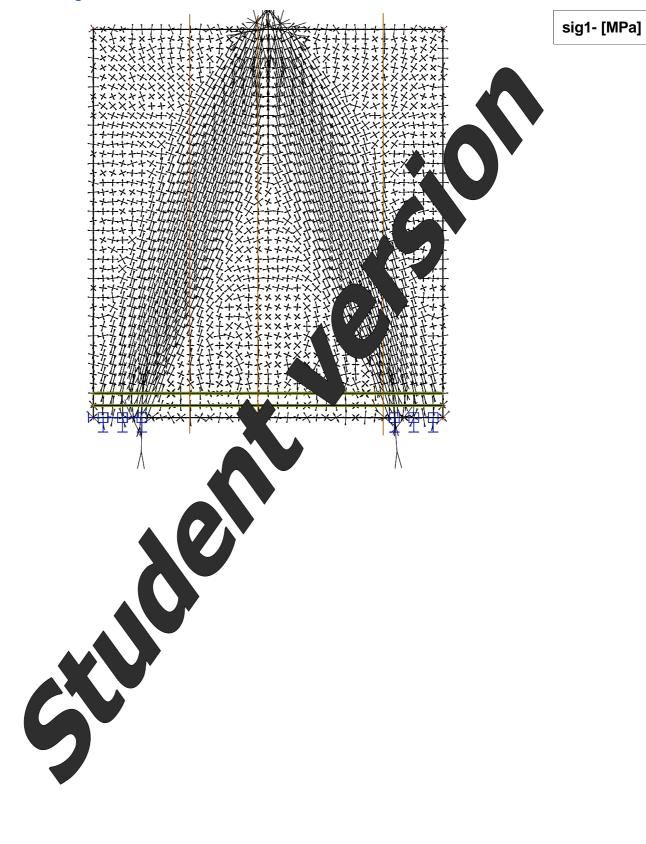

2. Analysis model

-

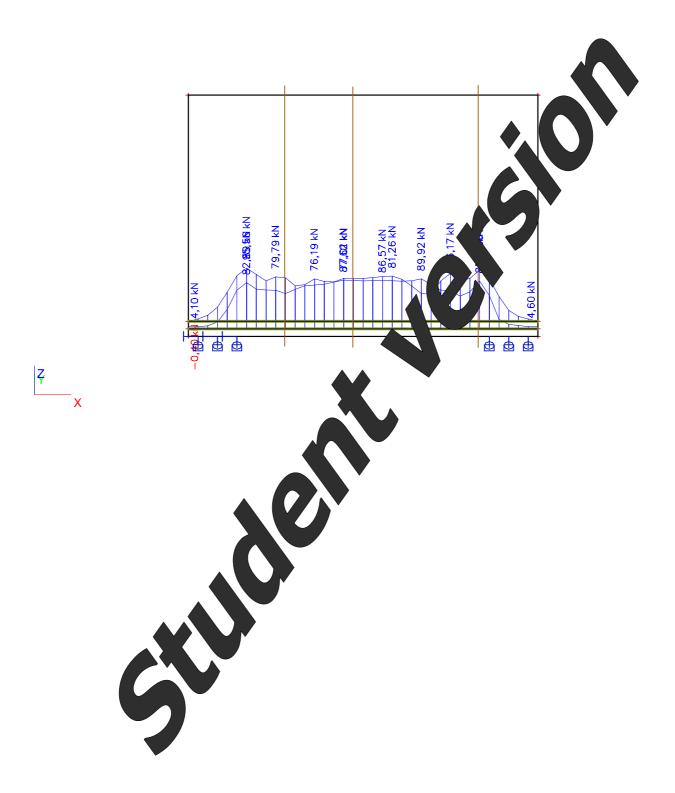
3. Analysis model

-

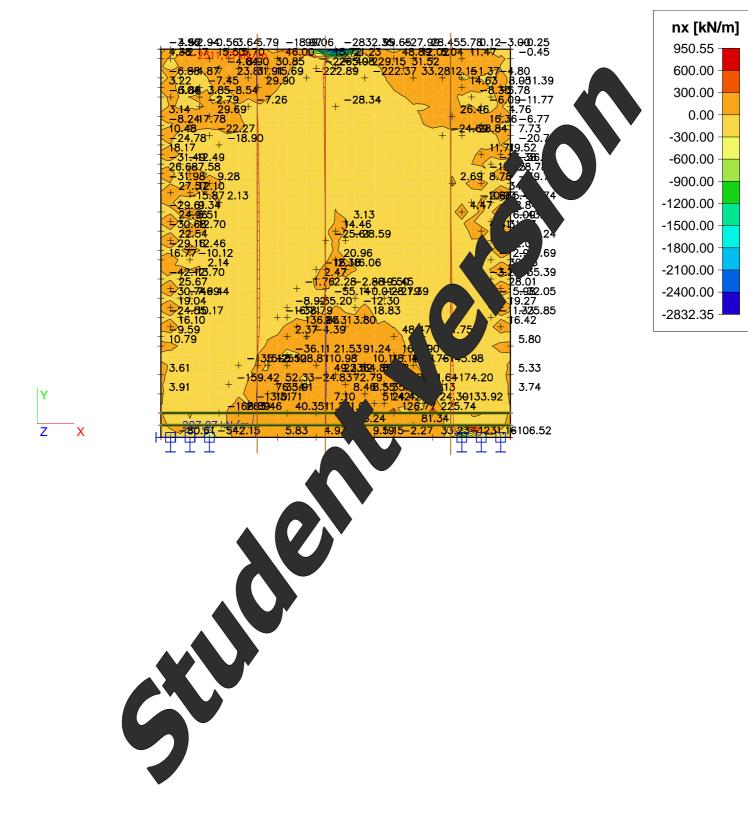
D1P1NLFEM


Spec 1 – Point load 1(800 kN applied load) – NL FEM

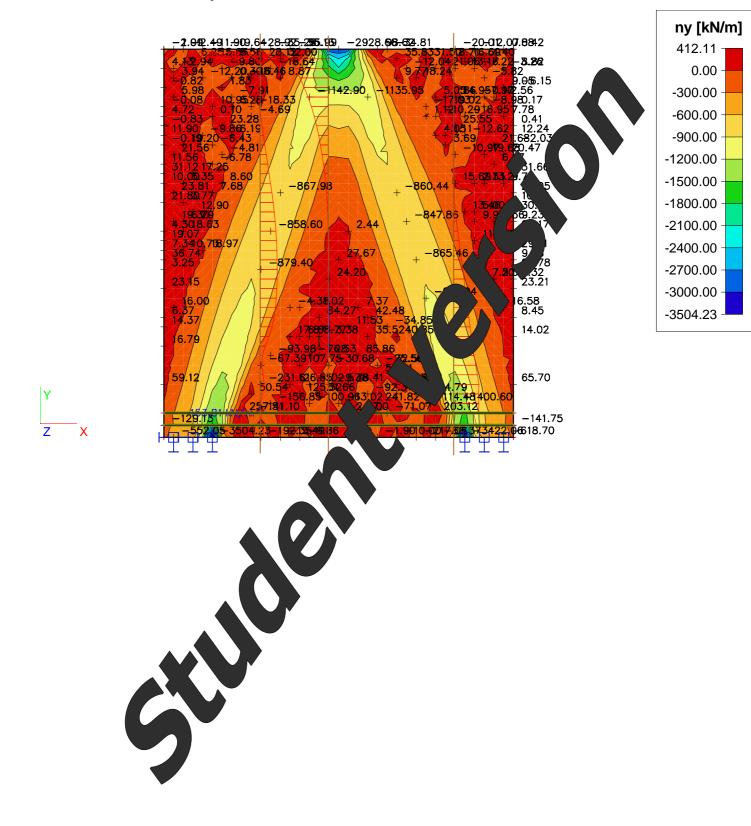
1. 2D member - Stresses; sig1-


Y

Ζ


2. Internal forces on member; N

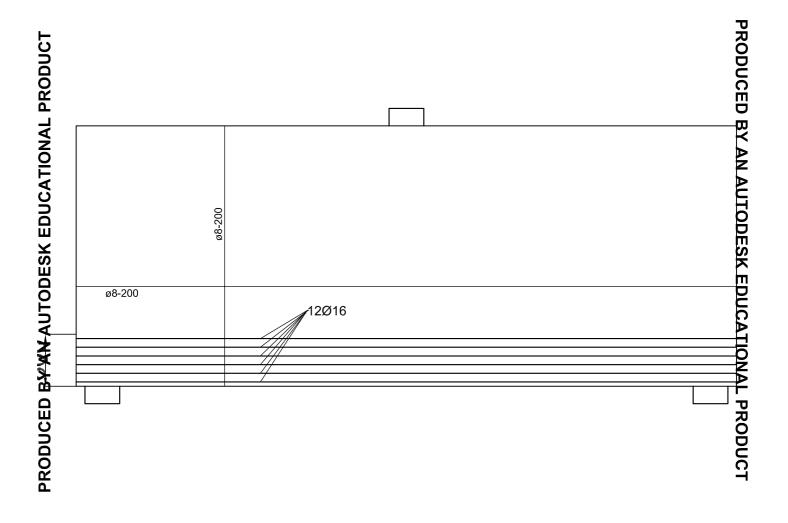
-



3. 2D member - Internal forces; nx

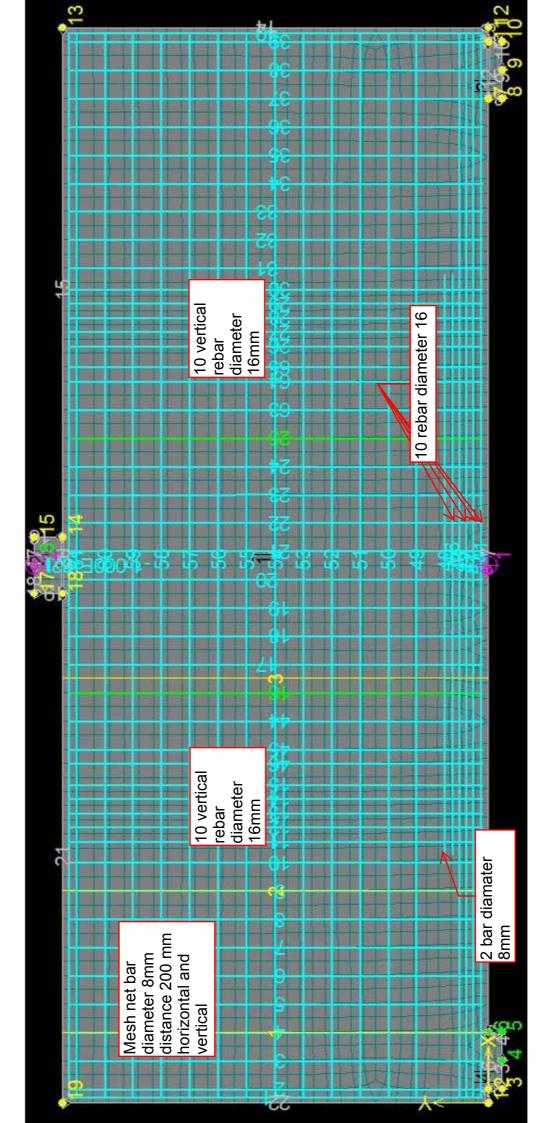


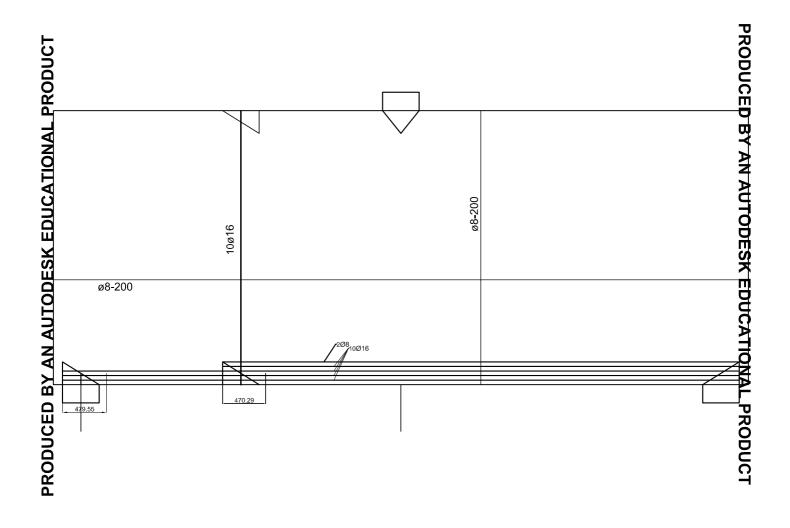
4. 2D member - Internal forces; ny

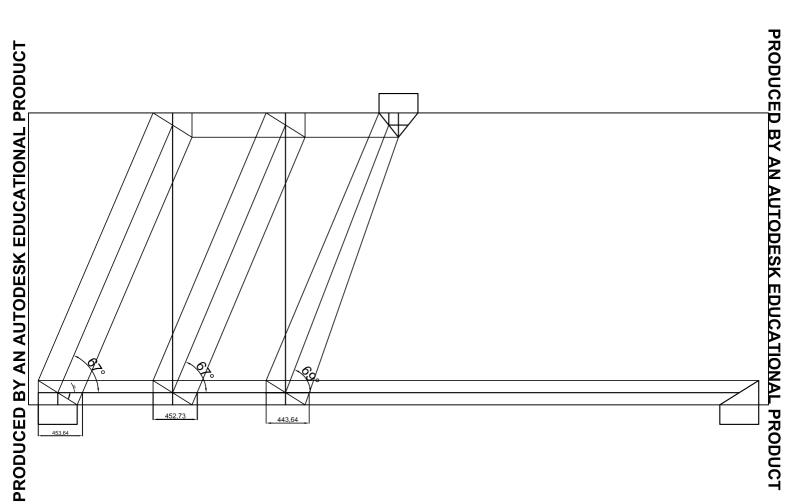


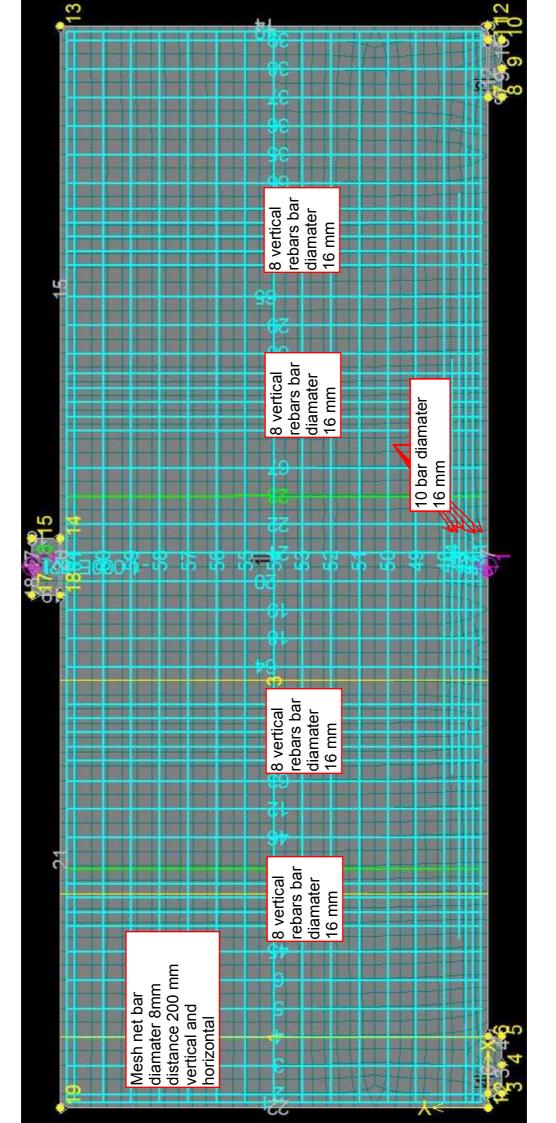

5. 2D member - Internal forces; nxy

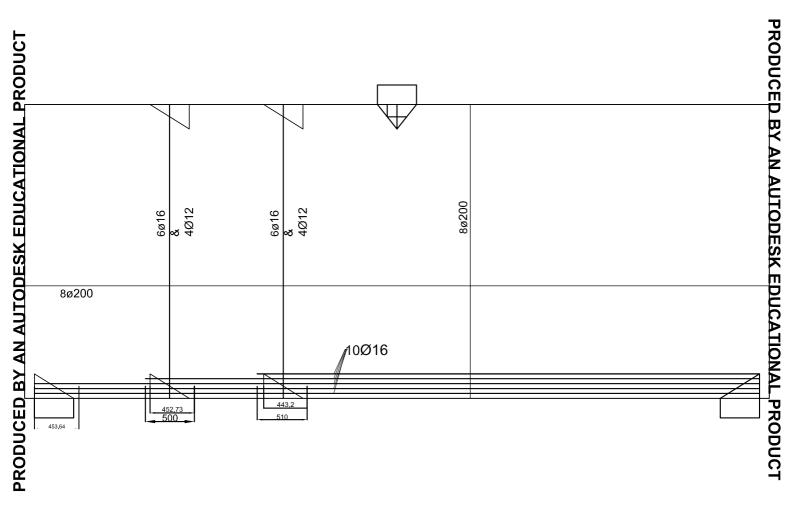
D2P1SBM



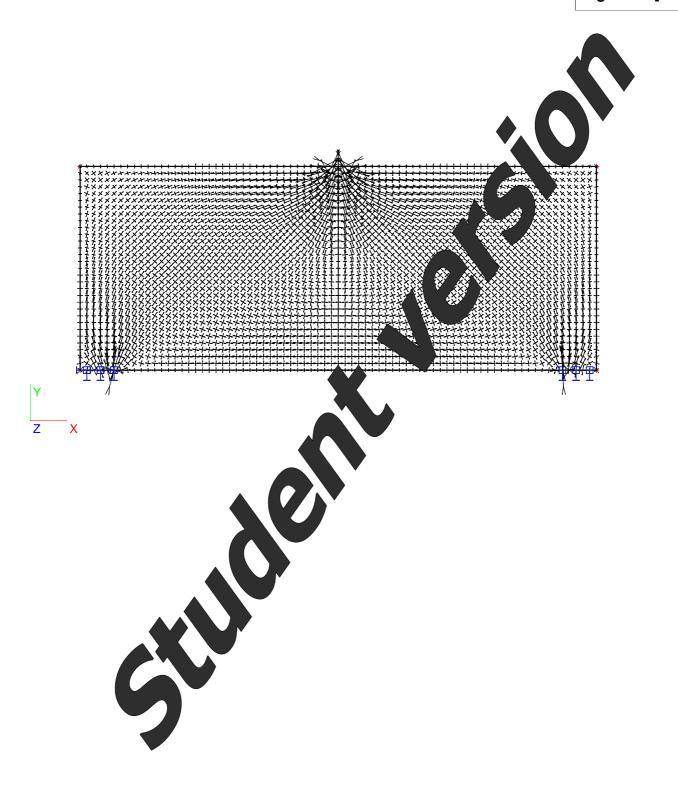

D2P1STM(1)


D2P1STM(2)

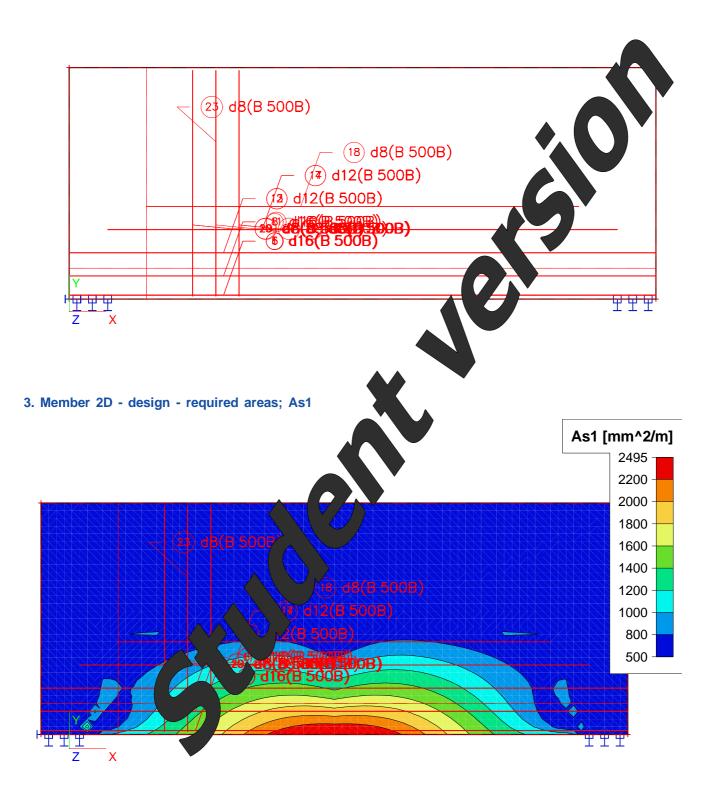


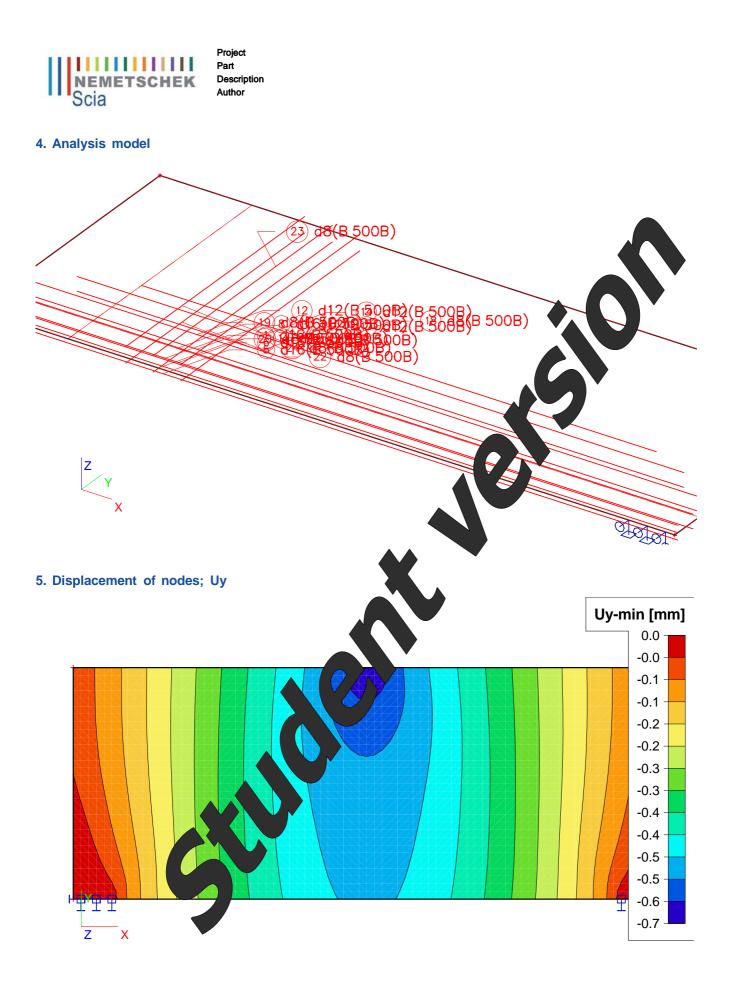


D2P1STM(3)

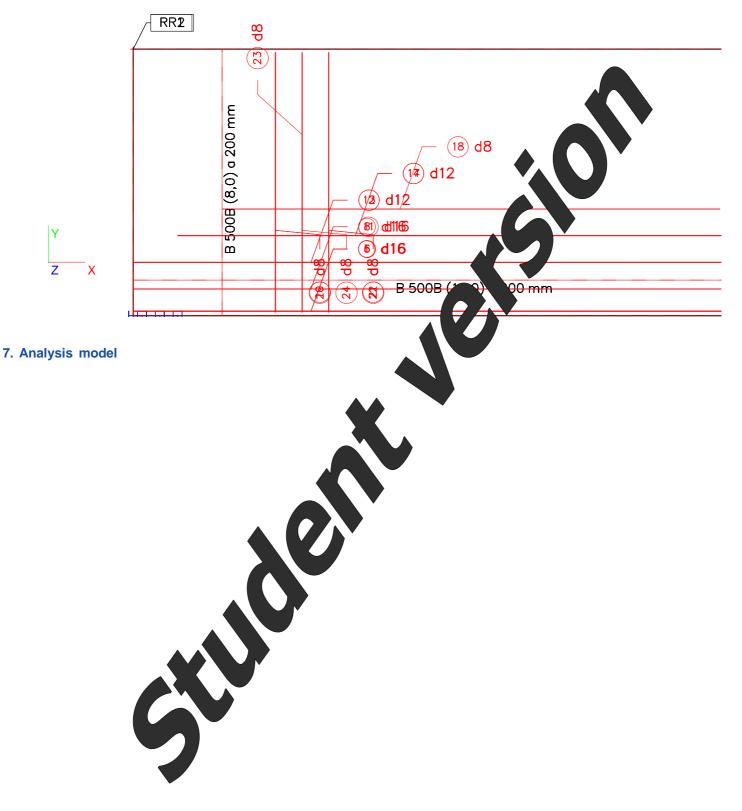


D2P1LEFEM

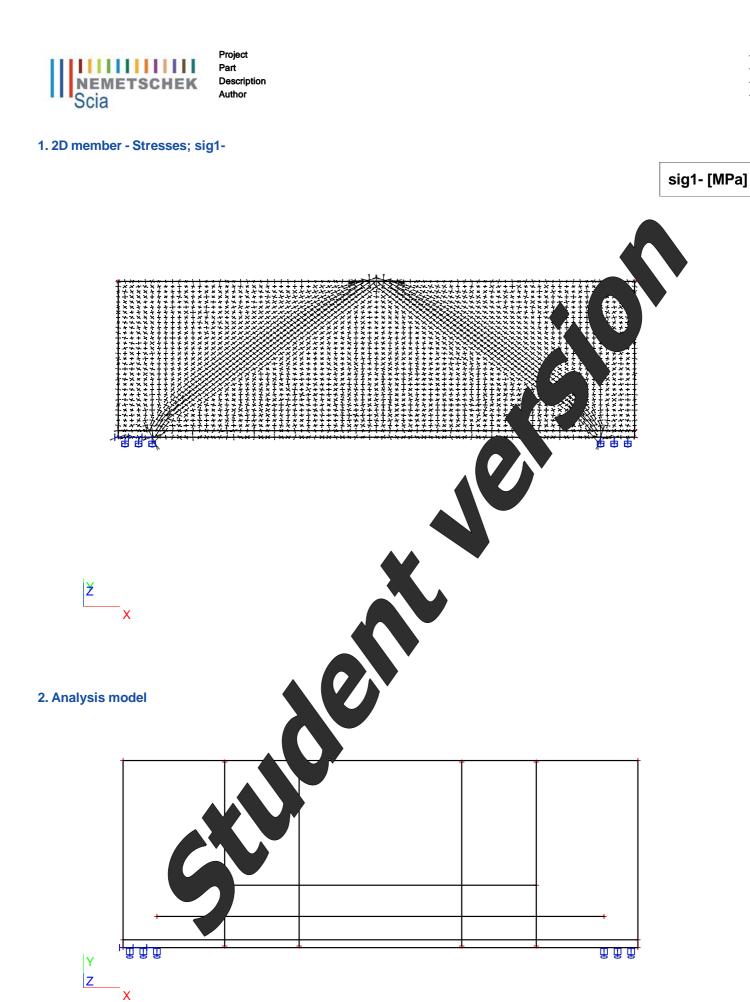

1. 2D member - Stresses; sig1-


sig1--min [MPa]

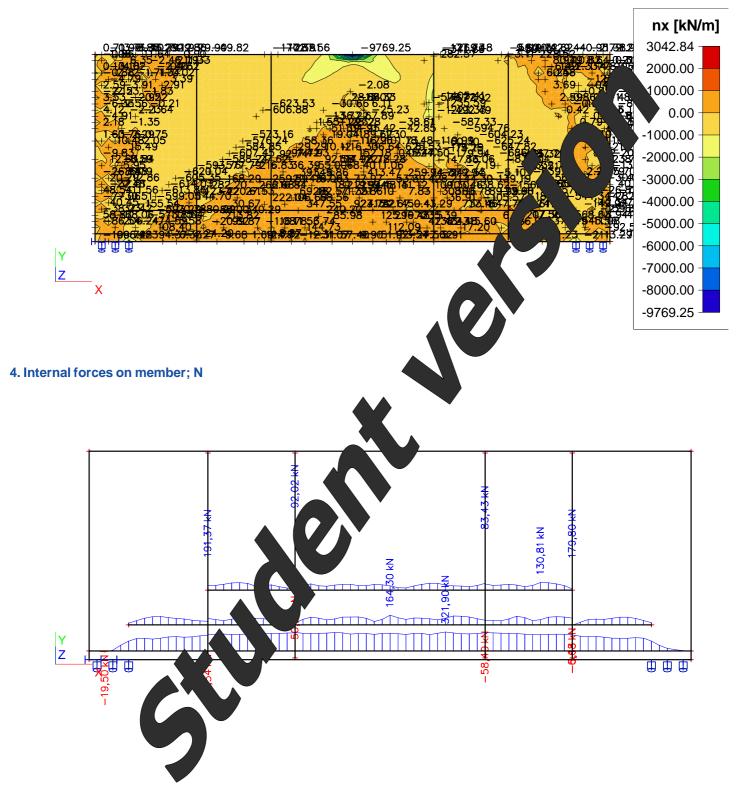
2. Analysis model



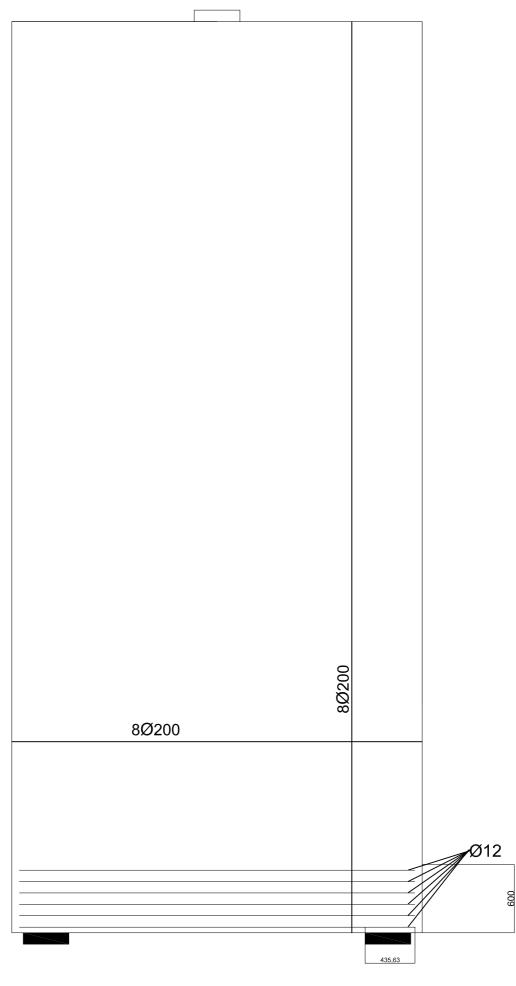
-



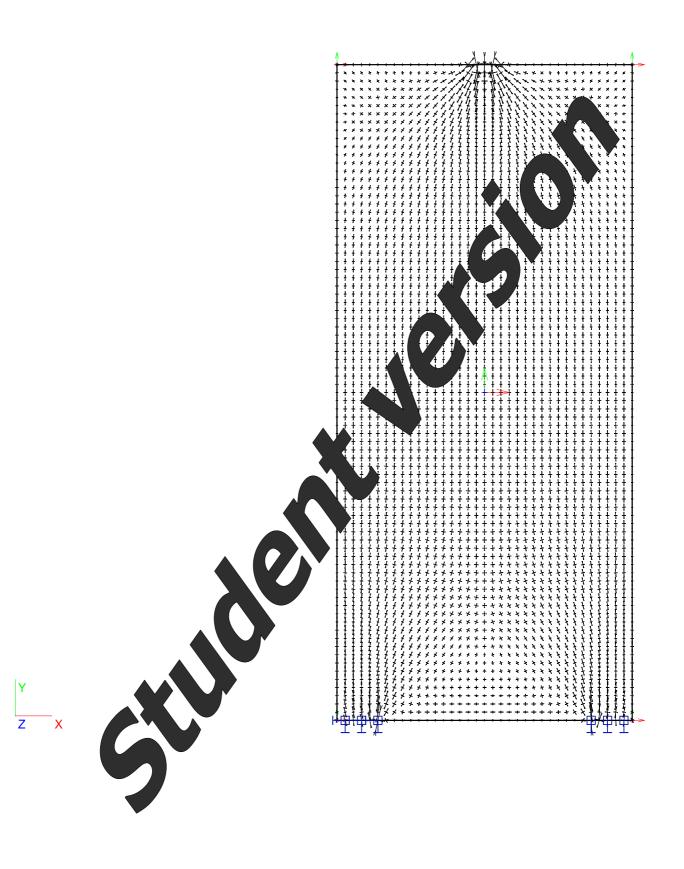
6. Analysis model


-

D2P1NLFEM

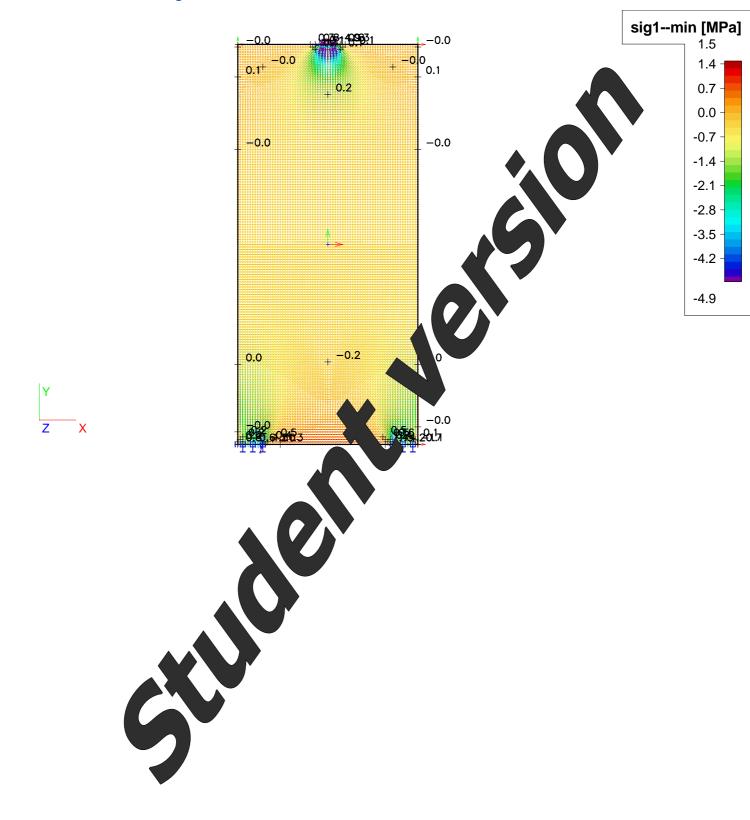


3. 2D member - Internal forces; nx

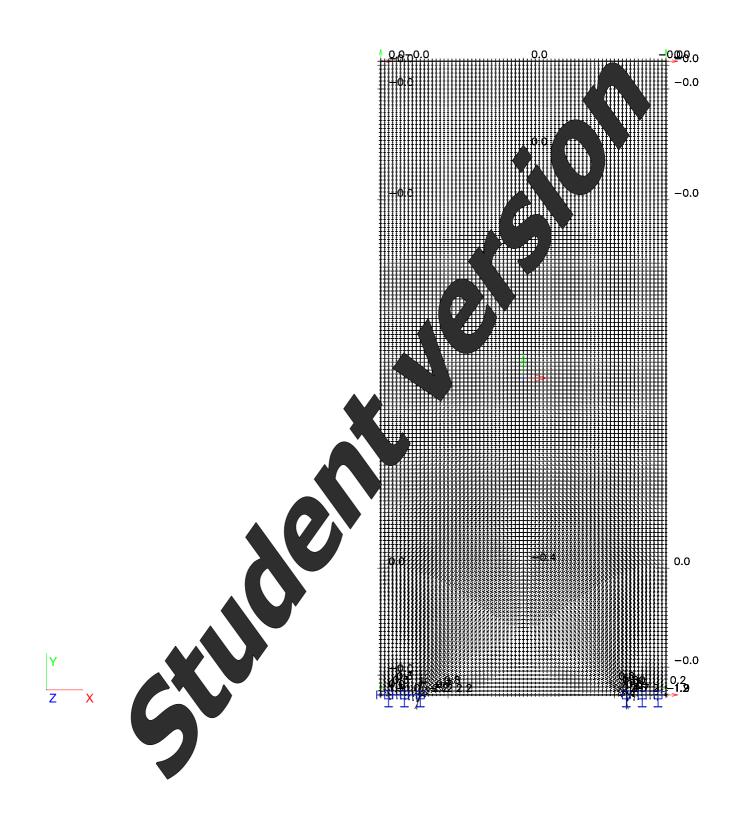


Specimen D3 examples

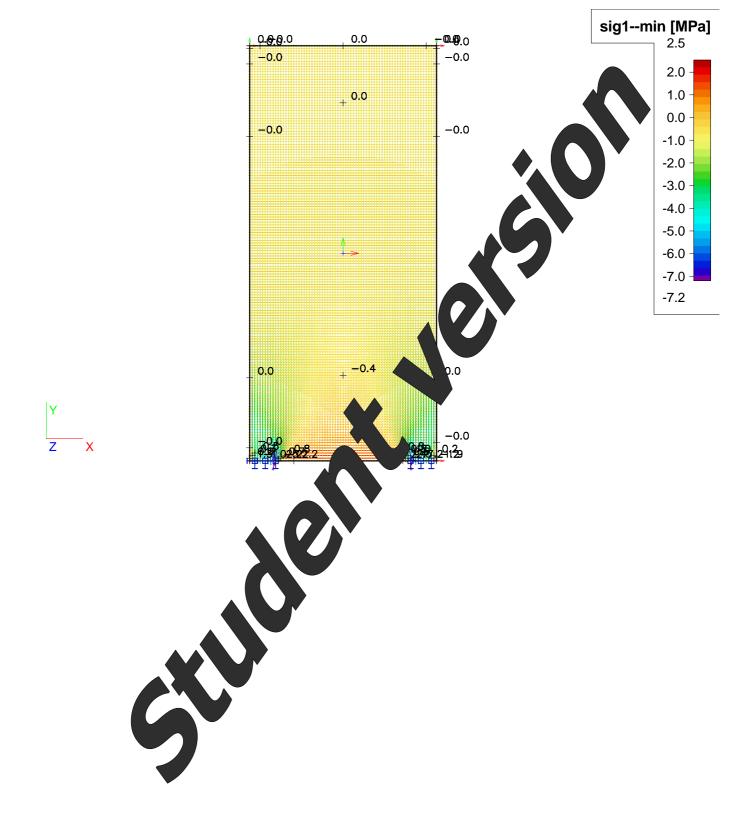
Топоста ву во веаш Sbecimen 5 800 Beam Propuezk EDUCATIONAL PRODUCT



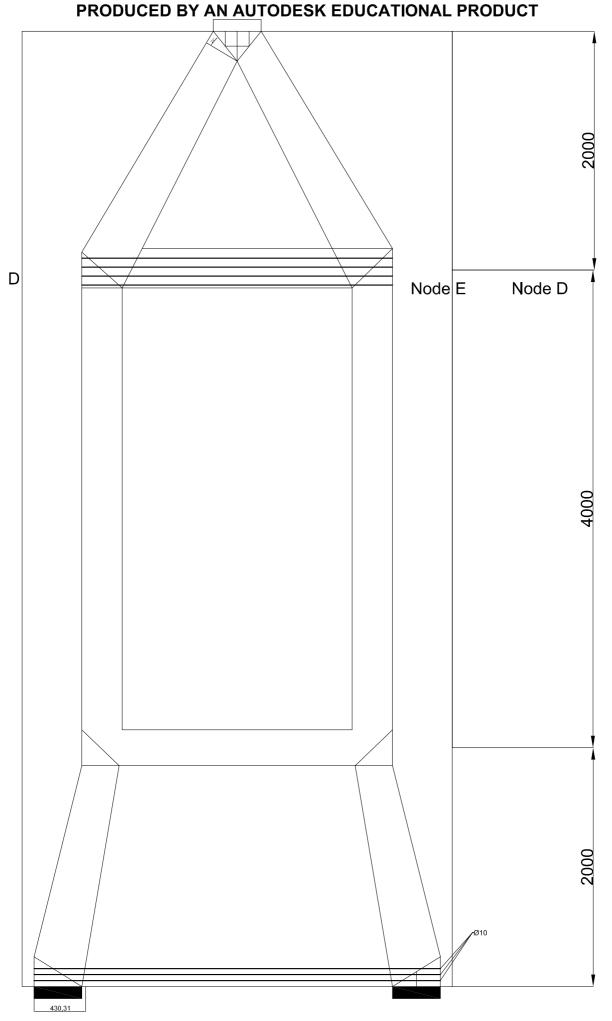
1

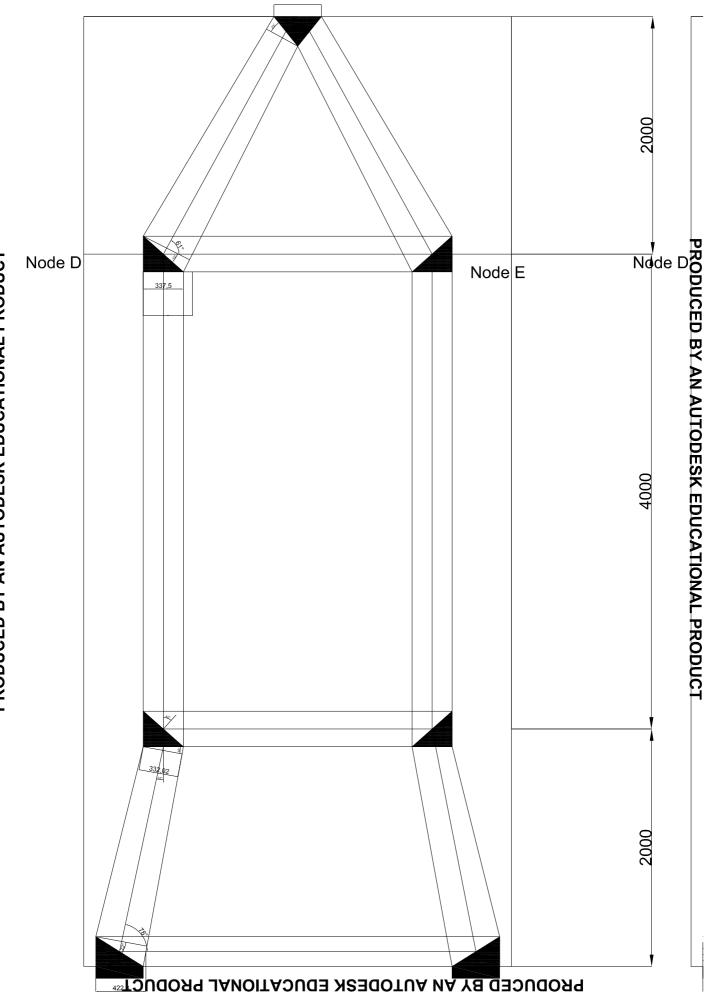


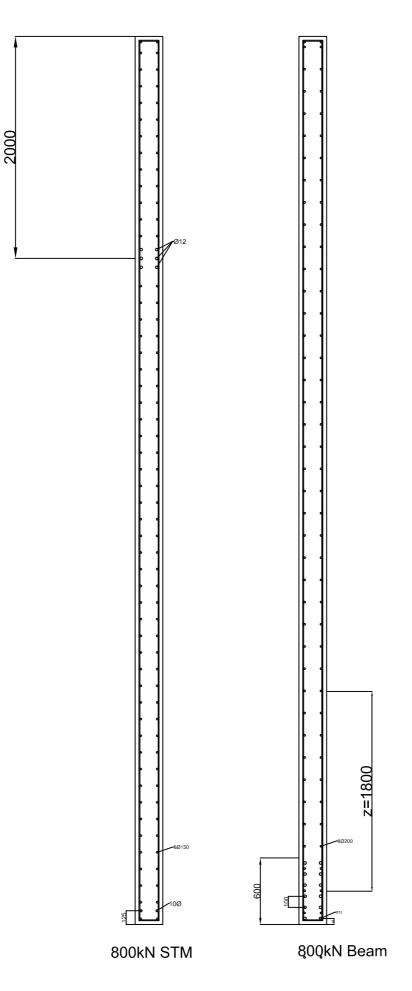
1. 2D member - Stresses; sig1-



2. 2D member - Stresses; sig1-




3. 2D member - Stresses; sig1-



-

4

РКОРИСЕР ВҮ АМ АИТОРЕЗК ЕРИСАТІОИАL РКОРИСТ

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT **PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT** Node C Node C Node C 2000 Node E Node E Node D 4000 Node F Node G Node G RØ 8Ø20 2000 Node A Node A Node Node A Node A Node A Specimen 2 STM Specimen 2 STM Specimen 2 800 Beam

Annex 1

Practical design with

Scia Engineer version 2011 Step by step

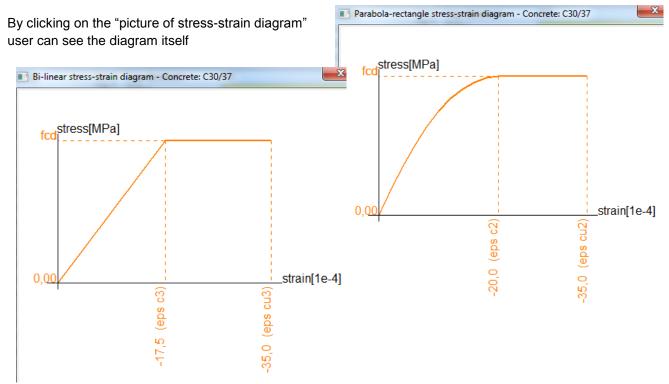
SLENDER BEAM general

1- Type of new project,

After opening the program menu pop up which asks user to define the type of project which is going to be used.(or File \rightarrow new) Considering that in this thesis the focus is to run analysis about different elements of structure, the type of project is considered as Analysis.

	Cł	noose type of	new project	
		Analysis	Structural	
			Edition	
÷.				

- 2- After defining type of project, the "project data" menu pops out. Under the tab "basic data" Material properties can be filled according to chapter 3 of this thesis. This can also be done during the modeling phase. For modeling of slender beam the following option is chosen.
 - Structure→Wall XY


Here -	Data		Materia	al		
N	Name:	-	Conc	rete		
	Nume.	-	Mate	rial	C30/37	·
ALC: NOT			Reinf	orcement m	B 500B	•
ST. AV	Part:	-	Steel			
			Timb	er		
and the	Description:	-	Other	r		
EAGE	Decomption.		Alumi	inium		
三山市	Author:	•				
s i	Date:	27. 05. 2013				
A DE			Code			
tini /	Structure:		Nation	al Code:		
	Wall XY		\bullet	EC - EN		▼
	Project Level:	Model:	Nation	al annex:		
St Val	Advanced	▼ One	▼	Standard EN	1	•

Note: Leave, for now, the rest of the tabs In "project data" menu, as standard values which is given by program.

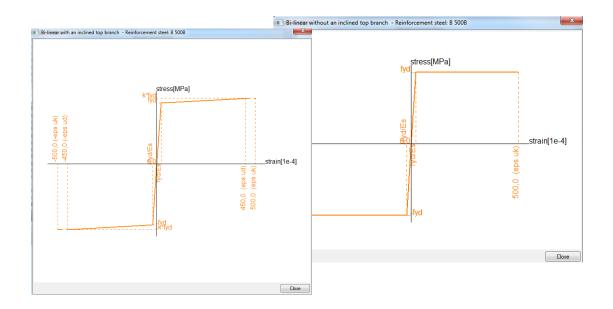
Note: In SCIA engineering (Linear finite element program), in the material properties of C30/37 the concrete quality which is chosen in this thesis, under type of diagram there are 2 possible choices:

🎜 🤮 🖋 🛍	k	Ĕ	2 으 즐 ☞ ☞ 🖡	a ai
C12/15		Γ	Log. decrement	0,2
C16/20			Colour	
C20/25			Specific heat [J/gK]	6,0000e-01
C25/30			Thermal conductivity [4,5000e+01
C30/37			Order in code	5
C35/45			EN 1992-1-1	
			Characteristic compres	30,00
C40/50			Calculated depended	
C45/55			Mean compressive stre	38,00
C50/60			fcm(28) - fck(28) [MPa]	8,00
C55/67			Mean tensile strength f	2,90
C60/75			fctk 0,05(28) [MPa]	2,00
C70/85	=		fctk 0,95(28) [MPa]	3,80
C80/95			Design compressive str	25.00
C90/105			Design compressive str	20.0
C55/67(EN1992-2)			Strain at reaching maxi Ultimate strain eps cu2	35.0
C60/75(EN1992-2)			Strain at reaching maxi	17.5
C70/85(EN1992-2)			Ultimate strain eps cu3	35.0
C80/95(EN1992-2)			Stone diameter (dg) [mm]	
			Cement class	N (normal hardening - CEM 32,5 F 💌
C90/105(EN1992-2)			Cement type - for BS a	CEM I
B 400A			Type of aggregate	Quartzite 🔻
B 500A		E	Measured values	
B 600A			Measured values of	
B 400B		E	Stress-strain diag	
B 500B			Type of diagram	Bi-linear stress-strain diagram 💌
B 600B			Picture of Stress-strai	

Parabola rectangle stress-strain diagram (NEN-EN 1992-1-1 :2011 art. 3.1.7 (1)).

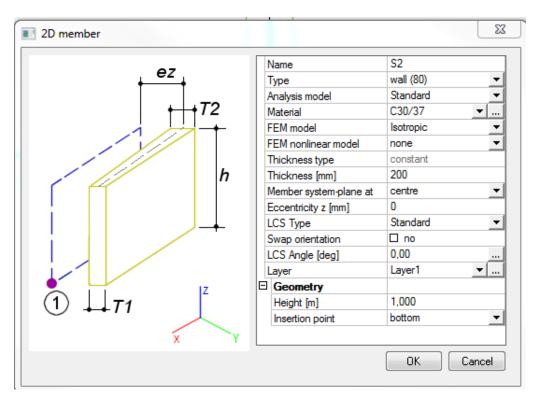
1- Bi- Linear stress strain diagram (this is chosen in this Thesis) (NEN-EN 1992-1-1 :2011 art. 3.1.7 (2)).

Note 2: concrete properties:


Code independent			
Material type	Concrete		
Thermal expansion [m	0,00		
Unit mass [kg/m^3]	2500,0		
E modulus [MPa]	3,2800e+04		
Poisson coeff.	0,2		
Independent G modulus			
G modulus [MPa]	1,3667e+04		
Log. decrement	0,2		
Colour			
Specific heat [J/gK]	6,0000e-01		
Thermal conductivity [4,5000e+01		
Order in code	5		

note 3:

Reinforcement properties


600A	Thermal expansion [m/mK] Unit mass [kg/m^3]	0,00 7850,0		
400B	E modulus [MPa]	2,0000e+05		
500B	Poisson coeff.	0,2		
600B	Independent G modulus	8.3333e+04 0.2		
400C	G modulus [MPa]			
500C	Log. decrement			
3 600 C	Colour			
	Specific heat [J/gK]	6,0000e-01		
	Thermal conductivity [W/mK]	4,5000e+01		
	Bar surface	Ribbed	-	
	Order in code	5		
	EN 1992-1-1			
	Characteristic yield strength fyk [MPa]	500,0		
	Calculated depended values			
	Characteristic maximum tensile strength ftk [MPa]	540,0		
	Coefficient k = ftk / fyk [-]	1,08		
	Design yield strength - persistent (fyd = fyk / gamma s_p	434,8		
	Design yield strength - accidental (fyd = fyk / gamma s_	500,0		
	Maximum elongation eps uk [1e-4]	500,0		
	Class	В		
	Reinforcement type	Bars	~	
	Fabrication	Hot rolled	•	
	Stress-strain diagram			
	Type of diagram	Bi-linear without an inclined top branch	+	
	Picture of Stress-strain diagram	Bi-linear with an inclined top branch		

In the stress-strain diagram there are two choices which according to chapter 3 can be chosen.

3- Specimens Can be modeled in Scia by using 2D wall member (from step 2) or (2D shell element). According to chapter 3 to find reinforcement configurations membrane stress field can be used, which is equally recognized as 2D wall elements (XY) in Scia.

4-after choosing 2D Member wall from left menu, (or from top menu Tree \rightarrow wall), 2D member menu pops up. The chosen values are as following:

FEM model: In slender normal beams assumption of linear isotropic material is valid.

Thickness: 200 mm is basic assumption for slender beams (it is 250 mm for deep beam specimens)

Eccentricity: Not taken into account in this thesis.

Height: slender specimens have the height of 1m.

5-For ease of drawing the user might turn on the "dot grid" from bottom menu

	·	
ፆۇ ▲ ᆋළ ╨ 📽 🎒 🐼 🗐 📰 📰	•	
ommand line		
N N / C V X S 0 0 7	N X & X X * V 🖊 🕅	

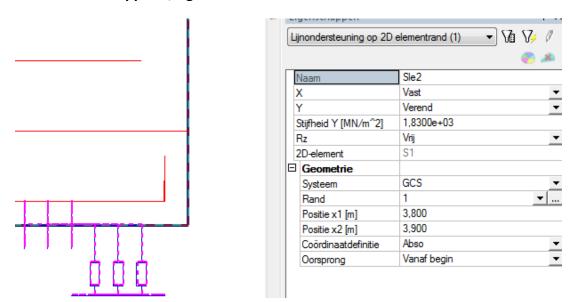
6- Now by using mouse we can draw a line (wall) with length of 4 m as specimen's span.

7- supports:

- According to the thesis, a free distance of 100 mm is applied between free edge of the beams and the beginning of the support reaction.
- According to thesis the supports can be flexible or rigid support with springs.

Var1 rigid flexible supports ((structure type from step 2 is Wall XY))

Lir	ne support on 2D memb	per edge (1)			
1	Name	Sle1			
5	(Free			
١	(Rigid			
F	Rz	Free			
2D member		S1			
Ξ	Geometry				
	System	GCS			
	Edge	1			
	Position x1 [m]	0,100			
	Position x2 [m]	0,200			
	Coord. definition	Abso			
	Origin	From start			


Lir	Line support on 2D member edge (1)						
1	Vame	Sle2					
>	<	Rigid					
١	(Rigid					
F	Rz	Free					
2	2D member	S1					
Ξ	Geometry						
	System	GCS					
	Edge	1					
	Position x1 [m]	3,800					
	Position x2 [m]	3,900					
	Coord. definition	Abso					
	Origin	From start					

VAR 2 Flexible support (Spring)

In Scia: Main menu in the left hand side \rightarrow structure \rightarrow model data \rightarrow support \rightarrow line on 2D member edge

As it is already calculated in chapter 3 of thesis the axial stiffness can be filled in the related direction.

To get more realistic results is important to use free movement in the horizontal direction for one of the supports, right or left.

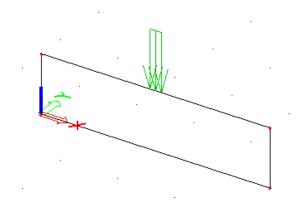
7-Loads:

To define loads in this thesis the following steps is used:

Tree tab in the main tabs top \rightarrow loads \rightarrow here the first self-load is defined pay attention to the properties of the self-weight in the right menu.

Scia Engineer - [slender beamwall2D-max loadl : 1]					10						
Ð,	Bestand	Bewerken	Beeld	Bibliotheken	Tools	Wijzig	Boom	Plugins	Instellingen	Venster	Help

Eigenschappen	д ;
Belastingsgeval (1)	- 🕼 🌾 🖉
	🌏 🍂
Naam	LC1
Omschrijving	
Actie type	Permanent
Lastgroep	LG1 💌
Belastingtype	Eigen gewicht
Richting	-Y


Top menu \rightarrow Tree \rightarrow load combinations \rightarrow load combinations \rightarrow here choose "new", and then choose a name and type. Note that the type should be "permanent".

Belastingsgevallen			X
🏓 🤮 🗶 📸 💽	£ ≃ @ 🛎 🖬	Alles	• 7
LC1	Naam	permanen	
permanen	Omschrijving		
	Actie type	Permanent	-
	Lastgroep	LG1	▼
	Belastingtype	Standaard	-
	Acties		
	Verwijder alle lasten		>>>
	Kopieer alle lasten naar e	en ander	>>>
	Topicei alle lasteri fiadi e	en ander	
Nieuw Invoegen Ber	werken Verwijder		Sluiten

Now is the time for introducing the permanent load,

Main menu \rightarrow Load \rightarrow on 2D member edge \rightarrow attention to the properties of the load

Name	LFS1	
Direction	Y	-
Туре	Force	-
Distribution	Uniform	-
Value - P [kN/m]	1000,00	
2D member	S1	
Load case	LC2	▼
∃ Geometry		
System	LCS	-
Location	Length	
Edge	3	▼
Position x1 [m]	1,900	
Position x2 [m]	2,100	
Coord. definition	Abso	-
Origin	From start	-

8-Definition of load cases in Scia:

After defining the loads the next step in Scia is to define the load cases. We have only self-weight and permanent load.

Main Menu left side→load cases, combination→load cases

🎜 🦆 🗶 📑 k	📴 🗠 🗠 🚑 🖓 🔛 🗛		• 7
permanen	Name	self wei	
self wei	Description		
	Action type	Permanent	
	LoadGroup	LG1	▼ .
	Load type	Self weight	
	Direction	-Z	

9-definition of load combinations, according to thesis User can fill the combination chart in Scia. Main menu left side→load cases , combinations→combinations

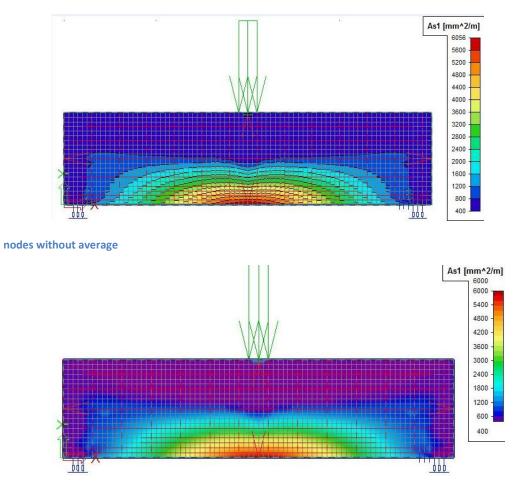
ſ	Combinations			×
	🏓 🤮 🍠 📸 💽 🖆	2	🖴 🛛 🖨 🛛 Input combinations	•
	CO2 - ULS	Γ	Name	C01
Ш	CO1 - SLS		Description	SLS
Ш			Туре	Envelope - serviceability
Ш		E	Contents of combination	
Ш		Ŀ	permanen [-]	1,00
Ш		Ŀ	self wei [-]	1,00

6-Mesh size: from top menu, setup and then mesh. One of the important sources of errors is size of elements. To find the best size for mesh elements, convergence study can be done.

There are different convergence studies which can be done. In the following one convergence study which is used in this thesis will be explained:

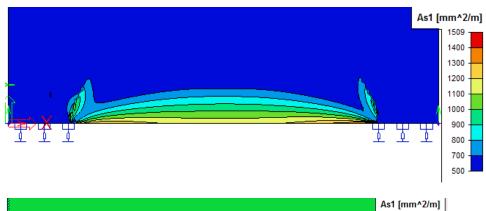
Step1- makes the model with supports Step2- apply the load on the specimen

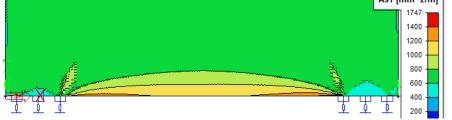
Step3-assume a size for mesh (let's say 1 m) Setup menu above→mesh→average size of 2D element/curved element

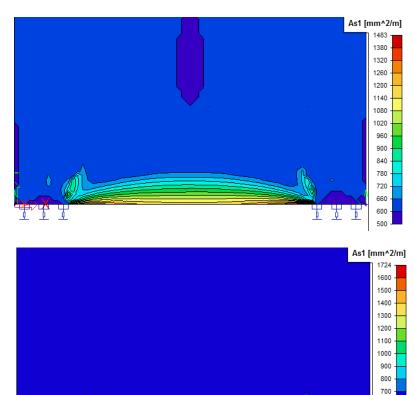

Step4- run the calculation in Scia Step5- look at the flow stresses or forces in the specimens

Results from left menu→member 2D stresses or member 2D internal forces

Property menu from right hand side → location (here there are 4 possibilities which 2 of them is needed for determination of best mesh size) -in nodes, avg (average) -in nodes, no avg(no average)

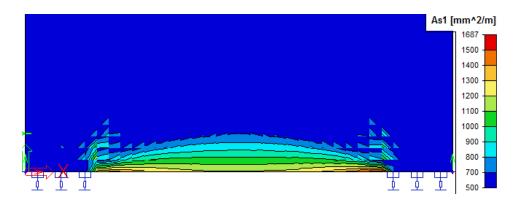

Step 6- compare above mentioned possibilities(in nodes ,avg and in nodes, no avg) if they are approximately exact similar to each other the mesh size which is assumed in step 3 is a good mesh size otherwise go to step 2 and choose smaller mesh size and do the steps 2 till 6.


Note-after convergence test in this thesis, the size of mesh is 50 mm is chosen.

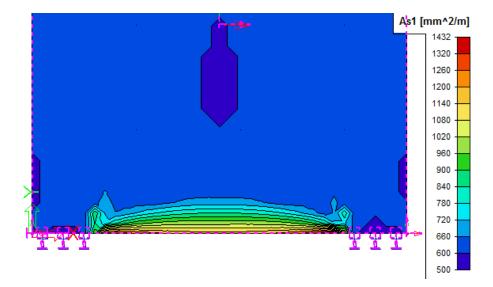

nodes with average

Mesh 25 with avg

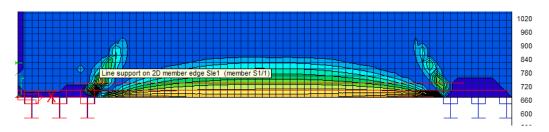
Mesh 50

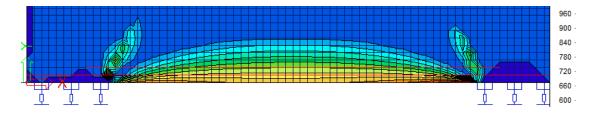

500 ·

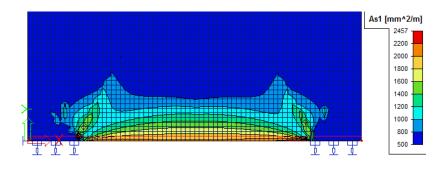
777

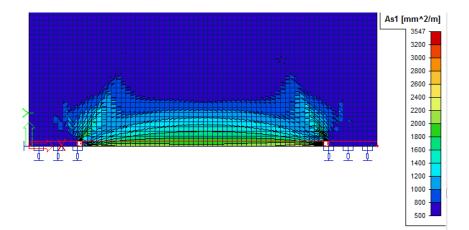

t on 2D member edge Sle1 (member S1/1)

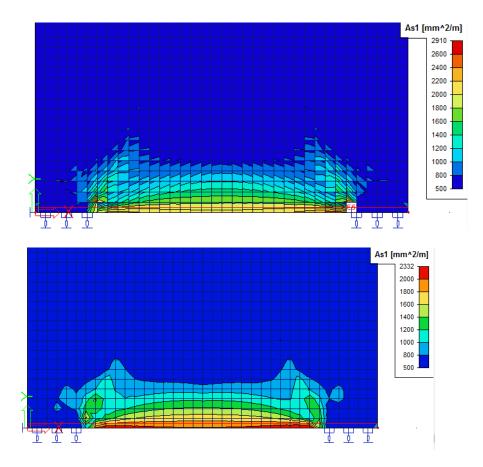
Line


Mesh 100 mm with no avg

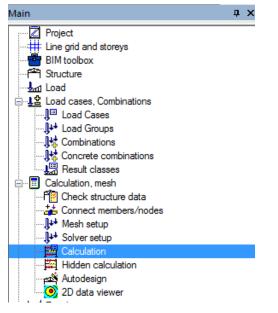

Mesh 100 with avg


Rigid

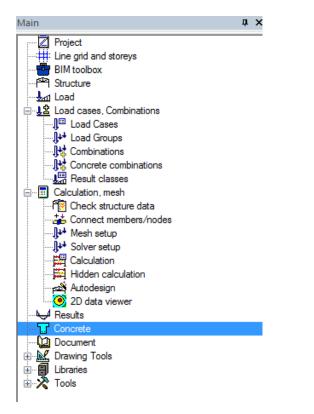

Ver

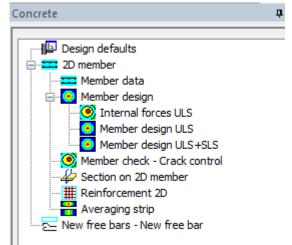

1500 kn

No avg


Mesh 100

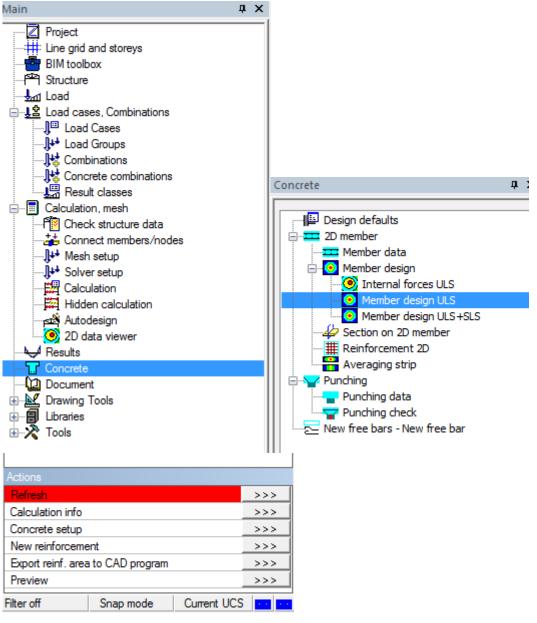
7- Calculations


To see the resulting reinforcements:


Main menu in the left \rightarrow calculations, mesh \rightarrow calculations

8-reinforcment design by Scia

Main menu on the left side→concrete→Member design in ULS

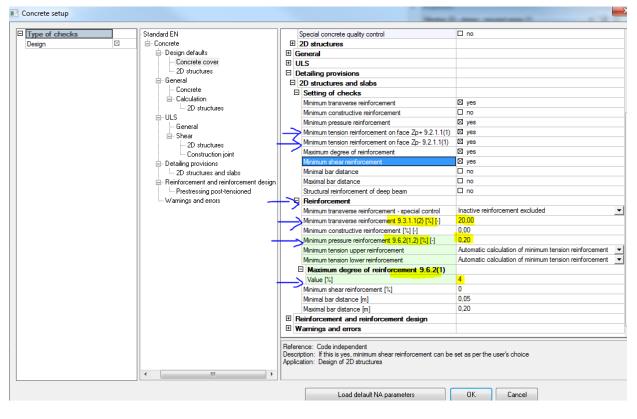


In the properties menu on the right hand side, the user have to choose some properties for the desired reinforcement, pushing Refresh button in the bottom of the properties menu the amount of reinforcements would be calculated by SCIA.

Properties		ц х
Member 2D - design - required a	ireas (1) 🔹 🚺	值 🏹 🧷
		8
Name	Member 2D - design - required areas	
Selection	All	-
Type of loads	Combinations	-
Combinations	ULS	-
Filter	No	-
System	Local	
Output	Advanced	-
Show errors		
Show warnings		
Print explanation of errors an		
Use user scale isolines		
Averaging of peak		
Location	In nodes, avg.	-
Type values	Required areas	-
Reinforcement	Required reinforcement	-
Standard		
Section		
Edge		
Values	As1-	-
Extreme	Global	-
Drawing setup 2D		
Refresh		>>>
Calculation info		>>>
Concrete setup		>>>
New reinforcement		>>>
Preview		>>>

9-

IMPORTANT: After calculation step (running the calculation), user can also go to concrete menu on the left hand side of the Scia interface and then choose member design ULS from the left hand side menu (Actions menu) then on the right bottom of the page concrete setup can be chosen. Here user can change some properties of concrete.


Concrete setup			×
Concrete setup	Standard EN Concrete	Name Concrete Design defaults Concrete cover Use min concrete cover Design working life [years] Exposure class Abrasion class Type of concrete Special gemetric qualty control Type of concrete qualty control B 2D structures General ULS Detailing provisions Reinforcement and reinforcement design	Standard EN Standard EN S0 S0 XC4 None ■ In-stu concrete ■ no Nomal surface Nomal surface ■ Ino
	- 2D structures and slabs Reinforcement and reinforcement design	 	with sea water)
	< III +	Load default NA parameters	OK Cancel

It is assumed for environmental class XC4, is an appropriate choice. The definition also is given by Scia in the above figure.

10-

Default reinforcement in SCIA,

In the same menu of step 9, user can see the default values of Scia engineering which is based on Eurocode art. Concrete setup \rightarrow detailing provisions \rightarrow 2D structural and slabs \rightarrow reinforcement

Default reinforcement checks

In the same menu as in step 10.

Detailing provisions→2D structural and slabs→setting of checks

	etailing provisions		
	2D structures and slabs		
Ξ	Setting of checks		
	Minimum transverse reinforcement	\boxtimes	yes
	Minimum constructive reinforcement		no
	Minimum pressure reinforcement	\boxtimes	yes
	Minimum tension reinforcement on face Zp+ 9.2.1.1(1)	\boxtimes	yes
	Minimum tension reinforcement on face Zp-9.2.1.1(1)	\boxtimes	yes
	Maximum degree of reinforcement	\boxtimes	yes
	Minimum shear reinforcement	\boxtimes	yes
	Minimal bar distance		no
	Maximal bar distance		no
	Structural reinforcement of deep beam		no

This is important because here the user can see that SCIA does reinforcement checks base on NEN-EN 1992-1-1 9.2.1.1(1) which is actually for Minimum and maximum reinforcement areas for the beam elements.

Note: although Scia in 2D design procedure, for minimum required reinforcements, uses some articles of the Eurocode which is correspond to walls or solid slabs, but it is essential to know for reinforcement checks, SCIA make use of art. 9.2.1.1(1) which is for normal slender beams.

12-

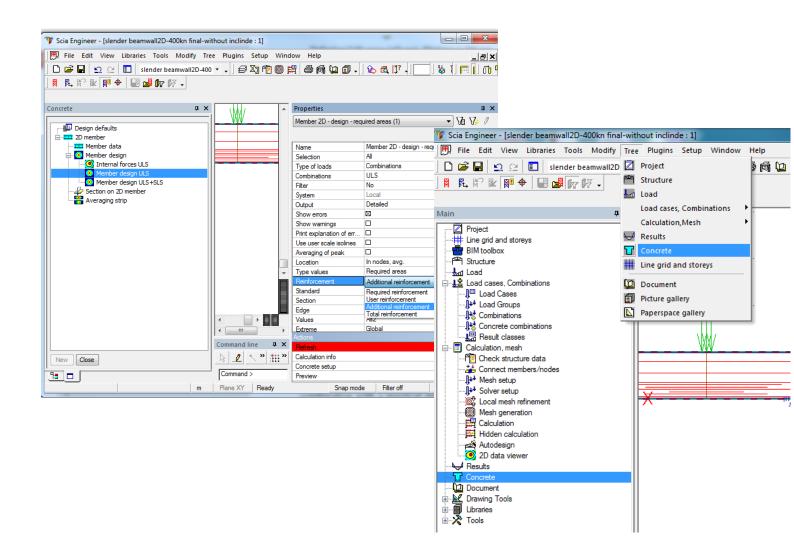
Default reinforcement dimensions

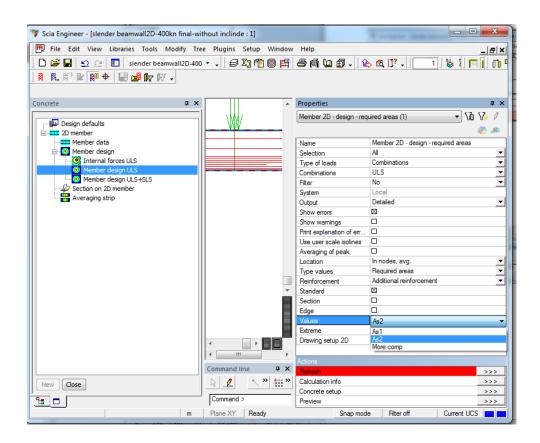
ΞC	oncrete	
	Design defaults	
	Concrete cover	
	2D structures	
G	Upper reinforcement	
	Diameter [mm]	10,0
	Angle [deg]	0,00
E	Lower reinforcement	
	Diameter [mm]	10,0
	Angle [deg]	0,00
1	· ·	

11-

13-

Putting reinforcement As1 into the 2D specimen

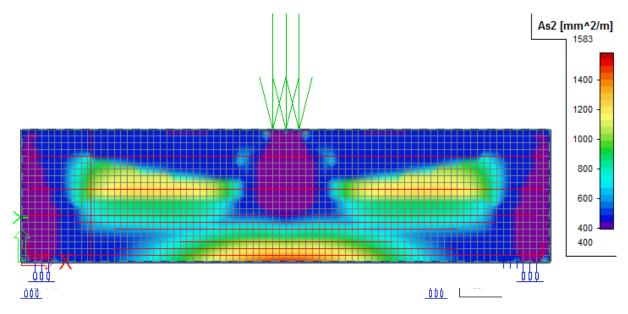

There are two main methods which a user can use the required amount of reinforcement which is calculated by Scia to reinforce the element


• First method which also is used in Mr. Roman work .The steps are as following:

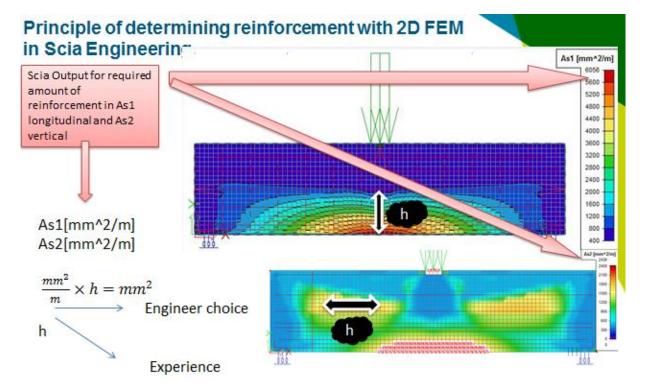
Step 1-

After calculation step which is explained before, Scia gives us in the concrete menu the possibilities to see:

Concrete menu \rightarrow member design ULS \rightarrow then from property menu user can specify which calculation Scia has to perform.



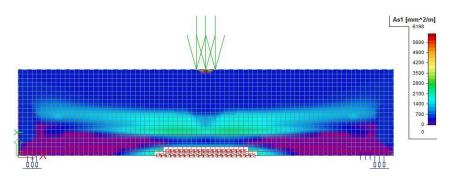
-required amount of reinforcement


-additional amount of reinforcement (this option is required after putting reinforcement bars)

-Scia calculate above reinforcements in 2 longitudinal As1 and transversal As2 (shear).

Step 2-

With the help of colors one can calculate the amount of reinforcement in mm^2. For As1, the required amount of reinforcement in mm^2/m needs to be multiplied by the height of the considering area. So depend on the mesh size, one should sum the height of the meshes in one color or more colors and using the mean value of them. Example:


Step 3-

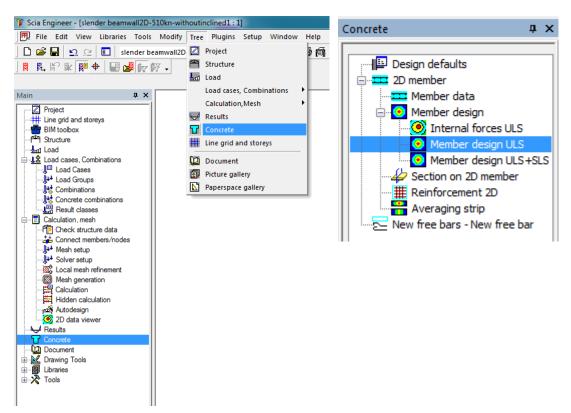
After finding the diameters of the reinforcement bars from previous step , one should follow the following steps to put the longitudinal reinforcement:

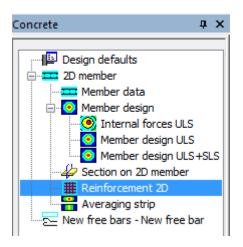
- Concrete menu→longitudinal reinforcement
- Note that longitudinal reinforcement does not have to continue till the end , it depend on the colors(required amount of reinforcement)

Step 4-

By now user has put the reinforcement bars into the specimen, now is the time to use "additional reinforcement" option, to find out if the amount if specimen doesn't need any extra reinforcing bars

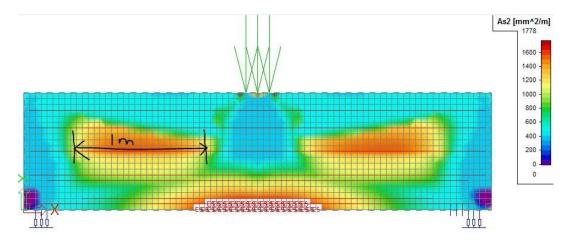
Concrete menu \rightarrow design in ULS \rightarrow from right menu choose option "additional reinforcement" from property menu \rightarrow click on the refresh button, in the bottom of the property menu, to let Scia calculate and check.

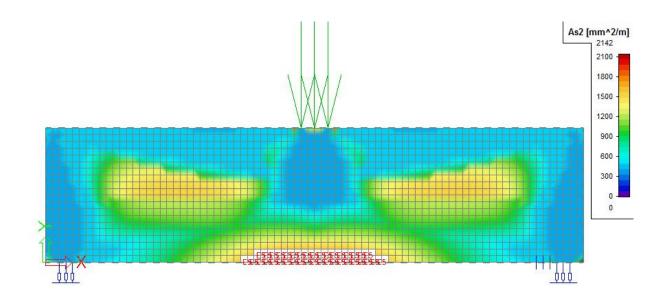

Note: If Scia require more reinforcement (like figure above) in some areas. User has to do the step 2 again, or change the places of reinforcement bars to be able to efficiently reinforcing the elements.


Putting shear reinforcements or As2 in the 2D element

These steps should be followed after putting longitudinal (As1) reinforcements.

step1

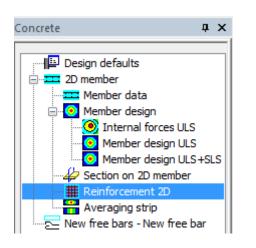

concrete menu \rightarrow member design ULS \rightarrow from property menu on the right hand side one can choose the desired, combinations, vertical reinforcements(As2) and for additional reinforcement.


Properties	д :
Member 2D - design - rea	juired areas (1) 🔹 🖓 🧳
	ee 🖉
Name	Member 2D - design - required areas
Selection	All
Type of loads	Combinations
Combinations	Combinations ULS No
Filter	No
System	Local
Output	Detailed
Show errors	
Show warnings	
Print explanation of err	
Use user scale isolines	
Averaging of peak	
Location	In nodes, avg.
Type values	Required areas
Reinforcement	Additional reinforcement
Standard	
Section	
Edge	
Values	As2
Extreme	Global
Drawing setup 2D	

As a result of above mentioned step one can see the additional As2 (vertical, or shear reinforcement) which is needed .

As2, additional, As1 is in element, which is used for calculating shear reinforcement.(As2)

One can see the different between additional required vertical reinforcement (As2) before and after putting longitudinal reinforcements (As1).


As2, additional, As1 is not in the Element, which is not used for calculating As2

step2

In Scia Engineer 2011, there is no option for 2D elements to put stirrups in them, so it is decided to use mesh reinforcement, to simulate the shear reinforcements in the real slender beam.

for simplicity, an average length of maximum value of As2 in 1 meter can be read from figure , in this example is about 1600 mm2/m. by multiplying this amount needed additional vertical reinforcement with 1 meter length, one can get 1600mm2 needed vertical reinforcement which can be satisfied by using 20 bar 10mm in the horizontal distance of 1,0 meter.

step3

In concrete menu→reinforcement 2D

step4

reinfrocment 2D window:

there are options which the user have to adjust them for the desired situation,

note1: bear in mind that there are lower and upper mesh reinfrocment

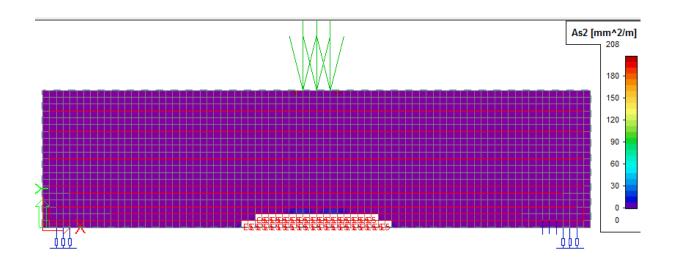
note2: mesh reinforcment standard actualy has vertical and horizontal reinfrocment that why is called mesh. here to be able to simulate only vertical shear reinfrocment, it is decided to put zero for the horiozontal bars, so we get only verticaal shear mesh reinfrocment.

Reinforcement 2D		X
	Name	BR1
	2D member	S1
	Reinforcement	
111111 //	Туре	Mesh
	Mesh	Bars
	Material	Mesh
	Surface	Lower 💌
	Number of directions	2
	Direction closest to s	uface 1
	Angle of first direction	n [deg] 0,00
	B 1	
	Diameter (dl) [mm]	0,0
2 2	Concrete cover (cl.	
	Bar distance (sl) [mr	
	Offset [mm]	0
	Reinf. area [mm^2]	0
	E 2	
s d	Diameter (dl) [mm]	10.0
T T T	Concrete cover (cl.	
	Bar distance (sl) [mr	
	Offset [mm]	0
	Reinf. area [mm^2]	
	Total weight [kg]	0,0
	Geometry	
	Geometry defined by	Polygon 💌
	Actions	
	Load from setup	>>>
		OK Cancel

Name RR1 2D member S1 Beinforcement Type Type Mesh ▼ Material B 500B Surface Lower ▼ Number of directions Upper Directions Number of directions Lower ▼ Number of directions Upper Directions Diameter (d) [mm] 0.0 0 Concrete cover (cl.cu) [mm] 30 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 10.0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 10.0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 Bardstarce (d) [mm] 0 <t< th=""><th>Reinforcement 2D</th><th></th><th>X</th></t<>	Reinforcement 2D		X
■ Reinforcement Type Mesh Type Mesh Wesh PR1 Material B 5008 Sufface Lower Number of directions Upper Direction closest to sufface Lower Angle of first direction [deg] 0.00 ■ 1 Direction closest to sufface Lower Angle of first direction [deg] 0.00 ■ 1 Diameter (d) [mm] 0.0 Concrete cover (cl.cu) [mn] 30 Bar distance (d) [mm] 0 Offset [mn] 0 Bar distance (d) [mm] 10.0 Concrete cover (cl.cu) [mn] 30 Bar distance (d) [mm] 10.0 Concrete cover (cl.cu) [mn] 30 Bar distance (d) [mm] 150 Offset [mn] 0 Ber distance (d) [mm] 52.4 Total weight [kg] 16.0 ■ Geometry Geometry Polygon Load from setup >>>		Name	RR1
Type Mesh Type Mesh PR1 ✓ Meterial B 500B Surface Lower Number of directions Upper Direction closest to surface Lower Angle of first direction [deg] 0.00 I Dameter (dl) [mm] 0.0 Concrete cover (cl.cu) [mm] 30 Bar datance (dl) [mm] 0 Peirf. area [mm²2] 0 I Diameter (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar datance (dl) [mm] 0 Reirf. area [mm²2] 0 I Diameter (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar datance (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar datance (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar datance (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 150 Offset [mn] 0 Bear datance (dl) [mm] 16.0 Bear datance (dl) [mm] 16.0 Bear datance (dl) [mm] 16.0 Bear datance (dl) [mm] 524 Total water [t.eg] 16.0 Bear datance [dl] [2D member	S1
Meh PR1 ✓ Meh PR1 ✓ Material B 5008 ✓ Material B 5008 ✓ Direction closest to surface Lower ✓ Angle of first directions Upper ✓ Direction closest to surface Lower ✓ Angle of first direction [deg] 0.00 ✓ ■ 1 0 ✓ Direction closest to surface Lower ✓ Angle of first direction [deg] 0.00 ✓ ■ Construction [deg] 0.00 ✓ □ Diameter (d) [mm] 0.0 ✓ □ Diameter (d) [mm] 10.0 ✓ □ Diameter (d) [mm] 150 ✓ ○ Offset [mm] 0 ✓ □ Ber distance (d) [mm] 150 ✓ ○ Constructinere [mn2] <td< th=""><th></th><td>Reinforcement</td><td></td></td<>		Reinforcement	
Material B 5008 Material B 5008 Mumber of directions Upper Direction closest to surface Lower Angle of first direction [deg] 0.00 □ 1 Direction closest to surface Lower Angle of first direction [deg] 0.00 □ 1 Diameter (d) [mm] 0.0 Concrete cover (cl.cu) [mm] 30 Bar distance (a) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar distance (a) [mm] 150 Offset [mm] 0 Ber distance (a) [mm] 16.0 Ber distance (a) [mm] 524 Total weight [kg] 16.0 Becometry Geometry Geometry Polygon Load from setup >>>	111111	Туре	Mesh 💌
Bufface Lower ▼ Number of directions Upper ▼ Direction closest to surface Lower ▼ Argle of first direction [deg] 0.00 □ □ 1 Diameter (di) [mm] 0.0 Concrete cover (cl.cu) [mm] 30 Bardstance (di) [mm] 0.0 Offset [mm] 0 ■ ■ Diameter (di) [mm] 10.0 □ ■ Concrete cover (cl.cu) [mm] 30 ■ ■ Bar distance (di) [mm] 10.0 □ ■ Concrete cover (cl.cu) [mm] 30 ■ ■ Bar distance (di) [mm] 10.0 □ ■ Concrete cover (cl.cu) [mm] 30 ■ ■ Bar distance (di) [mm] 10.0 □ ■ Concrete cover (cl.cu) [mm] 30 ■ ■ Bar distance (di) [mm] 150 □ ■ Offset [mm] 0 ■ ■ ■ Ber distance (direct [mm] 16.0 ■ ■ ■ Geometry ■ ■		Mesh	PR1 💌
Number of directions Upper Direction closest to surface Lower Angle of first direction [deg] 0.00 I I Diameter (d) [mm] 0.0 Concrete cover (cl.cu) [mm] 30 Bar distance (is) [mm] 200 Offset [mm] 0 Reinf area [mm^22] 0 Diameter (d) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar distance (is) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Ber distance (is) [mm] 150 Offset [mm] 0 Reinf area [mm^2] 524 Total weight [kg] 16.0 Geometry Geometry Geometry >>>>		Material	B 500B
Direction closest to surface Direction closest to surface Angle of first direction [deg] 0.00 I I Diameter (dl) [mm] 0.0 Concrete cover (cl.cu) [mm] 30 Bar distance (a) [mm] 0 Reirf. area [mm ² 2] 0 Diameter (dl) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar distance (a) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Bar distance (a) [mm] 10.0 Concrete cover (cl.cu) [mm] 30 Berd distance (a) [mm] 150 Offset [mm] 0 Berd distance (a) [mm] 524 Total weight [kg] 16.0 Geometry Geometry Geometry Polygon Load from setup >>>		Surface	Lower 🗸
Angle of first direction [deg] 0.00 1 Diameter (d) [mm] 0.0 Diameter (d) [mm] 0.0 0 Gender (d) [mm] 0 0 Bar distance (a) [mm] 0 0 Concrete cover (cl.cu) [mm] 10.0 0 Reint: area [mm ²] 524 1 Total weight [kg] 16.0 0 Becometry Geometry Geometry Geometry Diad from setup >>>		Number of directions	Upper
Image:		Direction closest to surface	Lower
Diameter (d) [mm] 0.0 Concrete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 30 Bar distance (a) [mm] 0 Reirf. area [mm ²] 0 Dameter (d) [mm] 0 Concrete cover (cl,cu) [mm] 30 Dameter (d) [mm] 0 Concrete cover (cl,cu) [mm] 30 Dameter (d) [mm] 10.0 Concrete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 10.0 Concrete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 10.0 Ornerete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 10.0 Ornerete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 10.0 Ornerete cover (cl,cu) [mm] 10.0 Offset [mm] 0 Ber distance (a) [mm] 16.0 Ber distance [m ⁿ 2] 16.0 Ber distance [m ⁿ 2] 16.0 Ber distance [m ⁿ 2] 20.4 Total weight [kg] 16.0 Ber distance [m ⁿ 2] 20.4 Load from setup >>> <		Angle of first direction [deg]	0,00
Concrete over (cl,cu) [mm] 30 Bar distance (a) [mm] 200 Offset [mm] 0 Reirf. area [mm ² 2] 0 Bar distance (a) [mm] 10.0 Concrete over (cl,cu) [mm] 30 Bar distance (a) [mm] 150 Offset [mm] 150 Offset [mm] 0 Reirf. area [mm ² 2] 524 Total weight [kg] 16.0 B Geometry Geometry defined by Polygon ▼ Actors Load from setup >>>		🛛 🛛 🕇	
Image: Signature Image: Signature<		Diameter (dl) [mm]	
Offset (mm) 0 SI di Diameter (di) (mm) 10.0 Concrete cover (cl.cu) (mm) 30 Bar distance (a) (mm) 150 Offset (mm) 0 Reirf. area (mm²) 52.4 Total weight [kg] 16.0 Geometry Geometry Geometry defined by Polygon Actoris >>>	2	Concrete cover (cl,cu) [mm]	
Reinf. area [mm ² 2] 0 SI dI Dameter (dI) [mm] 10.0 Concrete cover (cl,cu) [mm] 30 Bar distance (a) [mm] 0 Reinf. area [mm ² 2] 524 Total weight [kg] 16.0 Becometry Geometry Geometry Polygon Load from setup >>>		Bar distance (sl) [mm]	
Si Ci Diameter (d) [mm] 10.0 Concrete cover (d.cu) [mm] 30 Bar distance (d) [mm] 150 Offset [mm] 0 Reirf, area [mm²] 524 Total weight [kg] 16.0 Geometry Geometry Geometry E Load from setup >>>		Offset [mm]	0
SI Concrete cover (cl,cu) [mm] 10.0 Concrete cover (cl,cu) [mm] 30 Bar distance (sl) [mm] 30 Bar distance (sl) [mm] 30 Bar distance (sl) [mm] 30 Offset [mm] 0 Reirf. area [mm*2] 524 Total weight [kg] 16.0 Ecometry Geometry Geometry defined by Polygon ✓ Actoris			0
J 100 Diameter (a) yimini 100 Concrete cover (cl,cu) (mm) 30 Bar distance (a) (mm) 150 Offset (mm) 0 Reinf: area (mm² 2) 524 Total weight [kg] 16.0 E Geometry Geometry Geometry defined by Polygon Actons >>>		□ 2	
Bar distance (d) [mm] 150 Offset [mm] 0 Reinf area [mm^2] 524 Total weight [kg] 16.0 Geometry Geometry Geometry defined by Polygon Actions >>>	s a	Diameter (dl) [mm]	1.00
Offset [mm] 0 Reirf. area [mm ² 2] 524 Total weight [kg] 16.0 Geometry Geometry Geometry defined by Polygon Actions >>>	T T T	Concrete cover (cl,cu) [mm]	
Reinf. area [mm [*] 2] 524 Total weight [kg] 16.0 □ Geometry Geometry		Bar distance (sl) [mm]	
Total weight [kg] 16.0 Geometry Geometry Geometry defined by Polygon Actions			
Geometry Geometry Geometry defined by Polygon Actions Load from setup			
Geometry defined by Polygon Actions Load from setup >>>			16,0
Actions Load from setup			
Load from setup >>>		Geometry defined by	Polygon 💌
Load from setup >>>			
		Actions	
OK		Load from setup	>>>
			OK Cancel

	,	3		
Reinforcement 2D		1		_ X
	Name		RR1	
	2D me	mber	S1	
	Rein	forcement		
///////	// Type	•	Mesh	ϵ
	Mesh	1	PR1	↓
	Mate	rial	B 500B	
	Surfa	ice	Lower	-
	Numb	ber of directions	2	

note4: one must bear in mind that there are two layers , upper and lower, which both have to be adjusted by using button, and 2D reinfrocment mesh library.


	Name	RR1	
	2D member	S1	
	Reinforcement	51	
		Mesh	
	Mesh	PR1	
	Material	B 500B	
	Surface	Lower	T
2D Reinforcement mesh library	Number of desilies		×
🎜 🤮 🗶 📸 💽 🗠 😂 🖨 🖬	All	• 🕅	
PR1			
		////	111 11
\$1	PR1		
		$/\overline{HH}$	
Description			\blacksquare
Description Producer			
Description Producer Code			Ē
Description Producer Code Reinforcement	All 🔽		
Description Producer Code Reinforcement Material included	All 🔽		
Description Producer Code Reinforcement Material included Material	All		Ē
Description Producer Code Reinforcement Material included Type of mesh	All ▼ ⊠ B 500B ▼ MeshTypePR1 ▼		Ē
Description Producer Code Reinforcement Material included Type of mesh Direction close to surface	All		ŧ.
Description Producer Code Reinforcement Material included Material Type of mesh Direction close to surface 1	Ali ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼		ŧ.
Description Producer Code Reinforcement Material included Material Type of mesh Direction close to surface 1 Diameter [mm]	All ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0		
Description Producer Code Instruction Material included Material Type of mesh Direction close to surface I Diameter [mm] Bar distance [mm]	All ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0 100		
Description Producer Code Reinforcement Material Type of mesh Direction close to surface I Diameter [mm] Bar distance [mm] Offset [mm]	All ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0 100 0		
Description Producer Code Reinforcement Material Type of mesh Direction close to surface I Diameter [mm] Bar distance [mm] Offset [mm] Reinforcement area [mm^2]	All ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0 100		
Producer Code Reinforcement Material included Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Offset [mm] Reinforcement area [mm^2] 2	All ▼ B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0 100 0 0		
Description Producer Code Reinforcement Material included Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Offset [mm] Reinforcement area [mm^2] 2 Diameter [mm]	All ▼ E3 B 500B ▼ MeshTypePR1 ▼ 1 ▼ 0.0 100 0 0 10,0		
Description Producer Code Reinforcement Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Offset [mm] Reinforcement area [mm^2] 2 Diameter [mm] Bar distance [mm] Diameter [mm] Bar distance [mm]	All ▼ E3 B 500B ▼ MeshTypePR1 ✓ 1 ▼ 0.0 0 100 0 0 0 100 0 0 0 100 0 00 0 100 0		
Description Producer Code Reinforcement Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Diffset [mm] Bar distance [mm] Diameter [mm] Bar distance [mm] Offset [mm]	All ✓ B 500B ✓ MeshTypePR1 ✓ 1 ✓ 0.0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	• •	
Description Producer Code Reinforcement Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Offset [mm] Bar distance [mm] Offset [mm] Bar distance [mm] Offset [mm] Bar distance [mm] Diameter [mm] Bar distance [mm] Diffset [mm] Reinforcement area [mm^2]	All ✓ B 500B ✓ MeshTypePR1 ✓ 1 ✓ 0,0 100 0 0 100 0 0 785	• •	
Description Producer Code Reinforcement Material Type of mesh Direction close to surface 1 Diameter [mm] Bar distance [mm] Diffset [mm] Bar distance [mm] Offset [mm] Coffset [mm] Diameter [mm] Diame	All ✓ B 500B ✓ MeshTypePR1 ✓ 1 ✓ 0.0 100 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0	• •	

Step5

After step 4, one has to run calculation again and by using concrete menu and member design ULS, check for additional As2 reinforcement. In the bottom figure the results of the example is shown.

Note:

The additional required As2 reinforcement should be overall or almost zero.

Annex 2

Making A 1D Slender Beam model in Scia

This Annex is going to discuss the following subjects:

- Recollection about plates
- Design and model 1D custom slender beam
- Reinforcing the element
- Running the all Eurocode checks
- Making 2D pressure only model for Nonlinear FEM in Scia Engineer
- Making 1D PNL Nonlinear FEM in Scia Engineer

Recollection about Plates

"The word plate is a collective term for systems in which transfer of forces occurs in two directions; walls, deep beams, floors and bridge slabs are al plates".

Plates can be loaded in their plane or perpendicular to their plane. A plate loaded in its midplane is said to be in a state of plane stress, or a membrane state, if the following assumptions hold:

- 1. All loads applied to the plate act in the midplane direction, and are symmetric with respect to the midplane.
- 2. All support conditions are symmetric about the midplane.
- 3. In-plane displacements, strains and stresses can be taken to be uniform through the thickness.
- 4. The normal and shear stress components in the z direction are zero or negligible.

The last two assumptions are not necessarily consequences of the first two. For the latter to hold, the thickness h should be small, typically 10% or less, than the shortest in-plane dimension.

5. The plate is fabricated of the same material through the thickness.

In the first phase of this thesis which is about slender beams loaded by bending moment sand shear forces (figure 1) bending and shear stresses can be easily calculated by using Euler Bernoulli beam theory.

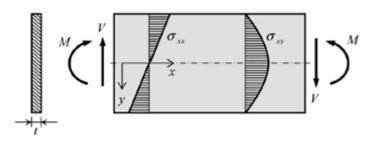


Figure 1, stress in prismatic beam in classical beam theory [1]

In a deep beam or high walls which is in the second phase of this project will be analyzed, the stress distribution differs from what the classical beam theory predicts. The bending stress is no longer linear and beam theory does not give any information about vertical normal stresses but they do of course occur. The shear stress in a deep beam does not have a parabolic distribution as in the classic beam theory.

Plate theory in Scia Engineer

In Scia Engineer software ,in Solver setup there are two choices for" bending theory of plates and shell analysis" from which one of them should be chosen. This chapter explains why and when the user might choose different bending theory .

Thick plates

The theory for thick plates was derived independently by E. Reissner (1945) [5] and R.D. Mindlin (1951) [6], with small differences in their theories. If a plate is loaded perpendicular to its plane, it is in the state of bending and transverse shear.

This is called "slab", which is not considered in this thesis. Thick plates are generalization of beams, beams spans one direction but plates is able to carry the load in two directions. In thick plates three independent degrees of freedom is used, vertical displacement and 2 rotations. There are 5 deformations in thick plates , three plate curvatures and 2 transverse shear angles.3

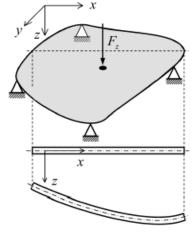


plate moments and 2 shear forces are associated with these deformations.

Thin Plates

Theory of thin plates is based on that shear deformation is negligible. The theory for thin plates is a limiting case of the theory of thick plates in which shear deformation tends to zero. Rotations depend on the vertical displacements. Curvatures become second derivatives of the displacement. In thin plate analysis we must use Kirchhoff. The Mindlin analysis requires a senseless fine mesh to produce partially the same results. Choosing Kirchhoff we need to never use element size smaller than plate thickness.

Kirchoff-Love theory for thin plates

The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates. The theory was developed in 1888 by Love using assumptions proposed by Kirchhoff. It is assumed that a mid-surface plane can be used to represent the three-dimensional plate in two-dimensional form.

The following kinematic assumptions that are made in this theory:

- straight lines normal to the mid-surface remain straight after deformation
- straight lines normal to the mid-surface remain normal to the mid-surface after deformation
- the thickness of the plate does not change during a deformation

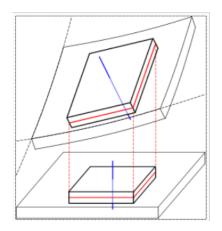


Figure 3 deformation of thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue)

Different between Mindlin and Kirchhoff theories

Classically, plates have been analyzed by the Kirchhoff theory for thin plates. The user of finite element software expected to choose between two theories, but often one of them is a default option without the user being aware of that. Kirchhoff theory holds for plates in which the deformation by shear forces can be neglected, which is the case for a sufficient large span-thickness ratio l/t. The slenderness l/t >10 is sufficient, and most slabs will satisfy l/t \geq 20.

In Mindlin theory there are 3 independent degrees of freedom (DOF), the displacement w, the rotation φ_n normal to the edge and φ_s in the plane of the edge.In Krichhoff theory there are only two DOFs at the free edge: the displacement w and the rotation φ_n normal to the edge.the rotation φ_s in the plane of the edge is a slabe of the displacement w because of the relation

$$\varphi_s = \frac{\partial_w}{\partial_s}$$

Now only two edges loads can be applied, f in the direction of w and t_n in the direction of φ_n .Yet, in general all three57 plate quantities v_n , m_{nn} and m_{ns} can occur at the edge and may be non-zero.

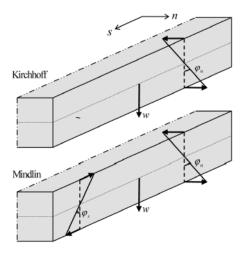
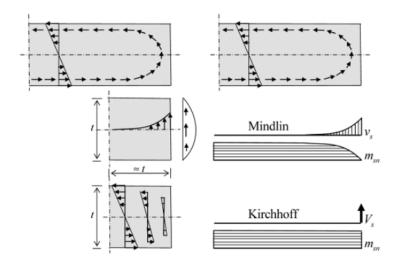



Figure 4 different boundary conditions for Kirchhoff and Mindlin

Figure 5 close look at stress state near free edge

Mindlin is able to describe the discussed distribution of the shear forces and twisting moment and Kirchhoff is not. In Mindlin theory one can handle the boundary condition $m_{ns} = 0$, whereas it is not possible with Kirchhoff theory. Kirchhoff determines the integral of all the local vertical stress components and concentrates then into one shear force V_s located at the very edge. At the same time Krichhoff is not able to have twisting moment diminish to zero and instead keeps it contact up to the edge.

Plate theory in Scia Engineer

As it is shown in figure 7 and 8, in Scia Engineer one of these plate theories should be chosen in the solver setup menu for the 1D and 2D modeling. The applicability of the plate theories which is mentioned above in Scia Engineer is when Plate material is chosen for the modeling of the specimens. By having wall 2D models in Scia Engineer, which plate theory is chosen is not important at all. In principle wall elements in definition are also plate elements but they are Plates which are loaded in their plane, and have 2 DOFs $u_x(x,y)$ in the direction of x-axis and $u_y(x,y)$ in the direction of y axis. The displacement field is fixed with two degrees of freedom. If plates are loaded perpendicular to the plane then one can talk about plate theories Mindlin and Kirchhoff.

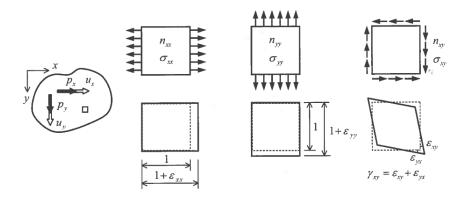
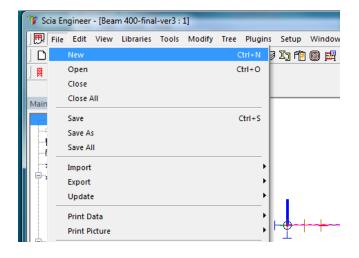


Figure 6 quantities which play a role in a plate loaded in-plane [8]

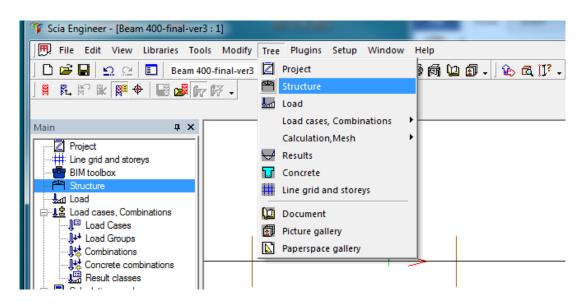
🌾 Scia Engineer- student version - [800 kN Specimen 1 STM stres:	gradients.esad : 1]	-
File Edit View Libraries Tools Modify Tree Plugins	Setup Window Help	
] 🗋 🗃 🔚 🔛 🖂 🔳 800 kN Specimen 1 STM 🛚 🗸 🚽	Options 🛛 🗍 🗸 🗌 🏠	🛋 []? -] 🖕 🏷 🖕 🌢 🖕 🖓 🔍 🖯
] 📅 😘 🖙 胡 🐰 👯 🚔 👪 🚁 🔋 📃 1 🛨 😒	Geometry/Graphics 🛛 🙀 🙀	钟 📕 😼 🛐 🐼 →
	Delete	
Main 📮 🗙	Colours/Lines	
Project	Fonts	
······································	Beam types (structural)	177
Structure	Dimension lines	
Load	Em Units	
ian <mark>_12</mark> Load cases, Combinations	1/10 Scale	
	↓+ Mesh	
	💵 Solver	
Result classes	Concrete solver	
Calculation, mesh	🕮 Gallery	
Check structure data		
J+ + Mesh setup	le la	
Solver setup	1	/
	1	,

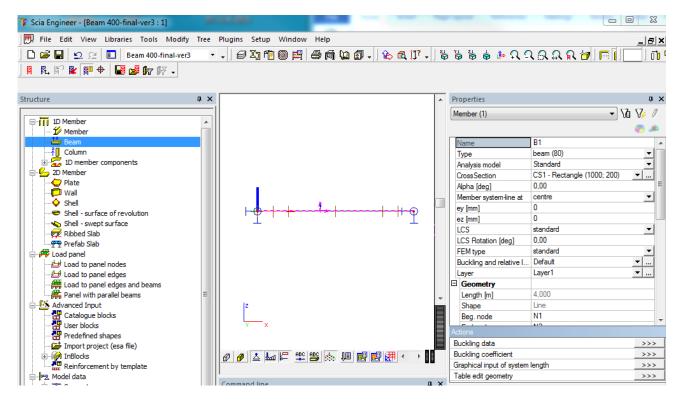

Figure 7 reaching solver setup menu a) by the main menu from left b) from tree menu setup at top

-	Name	
_	Solver	
	Run one nonlinear combination	
	Neglect shear force deformation (Ay, Az >> A)	
	Bending theory of plate/shell analysis	Mindlin 🗨
	Type of solver	Direct
	Number of thicknesses of rib plate	20
	Number of sections on average member	10
	Maximal acceptable translation [mm]	1000,0
	Maximal acceptable rotation [mrad]	100,0
	Print time in Calculation Protocol	\boxtimes
(Coefficient for reinforcement	1

Figure 8 In solver menu always one of the plate theories should be chosen

Design and modeling of 1D model beam in Scia Engineer (step by step)


1. Oppeing the new project


2. Choosinfg the properties of the concrete and reinfrocment also Nationale code should be accordin to EC-EN(eurocode). The structure is chosen to be General XYZ.

Basic data Fu	nctionality Loads	Protection		
- Col	Data		Material	
1	Name:	-beam	Concrete	
			Material Reinforcement m	C30/37 ▼ B 500B ▼
Real Property in the	Part:	-	Steel	
			Timber	
The Te	Description:	-slender	Other	
1 Call			Aluminium	
二 四兩	Author:	-babak dadvar		
5	Date:	30. 05. 2013		
(a	Structure:		Code National Code:	
HRX	General XYZ		▼ () EC - EN	▼
	Project Level:	Model:	National annex:	
	Advanced	▼ One	▼ Standaard	EN 🔻
			0	K Cancel

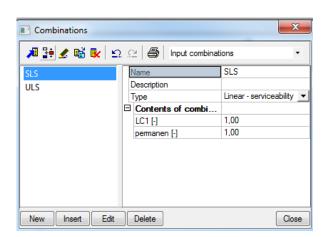
3. Choose structure from "tree" tab above or from main menu in the left side of the main window of the program.

4. Choosing Beam from structure menu and define the properties and dimension from the property menu.

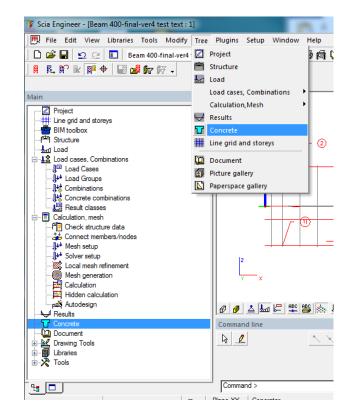
5. After drawing the beam in the area. It is time for supports. Choose the degree of freedom carefully. Below example of slender beam on 2 supports.

V Scia Engineer - [Beam 400-final-ver3 : 1]

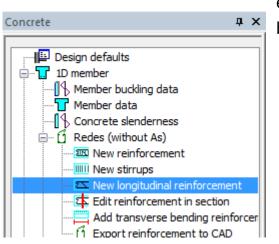
Structure menu \rightarrow model data \rightarrow support \rightarrow in node


		ScialEngineer - [Beam 400-final-vers : 1]	
Property of the support could be adjust	ed to the	J Implement File Edit View Libraries Tools Modif J □ <th>-</th>	-
desired situation at supports.			
		Structure	ф×
		Catalogue blocks	*
	Properties	Predefined shapes	
	Support in node	Import project (esa file) InBlocks	
	<u></u>	Reinforcement by template	
	Name	Sn1 lel data	
	Туре	Standard Support	
	Angle [deg]	👗 in node	
(. X	Free point on beam	_
	Y Z	Rigid Ine on beam	
	Rx	Bigid Hinge on beam	
	Ry	Free Cross-link	
	Rz	Rigid Continue Lange	=
	Default size [m] Node	0,200 Section on beam N1 Connect members/nodes	
	Geometry	ck structure data	
	System	GCS lelling/Drawing	
		Line	
		Dimension Tools	
		Import DWG, DXF, VRML97	-
		New Close	

 Load should be applied, attention should be on the different type of loads, load cases and Combinations, which are different for different situations.(example below)


🎜 🤮 🗶 🞼 🔭		AI • 🕅
ια	Name	LC1
permanen	Description	
	Action type	Permanent •
	LoadGroup	LG1 💌
	Load type	Self weight
	Direction	-Z 🔹

Load cases			x
🔎 🤮 🗶 📸 💽 🏞	£ ≃ @ ≥ 🖬	AI	• 7
LC1	Name	permanen	
permanen	Description		
	Action type	Permanent	
	LoadGroup	LG1	◄ .
	Load type	Standard	
	Actions		
	Delete all loads		>>>
	Copy all loads to another	loadcase	>>>
New Insert Edit	Delete		Close


- x Combinations 🔎 💱 🖋 💺 💁 🖉 Input combinations • ULS Name SLS Description ULS Linear - ultimate • Туре Contents of combi. LC1 [-] 1,20 1,30 permanen [-] New Insert Edit Delete Close
- 7. Putting reinforcement which is determined from 2D FEM into the 1D beam

Concrete menu \rightarrow

8. (important step, because of some Bugs in Scia Engineer version 2011),

From concrete menu \rightarrow double click on "new longitudinal reinforcement" \rightarrow choose with mouse from the beginning of the member till the

end of the member (in this case slender

beam)

9. after doublclicking on new longitudunal reinfrocment a new menu pops up, here user can add and adjust the reinfrocemtn bars , which is determined in 2D finite element model.

Note: for ease of putting the reinfrocment in the desired places , cover type , and cover should be changed into the desired option like center to center or center to edge.

New layer	To add another reinfrcing bar
Number of bars	Can be changed in the new layer
profile	Diameter of the new layer reinfrocmentbars
material	Reinfrocment type , quality
Cover type	Center to edge or senter to center(easier one
	can be chosen)
cover	mm distance depends on what is chosen in the
	cover type
Edite cover	Concrete cover
Edite stirrups	Striups diameter

Member B1, Zone from 0,000 m	n to 4,000 m(0.000 - 1.000)		×
			Filter All L4-S1E4 ▲ L5-S1E4 ▲ L7-S1E5 ■ L9-S1E5 ▼ Delete Delete all Name L9-S1E6 Position number 14 Material B 500B ▼ Profile [mm] 12.0 Number of bars 2 Area [mm^2] 226 Layer type Uniform ▼ Cover type Centre to edg) ▼ Cover [mm] 350.0 Stimup name S1 Edge index 4 Vetailing no Torsion ⊠ Color ■
Longitunidal reinforcement New layer Add bars to corners	New reinforcement parameters Number of bars 2 • Profile [mm] 8,0 • Stirrup name S1 •	Type of beam beams and ribs - Stirrups	Analysis model Automatic design Reinforcement layers area Selected layers Selected layers 226 mm^2 All layers 2268 mm^2 Picture properties Figure 100 Figure 100
Bars positions Collision of bars Collision	Edge index 4	Edit stirrups Edit cover Save to template	Draw dimensions Texts scale Redraw OK Cancel

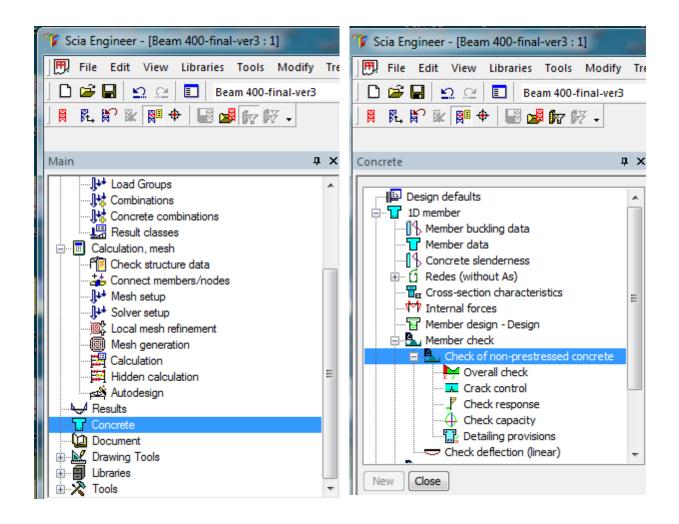
10. Adjusting the length of the bars, by choosing a reinforcement bar from main window of the program. User can change the lengths of the bar in the properties menu.

Note: if reinforcement is not completely from start to the end of the beam, the "whole length beam" option should not be check otherwise user cannot change the length of the reinforcements.

Note: coordination definition is set to be "absolute" for ease of giving coordination of the start and end of the reinforcing bars(optional).

	F	Properties	τ×
	ſ	Longitudinal reinforcement	la 🔻 🕼 🏹 🖉
		81	L7-S1E5
		Name	
		Type of zone	longitudinal reinforc
		Detailing	9
		Position number	D 500D
		Material	B 500B
	1	Diameter [mm]	12,0
		Number of bars	2
		Area [mm ²]	226
		Master stimup	SL
	E	Anchorage	
		Location	None 💌
\└- ⊚		Total length [mm]	0,0
	E	Geometry	
└ <u></u> (13		Whole length beam/	
-		Member	81
	1	Position x1 [m]	0,400
		Position x2 [m]	3,600
		Coord. definition	Abso 🗸
		Origin	From start
	" E	Description posi	
		Horizontal [m]	3,200
μ×		Vertical	4,5
たたたな なな か あ 値		Scheme of rein	
		Horizontal position	0,000
		Vertical position in	0
	A	Actions	

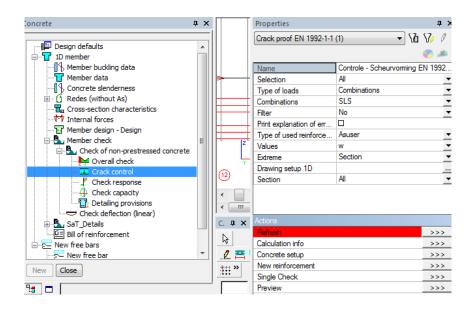
11. Adjusting the shear stirrups, here by choosing the stirrups with mouse the properties of the stirrups reinforcement can be adjusted.


	A F	Properties	д	x
	Stirups layer (1) ▼ Vir			
			6 *	
+ + + + +	Г	Name	SI	
				-
		-	1	
			B 500B	
· · · · · · · · · · · · · · · · · · ·	_			
			35,0	
		Type stimup	single 🗸 👻	
		Stirrups distances [m]		
			4	Ξ
\cdots	Ē	Anchorage		
	1	Torsion type	-	
- 🕀 🗸		Anchorage L [mm]	120	
	- 1	Keep formwork	⊠ yes	
		Geometry		
		Test of overlapping	🖾 yes	
		Whole length beam/	🛛 yes	
		Member	B1	
		Position x1	0,000	
		Position x2	1,000	
д	×	Coord. definition	Rela	
		Origin	From start	
	E	Description posi		Ŧ
	1			

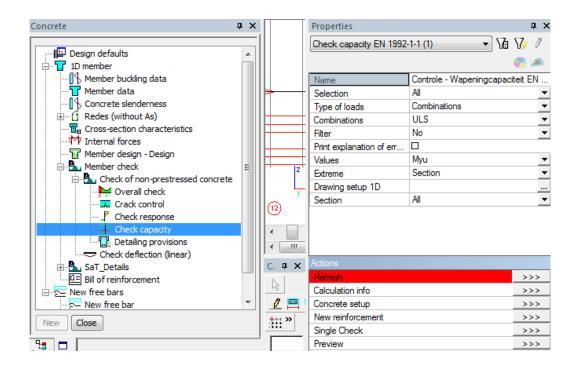
12. Running the calculation. One can run the calculation by using calculation tab from top or from the tree menu left of the Scia Engineer interface,

Scia Engineer - [Beam 400-final-ver3 : 1]		
🗒 File Edit View Libraries Tools Modify	y Tree Plugins Setup Window He	lp
🗋 🗃 🔚 💁 😂 🔳 🛛 Beam 400-final-ver	3 • • <i>5</i> Ij fi 🞯 🛱 🖨	fi ն 🗗 🗸
🖇 Scia Engineer- student version - [800 kN Specimen 1 STM stress grad	lients.esad : 1]	
File Edit View Libraries Tools Modify Tree Plugins Setu		
	11 🔤 🛱 🎒 🗑 🖬 🗗 🗗 - 🛛 🏠 🕰 🚺 - 🗍 🏷 🍇	
히 🕫 😘 ଌ 👯 🖶 🚢 🕹 🗸 🗍 🚊 🤽).25 🚭 🎘 🗸 🔋 🦹 🖺 🎼 🎇 🕅 🕅	•
Main 📮 🗙		
Project FE analysis		x
BIM toolbox		
	Single analysis Batch analysis	
	 Linear calculation 	✓
Load Cases	Nonlinear calculation	
]++ Load Groups]++ Combinations	Modal analysis	
	🔘 Linear stability	
Calculation, mesh	Concrete - Code Dependent Deflections (CDD)	
	Construction stage analysis	
]≱∔ Mesh setup]≵∔ Solver setup	Nonlinear stage analysis	
Calculation	Nonlinear stability	
	Test of input data	
2D data viewer	Number of load cases: 2	
₩ Results 		
	Solver setup Mes	h setup
Ebraries		
	ОК	ancel

13. Checking the capacity of the beam in SLS and ULS which Scia software, and comparing with hand calculation, both are based on Eurocode.


Concrete menu \rightarrow member check \rightarrow for non-pre-stressed concrete

Here all sorts of the checks can be done:


• Crack control

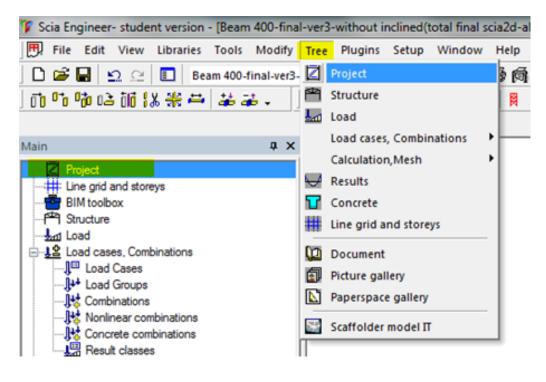
Note: one can choose the desired checks from property window

• Check capacity

Note: one can choose the desired checks from property window

Making a 1D PNL nonlinear analysis model in Scia Engineer (Step by Step)

• This model is aimed to predict the SLS behavior of the slender beam with the help of 1D model


PNL analysis is done only to predict the SLS behavior of the 1D model for slender beams. The procedure of making 1D model is precise the same as it is already mentioned in the previous section. The only different for PNL nonlinear analysis is the following steps:

Step 1:

One can use the same 1D slender beam model which is already made in the previous section. So there is no need to make a new model. It is possible to adjust some parameters in the existing model to be able to do PNL analysis.

Step 2:

From project tree menu left or using the "tree" tab from the top tabs of the interface go to the project data menu.

Step 3

From project data menu, choose the functionality. Here Nonlinearity should be turned on and then turn on the Physical non-linearity for reinforced concrete. Now Scia Engineer can do also PNL analysis.

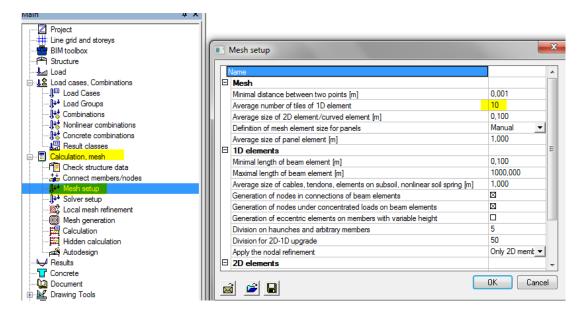
A Caller	Dynamics		Ξ Ι	Nonlinearity	
2941	Initial stress		1	nitial deformations and curvature	
Sec. sec.	Subsoil		2	2nd order - geometrical nonlinearity	
1.1	Nonlinearity		F	Physical non-linearity for reinforced c	
1000	Stability		F	Plate/shell nonlinearity	
and the	Climatic loads		E	Beam local nonlinearity	
	Prestressing		5	Support nonlinearity/Soil spring	
1356	Pipelines		F	Friction support/Soil spring	
100	Structural model		1	Membrane elements	
	Parameters		F	Press only 2D members	
1000	Mobile loads		5	Sequential analysis	
1.18	Automated GA drawings		Ξ (Concrete	
Sec. 1	LTA - load cases		F	Fire resistance	
1	External application checks		H	Hollow core slab	
10.0	Slabs with void formers				
A Cart	Property modifiers				
一次で					

Step 4

Now nonlinear load combination should be defined. From left tree menu

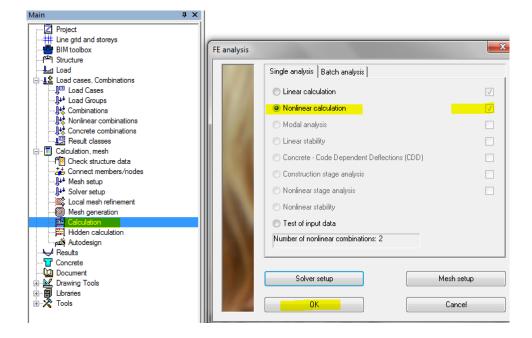
Load cases, combinations \rightarrow Nonlinear combinations

Here there are two possibilities

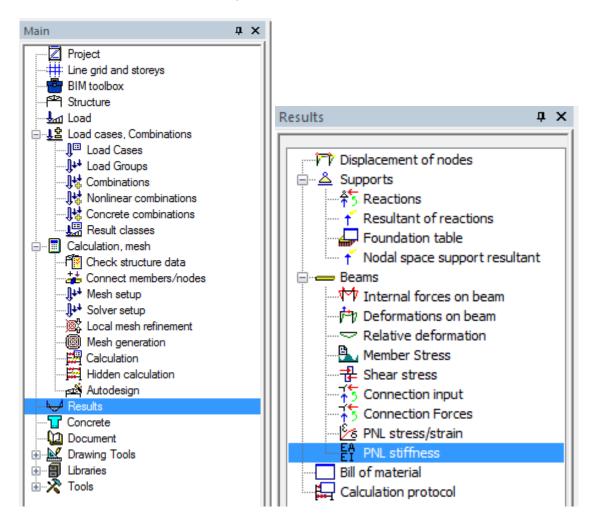

Option 1) to define SLS and ULS just like linear analysis Option 2) choose "New from linear combinations" Both gives the same results, but option 2 is faster.

Main	τ×	
Project		
·····································	Nonlinear combinations	
	📕 \$‡ 🗶 📸 🖳 🗠 🚭 🗛	• 7
 ↓ Load Cases ↓↓ Load Groups	SLS Name	SLS
Combinations Nonlinear combinations	ULS Description Type	Serviceability -
	Contents of combination	1.00
Esult classes	permanen [-]	1,00
🔯 Local mesh refinement		
	New from linear combinations New Insert Edit Delete	Close
Hidden calculation		

Step 5


Mesh setup

Go to mesh setup and then to be able to get accurate results change the average number of the tiles of 1D element into a bigger value 20, 30. This is dependent on the size of the beam.


Step 6

Run the nonlinear analysis

Step 7:

By going to the results and PNL Stiffness, Scia prediction about stiffness reduction due to cracking can be shown. Also deformation of the specimens can be shown.

Making a 2D Pressure only Member model in Scia Engineer(Step by Step)

• This model is aimed to calculate the amount of reinforcement for nonlinear calculation

Step 1: Oppeing the new project

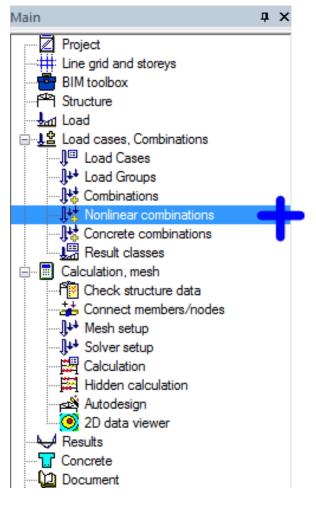
🍞 Scia E	ngineer	- [Bear	m 400-fina	l-ver3 :	1]				
🖪 🕅 File	Edit	View	Libraries	Tools	Modify	Tree	Plugins	Setup	Window
	New					C	trl+N) Ij f <mark>e</mark>	0 🛱
B	Open					C	tri+0		
-	Close								
Main	Close /	All							
-	Save					0	Ctrl+S		
	Save A	s							
	Save A	.11							
	Import						•		
	Export								
	Updat	e						L	
	Print D	Data					•		
	Print P	icture						P I	+

ICM -	Data		Material	
1 month	Name:	-	Concrete	
			Material	C30/37 -
140	Part:	-	Reinforcement	
	Tait.		Steel	
100	_		Other	
12.1	Description:	•	Aluminium	
- TON	Author:	•		
and the second	Deter	28, 10, 2013		
and a	Date:	28. 10. 2013		
150			Code	
	Structure:		National Code:	
110X	Wall XY		▼ EC - EN	-
A DAY				· ·
	Project Level:	Model:	National annex:	
1.000	Standard	▼ One	▼ Standa	d EN 🔻
). (****	otandara	one		den -

Step 2: Choosinfg the properties of the concrete and reinfrocment also Nationale code should be accordin to EC-EN(eurocode). The structure is chosen to be General XYZ.Note that structre is wall XY should be chosen if 2D wall or deep beam member is goingn to be modeld.

Step 3:

Control if the materiaal properties are chosens properly


400A		Code independent	
500A		Material type	Reinforcement steel
600A		Themal expansion [m/mK]	0,00
400B		Unit mass [kg/m^3]	7850,0
	_	E modulus [MPa]	2,0000e+05
500B		Poisson coeff.	0,2
600B		Independent G modulus	
400C		G modulus [MPa]	8,3333e+04
500C		Log. decrement	0,2
600C		Colour	
		Specific heat [J/gK]	6,0000e-01
		Thermal conductivity [W/mK]	4,5000e+01
		Bar surface	Ribbed
		Order in code	5
		EN 1992-1-1	
		Characteristic yield strength fyk [500.0
		Calculated depended values	
		Characteristic maximum tensile st	540.0
		Coefficient k = ftk / fyk [-]	1,08
		Design yield strength - persistent	434,8
		Design yield strength - accidenta	500.0
		Maximum elongation eps uk [1e-4]	500,0
		Class	В
		Reinforcement type	Bars 💌
		Fabrication	Hot rolled
	-	Stress-strain diagram	
		Type of diagram	Bi-linear without an inclined top I 💌

Step 4. In funtionality tab , Nonlinearity and then press only 2D members should be chosen.

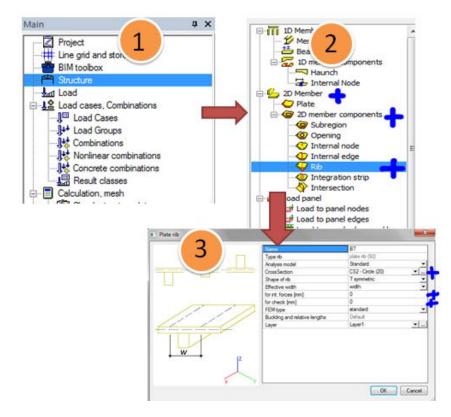
1990	Dynamics	ן ר	Nonlinearity	
2991	Initial stress		Initial deformations and curvature	
10.00	Nonlinearity		2nd order - geometrical nonlinearity	
1.1	Stability		Physical non-linearity for reinforced c	
20.0	Climatic loads		Plate/shell nonlinearity	
PHILE.	Prestressing		Beam local nonlinearity	
Mar I	Pipelines		Support nonlinearity/Soil spring	
35.1	Structural model		Friction support/Soil spring	
(Carl	Parameters		Membrane elements	
Care 1	Mobile loads	_ 🔶	Press only 2D members	
1.75	LTA - load cases		Sequential analysis	
1	External application checks	_ 0	Concrete	
Sec. 2	Slabs with void formers		Fire resistance	
100			Hollow core slab	

Step 5 Defining the geometry and support conditions of specimen is precise the same as it is already explained.

Step 5 defining the load combinations. After defining the general load cases (SLS and ULS), a nonlinear load combination has to be defined as well. Nonlinear combination can be defined just like linear combination by using tab "New" or it can be imported from linear combination by using tab "New from linear combination".

Nonlinear com	binations	×
🏓 🦆 🏒 📸 I	🕏 🗠 🗠 🎒 🗛	• 7
SLS(NL)	Name	SLS(NL)
ULS(NL)	Description	
	Туре	Serviceability 💌
	Contents of combination	
	LC1 [-]	1,00
	Permanen1 [-]	1,00
New from linear cor	mbinations New Insert Edit	Delete Close

Step 6 Putting reinforcement bars into the 2D pressure only member


Note: the big difference here with linear calculations is that, here it is not possible to run the calculations before putting reinforcement in the specimen. This is due to the fact that 2D pressure only members can take a little tension so without reinforcement in the model, the model is already failing due to large cracks.

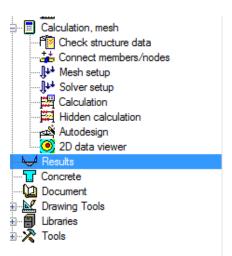
Note: In nonlinear calculation only steel ribs can be used as reinforcements.

The procedure is as following

Structure \rightarrow 2D member \rightarrow 2D member components \rightarrow Rib

It is important that the property of the rib is chosen in a proper manner.

Step 7 Putting Ribs into the specimen


Ribs should be places in the specimens in a way that following the flows of tension forces in the specimen. It is important that the user has the complete knowledge of flow of forces in specimen. (STM)

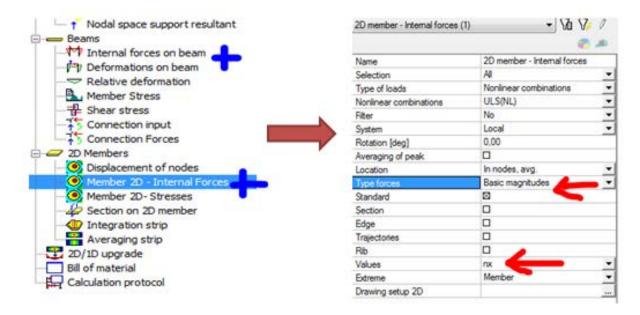
Suggestion: beforehand it is handy to do linear analysis and check the trajectory of stress flow in the specimen.

Putting Ribs in to the specimen is done by using STEP by STEP Method (SSM) which is illustrated in annex 3 also in chapter 4.4.3 of the thesis.

After putting initial rib in to the specimen, solver setup and

mesh setup should be checked. Maximum iteration in solver setup is set to be 250.

Step 8


🐨 Scia Engineer- student version - [800 kN Specimen 1 STM stress gradients.esad : 1] P File Edit View Libraries Tools Modify Tree Plugins Setup Window Help 🗅 🗃 🖬 💁 😂 🔲 800 kN Specimen 1 STM : • , 🗐 Options Geometry/Graphics 前临临临以来二 品品。 1 수 십 Delete Main a x Colours/Lines Project Fonts Line grid and storeys Beam types (structural) BIM toolbox **Dimension lines** Structure Load Load Units 12 Load cases, Combinations Scale Load Cases 144 Load Groups Mesh Combinations Solver Concrete combinations Concrete solver Result classes Calculation, mesh Gallery P Check structure data Connect members/hodes 14 March satur Calculation Hidden calculation Autodesign 20 data viewer Results Concrete Document Drawing Tools 8 Libraries æ Tools

	Mesh setup	
	Name	
	□ Mesh	
	Minimal distance between two points [m]	0,001
	Average number of tiles of 1D element	4
	Average size of 2D element/curved element [m]	0,100
	Definition of mesh element size for panels	Manual
	Average size of panel element [m]	1,000
	Minimal length of beam element [m]	0,100
	Maximal length of beam element [m]	100,000
	Average size of cables, tendons, elements on subsoil, nonlinear soil spring [m]	1,000
	Generation of nodes in connections of beam elements	<u> </u>
	Generation of nodes under concentrated loads on beam elements	
	Generation of eccentric elements on members with variable height	5
Solver setup	Division on haunches and arbitrary members Division for 2D-1D upgrade	50
	Apply the nodal refinement	Only 2D members 🔻
Name		
Solver		
Neglect shear force deformation (Ay, Az >> A)	□ □ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■	
Bending theory of plate/shell analysis		
Type of solver	Direct 20	
Number of thicknesses of rib plate Number of sections on average member	10	
	1000,0	
Maximal acceptable translation [mm] Maximal acceptable rotation [mrad]	100,0	
Print time in Calculation Protocol	⊠	
FILL THE ILL CAICULATION FLOTOCOL		
- Nonlinearity		
Nonlinearity Maximum iterations	250	
Maximum iterations	250	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel	×
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 DK Cancel	×
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel FE analysis Single analysis Batch analysis	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 DK Cancel	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel FE analysis Single analysis Batch analysis	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 0K Cancel FE analysis Single analysis Batch analysis CLinear calculation	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 0K Cancel FE analysis Single analysis Batch analysis Clinear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 1 DK Cancel	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 0K Cancel FE analysis Single analysis Batch analysis Clinear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis Nonlinear stability	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis Nonlinear stability Test of input data	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis Nonlinear stability	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis Nonlinear stability Test of input data	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel FE analysis Batch analysis Linear calculation Image: Concrete calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis	s (CDD)
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 0K Cancel FE analysis Single analysis Batch analysis Linear calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis Nonlinear stability Test of input data	
Maximum iterations Solver precision ratio Coefficient for reinforcement	1 1 0K Cancel FE analysis Batch analysis Linear calculation Image: Concrete calculation Modal analysis Linear stability Concrete - Code Dependent Deflection Construction stage analysis Nonlinear stage analysis Nonlinear stage analysis	s (CDD)

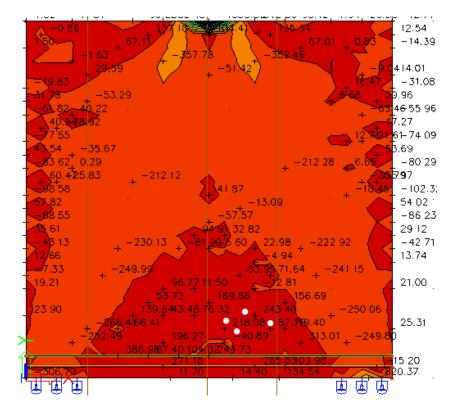
Step 10

Check in the result menu if in Nx and Ny direction there is enough Ribs in the specimen. For both vertical and horizontal reinforcements it is assumed that basic mesh net is already applied (NEN EN1992-1-1 cl 9.7.

It is not necessary and possible to put mesh net in to the model. Only main horizontal of vertical reinforcement (Ribs) should be applied.

Example:

Available mesh net is $\emptyset 8 - 200$. This means that in every 200 mm (0,2m) height of the beam there is $100 \text{ }mm^2$ (2 $\emptyset 8$) is available. The max Nx is around 243 kN/m (figure below). The same procedure also for shear reinforcing(ribs-Ny).

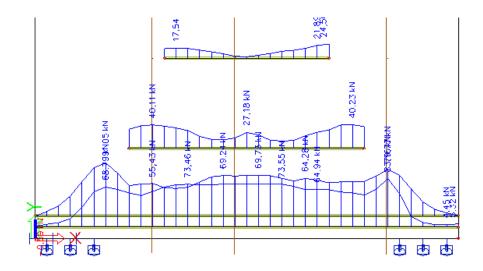

$$N_x \cdot 0,2m = 243 \cdot 0,2 = 48,6 \ kN$$

$$A_{s,needed} = \frac{48,6 \cdot 1000}{\sigma_{yd}(\frac{N}{mm^2})} = \frac{48,6 \cdot 1000}{435} = 111,7mm^2$$

Amount of $111,7mm^2$ reinforcement is needed which is bigger than amount of available mesh net which is $100mm^2$. Here it means another Rib should be added. Again this procedure of control should be carried out, till there is no need for extra steel ribs. This procedure is actually based on SSM or step by step method which is illustrated in Annex 3.

- Adding rib
- Control
- If needed adding another rib
- Control

- If needed adding another rib
- Control
- .
- .
- •
- .



Step 11

Calculating the amount of reinforcement

After putting enough ribs into the specimen, so Nx and Ny in no other places exceeds the amount of reinforcements. By using the forces in the ribs the amount of reinforcements can be calculated.

$$A_{s,needed} = \frac{F_{rib}(N)}{\sigma_{yd}(\frac{N}{mm^2})}$$
$$\sigma_{yd} = 435N/mm^2$$

Annex 3

Introduction:

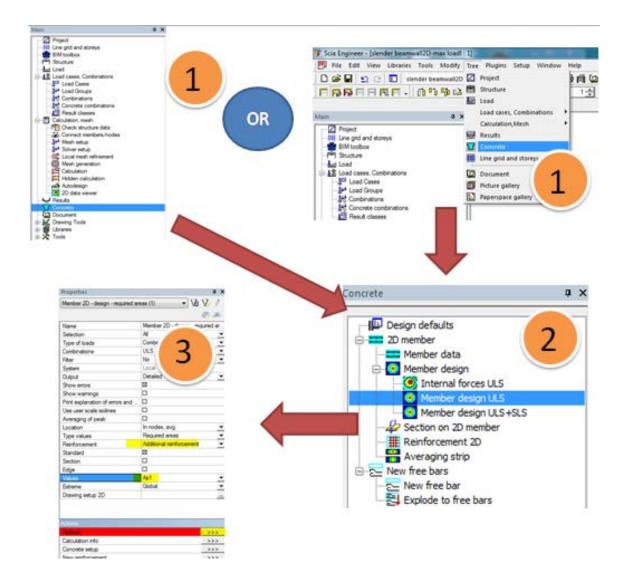
In Annex 3 the following subjects are going to be discussed:

- Step by Step Method or SSM for 2D LE-FEM
- Step by Step Method or SSM for 2D NL-FEM
- Mesh Dependencies in Scia Engineer
- Scia Engineer 2011 Errors

Step By Step Method or SSM

Second method which is introduced in this thesis is going to be called as "SSM". This method is based on the redistribution of the forces in the concrete element after any however small reinforcing.

This method can be formulated as following:

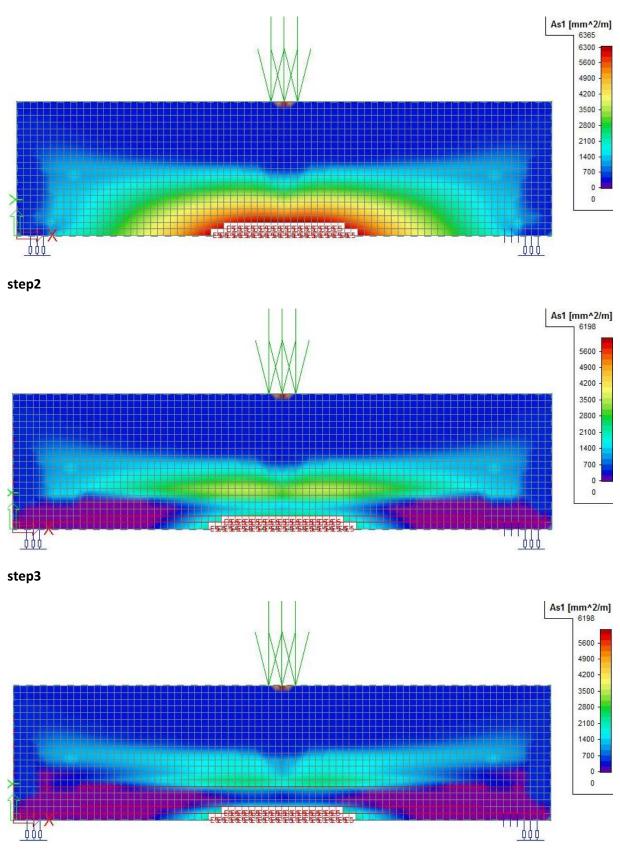

- 1- One have to use annex 1 to make a 2D model
- 2- As a result of running the calculation by Scia Engineer, from concrete menu and then member design ULS, and then choosing required reinforcement. Amount of reinforcement which is needed in the model is the result of Scia Engineer calculations.
- 3- In this step, depend on the mesh size and colors, the concrete element is going to be divided in height by reasonable pieces. Reasonable peace means the different between required reinforcement should not be so high. (round 500 mm^2/m)

Note: during reinforcing the elements in each step always begin reinforcement in places in which Scia gives higher required amount of reinforcements, this gives engineer the feeling of the element behavior in each step.

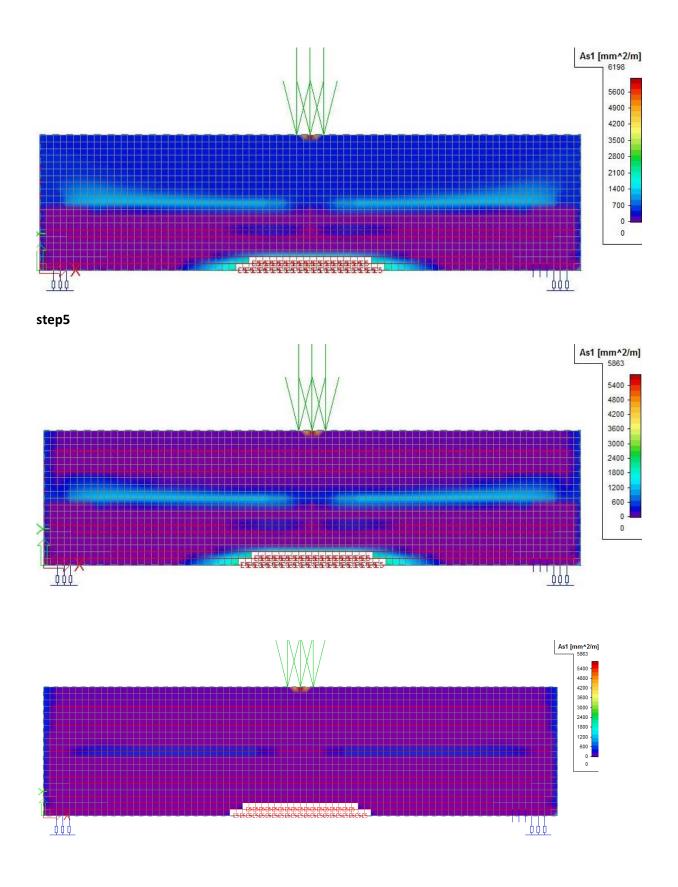
- 4- Now for the first layer from bottom which is defined in the previous step, one can calculated needed amount of rebar's in this area of concrete element.
- 5- After calculating the required rebars in the first bottom layer of the concrete element. User should run the calculation again.

🖇 Scia Engineer - [slender beamwall2D-max loadl : 1]
📆 File Edit View Libraries Tools Modify Tree Plugins Setup Window Help
🗅 🖆 🖬 💁 🕾 📘 slender beamwall2D-ma) 🔹 ,] 🖅 🋐 愶 🎯 🖽 🖨 商 🐚 🗗 ,] 🏠 禹 🗊 -] 🦉 🥉 🎄 🖕 다 다 다 다 있다.
╔╔╔╒╒╔╔╕╷╽╖╙╙╘┉╎Ҳ╬╧╎╧╧╸╵╵╶╶╧╧╴╵┋╧╲╷║╚╔╔╋╵╝╝╔╔╴

6- Concrete menu→design ULS→then from property menu from right →additional reinforcement (As1)→refresh

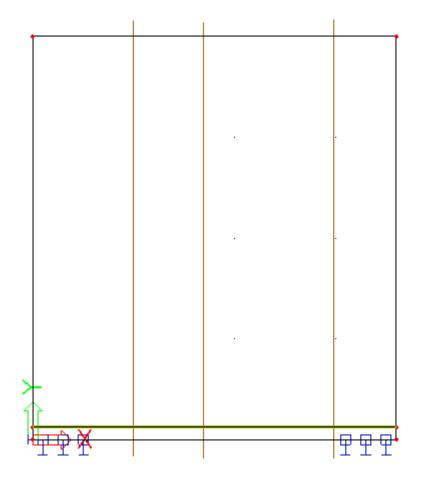


- 7- One can see the effect of one layer of reinforcement, and additional required reinforcement.
- 8- Now step 3 through step 7 should be repeated for other divided layers from step 2.


Note: one should perfectly take care about bottom reinforcement at higher loads. At higher loads Scia may give Error 5 at the bottom part of the beam, so user partially cannot see the whole bottom part, but right after the Error part the additional required reinforcement should be perfectly zero.(E5 error might be wisely ignored).

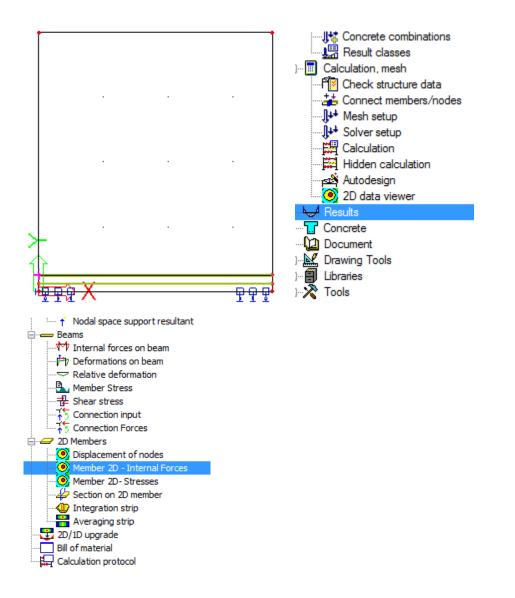
Figures step by step method (example)

Appling STEP by STEP Method (SSM) in to the nonlinear 2D pressure only members


• The principle is the same as in previous case

This method can be formulated as following:

Step 1: Model the specimen

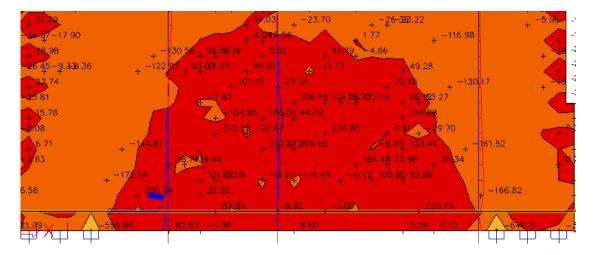

Step 2: By using LE FEM, put an initial rib into the model

Step3: after choosing proper mesh net and mesh solver setup, run the nonlinear analysis(mesh of 100 mm and number of iteration of 250 is recommended)

Step 4: If Scia Engineer is capable to do analysis without any error go to step 5, Check the section ERRORS and TROUBLESHOOTING, at the end of this annex.

Step 5: In the result menu (CONCRETE MENU DOENST WORK IN NLFEM), choose Member 2D internal forces.

Step 5: by choosing Nx and Ny in the right menu, one can see the amount of forces in x and y direction.


Note: It is important to choose in the "Drawing setup 2D" that Scia Engineer shows the local minimum and maximum.

Values	nx	-
Extreme	Global	_
Drawing setup 2D		· · · · ·
Drawing setup 1D		

2D results display	×
Display Isobands Display mesh Lighting	Minimum and maximum settings Ground value Use value Draw isoline
Advanced settings User-adjustable palette values Load palette OK Cancel	Local extrems Local minimum and maximum Style Text with cross Description colour Help

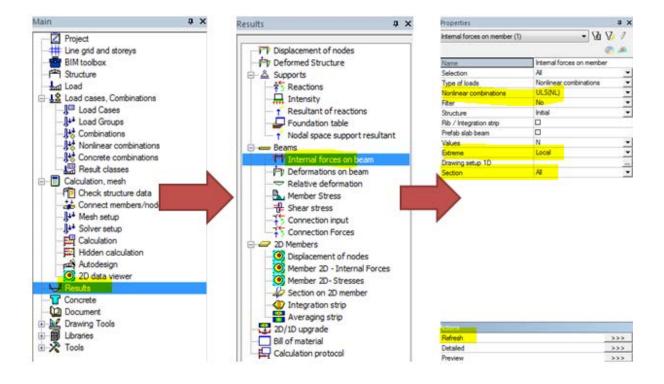
Step 6: evaluation and decision making,

By looking at the Nx forces (kN/m) one can decide easily whether, more ribs (reinforcement) are needed or not. Important consideration here is that one, already knows that minimum mesh net (In this example $A_s = \emptyset 8 - 200 = 100,5 \ mm^2/200 mm$) is available.

Example: By looking at figure above one should find the highest values of Nx and to determine whether the mesh reinforcement of $\emptyset 8 - 200 = 100mm^2$ is enough or not. The following simple calculation can be carried out. The highest amount of Nx which can be found in figure above is $250 \frac{kN}{m}$.

$$250\frac{kN}{m}\cdot 0, 2m = 50 \ kN$$

$$A_{s} = \frac{F}{\sigma_{yd}}$$
$$A_{s} = \frac{50000 N}{435 N/mm^{2}}$$
$$A_{s} = 115 mm^{2}$$

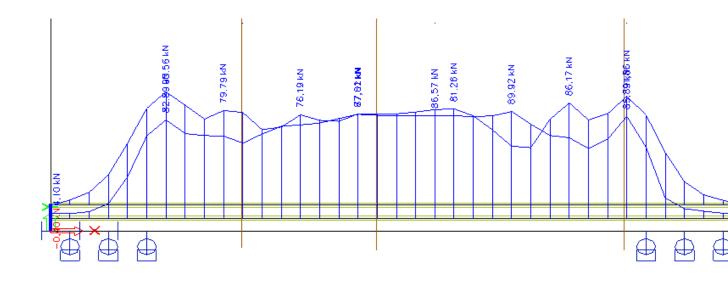

Step 8: compare A_s with amount of 2 $\emptyset 8 = 100 mm^2$.

Step 9: IF $A_s > 100mm^2$ this means that Ribs should be added to those places where the highest amount of tensile forces are happening

Go again to step 2 and this procedure repeat itself till condition at step 10 is reached.

Step 10: If $A_s < 100mm^2$ this means there is no reinforcement needed any more. The reinforcement design is complete.

Step 11: Now from the result menu, under the tab beams and then internal forces on beams(figure below), Scia engineer determine amount of forces in each Rib. By knowing the amount of forces in each beam by simply dividing the amount of force by yield strength of the rebars which in this case is $435 N/mm^2$, one can determine the amount of reinforcement needed.

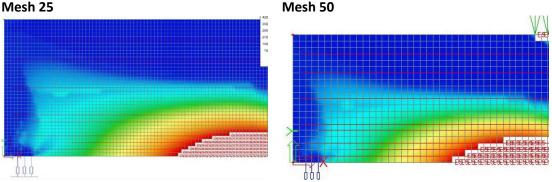


$$A_s = \frac{F_{Rib}}{\sigma_{yd}}$$

Example:

$$A_s = \frac{90000 N}{435 N/mm^2} = 206mm^2$$

 $2\emptyset 12 = 226 \ mm^2 \ OK$


Important Note:

The procedure should also carried out for XY direction (Nxy), to determine the amount of shear reinforcements. Bear in mind that before calculating amount of shear reinforcement from the Nxy the following two points should be considered:

- 1. Consider NEN EN 1992-1-1 cl6.2.2 (6) So multiply the amount of Nxy by the reduction factor from euro code.
- 2. Take into account imaginary mesh net which is available in the design(just like for Nx part)

Mesh Dependencies in Scia Engineer

Discussion about Scia

As it is shown in above figures, one can recognize that at the same load but with different mesh sizes the E6 error (at the applied load area) is appearing in the right figure while at the left figure it is absent.

Scia in different load steps which is dependent on mesh size, gives also some error codes in the mesh elements .In this Thesis Error E5 and Error E 6 is observed. The reason of these errors are also can be categorized as disadvantage of Scia Engineer. The reason of these errors which are highly dependent of mesh sizes can be illustrated as the following:

• detailing provisions,

It is reported that Scia Engineer consider all Eurocode and also non Eurocode detailing provisions, which some of them should be wisely ignored, otherwise Scia results are going to be conservative.

• singularities

However to avoid singularities at places like supports, it was decided to use spring supports, but still dependent on the mesh size and the load E5 and E6 errors can be observed which makes it impossible to safely explaining the reason of these Errors and the results of them.

Environmental conditions for beams and walls

Eurocode EN1992-1-1 cl.4.2 Table 4.1 which is based on EN 206-1 classifies the influence of environmental conditions into exposure classes. Exposure conditions are chemical and physical conditions to which the structure is exposed in addition to the mechanical actions. In addition to Table 4.1 from Eurocode, Particular form of aggressive or indirect action also should be considered including chemical and physical attack as following:

- 1- Chemical attack
 - The use of building or structure(storage of liquids)
 - Solution of acids or sulfate salts
 - Chlorides contained in concrete
 - Alkali-aggregate reactions

- 2- Physical attack
 - Temperature change
 - Abrasion
 - Water penetration

It is assumed that none of the above mentioned particular form of aggression is occurring in the specimen's environment. All specimens are in class designation 2 in which the corrosion is induced by carbonation and the environmental condition is cyclic wet and dry, these conditions leads to exposure class of XC4.

Minimum concrete cover

Based on NEN-EN 1992-1-12011 cl. 4.4.1.2, table 4.4N, minimum concrete cover should be providing in order to ensure the following conditions,

- Bond reinforcement to the concrete is so that the two elements act together. The efficiency of the bond increases if the cover increases.
- Protection of the steel against corrosion (depend on the environment and type of member)
- Adequate fire safety(to protect the reinforcement from strength loss due to fire)

 $c_{min} = max\{c_{min,b}; c_{min,dur} + \Delta c_{dur,\gamma} - \Delta c_{dur,st} - \Delta c_{dur,add}; 10 mm\}$

$c_{min,b}$	Minimum cover to bond requirements
C _{min,dur}	Minimum cover due to environmental conditions
$\Delta c_{dur,\gamma}$	Additive safety element
$\Delta c_{dur,st}$	Reduction of minimum cover for use of stainless steel
$\Delta c_{dur,add}$	Reduction of minimum cover for use of additional protection

The recommended structural class (design working of 50 years) is S4 .Also for indicative minimum strength class of concrete for carbonation induced corrosion, EN-1992-1-1 Annex E, suggests the strength class of C30/37.

Ontwerplevensduur- klasse	Richtwaarden ontwerplevensduur (jaren)	Voorbeelden
1	10	Tijdelijke constructies (1)
2	10 tot 25	Vervangbare constructieve onderdelen, bijv. kraanbaanliggers, opleggingen
3	15 tot 30	Landbouwkundige en soortgelijke constructies
4	50	Gebouwen en andere gewone constructies
5	100	Monumentale gebouwen, bruggen en andere civieltechnische werken
	an constructies die kunnen w n niet als tijdelijk te zijn aan	vorden ontmanteld met de bedoeling om te gemerkt.

Table 3.2, indicative design working life,[EN-1990:2002+A1:2005]

As a guideline for determining concrete cover, one can also use flow diagram in GTB 2010-5.3.

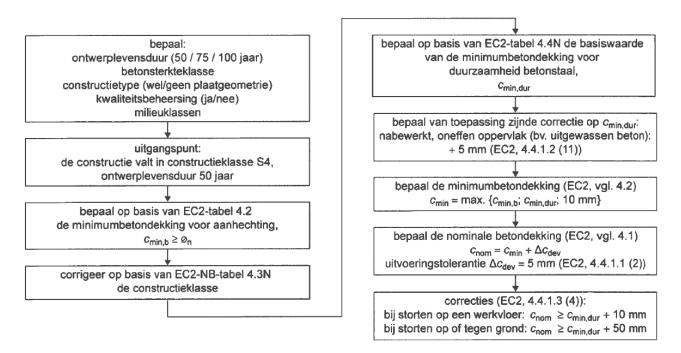


Table 3.3 Flow diagram GTB2010- 5.3

SCIA Errors

Slender Beams

During the loading phase of the 2D Scia finite element Model, one can recognize happening of the E5 and E6 errors in the different mesh elements in the model.

E5

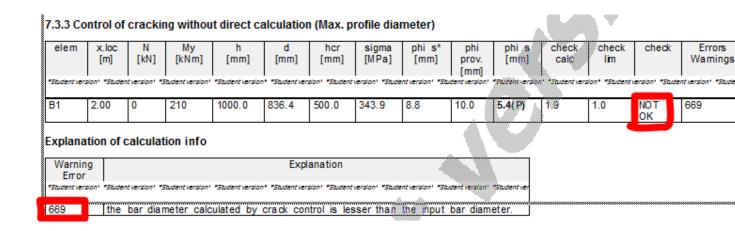
When this error happens, Scia explain that "a higher cross section can no more be achieved by further raising the reinforcement amount". The reasons for this error is too many detailing provisions that Scia takes into account.

Error E5

5 Error	Upper reinforcement limit exceeded. A higher cross-section resistance can no more be achieved by further raising the reinforcement amount. Enable for a higher percentage limit (if acceptable or based on constructive measures, respectively) or choose a higher cross-section height. Using higher concrete class may be efficient in prevailingly compressed members only. In certain situations also other reinforcement geometry can help.
---------	--

Error E6

When this error happens means that, at that point failure of the compression struts is happening. This error is highly mesh dependent, and based on this error no reliable explanation about behavior of the specimens can be derived.


1		6 Error	
	1		

Allowable concrete strut pressure exceeded.

The error message concerns the virtual concrete strut, which symbolises the stiffening function of the concrete continuum, failing due to the actual load impact ?? Try a higher cross-section or a higher concrete class. Choosing another reinforcement geometry may be the optimum solution ("trajectory reinforcement"). Purely increasing the reinforcement amount is, however, inefficient.

ERRORS in the results

For 1D analysis in slender beams in the results, which is done according to Eurocode, sometimes one may get some errors in the check column of the analysis. It is important to know the background of these errors. For example in the below figure , Scia does check the maximum bar diameter based on NEN-EN 1992-1-1 cl.7.3.3, but bear in mind that only one of the two tables in Eurocode (7.2N or 7.3N) should be satisfied and not both of them. As a result of this knowledge about te background of control checks in Scia Engineering, one can simply ignore such these errors.

SCIA Errors for NLFEM Deep Beams Singularity[1]

In nonlinear analysis singularities can happen frequently. The following messages can be showed during analysis.

The following reasons and solution are related to singularity errors

• The structure is instable and is mechanism. Check supports, hinges, un-connected members.

S1

- The structure is unstable due to the plastic hinges.
- Instability can be caused due to the small section properties of manually inputted cross section,(the torsional resistance is too small).
- The Timoshenko method is not suitable when normal force in a member is larger than its critical buckling load. Newton Raphson is the better solution for these conditions. To be able to find which cross section cause this problem , the sections can be adjusted and modified alternately until the second order calculation passes.

Convergence [1]

It is possible that during SSM or step by step method, the criterion of convergence is not met. The following messages are typical error messages in this case

SCIA.ESA PT	FEM solver
Calculation is done. Maximal number of iteration was reached. Do you accept such results ?	The sufficient precision was not reached in the iteration. If increasing of 'Maximum iterations' does not help, the construction probably cannot bear the given load. Do you want continue ?

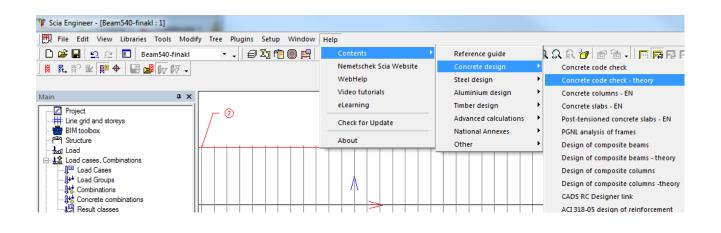
The following reasons and solution are related to Convergence errors

• There are just few iterations have been specified in the solver setup. One can simply choose for higher amount of iterations.(figure below)

Solver setup	
Name	
Solver	
Neglect shear force deformation (Ay, Az >> A)	
Bending theory of plate/shell analysis	Mindlin
Type of solver	Direct
Number of thicknesses of rib plate	20
Number of sections on average member	10
Maximal acceptable translation [mm]	1000,0
Maximal acceptable rotation [mrad]	100,0
Print time in Calculation Protocol	
Nonlinearity	
Maximum iterations	250
Solver precision ratio	1
Coefficient for reinforcement	1
z 🖻 🖬	OK Cancel

• The structure is close to instability. The reasons which are mentioned in the singularity part can also be related to this part. Moreover, this might also be caused by too big cracks in the

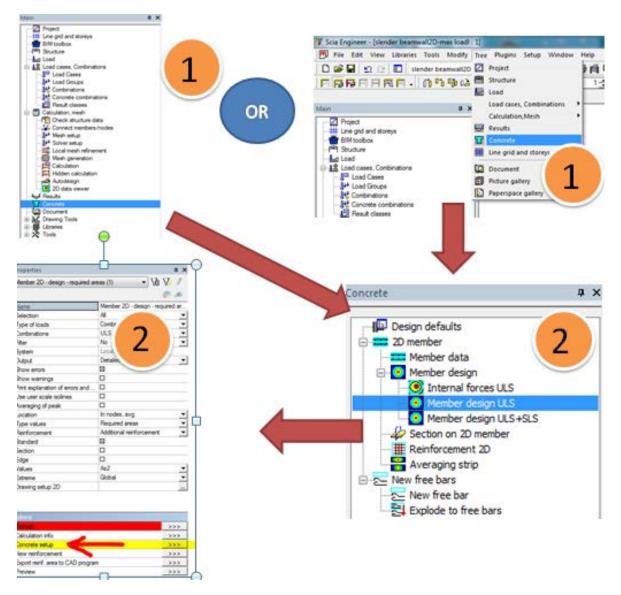
specimen. To be able to solve this problem one may add extra Ribs in to the specimen in sensitive areas where probably high tensile stresses happens.


- Cyclic elimination of members or supports.
- If nonlinear stability calculation does not converge, make sure second order is activated as functionality.

[1] Advanced concept training "Non Linear and Stability" 2013 – Scia Engineer manual

Annex 4

Minimum requirements which is used in SCIA:


- This annex contains the most important Eurocode requirements in Scia Engineer 2011
- The aim of this annex is to clarify, the background work and calculations of Scia engineer in terms of Eurocode for daily engineering practice
- For all Extra details over Scia Engineer 2011 refer to the help contents in the Help menu of the program. Scia engineering → help → contents → concrete design

Requirements for 2D FEM in Scia Engineer 2011

Making the 2D FEM model in Scia Engineer is already extensively in the previous annexes illustrated. One by following the following guideline can reach the setup menu related to the Eurocode in the program.

After calculation step→concrete→member design ULS(left menu)→concrete setup (bottom right menu) Or (Setup menu > Concrete solver)

1. Standard EN→concrete→design defaults→concrete cover

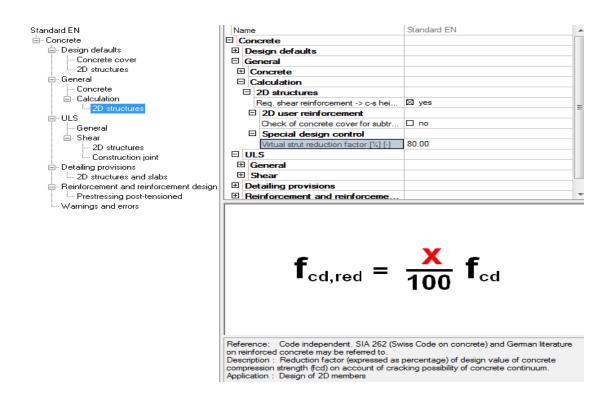
-Here exposure class can be chosen which is defined in the Eurocode

2. standard EN→concrete→design defaults→2D structures

Here upper and lower reinforcement can be chosen. Upper and lower reinforcement in this thesis is actually the longitudinal reinforcement in the beam specimens.

3. standard EN→concrete→ULS→shear→2D structures

Here shear strut inclination and shear effect control according to NEN-EN 1992-1-1 cl. 6.2.3 Shear effect control cl.. 6.2.3 (7)


4. standard EN→concrete→detailing provision→2D structures and slabs→reinforcement

Here minimum transverse reinforcement according to NEN-EN 1992-1-1 9.3.1.1 (2). Cl..9.3.1.1 (2) is about secondary transverse reinforcement in the solid slabs. This minimum transverse reinforcement is referred as vertical reinforcement. NEN-EN 1992-1-1 cl.. 9.6.2(1,2) is about Minimum and maximum reinforcement in walls. Here is also referred to the Eurocode, which is about vertical reinforcement in the walls. But in Scia it is about longitudinal reinforcement which is in connection with upper and lower reinforcement from 2.

- Minimum degree of reinforcement NEN-EN 1992 cl..9.6.2(1)
- Minimum tension lower reinforcement, which is calculated automatically by Scia with equation 9.1N from NEN-En 1992-1-1 cl., 9.2.1.1 (1).
- Minimum bar distances
- maximum bar distances

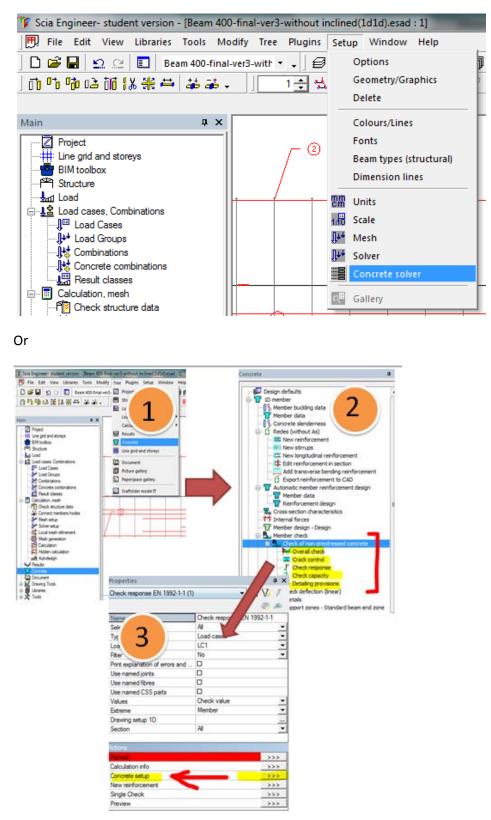
Scia Engineer uses also code independent, SIA 262 from Swiss code. In figure below one can see that Scia uses a reduction factor for compression struts to take into account the effect of cracks in 2D FEM model. This factor is implicitly also presented in NEN-EN 1992-1-1 cl.6.5.2, for calculation of the strength of the struts in the strut and tie model.

Standard EN→General→2D Structures→special design control

The Swiss structural codes comprise the following:

- SIA 260 Basis of structural design
- SIA 261 Actions on structures
- SIA 262 Concrete structures
- SIA 263 Steel structures
- SIA 264 Composite steel and concrete structures
- SIA 265 Timber structures
- SIA 266 Masonry
- SIA 267 Geotechnical design.

This reduction factor in Scia Engineer which is based on other codes than Eurocode, can also be compared to the reduction factor in strut and tie model in Eurocode. In NEN-EN 1992-1-1 cl.6.5.2, for calculation of the strength of the struts, depends on the situation, a reduction factor is introduced.


SETUP \rightarrow Concrete solver \rightarrow concrete setup window \rightarrow concrete \rightarrow ULS \rightarrow Shea \rightarrow 2D structures \rightarrow Shear strut inclination control 6.2.3

Standard EN	N	ame	Standard EN
E- Concrete		Concrete	
🚍 General	Ð	General	
⊟ Calculation		ULS	
General	6	∃ Shear	
2D structures		2D structures	
i ULS		Shear strut inclination control 6.2.3	variable strut inclination method 🔹 💌
i⊟- Shear		Shear effect control 6.2.3(7)	shear effect considered in SR 2
2D structures Construction joint		Construction joint	
Construction joint	6	1 Punching	
	Ð	SLS	
Creep	Ð	Detailing provisions	
Crack proof	Ð	Reinforcement and reinforcement design	
Code Dependent Deflections	⊡	Warnings and errors	

Requirements for 1D element in Scia Engineer 2011

Reinforcement

Setup tab in the main menu \rightarrow concrete solver

In Concrete solve menu→detailing provisions→beams→one can see that Scia using the following articles from NEN EN-1992-1-1, for design checks and control:

In Concrete solve menu→detailing provisions→beams→setting of checks

Minimum percentage of longitudinal reinforcement EN 1992-1-1 cl.9.2.1.1 (1)

Maximum percentage of longitudinal reinforcement EN 1992-1-1 cl.9.2.1.1 (3)

Norm independent (1)

Maximum distance between longitudinal rebars

Norm independent (2)

Minimum ratio for shear reinforcements

Maximum ratio(percentage) of shear reinforcement EN 1992-1-1 eq 6.12

Norm independent (4)

Maximum longitudinal distance between shear reinforcements for shear.

Norm independent (5)

Maximum longitudinal distance between shear reinforcements for Torsion.

Norm independent (6)

Maximum transversal distance between shear reinforcement.

Concrete setup	_		
Type of values	· Standaard EN	Name	Standaard EN
Code independent values	🚊 Concrete	Concrete	
Code dependent values	🚊 - General	Allowable stress	
	🖻 - Calculation	Detailing provisions	
	General	Common detailing provisions	
	Columns		
	Beams		
	📋 🛱 ULS	Setting of checks	
	Interaction diagram	Min. percentage of longitudinal reinforc	🛛 ves
	🖻 - Shear	Max, percentage of longitudinal reinfor	⊠ yes
	- 1D structures	Additional moment above support	
	Construction joint	Max. bar distance of longitudinal reinfor	
	🖻 - Details	Min. ratio (percentage) of shear reinforc	
	Anchorage check	Max. ratio (percentage) of shear reinfor	⊠ yes
	Bearing checks	Max. Iongitudinal spacing of shear reinf	· ·
	- Fire resistance	Max. longitudinal spacing of shear reinf	
	Creep	Max. transverse spacing of shear reinfo	
	Creep	Longitudinal reinforcement	
	Code Dependent Deflections		0.35
	Code Dependent Defections	Max. bar distance 9.2.3(4) [m]	0,35
	Calculation		8.00
	Detailing provisions	Max.long spacing u/x 9.2.3(3) [-]	8,00
	Common detailing provisions	Fire resistance	
	- Columns	Reinforcement and reinforcement	
	Beams	Cross-section characteristics	
	- Fire resistance	Warnings and errors	
	General		
	Columns		
	Beams		
	Slabs		
	- Reinforcement and reinforcement design	Reference: EN 1992-1-1, Clause 9.2.1.1 (3)	
	- Automatic reinforcement design	Description: If this is yes, the maximum allowab be set as a percentage of area of concrete	le tension or compression reinforcement can
	Prestressing post-tensioned	Application: Design, Autodesign and check of	reinforcement for beams
	Cross-section characteristics		
	Warnings and errors		
	III ►		

In Concrete solve menu→detailing provisions→beams→longitudinal reinforcement

Maximum bar distance according to EN 1992-1-1 cl.9.2.3(4) (350 mm)

In Concrete solve menu→detailing provisions→beams→Shear reinforcement

Maximum longitudinal distance between the torsion links in a beam be set according to EN 1992-1-1 cl.9.2.3(3)

In the same Concrete setup menu \rightarrow detailing provisions \rightarrow Common detailing provisions

0	Concrete setup	-			
	Type of values Code independent values Code dependent values		- Standaard EN - Concrete - General - Calculation - General - Columns - Beams - ULS - Ultraction diagram - Shear	Name Concrete Allowable stress Detailing provisions Common detailing provisions Setting of checks Min. bar distance of longitudinal reinfor Design long. reinforcement according t Min. bar distance - distance 8.2(2) [m]	Standaard EN

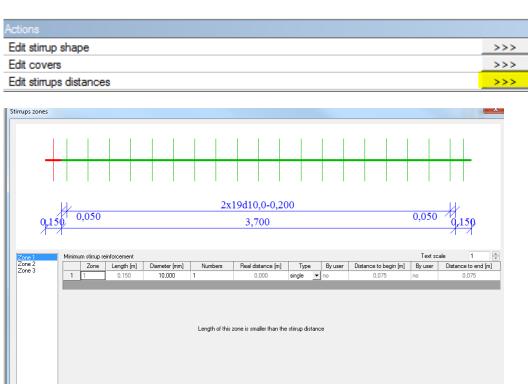
Here one can recognize that Scia for minimum distance between bars, uses EN 1992-1-1 cl.8.2(2) from Eurocode.

NEN-EN 1992-1-1 8.2 Spacing of bars

NEN-EN 1992-1-1 8.3 Permissible mandrel diameters for bent bars

In Concrete solve menu \rightarrow General \rightarrow calculation \rightarrow general

Type of values		Standaard EN		Name	9	Standaard EN
Code independent values	\boxtimes	🖕 🗄 - Concrete	E	Co	ncrete	
Code dependent values	\boxtimes	🖨 <mark>General</mark>		ΞG	eneral	
				Ξ (Calculation	
		General		Ξ	General	
		Columns			Number of iteration steps	100
		Beams			Precision of iteration [%]	1
		ULS .			Limit value for checks [-]	1,00
		Interaction diagram			User defined and end sections only	🗆 no
		in Shear ID structures			Concrete area weakened by reinforce	🗆 no
		Construction joint			Concrete area weakened by prestres	🗆 no
					For design calculations of 1D member	⊠ yes
		Anchorage check			Calculation of effective depth	Automatic
		Bearing checks			Check torsion	🗆 no
					Check shear of construction joint	🗆 no
		- SLS			Calculation of additional force caused	Method according to 9.2.1.3(2) - shifting

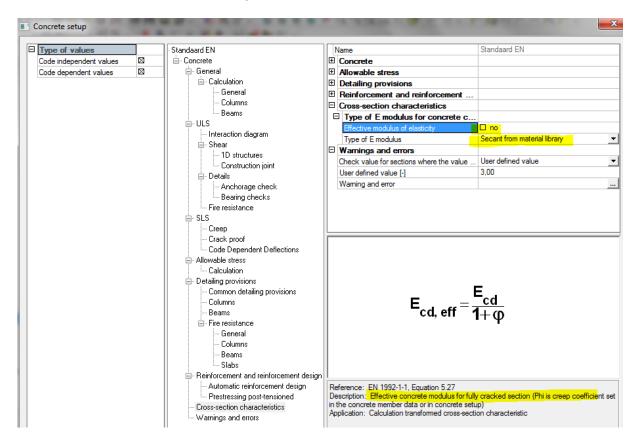

In the general tab , one can see that Scia engineer uses moment shift method according to -EN 9.2.1.3(2) – NEN-EN 1992-1-1 6.2.2(5).

NEN-EN 1992-1-1 9.2.1.3 Curtailment of longitudinal tension reinforcement NEN-EN 1992-1-1 Cl.. 6.2.3 , Concrete setup menu→ULS→shear

In contrary to 2D modeling, 1D modeling in Scia Engineer software, uses fixed strut inclination method with a default value for θ is set to 40 degrees.

Betoninstellingen		
☐ Type van controles UGT respons ⊠	Standaard EN Beton Algemeen Voorspanwapening Berekening UGT Gustucties Constructievoeg Brandwerendheid Wapening en wapeningsontwerp Voorspanning door voorspanning Voorspanning door voorspanning Voorspanning door naspanning Voorspanning door naspanning Voorspanning door naspanning	Standaard EN 1.00 Hoek 40.00 1.192 40,00 1.192 40,00 1.192 automatische b □ nee ⊠ ja

With mouse choose shear reinforcement \rightarrow right bottom of the main window "action window" \rightarrow edit stirrups distances


OK Cancel

New zone Delete zone

Note: because at support there are always the higher shear stresses, Scia engineer uses smaller distances between stirrups nearby support areas. This distance also can be edited if needed.

Concrete solver menu→cross-section characteristics→type of E modulus

It is possible for Scia to use effective concrete elasticity modulus for fully cracked section according to EN 1992-1-1 eq5.27. Here stiffness is based on an effective concrete modulus. By using equation 5.27 form Eurocode the effect of creep would be also taken into account.

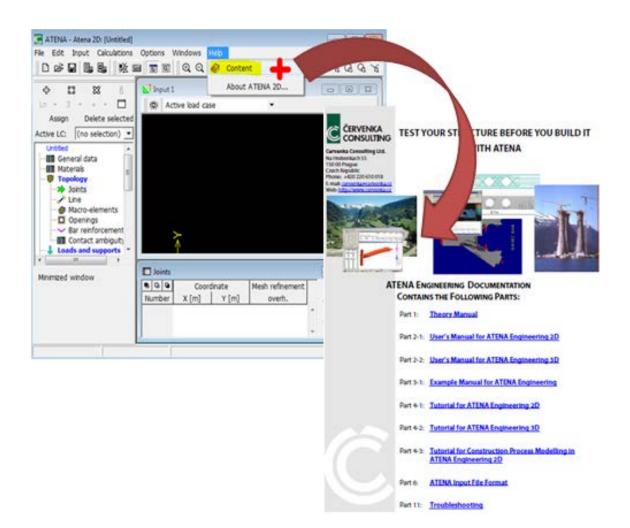
Concrete \rightarrow SLS \rightarrow Creep, Creep factor is only used if CDD or Code dependent deflection method is used. This method is more for plate analysis where load is perpendicular to the plane. More information about CDD refers to Scia Engineering document "Advanced concept training". NEN-EN 1992-1-1 cl. 5.8.4 Creep

Concrete setup			
□ Type of values Code independent values ☑ Code dependent values ☑	- Standard EN - Concrete - General - General - General - D structures - ULS - ULS - ULS - Shear - 2D structures - Construction joint - Punching - SLS - Creep - Creep - Creep - Creck proof - Code Dependent Deflections	Name Concrete General ULS SLS Creep for concrete - Code dependent deflections (CDD) Creep coefficient [-] Calculate creep coefficient Relative humidity [%] Age of concrete at loading [day] Age of concrete at the moment considered [day] Crack proof Code Dependent Deflections	Standard E 2,50 23,50 28,00 1825,00

Annex 5

Scia Engineer 2011 examples can be found at the following address

www.babak-dadvar.com/thesis/babak.html


Otherwise contact

babak_dadvar@yahoo.com

Annex 6

Making the model in ATENA

For more detail and explanation refer to ATENA documentations. Help menu in the ATENA software.

Adding Materials

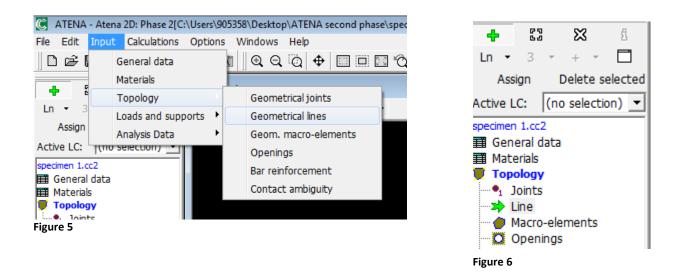
From the left tree menu in ATENA one can choose materials with left click of mouse (figure 1). This can be done also from the main menu at top (figure 2).By doing this, material window at the bottom of the ATENA interface appears. Here user by clicking add button, can define the materials and material properties. For details about materials and material properties refer to chapter 4 and chapter 8.3 of the thesis.

Joints

After definition of all materials which is going to be used in the model, the next step in ATENA is to determining joints. Joints can be defined easily by mouse or by giving coordinated of the specimens. Example below:

If it is needed mesh refinement can be applied at support areas. In the deep beam part of this thesis, this option is used (chapter 9).

Edit joint # 6.	×
Topology X-coordinate: 0.2000 Y-coordinate: 0.0000	Springs
Mesh refinement Refinement type: By size and radius Refinement radius: 0.3000 [m]	-
Element size at the joint : 0.0100 [m]	Add Edit Remove
Joint # : 6	✓ OK X Cancel


Figure	3
--------	---

Joints					X
	Coord	linate	Mesh refinement		=
Number	X [m]	Y [m]	overh.		➡ <u>A</u> dd
1	0.0000	0.0000		^	⊞ Edit
2	0.0000	1.0000			
3	0.1000	0.0000			<u> </u>
4	0.1000	-0.0500			Items: 19
5	0.2000	-0.0500			items, 19
6	0.2000	0.0000			
7	3.8000	0.0000			
8	3.8000	-0.0500			
9	3.9000	-0.0500			
10	3.9000	0.0000			
11	4.0000	0.0000			
12	4.0000	1.0000			
13	2.1000	1.0000			
> 14	2.1000	1.0500			
15	1.9000	1.0500			
16	1.9000	1.0000			
17	0.1500	-0.0500			
18	3.8500	-0.0500			
19	2.0000	1.0500			

Lines

By choosing lines from the left tree menu (figure 6) or by choosing geometrical lines from top menu (figure 5) one can define lines between joints. The easiest way is that after choosing lines from left menu then one can chose tab, then just using left click of mouse between joints in the graphic zone of the program desired lines will be produced.

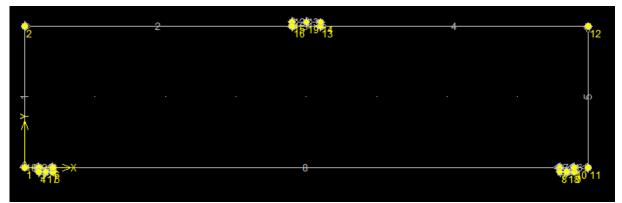
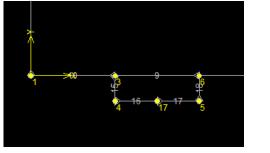



Figure7

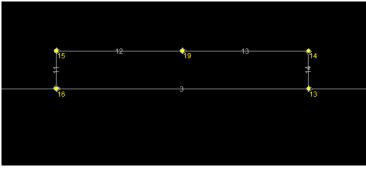


Figure 8

Figure 9

Defining macro elements

After definition of geometrical lines, the next step is to connect these lines to form regions, which are called Macro – elements.

Macro elements properties:

- Finite element mesh type
- Element size Initially 50 mm is chosen like in the 2D models.
- Material Depends on which material is going to be addressed by macro- elements.
- Thickness Thickness is equal to thickness of the specimen
- Quadrilateral elements

By choosing macro elements from left tree menu and then choosing add button at the bottom menu or by clicking on add button at top 4, one can define the macro elements.

Important note: After defining the mesh size, mesh type and thickness of the element, the user should push the end button, after that choose 😔 button from the left menu till the

mouse in the graphical view changes to

Now user can choose lines which make a closed region.

C ATENA - Atena 2D: [Untitled]		
File Edit Input Calculations	Options Windows Help	
	■ 🖪 🗏 Q Q Q 🖗 🗆 🗆 🖄 🗽 🕯	а +6 Q Q X Z Ф
+ 11 × 1	Input1	
Ln 🔻 3 🔻 + 👻 🗖	☆ Active load case	
Assign Delete selected		
Active LC: (no selection) 💌		
Untited General data Materials Topology Onts Line Macro-elements Contact ambiguity Line Line Mar reinforcement Contact ambiguity Line Line Contact ambiguity Line Line Contact ambiguity Line Line Line	×	
	Macro-elements	
Minimized window	Line lst Thickness [m]	▲ <u>A</u> dd

Figure 10

Note: thickness of the macro elements is equal to the thickness of the specimens. Note: the mesh size now or later can be defines from macro element menu.

Macro-element #1.	Macro-element # 2.	×
Topology Boundary list: 3,11-14	Topology Boundary list:	
FE mesh Layers of smeared reinform Mesh type: Quadriaterals Image: Careform Element size 0.5000 [m] Layer Material of Image: Smooth element shapes Image: Smooth element shapes Image: Smooth element shapes Image: Smooth element shapes	forcement FE mesh A Mesh type: Quadrilaterals of reinf, layer Element size 0.0500 [m] IF Smooth element shapes Material of reinf, layer	^
Properties Material : Plane Stress Elastic Isc Thickness 0.2000 [m]	Properties Material : SBeta Material Thickness: 0.2000 [m]	
Quadriateral elements: CCIsoQuad Image: Competition of the second seco		

Figure 11 macro element definitions for steel plate and concrete

Interface elements

After defining different macro elements then user have to come back to the line command and define the interface elements as following:

Go to Menu line and then edit and choosing the specific line, then a dialog box pops up and at the edit contact choose interface in connection type.

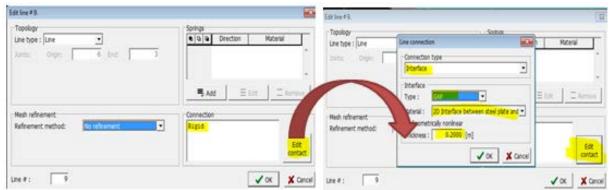
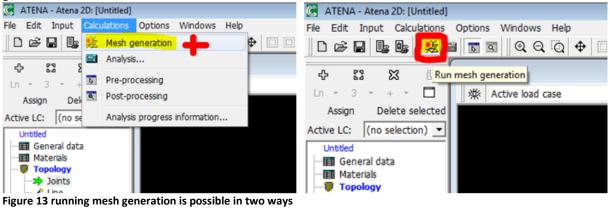



Figure 12 applying the interface element into the model, so between concrete beam and steel plate support.

Mesh generation

Based on the element size which s defined in the macro- elements, a finite element mesh is generated.

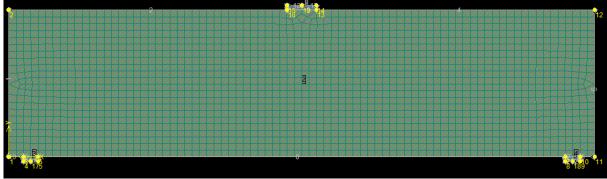


Figure 14 mesh is generated

Appling bar reinforcements

Adding required reinforcement bars according to the 2D model in Scia Engineer. Concrete cover is assumed 35 mm.

• In the "topology"→Bar reinforcement→Add button, in ATENA user can give the coordination of the reinforcements.

5 & & Y & d +	1000 C	pertes	Polyine of straight segmen Pont X [m] Y [m]	tsin • Center X [m] Y [m]	Radus Dr Rs [m] Dr.	. <u> </u>
and the second	Segment type:	egment	Pont	Center		
	Segment type:	egment	Pont	Center		
	100 S	egment	Pont	Center		
	production of	0.000				
	production of	0.000				
		- Gri	101	1 4 1 1 1 1	10.002	. Ejnet
						The second s
						田 Edit
						E garova
						Itens: 0
and the second se						
(a)(W) #	1					3 I I I I I I I I I I I I I I I I I I I
Add 🗮	12					
	New renforcer	vent bars-				
	Reinforcement	Normal	9			
	Topology Pro	operties				
connection .	Segment type	e .	Polyline of straight segm	entsan •		
			Point	Center	Radus	Dr Sad
ned] T	5eg.#	type	X [m] Add segment			Or. E prest
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.			Segment to	ore: Organ	2	= per
			Point			C per
			and the second sec	[m] ¥:	[m] 0000.0	Zems: 0
					9.00000 Tel	Zene o
				0.00000 (m) DY:	Negative	(*)
	1	2200 7		-	MA X End	+ 544 × 5
		Renforcement I	Reinforcement bar: Reinforcement bar: Reinforcement bar: Reinforcement bar: Reinforcement[hormal] Segment bpe: Segment bpe: Segment bpe: Segment bar: Segment bar	Add Elit Renforcement bar: S Renforcement bar: S New renforcement bar: S Segment bar: Toology (Properties) Segment bar: Power Segment bar: Segment bar	Renforcement bar: Second intervention inter	Badd Reinforcement bar : 3 Bill Reinforcement bar : 3 New weekforcement bar : 3 Main weekforcement bar : 3 New weekforcement bar : 3 Main weekforcement bar : 3 New weekforcement bar : 3 Noteboard : 9 Noteboard : 10 Noteb

Figure 15

- In the property tab, user can define the following:
 - > User can apply reinforcement bond model which is already defined in the "materials".
 - User can also adjust the number and diameter of the reinforcements
 - Geometrical nonlinearity
 - Disabling Slip at beginning or ending of reinforcement bars, this option depends on the location of the rebars, if rebars continue till the end of the beam then the slip at beginning and end should be disables. If the rebars are shorter than the total length of the beam then this option should not be checked.

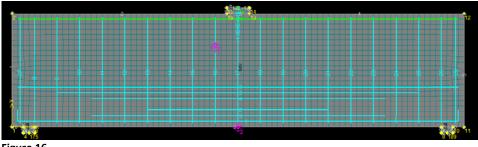


Figure 16

Support and actions

Load cases

All specimens are loaded at the top steel plate. The goal is to determine the maximum load-carrying capacity of the beam, which means to be able to trace the structural response also in the post-peak regime. The easiest method to accomplish this is by loading the beam by prescribed displacements at the top steel plate. Three load cases are defined: one containing the vertical supports, and second is with dead load and third is with the prescribed deformations at the top steel plate.

Load case 1: vertical and horizontal support

New load case
Load case LC name: boundary conditions
LC Code: Supports
LC coeff.: (constant) _ 1.0000 [-]
Dead load direction X : 0.0000 [m] Y : -1.0000 [m]
LC number : 1 → Add ¥ End

Figure 17

Load case 2: prescribed deformation at the top steel plate

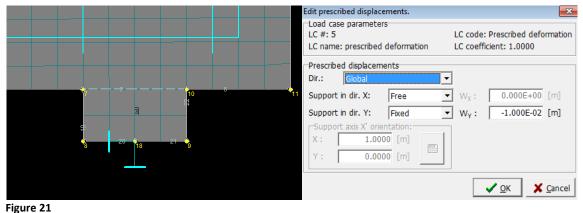
New load case
Load case LC name: dead load
LC Code: Body force
LC coeff.: (constant) I.0000 [-]
Dead load direction X : 0.0000 [m] Y : -1.0000 [m]
LC number : 2 ► Add ¥ End

Figure 18

Load case 3: prescribe deformation

New load case						
Load case LC name: prescribe deformation LC Code: Prescribed deformatio						
LC coeff.: (constant) IC constant) IC coeff.: [constant]						
Dead load direction X : 0.0000 [m] Y :	-1.0000 [m]					
LC number : 5	→ <u>A</u> dd ¥ <u>E</u> nd					

Figure 19


Method Displacement control

🔲 Load d	ases					Assign Delete selected
LC Numb		Code	Coefficient [-]		■ <u>A</u> dd	Active LC: LC 2
2	dead load	Body force	1.0000	*	🚍 <u>E</u> dit	800 kN standard beam method
> 5	prescribed deformation	Prescribed deformati	1.0000			General data
1	Boundary condition left support	Supports	1.0000		<u> </u>	Materials
					Items: 3	Topology Joints
				Ŧ	Set active	Macro-elements

Figure 20

After activation of the Boundary conditions (supports) from left top menu, pin joint is chosen to be placed under the center line of the steel plates to allow rotation of the specimens.

• Load case 1 support load case, so by choosing the joint in the middle bottom of the steel plate the degree of freedom at support can be defined.(first always activate the Load case)(if you select a joint and define the support condition one have to deselect it again to select another joint) by clocking the replace button one can define the support conditions for each joint.

- After activation of load case 5 which is prescribe deformation, the joint on the top above the steel plate should be chosen and the amount of the prescribed deformation should be edited. It can be approximated about the deformations based on deformations in 2D SCIA Engineering model or 1D model, or just assume a deformation let's say 10 mm.

Note: be sure to de-active any zoom tabs at the top of the main menu, to be able to apply Load cases to the joints.

- Load case 2 (dead load)
- Load case 3 prescribe deformation

CHECK data Step OK

This option does a data check. Errors and inconsistencies in data are reported in the list of the numerical window.

Analysis steps

The load history is generated by this process.

99	Load case list	Coefficient	Parameters	Save	Calculated		=
lumber		[-]	analysis	results	results		⊒ ⊿ <u>A</u> dd
<mark>≻ 1</mark>	1-2	1.0000	Standart Newton-	Yes	Not analyzed	^	<u></u> Insert
2	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
3	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		🚟 <u>E</u> dit
4	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		×
5	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
6	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		Items: 11
7	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
8	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
9	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
10	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed		
11	1,5	0.1000	Standart Newton-Ra	Yes	Not analyzed	1	

Figure 22

First load step includes, only load case 1 (dead load) and load case 2 (supports) which are there in full capacity which means coefficient 1 should be chosen. From step 2 the Loads include dead load and prescribe deformation, with a coefficient 0.1. This coefficient determines the speed of the growth of the applied forces and deformations to the full values.

Monitoring point

During non-linear analysis it is useful to monitor forces, displacements or stresses in the model. To be able to find the capacity and compare with the 2D model and 1D model analysis which is done by Scia engineer. The monitoring point should be chosen such that in the analysis step the following components can be directly or indirectly derived (IF NEEDED):

- maximum moment capacity and moment developments This component can be determined by knowing the reaction forces at the node in which prescribed deformation is defined (monitoring point 1)
- maximum crack width, and crack developments
 This component can be determined as the results "Run" procedure in Atena
- maximum deflection, and deflection developments
 This component can be determined by monitoring point 2, and 3, to monitor the deflections
 at these areas of the specimens.
- maximum Applicable load (Load capacity)
 This component can be determined by monitoring point 1.
- 5. maximum shear capacity and shear development This component can be found with a **monitoring point 4**, to monitor the reaction forces at supports.
- 6. Stress development in the one reinforcement this component can be found in the results

Monitoring point 1

Because of the use of displacement control, one is intended to find the maximum capacity of the considered specimen. To find out what is the maximum applicable load, in ATENA is important to know that the reaction force monitoring point should be defined. So the first Monitoring point is the point where the prescribed deformation is defined.

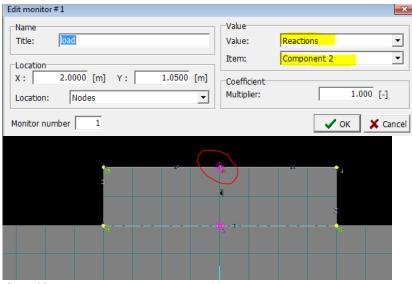
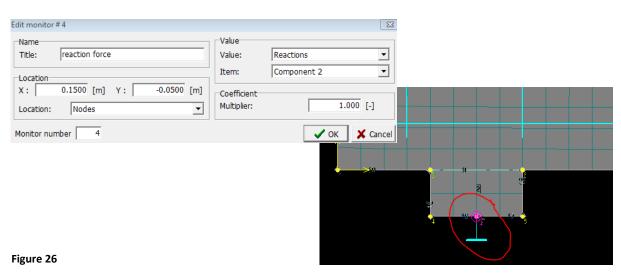


Figure 23

Monitoring point 2

The second monitoring point should be added at the bottom middle of the beam to monitor the displacements. The second component of nodal applied forces should be monitored at this point. It is not necessary to define a location exactly at the finite element node. The program automatically selects the closest FE node. In case monitoring at integration points is required, the closest finite element integration point is selected.

		۴ <mark>ب</mark>							
Edit monitor # 2	2								×
Name					Valu	e			
Title:	deflection				Valu	e:	Displacen	nents	-
Location					Item	1:	Compone	ent 2	-
X: 2	2.0000 [m]	Y:	0.00	000 [m]	Coef	fficient			
Location:	Nodes			•] Multi	iplier:		1.	.000 [-]
Monitor numb	er 2						[🗸 ок	X Cancel
Figure 24									


Monitoring point 3

With the third monitoring point, one may want to check the displacements under the steel plate, for extra check for prescribed displacements.

	en e	12	φ _β		**		
		(*		
			2;				
Edit monitor #	¢3						×
Name Title: Location	applied extern	nal forces			Value Value: Item:	 External_Forces	•
X : Location:	2.0000 [m] Nodes	Y:	1.0000	[m] •	Coefficie Multiplie		1.000 [-]
Monitor num	nber 3					🗸 ок	X Cancel
Figure 25							

Monitoring Point 4

To be able to determine the reaction forces at supports, one may define also a monitoring point for reactions at support areas.

Summary of monitoring points

These possible four monitoring points (as an example) will allow the user to monitor the load and displacement curve during the non-linear finite element analysis. It makes it possible to see the changes of action forces and displacement at each load step and at each iteration point. Eventually all 6 components which is mentioned earlier in this section can be fully determined and prepared for further research.

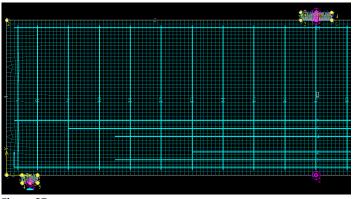
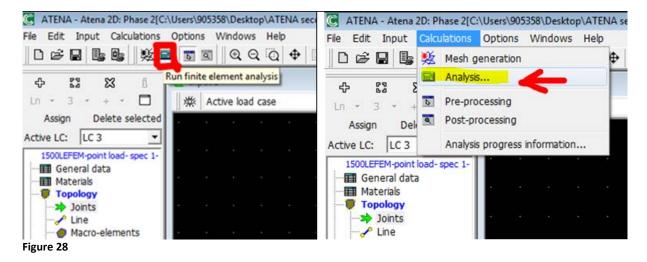



Figure 27

Starting analysis

After check data and analysis steps in the tree menu one can run the analysis. Running of the analysis can be done in two ways (figure 28).

By clicking on the analysis button the window "solution parameters" pops up. Here one can X and Y value to get load displacement diagram during the running of the analysis.

pecified a	analysis steps				Initial data for LD-diagram
5 9 9	* A	В	С		X: M1: load
Number	Analyze	Save results	State		
> 1	Yes 🔻	Yes 🔻	Not analyzed	^	Y: M2: deflection
2	Yes 🔻	Yes 🔻	Not analyzed		
3	Yes 🔻	Yes 🔻	Not analyzed	Ξ	
4	Yes 🔻	Yes 🔻	Not analyzed		
5	Yes 🔻	Yes 🔻	Not analyzed		
6	Yes 🔻	Yes 🔻	Not analyzed		
7	Yes 🔻	Yes 🔻	Not analyzed	-	Edit ATENA analysis input file
		1	1	<u>ا ا</u>	E EURATENA analysis input ne

Figure 29

After running of the analysis one can add cuts into the model with the help of run tree menu.

Figure 30

note: Figure below is an example for load deflection (LD) diagram as a result of ATENA Analysis.

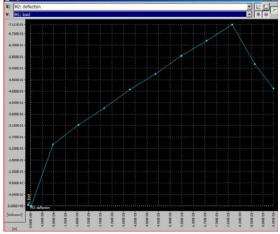


Figure 31

To be able to show the critical point like cracking point and failure load more exactly, refining the load steps in these areas of loading might be handy.

Annex 7

Files of ATENA Validation process can be found on the following address

www.babak-dadvar.com/thesis/babak.html

Otherwise contact

babak_dadvar@yahoo.com

Annex 8

Non-linear finite element analyses – Process

ATENA Results and recommendations

ATENA example files can be found in the following web address:

www.babak-dadvar.com/thesis/babak.html

Otherwise contact

Babak_dadvar@yahoo.com

First Phase –Slender Beam

- 1) Specimen 1-1-1
- 2) Specimen 1-1-2
- 3) Specimen 1-1-3
- 4) Specimen 1-1-4
- 5) Specimen 1-2-1
- 6) Specimen 1-2-2
- 7) Specimen 1-2-3
- 8) Specimen 1-2-4
- 9) Specimen 1-3-1
- 10) Specimen 1-3-2
- 11) Specimen 1-3-3
- 12) Specimen 1-3-4

- In this Annex, ULS, SLS behavior and crack width of the specimens is determined by using • nonlinear finite element program ATENA.
- In ULS or failure the following two aspects are shown •

- a) Maximum principle stresses in the rebars , to find out if yielding of the rebars occur or not.
- b) Minimum Principle strains in concrete, to find out whether the concrete crushes or not.

p: Step 21	-
rings Forces Mi	
s Bar reinf. Inter	aces
Vectors Ten	sors
Scalars	
reas	
naterial	
centar	-
Strain	•
	-
s)	-
1	

Based on the material properties of the concrete in SBETA material model compressive strain at compressive strength in the uniaxial compressive test is -1,906E-03. To be able to see the appropriate figure in ATENA strain values should be filtered by using a tool in the menu toolbar. (Figures below)

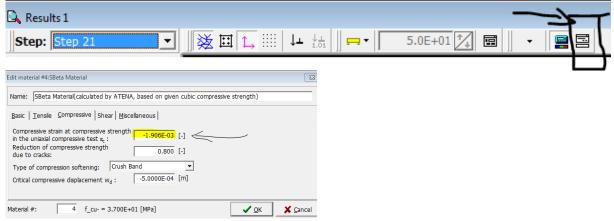


Figure 2

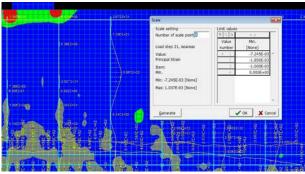
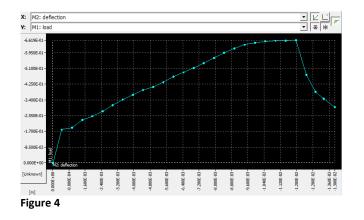
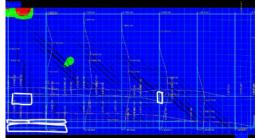



Figure 3

In SLS the following points are determines

- crack width based on theory
- Stresses in the rebars in the middle x=2 meter and also nearby middle where cracks is happening


Specimen 1-1-1(with 1d1d reinforcement configuration)

Results

Monitoring points after load step

[MN]	
	Step Value
13 -4.646E-01	- [m]
14 -4.877E-01	
15 -5.125E-01	14 -6.438E-03
16 -5.384E-01	15 -6.936E-03
17 -5.657E-01	16 -7.433E-03
18 -5.941E-01	17 -7.931E-03
19 -6.171E-01	18 -8.429E-03
20 -6.375E-01	19 -8.932E-03
21 -6.475E-01	20 -9.440E-03
22 -6.559E-01	21 -9.952E-03
<mark>23 -6.585E-01</mark>	22 -1.046E-02
<mark>24 -6.603E-01</mark>	23 -1.096E-02
<mark>25 -6.619E-01</mark>	24 -1.146E-02
26 -4.749E-01	25 -1.197E-02
27 -3.834E-01	26 -1.248E-02
28 -3.456E-01	27 -1.292E-02
29 -3.005E-01	28 -1.333E-02
	29 -1.388E-02

Looking at failure load step 25 (white pen is yielding points of the reinforcements).

Figure 5

- After load step 19 one can see from deflection loading graph that the yielding phase begins. Here there is ductile behavior of the beam before failure.
- .yielding begins in longitudinal reinforcements due to bending and then also shear. Bending is more governing. Failure of the concrete compression struts due to bending is the governing failure mode.
- Yielding of the bars due to bending and shear(mostly Bending)) as it can be observed from figures, Yielding of the rebars leads into the crushing of the compression struts leads to the failure

Scalars areacontour areas Basic material in nodes Principal Strain Max.

elements

Scalars areacontour areas Basic material in nodes

Cracks elements

<-2.446E-04; 1.712E-03>[None] Cracks

Opening: <4.215E-07;1.121E-04>[m] SsN_N-: <5.371E-02;2.665E+00>[MPa] SsN_T-: <-1.291E+00;1.292E+00>[MPa]

Principal Strain Max. <-1.083E-04;1.301E-03>[None]

Opening: <4.131E-08;1.376E-04>[m] SsN_N-: <0.000E+00;2.530E+00>[MPa] SsN_T-: <-7.183E-01;7.181E-01>[MPa]

looking at SLS

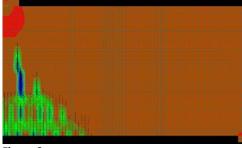
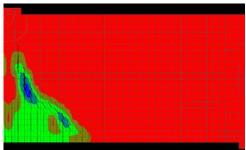
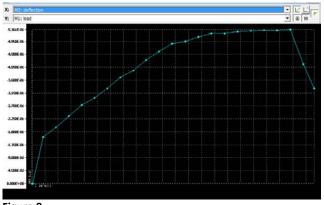


Figure 6



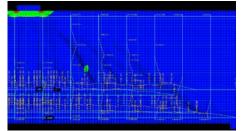

Figure 7

• Based on the theory, the maximum crack width can be approximated round 0,15 mm.

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
2m	top	-	-	-50	-54
<mark>2 m</mark>	Rebar 1	+127	231		
	Rebar2	+96	216		
	Rebar 3	+46	168		

	Rebar 4	+24	152		
Near by	Rebar 1	250	295	-	-
2m	Rebar 2	126	275		
	Rebar3	119	253		
	Rebar 4	142	209		

Specimen 1-1-2 1d2d


Figure 8

Results

Monitoring points after load step Monitoring p. specif.

Step Value	Step Value
[MN]	[m]
	[///]
1 0.000E+00	1 -2.670E-05
2 -1.624E-01	2 -4.216E-04
<mark>3 -1.953E-01</mark>	<mark>3 -9.186E-04</mark>
4 -2.349E-01	4 -1.411E-03
5 -2.735E-01	5 -1.903E-03
15 -5.233E-01	6 -2.398E-03
16 -5.236E-01	15 -6.878E-03
17 -5.294E-01	16 -7.385E-03
18 -5.322E-01	17 -7.888E-03
19 -5.341E-01	18 -8.392E-03
20 -5.340E-01	19 -8.896E-03
21 -5.361E-01	20 -9.399E-03
22 -4.157E-01	21 -9.902E-03
23 -3.313E-01	22 -1.040E-02

looking at Failure

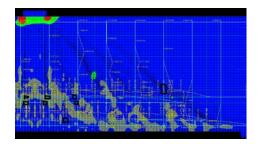


Figure9 load step 17 left and load step 21 right figure

- After load step 17 one can see from deflection loading graph that the yielding phase begins. Here there is ductile behavior of the beam before failure.
- Yielding of the reinforcement bars are starting from load step 17till load step 21.
- Yielding begins in longitudinal reinforcements due to bending and then also shear. Bending is more governing. Failure of the concrete compression struts due to bending is the governing failure mode.

looking at crack width

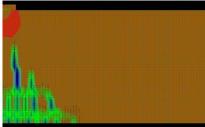


Figure 10

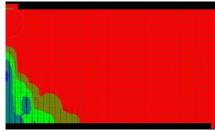


Figure 11

- Scalars

 areascontour areas

 Basic material

 in nodes

 Principal Strain

 Availage Strain

 Cracks

 elements

 copening:

 <0,772E-07;1.055E-04>[m]

 SaN_N:

 <7.6302-02;2.653E+00>[MPa]

 SaN_T:

 <-1.628E+00;1.629E+00>[MPa]
- Scalars areacontour areas Basic material in nodes Principal Strain Max. <<-1.137E-04;1.119E-03>[None] Cracls elements Opening: <3.251E-07;7.373E-05>[m] SSN_N: <2.630E-01;2.611E+00>[MPa] SSN_-<<-1.258E+00;1.258E+00>[MPa]
- Based on the theory, the maximum crack width can be approximated round 0,15 mm.

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
2m	top	-	-	-50	-54
2 m	Rebar 1	+121	231		
	Rebar2	+104	216		
	Rebar 3	+54	168		
	Rebar 4	+30	152		
Near by	Rebar 1	114	231	-	-
2m	Rebar 2	114	216		
	Rebar3	113	168		
	Rebar 4	141	152		

Specimen 1-1-3 (2d1d)

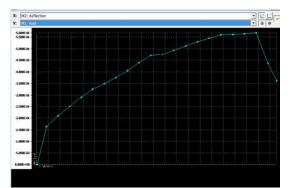


Figure 12

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
	·
1 0.000E+00	1 -2.665E-05
2 -1.630E-01	2 -4.207E-04
<mark>3 -2.099E-01</mark>	3 -9.230E-04
4 -2.505E-01	4 -1.420E-03
5 -2.907E-01	5 -1.915E-03
15 -5.296E-01	6 -2.411E-03
16 -5.457E-01	7 -2.908E-03
17 -5.606E-01	8 -3.404E-03
18 -5.614E-01	9 -3.899E-03
19 -5.647E-01	10 -4.395E-03
<mark>20 -5.684E-01</mark>	11 -4.891E-03
21 -4.371E-01	12 -5.391E-03
22 -3.607E-01	13 -5.888E-03
	14 -6.387E-03
	15 -6.891E-03
	16 -7.395E-03
	17 -7.896E-03
	18 -8.403E-03
	19 -8.909E-03
	20 -9.412E-03
	21 -9.919E-03
	22 -1.028E-02

looking at failure

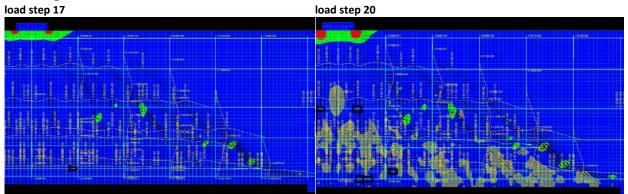


Figure 13 crushing begins locally at earlier step to the failure. (red places are crushing)

- After load step 17 one can see from deflection loading graph that the yielding phase begins. Here there is ductile behavior of the beam before failure.
- Yielding of the reinforcement bars are starting from load step 17till load step 20
- Yielding of the bars due to bending and shear(mostly Bending)) as it can be observed from figures, Yielding of the rebars leads into the crushing of the compression struts leads to the failure
- Yielding begins in longitudinal reinforcements due to bending. Failure of the concrete compression struts due to bending is the governing failure mode.

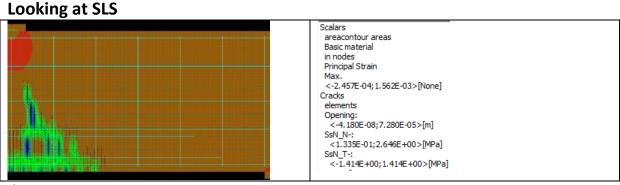


Figure 11

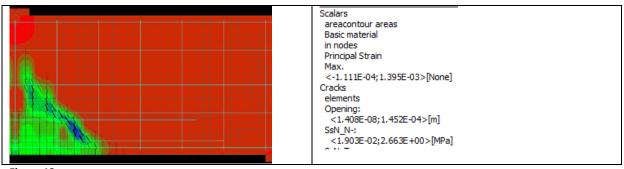


Figure 12

• Based on the theory, the maximum crack width can be approximated round 0,15 mm.

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATENA)	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)

2m	top	-	-	-52	-54
				-6	-
				-	-
2 m	Rebar 1	+107	225		
	Rebar2	+58	210		
	Rebar 3	+19	163		
	Rebar 4	+15	148		
	Rebar 5	-	84		
	Rebar 6	-	6		
Near by	Rebar 1	108	225	-	-
2m	Rebar 2	132	210		
	Rebar3	116	163		
	Rebar 4	120	148		
	Rebar 5	111	84		
	Rebar 6	-	6		

Specimen 1-1-4 reinforcement configuration 2d2d



Figure 13

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.663E-05
2 -1.630E-01	2 -4.207E-04
<mark>3 -2.099E-01</mark>	3 -9.193E-04
4 -2.478E-01	4 -1.413E-03
5 -2.816E-01	5 -1.904E-03
6 -3.230E-01	6 -2.396E-03
7 -3.549E-01	7 -2.889E-03
8 -3.859E-01	8 -3.384E-03
9 -4.089E-01	9 -3.881E-03
10 -4.445E-01	10 -4.375E-03
11 -4.750E-01	11 -4.871E-03
12 -4.779E-01	12 -5.372E-03
13 -5.023E-01	13 -5.868E-03
14 -5.226E-01	14 -6.368E-03
15 -5.427E-01	15 -6.872E-03
16 -5.513E-01	16 -7.384E-03
17 -5.537E-01	17 -7.894E-03
<mark>18 -5.631E-01</mark>	18 -8.398E-03

19 -5.643E-01	19 -8.904E-03
20 -5.656E-01	20 -9.407E-03
21 -4.404E-01	21 -9.855E-03
22 -3.586E-01	22 -1.009E-02
23 -3.632E-01	23 -1.048E-02

looking at failure

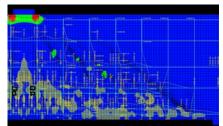


Figure 17

- Yielding of the bars at middle point
- crushing of the concrete at top which is indicated by red area.
- Yielding begins in longitudinal reinforcements due to bending . Failure of the concrete compression struts due to bending is the governing failure mode.

looking at SLS

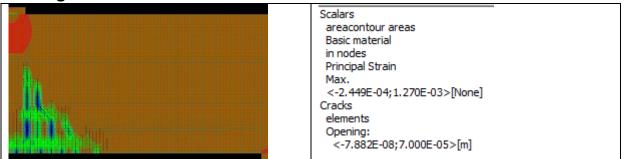


Figure 18

Figure 19

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATENA)	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)
2m	top	-	-	-52 -6 -	-54 - -

2 m	Rebar 1	+103	+225		
	Rebar2	+67	+210		
	Rebar 3	+19	+163		
	Rebar 4	+14	+148		
	Rebar 5	-	+84		
	Rebar 6	-	+6		
Near by	Rebar 1	+111	+225	-	-
2m	Rebar 2	+130	+210		
	Rebar3	+120	+163		
	Rebar 4	+110	+148		
	Rebar 5	+97	+84		
	Rebar 6	-	+6		

Specimen 1-2-1(400 kN Applied SLS load model)

(with 1d1d reinforcement configuration) Reinforcement configuration

- Sbeta Material model
- Longitudinal and vertical reinforcements according to the optimized configurations in 1D Scia model(based on 2D Scia model)

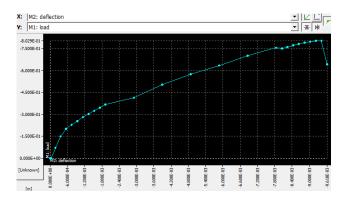


Figure 20

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
17 -7.553E-01	17 -7.847E-03
18 -7.497E-01	18 -8.049E-03
19 -7.605E-01	19 -8.240E-03
20 -7.725E-01	20 -8.437E-03
21 -7.822E-01	21 -8.635E-03
22 -7.905E-01	22 -8.832E-03
<mark>23 -7.972E-01</mark>	23 -9.028E-03
<mark>24 -8.022E-01</mark>	24 -9.225E-03
25 -8.029E-01	25 -9.420E-03
26 -6.433E-01	26 -9.618E-03

- After load step 22 one can see from deflection loading graph that the yielding phase begins. Here there is Ductile behavior of the beam before failure.
- Yielding of the reinforcement bars are starting from load step 22(900Kn) till load step 25(940kN). The failure load is at load step 22, so 900 kN.
- Yielding of the bars due to shear as it can be observed from figures on the next page, Failure of the concrete compressive zone(crushing of the compression struts) due to shear is the governing failure mode.

Development of Yielding and crushing of the beam

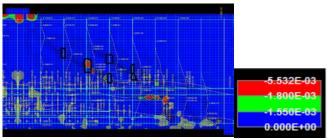
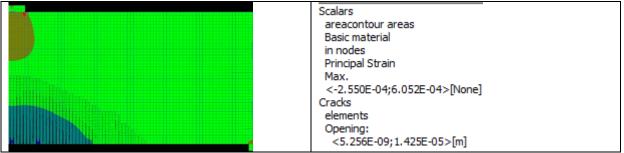


Figure 21


SLS 400 kN

Results Monitoring points after load step Step Value Value Step [MN] [m] 1 0.000E+00 1 -2.619E-05 2 -1.684E-01 2 -4.177E-04 3 -2.649E-01 3 -8.983E-04 4 -3.182E-01 4 -1.391E-03 5 -3.534E-01 5 -1.885E-03 6 -2.375E-03 6 -4.045E-01 7 -4.019E-01 7 -2.476E-03 8 -2.575E-03 8 -4.072E-01 9 -4.133E-01 9 -2.673E-03 10 -4.208E-01 10 -2.772E-03

Table 10

Crack Evolution

load step 4(318 kN)

	Scalars areacontour areas Basic material in nodes Principal Strain Max. <-2.679E-04; 1.332E-03>[None] Cracks elements Opening: <1.389E-09; 5.866E-05>[m]
--	--

Figure 23

load step 6(353 kN)

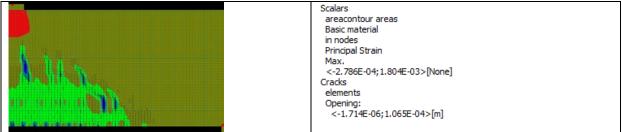


Figure 24

Loa dstep 10 (400 kN) (mesh 25mm)

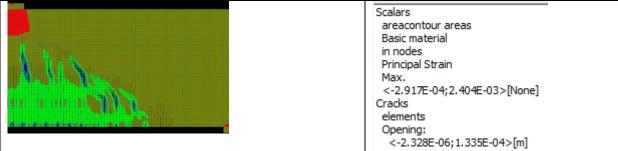


Figure 25

Mesh 50 mm

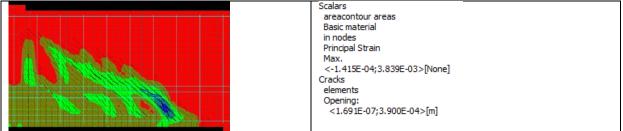


Figure26

Crack width

The important point about calculation of cracks in the graphical way in ATENA is that small cracks mostly results in a larger cracks. ATENA can only give the crack opening in each mesh element, so it is upon the user to somehow integrate small cracks and approximate the actual crack width. For more accuracy and also to be able to approximate the actual crack width at SLS, ATENA analysis is also have done with mesh size of 50 mm, because with bigger mesh size the program results in smaller amount of cracks and it is easier to approximate and integrate the nearby cracks.(according to chapter 8.4.2)

Crack width can be calculated by summation of the adjacent cracks in the mesh elements which is minimum 0,8 mm. Crack width criterion is defined the maximum acceptable crack width as 0,3 mm, so this reinforcement configuration is not satisfied in the SLS(serviceability limit state).

There is also another way of crack calculation in ATENA which is explained in chapter 10.5.2 of thesis. This method is used for deep beam specimens. This method is general method which is for all sort of specimens and situations. The graphical method which is explained before is also accurate for simple cases which are discussed in this thesis.

Deformation and crack width

	ATENA [mm]	Scia [mm]
Deflection of the beam at load	2,4	-1,2
400 kN SLS		
Crack width	0,8	Smaller than 0,3
T-11- 44		

Table 11

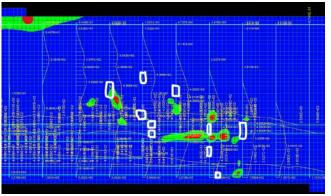
At 400 kN SLS situation

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATENA)	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)
2m	top	-	-	-100	-95
2 m	Rebar 1	+200	282		
	Rebar2	+184	263		
	Rebar 3	+163	242		
	Rebar 4	+126	199		
	Rebar 5	+128	178		
	Rebar 6	+77	157		
Near by	Rebar 1	+200	282	-	-
2m	Rebar 2	+184	263		
	Rebar3	+171	242		
	Rebar 4	+145	199		
	Rebar 5	+138	178		
	Rebar 6	+160	157		

Table 12

			-	-	1	
100			2			L.
					1	1
		F	1			3
		2			1	
					Ż	1
		1	Y		17	1
			-		10	
	R		H			
1		_				
-						8
Contraction of the local division of the loc						12

Figure 27


Left figure in figure 27 is at middle of the beam x=2m and the right figure is near by the middle of the beam where cracks occurring at load step 400 kN

• One can see that Tensile Stresses in the rebars at the middle of the beam x=2 m have between 50 N/mm^2 and 150 N/mm^2 difference in ATENA and Scia Engineer. The reason is due to the fact that ATENA considers cracked concrete so the stresses in the rebars are

dependent to the place of cracks. At places where large cracks occur tensile stresses in the rebars are higher than other places.

- ATENA gives in general lower tensile stresses in the rebars than Scia Engineering
- Crack pattern begins in the middle height of the cross section and bottom, because of the lack of reinforcement in the middle height of the cross section.
- Crack pattern develops in the inclined way to the supports and at places which are drop in reinforcement area. They are mostly due to the Shear cracks and not Bending.
- Deflection in ATENA at load 400 kN is twice as big as in Scia Engineering.

Specimen 1-2-1 (Concrete fc_u 44,7 steel 435)

Figure 28

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.453E-05
2 -7.576E-02	2 -1.775E-04
3 -1.601E-01	3 -3.558E-04
4 -2.118E-01	4 -5.485E-04
5 -2.454E-01	5 -7.449E-04
6 -2.682E-01	6 -9.429E-04
7 -3.006E-01	7 -1.138E-03
8 -3.204E-01	8 -1.335E-03
9 -3.434E-01	9 -1.531E-03
10 -3.665E-01	10 -1.726E-03
11 -3.877E-01	11 -1.921E-03
12 -4.404E-01	12 -2.911E-03
13 -5.289E-01	13 -3.896E-03
14 -5.940E-01	14 -4.886E-03
15 -6.668E-01	15 -5.873E-03
16 -7.235E-01	16 -6.863E-03
17 -7.759E-01	17 -7.854E-03
18 -7.820E-01	18 -8.053E-03
19 -7.878E-01	19 -8.253E-03

20 -7.961E-01	20 -8.452E-03
21 -8.047E-01	21 -8.651E-03
22 -8.097E-01	22 -8.851E-03
23 -8.150E-01	23 -9.051E-03
24 -8.201E-01	24 -9.252E-03
25 -8.265E-01	25 -9.451E-03
26 -8.184E-01	26 -9.656E-03
27 -8.256E-01	27 -9.855E-03
28 -8.314E-01	28 -1.005E-02
29 -8.314E-01	29 -1.026E-02
30 -6.491E-01	30 -1.042E-02
31 -5.334E-01	31 -1.039E-02

Concrete 44,8 fcm N/mm2+STEEL 550 N/mm2

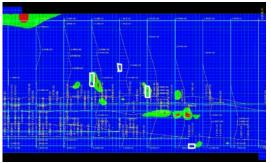


Figure 29

Results

Monitoring points after load step

	Step Value
Step Value	[m]
[MN]	·
	1 -2.453E-05
1 0.000E+00	2 -1.775E-04
2 -7.576E-02	3 -3.558E-04
3 -1.601E-01	4 -5.485E-04
4 -2.118E-01	5 -7.449E-04
5 -2.454E-01	6 -9.429E-04
6 -2.682E-01	7 -1.138E-03
7 -3.006E-01	8 -1.335E-03
8 -3.204E-01	9 -1.531E-03
9 -3.434E-01	10 -1.726E-03
10 -3.665E-01	11 -1.921E-03
11 -3.877E-01	12 -2.911E-03
12 -4.404E-01	13 -3.896E-03
13 -5.264E-01	14 -4.885E-03
14 -5.976E-01	15 -5.871E-03
15 -6.741E-01	16 -6.865E-03
16 -7.143E-01	17 -7.851E-03
17 -7.896E-01	18 -8.050E-03
18 -7.965E-01	19 -8.248E-03

19 -8.090E-01	20 -8.446E-03
20 -8.201E-01	21 -8.646E-03
21 -8.267E-01	22 -8.845E-03
22 -8.333E-01	23 -9.044E-03
23 -8.412E-01	24 -9.242E-03
24 -8.488E-01	25 -9.440E-03
25 -8.585E-01	26 -9.637E-03
26 -8.685E-01	27 -9.835E-03
<mark>27 -8.734E-01</mark>	28 -1.003E-02
28 -8.783E-01	29 -1.015E-02
29 -6.648E-01	30 -1.033E-02
30 -6.987E-01	

Specimen 1-2-3

Reinforcement configuration

- Sbeta Material model
- 25 mm •
- Longitudinal 2Dand vertical reinforcements 1D

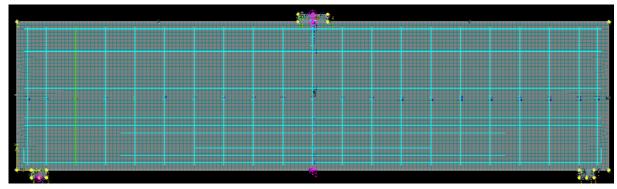


Figure 30

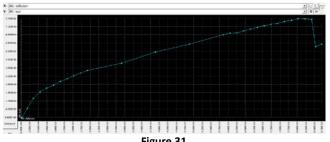
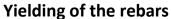



Figure 31

<u>Results</u>	
Monitoring points after	load step

Step Value	Step Value	
[MN]	[m]	
1 0.000E+00	1 -2.616E-05	
2 -7.165E-02	2 -1.807E-04	
3 -1.495E-01	3 -3.598E-04	
4 -2.002E-01	4 -5.516E-04	

5 -2.310E-01	5 -7.449E-04
6 -2.526E-01	6 -9.426E-04
7 -2.832E-01	7 -1.137E-03
8 -3.045E-01	8 -1.333E-03
9 -3.272E-01	9 -1.529E-03
10 -3.480E-01	10 -1.724E-03
11 -3.685E-01	11 -1.919E-03
12 -4.255E-01	12 -2.907E-03
13 -5.132E-01	13 -3.889E-03
14 -5.758E-01	14 -4.876E-03
15 -6.495E-01	15 -5.859E-03
16 -6.622E-01	16 -6.056E-03
17 -6.642E-01	17 -6.256E-03
18 -6.801E-01	18 -6.453E-03
19 -6.943E-01	19 -6.649E-03
20 -7.091E-01	20 -6.845E-03
21 -7.197E-01	21 -7.042E-03
22 -7.318E-01	22 -7.239E-03
23 -7.395E-01	23 -7.438E-03
24 -7.534E-01	24 -7.634E-03
25 -7.632E-01	25 -7.832E-03
<mark>26 -7.759E-01</mark>	26 -8.028E-03
<mark>27 -7.741E-01</mark>	27 -8.226E-03
28 -7.710E-01	28 -8.420E-03
29 -5.564E-01	29 -8.526E-03
30 -5.757E-01	30 -8.708E-03

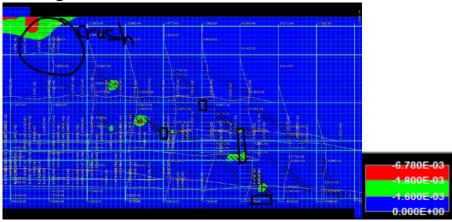
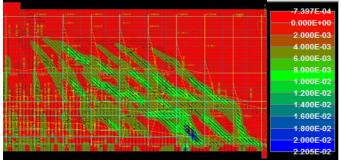



Figure 32

- The only different between this configuration and the previous one is that here the skin reinforcements are also in the cross section.
- Yielding of the rebars are mostly happening in the shear reinforcements, because here there is the same amount of shear reinforcement as previous configuration.
- As it is shown in the figure above, the black circle area is indication of the cracking of the concrete due to crushing.
- Failure of the concrete compression struts due to the shear is the governing failure mode.

Looking at 400 kN applied load

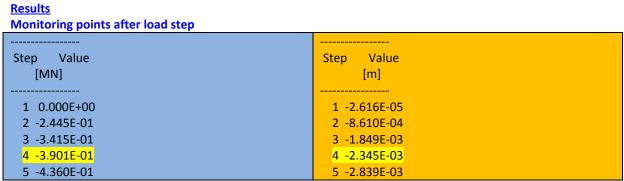


Table 16

Crack Evolution

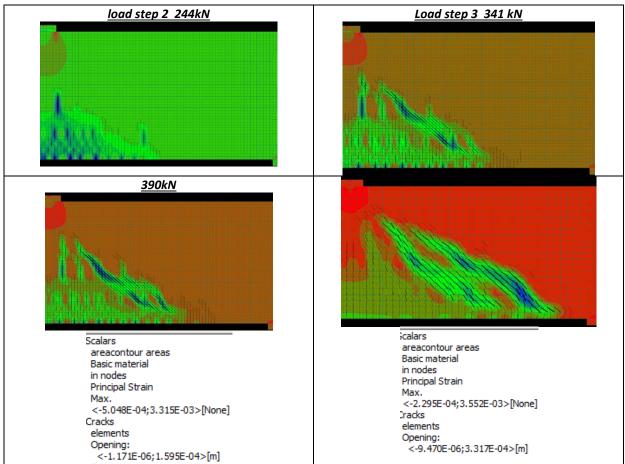


Figure 34

Crack width

As it is already explained in the previous reinforcement configuration, here Crack width as a result of summation of the near by cracks is minimum 0,6 mm. This crack width is not acceptable according to eurocode crack width criterium wich is defined as 0,3 mm. Here the crack width is smaller than the 1d1d(previous case) because here there are skin reinfrocment available which have positief influence on the controling of the crack width in SLS.

	ATENA	<u>Scia</u>
Deflection of the beam at load	<u>2,4</u>	<u>1.2</u>
<u>400 kN SLS</u>		

Table 17

• <u>rebar 1 is always the out side bar, if it is at the bottom means that rebar 1 is near by the bottom</u> <u>edge if it is at top means rebar 1 is the nearest rebar to the top edge</u>

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATEN	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)
		A)			
2m	Rebar 1	-	-	-110	-96
	Rebar 2			-12	-32,8
2 m	Rebar1	+182	+280		
	Rebar 2	+174	+260		
	Rebar3	+144	+239		
	Rebar 4	+125	+197		
	Rebar 5	+111	+176		
	Rebar 6	+45	+155		
	Rebar 7	+11	+72		
Near by 2 m	Rebar1	+192	+280		
	Rebar 2	+167	+260		
	Rebar3	+175	+239		
	Rebar 4	+150	+197		
	Rebar 5	+127	+176		
	Rebar 6	+175	+155		
	Rebar 7	+126	+72		

At 400 kN SLS situation

- Crack pattern begins from middle of the beam bottom and in the middle height of the cross section, they are all acceptable crack widths. Cracks develop in the inclined way to the supports, they are mostly due to the shear cracks.
- deflection in ATENA is twice as big as in the Scia Engineering at the load 400 kN SLS.
- ATENA in general gives lower tensile stresses in the rebars.
- Tensile stresses in the rebars in ATENA is dependent on the occurring of the cracks.

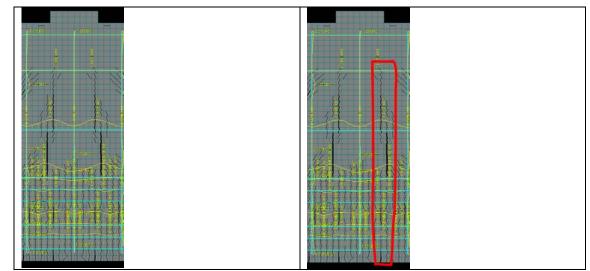
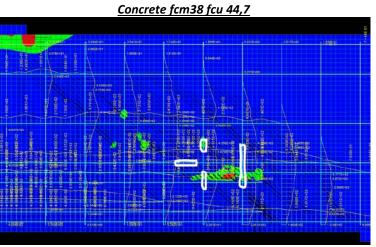
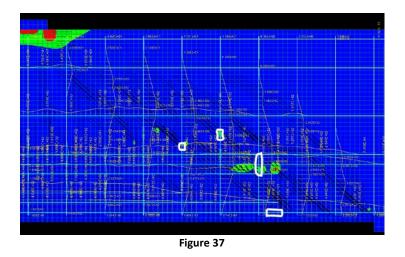


Figure 35




Figure 36

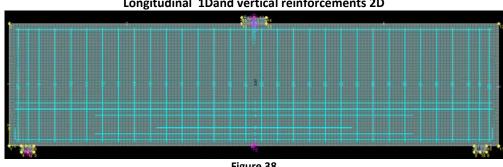
<u>Results</u>	
Monitoring points after load step	

Monitoring points after road step				
Step Value	Step Value			
[MN]	[m]			
1 0.000E+00	1 -2.451E-05			
2 -7.580E-02	2 -1.774E-04			
4 -2.193E-01	4 -5.436E-04			
5 -2.508E-01	5 -7.408E-04			
6 -2.807E-01	6 -9.368E-04			
7 -3.102E-01	7 -1.132E-03			
8 -3.307E-01	8 -1.328E-03			
9 -3.522E-01	9 -1.524E-03			
10 -3.746E-01	10 -1.719E-03			
11 -3.976E-01	11 -1.915E-03			
12 -4.604E-01	12 -2.900E-03			
13 -5.483E-01	13 -3.883E-03			
14 -6.217E-01	14 -4.869E-03			
15 -6.729E-01	15 -5.862E-03			
16 -6.875E-01	16 -6.059E-03			

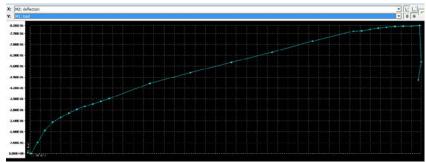
17 -7.000E-01	17 -6.256E-03
18 -7.110E-01	18 -6.455E-03
19 -7.257E-01	19 -6.652E-03
20 -7.398E-01	20 -6.849E-03
21 -7.537E-01	21 -7.046E-03
22 -7.638E-01	22 -7.244E-03
23 -7.736E-01	23 -7.443E-03
24 -7.835E-01	24 -7.641E-03
25 -7.906E-01	25 -7.839E-03
26 -8.011E-01	26 -8.038E-03
27 -8.112E-01	27 -8.236E-03
28 -8.222E-01	28 -8.434E-03
29 -8.312E-01	29 -8.633E-03
30 -8.369E-01	30 -8.832E-03
31 -8.427E-01	31 -9.032E-03
32 -8.478E-01	32 -9.233E-03
33 -8.615E-01	33 -9.734E-03
34 -5.952E-01	34 -1.012E-02
35 -6.903E-01	35 -1.059E-02

Concrete fcm38 fcu 44,7 steel 550N-mm2

Results Monitoring points after load step


Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.451E-05
2 -7.580E-02	2 -1.774E-04
3 -1.602E-01	3 -3.557E-04
4 -2.141E-01	4 -5.486E-04
5 -2.451E-01	5 -7.434E-04
6 -2.777E-01	6 -9.393E-04
7 -3.072E-01	7 -1.134E-03

8 -3.287E-01	8 -1.331E-03
9 -3.527E-01	9 -1.527E-03
10 -3.720E-01	10 -1.724E-03
11 -3.944E-01	11 -1.920E-03
12 -4.466E-01	12 -2.910E-03
13 -5.313E-01	13 -3.897E-03
14 -6.110E-01	14 -4.884E-03
15 -6.877E-01	15 -5.872E-03
16 -6.948E-01	16 -6.071E-03
17 -7.045E-01	17 -6.269E-03
18 -7.174E-01	18 -6.467E-03
19 -7.243E-01	19 -6.666E-03
20 -7.360E-01	20 -6.864E-03
21 -7.510E-01	21 -7.061E-03
22 -7.630E-01	22 -7.259E-03
23 -7.777E-01	23 -7.456E-03
24 -7.925E-01	24 -7.653E-03
25 -8.055E-01	25 -7.851E-03
26 -8.163E-01	26 -8.049E-03
27 -8.266E-01	27 -8.247E-03
28 -8.414E-01	28 -8.444E-03
29 -8.544E-01	29 -8.642E-03
30 -8.648E-01	30 -8.840E-03
31 -8.747E-01	31 -9.038E-03
32 -8.834E-01	32 -9.236E-03
33 -9.065E-01	33 -9.724E-03
34 -7.002E-01	34 -1.022E-02
35 -5.449E-01	35 -1.043E-02


Reinforcement configuration

- Sbeta Material model •
- 25 mm •

Figure	39

<u>Results</u>

Monitoring	points after	load step

Step Value	Step Value
[MN]	[m]
	·
	11 -1.921E-03
11 -3.525E-01	12 -2.903E-03
12 -4.504E-01	13 -3.891E-03
13 -5.184E-01	14 -4.879E-03
14 -5.849E-01	15 -5.867E-03
15 -6.492E-01	16 -6.851E-03
16 -7.220E-01	17 -7.841E-03
17 -7.841E-01	18 -8.041E-03
18 -7.873E-01	19 -8.240E-03
19 -7.970E-01	20 -8.440E-03
20 -8.042E-01	21 -8.640E-03
21 -8.097E-01	22 -8.840E-03
<mark>22 -8.148E-01</mark>	23 -9.042E-03
<mark>23 -8.168E-01</mark>	24 -9.243E-03
<mark>24 -8.176E-01</mark>	25 -9.440E-03
25 -8.206E-01	26 -9.479E-03
26 -5.877E-01	27 -9.415E-03
27 -4.710E-01	

- the only difference between this configuration and the first configuration in the beginning of this chapter is the here the distance between shear reinforcements are 130 mm in place of 200 mm in the first reinforcement configuration.
- Yielding of the bars begins at load step 18 which is only due to bending .more loading process leads to shear reinforcements also to yield in higher loads at load step 26 which definite failure happens, one can see that extensive yielding of the reinforcement bars bending and shear, also crushing of the compression strut, leads to the failure of the beam.
- It is important to mention that shear yielding is happening in the later phases of yielding. Because of extra shear reinforcements, consequently extra shear capacity of the beam.
- Failure of the compression struts due to the bending is the governing failure mode

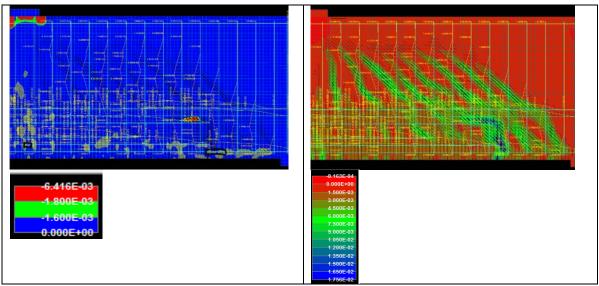
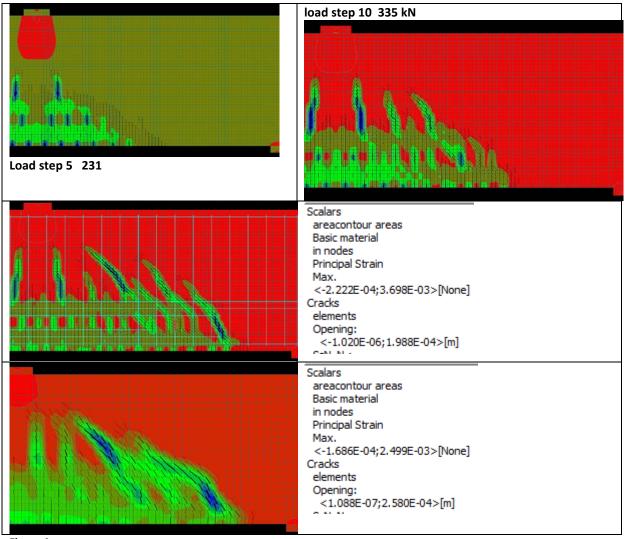


Figure 40


looking at 400 kN SLS

Resu	ts

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.624E-05
2 -7.150E-02	2 -1.810E-04
3 -1.492E-01	3 -3.602E-04
4 -2.019E-01	4 -5.489E-04
5 -2.316E-01	5 -7.425E-04
6 -2.602E-01	6 -9.364E-04
7 -2.827E-01	7 -1.131E-03
8 -3.029E-01	8 -1.326E-03
9 -3.183E-01	9 -1.523E-03
10 -3.354E-01	10 -1.719E-03
11 -3.525E-01	11 -1.921E-03
12 -3.682E-01	12 -2.118E-03
13 -3.752E-01	13 -2.317E-03
<mark>14 -3.941E-01</mark>	14 -2.514E-03
15 -4.130E-01	15 -2.710E-03
16 -4.317E-01	16 -2.906E-03

Crack evolution

Figure 4

Crack width

Crack width is the summation of cracks near each other which is here approximatly 0,5 mm.

	ATENA	Scia
Deflection of the bam at load 400	2,5	1,2
kN SLS		
Crack width	0,5	Smaller than 0,3

Table 23

At 400 kN SLS situation

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
2m	top	-	-	-97	-94
<mark>2 m</mark>	bottom	+215	282	-	-
		196	263		

	189	242	
	157	199	
	133	178	
	94	157	
Near by	217	282	
2m	196	263	
	163	242	
	134	199	
	146	178	
	174	157	

- In general ATENA gives lower ensile stresses on the rebars
- Because of the lack of reinforcements in the middle height of cross section of the beam at middle of the beam, cracking begins at this point and obviously at bottom. At load stp 400 kN crack pattern is developed till the inclined crack. all crack widths are 0,1 mm which is far from the criterion of crack width which is 0,3 mm.
- Deflection in ATENA is twice as big as in Scia Engineering.

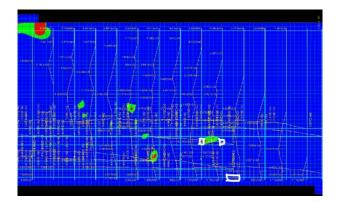

concrete- fcm 38 steel 435

Figure 42

 Step Value [MN]	 Step Value [m]
11 -3.869E-01	11 -1.906E-03
12 -4.488E-01	12 -2.897E-03
13 -5.363E-01	13 -3.881E-03
14 -6.199E-01	14 -4.865E-03
15 -6.697E-01	15 -5.858E-03
16 -7.415E-01	16 -6.845E-03
17 -7.993E-01	17 -7.837E-03
18 -8.063E-01	18 -8.037E-03
19 -8.132E-01	19 -8.237E-03
20 -8.212E-01	20 -8.438E-03
21 -8.278E-01	21 -8.640E-03
22 -8.339E-01	22 -8.843E-03
23 -8.398E-01	23 -9.046E-03
24 -8.458E-01	24 -9.250E-03
25 -8.511E-01	25 -9.453E-03
26 -8.457E-01	26 -9.657E-03
27 -8.442E-01	27 -9.862E-03
28 -8.518E-01	28 -1.006E-02
29 -8.491E-01	29 -1.027E-02

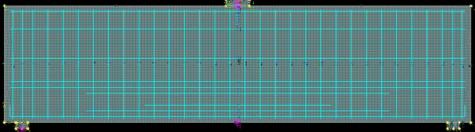
<mark>30 -8.503E-01</mark>	30 -1.047E-02
31 -8.507E-01	31 -1.067E-02
32 -8.080E-01	32 -1.086E-02

Concrete fcm38 and steel 550

Figure 43

<u>Results</u>

Monitoring points after load step


Step Value	Step Value
[MN]	[m]
	10 -1.708E-03
10 -3.656E-01	11 -1.906E-03
11 -3.869E-01 12 -4.488E-01	12 -2.897E-03 13 -3.881E-03
13 -5.363E-01	14 -4.865E-03
14 -6.199E-01	15 -5.858E-03
15 -6.698E-01	16 -6.843E-03
16 -7.492E-01	17 -7.831E-03
17 -8.105E-01	18 -8.029E-03
18 -8.210E-01	19 -8.227E-03
19 -8.341E-01	20 -8.424E-03
20 -8.477E-01	21 -8.621E-03
21 -8.598E-01	22 -8.819E-03
22 -8.711E-01	23 -9.019E-03
23 -8.785E-01	24 -9.219E-03
24 -8.874E-01	25 -9.419E-03
25 -8.932E-01	26 -9.618E-03
26 -8.990E-01	27 -9.816E-03
27 -9.073E-01	28 -1.001E-02
28 -9.164E-01	29 -1.021E-02
29 -9.214E-01	30 -1.041E-02
30 -9.271E-01	31 -1.061E-02
31 -9.259E-01	32 -1.067E-02
32 -6.327E-01	

Reinforcement configuration

- Sbeta Material model
- 25 mm

Longitudinal and vertical based on 2D Scia 2d2d

Looking at failure load and crack development

Figure 44

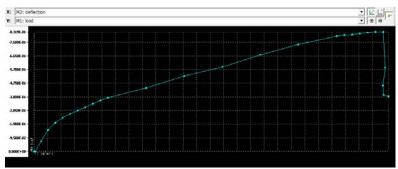


Figure 45

Results

Monitoring points after load step

01	
Step Value	
[MN]	
1 0.000E+00	
2 -7.173E-02	
3 -1.497E-01	
4 -2.024E-01	
5 -2.352E-01	
6 -2.606E-01	
7 -2.854E-01	
8 -3.091E-01	
9 -3.325E-01	
10 -3.553E-01	
11 -3.739E-01	
12 -4.427E-01	
13 -5.259E-01	
14 -5.898E-01	
15 -6.734E-01	
16 -7.453E-01	
17 -8.037E-01	

18 -8.108E-01	
19 -8.142E-01	
20 -8.222E-01	
21 <mark>-8.281E-01</mark>	
<mark>22 -8.318E-01</mark>	
23 -8.319E-01	
24 -5.835E-01	
25 -4.604E-01	
26 -3.937E-01	
27 -3.846E-01	

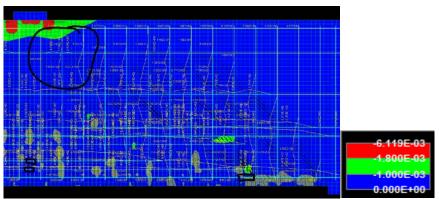


Figure 46

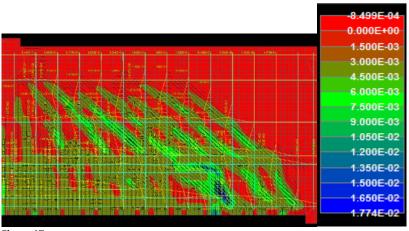


Figure47

- One can recognize the yielding part of the load-deformation diagram, which indicates that at load step 20 the failure is beginning by yielding of the rebars and at load step 23 definite failure happens.
- One can see from diagrams above that only yielding is happening in the bending rebars near by the support, and crushing of the concrete compressive struts is also happening. Crushing of compression zone in the specimen due to bending is the failure mode.
- ductile behavior of the bam at the failure mode.

Looking at 400 kN

<u>Results</u>	
Monitoring points after load step	

Step Value	Step Value		
[MN]	[m]		
1 0.000E+00	1 -2.613E-05		
2 -2.436E-01	2 -8.567E-04		
3 -3.481E-01	3 -1.841E-03		
4 -3.648E-01	4 -2.040E-03		
5 -3.832E-01	5 -2.238E-03		
<mark>6 -4.017E-01</mark>	<mark>6 -2.435E-03</mark>		
7 -4.202E-01	7 -2.632E-03		
8 -4.343E-01	8 -2.830E-03		

Table 28

Crack Evolution

Figure 49

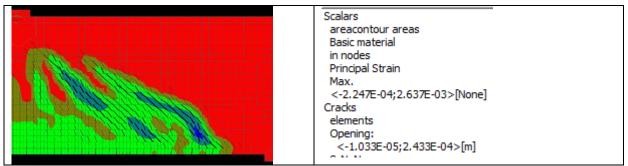


Figure 50

Crack width

As it is observed from the ATENA analysis for mesh 25mm and 50 mm, one can estimate that critical crack width is reaching 0,4mm.

Explanation for smaller crack width in comparison with the previous configuration(1d2d) is that here there are skin reinforcements available which have positive influence on the cracking behavior in SLS. This can be easily concluded by looking at the tensile stresses of the rebars which in the 2d2d case are smaller than in the 1d2d case.

	Atena	Scia	
deflection	2,4	1,2	
Table 29		·	

At 400 kN SLS situation

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATENA)	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)
2m	top	-	-	-110	-96,1
				-12	-32,8
2 m	bottom	+184	280	-	-
		175	260		
		186	239		
		158	197		
		115	176		
		47	155		
		12	72		
Near by 2		185	280		
m		174	260		
		182	239		
		158	197		
		131	176		
		174	155		
		135	72		

- In general tensile stresses are lower than tensile stresses in Scia Engineer.
- Cracks beginning at the bottom of the beam element .
- Most of the cracks are vertical cracks , so Bending cracks rather than shear cracks.
- crack width is 0,14 mm which is far acceptable in comparison with the crack width criterion which is 0,3 mm.
- deflection in ATENA is twice as big as in Scia in SLS .

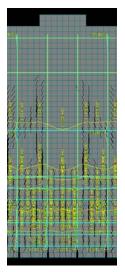


Figure 51

Concrete fcm38 fcu 44,7 steel 435

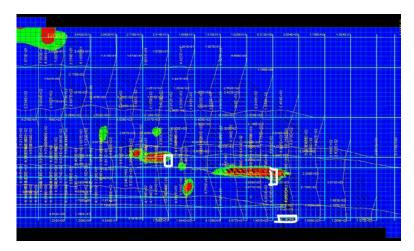


Figure 52

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
24 -8.463E-01	20 -8.429E-03
25 -8.540E-01	21 -8.628E-03
26 -8.561E-01	22 -8.827E-03
27 -8.623E-01	23 -9.027E-03
28 -8.674E-01	24 -9.228E-03
<mark>29 -8.665E-01</mark>	25 -9.429E-03
<mark>30 -8.660E-01</mark>	26 -9.632E-03
31 -8.621E-01	27 -9.833E-03
32 -5.980E-01	28 -1.003E-02
	29 -1.023E-02
	30 -1.043E-02
	31 -1.063E-02
	32 -1.071E-02

FCM 38 fcu 44,8 steel 550

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.448E-05
2 -7.588E-02	2 -1.775E-04
3 -1.603E-01	3 -3.558E-04
4 -2.192E-01	4 -5.437E-04
5 -2.525E-01	5 -7.364E-04
6 -2.742E-01	6 -9.312E-04
7 -2.957E-01	7 -1.126E-03
8 -3.239E-01	8 -1.319E-03
9 -3.480E-01	9 -1.513E-03
10 -3.677E-01	10 -1.709E-03
11 -3.867E-01	11 -1.908E-03
12 -4.680E-01	12 -2.893E-03
13 -5.423E-01	13 -3.880E-03
14 -6.208E-01	14 -4.866E-03
15 -6.967E-01	15 -5.851E-03
16 -7.518E-01	16 -6.842E-03
17 -8.100E-01	17 -7.832E-03
18 -8.159E-01	18 -8.031E-03
19 -8.275E-01	19 -8.229E-03
20 -8.370E-01	20 -8.427E-03
21 -8.450E-01	21 -8.627E-03
22 -8.519E-01	22 -8.827E-03
23 -8.574E-01	23 -9.028E-03
24 -8.586E-01	24 -9.231E-03
25 -8.624E-01	25 -9.433E-03
26 -8.694E-01	26 -9.633E-03
27 -8.759E-01	27 -9.834E-03
28 -8.766E-01	28 -1.004E-02
29 -8.828E-01	29 -1.023E-02
30 -8.866E-01	30 -1.043E-02
31 -8.884E-01	31 -1.063E-02
32 -6.445E-01	32 -1.078E-02

Specimens

- 1-3-1
- 1-3-2
- 1-3-3
- 1-3-4

Specimen 1-3-1 reinforcement config 1d1d

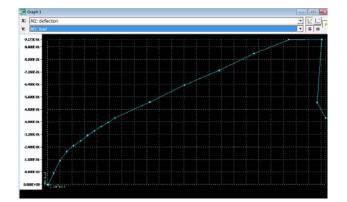


Figure 53

Results Monitoring points after load step

	· · · · · · · · · · · · · · · · · · ·
Step Value	Step Value
[MN]	[m]
	and a second
1 0.000E+00	1 -2.569E-05
2 -7.272E-02	2 -1.798E-04
3 -1.526E-01	3 -3.587E-04
4 -2.108E-01	4 -5.458E-04
5 -2.487E-01	5 -7.391E-04
6 -2.787E-01	6 -9.358E-04
7 -3.137E-01	7 -1.129E-03
8 -3.435E-01	8 -1.323E-03
9 -3.708E-01	9 -1.516E-03
10 -3.975E-01	10 -1.709E-03
11 -4.257E-01	11 -1.903E-03
12 -5.269E-01	12 -2.881E-03
13 -6.359E-01	13 -3.861E-03
14 -7.304E-01	14 -4.842E-03
15 -8.372E-01	15 -5.817E-03
<mark>16 -9.259E-01</mark>	<mark>16 -6.794E-03</mark>
17 -9.273E-01	17 -7.723E-03
18 -5.233E-01	18 -7.591E-03
19 -4.262E-01	19 -7.830E-03

looking at failure

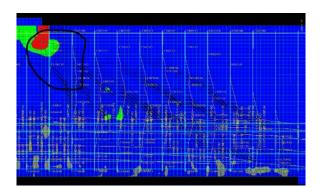
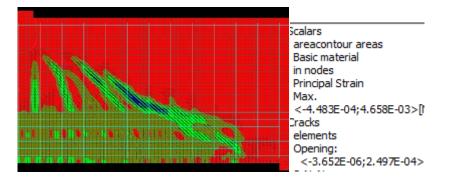
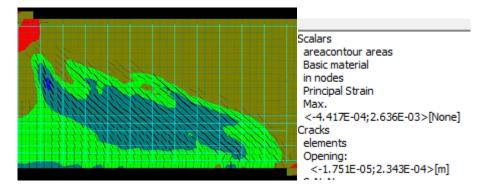


Figure 54


- No yielding of the bars happen
- only crushing of the concrete at top , and crushing of the compression strut.
- brittle failure

looking at SLS


<u>Results</u>

Monitoring points after load step

Stop Value	Step Value
Step Value	
[MN]	[m]
	4 -5.458E-04
4 -2.108E-01	5 -7.391E-04
5 -2.487E-01	6 -9.358E-04
6 -2.787E-01	7 -1.129E-03
7 -3.137E-01	8 -1.323E-03
8 -3.435E-01	9 -1.516E-03
9 -3.708E-01	10 -1.709E-03
10 -3.975E-01	11 -1.903E-03
11 -4.257E-01	12 -2.881E-03
12 -5.269E-01	13 -3.077E-03
13 -5.476E-01	14 -3.273E-03
<mark>14 -5.716E-01</mark>	15 -3.469E-03
15 -5.914E-01	16 -3.665E-0
16 -6.147E-01	

Figure 56

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
TEDATS	height	SUESSES(ATENA)	51163363(361A)	STESSES(ATENA)	3112325(3217)
2m	top	-	-	-194	-127
2 m	Rebar 1	+240	311		
	Rebar2	+221	289		
	Rebar 3	+202	264		
	Rebar 4	+173	215		
	Rebar 5	+146	190		
	Rebar 6	+77	164		
Near by	Rebar 1	+240	311	-	-
2m	Rebar 2	+221	289		
	Rebar3	+202	264		
	Rebar 4	+173	215		
	Rebar 5	+146	190		
	Rebar 6	+195	164		

Specimen 1-3-2 reinforcement config 1d2d

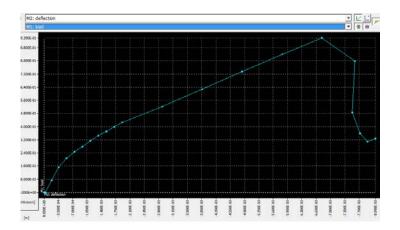


Figure 57

Results Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.568E-05
2 -7.277E-02	2 -1.798E-04
3 -1.533E-01	3 -3.582E-04
4 -2.073E-01	4 -5.469E-04
5 -2.477E-01	5 -7.417E-04
6 -2.780E-01	6 -9.376E-04
7 -3.134E-01	7 -1.131E-03
8 -3.440E-01	8 -1.324E-03
9 -3.700E-01	9 -1.518E-03
10 -3.981E-01	10 -1.712E-03
11 -4.252E-01	11 -1.906E-03
12 -5.206E-01	12 -2.886E-03
13 -6.273E-01	13 -3.865E-03
14 -7.341E-01	14 -4.843E-03
15 -8.402E-01	15 -5.819E-03
<mark>16 -9.390E-01</mark>	16 -6.789E-03
17 -7.979E-01	17 -7.598E-03
18 -4.867E-01	18 -7.532E-03
19 -3.587E-01	19 -7.727E-03
20 -3.094E-01	20 -7.905E-03
21 -3.265E-01	21 -8.098E-03

looking at failure

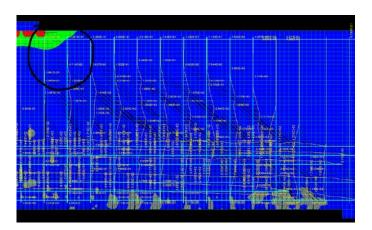


Figure 58

- no yielding of the bars
- Crushing of the concrete at the top, and crushing of the compression struts.
- brittle failure

Looking at SLS

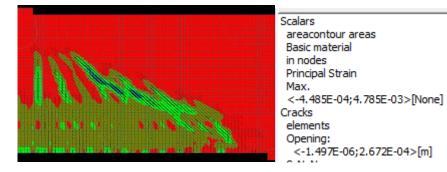
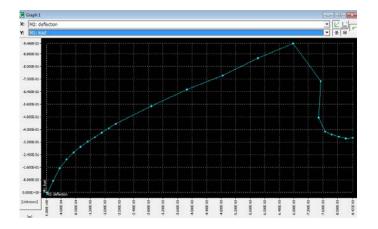



Figure 59

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
2m	top	-	-	-140	-127
2 m	Rebar 1	+242	311		
	Rebar2	+224	289		
	Rebar 3	+190	264		
	Rebar 4	+150	215		
	Rebar 5	+150	190		
	Rebar 6	+120	164		
Near by	Rebar 1	+242	311	-	-
2m	Rebar 2	+224	289		
	Rebar3	+190	264		
	Rebar 4	+150	215		
	Rebar 5	+150	190		
	Rebar 6	+194	164		

Specimen 1-3-3 2d1d

Figure 60

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.564E-05
2 -7.282E-02	2 -1.797E-04
3 -1.528E-01	3 -3.585E-04
4 -2.091E-01	4 -5.476E-04
5 -2.536E-01	5 -7.388E-04
6 -2.897E-01	6 -9.330E-04
7 -3.233E-01	7 -1.127E-03
8 -3.510E-01	8 -1.323E-03
9 -3.792E-01	9 -1.517E-03
10 -4.082E-01	10 -1.710E-03
11 -4.356E-01	11 -1.903E-03
12 -5.488E-01	12 -2.878E-03
13 -6.533E-01	13 -3.857E-03
14 -7.422E-01	14 -4.837E-03
15 -8.523E-01	15 -5.808E-03
<mark>16 -9.466E-01</mark>	16 -6.779E-03
17 -7.070E-01	17 -7.538E-03
18 -4.755E-01	18 -7.484E-03
19 -3.861E-01	19 -7.658E-03
20 -3.677E-01	20 -7.838E-03
21 -3.543E-01	21 -8.033E-03
22 -3.437E-01	22 -8.228E-03
23 -3.464E-01	23 -8.423E-03

looking at failure

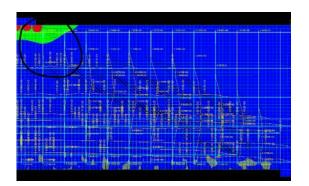
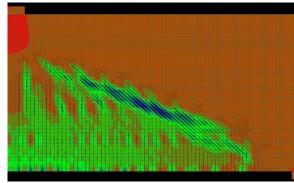
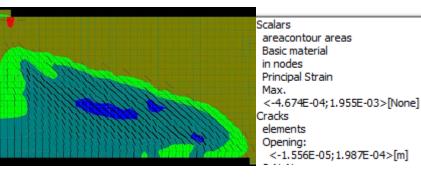


Figure 61


- No Yielding of the bars
- brittle failure
- crushing of the compression struts

looking at SLS

Results


Monitoring points after load step

Step Value	Step Value
[MN]	[m]
	· · · · · · · · · · · · · · · · · · ·
1 0.000E+00	1 -2.564E-05
2 -7.282E-02	2 -1.797E-04
3 -1.528E-01	3 -3.585E-04
4 -2.091E-01	4 -5.476E-04
5 -2.536E-01	5 -7.388E-04
6 -2.897E-01	6 -9.330E-04
7 -3.233E-01	7 -1.127E-03
8 -3.510E-01	8 -1.323E-03
9 -3.792E-01	9 -1.517E-03
10 -4.082E-01	10 -1.710E-03
11 -4.356E-01	11 -1.903E-03
12 -5.488E-01	12 -2.878E-03
13 -5.646E-01	13 -3.075E-03
<mark>14 -5.843E-01</mark>	14 -3.272E-03
15 -6.282E-01	15 -3.460E-03

Scalars areacontour areas Basic material in nodes Principal Strain Max. <-4.427E-04;3.394E-03>[None] Cracks elements Opening: <-8.425E-07;1.693E-04>[m]

Figure 62

Figure 63

Location	Location	Tensile	Tensile	Compression	Compression
rebars	height	stresses(ATENA)	Stresses(SCIA)	stresses(ATENA)	stresses(SCIA)
				447	122
2m	top	-	-	-147	-128
				-	-10
2 m	Rebar 1	+230	305		
	Rebar2	+210	283		
	Rebar 3	+104	259		
	Rebar 4	+147	210		
	Rebar 5	+127	186		
	Rebar 6	+81	160		
		+36	85		
		+13	-		
Near by	Rebar 1	+230	305	-	-
2m	Rebar 2	+210	283		
	Rebar3	+104	259		
	Rebar 4	+147	210		
	Rebar 5	+127	186		
	Rebar 6	+140	160		
		+122	85		
		+44	-		

Specimen 1-3-4 2d2d

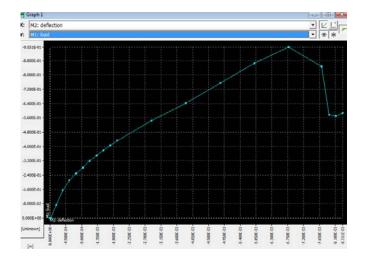


Figure 64

Results

Monitoring points after load step

 Step Value [MN]	Step Value [m]
IMN 1 0.000E+00 2 -7.287E-02 3 -1.535E-01 4 -2.110E-01 5 -2.485E-01 6 -2.822E-01 7 -3.197E-01 8 -3.493E-01 9 -3.775E-01 10 -4.063E-01 11 -4.326E-01 12 -5.446E-01 13 -6.416E-01 14 -7.546E-01 15 -8.653E-01 16 -9.551E-01 17 -8.470E-01 18 -5.761E-01 19 -5.693E-01	[III] 1 -2.562E-05 2 -1.797E-04 3 -3.580E-04 4 -5.460E-04 5 -7.393E-04 6 -9.354E-04 7 -1.128E-03 8 -1.323E-03 9 -1.517E-03 10 -1.711E-03 11 -1.906E-03 12 -2.880E-03 13 -3.861E-03 14 -4.835E-03 15 -5.807E-03 16 -6.778E-03 17 -7.715E-03 18 -7.929E-03 19 -8.118E-03
20 -5.871E-01	20 -8.311E-03

looking at failure

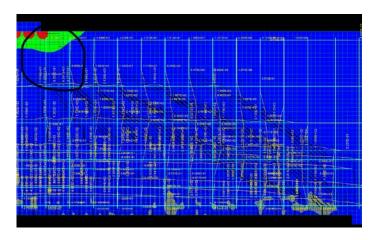


Figure 65

- No yielding of the bars
- Brittle failure
- crushing of the compression struts

looking at SLS

Step Value	Step Value	
[MN]	[m]	
1 0.000E+00	1 -2.562E-05	
2 -7.287E-02	2 -1.797E-04	
3 -1.535E-01	3 -3.580E-04	
	8 -1.323E-03	
8 -3.493E-01	9 -1.517E-03	
9 -3.775E-01	10 -1.711E-03	
10 -4.063E-01	11 -1.906E-03	
11 -4.326E-01	12 -2.880E-03	
12 -5.446E-01	13 -3.076E-03	
13 -5.647E-01	14 -3.271E-03	
<mark>14 -5.865E-01</mark>	15 -3.459E-03	
15 -6.304E-01		

Table 42

فتقاعل ومحمولا الانتصارية ومستعد تعمله التقاد تحمله التقوية	Scalars
	areacontour areas
	Basic material
	in nodes
	Principal Strain
	Max.
	<-4.473E-04;3.019E-03>[None]
a series and the series of the	Cracks
	elements
	Opening:
	<-9.561E-07;1.742E-04>[m]

Figure 66

Location rebars	Location height	Tensile stresses(ATENA)	Tensile Stresses(SCIA)	Compression stresses(ATENA)	Compression stresses(SCIA)
2m	top	-	-	-140 -	-128 -10
2 m	Rebar 1 Rebar2 Rebar 3 Rebar 4 Rebar 5 Rebar 6	+200 +211 +180 +153 +105 +100 +40 +10	305 283 259 210 186 160 85		
Near by 2m	Rebar 1 Rebar 2 Rebar3 Rebar 4 Rebar 5 Rebar 6	+200 +211 +180 +153 +105 +158 +120 +48	305 283 259 210 186 160 85 -	-	-

SPECIMENS

1-4-1

1-4-2

1-4-3

1-4-4

Specimen 1-4-1

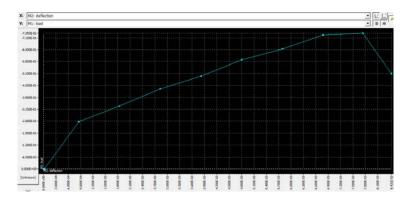


Figure 67

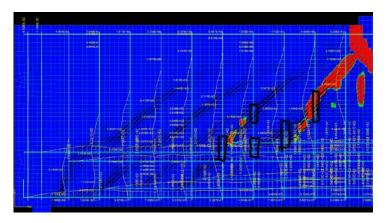


Figure 68

<u>Results</u>

Monitoring points after load step

Step Value	·
[MN]	Step Value
	[m]
1 0.000E+00	·
2 -2.570E-01	1 -2.598E-05
3 -3.420E-01	2 -8.531E-04
4 -4.365E-01	3 -1.839E-03
5 -5.059E-01	4 -2.826E-03
6 -5.940E-01	5 -3.817E-03
7 -6.543E-01	6 -4.802E-03
8 -7.311E-01	7 -5.793E-03
9 -7.393E-01	8 -6.778E-03
10 -5.194E-01	9 -7.740E-03
	10 -8.431E-03

Looking at SLS

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.598E-05
2 -2.570E-01	2 -8.531E-04
3 -3.420E-01	3 -1.839E-03
4 -4.365E-01	4 -2.826E-03
5 -4.577E-01	5 -3.023E-03
6 -4.769E-01	6 -3.220E-03
7 -4.995E-01	7 -3.416E-03

Table 45

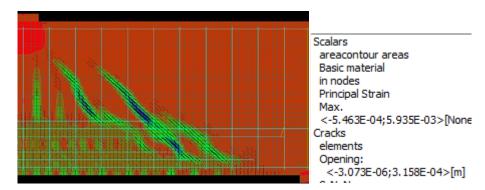
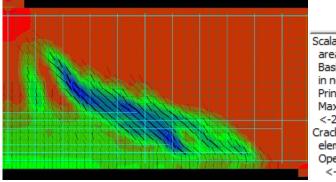
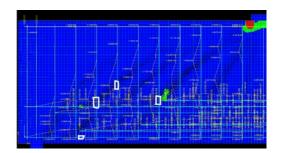



Figure 69


Bottom 0,23 Crack width 0,6 mm

Scalars areacontour areas Basic material in nodes Principal Strain Max. <-2.492E-04;2.964E-03>[None] Cracks elements Opening: <-1.162E-05;3.368E-04>[m]

Figure 70

FCm 38 fcu 44,7 steel 435

Figure 71

<u>Results</u>

Monitoring points after load step

Step Value	
[MN]	Step Value
	[m]
1 0.000E+00	
2 -2.722E-01	1 -2.434E-05
3 -3.600E-01	2 -8.458E-04
4 -4.486E-01	3 -1.838E-03
5 -5.274E-01	4 -2.829E-03
6 -6.078E-01	5 -3.820E-03
7 -6.749E-01	6 -4.810E-03
8 -7.539E-01	7 -5.802E-03
<mark>9 -8.208E-01</mark>	8 -6.790E-03
10 -8.819E-01	9 -7.780E-03
11 -5.934E-01	10 -8.763E-03
12 -4.848E-01	11 -9.532E-03
	12 -1.015E-02

Table 46

Concrete 44,7 fcm 38 steel 550

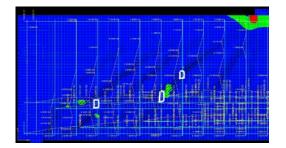


Figure 72

Results

Monitoring points after load step

Step Value [MN]	Step Value [m]
1 0.000E+00	1 -2.434E-05

2 -2.722E-01	2 -8.458E-04
3 -3.600E-01	3 -1.838E-03
4 -4.486E-01	4 -2.829E-03
5 -5.274E-01	5 -3.819E-03
6 -6.078E-01	6 -4.810E-03
7 -6.750E-01	7 -5.802E-03
8 -7.543E-01	8 -6.790E-03
9 -8.248E-01	9 -7.780E-03
10 -9.034E-01	10 -8.758E-03
11 -6.179E-01	11 -9.528E-03

Specimen 1-4-2

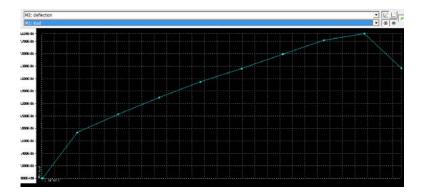


Figure 73

Results

Monitoring points after load step

Monto his points arter load step	
Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.595E-05
2 -2.566E-01	2 -8.496E-04
3 -3.584E-01	3 -1.832E-03
4 -4.531E-01	4 -2.817E-03
5 -5.420E-01	5 -3.801E-03
6 -6.167E-01	6 -4.789E-03
7 -6.959E-01	7 -5.773E-03
8 -7.750E-01	8 -6.755E-03
9 -8.124E-01	9 -7.728E-03
10 -6.184E-01	10 -8.610E-03

Table 48

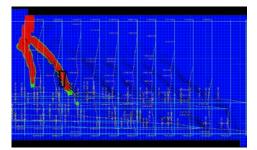


Figure 74

Looking at SLS

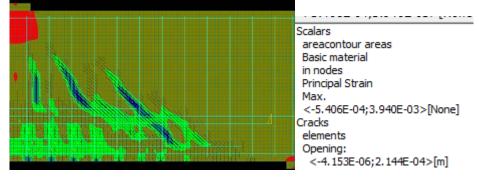


Figure 75

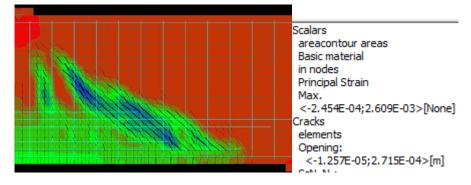


Figure 76

Bottom 0,25, Body minimum 0,4

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.579E-05
2 -2.473E-01	2 -9.052E-04
3 -3.298E-01	3 -1.895E-03
4 -4.300E-01	4 -2.882E-03
5 -4.455E-01	5 -3.080E-03
6 -4.783E-01	6 -3.575E-03

Table 49

Fcm 38 fcu 44,8 steel 435

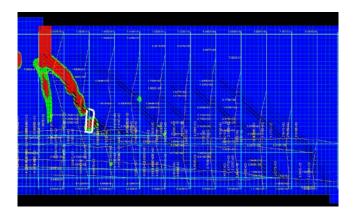


Figure 77

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.432E-05
2 -2.725E-01	2 -8.420E-04
3 -3.815E-01	3 -1.828E-03
4 -4.677E-01	4 -2.819E-03
5 -5.597E-01	5 -3.805E-03
6 -6.468E-01	6 -4.793E-03
7 -7.295E-01	7 -5.780E-03
8 -8.078E-01	8 -6.768E-03
<mark>9 -8.847E-01</mark>	9 -7.758E-03
10 -9.282E-01	10 -8.750E-03
11 -6.410E-01	11 -9.691E-03

Table 50

Concrete fcm 38 steel 550

<u>Results</u>

Monitoring points after load step

Monitoring points after load step	
Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.417E-05
2 -2.667E-01	2 -8.956E-04
3 -3.457E-01	3 -1.888E-03
4 -4.408E-01	4 -2.878E-03
5 -4.529E-01	5 -3.077E-03
6 -5.075E-01	6 -3.568E-03
7 -5.510E-01	7 -4.062E-03
8 -6.344E-01	8 -5.052E-03
9 -7.220E-01	9 -6.040E-03

10 -8.059E-01	10 -7.027E-03
11 -8.901E-01	11 -8.014E-03
<mark>12 -9.259E-01</mark>	12 -8.507E-03
13 -9.670E-01	13 -8.998E-03
14 -7.718E-01	14 -9.903E-03
15 -8.223E-01	15 -1.085E-02

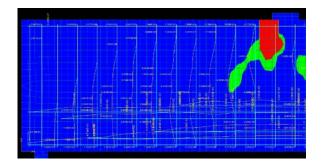
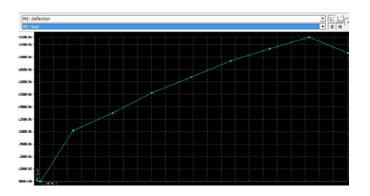



Figure 78

NO Yielding occurs brittle failure

Specimen 1-4-3 2d1d

Looking at failure

Figure 79

<u>Results</u>

Monitoring points after load step

Monitoring points after load step	
Step Value	
[MN]	Step Value
	[m]
4 -4.626E-01	
5 -5.445E-01	4 -2.812E-03
6 -6.296E-01	5 -3.798E-03
7 -6.944E-01	6 -4.783E-03
<mark>8 -7.539E-01</mark>	7 -5.771E-03
9 -6.711E-01	8 -6.754E-03
	9 -7.720E-03

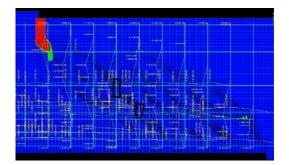
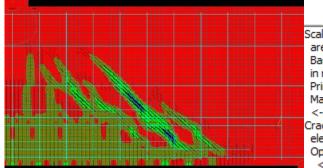


Figure 80


Looking at SLS

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.590E-05
2 -2.654E-01	2 -8.420E-04
3 -3.567E-01	3 -1.828E-03
4 -4.041E-01	4 -2.322E-03
5 -4.238E-01	5 -2.519E-03
<mark>6 -4.477E-01</mark>	<mark>6 -2.714E-03</mark>
7 -4.693E-01	7 -2.911E-03

Table 53

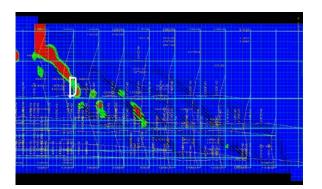

Scalars areacontour areas Basic material in nodes Principal Strain Max. <-5.778E-04;5.226E-03>[None] Cracks elements Opening: <-4.031E-06;2.973E-04>[m]

Figure 81

Body 0,6

Bottom 0,2

Concrete fcm 38 fcu 44,7 steel 435

Figure 82

<u>Results</u>

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.427E-05
2 -2.855E-01	2 -8.256E-04
3 -3.828E-01	3 -1.817E-03
4 -4.935E-01	4 -2.803E-03
5 -5.891E-01	5 -3.788E-03
6 -6.303E-01	6 -4.782E-03
7 -7.205E-01	7 -5.766E-03
8 -7.918E-01	8 -6.754E-03
<mark>9 -8.650E-01</mark>	9 -7.734E-03
10 -8.342E-01	10 -8.714E-03
11 -6.063E-01	11 -9.650E-03
12 -5.805E-01	12 -1.060E-02

Table 54

Concrete fcm 38 fcu 44,7 steel 550

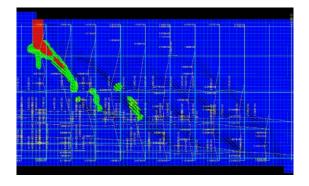


Figure 83

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.427E-05
2 -2.855E-01	2 -8.256E-04
3 -3.830E-01	3 -1.817E-03
4 -4.857E-01	4 -2.805E-03
5 -5.601E-01	5 -3.793E-03
6 -6.476E-01	6 -4.778E-03
7 -7.133E-01	7 -5.768E-03
<mark>8 -7.954E-01</mark>	8 -6.753E-03
<mark>9 -8.648E-01</mark>	9 -7.735E-03
10 -6.446E-01	10 -8.715E-03
11 -6.600E-01	11 -9.688E-03

Table 55

Specimen 1-4-4 2d2d

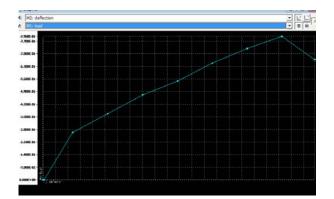


Figure 84

Looking at failure

<u>Results</u>

Monitoring points after load step

Monitoring points after load step	
	·
Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.587E-05
2 -2.642E-01	2 -8.413E-04
3 -3.666E-01	3 -1.826E-03
4 -4.724E-01	4 -2.808E-03
5 -5.482E-01	5 -3.793E-03
6 -6.477E-01	6 -4.774E-03
7 -7.290E-01	7 -5.757E-03
8 -7.968E-01	8 -6.738E-03
9 -6.671E-01	9 -7.652E-03

Table 56

		i respire	Contraction of the local diversion of the loc	(interest	t instan	(den i ter	1 million	100.00	116.610	-	
ł			(MC4)		1100	i sainte					
N		1			-1		~1				
				4	1			Anna a	14		
					T.	A	1				
							Aller a	182:	TERDITE D		
	Lt.	100-0	(482)	32 - 4		推		-14			-1
			Time	te una		100		and the second	Contrast of	*****	

Figure 85

Looking at SLS

Results

Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.587E-05
2 -2.642E-01	2 -8.413E-04
3 -3.666E-01	3 -1.826E-03
4 -4.118E-01	4 -2.319E-03
5 -4.430E-01	5 -2.613E-03
<mark>6 -4.545E-01</mark>	6 -2.711E-03
7 -4.661E-01	7 -2.809E-03

Table 57

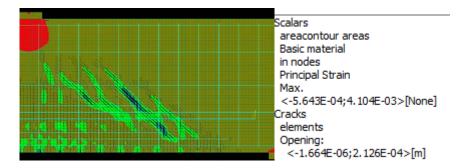
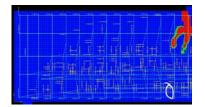



Figure 86

Bottom 0,2 Boddy 0,5

Fcm 38 fcu 44,8 steel 435

<u>Results</u> Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.425E-05
2 -2.856E-01	2 -8.257E-04
3 -4.015E-01	3 -1.809E-03
4 -4.986E-01	4 -2.799E-03
5 -5.768E-01	5 -3.787E-03
6 -6.731E-01	6 -4.771E-03
7 -7.624E-01	7 -5.756E-03
8 -8.385E-01	8 -6.742E-03
<mark>9 -9.078E-01</mark>	9 -7.727E-03
<mark>10 -9.626E-01</mark>	10 -8.718E-03
11 -6.984E-01	11 -9.563E-03
12 -8.924E-01	12 -1.050E-02

Table 58

Fcm 38 fcu 44,7 steel 550

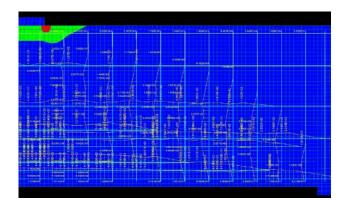


Figure 88

Results Monitoring points after load step

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.425E-05
2 -2.856E-01	2 -8.257E-04
3 -4.014E-01	3 -1.809E-03
4 -5.012E-01	4 -2.799E-03
5 -5.750E-01	5 -3.787E-03
6 -6.709E-01	6 -4.771E-03
7 -7.625E-01	7 -5.756E-03
8 -8.440E-01	8 -6.741E-03
9 -9.054E-01	9 -7.726E-03
10 -8.673E-01	10 -8.675E-03
11 -6.284E-01	11 -9.476E-03
12 -5.467E-01	12 -1.039E-02

Table 59

ATENA EVALUATION based on Laboratory test van Hulten,

Option 1 (chapter 7.5.1)

Monitoring points after load step	
	tep Value [m]
2 -1.433E-01 3 -2.619E-01 4 -2.798E-01 5 -3.296E-01 6 -3.539E-01 7 -3.867E-01 8 -5.092E-01 9 -5.706E-01 10 -6.832E-01 11 -7.529E-01 12 -7.831E-01 13 -7.853E-01	1 -8.950E-06 2 -1.445E-04 3 -3.239E-04 4 -5.269E-04 5 -7.187E-04 6 -9.108E-04 7 -1.906E-03 8 -2.896E-03 9 -3.890E-03 10 -4.883E-03 11 -5.888E-03 12 -6.911E-03 13 -7.948E-03 14 -8.959E-03

Table 60

Results

Option 2(chapter 7.5.2)

<u>results</u>

Monitoring points after load step

Step Value	Step Value	
[MN]	[m]	
1 0.000E+00	1 -8.540E-06	
2 -1.489E-01	2 -1.428E-04	
3 -2.712E-01	3 -3.244E-04	
4 -3.157E-01	4 -5.213E-04	
5 -3.601E-01	5 -7.110E-04	
6 -3.572E-01	6 -9.019E-04	
7 -4.058E-01	7 -1.392E-03	
8 -4.625E-01	8 -1.885E-03	
9 -5.107E-01	9 -2.380E-03	
10 -5.731E-01	10 -2.871E-03	
11 -6.093E-01	11 -3.368E-03	
12 -6.441E-01	12 -3.867E-03	
13 -6.570E-01	13 -4.368E-03	
14 -7.049E-01 15 -7.417E-01	14 -4.866E-03 15 -5.367E-03	
15 -7.634E-01	15 -5.872E-03	
10 -7.763E-01	17 -6.914E-03	
18 -7.952E-01	18 -7.920E-03	
19 -8.035E-01	19 -8.924E-03	
20 -7.947E-01	20 -9.932E-03	

Table 61

Annex 9

All Maple Sheets are available and can be downloaded from the following web address:

www.babak-dadvar.com/thesis/babak.html

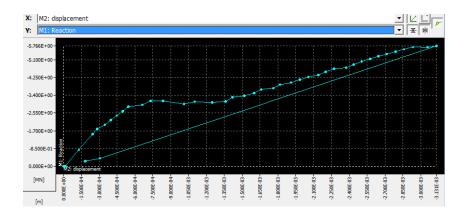
Otherwise contact

babak_dadvar@yahoo.com

Annex 10

All Scia Engineer and ATENA models related to Deep beam specimens can be downloaded from the following web address:

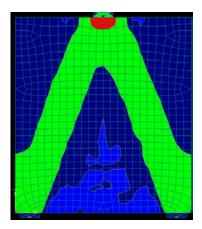
www.babak-dadvar.com/thesis/babak.html


Otherwise contact

babak_dadvar@yahoo.com

Second Phase

- 1) D1P1SBM
- 2) D1P1STM
- 3) D1P1LFEM
- 4) D1P1NLFEM
- 5) D2P1SBM
- 6) D2P1STM
- 7) D2P1LFEM
- 8) D2P1NLFEM
- 9) D3P1SBM
- 10) D3P1STM
- 11) D3P1LFEM
- 12) D3P1NLFEM


D1P1SBM (without adjustment of criterion 3 in chapter 9.5.3)

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.312E-05
2 -7.836E-01	2 -1.281E-04
3 -1.544E+00	3 -2.424E - 04
4 -1.784E+00	4 -2.819E-04
5 -1.983E+00	5 -3.458E - 04
6 -2.205E+00	6 -3.970E-04
7 -2.425E+00	7 -4.458E-04
8 -2.642E+00	8 -4.945E-04
9 -2.855E+00	9 -5.424E-04
10 -2.945E+00	10 -6.614E-04
11 -3.130E+00	11 -7.305E-04
12 -3.140E+00	12 -8.347E-04
13 -2.985E+00	13 -1.011E-03
14 -3.094E+00	14 -1.101E-03
15 -3.055E+00	15 -1.247E-03
16 -3.111E+00	16 -1.360E-03
17 -3.299E+00	17 -1.419E-03
18 -3.380E+00	18 -1.518E-03
19 -3.502E+00	19 -1.600E-03
20 -3.677E+00	20 -1.659E-03
21 -3.742E+00	21 -1.760E-03
22 -3.914E+00	22 -1.819E-03
23 -4.011E+00	23 -1.908E-03
24 -4.142E+00	24 -1.983E-03
25 -4.280E+00	25 -2.055E-03
26 -4.378E+00	26 -2.140E-03
27 -4.530E+00	27 -2.202E-03
28 -4.670E+00	28 -2.269E-03
29 -4.732E+00	29 -2.372E-03
30 -4.880E+00	30 -2.435E-03
31 -5.014E+00	31 -2.502E-03
32 -5.140E+00	32 -2.572E-03

33 -5.262E+00	33	-2.642E-03	
34 -5.379E+00	34	-2.714E-03	
35 -5.494E+00	35		
36 -5.605E+00	36	-2.859E-03	
37 -5.706E+00	37	-2.933E-03	
38 -5.703E+00	38	-3.057E-03	
39 -5.766E+00	39	-3.131E-03	
40 -3.835E-01	40	-3.041E-04	
41 -2.420E-01	41	-1.812E-04	
42 -2.381E-01	42	-1.777E-04	
43 -2.377E-01	43	-1.770E-04	

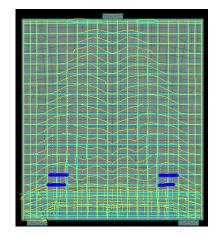
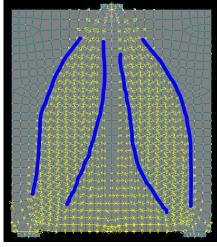


Figure 2

The plastic behavior is not happening the failure is almost brittle failure.


Looking at the reinforcements:

At load step 35 yielding of the reinforcements are happening. Yielding of the reinforcement is check by comparing 550 /200000=2,75*10^-3

Displacement 3mm at failure

Principle strain

The bottle shaped struts is distinguishable in figure 3.

Failure reason:

Yielding of the reinforcements is partial and in the failure status it remains partial.

In the middle bottom of the cross section the stresses and strains are limited. Bottle shape stress flow in deep beams is the characteristic feature of these types of structures (figure 3).

The main reason for failure is crushing of the concrete at top middle of the cross section. Due to the excessive concrete compressive force which is bigger than concrete compressive strength.

This crushing mode can be avoided by increasing the dimension of the applied load area but this is not the point. The point is that design ULS is 800*1,3=1040 kN and the ULS in ATENA is 5700 kN which is a factor of 5 difference between them. Which is too high .

The brittle failure leads also to the conclusion that there is too much reinforcement in the specimens which is dangerous.

The reinforcement is not efficient in this method.

Shear effective height

As it can be seen in the figure below, shear effective height is estimated by the value "d" (figure 4).

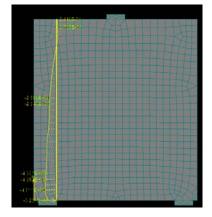


Figure 4

Looking at SLS

Step	Value	Step	Value
_	[MN]		[m]
1	0.000E+00	1	-1.312E-05
2	-2.637E-01	2	-5.153E-05
3	-3.947E-01	3	-7.071E-05
4	-5.250E-01	4	-8.987E-05
5	-6.547E-01	5	-1.090E-04
6	-7.838E-01	6	-1.281E-04
7	-9.122E-01	7	-1.472E-04
8	-1.040E+00	8	-1.663E-04

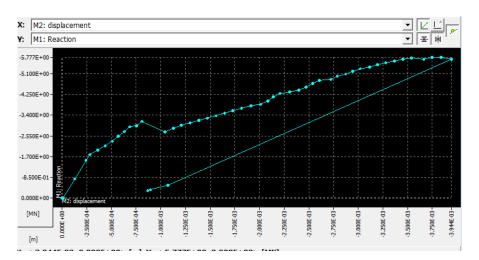
SLS load is 800 kN

Calculating srmax at middle bottom and at the maximum crack in the middle of the cross section

Calculating the mean value of steel strain

Multiplying these two together

Also compare with the sum of the crack openings given in ATENA.


The mean value of steel strain is estimated as 5,3 *10^-5 and

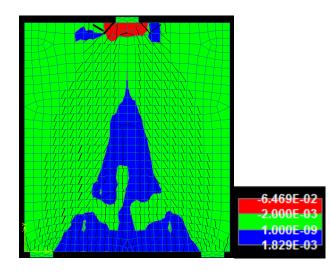
srmax is calculated in based on method approximately 275 mm

The crack is minimum 0.0127mm < 0,3 mm .

Crack SBM 0,2mm < 0,3 mm

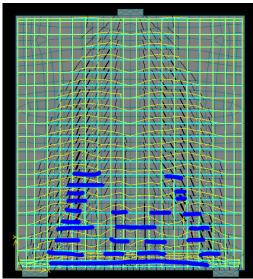
ATENA graphical method gives NO results for formation of cracks

D1P1STM(without adjustment of criterion 3 in chapter 9.5.3)


Figure 5

Step	Value	Step Value
	[MIN]	[m]
1	0.000E+00	1 -1.312E-05
2	-7.835E-01	2 -1.281E-04
3	-1.542E+00	3 -2.427E-04
4	-1.783E+00	4 -2.821E-04
5	-1.963E+00	5 -3.617E-04
6	-2.149E+00	6 -4.383E-04
7	-2.329E+00	7 -5.102E-04
8	-2.536E+00	8 -5.702E-04

9	-2.724E+00	9	-6.321E-04
20	-3.478E+00	20	-1.647E-03
21	-3.585E+00	21	-1.731E-03
22	-3.688E+00	22	-1.818E-03
23	-3.780E+00	23	-1.912E-03
24	-3.848E+00	24	-2.014E-03
25	-3.989E+00	25	-2.083E-03
26	-4.150E+00	26	-2.143E-03
27	-4.293E+00	27	-2.209E-03
28	-4.361E+00	28	-2.306E-03
29	-4.442E+00	29	-2.397E-03
30	-4.556E+00	30	-2.474E-03
31	-4.699E+00	31	-2.538E-03
32	-4.825E+00	32	-2.609E-03
33	-4.870E+00	33	-2.721E-03
34	-5.001E+00	34	-2.789E-03
35	-5.092E+00	35	-2.874E-03
36	-5.208E+00	36	-2.947E-03
37	-5.314E+00	37	-3.021E-03
38	-5.379E+00	38	-3.115E-03
39	-5.475E+00	39	-3.195E-03
40	-5.560E+00	40	-3.278E-03
<mark>41</mark>	-5.636E+00	41	-3.365E-03
42	-5.696E+00	42	-3.454E-03
43	-5.746E+00	43	-3.542E-03
44	-5.702E+00	44	-3.665E-03
45	-5.777E+00	45	-3.747E-03
46	-5.775E+00	46	-3.842E-03
47	-5.695E+00	<mark>47</mark>	-3.944E-03
48	-5.312E-01	48	-1.074E-03
49	-3.362E-01	49	-8.957E-04
50	-2.896E-01	50	-8.675E-04


Table 3

Looking at failure 5440 kN

As it is observable in figure 7 reinforcement bars are yielding but the failure is mostly due to the crushing of the concrete at support area. Yielding of reinforcment bars gives plastic deformation of the speciemsn

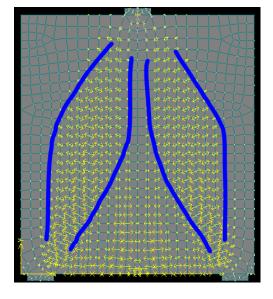


Figure 7

According to figure 8 the effective shear height of the specimens can be estimated by the value "d" in to the hand calculation.

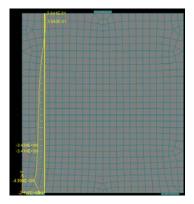
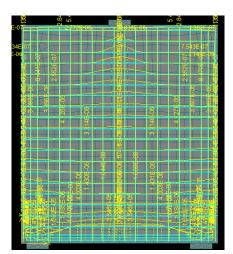
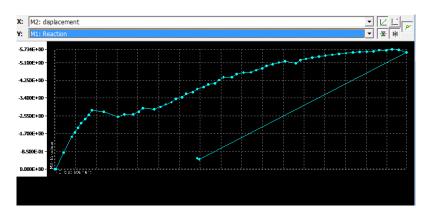



Figure 8

Looking at SLS 800 kN

Input data Results Monitoring points after load step	
Monitoring p. specif.	Monitoring p. specif.
 Step Value [MN]	Step Value [m]
 1 0.000E+00 2 -2.636E-01	1 -1.312E-05 2 -5.153E-05 3 -8.987E-05

Figure 9


Graphical methode

ATENA shows no Crack formation.

Methode exact

Crack at middle bottom 0,012 mm

Crack middle top 0,019

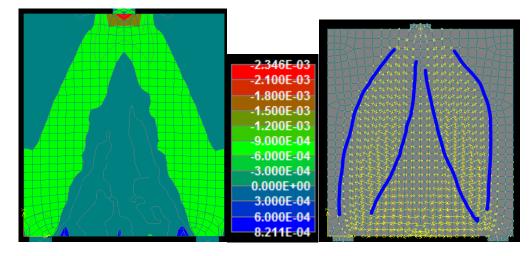
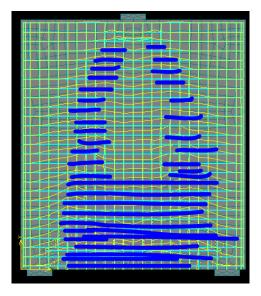

D1P1LFEM (without adjustment of criterion 3 in chapter 9.5.3)

Figure 10

Input data Results Monitoring points after load step


Ctop Voluo	Chan Malua
Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.311E-05
2 -7.852E-01	2 -1.283E-04
3 -1.545E+00	3 -2.432E-04
4 -1.756E+00	4 -2.901E-04
5 -1.986E+00	5 -3.335E-04
6 -2.207E+00	6 -3.803E-04
7 -2.392E+00	7 -4.412E-04
8 -2.601E+00	8 -4.916E-04
9 -2.822E+00	9 -5.354E-04
10 -2.742E+00	10 -7.065E-04
11 -2.506E+00	11 -9.171E-04
12 -2.624E+00	12 -1.007E-03
13 -2.621E+00	13 -1.129E-03
14 -2.745E+00	14 -1.214E-03
15 -2.922E+00	15 -1.275E-03
16 -2.862E+00	16 -1.437E-03
17 -2.979E+00	17 -1.525E-03
18 -3.100E+00	18 -1.604E-03
19 -3.203E+00	19 -1.685E-03
20 -3.359E+00	20 -1.751E-03
21 -3.442E+00	21 -1.839E-03
22 -3.608E+00	22 -1.900E-03
23 -3.677E+00	23 -1.995E-03
24 -3.837E+00	24 -2.057E-03
25 -3.923E+00	
26 -4.055E+00	26 -2.218E-03
27 -4.104E+00	27 -2.314E-03
28 -4.261E+00	28 -2.372E-03
29 -4.399E+00	29 -2.437E-03
30 -4.406E+00	30 -2.561E-03
31 -4.556E+00	31 -2.623E-03
32 -4.613E+00	32 -2.726E-03
33 -4.634E+00	33 -2.833E-03
34 -4.734E+00	34 -2.911E-03
35 -4.815E+00	35 -2.996E-03
36 -4.945E+00	36 -3.060E-03
37 -5.027E+00	37 -3.146E-03
38 -5.102E+00	38 -3.234E-03
39 -5.172E+00	39 -3.324E-03
40 -5.068E+00	40 -3.481E-03
40 -5.206E+00 41 -5.206E+00	40 -3.481E-03 41 -3.548E-03
42 -5.277E+00	42 -3.633E-03
43 -5.339E+00	43 -3.721E-03
44 -5.391E+00	44 -3.814E-03
45 -5.436E+00	45 -3.909E-03
46 -5.477E+00	46 -4.009E-03
47 -5.516E+00	47 -4.108E-03
48 -5.551E+00	48 -4.207E-03
49 -5.578E+00	49 -4.306E-03
50 -5.602E+00	50 -4.407E-03
51 -5.621E+00	51 -4.506E-03
52 -5.637E+00	52 -4.606E-03
53 -5.697E+00	53 -4.688E-03
	JJ -4.000E-0J

54 -5.686E+00	54 -4.790E-03
55 -5.734E+00	55 -4.872E-03
56 -5.707E+00	56 -4.970E-03
57 -5.592E+00	57 -5.081E-03
58 -4.725E-01	58 -2.087E-03
59 -5.203E-01	59 -2.057E-03

Figure 11

According to figure below, the reinforcements are yielding. The failure happens because of the excessive yielding of the reinforcements. The big plastic deformation is going on. The plastic behavior of the specimens is considerably higher than SBM and STM.

Step Value [MN]	Ste	p Value [m]
1 0.000E+00 2 -2.642E-01 3 -5.260E-01 4 -7.853E-01 5 -1.042E+00		1 -1.311E-05 2 -5.161E-05 3 -9.003E-05 4 -1.284E-04 5 -1.666E-04

Displacement 0,012

D1P1NLFEM(without adjustment of criterion 3 in chapter 9.5.3)

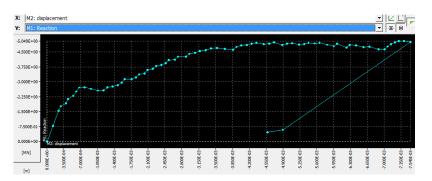


Figure 13

Input data

Results

Monitoring points after load step

Step	Value	Step	Value
Beep	[MN]	Deep	[m]
	[
25 -3	3.789E+00		
	3.848E+00	25	-2.264E-03
27 -3	3.938E+00	26	-2.372E-03
28 -4	1.089E+00	27	-2.464E-03
29 -4	1.112E+00	28	-2.528E-03
30 -4	1.261E+00	29	-2.652E-03
31 -4	1.269E+00	30	-2.719E-03
32 -4	1.409E+00	31	-2.882E-03
33 -4	1.468E+00	32	-2.957E-03
34 -4	1.553E+00	33	-3.072E-03
35 -4	1.599E+00	34	-3.175E-03
36 -4	1.673E+00	35	-3.299E-03
37 -4	1.706E+00	36	-3.402E-03
38 -4	1.666E+00	37	-3.528E-03
39 -4	1.622E+00	38	-3.692E-03

40 -4.756E+00	39 -3.861E-03
41 -4.825E+00	40 -3.933E-03
42 -4.852E+00	41 -4.031E-03
43 -4.912E+00	42 -4.147E-03
44 -4.961E+00	43 -4.246E-03
45 -4.905E+00	44 -4.347E-03
46 -4.913E+00	45 -4.496E-03
<mark>47 -4.980E+00</mark>	46 -4.616E-03
<u>48 -4.859E+00</u>	47 -4.710E-03
<u>49 -4.913E+00</u>	48 -4.883E-03
<u>50 -4.947E+00</u>	49 -4.980E-03
51 -4.868E+00	50 -5.086E-03
52 -4.898E+00	51 -5.233E-03
53 -4.968E+00	52 -5.339E-03
54 -4.929E+00	53 -5.425E-03
<u>55 -4.964E+00</u>	54 -5.555E-03
<u>56 -4.866E+00</u>	55 -5.659E-03
57 -4.796E+00	56 -5.816E-03
58 -4.924E+00	57 -5.954E-03
<u>59 -4.718E+00</u>	58 -6.019E-03
60 -4.862E+00	59 -6.220E-03
<mark>61 -4.834E+00</mark>	60 -6.284E-03
62 -4.748E+00	61 -6.416E-03
63 -4.759E+00	62 -6.570E-03
<mark>64 -4.641E+00</mark>	63 -6.695E-03
<mark>65 -4.629E+00</mark>	64 -6.880E-03
66 -4.778E+00	65 -7.010E-03
67 -4.889E+00	66 -7.069E-03
68 -4.976E+00	67 -7.140E-03
69 -5.048E+00	68 -7.218E-03
70 -5.049E+00	69 -7.303E-03
<mark>71 -5.013E+00</mark>	70 -7.413E-03
72 -5.949E-01	71 -7.545E-03
73 -4.538E-01	72 -4.897E-03
	73 -4.581E-03

Table 7

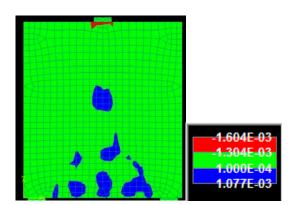
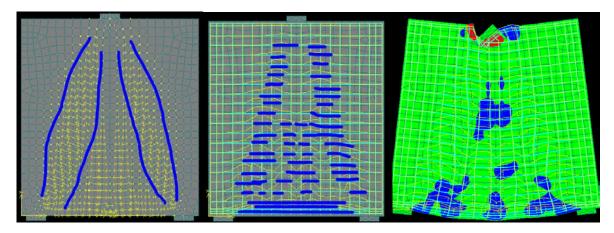



Figure 14

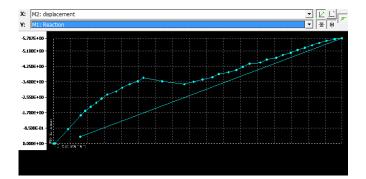
Failure is more due to the execcive yielding of the rebars.

Figure 15

HIGH plastic behavior of the specimen with NLFEM. 7,5 mm displacement in ULS.

SLS

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.315E-05
2 -2.635E-01	2 -5.163E-05
3 -5.245E-01	3 -9.004E-05
4 -7.831E-01	4 -1.284E-04
5 -1.039E+00	5 -1.666E-04
Table8	

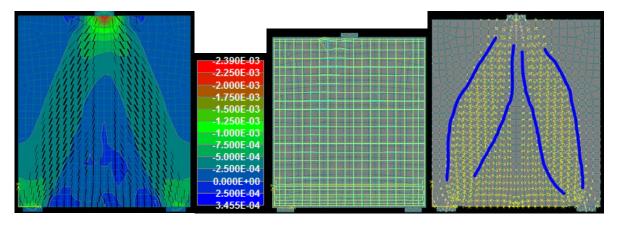

Specimens

D1P2SBM

D1P2STM

D1P2LEFEM

D1P2NLFEM

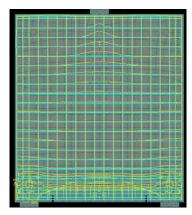


D1P2SBM(without adjustment of criterion 3 in chapter 9.5.3)

Figure 16

Looking at ULS

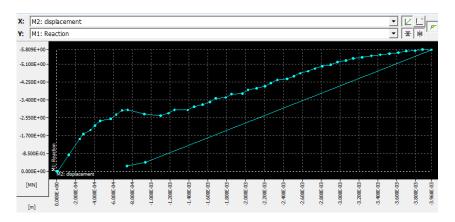
Step Value	Step Value
[MN]	[m]
11 -3.256E+00	11 -6.705E-04
12 -3.409E+00	12 -7.436E-04
13 -3.613E+00	13 -7.926E-04
14 -3.413E+00	14 -9.593E-04
15 -3.256E+00	15 -1.153E-03
16 -3.394E+00	16 -1.235E-03
17 -3.525E+00	17 -1.313E-03
18 -3.635E+00	18 -1.401E-03
19 -3.821E+00	19 -1.456E-03
20 -3.913E+00	20 -1.543E-03
21 -4.049E+00	21 -1.613E-03
22 -4.222E+00	22 -1.668E-03
23 -4.381E+00	23 -1.730E-03
24 -4.450E+00	24 -1.824E-03
25 -4.614E+00	25 -1.880E-03
26 -4.710E+00	26 -1.964E-03
27 -4.868E+00	27 -2.022E-03
28 -4.994E+00	28 -2.092E-03
29 -5.136E+00	29 -2.153E-03
30 -5.271E+00	30 -2.216E-03
31 -5.402E+00	31 -2.280E-03
<mark>32 -5.528E+00</mark>	32 -2.344E-03
33 -5.649E+00	33 -2.408E-03
34 -5.731E+00	34 -2.478E-03
<mark>35 -5.787E+00</mark>	35 -2.543E-03
36 -3.696E-01	36 -2.340E-04


Figure 17

Failure is absolutely due to the crushing of the concrete at the place of loading at top middle of the specimen.

SLS

Step Value	
[MN]	Step Value
	[m]
1 0.000E+00	
2 -2.643E-01	1 -1.302E-05
3 -5.263E-01	2 -5.124E-05
4 -7.857E-01	3 -8.937E-05
5 -1.043E+00	4 -1.274E-04
6 -1.297E+00	5 -1.654E-04
<mark>7 -1.548E+00</mark>	6 -2.032E-04
8 -1.790E+00	7 -2.410E-04
	8 -2.800E-04


Table 10

Crack ATENA => 0,007 mm , Crack calculation => 0,02 mm

D1P2STM

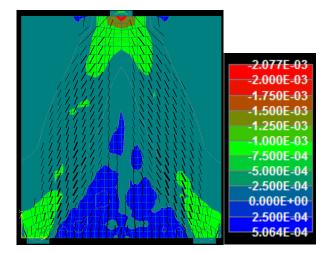


Figure 20

Looking at ULS

Step Value	Step Value
[MN]	[m]
10 -2.897E+00	10 -6.913E-04
11 -2.926E+00	11 -7.531E-04
12 -2.739E+00	12 -9.289E-04
13 -2.649E+00	13 -1.099E-03
14 -2.769E+00	14 -1.182E-03
15 -2.939E+00	15 -1.247E-03
16 -2.917E+00	16 -1.387E-03
17 -3.078E+00	17 -1.457E-03
18 -3.183E+00	18 -1.543E-03
19 -3.304E+00	19 -1.623E-03
20 -3.478E+00	20 -1.683E-03

21 -3.518E+00	21 -1.790E-03
22 -3.690E+00	22 -1.849E-03
23 -3.702E+00	23 -1.967E-03
24 -3.874E+00	24 -2.026E-03
25 -3.962E+00	25 -2.117E-03
26 -4.052E+00	26 -2.207E-03
27 -4.210E+00	27 -2.269E-03
28 -4.350E+00	28 -2.336E-03
29 -4.404E+00	29 -2.440E-03
30 -4.532E+00	30 -2.513E-03
31 -4.671E+00	31 -2.580E-03
32 -4.771E+00	32 -2.663E-03
33 -4.897E+00	33 -2.735E-03
34 -5.012E+00	34 -2.810E-03
35 -5.092E+00	35 -2.901E-03
36 -5.205E+00	36 -2.974E-03
37 -5.279E+00	37 -3.063E-03
38 -5.384E+00	38 -3.138E-03
39 -5.442E+00	39 -3.235E-03
40 -5.501E+00	40 -3.331E-03
41 -5.560E+00	41 -3.426E-03
42 -5.614E+00	42 -3.523E-03
<mark>43 -5.658E+00</mark>	43 -3.619E-03
44 -5.735E+00	44 -3.699E-03
45 -5.748E+00	45 -3.795E-03
46 -5.809E+00	46 -3.875E-03
47 -5.795E+00	47 -3.968E-03
48 -4.293E-01	48 -9.396E-04
49 -2.521E-01	49 -7.426E-04

Table 11

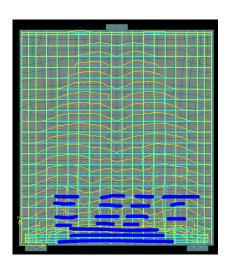


Figure 21

Yielding of the reinforcement is happening at middle of the specimens but the failure is due to the crushing of the concrete at support area.

SLS

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.313E-05
2 -2.636E-01	2 -5.156E-05
3 -5.248E-01	3 -8.991E-05
4 -7.835E-01	4 -1.282E-04
5 -1.040E+00	5 -1.664E-04
6 -1.293E+00	6 -2.044E-04
<mark>7 -1.542E+00</mark>	7 -2.428E-04
8 -1.777E+00	8 -2.833E-04

Table 12

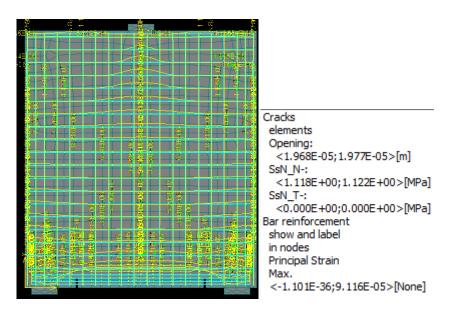
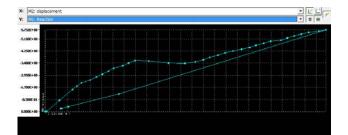



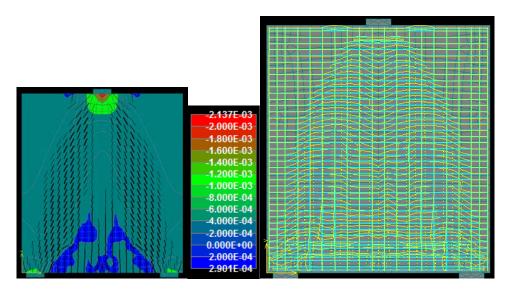
Figure 22

Crack calculation 0,029 mm

D1P2LEFEM

Figure 23

Input data

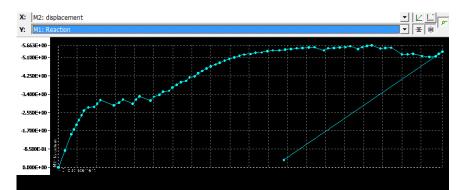

Results

Monitoring points after load step

Step	Value	Step	Value	
<u>-</u>	[MN]		[m]	
1	0.000E+00	1	-1.309E-05	
2	-7.842E-01	2	-1.280E-04	
3	-1.545E+00	3	-2.422E-04	
4	-1.787E+00	4	-2.813E-04	
5	-2.024E+00	5	-3.218E-04	
6	-2.210E+00	6	-3.962E-04	
7	-2.415E+00	7	-4.539E-04	
8	-2.623E+00	8	-5.075E-04	
9	-2.831E+00	9	-5.589E-04	
10	-3.046E+00	10	-6.052E-04	
11	-3.213E+00	11	-6.868E-04	
12	-3.413E+00	12	-7.399E-04	
13	-3.589E+00	13	-7.972E-04	
14	-3.546E+00	14	-9.170E-04	
15	-3.411E+00	15	-1.091E-03	
16	-3.382E+00	16	-1.237E-03	
17	-3.481E+00	17	-1.329E-03	
18	-3.635E+00	18	-1.398E-03	
19	-3.813E+00	19	-1.457E-03	
20	-3.948E+00	20	-1.531E-03	
21	-4.114E+00	21	-1.592E-03	
22	-4.252E+00	22	-1.662E-03	
23	-4.366E+00	23	-1.738E-03	
24	-4.492E+00	24	-1.809E-03	
25	-4.655E+00	25	-1.866E-03	
		26	-1.934E-03	
26	-4.787E+00	27	-1.995E-03	
27	-4.936E+00	28	-2.086E-03	
28	-5.001E+00	29	-2.143E-03	
29	-5.159E+00	30	-2.204E-03	

<mark>30 -5.303E+00</mark>	31 -2.267E-03
31 -5.436E+00	32 -2.332E-03
32 -5.564E+00	33 -2.420E-03
33 -5.634E+00	34 -2.484E-03
34 -5.732E+00	35 -6.534E-04
35 -1.237E+00	36 -2.042E-04
36 -3.482E-01	37 -1.363E-04
37 -2.082E-01	38 -1.424E-04
38 -2.222E-01	39 -1.406E-04
39 -2.177E-01	40 -1.425E-04
40 -2.220E-01	41 -1.437E-04
41 -2.244E-01	42 -1.443E-04
42 -2.259E-01	43 -1.448E-04
43 -2.270E-01	44 -1.452E-04
44 -2.279E-01	45 -1.465E-04
45 -2.308E-01	

No Yielding of the reinforcement, failure happen due to pure concrete crushing at the applied load area.

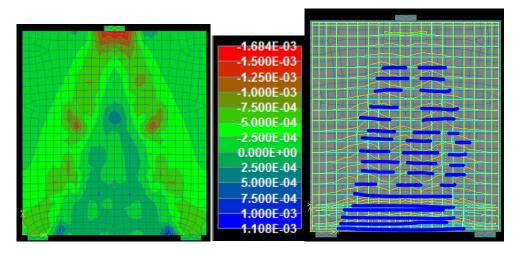

SLS

tep	Value			
	[MN]	Step	Value	
			[m]	
1	0.000E+00			
2	-2.639E-01	1	-1.309E-05	
3	-5.254E-01	2	-5.147E-05	
4	-7.844E-01	3	-8.977E-05	
5	-1.041E+00	4	-1.280E-04	
б	-1.295E+00	5	-1.661E-04	

<mark>7 -1.545E+00</mark>	6 -2.041E-04
8 -1.787E+00	7 -2.422E-04
9 -2.024E+00	8 -2.814E-04
	9 -3.219E-04

Cracks are acceptable

D1P2NLFEM

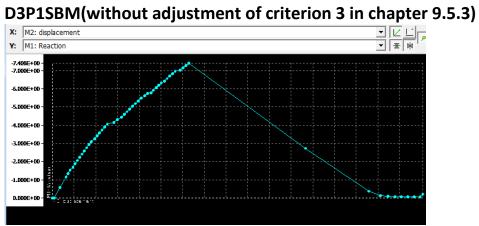

Figure 25

Input data Results

Monitoring points after load step

	-			
Step Value		Step	Value	
[MN]			[m]	
	-			
1 0.000E+00		1	-1.316E-05	
2 -7.829E-01		2	-1.284E-04	
3 -1.541E+00		3	-2.433E-04	
4 -1.749E+00		4	-2.906E-04	
5 -1.978E+00		5	-3.338E-04	
6 -2.202E+00		6	-3.785E-04	
7 -2.413E+00		7	-4.282E-04	
8 -2.638E+00		8	-4.709E-04	
9 -2.778E+00		9	-5.517E-04	
10 -2.798E+00		10	-6.583E-04	
11 -2.953E+00		11	-7.164E-04	
12 -3.115E+00		12	-7.741E-04	
13 -2.883E+00		13	-1.016E-03	
14 -3.002E+00		14	-1.116E-03	
15 -3.145E+00		15	-1.187E-03	
16 -2.961E+00		16	-1.365E-03	
17 -3.148E+00		17	-1.426E-03	
18 -3.304E+00		18	-1.493E-03	
19 -3.093E+00		19	-1.688E-03	
20 -3.282E+00		20	-1.754E-03	
21 -3.360E+00		21	-1.856E-03	
22 -3.513E+00		22	-1.920E-03	

23 -3.551E+00 24 -3.717E+00 25 -3.842E+00 26 -3.960E+00	23 -2.031E-03 24 -2.092E-03 25 -2.168E-03 26 -2.246E-03 27 -2.347E-03
25 -3.842E+00 26 -3.960E+00	25 -2.168E-03 26 -2.246E-03
26 -3.960E+00	26 -2.246E-03
	27 - 2.347 E - 03
27 -4.015E+00	
28 -4.166E+00	28 -2.406E-03
29 -4.221E+00	29 -2.503E-03
30 -4.371E+00	30 -2.562E-03
31 -4.478E+00	31 -2.640E-03
32 -4.581E+00	32 -2.720E-03
33 -4.679E+00	33 -2.799E-03
34 -4.773E+00	34 -2.880E-03
35 -4.862E+00	35 -2.962E-03
36 -4.947E+00	36 -3.050E-03
	37 -3.138E-03
38 -5.105E+00	38 -3.227E-03
39 -5.174E+00	39 -3.319E-03
40 -5.237E+00	40 -3.413E-03
41 -5.262E+00	41 -3.523E-03
42 -5.319E+00	42 -3.617E-03
43 -5.336E+00	43 -3.732E-03
44 -5.387E+00	44 -3.830E-03
45 -5.429E+00	45 -3.934E-03
46 -5.429E+00	46 -4.057E-03
<mark>47 -5.468E+00</mark>	47 -4.162E-03
48 -5.500E+00	48 -4.267E-03
49 -5.526E+00	49 -4.372E-03
50 -5.548E+00	50 -4.480E-03
51 -5.566E+00	51 -4.591E-03
52 -5.577E+00	52 -4.701E-03
53 -5.430E+00	53 -4.872E-03
54 -5.528E+00	54 -4.951E-03
55 -5.551E+00	55 -5.057E-03
<u>56 -5.567E+00</u>	56 -5.162E-03
57 -5.578E+00	57 -5.265E-03
58 -5.629E+00	58 -5.348E-03
59 -5.492E+00	59 -5.495E-03
60 -5.579E+00	60 -5.571E-03
61 -5.632E+00	61 -5.657E-03
62 -5.663E+00	62 -5.743E-03
63 -5.510E+00	63 -5.905E-03
64 -5.544E+00	
65 -5.555E+00	65 -6.098E-03
66 -5.245E+00	66 -6.299E-03
67 -5.240E+00	67 -6.404E-03
68 -5.273E+00	68 -6.502E-03
69 -5.165E+00	69 -6.668E-03
70 -5.124E+00	70 -6.805E-03
71 -5.142E+00	71 -6.914E-03
72 -5.278E+00	72 -6.972E-03
73 -5.370E+00	73 -7.043E-03
74 -3.427E-01	74 -4.136E-03
Table 15	


Yielding of the bars are extensively are happening which give high plastic deformations.

But the failure is due to the excessive yielding of the bars.

SLS

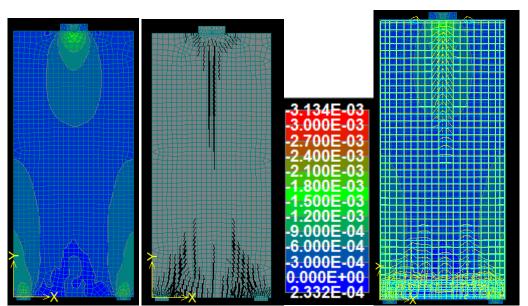
	•
Step Value	
[MN]	Step Value
	[m]
1 0.000E+00	
2 -2.634E-01	1 -1.316E-05
3 -5.245E-01	2 -5.166E-05
4 -7.830E-01	3 -9.009E-05
5 -1.039E+00	4 -1.284E-04
6 -1.292E+00	5 -1.667E-04
<mark>7 -1.541E+00</mark>	6 -2.048E-04
8 -1.749E+00	7 -2.433E-04
	8 -2.906E-04

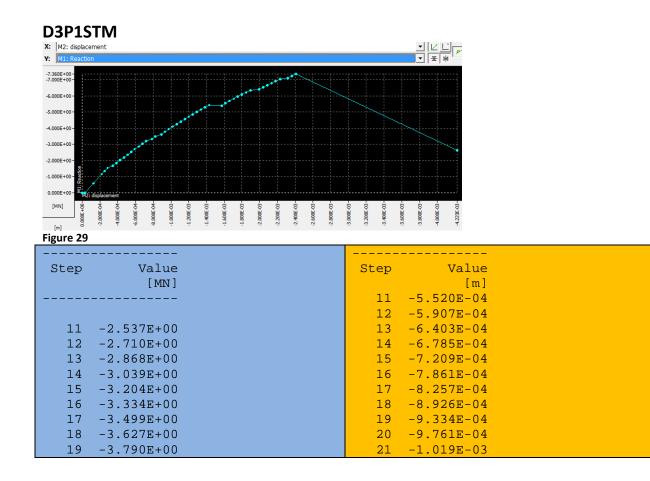
D3P1SBM D3P1STM D3P1LFEM D3P1NLFEM

	Step Value
Step Value	[m]
[MN]	
	1 -2.942E-05
1 0.000E+00	2 -1.250E-04
2 -5.846E-01	3 -2.209E-04
3 -1.160E+00	4 -2.530E-04
4 -1.350E+00	5 -2.851E-04
5 -1.538E+00	6 -3.329E-04
6 -1.696E+00	7 -3.677E-04
7 -1.878E+00	8 -4.033E-04
8 -2.058E+00	9 -4.407E-04
9 -2.235E+00	10 -4.783E-04
10 -2.411E+00	11 -5.147E-04
11 -2.587E+00	12 -5.515E-04
12 -2.762E+00	13 -5.928E-04
13 -2.929E+00	14 -6.298E-04
14 -3.101E+00	15 -6.815E-04
15 -3.251E+00	16 -7.210E-04
16 -3.417E+00	17 -7.593E-04
17 -3.583E+00	18 -8.006E-04
18 -3.744E+00	19 -8.442E-04
19 -3.902E+00	20 -8.841E-04
20 -4.063E+00	21 -9.953E-04
21 -4.157E+00	22 -1.051E-03
22 -4.303E+00	23 -1.114E-03
23 -4.435E+00	24 -1.157E-03
24 -4.591E+00	25 -1.203E-03

25 -4.743E+00	26 -1.248E-03
26 -4.893E+00	27 -1.294E-03
27 -5.041E+00	28 -1.340E-03
28 -5.189E+00	29 -1.386E-03
29 -5.336E+00	30 -1.434E-03
30 -5.480E+00	31 -1.486E-03
31 -5.616E+00	32 -1.533E-03
32 -5.759E+00	33 -1.593E-03
33 -5.788E+00	34 -1.633E-03
34 -5.925E+00	35 -1.672E-03
35 -6.062E+00	36 -1.714E-03
36 -6.197E+00	37 -1.756E-03
37 -6.329E+00	38 -1.809E-03
38 -6.424E+00	39 -1.849E-03
39 -6.564E+00	40 -1.894E-03
40 -6.694E+00	41 -1.937E-03
<u>41</u> -6.826E+00	42 -1.980E-03
42 -6.956E+00	43 -2.060E-03
43 -7.037E+00	44 -2.106E-03
<u>44 -7.165E+00</u>	45 -2.151E-03
45 -7.289E+00	46 -2.197E-03
46 -7.408E+00	47 -4.081E-03
<u>47 -2.729E+00</u>	48 -5.101E-03
48 -3.684E-01	49 -5.291E-03
49 -1.385E-01	50 -5.413E-03
50 -8.529E-02	51 -5.523E-03
51 -6.476E-02	52 -5.627E-03
52 -5.565E-02	53 -5.729E-03
53 -5.259E-02	54 -5.830E-03
54 -5.257E-02	55 -5.931E-03
55 -5.389E-02	56 -5.973E-03
56 -2.044E-01	

Table 17




Figure 28

- No yielding
- Failure due to crushing of the concrete at support area
- Displacement 2,1 mm

SLS

	·
Step Value	Step Value
[MN]	[m]
	·
1 0.000E+00	1 -2.942E-05
2 -1.959E-01	2 -6.126E-05
3 -3.909E-01	3 -9.313E-05
4 -5.848E-01	4 -1.250E-04
5 -7.77E-01	5 -1.570E-04
<mark>6 -7.969E-01</mark>	<mark>6 -1.602E-04</mark>
7 -8.162E-01	7 -1.634E-04

Table 18 Crack 0,013<0,3mm OK

20 -3.948E+00	22 -1.064E-03
21 -4.105E+00	23 -1.112E-03
22 -4.260E+00	24 -1.156E-03
23 -4.408E+00	25 -1.201E-03
24 -4.562E+00	26 -1.246E-03
25 -4.712E+00	27 -1.291E-03
26 -4.862E+00	28 -1.337E-03
27 -5.010E+00	29 -1.384E-03
28 -5.156E+00	30 -1.432E-03
29 -5.299E+00	31 -1.575E-03
30 -5.440E+00	32 -1.614E-03
31 -5.396E+00	33 -1.658E-03
32 -5.556E+00	34 -1.708E-03
33 -5.694E+00	35 -1.752E-03
34 -5.823E+00	36 -1.799E-03
35 -5.961E+00	37 -1.846E-03
36 -6.094E+00	38 -1.893E-03
37 -6.226E+00	39 -1.993E-03
38 -6.355E+00	40 -2.039E-03
39 -6.403E+00	41 -2.086E-03
40 -6.540E+00	42 -2.134E-03
41 -6.667E+00	43 -2.179E-03
42 -6.792E+00	<mark>44 -2.228E-03</mark>
43 -6.921E+00	45 -2.315E-03
<mark>44 -7.040E+00</mark>	46 -2.361E-03
<mark>45 -7.117E+00</mark>	47 -2.407E-03
<mark>46 -7.241E+00</mark>	48 -4.223E-03
47 -7.360E+00	
48 -2.622E+00	

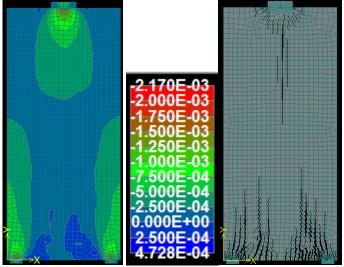
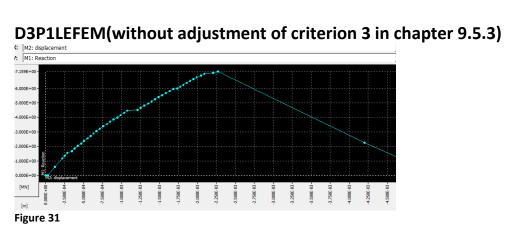



Figure 30

The failure is due to the crushing of the concrete at applied load area at top.

SLS

Crack 0,015 bottom Crack top 0,02

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -2.941E-05
2 -5.861E-01	2 -1.252E-04
3 -1.165E+00	3 -2.213E-04
4 -1.353E+00	4 -2.535E-04
5 -1.542E+00	5 -2.856E-04
6 -1.676E+00	6 -3.475E-04
7 -1.857E+00	7 -3.835E-04
8 -2.030E+00	8 -4.258E-04
9 -2.202E+00	9 -4.691E-04
10 -2.379E+00	10 -5.060E-04
11 -2.543E+00	11 -5.524E-04
12 -2.712E+00	12 -5.947E-04
13 -2.884E+00	13 -6.331E-04
14 -3.055E+00	14 -6.725E-04
15 -3.220E+00	15 -7.153E-04
16 -3.384E+00	16 -7.583E-04
17 -3.534E+00	17 -8.099E-04
18 -3.696E+00	18 -8.508E-04
19 -3.855E+00	19 -8.933E-04
20 -3.992E+00	20 -9.499E-04
21 -4.153E+00	21 -9.893E-04
22 -4.306E+00	22 -1.034E-03
23 -4.462E+00	23 -1.076E-03
24 -4.503E+00	24 -1.212E-03
25 -4.662E+00	25 -1.256E-03
26 -4.813E+00	26 -1.300E-03
27 -4.953E+00	27 -1.353E-03
28 -5.102E+00	28 -1.397E-03
29 -5.249E+00	29 -1.443E-03
30 -5.393E+00	30 -1.490E-03
31 -5.535E+00	31 -1.538E-03
32 -5.675E+00	32 -1.586E-03
33 -5.814E+00 34 -5.951E+00	33 -1.634E-03 34 -1.682E-03
35 -5.975E+00	35 -1.734E-03
36 -6.100E+00	36 -1.775E-03
37 -6.239E+00	37 -1.816E-03
5/ -0.259E+UU	5/ -1.010E-U3

38 -6.373E+00	38 -1.859E-03
39 -6.503E+00	39 -1.904E-03
40 -6.631E+00	40 -1.949E-03
41 -6.762E+00	41 -1.993E-03
42 -6.874E+00	42 -2.046E-03
<mark>43 _6.999E+00</mark>	<u>43 -2.093E-03</u>
44 -7.056E+00	44 -2.206E-03
45 -7.159E+00	45 -2.271E-03
46 -2.256E+00	46 -4.203E-03
47 -4.660E-01	47 -4.978E-03
48 -4.714E-01	48 -5.079E-03

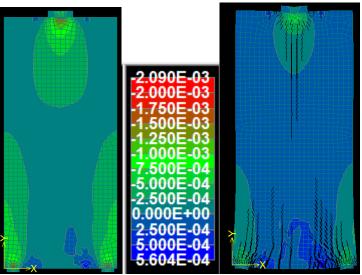
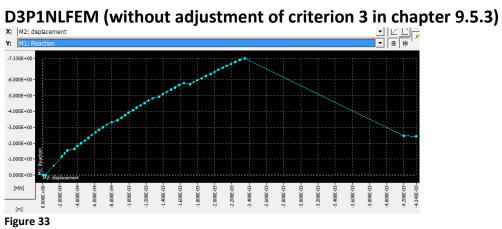



Figure 32

SLS ОК

Step	Value	Step	Value
	[MN]		[m]
13	-2.847E+00	13	-6.548E-04
14	-3.010E+00	14	-6.988E-04
15	-3.174E+00	15	-7.426E-04
16	-3.316E+00	16	-8.021E-04
17	-3.447E+00	17	-8.668E-04
	-3.601E+00	18	-9.146E-04
19	-3.764E+00	19	-9.551E-04
20	-3.923E+00	20	-9.974E-04
21	-4.069E+00	21	-1.048E-03
22	-4.224E+00	22	-1.092E-03
23	-4.377E+00	23	-1.136E-03
24	-4.528E+00	24	-1.181E-03
25	-4.677E+00	25	-1.227E-03
26	-4.819E+00	26	-1.277E-03
27	-4.931E+00	27	-1.352E-03
28	-5.080E+00	28	-1.397E-03
29	-5.226E+00	29	-1.443E-03
30	-5.368E+00	30	-1.490E-03
31	-5.508E+00	31	-1.538E-03
32	-5.647E+00	32	-1.587E-03
33	-5.776E+00	33	-1.641E-03
34	-5.707E+00	34	-1.712E-03
35	-5.832E+00	35	-1.752E-03
36	-5.957E+00	36	-1.798E-03
	-6.080E+00	37	-1.849E-03
38	-6.219E+00	38	-1.896E-03
39	-6.342E+00	39 40	-1.951E-03 -1.997E-03
40 41	-6.480E+00 -6.615E+00	40 41	-1.997E-03 -2.042E-03
41 42	-6.746E+00	41 42	-2.042E-03 -2.091E-03
42 43	-6.871E+00	42	-2.140E-03
43 44	-6.994E+00	43 44	-2.140E-03 -2.189E-03
	-7.110E+00	44 45	-2.240E-03
45	-7.223E+00	45	-2.292E-03
	-7.330E+00	40	-2.350E-03
47	-2.454E+00	47	-4.197E-03
40 49	-2.434E+00	40 49	-4.197E-03
49	2.1236700	49	1.313E-03

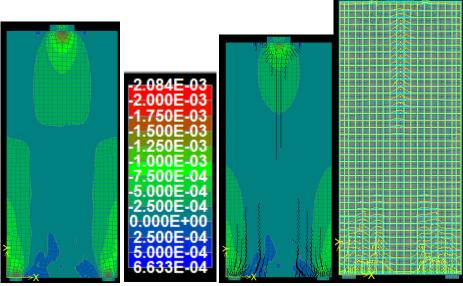
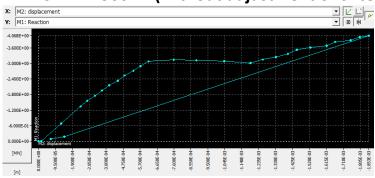



Figure 34 SLS

Crack OK

D1P2SBM D1P2STM D1P2LFEM D1P2NLFEM

Figure 35

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.464E-05
2 -6.812E-01	2 -1.263E-04
3 -1.342E+00	3 -2.368E-04
4 -1.557E+00	4 -2.734E-04
5 -1.751E+00	5 -3.166E-04
6 -1.955E+00	6 -3.557E-04
7 -2.155E+00	7 -3.957E-04
8 -2.337E+00	8 -4.441E-04
9 -2.532E+00	9 -4.836E-04
10 -2.711E+00	10 -5.324E-04
11 -2.900E+00	11 -5.727E-04
12 -3.079E+00	12 -6.187E-04
13 -3.134E+00	13 -7.587E-04
14 -3.121E+00	14 -8.860E-04
15 -3.080E+00	15 -1.042E-03
16 -3.011E+00	16 -1.190E-03
17 -3.149E+00	17 -1.258E-03
18 -3.249E+00	18 -1.332E-03
19 -3.370E+00	19 -1.399E-03
20 -3.528E+00	20 -1.450E-03
21 -3.618E+00	21 -1.526E-03 22 -1.616E-03
22 -3.679E+00 23 -3.829E+00	22 -1.616E-03 23 -1.665E-03
23 - 3.829E + 00 24 - 3.889E + 00	23 -1.005E-03 24 -1.753E-03
25 -4.020E+00	25 -1.803E-03
26 - 4.068E + 00	26 -1.853E-03
27 -1.796E-01	27 -1.446E-04
28 -8.700E-02	28 -6.980E-05
29 -8.506E-02	29 -6.857E-05
30 -8.774E-02	30 -7.003E-05

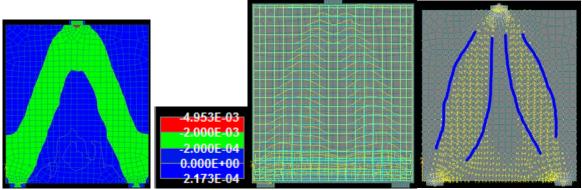
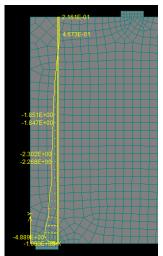
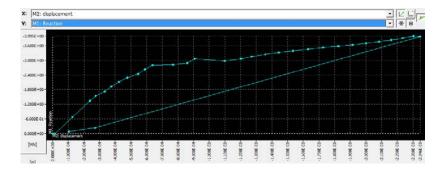



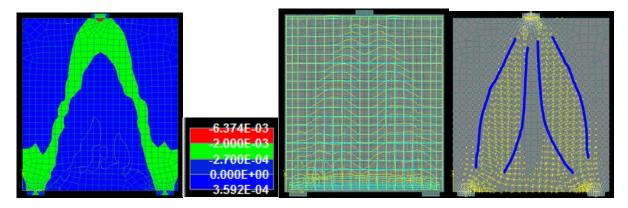
Figure 36



- There is no plastic behavior observed
- NO yielding of the reinforcement happening
- Shear effective height is set to be "d" is the correct estimated value for hand calculation and checks of shear capacity.
- Failure is happened due to the crushing of the concrete at the applied load area.

SLS

Step	Value	Step	Value
	[MN]		[m]
1	0.000E+00	1	-1.464E-05
2	-2.293E-01	2	-5.197E-05
3	-4.564E-01	3	-8.918E-05
4	-6.813E-01	4	-1.263E-04
5	-9.039E-01	5	-1.633E-04
б	-1.124E+00	6	-2.001E-04
7	-1.342E+00	7	-2.368E-04
8	-1.557E+00	8	-2.734E-04



D1P2STM(without adjustment of criterion 3 in chapter 9.5.3)

Figure 38

Step	Value	Step	Value
	[MN]		[m]
1	0.000E+00	1	-1.474E-05
2	-6.797E-01	2	-1.269E-04
3	-1.339E+00	3	-2.380E-04
4	-1.554E+00	4	-2.748E-04
5	-1.722E+00	5	-3.329E-04
6	-1.922E+00	6	-3.760E-04
7	-2.114E+00	7	-4.231E-04
8	-2.292E+00	8	-4.773E-04
9	-2.444E+00	9	-5.460E-04
10	-2.634E+00	10	-5.885E-04
11	-2.812E+00	11	-6.373E-04
12	-2.823E+00	12	-7.679E-04
13	-2.894E+00	13	-8.605E-04
14	-3.070E+00	14	-9.064E-04
15	-2.982E+00	15	-1.099E-03
16	-3.062E+00	16	-1.202E-03
17	-3.159E+00	17	-1.269E-03
18	-3.248E+00	18	-1.357E-03
19	-3.330E+00	19	-1.444E-03
20	-3.399E+00	20	-1.536E-03
21	-3.461E+00	21	-1.632E-03
22	-3.524E+00	22	-1.727E-03
23	-3.579E+00	23	-1.824E-03
24	-3.638E+00	24	-1.916E-03
25	-3.703E+00	25	-2.002E-03
26	-3.774E+00	26	-2.083E-03
<mark>27</mark>	-3.844E+00	27	-2.161E-03
28	-3.917E+00	28	-2.233E-03
29	-3.995E+00	29	-2.304E-03
30	-3.977E+00	30	-2.346E-03
31	-2.326E-01	31	-2.696E-04
32	-8.631E-02	32	-1.041E-04

Sar reinforcement show in nodes Principal Strain Max. <-6.889E-36;2.526E-03>[None]

- There is small plastic behavior observed
- NO yielding of the reinforcement happening
- Shear effective height is set to be "d" is the correct estimated value for hand calculation and checks of shear capacity.
- Failure is happened due to the crushing of the concrete at the applied load area.

SIS	
 Step Value [MN]	 Step Value [m]
$ \begin{array}{r} 1 & 0.000E+00\\ 2 & -2.288E-01\\ 3 & -4.554E-01\\ 4 & -6.798E-01\\ 5 & -9.019E-01\\ 6 & -1.122E+00\\ 7 & -1.339E+00\\ 8 & -1.554E+00 \end{array} $	$ \begin{array}{rcrr} 1 & -1.474E-05 \\ 2 & -5.224E-05 \\ 3 & -8.963E-05 \\ 4 & -1.269E-04 \\ 5 & -1.641E-04 \\ 6 & -2.011E-04 \\ 7 & -2.380E-04 \\ 8 & -2.748E-04 \\ \end{array} $

S1P2LEFEM

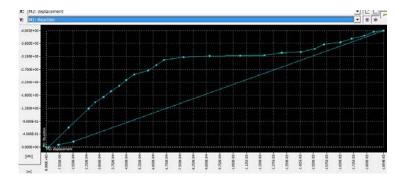
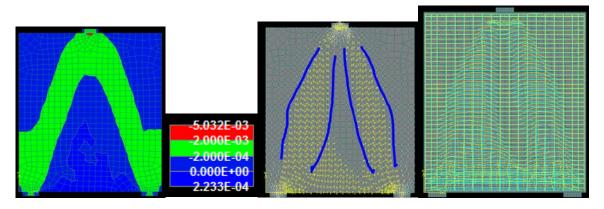
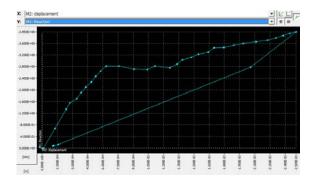



Figure 40

Step Value	Step Value
[MIN]	[m]
1 0.000E+00	1 -1.470E-05
2 -6.803E-01	2 -1.267E-04
3 -1.340E+00	3 -2.377E-04
4 -1.555E+00	4 -2.744E-04
5 -1.743E+00	5 -3.207E-04
6 -1.941E+00	6 -3.634E-04
7 -2.131E+00	7 -4.100E-04
8 -2.329E+00	8 -4.497E-04
9 -2.518E+00	9 -4.937E-04
10 -2.662E+00	10 -5.712E-04
11 -2.843E+00	11 -6.183E-04
12 -3.027E+00	12 -6.608E-04
13 -3.122E+00	13 -7.702E-04
14 -3.162E+00	14 -9.173E-04
15 -3.175E+00	15 -1.089E-03
16 -3.192E+00	16 -1.225E-03
17 -3.270E+00	17 -1.322E-03
18 -3.299E+00	18 -1.430E-03
19 -3.407E+00	19 -1.508E-03
20 -3.566E+00	20 -1.559E-03
21 -3.644E+00	21 -1.651E-03
<mark>22 -3.769E+00</mark>	22 -1.714E-03
23 -3.872E+00	23 -1.786E-03
24 -4.004E+00	24 -1.839E-03
25 -4.043E+00	25 -1.894E-03
26 -1.850E-01	26 -1.518E-04
27 -7.692E-02	27 -6.887E-05
28 -7.438E-02	28 -6.773E-05
29 -7.450E-02	29 -6.805E-05
30 -7.526E-02	30 -6.853E-05
31 -7.517E-02	31 -6.851E-05
32 -7.558E-02	32 -6.867E-05
33 -7.550E-02	33 -6.861E-05
34 -7.538E-02	34 -6.857E-05


- No yielding of the reinforcements
- Failure due to the concrete crushing at support
- small plastic behavior

SLS

Step Value	Step Value
[MN]	[m]
1 0.000E+00	1 -1.470E-05
2 -2.290E-01	2 -5.216E-05
3 -4.559E-01	3 -8.951E-05
4 -6.805E-01	4 -1.267E-04
5 -9.028E-01	5 -1.639E-04
6 -1.123E+00	6 -2.009E-04
7 -1.340E+00	7 -2.377E-04
<mark>8 -1.555E+00</mark>	<mark>8 -2.745E-04</mark>
9 -1.743E+00	9 -3.207E-04

Table 27

D1P2NLFEM(without adjustment of criterion 3 in chapter 9.5.3)

Step Value	Step Value
- [MN]	[m]
	11 -6.322E-04
11 -2.813E+00	12 -7.588E-04
12 -2.818E+00	13 -9.080E-04
13 -2.713E+00	14 -1.040E-03
14 -2.697E+00	15 -1.114E-03
15 -2.814E+00	16 -1.263E-03
16 -2.757E+00	17 -1.333E-03
17 -2.886E+00	18 -1.387E-03
18 -3.041E+00	19 -1.475E-03
19 -3.115E+00	20 -1.545E-03
20 -3.229E+00	21 -1.642E-03
21 -3.297E+00	22 -1.697E-03
22 -3.443E+00	23 -1.796E-03
23 -3.460E+00	24 -1.892E-03
24 -3.532E+00	25 -1.985E-03
25 -3.601E+00	26 -2.113E-03
26 -3.653E+00	27 -2.228E-03
27 -3.707E+00	28 -2.309E-03
28 -3.781E+00	29 -2.381E-03
29 -3.862E+00	30 -2.445E-03
30 -3.941E+00	31 -2.509E-03
<u>31 -3.993E+00</u>	32 -2.059E-03
32 -2.787E+00	33 -1.606E-04
33 -1.275E-01	34 -1.100E-04
34 -8.691E-02	35 -1.085E-04
35 -8.450E-02 36 -8.354E-02	36 -1.082E-04 37 -1.144E-04
36 -8.354E-02 37 -8.970E-02	57 -1.1448-04
57 -0.970E-02	

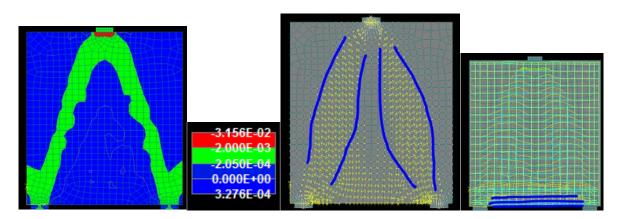
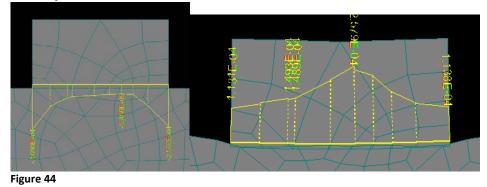


Figure 43


- Yielding begins but not decisive
- Failure is due to the concrete crushing
- Small plastic behavior

Step	Value	Step	Value	
	[MN]		[m]	
1	0.000E+00	1	-1.478E-05	
2	-2.287E-01	2	-5.234E-05	
3	-4.552E-01	3	-8.980E-05	
4	-6.795E-01	4	-1.271E-04	
5	-9.015E-01	5	-1.644E-04	
б	-1.121E+00	6	-2.015E-04	
7	-1.338E+00	7	-2.385E-04	
8	-1.553E+00	8	-2.753E-04	

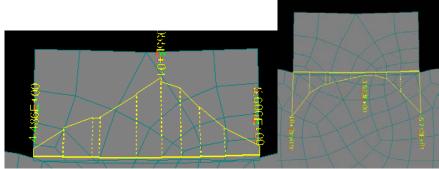
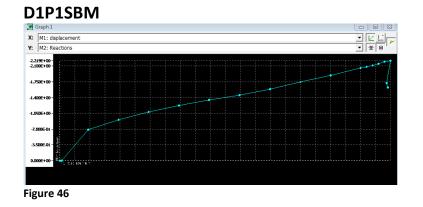
Second Phase (No refinement around the support areas)

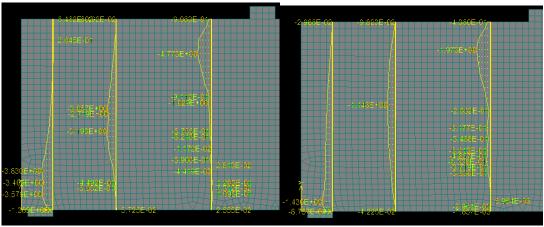
D2P1SBM D2P1STM D2P1LFEM D2P1NLFEM

Principle strain min

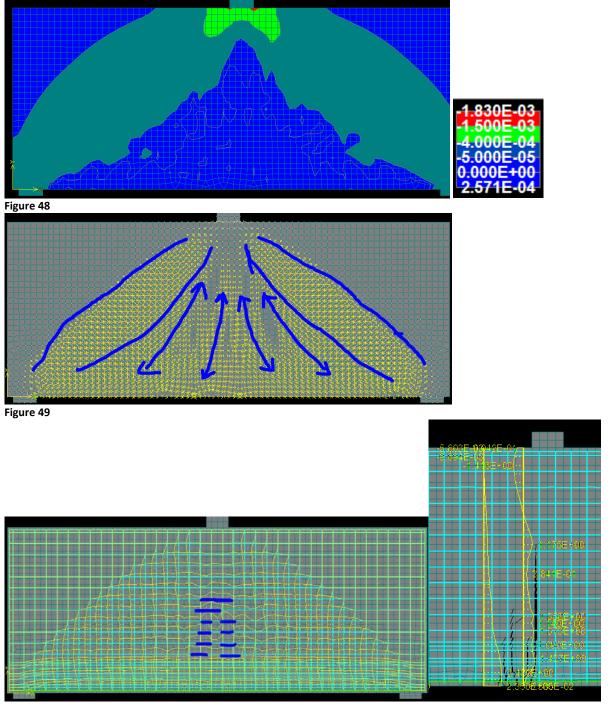
Max

Principle stress


Figure 45

Principle stress min


Step	Value	Step	Value	
	[m]		[MN]	
1	-5.592E-05	1	0.000E+00	
2	-9.429E-04	2	-6.888E-01	
3	-1.953E-03	3	-9.097E-01	
4	-2.952E-03	4	-1.082E+00	
5	-3.959E-03	5	-1.222E+00	
6	-4.967E-03	6	-1.351E+00	
7	-5.976E-03	7	-1.453E+00	
8	-6.988E-03	8	-1.587E+00	
9	-8.000E-03	9	-1.746E+00	
10	-9.002E-03	10	-1.895E+00	
11	-1.000E-02	11	-2.056E+00	
12	-1.020E-02	12	-2.085E+00	
13	-1.040E-02	13	-2.112E+00	
14	-1.060E-02	14	-2.155E+00	
15	-1.079E-02	15	-2.198E+00	
16	-1.099E-02		-2.219E+00	
17	-1.086E-02	17	-1.725E+00	
18	-1.091E-02	18	-1.626E+00	

Design ULS 1040

SLS

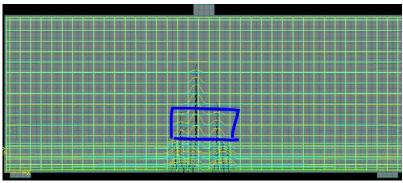


Figure 51

	[MN]
1 -5.592E-05	
2 -1.967E-04	1 0.000E+00
3 -3.448E-04	2 -2.445E-01
4 -5.311E-04	3 -4.995E-01
5 -7.168E-04	4 -6.590E-01
6 -8.265E-04	5 -7.676E-01
<mark>7 -9.231E-04</mark>	6 -7.663E-01
	7 -8.206E-01

Table 31

D2P1STM

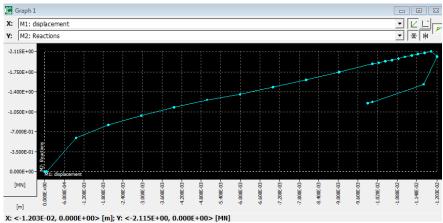


Figure 52

Step Value			
[m]	Step Value		
	[MN]		
1 -5.591E-05			
2 -9.606E-04	1 0.000E+00		
3 -1.958E-03	2 -5.926E-01		
4 -2.960E-03	3 -8.191E-01		
5 -3.968E-03	4 -9.876E-01		
6 -4.976E-03	5 -1.132E+00		

7 -5.990E-03	6 -1.262E+00
8 -7.003E-03	7 -1.360E+00
9 -8.020E-03	8 -1.486E+00
10 -9.030E-03	9 -1.615E+00
11 -1.004E-02	10 -1.753E+00
12 -1.024E-02	11 -1.897E+00
13 -1.044E-02	12 -1.917E+00
14 -1.065E-02	13 -1.943E+00
15 -1.085E-02	14 -1.963E+00
16 -1.105E-02	15 -1.987E+00
17 -1.125E-02	16 -2.020E+00
<mark>18 -1.145E-02</mark>	17 -2.040E+00
<u>19 -1.165E-02</u>	18 -2.068E+00
20 -1.185E-02	19 -2.089E+00
21 -1.203E-02	20 -2.115E+00
22 -1.161E-02	21 -2.024E+00
23 -1.005E-02	22 -1.536E+00
24 -9.900E-03	23 -1.225E+00
	24 -1.203E+00

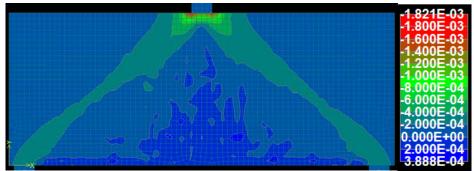


Figure 53

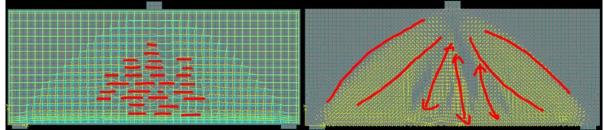


Figure 54

SLS

Step Value	Step Value
- [m]	- [MN]
1 -5.591E-05	1 0.000E+00
2 -1.967E-04	2 -2.444E-01
3 -3.447E-04	3 -4.994E-01

4	-5.497E-04	4	-5.825E-01
5	-7.998E-04	5	-6.468E-01
б	-1.003E-03	б	-7.507E-01
7	-1.198E-03	7	-8.004E-01
8	-1.412E-03	8	-7.708E-01
9	-1.618E-03	9	-7.743E-01
10	-1.819E-03	10	-8.306E-01
11	-2.016E-03	11	-9.092E-01

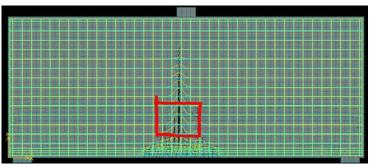


Figure 55

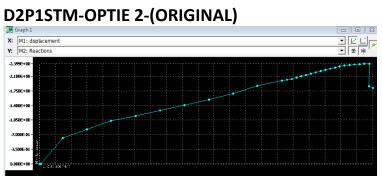


Figure 56

[m]	Step Value
5 -3.939E-03	[MN]
6 -4.943E-03	
7 -5.943E-03	5 -1.147E+00
8 -6.945E-03	6 -1.280E+00
9 -7.943E-03	7 -1.408E+00
10 -8.935E-03	<mark>8 -1.541E+00</mark>
11 -9.939E-03	9 -1.688E+00
12 -1.014E-02	10 -1.870E+00
13 -1.034E-02	11 -1.998E+00
14 -1.053E-02	12 -2.014E+00
15 -1.073E-02	13 -2.033E+00
16 -1.093E-02	14 -2.067E+00

17 -1.113E-02	15 -2.099E+00
18 -1.132E-02	16 -2.131E+00
19 -1.152E-02	17 -2.162E+00
20 -1.172E-02	18 -2.192E+00
21 -1.192E-02	19 -2.222E+00
22 -1.211E-02	20 -2.252E+00
23 -1.231E-02	21 -2.281E+00
24 -1.251E-02	22 -2.309E+00
25 -1.271E-02	23 -2.334E+00
26 -1.291E-02	24 -2.354E+00
27 -1.312E-02	25 -2.370E+00
28 -1.332E-02	26 -2.383E+00
29 -1.352E-02	27 -2.392E+00
30 -1.351E-02	28 -2.399E+00
31 -1.367E-02	29 -2.398E+00
	30 -1.864E+00
	31 -1.820E+00

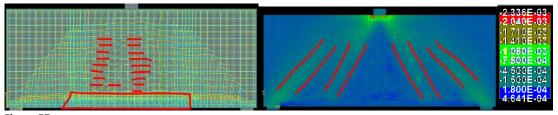


Figure 57

SLS

tep Value	
[m]	Step Value
	[MN]
1 -5.590E-05	
2 -1.967E-04	1 0.000E+00
3 -3.447E-04	2 -2.445E-01
4 -5.402E-04	3 -4.996E-01
5 -7.962E-04	4 -6.201E-01
6 -1.009E-03	5 -6.789E-01
7 -1.113E-03	6 -7.461E-01
	7 -7.928E-01

D2P1STM-Option 3-(Original)

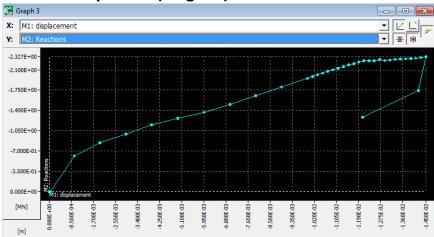
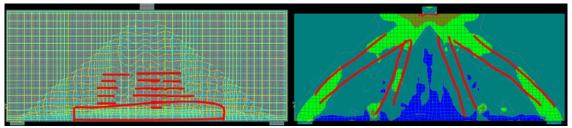



Figure 58

Step Val	Lue	Step	Value	
[[m]		[MN]	
1 -5.594E-		1	0.000E+00	
2 -9.642E-	-04	2	-6.164E-01	
3 -1.951E-		3	-8.442E-01	
4 -2.946E-		4	-9.930E-01	
5 -3.943E-		5	-1.156E+00	
6 -4.947E-		б	-1.261E+00	
7 -5.955E-		7	-1.368E+00	
8 -6.954E-		8	-1.506E+00	
9 -7.949E-		9	-1.656E+00	
10 -8.943E-		10	-1.804E+00	
11 -9.938E-		11	-1.951E+00	
12 -1.013E-	-	12	-1.984E+00	
13 -1.033E-		13	-2.012E+00	
14 -1.053E-		14	-2.042E+00	
15 -1.073E- 16 -1.093E-		15	-2.072E+00 -2.100E+00	
		16 17	-2.100E+00 -2.129E+00	
17 -1.112E- 18 -1.132E-	-	18	-2.129E+00	
19 -1.152E-	-	10	-2.186E+00	
20 -1.172E-		20	-2.209E+00	
20 1.172E 21 -1.192E-		20	-2.233E+00	
22 -1.212E-	-	22	-2.254E+00	
23 -1.232E-		23	-2.260E+00	
24 -1.252E-	-	24	-2.260E+00	
25 -1.272E-	-	25	-2.274E+00	
26 -1.292E-		26	-2.261E+00	
27 -1.312E-		27	-2.271E+00	
28 -1.332E-		28	-2.281E+00	
29 -1.352E-	-02	29	-2.284E+00	
30 -1.372E-	-02	30	-2.291E+00	
31 -1.392E-	-02	31	-2.293E+00	
32 -1.411E-	-02	32	-2.301E+00	
33 -1.431E-	-02	33	-2.311E+00	
34 -1.450E-	-02	34	-2.327E+00	

SLS

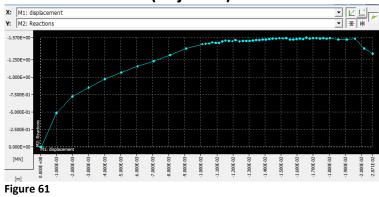

Step Value	Step Value
[m]	[MN]
1 -5.594E-05	1 0.000E+00
2 -1.967E-04	<u>2 -2.444E-01</u>
3 -3.448E-04	<u>3 -4.994E-01</u>
4 -5.396E-04	4 -6.053E-01
5 -7.925E-04	<u>5 -6.583E-01</u>
6 -1.008E-03	<u>6 -7.293E-01</u>
7 -1.216E-03	7 -7.818E-01
8 -1.318E-03	<u>8 -7.730E-01</u>
9 -1.423E-03	<u>9 -7.737E-01</u>
10 -1.524E-03	10 -7.902E-01

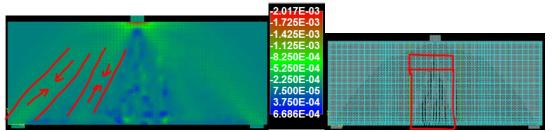
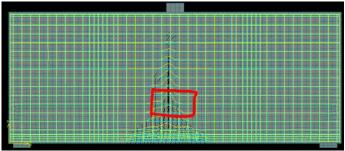
Table 37

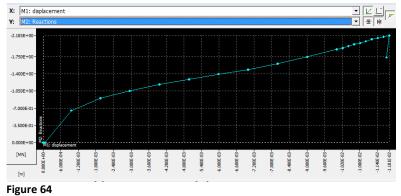
Figure 60

D2P1STM-OPTIE 2-(Adjusted)

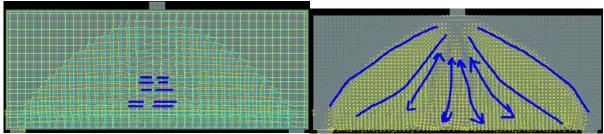
Step	Value	Step	Value
	[m]		[MN]
1	-5.640E-05	1	0.000E+00
2	-9.968E-04	2	-4.861E-01
3	-2.001E-03	3	-7.219E-01
4	-3.004E-03	4	-8.510E-01
5	-4.011E-03	5	-9.744E-01
6	-5.029E-03	б	-1.069E+00
7	-6.047E-03	7	-1.156E+00
8	-7.063E-03	8	-1.234E+00
9	-8.074E-03	9	-1.321E+00
10	-9.077E-03	10	-1.412E+00
11	-1.009E-02	11	-1.479E+00
12	-1.030E-02	12	-1.481E+00
13	-1.050E-02	13	-1.486E+00
14	-1.071E-02	14	-1.501E+00
15	-1.092E-02	15	-1.495E+00
16	-1.113E-02	16	-1.497E+00
17	-1.133E-02	17	-1.515E+00
18	-1.153E-02	18	-1.527E+00
19	-1.174E-02	19	-1.523E+00
20	-1.197E-02	20	-1.519E+00
21	-1.216E-02	21	-1.539E+00
22	-1.240E-02	22	-1.517E+00
23	-1.261E-02	23	-1.522E+00
24	-1.283E-02	24	-1.523E+00
25	-1.304E-02	25	-1.521E+00
26	-1.324E-02	26	-1.529E+00
27	-1.344E-02	27	-1.537E+00
28	-1.365E-02	28	-1.537E+00
29	-1.386E-02	29	-1.543E+00
30	-1.407E-02	30	-1.545E+00
31	-1.427E-02	31	-1.553E+00
32	-1.448E-02	32	-1.556E+00
33	-1.469E-02	33	-1.555E+00
34	-1.490E-02	34	-1.561E+00
35	-1.511E-02	35	-1.561E+00
36	-1.532E-02	36	-1.561E+00
37	-1.555E-02	37	-1.546E+00
38	-1.576E-02	38	-1.541E+00

39 -1.596E-02	39 -1.551E+00
40 -1.617E-02	40 -1.557E+00
41 -1.638E-02	41 -1.551E+00
42 -1.658E-02	42 -1.570E+00
43 -1.679E-02	43 -1.559E+00
44 -1.700E-02	44 -1.561E+00
45 -1.721E-02	45 -1.565E+00
46 -1.742E-02	46 -1.559E+00
47 -1.762E-02	47 -1.562E+00
48 -1.784E-02	48 -1.559E+00
49 -1.804E-02	49 -1.562E+00
50 -1.858E-02	50 -1.545E+00
51 -1.910E-02	51 -1.545E+00
52 -1.961E-02	52 -1.555E+00
53 -2.018E-02	53 -1.413E+00
54 -2.071E-02	54 -1.342E+00


Figure 62

SLS


1 -5.640E-05	Step Value
2 -1.976E-04	[MN]
3 -3.460E-04	
4 -5.676E-04	1 0.000E+00
5 -8.251E-04	2 -2.427E-01
6 -1.033E-03	3 -4.959E-01
7 -1.235E-03	4 -5.147E-01
8 -1.462E-03	5 -5.713E-01
9 -1.682E-03	6 -6.861E-01
10 -1.887E-03	7 -7.516E-01
	8 -7.503E-01
	9 -7.967E-01
	10 -8.696E-01

D2P1LEFEM

Step Value	Step Value
[m]	[MN]
1 -5.606E-05	1 0.000E+00
2 -9.573E-04	2 -6.539E-01
3 -1.949E-03	3 -9.046E-01
4 -2.953E-03	4 -1.051E+00
5 -3.963E-03	5 -1.184E+00
6 -4.977E-03	6 -1.290E+00
7 -5.987E-03	7 -1.397E+00
8 -6.993E-03	8 -1.490E+00
9 -8.002E-03	9 -1.607E+00
10 -9.012E-03	10 -1.746E+00
11 -1.002E-02	11 -1.899E+00
12 -1.022E-02	12 -1.931E+00
13 -1.042E-02	13 -1.966E+00
14 -1.061E-02	14 -2.002E+00
15 -1.081E-02	15 -2.028E+00
16 -1.101E-02	16 -2.065E+00
<mark>17 -1.121E-02</mark>	17 -2.106E+00
18 -1.141E-02	18 -2.131E+00
<u> 19 -1.161E-02</u>	19 -2.154E+00
20 -1.181E-02	20 -2.183E+00
21 -1.171E-02	21 -1.737E+00

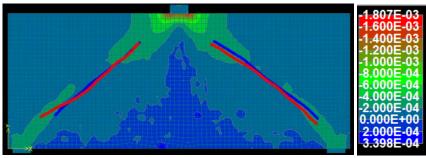
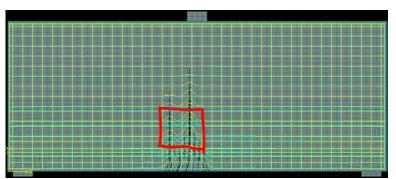



Figure 66

SIS

Step	Value	Step	Value
	[m]		[MN]
1	-5.606E-05	1	0.000E+00
2	-1.265E-04	2	-1.222E-01
3	-2.007E-04	3	-2.501E-01
4	-2.748E-04	4	-3.776E-01
5	-3.489E-04	5	-5.046E-01
6	-4.229E-04	6	-6.311E-01
7	-5.472E-04	7	-6.356E-01
8	-6.446E-04	8	-7.114E-01
9	-7.323E-04	9	-7.918E-01
10	-8.540E-04	10	-7.787E-01
11	-9.688E-04	11	-7.983E-01

D2P1 NLFEM

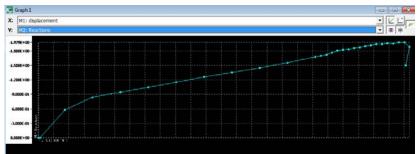
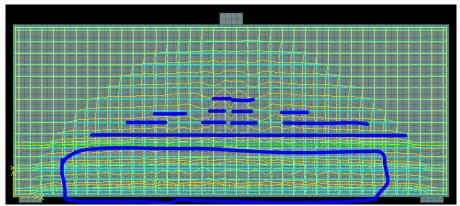



Figure 68

Step Value	Step Value
- [m]	[MN]
8 -6.985E-03	8 -1.356E+00
9 -7.989E-03	9 -1.448E+00
10 -8.992E-03	10 -1.557E+00
11 -9.996E-03	11 -1.680E+00
12 -1.020E-02	12 -1.701E+00
13 -1.040E-02	13 -1.724E+00
14 -1.059E-02	14 -1.764E+00
15 -1.079E-02	15 -1.809E+00
16 -1.099E-02	16 -1.827E+00
17 -1.119E-02	17 -1.837E+00
18 -1.139E-02	18 -1.862E+00
19 -1.160E-02	19 -1.877E+00
20 -1.180E-02	<mark>20 -1.899E+00</mark>
21 -1.200E-02	21 -1.917E+00
22 -1.219E-02	22 -1.948E+00
23 - <mark>1.240E-02</mark>	23 -1.942E+00
24 - <mark>1.260E-02</mark>	24 -1.965E+00
25 -1.281E-02	25 -1.955E+00
26 -1.300E-02	26 -1.978E+00
<mark>27 -1.321E-02</mark>	27 -1.979E+00
28 -1.339E-02	28 -1.882E+00
29 -1.326E-02	29 -1.504E+00

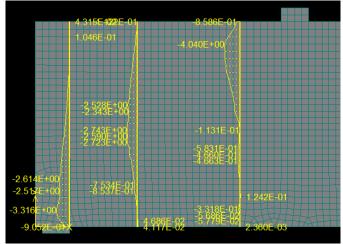


Figure 70

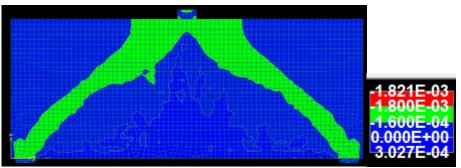
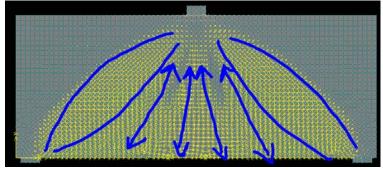



Figure 71

SLS

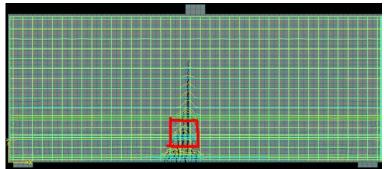


Figure 73

Step	Value	Step	Value	
-	[m]	-	[MN]	
1	-5.623E-05	1	0.000E+00	
2	-1.268E-04	2	-1.219E-01	
3	-2.011E-04	3	-2.495E-01	
4	-2.754E-04	4	-3.766E-01	
5	-3.496E-04	5	-5.033E-01	
б	-4.238E-04	6	-6.295E-01	
7	-5.571E-04	7	-6.018E-01	
8	-6.478E-04	8	-6.825E-01	
9	-7.802E-04	9	-6.942E-01	
10	-8.263E-04	10	-7.372E-01	
11	-8.789E-04	11	-7.572E-01	
12	-9.266E-04	12	-7.937E-01	
13	-9.802E-04	13	-8.109E-01	
14	-1.033E-03	14	-8.363E-01	