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Summary

This master thesis presents research into buckling of thin hyperboloid shells struc-

tures. This type of structure is typically applied as the large cooling towers at coal

fired electricity plants. However, modelling cooling towers is not the objective of

this research. The objective of this research is to understand the buckling behaviour

of shells with negative Gaussian curvature, which cooling towers have. In previous

research it was found that negatively curved shells are not very sensitive to imper-

fections and that the first buckling mode provides the most critical imperfection.

This research starts from the assumption that a design formula can be derived for

predicting the ultimate load of negatively curved shells. A step in this direction

is understanding how hyperboloid shells buckle and determining what parameters

influence the ultimate load.

A finite element model was developed with suitable properties. The influence of the

boundary conditions has been studied. The element size and the aspect ratio have

been optimised. Various methods of adding imperfections have been considered. The

buckling modes have been studied for a large range of curvatures. The influence of

the imperfection amplitude on the load displacement curve has been determined by

geometrical nonlinear analysis and the arc length method.

A parameter study has been performed of a large range of geometries. Varied are

the radii of curvature, the thickness, the height of the hyperboloid. Also varied are

Youngs modulus and Poissons ratio. In total 700 geometrical nonlinear analysis have

been performed. The results have been stored in a large data base in Matlab. This

includes the support reactions, membrane forces, moments and stresses at each load
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step.

A series of Matlab scripts were developed to generate various graphs. The graphs

were used to form a detailed understanding of the buckling behaviour of negatively

curved shells and to identify remarkable features. A two-phased curve fitting method

has been used is to obtain a formula for the ultimate buckling load and a formula for

the peak membrane force of inward buckles.

The main conclusion is that hyperboloid shells of significant curvature carry load in

three ways: the outward buckles, the inward buckles and the material in-between.

First the outward buckles fail then the inward buckles fail and finally the material

between the buckles fails. A design method is proposed based on the local linear

elastic stress state.



CHAPTER 1

Introduction

1.1 Study Background

Shell structures are widely used in engineer applications because of their free form

shapes. Thin-wall shells are most practical, for they provide efficient ways to achieve

large strength-weight ratios. Compared with other structural types, the critical sit-

uation of shell structures is not the material strength, shells often deform in buck-

ling before yielding. Moreover, practical experience and experiments show that shell

buckling is not a gradually process [3], it can happen suddenly. It may not provide

sufficient deformation as a warning, which is the most serious shortcoming in shell

applications, fig 1.1(a) shows the buckling of a cylinder shell in axial compression

[14].
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4 CHAPTER 1. INTRODUCTION

(a) Example of thin-wall shell buckling (b) Knock-down factor of cylinders with 1st mode im-

perfections and varying imperfection

Figure 1.1: Experimental results of the thin-wall cylinder shells [3]

In analysis of thin-wall shell structures, the investigation shows that they are

quite sensitive to tiny imperfections and experiments show that the buckling loads

have a large standard deviation, in fig 1.1(b). As a result, the code provides a lower

bound limitation for engineer application. Such an uniform and conservative limit

value greatly restricts the development of thin-wall shells. The geometrical non-

linear buckling analysis in Finite Element Analysis (FEA) is also used in practice.

However, nonlinear analysis is not only time consuming, but also sensitive to many

analysis parameters.

It is known what exactly happens just before and during buckling and how this

is affected by curvature and boundary conditions. An unsolved problem is whether

shells buckle locally or globally.

1.2 Objective

The objective of this research is to understand the buckling behaviour of thin-wall

shell structures, especially of hyperboloids including geometrical imperfections.

However, this research is restricted to elastic material behaviour, and the formula

does not include material non-linearities such as yielding of steel or cracking of con-

crete. A geometric imperfection in the middle of the specimen is designed to avoid
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influence of the boundary conditions on the buckling behaviour.

1.3 Procedure

It is assumed that buckling starts locally in a small part of the shell. This part is

described by curvatures, thickness, material properties, imperfection, membrane force

and loading condition. The shell around this part is very important too. Therefore,

the part is extended in all directions with uniform curvature and membrane force as

much as possible.

A script has been developed in the FE program ANSYS for generating shells of

different curvature and loading. The generated models include hyperboloids, cylinders

and spheroids with geometrical imperfections, edge loading and surface loading. The

script performs a geometrical nonlinear analysis up to buckling failure. This script

has been used to do a parameter study on curvatures, imperfection amplitude and

membrane forces.

To develop a suitable model, varying geometric conditions and different test con-

ditions has been tested under geometric nonlinear analysis, which has been stored in

a test result database. Analyse on the database has investigated the buckling load

carrying system and design formulas on both global buckling reaction force and the

internal membrane force in the ultimate buckling state.
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Figure 1.2: Work flow of the research procedure

1.3.1 Procedure Details

• Step 1 Generate the FE model.

The FE model is generated by the script with ANSYS Parametric Design Lan-

guage (APDL). The global geometry and element shape are generated in para-

metric method, the sensitivity of which are investigated. The different geome-

tries, cylinder, hyperboloid and spheroid are modelled.

• Step 2 Apply the boundary condition

The default boundary condition is the hinged constraint. Moreover, the varying

restraints are tested, to observe the influence of the boundary condition.

• Step 3 Linear analysis

The linear elastic analysis is based on the perfect structure. Compared with the

hand calculation, its result is used to check the load condition and the boundary

condition.

• Step 4 Linear buckling analysis

The linear buckling analysis is to estimate the smallest buckling factor of the

structure. Besides, the serious of the buckling shapes are obtained.
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• Step 5 Imperfection implementation

The first linear buckling modal shape is implemented as the default imperfec-

tion, the imperfection shape by higher order modal shapes are tested as well.

• Step 6 Geometric nonlinear buckling analysis

In order to get the entire path of the buckling development, the Arc length

method is applied. The radius of the load factor is based on the ratio of the first

buckling load. In model generation, the GNBLA (Geometric Nonlinear Buckling

Analysis) are designed to test the model robust of the different conditions,

including the element size and shape, the boundary condition, the imperfection

type, the model accuracy and the arc length method options. The results of

these are utilized into the generation of the local buckling analysis database.

In local buckling analysis, the model in different geometries are operated with

GNBLA.

• Step 8 Post-process analysis

The preliminary post-process results as the F-D (Force-Displacement) curve and

the element internal force behaviour are extracted by macro scripts directly.

They are used to analysis the model behaviour, and the adjustments are made,

depending on that.

• Step 9 Database generation

The geometric parameters are varied to investigate the their influence on the

buckling. The specified GNLBA results are exported to a database in Matlab.

Two types of results are recorded in database, they are proceeded in Matlab

sparse matrix. The database includes results at the ultimate state and the

selected results of every load step.

• Step 10 Data analysis

The relation between the local buckling force and the global buckling analysis

is investigated. The buckling load carrying system has been discussed. Besides,

by curve fitting method, the numerical simulation has been finished to estimate

capacity of the internal force components. Different independent parameter

combinations have been tested.

1.3.2 Thesis Description

In Chapter 2, the background knowledge and the related nonlinear analysis methods

are described. The process of the FE model generation and the parametric study
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on model sensitivity are illustrated in Chapter 3. Based on the model discussion,

the Chapter 4 generates a standard model at first, and finishes the GNLBA in 700

models. The database of the nonlinear analysis is created. With the numerical

curve fitting, the data analysis is proceeded. Both of the buckling formula in global

scope(Fu(
Rm

Rk
, t)) and the local scope(nyy(

kxx
kyy
, t)) are simulated in numerically.



CHAPTER 2

Preceding Knowledge Study

2.1 Method of Buckling Analysis

The fig 2.1, shows different paths of the buckling behaviour.

Figure 2.1: Different buckling path [3]

9
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2.1.0.1 Linear Buckling Analysis

The linear buckling analysis on the perfect structure is the directest method. Before

the buckling occurs, there is no deformation observed. The buckling happens suddenly

and when the bifurcation point is reached, the deformation increases dramatically,

path(BD). To estimate perfect shell buckling, the linear buckling analysis is the most

efficient method.

The linear buckling analysis is a kind of eigenvalue analysis [11], based on the linear

equation eq 2.1. The KG is the geometric stiffness for a unit load. The critical linear

load factor(λ) is solved, when it makes the structure stiffness matrix (K) unstable.

(K − λ ·KG) · x = 0 (2.1)

In reality imperfections are inevitable, and the actual load follows the path (OEF).

The perfect model is always an upper boundary of the estimation. In practice, engi-

neers are able to estimate a imperfect model capacity by the reduction factor. This

approach is acceptable by AISC [5]. There are different ways to evaluate the buck-

ling capacity. The numerical method to solve the estimated perfect capacity is called

linear buckling analysis.

λa ≤ C · λcr
γm

(2.2)

where λa is the allowable applied load factor, the λcr is the critical linear buckling

load factor, C is the empirical knockdown factor, γm is a safety partial factor.

2.1.1 Geometric Nonlinear Buckling Analysis

With imperfections, there is no bifurcation point, and the model behaviour is influ-

enced by the initial imperfection, in path (OED). Different with the linear estimation,

it is able to take the imperfection directly, the finite element method provides an ap-

proach to track the entire path of the F-D path. The geometric nonlinear calculation

is operated to solve the equilibrium state at each step. There are several methods are

optioned in the nonlinear analysis.

2.1.1.1 Newton-Raphson Method

In Newton-Raphson Method [11], the load is applied by linear increments. In each

step, the stiffness matrix is calculated and the equilibrium state is determined with

several iterations. One approach is called standard Newton-Raphson, the slope of

the load increments changes on each load steps. Hence, the the stiffness matrix is
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calculated at every step and every iteration. The other approach, modified Newton-

Rahpson, increases the load in fixed increment slope. It does not changes the stiffness

matrix at every iteration and saves a lot of computational load, but the cost is more

iteartion is needed. However, both approaches could only control the load with pos-

itive load increment. For buckling analysis, it is not able to track the unloading

state.

Figure 2.2: Comparison between the Newton-Raphson (left) and Arc length (right)

[11]

2.1.1.2 Arc length Method

To follow the post-buckling path, the arc length method [11] is required. Different

from the Newton-Raphon Method, the load control in arc length method is applied

with load factor radius. The equilibrium state is searched along the specified radius,

which is capable to achieve not only positive load increments but also negative load

increments. Because there is not always one equilibrium path and the paths may be

very close to each other, the most difficult in arc length is to set the range of the

radius. The arc length radius as the key parameters has its maximum and minimum

limitation. An extremely small arc length radius may cause the unrealized unloading

path, and too large arc length radius may fail find out the equilibrium state.

2.1.1.3 Normal Flow Method

Different from the previous two method, the normal flow method [14] is a less well-

known algorithm. A family of Davidenko curves is generated by the small variation

δ to the nonlinear equation system, in eq 2.3.
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f(λ, d) = δ (2.3)

For the one-dimension problem, the Davidenko curves are in dash line in fig 2.3. After

the first tangential trial approaches the point B, the successive iterations return the

convergent solution at point F along the path normal the Davidenko curves family.

Figure 2.3: Normal flow algorithm for one-dimension problem [14]

2.1.2 Koiter Asymptotic Theory

Different with proceeding methods to achieve the ultimate load and the entire load

path, the asymptotic theory focus the post-buckling behaviour. It describes the load

behaviour in eq 2.4.

λ

λc
= 1 + as · ξ + bs · ξ2 + · · · (2.4)

The Koiter theory [12] is an asymptotic method to describe the nearby behaviour

with the intrinsic modal information and the imperfection through potential energy.
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Figure 2.4: Koiter analysis: load-deflection curves [12]

Because engineers are only concerned about post-buckling is stable (fig 2.4.b)

or unstable (fig 2.4.c), which is imperfection insensitivity or imperfection sensitivity.

With the limit items ξ, it provides sufficient accuracy around the range of the buckling

occurrence. However, the expression of the potential energy needs to be derives at

first, it restrains the application of the theory within simple geometries.

2.2 Column Behaviour Assumption

Figure 2.5: Test apparatus for columns supported by a semi circular ring support [16]
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In 1940, Von Karman [16] has pointed out the inward buckle is the critical zone. He

also proposed to simulate cylinder buckling as a longitudinal strip with the nonlinear

elastic support. The radial deflection is restrained partially. The nonlinear elastic

supported column buckling behaviour is an interesting assumption, and it supposes

column-like behaviour in the local buckle as well.

2.3 Local Buckling Study

For local buckling analysis, the E.L.Axelrad [8] has tried to solve the behaviour of

tube bending with the asymptotic theory. It was hypothesised that: the buckling

instability is determined by the stress state and the shape of the shell inside the zone

of the initial buckles. An analytical function to describe the shape of the local im-

perfection is generated. In this case, with the simplified assumption on the local site

stress, the Talyor expansion is applied and the asymptotic result is solved analyti-

cally. Finally, the relation between the internal force and the geometric parameters

are derived. This research was restrained to cylinders, and in the present study its

approach to describe the ultimate stress state is applied in this thesis on negative

double curvature as well.

2.4 Dimension Analysis

The dimension analysis is a method to find out the relation between the physical

parameters. The basic idea is to obtain the relation in units, and extend it to the

correspondent parameters, especially to those problem with a lot of parameters and

the physical relation is unknown.

In recent years, R.K.Annabattula and P.R.Onck [1] apply this method into the

study of the nano channel buckling effect. The dimension analysis combined with

the derivation of the potential energy provides them a perfect geometric independent

parameters to describe the buckling process. The series of test results are generalized

into a general curves successfully.

In the shell buckling formula study, the same dilemma exists. The combination of

the geometric independent parameters are under selected. The dimension analysis is

applied. However, It is supposed to derive the correspondent potential energy to find

out a more clear physical relation between the geometric parameters in the future

research.



CHAPTER 3

Model Development

3.1 Model Generation

3.1.1 Finite Element Model

The perfect models are strictly defined by the mathematics expression, and three

kinds of geometry are used, in eq 3.1, eq 3.2 and eq 3.3. To evaluate the curvature

influence directly, the models have the same top and bottom radius value. The similar

volume specimen makes the models comparable. Changing combinations of radius

generate different curvatures in the middle area of the models, in which location the

elements are focused on their buckling behaviours in results. The default thickness

is defined as the 1/500 ratio to the height at first, and this ratio was investigated

in the latter analysis. Considering the models are axisymmetric and horizontally

symmetric as well, the half model has been used in the calculations, which save 3/4

of the computation load. The accuracy and symmetric boundary conditions of half

structure model have been investigated.

{
x2 + z2 = R2

b

0 < y < ht
(3.1)

 (
2
√
x2 + z2 − (Rb + a))2 + (y +

h0
2

)2 = R2
b

0 < y < ht

(3.2)

15
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 (
2
√
x2 + z2 − (Rb − a))2 + (y +

h0
2

)2 = R2
b

0 < y < ht

(3.3)

,in which a = 2

√
R2
k − h0

2

2

3.1.2 Mesh Generation

3.1.2.1 Indirect Method

In the indirect method, the FE model is generated in two steps, the surface geometry

and the FE model. For axis-symmetrical model, the Ansys has provided the command

to rotate a planar curve into a surface geometry. The rotated curve is relied on the

analytic formula of the curve, which is been divided into vertical segments. The

rotation is also required to set the perimeter segments as well. It is obvious that the

smaller segments are, the more the accurate surface geometry can be fitted. In the

mesh procedure, the element size is decided, and the mesh is based on the lattice of

the surface.

In indirect method, the numbers of the segments in the vertical direction and the

perimeters are chosen, and the element size is also specified.

3.1.2.2 Direct Method

The direct method generates the FE model with the node coordination directly. The

node information is calculated by the analytic formula before, the node distance in

both directions are defined. According to the node sequence, the mesh is determined

by linking the elements counter-clockwise, such sequence is defined by element prop-

erty and has an influence on the normal vector direction of the surface. Shell Element

281 is applied. The mid-side nodes provide sufficient accuracy to fit the curvature of

the geometry shape, especially for the double curvature geometry.

In the direct method, both of the distance in the vertical and the perimeters are

specified.
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Figure 3.1: Shell element and the nodes of a cylindrical shell (ANSYS, Shell281 [15])

In this method, the geometric accuracy relies on the number of segments in both

the height and the perimeter because the ANSYS simulates the curve in segments.

The element size is tailored, and the square shape elements are possible, whose aspect

ratios are exact by 1. In the direct method, the element size and shape are controlled

by the distance of the nodes. There are only two parameters needed, the distance in

height and the distance in perimeter, which are equivalent to the distance in height

and the aspect ratio.

Compared with the indirect method, the direct method has one key parameter

less, which gives an explicit control on element size and shape.

Moreover, the hinge restraints are applied to the model. Hence there are no

displacement in the bottom ring and for the top ring the horizontal displacement in

both direction are restrained. In order to reduce the edge influence, all the rotation

displacement are released.

3.2 Buckling Analysis Process

3.2.1 Pre-processing

The pre-process generates the perfect FE model with the direct method, which has

already been described in section 3.1.2.2.
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3.2.2 Linear Buckling Analysis

Linear buckling analysis (LBA) is used to estimate the limit of the structural per-

formance. In this research, three kinds of load are tested, uniformly distributed

compression, imposed displacement and the surface pressure. If, for example, a unit

load is applied, the eigenvalue solved by the LBA is the buckling load factor.

For LBA, the 'Block Lanczos Method '[11] is used, which can expand the linear

buckling results in sequence. To improve the computation efficiency, the centre shift

is set. The program computes the numbers of BUC CONT buckling modes centred

besides BUC CENT. A coarse element size is used at first, and an estimated eigenvalue

is treated as the centre of the next iteration with smaller size, as 60% element size.

The iterations are terminated, when the reducing element size has no influence on the

eigenvalue. Moreover, if the iteration step is too large (less than 50%) the eigenvalue

cannot be solved successfully.

BUCOPT,LANB,BUC CONT,BUC CENT

3.2.3 Imperfection

Geometric imperfections are added to simulate the real behaviour buckling behaviour

of the specimen, and to control the buckling performance. The imperfection is im-

ported by one of two methods, depending on the type of imperfection.

Entire Model

ANSYS provides the command UPGEOM to update the entire structure from the

specific load step. For the modal shape is expected to be imported, the NUM MOD is

defined to select the order of the modal shape, and IMP AMP means the amplitude of

the expected imperfection.

UPGEOM,IMP AMP,1,NUM MOD,LBA,rst

Part of Model

With the other type of imperfection, the imperfection import is based on the

modification of FE model geometry. For the artificial imperfection, the imperfection

on each node are calculated before, and the node modification command is used to

modified the node coordination. Similarly, if the imperfection reduction factor and

pre-tension method are applied, a modification loop is designed to modify the node

or element information of the selected partial model.
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3.2.4 Nonlinear Buckling

3.2.4.0.1 two termination options

The 'arc length method 'is used to overcome the buckling point of the structure.

In nonlinear buckling analysis, an imposed boundary displacement is applied to the

model. In ANSYS, there are two load-step methods. In common, the load is subdi-

vided into several explicit load-step, and in each load step, there are several sub-step.

While ANSYS [10] also support to use only one load step, and the sub-step size are

controlled by the arc length method. Because we are interested in the ultimate load,

the option in the arc length method that is to terminate when it reaches the first

peak in order to reduce the computation load.

ARCTRM,L

The command also provides the option to continue the analysis over the post-

buckling point. The displacement of a specified node is monitored, when it reaches

some limited value after buckling has happened. For instance Nodes num is the mon-

itor with the horizontal direction-UY, and the analysis will be terminated if the

displacement beyond LBT value.

ARCTRM,U,LBT,Nodes num,UY

3.2.4.0.2 difference between arc length options

Both two termination conditions are tested, the first buckling modes and the varying

imperfection amplitude. The curves are the load path with post-buckling parts, which

are solved with the command ARCTRM,U, and the compared dots are the peak load of

the other option ARCTRM,L, which is automatically terminated when the first limit is

reached. For the lower imperfections, both methods achieve similar peak load on the

vertex. However, with the great imperfections, there are no typical snap-back and

the automatically terminated option stays at a lower ultimate state. The relation

between these two methods are compared in table 3.1, the automatically terminated

results is 12% lower than the other, if the imperfection is larger than 0.5t.
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Figure 3.2: Force versus displacement for different Arc length termination options

(LP-118/LP-120: Cylinder, R=2500mm, H=10000mm, t=10mm, E=210000MPa,

ν=0.3, 1stmodal imperfection, δimp=0.1t-0.9t, different arc-length termination con-

ditions)

Table 3.1: Relative difference between arc length options

δamp
Fl−Fe

Fe

0.1t +1.88 %

0.3t +0.01 %

0.5t -12.27 %

0.7t -12.24 %

0.9t -9.64%

,where the Fl - GNLBA is terminated automatically when the first limit reaches

Fe - GNLBA is terminated with the specified displacement, and the snap-back is

overcome

3.2.5 Post-Processing

The post-process is designed to deal with the nonlinear buckling results, and several

parameters are monitored, to describe the specimen behaviour in the test.
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Force-Displacement The F-D curve is the most direct graph to show the process

of specimen buckling. The vertical displacement of the node, that is loaded, is selected

to be plotted versus the total reaction force. For perfect models, with the load

development, the displacement increases in a linear part at first, when it reaches the

bifurcation point, there are two paths that could happen. However, in this thesis,

we induce the imperfection, there is no bifurcation point any more, and we are not

interested in the post-buckling behaviour. The peak load at the snap-back is treated

as the ultimate load.

Figure 3.3: Example of a typical force-displacement curve (LP-120: Cylinder,

R=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection,

δimp=0.2t)

Maximum Horizontal Deformation Position To control the most protuber-

ance position of the specimen, the radial deformation of each load step is monitored,

and the nodes with the maximum displacement are recorded. The relative height of

these nodes is plotted with increasing load. The following graph is used to evaluate

whether the specimen buckling dents are stable or not, for some uniform distribu-

tion imperfection dents, the protuberance sometimes does not stay in the middle,

but they jump a lot; and for some concentrated imperfection, like hyperboloid, the

protuberance are stable exactly at the hr = 0.5, which is the equator, fig 3.5 .
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Figure 3.4: Example of a load - relative height of max radial deformation (inward &

outward) (LP-120: Cylinder, R=2500mm, H=10000mm, t=10mm, E=210000MPa,

ν=0.3, 1stmodal imperfection, δimp=0.2t)

Figure 3.5: Indication for radial deformation and its relative height (LP-120: Cylin-

der, R=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfec-

tion, δimp=0.2t)

Force-Radial Deformation
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At the buckling step, the maximum radial deformation is plotted with the load.

It is designed to monitor the imperfection development. On the other hand, for some

stiff specimen, whose F-D curve is hard to overcome the snap-back, the F-P curve is

a good alternative to evaluate the structure behaviour.

Figure 3.6: Example of a force-radial deformation curve (LP-120: Cylinder,

R=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection,

δimp=0.2t)

Element Result

The element results of the buckling zone is a direct graph to show what happens in

buckling. As the buckling theory describes, the buckling is the sudden energy transfer,

from the membrane deformation to the bending deformation [2]. The membrane

force increases linearly, until the buckling point, and the bending moment increases

dramatically. However, it depends on the extent of the imperfection, the bending has

already appeared in the specimen, and its relation with the amplitude is investigated.
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Figure 3.7: Example of element internal force result (LP-120: Cylinder, R=2500mm,

H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp=0.2t)

3.3 Boundary Conditions

3.3.1 Half Model Boundary

Regarding the axial-symmetrical specimen, it is observed that the analysis results

are symmetry also. To reduce the computation load, the half model is supposed,

and the boundary condition is followed with symmetrical deformation, in which one

out-of-plane translational deformation and two in-plane rotation deformation are con-

strained, and the others three DOFs are released. For instance, the xoy is the sym-

metrical plane, UZ, RotX and RotY is constrained. In this subsection, the results

between the entire model and the half model are compared.
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Figure 3.8: Symmetrical simplification boundary condition

The cylinder specimens are tested in both methods, and the first order of buckling

modal shapes are used as imperfection with δ = 0.1t. The following table shows the

model information comparison. The GNLBA results are compared with the inward

radial deformation.

Table 3.2: Comparison between the entire model and the half simplification

Entire Model Half Model difference %

Node amount 109004 54807 49%

Fc 72076445 N 72076445 N 0%

Fu(GNLBA) 47466188 N 47471759 N 0.0117%

Calculation time(GNLBA) 102mins 41 mins 59.8 %
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(a) Entire model

(b) Half model

Figure 3.9: Curve about F-inward radial deformation between the half model

and entire model (LP-118/LP-210: Hyperboloid, Rd=2500mm, Rk=20000mm,

H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp=0.5t,

entire model and half model)

It is evident that the half-model simplification has stimulated the identical be-

haviour with the entire model successfully, and it saves almost 60% computation

load. Note that the half model simplification assumes the deformation are symmet-

ric, including the linear buckling results, which means only the even numbers of the

buckling wave will appear. The influence on the buckling wavelength should not be
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neglected, unless there are sufficient buckles in the horizontal direction. For the test

models in this research, the number of the horizontal waves are beyond 16, whose

accuracy are sufficient enough.

3.3.2 Boundary Conditions Variation

3.3.2.1 Experiment Introduction

According experiments carried out by Lundquist [13] and Donnell [6], axial-compressed

cylinders are loaded with two thick steel plate. The thick steel plates are assumed stiff

enough to transfer the uniform distribution load. All the test specimens are produced

carefully, to avoid any small wrinkle, which makes them nearly perfect models.

They applied different methods to initiate buckling in the middle area. For

Lundquist’s experiments, to stiffen the ends of specimens, a light metal ring was

soldered at each end of the cylinder. Because the sheet is wrapped about a mandrel

and soldered at the seam and the weld against the plate of the loading machine is

critical. From Donnell’s, the ends of the specimens are fixed or clamped in the loading

machine. The strong restraints prevent the buckling patterns from appearing near

the ends.

(a) Donnell’s clamped specimen [6] (b) Lundquist’s hinged specimen [13]

Figure 3.10: Test set-up in with previous research

Regarding the test conditions, the fixed end provides the strongest boundary, it
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is expected to prevent the edge buckling pattern. In practice, the pure clamped

(Fixed-Fixed) end may induce local in-extensional deformation at the edge. The

hinge boundary (Hinged-Hinged) is suggested to avoid the edge bending, and both

ends are constrained by the translational degrees of freedom. Moreover, the hinge

boundary is neglected the friction between the contact. Hence, there is a variation of

only the tangential direction (Tan-Tan) is constrained, to release the friction of the

expansion. Besides, the restraints in the radial direction (Radi-Radi) only and the

top free (Free-Hinged) is also tested as comparisons.

(a) Free-Hinged (b) Tan-Tan (c) Radi-Radi (d) Fixed (e) Hinged

Figure 3.11: Five kinds of boundary conditions

3.3.2.2 Different Boundary Conditions

The LBA as an estimation trial, is applied to assess the structural behaviour under

different boundary conditions.

For the cylinder and the spheroid model, the insufficient end constraints will induce

the buckling pattern just near the edge. And only if the end is fixed or hinged, the

buckling could take place in the middle.

(a) Top free & bottom

hinged

(b) Tangential (c) Radial (d) Fixed (e) Hinged

Figure 3.12: 1st modal in hyperboloid buckling of different boundary (LP-200: Hyper-

boloid, Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3,

1stmodal imperfection, δimp=0.5t, different boundary conditions)

In hyperboloid, the relation between the extent of the edge restraint and the linear

buckling pattern is much more clear. In the free edge model, the buckling dents
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inevitably take place in the less restraint side, and the edge buckling dents appears.

With the increase of With the assistant of hoop force, the restrained deformation is

sufficient to prevent the edge buckling. The difference between the hinged constraints

and the fixed constraints are limited. Moreover, the model with the only radial

constraints has the similar behaviour of the hinged constraints. From the F-D curve of

different boundaries, the radial restraints provide the similar stiffness of the structure.

The stable edge shape provides the identical structural behaviour with the hinged

model in the start stage, but the stress concentration at the edge damage the specimen

in 20% load comparing with the hinged boundary. However, such phenomenon does

not exist in the cylinder, and the lack of hoop force makes the load be an eccentricity

in cylinder end and the cantilever behaviour damage the specimen in much earlier

load stage. The tangential boundary is designed to release the edge expansion in

friction, but it is insufficient to provide the edge constraint, and the model fails very

early.

Figure 3.13: F-D curve in hyperboloid model with different boundary

conditions(LP-200: Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm,

t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp=0.5t, different bound-

ary conditions)
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(a) Radial (b) Hinged

Figure 3.14: myy−in moment internal force (LP-200-5/LP-200-6: Hyperboloid,

Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3,

1stmodal imperfection, δimp=0.5t, boundary conditions in radial restraints and hinge

restraints)

It is concluded that the end restraints have an influence on the buckle distribution,

and the strong restraint is beneficial to stabilize the dents away from the edge. To

simulate the friction to release part of the radial expansion, the interface elements

are supposed to used on the edge.

3.4 Imperfection Generation

3.4.1 Imperfection Introduction

Following the report of Chen [4] on the shell imperfection analysis, there are four

basic imperfection model in shell nonlinear buckling analysis, which are the modal

shape, the combination of modal shapes, the periodical function shape and the ran-

dom imperfection generation. Moreover, the combination method offers the lowest

result, but the accuracy is traded from the iterations on the combination factors; and

the random imperfection method relies on the mesh result too much, hence its not

stable enough. Neither of these two methods is a suitable alternative to generate the

imperfection in batch through the script.

On the other hand, the first modal shape imperfection provides the enough ac-

curacy, and the clear physical meaning of the periodical function shape is suitable
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for the parameter sensitivity analysis. Hence, in this test, both the first order modal

shape and the periodical function shape are used as imperfection.

The amplitude of the imperfection shape from the first order of modal shape is

adjusted by parameter of ratio to the thickness, which is designed to adjust model

imperfection extents. Besides, with the help of the periodical function, the dents

distribution and extent are simulated with the parameters in wavelength m/n and

the amplitude as well.

In the latter analysis, because the distribution of dents in the modal shape de-

pends on the model instinctive shape and the buckling locations are not able to be

stabilised at the middle area. If the elements buckle near the boundary, the influence

of the edge disturbance can not be neglected. Besides, the buckles distributed in the

edge area have a great influence on the force path, and the compression strips appears

rather than the uniform distribution compression appears, section 3.4.3. To eliminate

the edge influence caused by the unexpected modal shapes, the imperfection reduc-

tion factor is supposed. This factor is designed to concentrate the imperfections in

the middle of the area, and reduce the imperfections near the edge. The imperfection

reduction factor is described through the piecewise function, the function keeps the

unit value in the middle range, to generate the imperfection shape; and the decreas-

ing function value is defined in reaching the boundary. Moreover, the type of the

decreasing function is investigated, and the sensitivity study is required.

3.4.2 Imperfection Type

The discussion on initial imperfection is based on deterministic imperfection and

stochastic imperfection [7]. The applied deterministic imperfection method is based

on imperfection shape and extent. Although Koiter's comment that only qualitatively

the degree is sensitive on buckling behaviour. The other study shows imperfection

shape influences the buckle as well. The imperfection shape is always able to be

expanded to series of linear buckling modal shapes. Considering the computation

capacity and the difficult of the analysis, the first buckling modal shape is treated as

almost the critical imperfection shape in practice. For practical view, the first linear

buckling shape is applied in finite element analysis.

3.4.2.1 Modal Shape Imperfection

The modal shape is generated from the linear buckling analysis. In previous research

[4], the single modal imperfection and the combination of modal shape have been

investigated. In fig 3.15, different modal shapes have different reduction effects, but
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the first modal is the most practical method to generate the imperfection.

Figure 3.15: Ultimate with different modal shape imperfection (LP-117: Cylinder,

Rd=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, different modal shape

imperfections, δimp=0.5t)

The combination of several models is possible to reach the lower boundary of the

buckling load. However, the random combination does not produce a conservative

result, and it is necessary to enumerate the combination as much as possible, which

will cost much calculation load. His report also suggests that the use of first buckling

modal shape as the imperfection pattern is a balanced choice, and the knocked down

factor is validated.

In modal imperfection method, the key parameter is focused on the selection of

modal shape and the amplitude of imperfection.

3.4.2.2 Artificial Imperfection

Because of the location of the modal shape imperfection depends on the different

modal shapes, the edge protuberance imperfection will induce the buckling dents

develop nearby the boundary. In order to investigate the free element buckling be-

haviour, the edge disturbance should be avoided. It is supposed to localize the maxim

imperfection dent in the middle. Besides, to simulate the linear buckling shape, the

periodical wave is used to generated serial dents, whose extents reduces from middle

to edge.
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The analytic Artificial Imperfection is provided by Dr.Ir. P.C.J. Hoogenboom.

Uimp = −{Imph · cos(nwh · π · hr) + Impr · cos(nwr · π ∗ rr)} · cos2(hr ∗ π) (3.4)

hr =
0.5 · h0− h

h0

rr =
r

2 · π
Imph; Impr imperfection amplitude in height direction and in radial direction

nwh;nwr the number of imperfection in both directions

h height of the centre of the specified element

r height of the centre of the specified element

h0 height of the specimen

The last part of the eq 3.4, cos2(hr ∗π), is applied to decay the extent of the dents

from the equator to the edge.

The parameter in the periodical function is used to control the number of imper-

fection wave in both directions. From the point of describing wave development, the

wavelength, which is h0/nw should be large enough to contain at least six elements.

Besides, the number of waves is restrained by the influence length and the corre-

spondent critical buckling pattern. Hence, the critical wavelength is also discussed

later.

(a) Mathematical expanded surface plot (b) Example of the artificial im-

perfection on the hyperboloid

Figure 3.16: Artificial imperfection and its application
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However, the character of the artificial imperfection expression makes the peaks

concentrate in the middle of the model, which is only suitable to be applied to the

cylinder and the hyperboloid model. The critical buckling pattern of the spheroid

model is distributed at the boundary part, and hence the middle concentrated pattern

is not a safe solution. The trial has been done, with a comparison between the first

modal shape and the artificial imperfection. The artificial imperfection does not

stimulate the buckling, but it even postpones the buckling happen. For this reason,

the application of the artificial imperfection model on spheroid is limited.

Figure 3.17: F-D comparison between the imperfection and the first modal imperfec-

tion (LP-122-10/LP-128-3: Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm,

t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection and artificial imperfection,

δimp=0.5t)

In artificial imperfection formula, three key parameters are mentioned: amplitude

and the wave length in both direction.

3.4.3 Reduction Factor Modification

Both of the previous imperfection methods are based on the global geometry, it can

not deal with the edge distributed imperfection, which appears in some cylinders

and most of spheroid. Such buckling phenomenon is quite different with the middle

concentrated pattern. Because the edge disturbance is precluded in this research, the

author try to make a modification method to prevent the edge buckling dents.
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(a) Original model (b) Zoom in to the middle dents

Figure 3.18: Edge distributed imperfection and its middle part

(a) Original model (b) Imperfection reduced model

Figure 3.19: Original modal shape and imperfection reduced shape (LP-125-5/LP-

185-1: Cylinder, Rd=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3,

1stmodal imperfection and imperfection reduction factor method, δimp=0.5t)

The reduction factor is supposed to concentrate the imperfection in the middle,

and the author try to figure out a method to generate similar critical imperfection

dents distribution pattern. The main purpose of reduction factor is to modify the

dents extent by their distance to the equator. According to the distance to equator,

the piecewise function is separated into two parts: 1). in the middle part, the constant

value is used, and the maximum extent is amplified to the expected imperfection

amplitude. 2). in the edge part, an exponential function is applied to reduced dents

extent, and if the reduced extent is still larger than the maximum in the middle, the

reduced process will be executed again.
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Rd =

ramp =
δimp

δmid
if h0

2
< hre < hedge

rdec = e1−|
hr
0.5
−1| if h < hedge

(3.5)

in which δmid is the maximum radial displacement in the middle area; δimp is the

imperfection amplitude.

The main feature of reduction factor is that this method is based on the original

buckling model, and the distribution of the dents are preserved.

Moreover, the reduction factor also solves the problem on the non-uniform bound-

ary reaction force. The specimen is designed to loaded under the uniform compression.

However, if the boundary reaction is zoomed in, the actual reaction force is the peri-

odical distribution. The protuberance in the edge have an effect on the reaction force

distribution, the periodical force distribution will change the axial compression into

the axial-symmetrical column compression, the load transfers through discrete area

rather than the whole ring part. In detail, the fig 3.20 shows that the edge protuber-

ance make the bypass for force into neighbourhood area. The reduced dents extent

will equalize the edge load distribution, and the expected uniform compression load

distribution is produced.

Figure 3.20: Non-uniform boundary reaction force

In the reduction factor modification method, the key parameter is focused on the

selection of the basic modal shape and the reduction formula, the default option is

the exponential formula, reduction area as well.
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3.4.4 Edge Tension Stress

The tension in edge area is a much more straight method to avoid the buckling near

the edge. The pretension will neutralize the buckling compression stress increment.

The initial condition of the specimen is following.

(a) Pretension in the edge zone (b) Comparison of the influence of the edge pretension

Figure 3.21: Comparison between the pretension in edge zone (LP-127-1/LP-118-

5: Cylinder, R=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, edge pre-

tensioned and1stmodal imperfection, δimp=0.5t)

The effect of stabilization and concentration is expected. Moreover, the influence

is restrained in the edge local are, and the entire model behaviour, like the stiffness and

ultimate load, does not change greatly. It is stated that the initial stress is induced

in six degrees, and only the ring stress is modified, the others are not pre-tensioned.

Otherwise, the load is not able to transform successfully. The edge tension stress is

a direct method to stabilize a middle area buckling, with the uniform distributed.

In edge tension method, the key parameter is height of tension zone, and the

tension stress extent.
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3.5 Linear Buckling Result

3.5.1 Cylinder

According to the first twelve buckling modal shapes with the Easp = 1.0. The buckling

modal are classified into three kinds, which are middle concentration, edge concen-

tration, and uniform distribution. Besides there is also one important shape in the

higher modal, which is the ring pattern, also called axis-symmetrical shape(fig 3.23).

Table 3.3: First 100 buckling eigenvalue of the cylindrical shell specimen (LP-129:

Cylinder, R=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, LBA)

order eigenvalue rel to 1st %

1 22.9426

2 22.9431 0.00217935

3 22.9587 0.07017513

4 22.9657 0.10068606

5 22.9917 0.21401236

...

10 23.0078 0.28418749

20 23.0349 0.40230837

30 23.0539 0.48512374

40 23.0632 0.52565969

50 23.0714 0.56140106

100 23.2308 1.25617846

According to the table 3.3, there are limited difference between the first 100 eigen-

values. It indicates that the estimated buckling load factor are value, with slight

imperfection, it is possible to stimulate most of the buckling shape.

In this research, the free edge zone is expected, and the edge disturbance should

be avoided, such as the 3rdbuckling modal. For this reason, the dents distribution

should be checked carefully in latter tests.
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(a) 1st − 6thBuckling Modes

(b) 7th − 12thBuckling Modes

Figure 3.22: First 12 buckling modes with Easp = 1.0 (LP-129: Cylinder, R=2500mm,

H=10000mm, t=10mm, E=210000MPa, ν=0.3, LBA)

Figure 3.23: Ring pattern buckling in 50th

3.5.2 Double Curvature

The buckling shapes of the hyperboloid and the spheroid are much more stable with

the aspect ratio, and the first modal does not change any more with the Easp. Because

of the distinct limit between the eigenvalue, the double curvature is insensitive to the

FE parameters.

The hyperboloid buckles in the chessboard pattern, and in each wave, there are

at least 20 elements. It is sufficient to describe the buckling wave.

However, it is noted that the deformation of spheroid concentrates in the edge

area and the wavelength are smaller than the dents,Figure. 3.33. It is assumed that

there are not enough element density to generate the buckling wave, and the buckle

are restrained. Hence, the element size is reduced to 60%, msize = 44to ensure the

sufficient element density. The buckling pattern keeps the same, each buckle wave
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contains sufficient elements to deform.

(a) λ = 9.14 (b) λ = 9.57 (c) λ = 9.77 (d) λ = 10.07 (e) λ = 10.10

Figure 3.24: 1st − 5th Hyperboloid buckling modal and eigenvalue at Easp =

1.0 (LP-130: Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm,

E=210000MPa, ν=0.3,LBA)

(a) λ = 20.46 (b) λ = 20.46 (c) λ = 20.47 (d) λ = 20.47 (e) λ = 20.48

Figure 3.25: 1st − 5th Spheroid buckling modal and eigenvalue at Easp = 1.0, (LP-

131: Spheroid, Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm, E=210000MPa,

ν=0.3, LBA)

3.6 Parametric Analysis

3.6.1 Model Parametric Analysis

In this chapter, the further investigation is focused on the mesh parameters in the

numerical model generation. The preliminary study has already shown that the

model behaviours strongly depends on the element size and the element aspect ratio

as well. The aspect ratio is the main variable in following tests, and both the fine

and coarse element size are adopted. Besides, in the nonlinear buckling analysis, the

imperfection is induced. The influence of the mesh parameters is examined in three

different geometry separately.
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The element nodes are arranged in vertical sequence, and the rotation of angle

between each column is constant. Therefore, the vertical height and rotation angle are

used to define the element shape. In order to describe the element, two parameters

are used element size and aspect ratio. The element size is defined as vertical size

of the element, and the aspect ratio describes the shape, i.e. aspect ratio is by 1,

meaning that the square shape.

It is obvious that element size influence the accuracy of the numerical model,

and it is preferable to mesh the model as smaller as possible. However, the smaller

element size will increase the amount of elements quadratically, and the computation

capacity may limit the element size.

The common requirement on the element size is to limit its influence on linear

buckling analysis, which means the eigenvalue is stable, even if the smaller mesh is

utilized. Besides, the element size should be fine enough to generate protuberance of

the shape, too coarse meshes are not able to shape the deformation smoothly. It is

estimated that there are 15 buckling waves in vertical. Considering the total height

is 10000, and each buckling wave contains ten elements, means the element size is

nearly msize = 10000
10∗15 = 60. Hence, the coarse is defined to 90, and the fine is 60.

3.6.1.1 Geometry Influence on Model Generation

3.6.1.1.1 geometry influence

The element size and the aspect ratio are two key parameters in the model gener-

ation. The smaller mesh is always expected, but how to balance the computation

load and the accuracy is discussed here. Besides, considering the node coordination

are equivalent distance the vertical, the double curvature geometry does influence the

element shape. In this section, their influence is going to investigate.

Easp =
mheight

msize

,where the msize is the element size of the element

3.6.1.1.2 aspect ratio

The finite element model is generated through the node coordination direction. Ac-

cording to the definition, the lower Easp, the more slender element shape is; the high

Easp means the flat element shape is. In order not to import the ill element shape,

the Easp is restrained between 0.8 to 1.2. In the process, the nodes are mapped with

equivalent distance and rotation angle in height and perimeter direction. Hence, the

cylinder is meshed into congruent size, and the aspect ratio will change slightly in a
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double curvature model, such as the hyperboloid and the spheroid. It is clear that

such aspect ratio variation will change smoothly if the model is meshed in a smaller

element, and the contour of the Easp is plotted following.

Figure 3.26: Aspect ratio distribution in different geometries

For cylinder specimen, the linear buckling shows the similar shapes for the first

modal of the eigenvalue analysis, the peak dents are focus at the middle. The wave

number in vertical and horizontal also keep stable with the varying aspect ratio,

except for the smallest aspect ratio model there are two wave less than the others.

For correspondent eigenvalue of the first modal, the difference is limited in % also.

In the view of the general distribution are identical and the slight divergence in

eigenvalue, we can conclude that the influence on cylinder linear buckling analysis is

negligible.

For hyperboloid and spheroid, the varying aspect ratio almost have no influence

on the linear buckling behaviour, neither the buckling dents pattern nor the result of

the eigenvalue.

With the artificial imperfection method, the identical defect pattern are imple-

mented on the specimens with varying aspect ratio. From the F-D curve are exactly

similar to each model, we can say that the aspect ratio influence on GNLBA with

identical imperfection shape is limited.

It is noted that the artificial imperfection is used to eliminate the difference be-

tween the imperfection shape, and it does not always simulate the first buckling

modal, which is namely the critical imperfection situation. To investigate whether

the aspect ratio will influence the critical buckling situation, the test implements the

same distribution, which is the first buckling shape. As previously indicated, the

changing aspect ratio cause a slightly difference in the first buckling shape, but in the
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artificial imperfection model, its influence is limited.

We can conclude that the changing aspect ratio does not produce any influence on

GNLBA if only the identical geometric imperfection is applied, and with first modal

shape imperfection the GNLBA results are not influenced greatly as well.

3.6.1.1.3 element size

The element size also influences on the mesh accuracy greatly. The smaller element

size is always beneficial for modal simulation. However, it also increases the compu-

tation capacity dramatically. The table ?? shows the linear buckling eigenvalue with

the decreasing element size.

Table 3.4: Eigenvalue with decreasing element size

element size Eigenvalue δ %

500 23.1932

333 23.1561 0.16

222 23.1694 0.57E-01

148 23.1663 0.13E-01

99 23.1605 0.25E-01

66 23.1600 0.20E-02

44 23.1601 0.40E-03

The aspect ratio and the element size are main mesh parameters in the pre-process.

3.6.2 Imperfection Parametric Analysis

3.6.2.1 Imperfection Propose

The imperfection as a protuberance to the perfect model is used to stimulate the

specimen buckle. Many kinds of imperfection type have been studied before, including

the 1st modal shape, the combination of modal shapes, the random dents distribution,

the artificial imperfection shape, the imperfection shape bank, etc.

Different imperfection shapes with different purposes, in theoretical research, it is

always focused on the limit of the influence on the perfect model. For this reason, the

various imperfection type are designed to find the lower boundary of the specimen,

and also unify the divergence between the experiments and the theoretical results.

In practical, the modified shape is used to simulate the real imperfection, which may

reduce the structure capacity. In this research, the aim of imperfection is not only
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to simulate the imperfect specimen, and to generate a free edge buckling zone. The

buckling zone is expected to be avoided the influence of the edge disturbance. For

this reason, the imperfection are designed to concentrate the buckling zone in the

middle of the structure.

3.6.2.2 Imperfection on Different Geometry

For the imperfection generation in this research, there are two alternative methods:

the linear buckling modal shape and the artificial imperfection. To make the imperfec-

tion concentrate in the middle, the modification is applied. The modified imperfection

is based on the result of linear buckling analysis, and is designed to use the reduction

factor or tension stress in edge area to avoid the edge buckling.

Based on the previous section investigates the influence of aspect ratio on the linear

buckling analysis. The spheroidal model is different from the others, and it shapes an

edge-distribution buckling dents, which makes the middle concentrated imperfection

in the artificial imperfection meaningless,and even overestimate the nonlinear buckling

load. Hence, the modified imperfection method is used.

3.6.2.2.1 imperfection for cylinder

The LBA result shows that the eigenvalue of the cylinder are very closed with each

other. For this reason, the imperfection shape of the first 10 LBA is tested in GNLBA.

Considering the dents in a cylinder is distributed uniformly, not only the knock

down factor, but the distribution of the buckling dents are investigated. As the

specimen is designed to be buckle in the middle, to avoid the edge disturbance, the

correspondent dents in modal shape should be excluded.
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Figure 3.27: F-D curves with different modal imperfections (LP-125: Cylinder,

Rd=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1st-5thmodal imper-

fection, δimp=0.5t)

Note that because of the symmetry of the cylinder, the inward dents and the

outward dents positions are almost symmetric with each other.

Just as the prediction, the knock-down factor is slightly influenced by the different

modal shape, the amplitude of imperfection keeps constant as δimp = 0.5t. The rela-

tive height of the maximum and minimum radial deformation is monitored during the

load procedure. It indicates the position of the outward dents and the inward dents.

In the last part of the curve, after the specimen buckling, the relative height curve

comes back with the decreasing load. It is compared to the buckling dents position

with the imperfection shape ultimate load step when it buckles. The relative height

is defined by the eq 3.6. It is written that considering the dents are almost uniformly

scattered in chessboard and no main peak dents exists, and the peak displacement

may jump between the lattice zone. Besides, the horizontal symmetry causes the

peak dents jump a lot, like from hrout = 0.2 to hrout = 0.8, but there is no instinct

change at all.
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Figure 3.28: Knock down factor and relative heigh of buckling zone with differ-

ent modal imperfection (LP-125: Cylinder, Rd=2500mm, H=10000mm, t=10mm,

E=210000MPa, ν=0.3, 1st-10thmodal imperfection, δimp=0.5t)

0 < hrin = −hin
h0

;hrout =
hout
h0

< 1 (3.6)

in which, the hin and hout are the absolute height of the position, and h0 is the

height of the specimen.

The following plot(Figure.3.29) shows the strong relation between the dents in

imperfection and those the buckling situation. In other word, the sufficient imperfec-

tion just induces the position of buckling it appears. For this reason, the imperfection

shape should be carefully selected, or the modification is necessary to apply. About

the modification of imperfection is going to be discussed in the latter chapter.

(a) 1st Hrin
Hrout

= 0.655
0.734 (b) 5th in

out = 0.803
0.194 (c) 6th in

out = 0.724
0.273 (d) 8th in

out = 0.664
0.405 (e) 10th in

out = 0.240
0.763

Figure 3.29: Imperfection with pattern with LBA results compared the buckling

height of GNLBA for cylinder (LP-125: Cylinder, Rd=2500mm, H=10000mm,

t=10mm, E=210000MPa, ν=0.3, 1st-10thmodal imperfection, δimp=0.5t)
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3.6.2.2.2 imperfection for hyperboloid

(a) the 1st model shape (b) the artificial imperfection

Figure 3.30: Hyper imperfection with 1st modal shape and the correspondent artificial

imperfection with same buckling wave length

Table 3.5: Different wave distribution in artificial imperfection

Model No. Art1 Art2 Art3 Art4 Art5 Art6 Art7 Art8 Art9 Art10

Vertical wave number 5 4 4 4 6 6 6 3 3 3

Radial wave number 7 5 9 8 5 9 8 5 9 8

The artificial imperfection are applied to simulate the critical imperfections of the

hyperboloid specimen. For the trial, the several combinations of the wave number

in the radial and the height direction are tested, in table.3.5. The ultimate load of

all of these artificial imperfection combinations provide the higher results compared

to the first modal shape imperfection. Fig 3.31 shows the discrepancy by different

imperfection is between 5% to 30%, and its always higher than the model with 1st

mode imperfection. However, the most conservative results the artificial imperfection

is comparable to the effect of the 1st modal imperfection shapes (compared win fig

3.30). It is clear that the 1st mode imperfection could be simulated by the similar.



48 CHAPTER 3. MODEL DEVELOPMENT

Figure 3.31: Ultimate force of a series of artificial imperfections and an imperfection in

the 1st modal shape (LP-128/LP-122-5: Hyperboloid, Rd=2500mm, Rk=20000mm,

H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection and different

artificial imperfections, δimp=0.5t)

Although comparing use the first modal imperfection directly, to generate a con-

servative imperfection cost much work, the artificial imperfection method can specify

the buckling wavelength manually. It is useful in the analysis on specifying the wave-

length.
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(a) Force versus vertical deflection (b) Force versus inward radial displacement

Figure 3.32: Load displacement curves for a artificial imperfection and the modal

shape imperfection for hyperboloid (LP-128-1/LP-122-5: Hyperboloid, Rd=2500mm,

Rk=20000mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfec-

tion and different artificial imperfections, δimp=0.5t)

3.6.2.2.3 imperfection for spheroid

Figure 3.33: Spheroid 1st buckling modal shape

Different from the other shapes, the spheroid buckles near the edge fig.3.33.a. In

order to stimulate the buckling in the middle zone, the artificial imperfection and

edge pre-tension method are applied. The artificial imperfection(fig.3.34.a) generates
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the initial imperfection buckle in the middle. The fig.3.34.b shows the nonlinear

analysis results between the 1st modal imperfection and the artificial imperfection,

the artificial approaches a larger ultimate buckling load than the model with 1st mode

imperfection.

(a) Spheroid with artificial imperfection (b) Spheroid F-D curves in 1st modal imperfection and

artificial imperfection

Figure 3.34: Artificial imperfection buckling for spheroid (LP-126-5/LP-142-1:

Spheroid, Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm, E=210000MPa,

ν=0.3, 1stmodal imperfection and artificial imperfection, δimp=0.5t)

Besides, based on the 1st mode imperfection, the pre-tension method is tried to

suppress the edge buckles occurrence. The initial imperfection is implemented by the

1st buckling modal shape, and in addition the radial pressure is applied to implement

the pre-tension in edge elements, aimed to suppress the edge deformation. However,

the GNLBA shows the effect of the suppression is limited. The radial pressure pushes

the edge element outward, but the edge disturbance still remains(fig.3.35).
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Figure 3.35: Pre-tension method on spheroid(Un-deformed and deformed cross section

view) (LP-141-1: Spheroid, Rd=2500mm, Rk=20000mm, H=10000mm, t=10mm,

E=210000MPa, ν=0.3, pre-tensioned method, δimp=0.5t)

3.6.2.3 Imperfection Amplitude

3.6.2.3.1 imperfection amplitude for fundamental buckling mode

The previous experiments [9] has already resulted in a serious of curves that describe

the relation between the imperfection amplitude and the knock-down factor for differ-

ent geometries. The comparison between the numerical results(dots) of this research

and the theoretical solution are plotted together. The similar trends are achieved in

the low imperfection amplitude; the divergence starts at the imperfection amplitude

reaching 0.6t. Considering the imperfection in this research in restrained in low im-

perfection, the difference between the FE model and the theoretical curve is not going

to be discussed deeply.
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Figure 3.36: Knock-down factors of cylinders with 1st mode imperfection and varying

imperfection imperfection amplitudes [4]

Moreover, the load paths of the increasing imperfection amplitude are compared.

It is clear that with the same imperfection type, the linear parts of each specimen

are identical until reaching the peak points, the F-D curves diverge. For the near

perfect model can increase the highest load. After the snap-back happens, the load

reduces with the decreasing displacement, and the structure stable in a new stage.

The different imperfection extent just changes the peak load of the specimen and do

not influence the new stage, all of the specimens deflect in the similar post-buckling

load.
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Figure 3.37: Load-displacement curves of cylinders with 1st mode imperfections

for several imperfection amplitude (LP-120: Cylinder, Rd=2500mm, H=10000mm,

t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp=0.1t-1.0t)

From the F-D curves in fig 3.37. We notice that the specimen with low imper-

fection behaviour in the typical buckling, which reaches the peak load and suddenly

the buckling happens with the snap-back. However, in the specimen with significant

imperfection, there are not such clear vertex, and the snap-back is diminishing with

the imperfection amplitude increase. The interaction between the membrane force

and the bending moment are investigated, to expect that the significant imperfection

induces the bending moment at an early stage, and the bending interaction influences

the structural behaviour.
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Figure 3.38: Moment in vertical direction versus increasing loading (LP-120: Cylin-

der, Rd=2500mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imper-

fection, δimp=0.1t-1.0t)

3.6.2.3.2 imperfection amplitude for different imperfection type

In sec.3.6.2, the study about the varying imperfection amplitude with the 1st buckling

modal shape has already realised that the large imperfection would induce the bending

moment in early stage, and there is no typical buckling behaviour. The investigation

is extended to observe how the model behaves with the imperfection shape as the

higher order of the modal shape and the artificial buckle distribution, under the

varying imperfection extent. Figures in table 3.6 shows the buckle distribution and

the amplitude indicate the extent of the imperfection.

To observe the model performance, which is imperfect with the non-first buckling

modal shape, the imperfection amplitude is varied from 0.10t − 0.50t. The ultimate

buckling stage of both the 2nd buckling modal shape and the artificial imperfection

shape are plotted in table 3.6.
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Table 3.6: Buckling Deformation of varying influence amplitude and different imper-

fection type (LP-294/LP-291/LP-292: Hyperboloid, Rd=2500mm, Rk=35000mm,

H=10000mm, t=10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, 2ndmodal im-

perfection and artificial imperfection, δimp=0.1t-0.5t)

δimp Imp shape 0.10t 0.20t 0.50t

artificial

imperfection

1st buckling

modal shape

2nd buckling

modal shape

It is noted that each plot is the relative deformation plot at buckling buckling

state. Hence, only the buckles distributions are compared, and the colour contours

are not compared.

For artificial model, the ultimate deformed shape are distinguished by the varying

imperfection amplitudes. When the imperfection is larger than 0.2t, the buckling

deformation just follows the initial imperfection shape. If the imperfection is limited

to lower than 0.2t, the buckling model is slightly divergent from the buckling modal

shape and it trends to buckle at the 1st buckling modal shape, which is critical

buckling type of the linear buckling result.
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(a) δimp = 0.2t (b) δimp = 0.5t

Figure 3.39: F-Modal Displacement path on the model with different artifi-

cial imperfection(table 3.6) amplitude (LP-294-1/10: Hyperboloid, Rd=2500mm,

Rk=30000mm, H=10000mm, t=10mm, E=210000MPa, ν=0.3, artificial imperfec-

tion, δimp=0.1t/0.5t)

In fig 3.39, it decomposes the model deformation into its first 10 fundamental

buckling modal shapes. The horizontal axis expresses the developing extent of the

correspondent modal shape and the vertical axis is the load proportion to the buckling

load. The detail the modal decomposition is explained in the appendix example. It

is evident that in the lower imperfection amplitude model, only the most critical

modal(1st) is activated at buckling occurrence, and the large imperfection amplitude

stimulates more higher orders of the modes in the early stage. The modal interaction

phenomenon is beyond this thesis topic. To avoid the modal interaction and to

stimulate the critical buckling shape, the imperfection amplitude should be limited.

However,in the 2nd modal case, as the imperfection shape itself is a fundamental

buckling modal shape, there is no other shape will be stimulated. The deformation

is only the aggregation of the 2nd modal shape, no matter with the imperfection

amplitude.
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Table 3.7: Imperfection influence the buckling distribution(δimp = 0.2t) (LP-294-

4/LP-291-4/LP-292-4: Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm,

t=10mm, E=210000MPa, ν=0.3, artificial imperfection, 1stmodal imperfection and

2ndmodal shape imperfection, δimp=0.2t)

A(Imp) B(97%) C(99%)
D

(Buckling)

Fu(kN)

λ = Fu

Fc

1

(artificial)

5772.3

0.975

2

(1st modal)

5165.4

0.873

3

(2nd modal)

5326.8

0.901

To track how the model deformation develops in detail, the deformation process

are plotted with different load stage in fig 3.7.

It is clear that even with the limited imperfection extent, the artificial imperfection

still deforms with the initial imperfection shape at the load level lower than 97%.

When the load reaches 99%, almost buckling, the shape of the 1st buckling modal is

activated, and finally it buckles at a close shape of the 1st modal shape. But in 2nd

modal shape imperfection, the deformation aggregates continuously, till the model

totally failure there is no interaction of the other order of the buckling modal shape.

It is concluded that in the limited imperfection amplitude, the artificial imperfec-

tion shape, which is treated as the combination of the series of buckling modal shapes,

is able to stimulate the critical buckling modal(1st) independently. However, when

the initial imperfection is large enough(δimp ≥ 0.20t), the high order of the combined
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buckling modal shapes are stimulated simultaneously and the moment interaction

will be activated as well. In order to stimulate the critical imperfection influence, the

1st buckling modal is implemented as the critical initial situation, and the amplitude

is controlled at 0.2t.

3.6.2.3.3 reasonable imperfection

In preceding discussion, the influence by the imperfection amplitude are concluded,

and in this paragraph the applicable imperfection is going to be discussed.

Considering the divergence in large imperfection between FE model and the

experimental results, only the small and intermediate imperfection extents is go-

ing to study. From the practical view, the common estimation on imperfection

in real project is about δ = l
2000

. The specimen is l = 10000mm, which means

δp = 10000
2000

= 5 = 1.0t, t = 5. In order to compare with the preceding research on

imperfection, the test imperfection δt = 0.2t = 1.0is also investigated.

Moreover, in the nonlinear analysis introduction section, for lower imperfection

amplitude, both two analysis captures the peak value. However, for the large imper-

fection amplitude, because there is no clear sign of the snap-back, the ultimate load

of the automatically termination is near 15% than the method with the entire loading

path.

3.7 Summary and Conclusion

In this chapter, the generation of FE model has been described, and the nonlinear

buckling analysis has operated based on the LBA and the imperfection. Moreover,

the post-process results have been summarised.

The key parameters in a model generation are the element size and the element

aspect ratio. The influence of the previous one is limited by finding a stable eigenvalue

with the reducing size, and there is almost no influence by the latter.

Different boundary conditions are tested, it is concluded that the stiff boundary

conditions,hinged-hinged and fixed-fixed, is able to concentrate the buckle away from

the edge. Therefore, the hinged-hinged restraints are applied Besides, the symmetry

boundary conditions are used, and the accuracy of the simplification on the half of

the model is validated.

Considering the imperfections in this research is objective to not only stimulate the

buckling happen, but also stabilise the buckling dents in the middle. Two types of the

imperfection have been investigated. As a complement, two imperfection modification
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are proposed. It is suggested for the cylinder and the hyperboloid, the first linear

buckling modes are suggested as the imperfection.

The imperfection amplitude is discussed about its influence on the ultimate load.

For the large imperfection will stimulate the bending interaction in the early stage,

the ultimate buckling load is reduced and there are no typical buckling snap-back

when the imperfection amplitude is larger than 0.5t. The relative difference in the

nonlinear termination condition, it is also influenced by the imperfection extents. For

the limited imperfection amplitude, the auto-termination method is able to track the

peak buckling load in the entire path method; for the large imperfection amplitude,

since there is no typical buckling peak, the result of the auto-termination method is

not accurate enough.
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CHAPTER 4

Parameter Study

FEM is a powerful method to solve practical structural problems. When it comes to

curved shape, following the changing of the curvatures, a fine mesh is requested. As a

result, the number of dofs is large, because the computational cost is proportional to

the square of the number of dofs. The expensive computational cost limits engineers’

daily work. However, for thin-wall shell structures, buckling failure is critical and

the LBA is not able to provide a safe solution. Hence, GNLBA is inevitable. It is

estimated that the time to solve a 100,000 dofs shell model with nonlinear buckling

analysis with 30 load steps, on a common desktop, may cost nearly 3-4 hours. For this

reason, the author proposes a new method, to estimate shell local buckling analysis

with the geometry parameters, relying on linear buckling analysis or just only linear

analysis.

There are three steps in this chapter. At first, the difference of local buckling

analysis and global buckling analysis are discussed. Secondly, based on the GNLBA

results, the buckling mechanism is studied. The numerical relation between the buck-

ling phenomenon and the varying geometry parameters are studied in both the global

scope and the local scope. In the third part, the related application is extended with

the buckling mechanism study. The ultimate stress state are introduced.

61
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4.1 Previous Study and Model Preparation

4.1.1 Previous Research on Shell Buckling

In previous research, the imperfection influence on shell buckling has been studied

by Chen [4]. Several types of defects have been discussed, including the specified

linear buckling modal shape, the combination of several buckling modal shapes, the

Gaussian random imperfection and the periodical buckling waves. It was concluded

that the imperfection shape by first buckling modes is a balanced alternative with

conservative results and acceptable calculation cost. Moreover, in that paper, the

relation between the global reaction force and the geometry parameters (radial ratio)

are investigated, in fig 4.1. However, only the specified thickness is studied, in this

research the relation will be extended to varied thickness.

Figure 4.1: Result of the reaction force vs the geometric parameters in Chen’s report

The other geometry parameter is the imperfection amplitude δamp, it has been

already studied in Koiter Theory. Koiter Law derives the relation of the imperfection

amplitude with the global structure knock-down factor. And the knock-down factor
λ
λc

depends on the geometry sensitivity parameters,eq 4.1.

λ = λc · (1 + a · w + b · w2 + · · · ) (4.1)

Since, the δamp influence has already been explored, and it will not be a key

parameter in this research. Just as a complementary, the variation on δamp is tested

to see the influence of imperfection on the internal force.



4.1. PREVIOUS STUDY AND MODEL PREPARATION 63

It is also an ambition to shape the formula of the internal force with local buckles.

For the nearly cylinder hyperbolic shape, there are only two to three buckling buckles

in height with slim width, and between the dents there is some low-stress zone as

a tie to resist the deformation happen. Based on this, Von Karman has made an

assumption that there could be a simulation by the shell buckling with the column

buckling with serious nonlinear intermediate supports. Moreover, all the influence of

the hoop force is taken into the nonlinear material property of the support. Hence,

in this section, the simulated column buckling behaviour is expected.

4.1.2 Standard Model Description

Before the parametric study, it is necessary to decide a standard shape of the speci-

men, which is used to be compared with the other variations. For it is meaningless

to make the comparison with two distinguished model on structural behaviour, the

general geometric parameters like the edge radius and the height are kept constant, or

only the small range variations are tested. The extreme slender model is avoided, it

is expected to perform the Euler column buckling shape. In standard model, Young’s

modulus is E = 210, 000MPa and the Poisson’s ratio is ν = 0.3.

The standard specimen is 10000 mm in height, the radius of the edge ring is 2500

mm, the standard vertical radius is 25000 mm, and the initial thickness is 5 mm, in fig

4.2. The hinged boundaries restrain both edges. The basic model shape is generated

from the water tower, and the local zone in the middle of the model is studied.

Figure 4.2: Standard model shape

It is written that the variation of the vertical radius is restricted by the physi-

cal feasibility. With the specific height and edge radius, the minimum Rk is 8000

mm. For the smaller value, although it is possible to a mathematical graph, the can-

tilever effect is going to be intensified, and the buckles are concentrated on the edge
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part. Regarding, the Rk is limited from 8000 mm to 3,500,000 mm. The maximum

limitation, which almost reaches the cylinder shape, will be discussed later.

The vertical radius changes the specimens from the hyperboloid to the nearly-

cylinder, and the entire range is split to five gradual groups, each group is uniformly

divided to 10 models,table 4.1. With different test parameters, there are 14 series,

in total 700 models are tested. The Appendix.D lists the geometric conditions of the

tested specimens.

Table 4.1: Test group with respective vertical radius (Rk)

Group 1 8,000mm-12,000mm

Group 2 12,000mm-33,000mm

Group 3 33,000mm-60,000mm

Group 4 60,000mm-330,000mm

Group 5 330,000mm-3,500,000mm

note: each group distributes with 10 model samples

4.2 Database Introduction

The database of the GNLBA result covers over 700 specimens in hyperboloid model

with different geometry parameters. The perfect FE model is generated as the pre-

vious chapter. Based on the imperfection study, the first buckling modal shape is

applied; hence, only the first buckling shape will be activated. The element results of

GNLBA is collected into the database.

The database is separated into two parts, about the input parameters part, and

the GNLBA results part. The input parameters includes the geometry parameters,

like radius of the edge ring(Rb), the vertical radius(Rk), the middle radius(Rm), the

thickness(t) and the imperfection amplitude(δamp).

The selected element output results are based on the radial deformation. Both

of the largest radial deformation are monitored. For the outward direction, it is the

maximum value in positive and for the inward direction, it is the minimum value

in negative. In post-process, the script is able to rank the radial deformation and

collects the results of the elements with largest radial deformation. Depending the

buckles position in vertical, their radius in horizontal is varying with the height. For

this reason, the horizontal radius(Rin, Rout) is recorded as geometry information.

Besides the local geometry of the dents(Rk, Rin), the internal force results are also

exported, containing the membrane stress in horizontal direction(nxx) and vertical
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direction(nyy), and the moment stress in moment stress in horizontal direction(mxx)

and vertical direction(myy).

Table 4.2: Database information

Input data Result data

Geometry Rk,Rd,Rm,t,δamp Rin,Rout

Structural behaviour D,F ,Pin,Pout

Internal force nxx−in,nyy−in,mxx−in,myy−in

nxx−out,nyy−out,mxx−out,myy−out

4.3 Buckle Study

To investigate the geometric relation between the buckle dimension, the aspect ratio
λyy
λxx

, with the changing geometry.

To keep the models comparable with each other, the general parameters as the

height H and edge radius Rd are kept constant, only the vertical radius Rk is changed.

With the geometric restraint, the changing Rk influences the middle radius Rm as well,

It changes the model from the hyperboloid to the nearly cylinder shape. In fig ??,

in x-axis, the radius ratio is defined as the ratio of the middle radius to the vertical

radius Rm

Rk
. In y-axis, the aspect ratio of the buckle λyy

λxx
is calculated to describe the

buckle shape. In fig 4.3, the relation is shown between the Rm

Rk
and λyy

λxx
. To classify

the buckle distribution, the abbreviations like R18 −H4 are used. It indicates that

there are 18 buckles in the radial direction and 4 buckles in the height direction.
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Figure 4.3: Aspect ratio of the buckles with varying geometries

It is clear that the aspect ratio for different geometries is separated by the different

buckle distributions. With the same buckle distribution(fig 4.4.b-ii,iii), the geome-

tries influence is continuous; while, there is always a jump on buckle aspect ratio(fig

4.4b-ii,iii), between a change of the buckle distribution. It is because the height of

the specimen is constant, from fig 4.4b-iii to fig 4.4b-ii the increasing Rk reduces the

surface length in the vertical direction, from solid to dash line, in fig 4.4.a. As a con-

sequence, if the buckle distribution is identical, the decreasing vertical surface length

will squeeze the vertical wavelength λyy as well. Until the double buckles distribution

is stimulated(fig 4.4.b-i), the buckling wavelength is increased. In the radial direction,

the increment of the equator provides a large distance for the horizontal buckles to

develop.
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(a) increasing vertical radius (b) edge deformation

Figure 4.4: Model with different vertical radius

It is concluded that for identical buckle distributions, the increasing of Rk de-

creases the aspect ratio slightly. But in general, changing of buckle distribution,

caused by the increasing vertical radius, will make the buckle slender. When the

aspect ratio almost reaches between 4-6, strip or column behaviour is expected. The

further local study is presented in next section.

4.4 Global Buckling Analysis and Local Buckling

Analysis

Cylinders and hyperboloids buckle in different patterns, it causes the internal force

performance in different ways. Since the global buckling analysis is influenced by the

buckling pattern as well, it is aimed to investigate the relation between the global

buckling analysis and the local buckling analysis.

In cylinders, buckles have a square shape, and both of the internal force are stim-

ulated with the increasing loading. In hyperboloid, buckles shape are slenderer, and

the vertical membrane force is dominant to the horizontal. In detail, the development

of the internal force at the buckling point shows that only the vertical membrane force

is increased clearly with the loading process. The critical vertical force and the slen-

der buckle geometry indicate column behaviour. Its behaviour is comparable to a

curved strip. To decouple the interaction of the membrane force, only the slender

shape dents are investigated.
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(a) hyperboloid (b) cylinder

Figure 4.5: Membrane force in cylinder and hyperboloid (LP-118-5/LP-207-5:

Cylinder and Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm, t=5mm,

E=210000MPa, ν=0.3, 1stmodal imperfection)

In the slender shape distribution, only two to three dents in a vertical direction,

we could expect the column behaviour in global analysis as well. The horizontal

membrane force, hoop force, plays a role of the restraints, which are assumed as a

nonlinear property [16]. When the local dents are buckling, the global structure are

stimulated to buckle. In this section, how the local buckles will influence the global

analysis is investigated.
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(a) 25% (b) 75% (c) 95% (d) 100% (e) postbuckling

(f) 25% (g) 75% (h) 95% (i) 100% (j) postbuckling

Figure 4.6: nyy distribution in cylinder and hyperboloid (with load status) (LP-118-

5/LP-213-5: Cylinder and Hyperboloid, Rd=2500mm, Rk=20000mm, H=10000mm,

t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection)

Note: The contour is with relative value of each model.

Fig 4.5 shows the comparison between cylinders and hyperboloids on internal

force behaviour under the axial compression condition. For hyperboloid, before the

buckling occurrence, the load is carried by the vertical membrane force(nyy). With

the imposed deformation increase, the total reaction rises at the same time. Until

reaching the buckling point, the reaction force drop in a sudden, which indicate the

structure loses its resistance capacity. From the contour plot of the radial deformation,

in fig 4.6, we can observe that the local imperfection dents deformation aggregate in

concentration.

Moreover, before the global buckling occurs, the deformation in local dents has

started to increase dramatically. In fig 4.7(a) and (b), the plot of the relation between

both radial deformation and vertical deformation versus vertical reaction force, which

describes the buckling occurrence in global and local scope.
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Comparing both figures in fig 4.7, the linear part of the radial deformation curve(fig

4.7(b)) is terminated at an earlier stage. It indicates that the radial deformation in

local buckling analysis is a more sensitive indication than the global buckling analy-

sis. In practice, the local buckling analysis is defined by the perturbation deformation

and including the plastic deformation as well. However, this thesis is focused on the

elastic and the membrane forces are investigated, the end of the linear part is defined

as the termination of the local buckling analysis.

(a) global buckling analysis (b) local buckling analysis

Figure 4.7: Global buckling analysis(vertical deformation) and local buckling

analysis(local radial deformation) (LP-118-5/LP-213-5: Cylinder and Hyper-

boloid, Rd=2500mm, Rk=20000mm, H=10000mm, t=5mm, E=210000MPa, ν=0.3,

1stmodal imperfection)

To specify the most critical internal force component in global behaviour, all the

internal force are discussed together, including the membrane force and the moment

force in both of the vertical(y-y) and the horizontal(x-x) directions, at both the inward

and the outward dents. The fig 4.8 plots the imposed displacement with the these

internal force respectively. To make them comparable, the normalized valued are

plotted.

Similar as the F-D curves, after the peak point, there are the degradation parts

in some internal force curves, which clearly shows the buckling occurrence and its

development in a local site. Notes that, there are two typical trends in the local

internal force. (1) With the increasing imposed displacement, some of the internal

force, like nyy−in and nyy−out, they start decrease, just after they approach the peak

point, which is the indication of the loss of the resistance. These components are

classified as the resistance components of the buckling. (2) On the other hand, like
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nxx−in and moment internal force, they increase slowly at first, and at some point, the

slope increase dramatically. Finally, their trends are toward infinite. From the physi-

cal meaning, a small load increment will cause it to infinite results, these components

are classified as the consequence components of the buckling.
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(a) Membrane

(b) Moment

Figure 4.8: Normalized internal component (LP-213-5: Hyperboloid, Rd=2500mm,

Rk=20000mm, H=10000mm, t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection,

δimp = 0.2t)
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There are three distinctions between the inward buckle and the outward buckle.

Firstly, in fig 4.7, the stiffness of the inwards buckle is larger than the outward buckles.

Secondly, the inward buckle deforms much more than the outward buckle. The large

stiffness component always resists the more load. Thirdly, the fig 4.8(a) shows the

vertical internal force in the inward buckle nyy−in is much closer to global reaction

force buckling. Checking the distribution of the third principal stress in fig 4.9, it

also indicates the inward buckles resisting the most of the load. Hence, nyy−in is the

focus on the latter study.

It is concluded that the inward dents are the critical zones of the hyperboloid

under the axial compression load, and the outward dents are trying to escape the

load resistance. Besides its early local buckling is also a good alarm of the global

buckling occurrence.

Figure 4.9: Third principal stress distribution in a hyperboloid at the moment of

buckling occurrence state (LP-213-5: Hyperboloid, Rd=2500mm, Rk=20000mm,

H=10000mm, t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

We have already observed that the nyy−in is very close to the global reaction force

F buckling in specified geometry. To investigate how the nyy−in buckling stimulates

F buckling, it is intended to study the difference between the nyy−in and F with

different geometries.

Changing the Rk to generate different models, the peak value of the nyy−in and

F are captured and their correspondent value of imposed displacement are recorded.

The series of imposed displacement at the local buckling points are plotted with model

geometric parameters respectively in fig 4.10, getting the trends of the local buckling
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analysis and the global buckling analysis.

Figure 4.10: Imposed displacement Du(mm) at the peaks of different internal force

component (Test No.1 : Hyperboloid, Rd=2500mm, Rk=8000mm-3,500,000mm,

H=10000mm, t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

For the outward component, the correspondent imposed displacements are always

earlier than global buckling occurrence. For the inward buckles behaviour, when the

geometry approaches the cylinder, the local nyy at the inward dents buckle almost

simultaneously with the global reaction force. With the increasing radius ratio, the

geometries are changing into hyperboloid shape, and the divergence happens. The

membrane force in a vertical direction nyy−in escapes from resisting the buckling load

and starts to buckle before the global reaction force as well.

The divergence separates the geometries into two parts: two-way load carrying

zone and three-way load carrying zone. It is clear that in the two-way load carrying

zone, the inward buckle and the outward buckle are the only load carrying compo-

nents, just after the local components failure the total reaction force occur. In the

three-way load carrying zone, the other component provides the additional load car-

rying way to resist the buckling load, and increases the redundant buckling capacity.
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Figure 4.11: Non-averaged element result on vertical membrane force distribution nyy

in local scope (LP-214-1: Hyperboloid, Rd=2500mm, Rk=33000mm, H=10000mm,

t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

The observation on vertical membrane distribution (fig 4.11) after the local com-

ponent failure shows that the peak membrane force moves from the inward buckle

to the in-between area. Moreover, with the increasing imposed displacement, the

nyy concentrates into the in-between area. Hence, the in-between area provides the

additional load carrying way.

4.5 Global Buckling Study

In this section, the relation between ultimate force in global buckling analysis and

the geometric parameters are analysed. The vertical radius Rk is selected as the

main geometric variable in this chapter, and the influence of the varying thickness
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are studied as well. To study the geometry influence on the ultimate force, the

height and the edge radius of the specimen are kept constant at first, H0 = 10000

and Rb = 2500. Based on the imperfection study, the extent of the imperfection is

restricted to δamp = 0.2t.

Firstly, with the specified thickness, the trend of the vertical radius will be dis-

cussed. The global buckling behaviour is separated into two parts, and both of them

are investigated. Secondly, based on the data of the test results, the numerical re-

gression is proceeded, and the numerical formula reveals the influence of the vertical

curvature and the thickness on the ultimate force in global buckling analysis. The

relation about the ultimate reaction force Fu(Rm
Rk
, t) is generated. At last, the addi-

tional test data are used to verify the regression result.

4.5.1 Global Buckling Graph Introduction

The ratio Rm

Rk
is selected as the geometric influence parameter and the results of

the ultimate reaction force at the global buckling analysis points are collected. The

scatters are grouped with varying thickness in fig 4.12.

Figure 4.12: Geometric influence on ultimate reaction force (Test No.1,4,6

: Hyperboloid, Rd=2500mm, Rk=8000mm-3,500,000mm, H=10000mm,

t=5mm,7.5mm,10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)
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(a) Rm

Rk
=0.001 (b) Rm

Rk
=0.005 (c) Rm

Rk
=0.008 (d) Rm

Rk
=0.100

Figure 4.13: Curvature indication

It is evident that when the specimen is close to the cylindrical shape, there is

a drop in the reaction force. The exact cylinder is not the maximum buckling load

capacity shape, but the largest load resistance is just near the exact cylindrical shape.

The transition point is extremely close to the cylindrical geometry, which is labelled in

red dash line. In the check of the linear buckling pattern, the number of the buckling

vertical wave decreases from 6 to 2 (in 4.12), with the decreasing radius ratio; on the

other hand, when it overcomes the transition point(fig 4.13(a)(b)), the wave number

increases dramatically and is close to the exact cylinder buckling pattern.

To show the relation near the transition point, a logarithmic axes is applied (fig

4.14). Note that the red dash line also presents the correspondent transition points

in the logarithmic axes.
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Figure 4.14: Geometric influence on ultimate reaction force (logarithmic scale) (Test

No.1,4,6 : Hyperboloid, Rd=2500mm, Rk=8000mm-3,500,000mm, H=10000mm,

t=5mm,7.5mm,10mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

Hyperbolic side In logarithmic axes, the influence by the geometric parameters

is much more clear. In the hyperbolic shape side, with the constant thickness, it is

the linear relation between the log(Rm

Rk
) and the ultimate force.

Nearly Cylindrical side When the Rm

Rk
overcomes the transition point, the ge-

ometric parameter influence is in stepped form, and the ultimate force reduces with

the decreasing curvatures ratio, which means it close to the cylinder. It is notes that

because of the logarithmic axes, the distance between the perfect cylinder and the

transition point has been zoomed in, in reality it is very close to each other.

Transition point It is evident that the varying thickness does not shift the

transition point at all, it keeps stable at Rm

Rk
= 8 ∗ 10−3. The following section will

investigate the robust of transition point with the influence by the other geometric

parameters.

All of these three points are discussed following.

4.5.2 Hyperbolic side

As previously discussed, the relation between the curvature ratio and the ultimate

force in the hyperbolic side is obeyed the linear relation in the logarithmic axes. The

left side of the hyperbolic range is the transition points and the right side is ended

with the extremely thin hyperboloid. To avoid the small discrepancy in both ends, the
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following formula study is focused on the main part of this range(0.01 < Rm

Rk
< 0.1).

The results are grouped by the respective thickness. The curve fitting is applied to

investigate their relation.

The general workflow between the geometric parameters the reaction is in fig 4.15.

Firstly, with the specified thickness t1 (secondary independent), the relation between

the dependent variable(eg:Fu) and the main independent variable(eg:Rm

Rk
) is solved by

the 1st curve fitting trial. Based on the estimated formula shape, the correspondent

coefficient A(t1) and B(t1) are recorded. Secondly, the data with varying thickness

(t2, t3, ...) are iterated with the last step. The series coefficients(A(t2), A(t3), ...;B(t2), B(t3)...)

are recorded with respective thickness. The graph of coefficients tables shows the re-

lation between the coefficients(A,B) and the thickness(t). The 2nd curve fitting trial

is applied to solve the formula of A(t) and B(t). In these thesis, the coefficient

relation(A(t), B(t)) is restrained to the linear relation. Finally, combining the solved

A(t) and B(t) with the estimated formula, we could generate a general formula, like

F (Rm

Rk
, t).

There is a detailed numerical analysis example in the Appendix.

Figure 4.15: Work flow of the curve fitting

In fig 4.14, the varying thickness changes the slope and the intersection. Hence,

we could estimate the logarithmic relation between the Rm

Rk
and the ultimate force Fu,

and the coefficient depends on the thickness t. The formula has the following format

eq A.1.

Fu = A(t)× log(
Rm

Rk

) +B(t) (4.2)
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Following the curve fitting procedure, with thickness ti = 5, 6, 7.5, 10, the solved

correspondent coefficients A(ti) and B(ti) are listed in the following table 4.3.

Table 4.3: Coefficients table with thickness

t A ×106N (95% confidence bounds) B×106N (95% confidence bounds)

5 -4.154 (-4.347, -3.966) -6.026 (-6.652, -5.401)

6 -6.021 (-6.298, -5.743) -8.369 (-9.265, -7.473)

7.5 -9.425 (-9.719, -9.131) -12.33 (-13.281, -11.380)

10 -16.391 (-17.082, -15.701) -19.212 (-21.424, -16.991)

Based on the solved coefficients, the second linear curve fitting is applied. The

relation between A,B with t are calculated.

{
A(t) = a1 · t+ a2

B(t) = b1 · t+ b2
(4.3)

Table 4.4: Coefficients A(t) with different thickness

Coff-A a1×106N/mm (95% confidence bounds) a2×106N (95% confidence bounds)

-2.471 (-3.063, -1.879) 8.609 (4.245, 12.971)

Table 4.5: Coefficients B(t) with different thickness

Coff-B b1×106N/mm (95% confidence bounds) b2×106N (95% confidence bounds)

-2.652 (-2.881, -2.423) 7.410 (5.723, 9.096)

For the correspondent coefficients of the varying thickness, the second curve fitting

trial is applied. The linear formula is estimated, and the results are plotted in the

following, fig 4.16
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Figure 4.16: Curve fitting results on coefficients A(t) and B(t)

The formulas of the coefficients and the thickness are concluded as eq 4.4

{
A(t) = (−2.471 · t+ 8.609)× 106

B(t) = (−2.652 · t+ 7.410)× 106
(4.4)

Finally, we could conclude the varying thickness into the relation between the

ultimate force Fu and the combination of the geometric parameters Rm

Rk
, into Fu(

Rm

Rk
, t)

Fu(
Rm

Rk

, t) = A(t) · log(
Rm

Rk

) +B(t)

= (−2.471 · t+ 8.609)× 106 · log(
Rm

Rk

) + (−2.652 · t+ 7.410)× 106

(4.5)

Moreover, in order to verify the equation, two more group of the result, t = 5.5

and t = 9.0, are included. The verification groups are not imported in the curve

fitting process. Therefore, their results from the nonlinear analysis are able to use to

check the accuracy of the curve fitting result. In these groups, only the thickness are

changed, and the other conditions are kept same.
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Figure 4.17: Curve fitting results on Fu vs. Rm

Rk
(Test No.1-6 : Hyper-

boloid, Rd=2500mm, Rk=8000mm-3,500,000mm, H=10000mm, t=5mm-10mm,

E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

In fig 4.17, the series of colour curves are the results of the curve fitting, and

the scatter dots are the correspondent NLBA results. The curve fitting results have

successfully described the NLBA results. However, there are still small discrepancy

in the low thickness. If we zoom in detail, it is observed that their curve fitting results

share the similar changing trends with the test dots, but just in a lower offset. It is

the similar effect of the imperfection amplitude in fig 4.18. In the test assumption, all

the test conditions are controlled, except the variable thickness. But considering the

imperfection amplitude is defined by the ratio of the thickness,δamp = 0.2t, actually

the relative definition on imperfection description is the suspected discrepancy reason.

Besides, the linear assumption on the coefficients is a simplified method, the error

could also be induced by the residuals in linear curve fitting.
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Figure 4.18: Constant thickness with varying imperfection amplitude (Hyper-

boloid, Rd=2500mm, Rk=8000mm-3,500,000mm, H=10000mm, t=5mm-10mm,

E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.1t, 0.2t, 1.0t)

4.5.3 Near cylindrical Side

In fig 4.19, it is the left part of the previous curves(fig 4.14), the geometry are closed

to cylindrical shapes. When it has overcome the transition point, The specimens

behaviours are totally changed. Different with the hyperboloid shape, the decreasing

radius ratio reduces the ultimate reaction force, and the peak buckling load is on

the geometry at the transition point. Moreover, with the decreasing radius ratio, the

slope of the radius influence is reduced. In the extremely low radius ratio range, the

dots develop horizontally with the changing of geometries, it indicates that the geo-

metric influence is eliminated. When it just passes the transition point, the ultimate

force is still influenced, but it behaves into steps like later. The changing geometric

parameters have no continuous influence on the ultimate loads, but the ultimate loads

jumps in some specific value. Since the linear buckling behaviour is closing to the

cylinder, the higher order of the cylinder buckling patter is checked.
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Figure 4.19: Geometric influence on ultimate reaction force,zoomed in nearly-cylinder

side (in logarithmic scale) (Test No.1: Hyperboloid, Rd=2500mm, Rk=8000mm-

3,500,000mm, H=10000mm, t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection,

δimp = 0.2t)

Furthermore, it is interesting to find out that the ultimate of the step of the nearly-

cylinder specimen is close with the different order of the cylinder buckling behaviour.

For detail, the linear buckling factor and the nonlinear buckling F-D path are com-

pared in fig 4.20. It is surprised that the series of the nearly-cylinder behaviours are

identical to the nth order of the cylinder buckling modal shape. Conclude that the

large vertical radial makes the hyperbolic specimens into the nearly-cylinder, and the

radius influence just stimulates the first order of the near cylindrical specimen with a

higher order of the modal in the exact cylinder. The specimen behaves stable at that

stage until the varying radius stimulates it into another cylinder modal shape.
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(a) nearly-cylinder (b) cylinder

Figure 4.20: Comparison between nearly-cylinder and cylinder

4.5.4 Geometrical Transition Point

The previous discussion is clearly distinguished by the geometrical transition point.

We observe that with the varying thickness, there is no influence on the transition

point. In this section, it is planned to find out whether the other parameters will

influence the location of the transition point. Apart from the thickness(t) and the

vertical radius(Rk), the specimen is defined by the edge radius(Rd), the height(H)

and the material property(E,ν). The main variable is still the vertical radius Rk,

being varied to change the specimen from the typical hyperboloid to nearly-cylinder

and we could observe the influence on the transition point.

• Edge Radius Rd

The edge radius is varied, to achieve the different curvature combination of the

local sites. In standard model, the edge radius Rd = 2500. In this part, the

varying edge radius is ranged from Rd = 1500, 3000, 4000, 5000.
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Figure 4.21: Geometric influence on ultimate reaction force with vary-

ing edge radius (logarithmic scale) (Test No.1,7,8,9,10: Hyperboloid,

Rd=1500mm,2500mm,3000mm,4000mm,5000mm, Rk=8000mm-3,500,000mm,

H=10000mm, t=5mm, E=210000MPa, ν=0.3, 1stmodal imperfection, δimp = 0.2t)

It is observed that the increasing edge radius(Rd) moves the transition to the

larger radius ratio side(Rm

Rk
). Moreover, there are two points are observed as

well. 1)The varying Rd only changes the intersection of the hyperboloid parts,

it indicates the Rd just effects the coefficient B. 2)The increasing radius makes

the model larger, but the correspondent ultimate load at the transition point

still decreases.

It is because, with the constant height, the increasing radius reduces the slender-

ness of the specimen; and with less curvature, the local site becomes flatter. The

flat model needs larger vertical radius to stimulate the cylinder effect. There-

fore, the increasing edge radius moves the transition point to the large radius

ratio (hyperbolic) side. Moreover, the buckling capacity is reduced for the lack

of the curvature stabilization.

• Height H

The height is one of the most sensitive parameters in the model. It is estimated
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the large height value will generate the thin-wall shell model as the pipe shape.

The buckling will not occur in the shell surface but the global column buckling

will happens. Such behaviour obeys the Euler buckling theory, which is beyond

this thesis. Hence, the height range is varied from 7500∼12000(nearly 20% from

the standard model).

It is because when keeping the edge radius(Rd) constant, the increasing height

makes the specimens slender and a relative smaller Rm

Rk
could approach a nearly

cylinder effect. Therefore, the higher Rd moves the transition point to left side.

Similar with the edge radius variation, the different heights share an identical

slope and only influence the intersection parameter B.

Figure 4.22: Geometric influence on ultimate reaction force with varying height

(logarithmic scale) (Test No.1,11,12: Hyperboloid, Rd=2500mm, Rk=8000mm-

3,500,000mm, H=7500mm,10000mm,12000mm, t=5mm, E=210000MPa, ν=0.3,

1stmodal imperfection, δimp = 0.2t)

• Young’s Modulus E

Young’s Modulus E as a material property is not the key parameter in this

research, but as a comparison of the E = 210000MPa in standard model, the



88 CHAPTER 4. PARAMETER STUDY

Enew = E
2

= 105000MPa is tested. With the varying curvature ratio, the model

ultimate reaction force is plotted in fig 4.23

Figure 4.23: Geometric influence on ultimate reaction force with varying Young’s

Modulus (logarithmic scale) (Test No.1,7,8,9,10: Hyperboloid, Rd=2500mm,

Rk=8000mm-3,500,000mm, H=10000mm, t=5mm, E=1050000MPa,210000MPa,

ν=0.3, 1stmodal imperfection, δimp = 0.2t)

The transition point is not influenced by the half Young’s Modulus. Moreover,

with the half E, the ultimate reaction force is in half as well( 7.15×106(N)
14.35×106(N)

= 50%),

which is also satisfied that Young’s modulus should be in the linear part.

Since the linear relation of the Young’s modulus, the eq 4.5 could be rewritten

in to eq 4.6.

Fu(
Rm

Rk

, t) = A(t) · log(
Rm

Rk

) +B(t)

= (−2.471 · t+ 8.609)× 106 · log(
Rm

Rk

) + (−2.652 · t+ 7.410)× 106

= 210000 · [(−11.77 · t+ 41.95) · log(
Rm

Rk

) + (−12.63 · t+ 35.29)]

= E · [(−11.77 · t+ 41.95) · log(
Rm

Rk

) + (−12.63 · t+ 35.29)]

(4.6)
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• Poisson’s Ratio ν

Similar tests are operated with the varying Poisson’s ratio, the νnew = ν
2

= 0.15

is applied. The transition point is kept constant with the change of ν, and only

the slight influence on the hyperboloid side. However, the divergence occurs

on the cylindrical side of the transition. Although the step-like behaviour is

kept, the buckling resistance decreases greatly. It is because that on the cylin-

der sides the square shaped dents are stimulated, and the interaction between

the perpendicular directions is aggregated. In these two geometric stage, the

influence of the ν must be with different.

Figure 4.24: Geometric influence on ultimate reaction force with varying Poisson’s Ra-

tio (logarithmic scale) (Test No.1,7,8,9,10: Hyperboloid, Rd=2500mm, Rk=8000mm-

3,500,000mm, H=10000mm, t=5mm, E=210000MPa, ν=0.15,0.3, 1stmodal imperfec-

tion, δimp = 0.2t)

4.5.5 Summary and Conclusion

In this section, the reaction of the ultimate reaction force and the radius geometry

is discussed. The vertical radius is the key parameter in the varying specimens. The

geometric shape are classified into two part: the hyperboloid and the nearly-cylinder.

The transition point is also investigated.

In hyperboloid, the relation between the geometric influence on ultimate reaction

force and the radius ratio and varying thickness is expressed by numerical formula
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and the interpolated verification is used to test its accuracy. The error is induced

by the residual in the curve fitting process, and also the relative definition of the

imperfection amplitude is suspected.

The nearly-cylinder is recognized as the stimulated the higher order of the cylinder

buckling modes. With the increase of the vertical radius, the geometric influence of

the curvature is limited, and the specimen behaviours depend on the order of the

cylinder model shape which is stimulated. The closer to cylinder, the lower order is

activated.

In the investigation on the transition point, the variable is controlled. Both the

geometric parameters(t,Rd and H) and the material property (E and ν) are tested.

The thickness has no influence on the transition point, but the varying on the edge

radius(Rd) and the height(H) could move the transition point position. Besides, it

is also observed, that the material properties like Young’s Modulus(E) and Poisson’s

Ratio (ν) have no influence on the transition point position.

It is concluded that the transition point, which distinguishes the hyperboloid and

the nearly-cylinder is a geometric consequence. The exact cylinder is not expected as

the most largest buckling load. The definition of the transition point helps to describe

the specimen behaviour separately.

Table 4.6: relation between the coefficient and geometric parameters

Coeff-A Coeff-B

thickness(t)
√ √

edge radius(Rd)
√

Height(H)
√

Young’s Module(E) linear linear

Poisson’s Ratio(ν)
√

Furthermore, the general formula could be concluded to eq 4.7. The formula of

the parameter t has been studied in this part, and the other geometric parameters

are supposed to be investigated in future.

Fu(
Rm

Rk

, t, Rd, H) = E · [A(t) · log(
Rm

Rk

) +B(t,H,Rd)] (4.7)

Moreover, during the variation of the different parameters in the study of the

transition point, their influence on hyperboloid part is also observed. The varying

geometric parameters is also satisfied with the estimated formula shape on logarithmic

relation because only the intersection and the slop are changed. It is expected the
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continuous numerical study can reveal the influence of the edge radius(Rd) and the

height(H) in the relation of the ultimate reaction force(Fu).

4.6 Local Buckling Dents Study

In this section, the relation between the vertical membrane force(nyy−in) and the lo-

cal geometric parameters are discussed.The geometric parameters are combined with

different trials, including the definition of the slenderness, the modified slenderness

factor, the curvature ratio and the Gaussian curvature. The curve fitting is used to

solve the numerical formula of the nyy−in.

Table 4.7: Combination of the geometric parameters

Trial 1 Trial 2 Trial 3 Trial 4

Combination slenderness modified slenderness curvature ratio Gaussian curvature

factor λ = λyy√
I
A

λ′ = λ · kxx
kyy

kxx
kyy

kg = kxx · kyy

The following test results are based on the Test No.1,3,5,6 : Hyperboloid, Rd=2500mm,

Rk=8000mm-3,500,000mm, H=10000mm, t=5mm,6mm,9mm,10mm, E=210000MPa,

ν=0.3, 1stmodal imperfection, δimp = 0.2t. The vertical internal force nyy−in and the

local curvature kxx, kyy are exported.
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4.6.1 Combination-1: Slenderness and Modified Slenderness

Figure 4.25: Ultimate internal force nyy−in vs. λ
λ =

λyy√
I
A

I =
1

12
λxxt

3, A = λxxt

(4.8)

As previous discussion, the slender dents shape are estimated as the column be-

haviour. The buckling dents is described as a strip with the rectangular cross section,

and the curvature influence is taken into the buckling wave length calculation. It is

straight forward to generate the parameters as the definition of the slenderness eq

4.8. Unfortunately, the fig 4.25 shows, that with the varying of the slenderness, its

influence on the ultimate internal force is limited. The slenderness is not an ideal

independent variable to describe the local dents behaviour. Further, the influence of

the radius is taken into consideration.

The curvature factor is applied as a modifier. It is obvious that the horizontal

curvature(kxx) is able to stabilize the buckling occurrence, and the vertical curvature(kyy)

could reduce the buckling capacity. Hence, the curvature factor is defined as kxx
kyy

. And

the combination of the geometric parameters is defined as modified slenderness in eq

4.10. Notes that the curvature is a definition on the buckling local site, and radius

ratio previously used is describe a general model. For the buckling position is not
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fixed, there is no direct relation between the kxx
kyy

and Rm

Rk
, except the buckle occur in

the exact middle and that the kxx
kyy

is equal to 1/Rm

Rk
.

λ′ = λ · kxx
kyy

(4.9)

(a) 2 buckles (b) 3 buckles

Figure 4.26: Ultimate internal force versus modified slenderness (scatter & 1stcurve

fitting result)

nyy = A(t) · (1− eB(t)·λ′×10−6

) (4.10)

The dots are scattered with the modified slenderness (λ′) and the vertical mem-

brane force at inward dents (nyy−in). Because the different dent amounts in vertical

direction, the internal force is discontinuous. The data is grouped by the vertical

dents distribution. According to the plot, it is estimated that the dots with constant

thickness obeys the exponential relation in shape eq 4.10. The coefficients A,B de-

pend on the varying thickness. Similarly as the previous curve fitting process, the

first curve fitting trial is based on the estimated exponential shape. According to

the result of two buckles in vertical direction, the coefficients A,B are solved with

correspondent thickness, and the related results are in table 4.8.
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Table 4.8: Coefficients table with thickness(modified slenderness with 2 buckles)

t-mm A- N
mm

(95% confidence bounds) B (95% confidence bounds)

5 -1007 (-1037, -976.1) 8.25 (7.67, 8.34)

6 -1433 (-1496, -1370) 11.09 (10.17, 12.02)

9 -3179 (-3271, -3087) 20.94 (21.22, 25.02)

10 -4024 (-4196, -3852) 23.21 (19.72, 22.16)

From the plot of the coefficients A,B, both of the coefficients are in a linear relation

with the varying thickness, in fig 4.27. Hence, let the second curve fitting trial based

on the data in table 4.8, to solve the A(t) and B(t).

The same process is applied on data of the 3 buckles results, and the coefficient

relations are plotted in following. and the correspondent equation.

(a) Coefficient A(t) (b) Coefficient B(t)

Figure 4.27: Coefficients with varying thickness (modified slenderness with 2 buckles)

{
A(t) = −597.7 · t+ 2072

B(t) = 3.069 · t− 7.141
(4.11)
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(a) Coefficient A(t) (b) Coefficient B(t)

Figure 4.28: Coefficients with varying thickness (modified slenderness with 3 buckles)

{
A(t) = −604 · t+ 2082

B(t) = 6.204 · t− 16.81
(4.12)

Comparing the coefficient equations(eq 4.11 and eq 4.12), we observe that the in

different dents distribution, the relation between the coefficient A and the thickness

is comparable. In the estimated formula shape(eq 4.10) the identical coefficient A(t)

keeps the reduction degree influence. On the other hand, the coefficient B(t) has a

different formula between the different vertical dents distribution. It indicates that

the decay speeds of the ultimate buckling internal force nyy−in is influenced by the

dents distribution.

4.6.2 Combination-2: Curvature Ratio

In order to study the curvature influence, the previous definition of the curvature

ratio is inherited and investigated separately. The kxx
kyy

is set as the horizontal axis.

The scatters are separated by double buckles distribution and the triple buckles dis-

tribution in fig 4.29.

nyy = A(t) · (1− eB(t)· kxx
kyy
×10−6

) (4.13)
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(a) 2 buckles (b) 3 buckles

Figure 4.29: Ultimate internal force vs. curvature ratio(scatter & 1st curve fitting

result)

For the trends are very similar with the combination of the modified slenderness,

the same exponential relation is tried as well. The only difference of the horizontal

distribution of the dots are caused by the nearly constant slenderness value(λ). Hence,

the same formula shape in eq 4.10 is applied. The 1st curve fitting trial generates the

coefficients. The correspondent coefficients with the varying thickness are collected

in the table 4.9

Table 4.9: Coefficients table with varying thickness (curvature ratio with 2 buckles)

t-mm A- N
mm

(95% confidence bounds) B×104 (95% confidence bounds)

5 -1006 (-1037, -975.5) 2.863 (2.659, 3.067)

6 -1432 (-1496, -1369) 3.211 (2.94, 3.482)

9 -3177 (-3270, -3083) 4.042 (3.803, 4.282)

10 -4020 (-4194, -3847) 4.034 (3.684, 4.384)



4.6. LOCAL BUCKLING DENTS STUDY 97

(a) Coefficient A(t) (b) Coefficient B(t)

Figure 4.30: Coefficients with varying thickness (curvature ratio with 2 buckles)

As the previous trial, the obvious linear relation is observed in fig 4.30, the coef-

ficient equation is solved as well.

For 2 buckles The previous results are combined, and the equation of the local

buckling formula is derived in eq 4.14.


nyy−in = A(t) · (1− eB(t)· kyy

kxx
×10−6

)

A(t) = −597.2 · t+ 2070

B(t) = 2455 · t+ 1.697× 104

(4.14)

For 3 buckles The similar numerical analysis process is done, and the derived

equation is in eq 4.15.


nyy−in = A(t) · (1− eB(t)· kyy

kxx
×10−6

)

A(t) = −603 · t+ 2082

B(t) = 3847 · t+ 1.506× 104

(4.15)

To verify the accuracy of the numerical formula, the curves in fig 4.31 are plotted

by eq 4.14 and eq 4.15; and the dots are the GNLBA results. It is actuate enough to

describe to nonlinear test results scatter with the numerical curve fitting equation.
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(a) 2 buckles (b) 3 buckles

Figure 4.31: Comparison between the curve fitting formula (lines) and the nonlinear

results (dots) (curvature ratio with 2 buckles& 3 buckles)

Moreover, in fig half Young’s modulus reduces the ultimate membrane stress state

into half. Hence, the linear influence of the Young’s modulus property has been

checked.

Figure 4.32: Half Young’s modulus influence on ultimate state of nyy−in (2-

buckles) (Test No.1,13 : Hyperboloid, Rd=2500mm, Rk=8000mm-3,500,000mm,

H=10000mm, t=5mm, E=210000MPa and 1050000MPa, ν=0.3, 1stmodal imperfec-

tion, δimp = 0.2t)
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In a practical view, it is supposed to merge the 2-buckles results and the 3-buckles

together. The generalised formula is expressed in eq 4.16, and as the linear property,

Young’s modulus part is separated.


nyy−in = E · A(t)(1− eB(t)· kyy

kxx
×10−6

) A(t) = (−2.823 · t+ 9.767)× 10−3

B(t) = 2763 · t− 1.751× 104

E = 210000
N

mm2

(4.16)

Figure 4.33: Plot of the numerical formula with curvature ratio (combination of 2

buckles and 3 buckles results)

Comparing the modified slenderness combination and the curvature ratio, they

share the same trend, and the influence of the slenderness (λ) is limited with the

constant model height.

At the ultimate state, the influence of the buckling dents dimension is limited

with the same buckles distribution and the critical factor is caused by the curvature.

With the numerical curve fitting method, the generalized formula by curvature ratio

is accurate to describe the internal stress at the ultimate state.

It is also possible that it is restrained by the constant height of the specimen, the

wave length of the buckling length is not able to develop freely, and it changes only
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caused by the surface distance influence. To investigate the influence of the buckling

wave length, it is supposed to vary the height of the model as well. Let the height as

a key variable to observe the influence.

4.6.3 Combination-3: Gaussian Curvature

Since the influence of the curvature has been released in the proceeding discussion, the

Gaussian curvature as a critical geometric parameter in shell analysis is investigated

in this section. As the definition, the Gaussian curvature is calculated by the multiple

of the principal curvature, in eq 4.17. Considering the buckling dents happen in the

middle of the specimens, to keep the geometric parameter, the principal curvatures

are simplified to the correspondent the curvatures in vertical and the horizontal.

kg = k1 · k2 ≈ kxx · kyy (4.17)

in the middle zone of the height.

Following the scatters of the results, the estimated formula is shaped in the expo-

nential equation, eq 4.18.

nyy = A(t) · kB(t)
g = A(t) · (kxx · kyy)B(t) (4.18)

The scatters are plotted in the same way, in fig 4.34.

(a) 2 buckles (b) 3 buckles

Figure 4.34: Ultimate internal force nyy−in vs kg

The coefficients of A and B with varying thickness are plotted in fig 4.35. The

linear curve fitting is not able to describe the relation. To generate the relation
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based on the gaussian curvature needs more samples to finish the curve fitting on the

coefficients.

(a) Coefficient A(t) (b) Coefficient B(t)

Figure 4.35: Coefficients with varying thickness (Gaussian curvature with 2 buckles)

4.6.4 Summary and Conclusion

In this section, the numerical study is focused on the influence of the ultimate buck-

ling membrane stress in vertical direction at the inward buckles nyy−in. Based on

the assumption to separate the influence of local geometric parameters, different ge-

ometric combinations are investigated as the independent variable, and the thickness

influences the related coefficients separately.

It is concluded that with the constant buckle distribution, the buckle slenderness

influence is limited and the most critical influence is the local curvature. The equation

between the curvature ratio kxx
kyy

and the ultimate membrane stress nyy−in is expressed

(eq 4.16). Both of the coefficients are investigated in the linear relation with the

varying thickness. With the trial on gaussian curvature, the scatters are successfully

fitted by the exponential relation, but the there is not the linear relation with the

varying thickness and the related coefficients. To generate an equation for the local

Gaussian curvature, the more different thickness specimens are needed.

4.7 Local Ultimate Stress State

The previous mechanism has already revealed the relation between the geometric pa-

rameters with the buckling load or the internal force. In practical, when the designer
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concerns the buckling behaviour of a structure, the ultimate buckling stress is a handy

tool to assess the structure behaviour. Based on the linear buckling analysis, the de-

signer is able to get the buckling pattern of the model, including the dent dimensions

and deformation ratio. However, the stress state is lacked.

Figure 4.36: Ultimate Stress Design Workflow

Therefore, the author provides a series of the design curves on the ultimate stress

state with the dents geometric information. The ultimate stress state as a lower

boundary is used to estimates the structure behaviour. Based on the conclusion of

the previous section, as the critical geometric parameter,the curvature ratio is used

to describe the ultimate stress state, in fig 4.37. The designer just needs to run the

linear elastic analysis to calculate the upper boundary of the stress state, and finishes

the unit-check to ensure the structure is in the safe side.
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Figure 4.37: Ultimate Stress State
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CHAPTER 5

Conclusions and Recommendations

5.1 Conclusions

• A peak load occurs only for small imperfection. For imperfection larger

than 0.2t, the load displacement curve increases continuously due to the as-

sumption of linear elastic material behaviour. Therefore, a peak load does not

occur. In this study, an imperfection of 0.2t has been used for which a peak

load does occur.

• A small non-modal imperfection causes buckling in the shape of the

first buckling mode. A large non-modal imperfection causes buckling in the

shape of a summation of several buckling modes.

• In negatively curved shells the load is carried in three ways. These ways

are the outward buckles, the inward buckles and the material in-between. For

small negative curvatures the load is carried in two ways, in-between material

does not contribute separately any more.

• Buckling in negatively curved shells is preceded by an outward buckle.

Different from the inward buckles, the failure in outward buckles is always

earlier than the global failure. Hence, if we would observe the outward buckle

performance by strain gauges, it would provide a good predication of the global

failure.

105
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• A nearly cylinder with a very small negative curvature is stronger

than an exact cylinder. Hyperboloid global buckling analysis is separated

in two parts: the hyperboloid part and the nearly cylinder part. The transition

point depends on height and the edge radius only, and is independent from the

thickness. In the nearly cylinder behaviour the fundamental buckling modes

are suppressed by hardly visible curvature. Hence, the models only show high

order buckling shapes. For this reason, their capacities are higher than that of

the exact cylinder geometry.

• The ultimate buckling load can be expressed as a function of geomet-

ric parameters. Through data processing of finite element results a formula

has been obtained that describes the ultimate reaction force. The principal

parameters are the vertical radius and the middle radius, and the secondary

parameter is the thickness.

• The peak membrane force in the inward buckles can be expressed as

a function of the local curvature. The curvature ratio kxx
kyy

is selected as the

independent parameter. The numerical curve fitting results are merged in one

general equation which covers the curvature ratio from -150∼-10.

5.2 Recommendations

The following recommendations for further research can be given.

• More analysis of large curvature ratios

The hyperboloid model in thesis has a physical restraint that the curvature ratio

has only been varied in a specified range. To generate more generally applicable

formulas, a larger range of the curvature is needed.

• Free buckling form shape

The buckle shape and the distribution are confined by the boundary conditions.

In this thesis, a stabilized middle zone buckling is aimed for avoid the boundary

influence. But the buckling wave length cannot be changed freely. It will

be very interesting to design a continuously changing curvature shell, which

has unlimited boundary, likes spiral. This would not only solve the physical

boundary restraints but also could have a freely changing curvature, to provide

a free buckling form.
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• Spheroid edge buckling

The fundamental buckling modes in spheroid concentrate on the edge area.

To suppress the edge buckling, the pressure perpendicular to the surface was

applied. The results is limited, pressured zone was expanded but the edge buck-

ling was not eliminated. However, it also provides an interesting phenomenon

that the hoop stress seems has limited influence on the edge buckling. It is

recommended to study edge buckling further.

• Modal interaction

Modal interaction is always a difficult problem in the imperfection study. In this

thesis, the first buckling mode is treated as the most critical imperfection and

implemented on the specimens. But the modal displacement study also shows

that the modal interaction emerges, when a large non-modal imperfection is

implemented. Observing the imperfection influence in the modal displacement

scope may bring some surprising results on modal interaction influence.

• Imperfection description

The relative imperfection amplitude definition (δimp = 0.2t) is used in this

research to describe the imperfection influence. However, when the paramet-

ric controlled test sets are compared to thickness test sets the imperfection

δimp = 0.2t was kept constant. It seems that the thickness is the only chang-

ing condition, actually the imperfection is changing as well. This obstructs the

investigation of thickness. It is recommended to use the imperfection as an in-

dependent parameter. The description method of the imperfection is expected

to finish in future.

• 3-D numerical surface fitting

Since the database has already been set up covering more than 700 models,

people can perform data processing on the database results. The trial on 3-D

numerical surface fitting is a powerful tools that could be developed. The 3-D

surface fitting provides a more widely overview on more parameters influence.

The further study must be very interesting.
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APPENDIX A

An example of the two-phased numerical curve fitting analysis

1. Select Analysis Data

The database is generated by the NLBA tests with varying geometric parame-

ters. After each NLBA test, the model result is exported, including the internal

force, the ultimate reaction force and the buckles geometric information. In

numerical analysis, the most important thing is to select the independent and

dependent parameters based on the database. Because the research is aimed

to find out the influence of both the local geometric parameters and the thick-

ness, it needs to select the independent parameter with the combination of the

geometric parameters at first.

It means that every point in the following plot indicates a NLBA test.

example: Select the radius ratio Rm

Rk
as the main independent parameter, and

the thickness t as the secondary independent parameter. The ultimate total

reaction force(Fu) at the buckling stage is set as dependent parameter. The

data is classified with different thickness(t), and the entire data is appended at

the end in table A.3.

2. Estimate Formula Shape

Before the curve fitting process, the formula shape should be selected at first.

It could be achieved by several way, the most direct is to derive the related

formula, and it could also be estimated by the trend of the curve itself. We
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construct the general shape of the formula, and the coefficients are solved in

the following curve fitting.

example: Based on the NLBA results scatters, it is observed that the linear

relation between the Rm

Rk
and Fu is in logarithmic scale. The dots are classified

with different thickness, and the varying thickness changes the slope and the

intersection at same time. Therefore, we could formulate the shape as eq A.1.

Figure A.1: example:radius ratio(Rm

Rk
) and ultimate reaction force (Fu)

Fu = A(t)× log(
Rm

Rk

) +B(t) (A.1)

3. Apply Curve Fitting Trial (1st) with specified thickness The 1st curve

fitting trial is operated between the main independent parameter and the den-

pendent parameter, keeping the secondary independent parameter in constant.

For the a specified thickness value, the curve fitting process is done based on

the estimated formula shape. The coefficients are solved.

example: The specified thickness(t = 5) is processed between the Rm

Rk
and Fu

at first. After the curve fitting process, the result curve,based on the eq A.1, is

accurate enough to describe the NLBA scatters. And the coefficients A(t = 5)

and B(t = 5) are recorded.
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Table A.1: example:coefficients table with thickness,t = 5

t A ×106N (95% confidence bounds) B×106N (95% confidence bounds)

5 -4.154 (-4.347, -3.966) -6.026 (-6.652, -5.401)

4. Iterate 1st Curve Fitting with Varying t Iterate the similiar process in last

step, with the different thickness, the correspondent coefficients are solved.

example: The curve fitting is applied to t = 6, t = 7.5 and t = 10. The

respective curve fitting result performs greatly with the NLBA results. The

coefficients A(t = 6), B(t = 6), A(t = 7.5), B(t = 7.5) and A(t = 10), B(t = 10)

are recorded.

5. Generate Coefficient Relation According to the previous curve fitting re-

sults, the correspondent coefficients are collected.

example: With varying thickness, the correspondent coefficients A and B are

collected in table A.2.

Table A.2: example:coefficients table with thickness

t A ×106N (95% confidence bounds) B×106N (95% confidence bounds)

5 -4.154 (-4.347, -3.966) -6.026 (-6.652, -5.401)

6 -6.021 (-6.298, -5.743) -8.369 (-9.265, -7.473)

7.5 -9.425 (-9.719, -9.131) -12.33 (-13.281, -11.380)

10 -16.391 (-17.082, -15.701) -19.212 (-21.424, -16.991)

6. Apply Curve Fitting Trial (2nd) In this step, the relation between the solved

coefficients and the secondary independent parameter(t). Plot the coefficients

A and B with thicknesst respectively, and the 2nd curve fitting helps to solve

the formula A(t) and B(t). It is noted that when it is a linear relation, only

4-5 groups of coefficients result are sufficient, but if the relation is quadratic or

exponential, more groups are needed.

example: The graph between A and B with t is plotted in fig A.2. It is evident

that there is a linear relation, and the linear formula describes the A(t) and B(t)

are solved in eq A.2.
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Figure A.2: example:curve fitting results on coefficients A(t) and B(t)

{
A(t) = (−2.471 · t+ 8.609)× 106

B(t) = (−2.652 · t+ 7.410)× 106
(A.2)

7. Form General Formula Combining the two phased of curve fitting results, it

is able to form a general formula.

example: According to the coefficient formulas and the estimated formula

shape, the general formula is formed in eq A.3.

Fu(t,
Rm

Rk

) = A(t) · log(
Rm

Rk

) +B(t)

= (−2.471 · t+ 8.609)× 106 · log(
Rm

Rk

) + (−2.652 · t+ 7.410)× 106

(A.3)
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Table A.3: Data:radius ratio(Rm

Rk
) and ultimate reaction force (Fu)

Fu
Rm

Rk
t = 5 t = 6 t = 7.5 t = 10

0.099534248 4154721.037 6141547.854 10269279.82 20148843.89

0.093245837 4258562.237 6454869.377 10662025.83 20613553.45

0.087467513 4385407.876 6914232.524 11433819.21 21201250.23

0.08222455 4563871.192 7058383.779 11719116.37 21957582.33

0.077488525 4782224.916 7228606.651 11994327.22 22856246.51

0.073212665 5029263.288 7440854.338 12311108.21 23857874.06

0.069346631 5130823.303 7694051.754 12673653.51 24921831.38

0.064212511 5302785.119 8134034.536 13287686.3 33410096.51

0.059752415 5505562.739 8483666.671 13959452.05 40863533.65

0.055850236 5735345.959 8803723.95 14677158.36 46387948.36

0.052412355 5984666.131 9311392.535 15101576.85 50459623.32

0.049363546 6246175.651 9510834.888 15569507.35 53538302.03

0.046643189 6505890.816 9722150.939 16070001.5 53241066.7

0.04420216 6650215.059 9945966.916 16592779.66 54368886.95

0.042000375 6807997.403 10180825.11 17129714.32 26152880.47

0.040004882 6976632.671 10424719.9 17565082.36 26863603.54

0.038188395 7153501.822 10675250.97 17965706.68 27603976.36

0.038188395 7153539.263 10675124.45 17965706.63 28381800.59

0.026233375 8879022.917 13190904.27 21700961.87 29191675.6

0.019964901 10196515.06 15304786.71 24666379.47 30024100.04

0.016110957 11265049.59 16963908.4 26939289.66 30869740.08

0.013503012 12124048.28 18268797.28 28701902.02 31719327.42

0.011621275 12820261.2 18781249.09 30092396.38 32568953.73

0.010199629 13393109.97 19340190.15 31223530.4 33410096.5
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APPENDIX B

An example of the modal displacement track (modal

decomposition)

In Koiter theory, he supposed an idea to estimate the post-buckling performance

with the model intrinsic information, as the modal shape and the load condition.

And the modal displacement is purposed in his thesis. It is similar with the idea of

the Modal Decomposition in dynamic analysis. Since the modal shape is orthogonal

with each others, it is possible to decompose the model deformation as a serious of

modal shapes. In this document, it is aimed to illustrate how to decompose the

deformation in each steps and track the model buckling process in the

modal displacement system. It is helpful to observe how the initial imperfection

influence on the buckling development.

1. Post-process and export the result To observe the buckling process in

modal displacement, it is based on two part: 1).decompose the deformation into

modal displacement 2).track the modal interaction factor with the load steps.

Therefore, in FEM software, the modal shapes information and the deformation

at every step are exported. The deformation result of one step is stored as the

vector component. There is n dofs in system, hence d is a n× 1 vector.

d =


d1

d2
...

dn


n×1

125
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To decompose the deformation in first k orders of the buckling modal shapes,

the radial deformation each mode is expressed in a vector m1,m2...mk. The

modal vector mi=1···k are the n× 1 vectors as well, n is the number of dofs, k

is the number of the fundamental modal shapes.

M = [m1,m2, · · ·mk]

m1 =


m11

m21

...

mn1


n×1

,m2 =


m12

m22

...

mn2


n×1

· · ·mk =


m1k

m2k

...

mn5


n×1

example: The buckling process under GNLBA on hyperboloid model imple-

mented with the 1st buckling modal is monitored. It is aimed to track its de-

formation with first 10 modal shapes. To simplify the analysis, only the radial

deformation is investigated. The first step of the radial deformation is exported

to the vector d1.

(a) deformed model (b) fundamental modal shapes

Figure B.1: Deformed model and fundamental modal shapes

2. Decompose the Deformation Vector In this step, the deformation vector

is decomposed to a series of modal shapes by the components proportions(pi).

The proportion vector (p) is composed by pi. The relation between the modal

decomposition is expressed by eq B.1. Since the modal shape has already been

normalized without unit, the proportion factor pi just expresses the extent of

the modal activated into the specified deformation and in mm dimension.
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d1 =
k∑
i=1

pi ·mi = p1·m1 + p2 ·m2 · · ·+ pk ·mk

p1 =


p11

p21
...

pn1


n×1

(B.1)

if the eq B.1 is written into the matrix calculation, it is like eq B.2.

d = M · p =


m11 m12 · · · m1k

m21
. . . · · · m2k

...
...

. . .
...

mn1 mn2 · · · mnk

 ·


p1

p2
...

pk



=


p1 ·m11 + p2 ·m12 · · ·+ pk ·m1k

p1 ·m21 + p2 ·m22 · · ·+ pk ·m2k

...

p1 ·mn1 + p2 ·mn2 · · ·+ pk ·mnk


(B.2)

The possibility to decompose the deformation into modal matrix is based on

the orthogonality between the modal vectors, which is verified by the eigenvalue

problem, solved in linear buckling analysis. And about the method to solve the

Overdetermined Linear Equations(n > k) based on the Least Square is also

beyond this thesis, the math package provided by matlab is applied directly.

It is noted that for the restraint dofs, it is the zero components in matrix, the

correspondent arrow should be removed in both of the modal matrix and the

deformation vector.

p = M/d (B.3)

After the p is solved, the proportions of each modal component are obtained.

example: In this step, the deformation is decomposed to first 10 fundamental

modal shapes in eq B.4.

d1 =
10∑
i=1

pi ·mi = p1 ·m1 + p2 ·m2 · · ·+ p10 ·m10 (B.4)
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With the matrix calculation, the proportion factors of the modal shapes are

solved. The first step deformation is successfully expressed by these modal

shapes.

p =



0.005

5.27× 10−10

5.88× 10−08

−1.03× 10−06

−9.64× 10−11

6.85× 10−10

1.87× 10−10

4.23× 10−09

1.77× 10−10

−8.47× 10−07



(mm) (B.5)

3. Track Load Steps

The previous step explains the method to decompose only one load step defor-

mation. To track the GNLBA results, it is necessary to calculate the proportion

vector in every load step. The external loop is possible to solve the problem,

but the more efficient way is to utilize the matrix calculation. The deforma-

tion vector and the proportion vector are expanded to correspondent matrix

including all the load steps.

D = [d1,d2, · · ·dl]

=


d11 d12 · · · d1l

d21
. . . · · · d2l

...
...

. . .
...

dn1 dn2 · · · dnl



P = [p1,p2, · · ·pl]

=


p11 p12 · · · p1l

p21
. . . · · · p2l

...
...

. . .
...

pn1 pn2 · · · pnl


,in which n means the number of the dofs and the l means the total load step

The matrix equation is expended to eq B.6 as well. The proportion matrix(P ) is

able to solved. Each proportion vector(pi) in P indicates the modal proportion

at that load step.

D = M · P (B.6)

example: The successive load steps are decomposed by the matrix calculation

in eq B.6. Since there are 44 steps in the nonlinear analysis decomposed into

10 fundamental modal shapes, the solved P is a 10 × 44 matrix.(Matrix P is

placed at the end.)
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Figure B.2: Modal displacement for the modal implemented with the 1st modal shape

Each arrow of the P means the activated extent of the one modal. In fig B.2,

the first 10 fundamental modal displacements is plotted. It is evident that the

model implemented with the 1st buckling modal at δimp = 0.2t, only the 1st

modal is activated and the others are silence.

Attachment: Matrix P T

Matrix P T is written following table. In each arrow, it is the fundamental pro-

portion factors in each load step. Each column contains a proportion factor of

a fundamental modal shape, which is the modal displacement. Before the buck-

ling happens, the absolute value in each column is increasing which indicates

the deformation developing.

Mod-1 Mod-2 Mod-3 Mod-4 Mod-5 Mod-6 Mod-7 Mod-8 Mod-9 Mod-10

5.02E-03 5.27E-10 5.88E-08 -1.03E-06 -9.64E-11 6.86E-10 1.88E-10 4.24E-09 1.77E-10 -7.47E-07

1.01E-02 8.96E-11 1.14E-07 -2.07E-06 3.01E-11 4.87E-10 6.59E-11 8.36E-09 2.22E-10 -1.50E-06

1.78E-02 -1.37E-10 1.90E-07 -3.61E-06 2.72E-11 2.26E-11 -1.67E-10 1.55E-08 -4.56E-10 -2.64E-06

2.96E-02 1.17E-09 2.85E-07 -5.91E-06 1.43E-10 1.56E-09 -2.67E-10 2.80E-08 -1.14E-09 -4.36E-06

4.77E-02 1.46E-09 3.88E-07 -9.35E-06 1.17E-10 1.83E-09 -1.78E-10 4.74E-08 -9.12E-10 -6.98E-06

7.59E-02 1.56E-09 4.40E-07 -1.44E-05 -5.39E-11 2.31E-09 3.62E-10 8.02E-08 -1.91E-11 -1.10E-05

1.05E-01 1.32E-09 3.66E-07 -1.93E-05 -2.06E-11 2.32E-09 1.91E-10 1.21E-07 4.45E-10 -1.51E-05

1.37E-01 7.16E-10 1.49E-07 -2.42E-05 -6.80E-11 1.76E-09 -7.02E-11 1.71E-07 5.15E-10 -1.94E-05

1.70E-01 -3.04E-09 -2.34E-07 -2.90E-05 4.28E-09 -9.90E-09 -5.82E-09 2.24E-07 -1.53E-08 -2.39E-05

2.05E-01 9.54E-10 -7.84E-07 -3.36E-05 -7.03E-11 2.05E-09 3.37E-10 2.98E-07 8.80E-10 -2.85E-05

2.42E-01 1.45E-09 -1.54E-06 -3.82E-05 -2.02E-11 2.43E-09 -8.63E-11 3.82E-07 -7.99E-11 -3.33E-05

2.81E-01 2.05E-09 -2.52E-06 -4.26E-05 -2.55E-10 3.08E-09 -6.39E-10 4.86E-07 -7.81E-10 -3.84E-05

3.23E-01 1.85E-09 -3.75E-06 -4.69E-05 -3.64E-10 2.85E-09 -2.15E-10 6.07E-07 -1.42E-10 -4.38E-05

3.68E-01 1.76E-09 -5.27E-06 -5.10E-05 1.14E-09 9.08E-10 6.91E-10 7.51E-07 -5.54E-10 -4.95E-05

4.16E-01 1.40E-09 -7.12E-06 -5.49E-05 -3.32E-11 2.60E-09 -1.62E-10 9.28E-07 6.37E-10 -5.55E-05
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4.67E-01 6.02E-10 -9.34E-06 -5.86E-05 -8.14E-11 1.96E-09 -8.52E-11 1.14E-06 5.83E-10 -6.19E-05

5.21E-01 1.20E-09 -1.20E-05 -6.21E-05 -8.16E-11 2.31E-09 -1.10E-10 1.40E-06 6.79E-10 -6.87E-05

5.80E-01 -9.20E-10 -1.51E-05 -6.52E-05 -2.64E-09 -2.81E-09 2.06E-09 1.70E-06 3.52E-09 -7.60E-05

6.42E-01 -5.65E-10 -1.88E-05 -6.81E-05 -2.89E-09 -2.79E-09 1.92E-09 2.08E-06 3.37E-09 -8.40E-05

7.10E-01 -8.72E-10 -2.31E-05 -7.05E-05 -3.26E-09 -3.33E-09 2.02E-09 2.54E-06 3.48E-09 -9.26E-05

7.83E-01 -8.11E-10 -2.81E-05 -7.26E-05 -3.82E-09 -4.20E-09 2.99E-09 3.10E-06 7.19E-09 -1.02E-04

8.61E-01 -1.49E-09 -3.40E-05 -7.41E-05 -3.94E-09 -4.86E-09 3.38E-09 3.78E-06 7.39E-09 -1.12E-04

9.46E-01 -1.11E-09 -4.09E-05 -7.50E-05 -4.28E-09 -4.49E-09 3.72E-09 4.62E-06 7.76E-09 -1.23E-04

1.04E+00 -1.01E-09 -4.89E-05 -7.53E-05 -4.40E-09 -4.66E-09 3.89E-09 5.65E-06 8.15E-09 -1.36E-04

1.14E+00 -1.26E-09 -5.82E-05 -7.49E-05 -4.62E-09 -5.08E-09 4.01E-09 6.93E-06 8.20E-09 -1.50E-04

1.24E+00 -7.01E-10 -6.90E-05 -7.35E-05 -5.04E-09 -4.77E-09 4.84E-09 8.50E-06 9.08E-09 -1.65E-04

1.36E+00 -1.67E-09 -8.14E-05 -7.12E-05 -5.13E-09 -5.92E-09 4.48E-09 1.04E-05 9.21E-09 -1.82E-04

1.49E+00 -1.91E-09 -9.58E-05 -6.77E-05 -5.41E-09 -6.26E-09 4.85E-09 1.28E-05 9.52E-09 -2.01E-04

1.62E+00 -1.87E-09 -1.12E-04 -6.29E-05 -5.86E-09 -6.69E-09 4.98E-09 1.58E-05 1.00E-08 -2.22E-04

1.76E+00 -2.22E-09 -1.31E-04 -5.67E-05 -6.06E-09 -6.98E-09 5.49E-09 1.94E-05 1.04E-08 -2.46E-04

1.92E+00 -2.34E-09 -1.53E-04 -4.90E-05 -6.14E-09 -7.47E-09 5.53E-09 2.38E-05 1.06E-08 -2.72E-04

2.08E+00 -2.44E-09 -1.77E-04 -3.95E-05 -6.50E-09 -7.90E-09 5.60E-09 2.92E-05 1.13E-08 -3.01E-04

2.25E+00 -2.54E-09 -2.05E-04 -2.83E-05 -6.87E-09 -8.45E-09 5.86E-09 3.57E-05 1.16E-08 -3.34E-04

2.43E+00 -2.80E-09 -2.35E-04 -1.53E-05 -7.07E-09 -8.46E-09 6.35E-09 4.35E-05 1.23E-08 -3.69E-04

2.62E+00 -2.97E-09 -2.69E-04 -2.60E-07 -7.60E-09 -9.04E-09 6.30E-09 5.27E-05 1.25E-08 -4.08E-04

2.82E+00 -3.21E-09 -3.06E-04 1.67E-05 -7.68E-09 -9.17E-09 6.67E-09 6.36E-05 1.29E-08 -4.50E-04

3.02E+00 -3.18E-09 -3.47E-04 3.56E-05 -8.33E-09 -9.35E-09 7.37E-09 7.62E-05 1.40E-08 -4.95E-04

3.22E+00 -3.27E-09 -3.90E-04 5.65E-05 -8.86E-09 -9.70E-09 7.62E-09 9.08E-05 1.43E-08 -5.44E-04

3.43E+00 -3.22E-09 -4.37E-04 7.93E-05 -9.10E-09 -9.62E-09 7.74E-09 1.08E-04 1.45E-08 -5.96E-04

3.65E+00 -3.33E-09 -4.88E-04 1.04E-04 -9.70E-09 -9.58E-09 7.86E-09 1.27E-04 1.45E-08 -6.52E-04

3.86E+00 -3.24E-09 -5.42E-04 1.31E-04 -1.00E-08 -1.03E-08 8.05E-09 1.48E-04 1.54E-08 -7.11E-04

4.08E+00 -3.74E-09 -5.99E-04 1.59E-04 -1.06E-08 -1.04E-08 8.92E-09 1.72E-04 1.56E-08 -7.73E-04

4.30E+00 -3.84E-09 -6.59E-04 1.90E-04 -1.03E-08 -1.10E-08 9.15E-09 1.99E-04 1.61E-08 -8.39E-04

4.53E+00 -3.79E-09 -7.23E-04 2.22E-04 -1.10E-08 -1.17E-08 8.72E-09 2.29E-04 1.68E-08 -9.07E-04

4.75E+00 -3.80E-09 -7.90E-04 2.56E-04 -1.10E-08 -1.10E-08 9.07E-09 2.62E-04 1.67E-08 -9.79E-04

4.98E+00 -4.15E-09 -8.60E-04 2.92E-04 -1.14E-08 -1.14E-08 9.70E-09 2.98E-04 1.70E-08 -1.05E-03

5.20E+00 -4.04E-09 -9.33E-04 3.29E-04 -1.16E-08 -1.18E-08 9.15E-09 3.37E-04 1.74E-08 -1.13E-03

5.43E+00 -4.04E-09 -1.01E-03 3.68E-04 -1.21E-08 -1.22E-08 9.33E-09 3.81E-04 1.76E-08 -1.21E-03

5.66E+00 -4.16E-09 -1.09E-03 4.10E-04 -1.24E-08 -1.21E-08 9.57E-09 4.27E-04 1.77E-08 -1.30E-03

5.89E+00 -3.98E-09 -1.17E-03 4.52E-04 -1.23E-08 -1.21E-08 9.82E-09 4.78E-04 1.79E-08 -1.39E-03

6.12E+00 -4.30E-09 -1.26E-03 4.97E-04 -1.24E-08 -1.23E-08 1.01E-08 5.33E-04 1.79E-08 -1.48E-03

6.35E+00 -3.81E-09 -1.35E-03 5.43E-04 -1.32E-08 -1.30E-08 1.03E-08 5.92E-04 1.82E-08 -1.57E-03

6.57E+00 -4.43E-09 -1.44E-03 5.92E-04 -1.31E-08 -1.28E-08 9.99E-09 6.56E-04 1.85E-08 -1.67E-03

6.80E+00 -3.96E-09 -1.54E-03 6.42E-04 -1.32E-08 -1.30E-08 1.04E-08 7.24E-04 1.85E-08 -1.77E-03

7.03E+00 -3.89E-09 -1.63E-03 6.93E-04 -1.40E-08 -1.29E-08 1.07E-08 7.97E-04 1.83E-08 -1.87E-03

7.26E+00 -3.76E-09 -1.74E-03 7.47E-04 -1.48E-08 -1.30E-08 1.05E-08 8.75E-04 1.90E-08 -1.98E-03

7.50E+00 -4.09E-09 -1.84E-03 8.02E-04 -1.48E-08 -1.42E-08 1.10E-08 9.57E-04 1.90E-08 -2.09E-03

7.73E+00 -4.71E-09 -1.95E-03 8.59E-04 -1.48E-08 -1.39E-08 1.11E-08 1.05E-03 1.93E-08 -2.20E-03

7.96E+00 -4.26E-09 -2.06E-03 9.18E-04 -1.54E-08 -1.38E-08 1.08E-08 1.14E-03 1.89E-08 -2.31E-03

8.19E+00 -4.94E-09 -2.18E-03 9.79E-04 -1.54E-08 -1.40E-08 1.09E-08 1.24E-03 1.89E-08 -2.43E-03

8.42E+00 -4.61E-09 -2.29E-03 1.04E-03 -1.58E-08 -1.50E-08 1.13E-08 1.34E-03 1.99E-08 -2.55E-03

8.65E+00 -4.19E-09 -2.42E-03 1.11E-03 -1.59E-08 -1.51E-08 1.11E-08 1.46E-03 1.94E-08 -2.68E-03

8.87E+00 -4.23E-09 -2.54E-03 1.17E-03 -1.63E-08 -1.44E-08 1.12E-08 1.57E-03 1.97E-08 -2.81E-03

9.10E+00 -3.75E-09 -2.67E-03 1.24E-03 -1.67E-08 -1.40E-08 1.05E-08 1.70E-03 1.95E-08 -2.94E-03

9.33E+00 -3.47E-09 -2.80E-03 1.31E-03 -1.70E-08 -1.44E-08 1.06E-08 1.83E-03 1.94E-08 -3.07E-03

9.56E+00 -4.23E-09 -2.94E-03 1.38E-03 -1.68E-08 -1.43E-08 1.15E-08 1.97E-03 2.00E-08 -3.20E-03

9.79E+00 -3.36E-09 -3.08E-03 1.46E-03 -1.71E-08 -1.44E-08 1.06E-08 2.11E-03 1.96E-08 -3.34E-03

1.00E+01 -3.14E-09 -3.22E-03 1.53E-03 -1.76E-08 -1.36E-08 1.08E-08 2.26E-03 1.95E-08 -3.48E-03

1.02E+01 -3.08E-09 -3.36E-03 1.61E-03 -1.75E-08 -1.35E-08 1.10E-08 2.42E-03 1.93E-08 -3.63E-03

1.05E+01 -2.39E-09 -3.51E-03 1.69E-03 -1.72E-08 -1.35E-08 1.04E-08 2.59E-03 1.94E-08 -3.78E-03

1.07E+01 -2.14E-09 -3.67E-03 1.78E-03 -1.81E-08 -1.34E-08 1.08E-08 2.77E-03 1.91E-08 -3.93E-03

1.09E+01 -2.34E-09 -3.82E-03 1.86E-03 -1.87E-08 -1.33E-08 1.00E-08 2.95E-03 1.92E-08 -4.08E-03
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1.12E+01 -1.98E-09 -3.98E-03 1.95E-03 -1.85E-08 -1.33E-08 1.05E-08 3.14E-03 1.92E-08 -4.24E-03

1.14E+01 -2.13E-09 -4.15E-03 2.04E-03 -1.87E-08 -1.30E-08 1.04E-08 3.34E-03 1.89E-08 -4.40E-03

1.16E+01 -2.02E-09 -4.32E-03 2.13E-03 -1.88E-08 -1.29E-08 1.05E-08 3.56E-03 1.89E-08 -4.56E-03

1.18E+01 -2.26E-09 -4.49E-03 2.23E-03 -1.95E-08 -1.32E-08 1.08E-08 3.78E-03 1.89E-08 -4.73E-03

1.21E+01 -1.40E-09 -4.67E-03 2.32E-03 -1.90E-08 -1.27E-08 9.62E-09 4.01E-03 1.91E-08 -4.89E-03

1.23E+01 -1.28E-09 -4.85E-03 2.42E-03 -1.95E-08 -1.27E-08 1.04E-08 4.25E-03 1.89E-08 -5.07E-03

1.25E+01 -1.84E-09 -5.03E-03 2.53E-03 -1.97E-08 -1.26E-08 1.02E-08 4.50E-03 1.86E-08 -5.24E-03

1.27E+01 -1.46E-09 -5.22E-03 2.63E-03 -1.98E-08 -1.27E-08 9.92E-09 4.76E-03 1.83E-08 -5.42E-03

1.30E+01 -1.79E-09 -5.42E-03 2.74E-03 -2.03E-08 -1.20E-08 1.00E-08 5.03E-03 1.81E-08 -5.60E-03

1.32E+01 -1.29E-09 -5.62E-03 2.86E-03 -2.00E-08 -1.21E-08 9.74E-09 5.32E-03 1.83E-08 -5.79E-03

1.34E+01 -1.60E-09 -5.82E-03 2.97E-03 -2.05E-08 -1.21E-08 9.13E-09 5.62E-03 1.82E-08 -5.97E-03

1.36E+01 -9.73E-10 -6.04E-03 3.09E-03 -2.05E-08 -1.18E-08 9.70E-09 5.93E-03 1.78E-08 -6.17E-03

1.38E+01 -7.66E-11 -6.25E-03 3.22E-03 -2.04E-08 -1.24E-08 9.73E-09 6.25E-03 1.83E-08 -6.36E-03

1.41E+01 -1.32E-09 -6.47E-03 3.35E-03 -2.13E-08 -1.16E-08 1.00E-08 6.59E-03 1.77E-08 -6.56E-03

1.43E+01 -7.53E-10 -6.70E-03 3.48E-03 -2.17E-08 -1.15E-08 9.47E-09 6.95E-03 1.79E-08 -6.77E-03

1.45E+01 -5.62E-10 -6.94E-03 3.63E-03 -2.24E-08 -1.25E-08 9.92E-09 7.32E-03 1.88E-08 -6.98E-03

1.47E+01 -1.01E-09 -7.18E-03 3.77E-03 -2.22E-08 -1.14E-08 9.10E-09 7.71E-03 1.72E-08 -7.19E-03

1.49E+01 -6.49E-10 -7.43E-03 3.93E-03 -2.13E-08 -1.13E-08 8.85E-09 8.12E-03 1.68E-08 -7.41E-03

1.52E+01 -5.43E-10 -7.70E-03 4.09E-03 -2.18E-08 -1.19E-08 8.85E-09 8.54E-03 1.80E-08 -7.64E-03

1.54E+01 -4.14E-10 -7.97E-03 4.26E-03 -2.23E-08 -1.16E-08 8.55E-09 8.99E-03 1.69E-08 -7.87E-03

1.56E+01 -3.32E-12 -8.25E-03 4.44E-03 -2.20E-08 -1.11E-08 7.93E-09 9.47E-03 1.70E-08 -8.11E-03

1.58E+01 4.28E-10 -8.55E-03 4.64E-03 -2.25E-08 -1.12E-08 9.52E-09 9.98E-03 1.70E-08 -8.36E-03

1.60E+01 -8.34E-11 -8.86E-03 4.85E-03 -2.35E-08 -1.07E-08 9.71E-09 1.05E-02 1.69E-08 -8.63E-03

1.62E+01 1.36E-09 -9.19E-03 5.08E-03 -2.36E-08 -1.15E-08 8.90E-09 1.11E-02 1.68E-08 -8.90E-03

1.64E+01 1.06E-09 -9.55E-03 5.33E-03 -2.42E-08 -1.06E-08 8.81E-09 1.17E-02 1.61E-08 -9.20E-03

1.66E+01 2.69E-10 -9.93E-03 5.61E-03 -2.37E-08 -1.07E-08 8.06E-09 1.24E-02 1.61E-08 -9.51E-03
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APPENDIX C

Research Flowchart
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APPENDIX D

Test Model Input Table

In order to investigate the relation between ultimate reaction force Fu and vertical ra-

dius Rk, under different geometric parameters, the standard model set is established.

In the standard model set, the Rk varies from 8000mm− 3, 500, 000mm(50 models),

and the detailed groups are listed in table D.1. The other parameters includes the

different thickness, edge radius, height and material properties are changed from the

standard test set.

Table D.1: A set of the test groups with respective Rk

Group 1 8,000mm-12,000mm

Group 2 12,000mm-33,000mm

Group 3 33,000mm-60,000mm

Group 4 60,000mm-330,000mm

Group 5 330,000mm-3,500,000mm

note: each group 10 model samples, totally 50 models

To investigate the different geometric conditions, there are 14 test sets are designed

in table D.2, each group contains 50 models. Hence, in total 14×50 = 700 specimens

are tested with GNLBA. The results are collected into the database to proceed details

numerical analysis.
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136 APPENDIX D. TEST MODEL INPUT TABLE

Table D.2: Tested model plan

Test Set No. Rk(mm) t(mm) Rd(mm) H(mm) E(MPa) ν δimp

1(standard set) 8000-3,500,000 5 2500 10000 210000 0.3 0.2t

2 8000-3,500,000 5.5 2500 10000 210000 0.3 0.2t

3 8000-3,500,000 6 2500 10000 210000 0.3 0.2t

4 8000-3,500,000 7.5 2500 10000 210000 0.3 0.2t

5 8000-3,500,000 9 2500 10000 210000 0.3 0.2t

6 8000-3,500,000 10 2500 10000 210000 0.3 0.2t

7 8000-3,500,000 5 1500 10000 210000 0.3 0.2t

8 8000-3,500,000 5 3000 10000 210000 0.3 0.2t

9 8000-3,500,000 5 4000 10000 210000 0.3 0.2t

10 8000-3,500,000 5 5000 10000 210000 0.3 0.2t

11 8000-3,500,000 5 2500 7500 210000 0.3 0.2t

12 8000-3,500,000 5 2500 12000 210000 0.3 0.2t

13 8000-3,500,000 5 2500 10000 105000 0.3 0.2t

14 8000-3,500,000 5 2500 10000 210000 0.15 0.2t



APPENDIX E

APDL script and input

The APDL script is described in this appendix, for detailed input parameters are

introduced. The finite element model is generated in parametric method, people can

adjust the model by their own requirements. All three kinds of the geometries are

covered, four types of imperfection are implemented, and both the Newton-Raphson

and Arc-length method are optioned. In script, it is possible to develop more imper-

fection type by user. And the standard results includes the graphs, deformation plots

and the results in txt files. They are able to be imported by the numerical analysis

software, including Excel, Matlab, Python and etc.

The other part contains all the input data of the nonlinear tests in this research.

It will help people to check and reproduce the test results in this results. The test is

operated in batch, each test group contains 10 test models, most of the input data

could be set as a variable, and the test could terminate automatically. It is easy to

perform more nonlinear test groups.
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