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Abstract

In this thesis a post processing tool for finite element analysis was developed
to perform buckling checks on stiffened steel panels. The tool can perform

buckling checks on rectangular, orthogonal stiffened plates including
different panel sizes and openings. The procedure is completely automatic
and is consequently conducive to reduction of engineering time. The tool

detects geometrical and material properties from a finite element model and
determines design loads based on stress results of a finite element analysis.

The approach is in accordance with guidelines from design codes and
therefore results can be considered to be verified according to the design
code in question. The tool has been adapted to the American Bureau of
Shipping guide for buckling and ultimate strength assessment for offshore

structures. The tool is compared to the ABS plate buckling tool of the
commercial software SDC Verifier. Results show that the developed tool

does not need as fine finite element mesh as the ABS plate buckling tool of
the SDC Verifier to predict accurate buckling factors. Furthermore for

general cases up to 25% reduction of buckling factors can be obtained with
the developed tool compared to the SDC Verifier.
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Chapter 1

Introduction

1.1 General

Stiffened panels are common structural elements used in various fields of engi-
neering. The high strength-to-weight ratio is important for structures where
self weight has to be limited. Examples of application include aircrafts, ships,
steel girder bridges and flood barriers (see figure 1.1 [1], [2], [3], [4]).

Figure 1.1: Examples of stiffened panels

The characteristics of a typical stiffened panel are shown in figure 1.2 [5].
These characteristics are flat rectangular plate with equally spaced longitu-
dinal stiffeners, supported by larger and more widely spaced girders in both
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transverse and longitudinal direction [6]. The stiffeners and the girders usu-
ally have either angle shaped or T-shaped cross section although other shapes
exists.

Figure 1.2: Schematic view of stiffened panel

General loading cases for the panels consist of combination of longitudinal,
transverse and shear stresses along with lateral pressure. Due to the loading
the panel can buckle in several ways, which can be categorised into local- or
global buckling modes. The local buckling modes are the following:

1. Plate buckling between the stiffeners before the failure of the stiffeners.

2. Torsional buckling of the stiffeners.

3. Local buckling of the stiffeners web and flanges.

Figure 1.3: Plate buckling
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Figure 1.4: Torsional buckling Figure 1.5: Local buckling

The global buckling modes are the following:

4. Beam-column buckling of the stiffener and the plate in a combined
mode. The composite panel can either buckle toward the stiffener or
toward the plate.

5. Grillage buckling where the supporting girders loses their stability.

Figure 1.6: Beam-column buckling

Figure 1.6 shows a beam-column buckling mode where the composite panel
buckles toward the stiffener. It can also been seen that the plated panel has
buckled locally.
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1.2 Problem Statement

Depending on the application of the stiffened panel, numerous load combina-
tions have to be taken into account when designing and analysing the struc-
ture. Buckling analysis needs to be performed for each load combination and
for a large structure, it can be a tremendously time consuming procedure.
There are several methods used to perform buckling analysis and all of them
have their advantages and disadvantages. These methods include:

a) Stress checks according to design codes.

b) Linear buckling analysis (eigenvalue analysis).

c) Non-linear analysis.

d) Physical tests

1.2.1 Stress Checks

The goal of stress checks according to design codes is to simplify the calculation
procedure in a conservative way. Linear stress analysis is usually performed
on the structure with the aid of computer software and stresses are compared
to the rules of the design codes. The stress checking procedure can be semi-
automatic, meaning that results from the computer software are manually
imported to a calculation sheet like Excel or Mathcad. This method works
well when the size of the structure and number of load combinations are
limited.

1.2.2 Linear Buckling Analysis

Computer software can be used to perform linear buckling analysis of an ideal
linear elastic structure. Generally the lowest buckling factor determines the
fraction between the theoretical buckling load (the bifurcation point) and the
applied load. Due to imperfections and non-linearities in real structures the
theoretical buckling load normally yields unconservative results [6].

Since the buckling factor is related to all applied load this method can
be troublesome if there are more than one type of loading and the relation
between the loadings is not linear. For example if one type of the loads is
constant (gravity load, water pressure) and another type of load is a live load
the results indicates that the constant loads should also be multiplied by the
buckling factor. Iterative procedure is therefore needed to determine the real
buckling factor [7]. However for such load combination the buckling factor can
be used as an indicator of safety, without determining the theoretical buckling
load.

For stiffened panels, local buckling of the plates is sometimes allowed if
the adjacent structural members can withstand the load. It is therefore likely
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when performing linear buckling analysis on a large structure that the lowest
buckling factors belong to the local buckling modes and it might be difficult
to detect the global buckling failure mode. Linear buckling analysis is also
unable to predict the post buckling behaviour.

1.2.3 Non-Linear Analysis

Non-linear analysis can predict accurately the buckling load and the post
buckling behaviour of structures. The non-linearities can be either geometrical
(e.g. non-linear relation based on small strains) or physical (e.g. non-linear
elastic or plastic material behaviour) [8]. Furthermore non-linear analysis
has the potential to take into account geometrical imperfections and residual
stresses. However to analyse a large model, excessive computational resources
are required. This method is therefore not practical to analyse a large model
but is instead useful when accurate behaviour of a critical area is required.
However, computer capacity is continuously increasing so geometrical non-
linear analysis can be expected to be more common approach in the future
for large models.

1.2.4 Physical Tests

Physical tests can be performed on structures to investigate their perfor-
mances. The tests can be performed on a scaled down model, full scaled
model or part of the structure. The benefits with physical tests is that the
actual behaviour of the structure can be analysed. However, for many cases,
physical testing might not be economical feasible and due to construction de-
viations results from one test might differ from results from another test on
the same type of structure and loading.

1.3 Objective and Approach

The primary objective of this research is to propose a standard calculation
procedure to perform buckling analysis on stiffened panels which drastically
reduces engineering time without using excessive computer resources.

Preferable solution for practise is to implement procedure into finite el-
ement software which compares linear stress results to design codes. The
benefit from such approach is that results are verified by the applied design
codes. Although the equations for the buckling checks are already known, the
greatest challenge is to make the software recognise the input parameters for
the equations.

Figure 1.7: Flow chart for automatic buckling stress check
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Since this thesis is done in collaboration with Femto Engineering, the pro-
cedure will be compared to their existing buckling tool. Furthermore results
will also be verified by comparing them to examples from design code. Finally
results of the proposed method will be compared to linear and and non-linear
buckling analysis.

1.4 State of the Art

1.4.1 Design Codes

There are various design codes which give guidance for designing plated struc-
tures. Eurocode 3, part 1.5 - Plated structural elements gives design require-
ments of stiffened and unstiffened plates which are subjected to in-plane forces
[9]. The main focuses are I-section girders and box girders.

American Bureau of Shipping (ABS) Guide for buckling and ultimate
strength assessment for offshore structures provides formulation to assess
buckling criteria of plates and stiffened panels [6].

Det Norske Veritas (DNV) Recommended practise DNV-RP-C201: Buck-
ling strength of plated structures is a buckling code for stiffened and unstiffened
panels of steel [10].

A rough distinction can be made between the Eurocode 3 guide in one
hand and the ABS and DNV guides on the other hand. Eurocode 3 part
1.5 focuses on structural elements where the primary functionality is beam
behaviour but due to geometrical aspects the elements have to be analysed as
plates as well. The ABS and DNV guides focus however on offshore structures
where the primary functionality of the structural elements is plate behaviour.

1.4.2 Computer Software

There are numerous computer programs available which offer plate buckling
checks according to design codes. Often these programs are associated with
certain finite element software. Licence for these software are usually expen-
sive so therefore limited number of software were investigated for this thesis.

SDC (Structural Design Code) Verifier is a post processing software asso-
ciated with the finite element software Femap (Finite Element Modelling And
Postprocessing). It can perform plate buckling checks according to the ABS
design code on unstiffened panels. The user manually determines the panel
sizes and selects the finite elements which belong to the panels. Results are
based on comparing the stress results of every finite element as if they had
the same size as the panels.

Plate Buckling is a tool associated with the finite element software RSTAB
which was developed by the company Dlubal. It offers plate buckling checks
according to DIN 18800-3:1990-11. In the demo version of RSTAB the user
has to define manually the material data, panel dimensions and boundary
loading.
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Platework is a program developed by DNV to perform code checking of
plane stiffened steel plate structures [11]. It is associated with the software
Genie. Properties and loads of specified plate area are automatically extract-
ing from finite element analysis.

PULS (Panel Ultimate Limit State) is a computerised semi-analytical
model for buckling assessment of plated structures developed by DNV [10]. It
is officially part of the DNV buckling guide.

1.5 Contents

The main body of this report is divided as follows. Chapter 2 describes how
a post processing tool (Stress Check Model) for finite element analysis was
developed to perform buckling checks on stiffened panels. Chapter 3 describes
how the Stress Check Model is adapted to the ABS design guide. In chapter 4
the functionality of the Stress Check Model is demonstrated. Finally in chap-
ter 5 there is a discussion about the Stress Check Model and recommendations
for further work.
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Chapter 2

Methodology

This chapter describes how the Stress Check Model for stiffened panels is
assembled using information from finite element model. The first section
explains the difference between finite element model and the Stress Check
Model. Limitations regarding element types and geometry are discussed. The
second section describes in details how geometrical parameters for the Stress
Check Model are determined automatically. Finally the third section explains
how loads are applied automatically on the Stress Check Model based on stress
results from finite element analysis.

2.1 General

2.1.1 Finite Element Model and Stress Check Model

Figure 2.1 shows a finite element model of a stiffened panel and typical stress
results. Table 2.1 shows the parameters which are needed from the finite
element model to perform buckling stress checks on the structure according to
design codes. These parameters can be categorised into four groups, geometry
of the panels, geometry of the stiffeners, material properties and loading.

Figure 2.1: a) Typical finite element model, b) Typical stress results
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Table 2.1: Buckling stress check parameters
Geometry of Geometry of Material Loading
Panels Stiffeners Properties
Length Length Young’s Modulus Max Longitudinal Stresses
Width Web Height Poisson’s Ration Min Longitudinal Stresses
Thickness Web Thickness Yield Stress Max Transverse Stresses

Flange Width Min Transverse Stresses
Flange Thickness Shear Stresses

Lateral Pressure

For this thesis a post processing tool, Stress Check Model, was developed
to obtain the parameters described in table 2.1. Figure 2.2 shows how the
Stress Check Model defines and numerates the panels, stiffeners and girders
of the finite element model showed in figure 2.1.

Figure 2.2: Numbering of panels, stiffeners and girders according to the Stress
Check Model

When the finite element model in figure 2.1 is compared with the Stress
Check Model in figure 2.2 it can be seen that both models are built up with
several types of elements. Table 2.2 shows an overview of different elements
and their meaning which is used in this thesis.

Table 2.2: Element definition
Finite Element Model

Element name Description
Plate element Plate element from a finite element model
Beam element Line element from a finite element model

Stress Check Model
Element name Description
Panel element Panel which boundaries are defined by

stiffener and girder elements
Stiffener element Longitudinal element
Girder element Transverse element

Notice that for the Stress Check Model longitudinal elements (red elements
in figure 2.2) are called stiffeners and transverse elements (blue elements in
figure 2.2) are called girders. This definition is only used for the sake of
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simplicity but in reality the orientation of stiffeners can be either longitudinal
or transverse and the same holds for girders.

2.1.2 Limitations

The functionality of the Stress Check Model has certain limitations. These
limitations are related to the element types used in the finite element model
and the geometry of the model.

Element Types

The Stress Check Model can only recognise four noded plate elements and
two noded beam elements (see figure 2.3).

Figure 2.3: a) Four noded flat shell element with thickness t in element coor-
dinate system, b) Beam element and cross section properties

The plate elements are indeed flat shell elements meaning they can resist
bending. Stress results are therefore determined at both top- and bottom fibre
of the elements and the results are extrapolated to the corner position (see
the gray nodes in figure 2.3a). The beam elements can have either T-shaped
or L- shaped cross section.

When stiffeners and girders are modelled with beam elements it is possible
to determine the cross section properties automatically. However when beams
are modelled with plate elements as showed in figure 2.4b the cross section
properties cannot be determined. See further discussion in sections 2.2.1 and
5.3.

Geometry

The geometry of the Stress Check Model is limited to flat, rectangular stiffened
plate field, oriented in the in the x-y plane. Longitudinal stiffeners and/or
girders are oriented in the x-direction and transverse stiffeners and/or girders
are oriented in the y-direction. Figure 2.5 shows in a schematic way the
geometrical features which the Stress Check Model can comprehend.

The Stress Check Model is limited to single plate field oriented in the x-y
plane with reference value of the z-coordinates set to zero. As an example
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Figure 2.4: a) Beam modelled with beam elements, b) Beam modelled with
plate elements

Figure 2.5: Allowable geometrical characteristics for the Stress Check Model

the plate field located in the reference plane z0 in figure 2.6 can be analysed
but the other two plate fields located in the reference systems z1 and z2 will
be ignored. Further discussion about the reference planes can be found in
section 5.3.

The Stress Check Model does not allow unsupported edges of panels, here-
with called free edges (see figure 2.7). Further discussion about free edges can
be found in section 5.3.

2.1.3 Femap

The programming of the Stress Check Model is adjusted to the finite element
software Femap. The programming is done with MATLAB where results
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Figure 2.6: Stiffened panels in more than one plane

Figure 2.7: Stiffened panel with one edge unsupported

from Femap are imported as text files to MATLAB. Appendix C describes
in details the procedure of importing results to MATLAB. The outputs are
matrices containing the following information.

� Coordinates of plate elements (x1, y1, z1, x2, y2, z2, x3, y3, z3, x4, y4 z4)

� Coordinates of beam elements (xA, yA, zA, xB, yB, zB)

� Material and cross section properties of plate elements (E, ν, σyield
1, t)

� Material and cross section properties of beam elements (E, ν, σyield, hw,
bf, tw, tf)

1The yield stress is not defined for linear static analysis in Femap so users input is
required
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� Stresses at corner nodes of plate element and lateral pressure acting on
plate element (C1,x, C1,y, C1,xy, C2,x, C2,y, C2,xy, C3,x, C3,y, C3,xy, C4,x,
C4,y, C4,xy, q)

No stress results are obtained for the beam elements. For each node and
each stress component of the plate elements results are given at the top and
bottom fibre. The user is given two choices to determine the stresses in the
elements based on either the mean values of the cross section or the maxi-
mum compressive value of the top and bottom fibre. In case of mean stresses
linear distribution is assumed. If maximum compressive value is chosen but
the whole cross section is in tension the minimum tensile value is chosen. Fig-
ure 2.8 shows stresses at one corner point and the two options to determine
the representing stress value for the point.

Figure 2.8: Bending action within plate element
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2.2 Geometrical and Material Parameters

This section describes in details the strategy to determine the width and
lengths of the panels and how to obtain all necessary geometrical and material
properties used for buckling stress check. The output matrices from this
section are the following:

� Panelinformation(Panel id, Length, Width, E, ν, t)

� Stiffenerinformation(Stiffener id, Length, E, ν, hw, bf, tw, tf)

� Girderinformation(Girder id, Length, E, ν, hw, bf, tw, tf)

2.2.1 Nodes Attached to Stiffeners and Girders

The first step is to define whether the beam elements from the finite element
model are part of stiffener element or girder element. It is done by measuring
the distances in x- and y directions between the two nodes which define the
beam elements. If the x-distance is equal to zero (or relatively small number)
the element can be sorted as a part of a girder element and if the y-distance
is equal to zero (or relatively small number) the element can be sorted as a
part of a stiffener element (see figure 2.9).

Figure 2.9: a) Transverse finite element, b) Longitudinal finite element

In the cases where beams are modelled with plate elements the plate el-
ements which have only two nodes located in the reference plane are found.
Figure 2.10 shows part of a stiffened plate panel where a girder is modelled
with plate elements (blue elements). The plate elements of the girder which
have two nodes in the reference plane (the red nodes) are detected. These
elements are then sorted into either a part of a girder element or a part of a
stiffener element, depending on the coordinates of the red nodes. The rest of
the plate elements of the beam are ignored (those which are only attached to
grey nodes in figure 2.10).

At this moment two groups of elements have been defined:
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Figure 2.10: Girder modelled with plate elements

� Group A - Beam or plate elements which are part of a stiffener element
(the red elements in figure 2.11)

� Group B - Beam or plate elements which are part of a girder element
(the blue elements in figure 2.11)

To determine the boundaries of the girder- and stiffener elements a third
group is defined as:

� Group C - Nodes which belong to both group A and group B (the grey
nodes in figure 2.11)

Figure 2.11: Beam elements and end-nodes of longitudinal stiffeners

For further purpose it is important to know the nodes which are at the
end of the stiffeners and girders. To explain the procedure to detect the end
nodes of stiffeners figure 2.11 is used as an example. Consider group A (the
red elements in figure 2.11). Node B of one beam element is the same as node
A of the adjacent beam element so every node is counted twice, except the
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nodes at the end. Furthermore if the end nodes are not attached to a member
of group B (the blue elements in figure 2.11) the end nodes belong to a panel
which has a free edge. Further discussion about free edges can be found in
section 5.3. The end nodes for group B can be determined in a similar way.

2.2.2 Define Stiffener Elements

Before the stiffener elements are defined it is important for programming rea-
son to sort the information of the coordinates of the nodes in group C in a sys-
tematic order. The Stress Check Model sorts the nodes primary according to
ascending y-coordinates and secondary according to ascending x-coordinates.
The starting point of determining the stiffener is the first node of the sorted
information. The node is defined as Node A and the next node is defined as
Node B. If Node A and Node B have the same y-coordinate a stiffener element
is defined between the nodes. If Node A and Node B do not have the same
y-coordinate no element is defined. Node B is redefined as Node A and the
next node is defined as Node B and the procedure is repeated.

Figure 2.12: a) Finite element model, b) Longitudinal stiffeners

Consider figure 2.12 as an example. The starting point is the node to the
left of stiffener element number 1 (Node A). Since the next node (Node B)
has the same y-coordinate stiffener element 1 is defined and the procedure is
repeated until element number 4 has been defined. Then Node A becomes
the node to the right of element number 4 and Node B becomes the node to
the left of element 5. These nodes do not have the same y-coordinate and no
element is defined.

Notice that in figure 2.12a there is an opening but in figure 2.12b element
10 overlaps the opening. The reason why element 10 is defined is because the
Stress Check Model does not recognise the opening at this stage. When the
node to the right of element 9 is defined as Node A the Stress Check Model
will define the node to the left of element 11 as Node B. These nodes have the
same y-coordinates and therefore element 10 is defined. In the next section a
method to deal with openings and discontinuous stiffeners is explained.
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2.2.3 Connect Element Properties to Stiffener Elements

The first step of recognising the geometrical and material properties of the
stiffener elements is to find the centre coordinate of the elements in group A.

Centre =
Node Bx + Node Ax

2
(2.1)

The centre coordinate of the elements in group A (see the yellow dots in
figure 2.13a) are compared to the minimum and maximum x-coordinates of
the stiffeners element (see the blue nodes in figure 2.13b). If the centre of the
elements in group A falls in between the minimum and maximum coordinates
of the stiffener element the stiffeners element is given the material and cross
section properties of the corresponding elements in group A.

Figure 2.13: a) Centre coordinates of beam elements (yellow dots), b) Mini-
mum and maximum x-coordinates of stiffener element (blue nodes)

Consider stiffener element number 10 from figure 2.12b. No elements from
group A correspond to stiffener element number 10 so it gets eliminated.
For programming reason all stiffener elements are renumbered to maintain
continues numbering sequence of the stiffener elements (see figure 2.14).

Figure 2.14: Stiffener elements for the Stress Check Model

The length of the stiffener elements can be determined from the minimum
and maximum x-coordinates of every element.

Length = Node Bx − Node Ax (2.2)
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As mentioned in section 2.1.2 cross section properties of beams modelled with
plate elements cannot be determined. It means that stiffeners elements 1-4
and 19-22 in figure 2.14 do not recognise their cross section properties.

2.2.4 Girder Elements

To determine the girder elements the coordinates of the nodes in group C
are sorted in a systematic order. The nodes are sorted primary according to
ascending x-coordinates and secondary according to ascending y-coordinates.
The procedure becomes exactly the same as for the stiffeners elements except
y-coordinates are replaced with x-coordinates.

Figure 2.15: a) Finite element model, b) Transverse girders

Figure 2.15b shows that girder element number 12 overlaps the opening.
This element is eliminated when the geometrical and material properties of
the girder elements are determined. First the centre of the elements in group
B are found.

Centre =
Node By + Node Ay

2
(2.3)

The elements in group B which fall in between the minimum and maximum
y-coordinates of the girder elements determine the properties of the girder
elements. Girder element number 12 in figure 2.15b is eliminated because
no elements in group B match the boundaries of element number 12. Since
girder elements 1-5 and 19-23 in figure 2.16 are modelled with plate elements
the cross section properties cannot be determined. The length of the girder
elements is finally determined.

Length = Node By − Node Ay (2.4)
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Figure 2.16: Girder elements for the Stress Check Model

2.2.5 Define Panel Elements Between Stiffeners

A key feature of the Stress Check Model is the algorithm to detect the panel
sizes. The algorithm is explained in details in this section and is demonstrated
with examples. The greatest challenge is to determine panel sizes when there
are discontinuous stiffeners and girders. Discontinuous stiffeners and girders
are caused by openings and difference in panel sizes. Figure 2.17 shows four
possible configurations of discontinuity.

Figure 2.17: a) Discontinuity at left half, b) Discontinuity at right half, c)
Discontinuity at bottom half, d) Discontinuity at top half

Larger models can be considered as being a combination of the different
configurations shown in figure 2.17. The algorithm numbers the corner nodes
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of the panels according to figure 2.18.

Figure 2.18: Corner numbering of panels

The procedure is run for every stiffener element. The algorithm is ex-
plained here with examples referring to the every step. First corner node 1 is
determined.

1. C1 = Node A of the first stiffener element

2. If there are girder elements with y-coordinate of node B larger than
the y-coordinate of C1

Ctest,2 = Node B of the stiffener element

Else go to step 10

...

10 C1 = Node A of the next stiffener element

Go to step 2

Figure 2.19 shows the coordinate system and element numbering for the case
of figure 2.17a. When the algorithm runs for stiffener elements 1, 2 and 3 there
are girder elements with y-coordinate greater than the stiffener elements.

1. C1 = Node A of stiffener element 1 = (0,0)

2. All girder elements have y-coordinate of node B greater than the y-
coordinate of C1

Ctest,2 = Node B of stiffener element 1 = (300,0)

However when the algorithm runs for stiffener elements 4 and 5 there are
no girder elements with y-coordinate greater than the stiffener elements.

10 C1 = Node A of stiffener element 5 = (300,400)
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Figure 2.19: Longitudinal and transverse element numbering for case a

Go to step 2

2 There are no girder elements with y-coordinate of node B greater than
the y-coordinate of C1

Go to step 10

There are no more stiffener elements

end

The next steps of the algorithm determine the actual coordinate of corner
node 2.

3 Indexx = Find girder elements with x-coordinate of node A the same
as x-coordinate of Ctest,2

Indexy = Find girder elements with y-coordinate of node A the same
as y-coordinate of Ctest,2

Index2 = Intersect Indexx and Indexy

4 If the number of elements in Index2 is not equal to 1

Ctest,2 = Node B of the next stiffener element

Go back to step number 3

Else C2 = Ctest,2

Continuing with the case of figure 2.19 the procedure for determining cor-
ner node 2 of the first panel runs without iteration.
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3 Indexx = 2,3

Indexy = 1,2,4

Index2 = 2

4 Number of elements in Index2 is equal to 1

C2 = Ctest,2 = (300,0)

Now, consider the configuration of figure 2.17d. Figure 2.20 shows the
coordinate system and element numbering for that case. To determine corner
node 2 of the large panel a iterative procedure is needed. First corner node 1
is determined as node A of stiffener element 3.

Figure 2.20: Longitudinal and transverse element numbering for case d

10 C1 = Node A of stiffener element 3 = (0,200)

Go to step 2

2 There are girder elements with y-coordinate of node B greater than the
y-coordinate of C1

Ctest,2 = Node B of stiffener element 3 = (300,200)

3 Indexx = 3

Indexy = 2,5

Index2 = No value

4 Number of elements in Index2 is not equal to 1

Ctest,2 = Node B of girder element 4 = (600,200)

Go back to step number 3

3 Indexx = 4,5
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Indexy = 2,5

Index2 = 5

4 Number of elements in Index2 is equal to 1

C2 = Ctest,2 = (600,200)

The algorithm continues to determine the corner node 3.

5 Ctest,3 = Node B of the girder element corresponding to Index2

6 Indexx = Find stiffener elements with x-coordinate of node B the
same as x-coordinate of Ctest,3

Indexy = Find stiffener elements with y-coordinate of node B the
same as y-coordinate of Ctest,3

Index3 = Intersect Indexx and Indexy

7 If the number of elements in Index3 is not equal to 1

Ctest,3 = Node B of the next girder element

Go back to step number 6

Else C3 = Ctest,3

Continuing with the case of figure 2.19 the procedure for determining corner
node 3 of the first panel runs with iteration.

5 Ctest,3 = Node B of girder element 2 = (300,200)

6 Indexx = 1,4

Indexy = No value

Index3 = No value

7 Number of elements in Index3 is not equal to 1

Ctest,3 = Node B of girder element 3 = (300,400)

6 Indexx = 1,4

Indexy = 4,5

Index3 = 4

7 Number of elements in Index3 is equal to 1
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C3 = Ctest,3 = (300,400)

The procedure to determine corner node 3 of the large panel in figure 2.20
runs without iteration.

5 Ctest,3 = Node B of girder element 5 = (600,400)

6 Indexx = 2,4,5

Indexy = 5

Index3 = 5

7 Number of elements in Index3 is equal to 1

C3 = Ctest,3 = (600,400)

The procedure to determine corner node 4 and the coordinates of the pan-
els is non-iterative.

8 x-coordinate of C4 = x-coordinate of C1

y-coordinate of C4 = y-coordinate of C3

9 Panel is defined with corners located at C1, C2, C3 and C4

Continuing with the case of figure 2.20 the procedure for determining cor-
ner node 4 and the coordinates of the large panel is the following.

8 x-coordinate of C4 = x-coordinate of C1 = 0

y-coordinate of C4 = y-coordinate of C3 = 400

9 Panel 3 has the following coordinate, C1 = (0,200), C2 = (600,200), C3

= (600,400) and C4 = (0,400)

Remark

The bottom edge of the large panel in figure 2.20 consist of two stiffener
elements. What will happen is that the algorithm will define additional panel
with corner node 1 as node A of stiffener element 4. Figure 2.21 shows how
two panels, 3 and 4, have been defined and overlap each other.

Problem of this kind are dealt with in the following way. First the location
of the centre of each panel is found. Next the boundaries of each panel are
determined. The centre of each panel element is compared to the boundaries
of all the other panel elements. If the centre of one panel element is located
within the boundaries of another panel element the same panel is eliminated.
In this case the centre of panel element 4 is within the boundaries of panel
element 3 so panel element 4 is eliminated.
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Figure 2.21: Panel numbering for case d

2.2.6 Connect Element Properties to Panel Elements

The procedure to recognise the geometrical and material properties of the
panel elements is quite similar to the procedure for the stiffener and girder
elements. First the centre coordinate of all the plate elements from the finite
element model are found.

Centre(x,y) =

(
x1 + x2 + x3 + x4

4
,
y1 + y2 + y3 + y4

4

)
(2.5)

The centre coordinates of the plate elements are compared to the minimum
and maximum x and y coordinates of the panel elements. If the centre of the
plate elements falls in between the boundaries of the panel element the panel
element is given the material properties and thickness of the corresponding
plate elements. Figure 2.22 shows the boundaries of a panel element (blue
lines) and the centre of the plate elements (yellow dots) which fall in between
the boundaries.

Figure 2.22: Plate elements within boundaries of panel element

Openings are dealt with in the same way as for the stiffener and girder
elements. Figure 2.23b shows that the Stress Check Model first defines the
opening as panel element 6 and 7. Later panel element 7 is eliminated as
explained in case D in section 2.2.5.
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Figure 2.23: a) Finite element model, b) Panel elements

When the plate elements from the finite element model are matched with
the panel elements from the Stress Check Model no plate elements will match
panel element number 6 so it gets eliminated. Finally all panel elements are
renumbered to maintain continuous numbering sequence. The result is showed
in figure 2.24.

Figure 2.24: Panel elements for the Stress Check Model

The length and width of the panel elements can be determined from the
coordinates of the boundaries.

Length = Max(x)−Min(x) (2.6)

Width = Max(y)−Min(y) (2.7)
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2.3 Stress Parameters

This section describes in details the strategy to determine the design stresses
acting on the panels. The output matrix from this section is the following:

� Stresses(Panel id, σx,max, σx,min, σy,max, σy,min, τ , q)

2.3.1 Stresses Acting on the Edge of Panels

The design load acting on panels is based on the stresses along the edges of the
panels. Figure 2.25a shows a panel element modelled with 4x8 plate elements.
The locations of known stresses are marked with x.

Figure 2.25: a) Location of stress values from finite element analysis, b) Lo-
cation of stress values for the Stress Check Model

To determine the stresses along the edges of the panel the Stress Check
Model ignores the results of the shaded area of figure 2.25a. The intermediate
stress values along the edges are taken as the mean value of two adjacent plate
elements. Figure 2.25b shows the corresponding stresses for the Stress Check
Model and the location of the stresses.

Shear stress results of the plate elements in figure 2.3a are the same at
every corner location, meaning that only one shear stress value is obtained for
every plate element. Figure 2.26a shows the shear stress values marked with
x.

Figure 2.26: a) Shear stress values from finite element analysis, b) Location
of shear stress values for the Stress Check Model

The Stress Check Model ignores the results of the shaded area of fig-
ure 2.26a. The shear stresses and their location is showed in figure 2.26b.
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2.3.2 Linearization of Stress Results

The in-plane design stresses σx and σy have to vary linearly at the edges of
the panels for the Stress Check Model. However that is seldom the case from
a finite element analysis. Figure 2.27 shows a panel which is modelled with
4x8 plate elements. The location of the stress values are showed with black
dots.

Figure 2.27: Linearization of finite element stress results

A typical finite element stress result for σx are plotted at the left and right
edge of the panel with grey dots. Likewise the results for σy are plotted with
grey dots at the top and bottom edge. Since both the stress values and the
stress locations are known the stress distribution can be linearised using linear
regression. The regression is done according to the method of least squares
[12].

Y = β0 + β1X (2.8)

Where Y represent the stress value of the regression line and X represent the
location of the stress value (x or y coordinate). The parameters β0 and β1 are
determined according to:

β1 =
SSxy
SSxx

(2.9)

β0 =

∑
Yi
n
− β1

∑
Xi

n
(2.10)
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Where n is the number of sample points, Yi are the stress results at the known
locations Xi and SSxy and SSxx are determined according to:

SSxy =
∑

XiYi −
∑
Xi

∑
Yi

n
(2.11)

SSxx =
∑

X2
i −

(
∑
Xi)

2

n
(2.12)

To represent the stress distribution only with linear regression is unconserva-
tive approach since the peak stresses will be reduced. Therefore the regression
line is shifted according to the difference between the peak stress value and
corresponding linearised stress value. The blue lines in figure 2.27 show the
outcome.

2.3.3 Design Load

This section describes how the design load is determined for the Stress Check
Model. The design load can be categorised into the in-plane stresses σx and
σx, edge shear load τ and lateral pressure q.

In-plane Stresses

The in plane stresses σx and σy have to be symmetric. This means that the
stress distribution at opposite edges has to be the same. The user of the Stress
Check Model is given two options to determine the in plane design stresses.
The first option follows clause 4.6(3) in Eurocode 3, part 1.5 [9].

The plate buckling verification of the panel should be carried out for the
stress resultants at a distance 0,4a or 0,5b, whichever is the smallest, from the
panel end where the stresses are the greater. In this case the gross sectional
resistance needs to be checked at the end of the panel.

Figure 2.28 shows graphically how design in-plane stresses at left and right
edge of a panel are determined according to the method of Eurocode 3. The
stresses located at left and right top corners are plotted along the top edge.
The same is done with the stresses located at the left and right bottom corners.
The design value is then determined at a distance 0,4a or 0,5b from the greater
corner stress. Same procedure is done for the stress distribution for the top
and bottom edges.

Since design codes might contradict each other the user of the Stress Check
Model is also given the option to use the greatest stress value at edges as the
design value. One might expect this approach to be far more conservative
compared to the method of Eurocode 3. Further discussion about this topic
is given in section 5.3.
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Figure 2.28: Design stresses acting on panels

Shear Stresses

The design value for shear stresses has to be constant for each panel and
is based on the shear stresses acting on the edge of panels. The user of
the Stress Check Model is given three options to determine the design load;
to use the maximum shear stress value, use weighted average value or use
weighted average value based on absolute shear stress values. Figure 2.29
shows graphically the difference between the three methods, for simplicity
only one edge of a panel is considered but the procedure is performed on all
edges of the panel.

Figure 2.29: Shear stress at panel edges

The grey area represents a shear stress distribution along the panel edge
from a finite element analysis. The orange area represents the absolute value of
the negative shear stresses. The blue line is a result of maximum shear stresses,
the yellow line represents the weighted average value based on absolute stress
values and the red line is the weighted average value where distinction is made
between positive and negative shear stress values.

If the shear stresses acting on the edges of the panels are all defined either
negative or positive the two weighted average methods will give the same
results. However if both negative and positive shear stresses are acting on the
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edges the weighted average value based absolute stress values will give higher
design value.

Lateral Pressure

The design value for lateral load has to be constant for each panel. In case
of lateral pressure is acting on the structure the user is given two options to
determine the design load; either to use the maximum pressure value applied
to each panel as the design load or the average value. Figure 2.30 demonstrates
the options in case of triangular lateral pressure.

Figure 2.30: a) Lateral pressure acting on panel, b) Maximum value, c) Av-
erage value
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Chapter 3

ABS Package

The ABS: Guide for buckling and ultimate strength assessment for offshore
structures is chosen to demonstrate the functionality of the Stress Check
Model. There are two main reasons for choosing the ABS guide. First of
all to compare results with the SDC verifier which is also based on the ABS
guide. Secondly the ABS guide has a relatively simple structure compared to
the DNV: Buckling strength of plated structures design code, which makes the
programming more straightforward.

Five buckling checks have been incorporated into the Stress Check Model.
Buckling state limit, ultimate strength and uniform lateral pressure
are related to unstiffened panels and are dealt with in section 3.1. Beam-
column buckling state limit and Flexural-torsional buckling state
limit are related to stiffened panels and are dealt with in section 3.2. Accord-
ing to the ABS guide panels are allowed to fail the buckling state limit as long
as the ultimate strength criterion is satisfied. However beam-column buckling
state of stiffened panels is affected when panels fail the buckling state limit.

Table 2.1 lists the parameters which are needed for the buckling stress
checks. For the following sections it is convenient to use symbols for these
parameters.

l - Length of panel
s - Width of panel
t - Thickness of panel
dw - Height of the stiffener web
tw - Thickness of the stiffener web
bf - Width of the stiffener flange
tf - Thickness of the stiffener flange
E - Young’s modulus
ν - Poisson’s ratio
σ0 - Specified minimum yield point of the material
σx,max - Maximum compressive stress in x-direction
σx,min - Minimum stress in x-direction
σy,max - Maximum compressive stress in y-direction
σy,min - Minimum stress in y-direction
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τ - Edge shear stress
q - Lateral pressure

3.1 Plate Panels

This section describes the fundamentals of the buckling checks on unstiffened
panel according to the ABS guide. Figure 3.1 [6] shows how stiffened panels
are modelled according to the ABS guide.

Figure 3.1: Primary loads and loads effects on plate and stiffened panel

3.1.1 Buckling State Limit

The buckling state limit of panels subjected to in-plane loading is expressed
with the following interaction formula:(

σx,max
ησCx

)2

+

(
σy,max
ησCy

)2

+

(
τ

ητC

)2

≤ 1 (3.1)

The denominators on the left hand side are the loads acting the panels (see
figure 3.1). The Stress Check Model determines the load automatically for
each panel. If an edge is loaded in tension, the corresponding maximum
compressive stress is set to zero. The factor η is the maximum allowable
strength utilization factor and should be determined by the user depending
on the application of the structure (by default η is set equal to 1.0).

The critical buckling stresses σCx, σCy and τC are defined as:

σCi =

σEi for σEi ≤ Prσ0

σ0

[
1− Pr (1− Pr)

σ0

σEi

]
for σEi > Prσ0

(3.2)
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τC =

τE for τE ≤ Prτ0

τ0

[
1− Pr (1− Pr)

τ0

τE

]
for τE > Prτ0

(3.3)

Where i stands for x or y, Pr is the proportional linear elastic limit of the
structure (recommended value for steel is 0.6) and the shear strength τ0 is
equal to:

τ0 =
σ0√

3
(3.4)

The elastic buckling stresses σEx, σEy and τE are defined as:

[σEi, τE] = ks
π2E

12 (1− ν2)

(
t

s

)2

(3.5)

Where ks is a boundary dependent constant, depending on the aspect ratio α
and the ratio of edge stresses κ.

α =
l

s
(3.6)

κ =
σi,min
σi,max

(3.7)

The boundary constant ks for σEx is equal to:

ks = C1


8.4

κ+ 1.1
for 0 ≤ κ ≤ 1

7.6− 6.4κ+ 10κ2 for − 1 ≤ κ < 1
(3.8)

The boundary constant ks for σEy is equal to:

ks = C2



[
1.0875

(
1 +

1

α2

)2

− 18
1

α2

]
(1 + κ) + 24

1

α2

for κ <
1

3
and 1 ≤ α ≤ 2[

1.0875

(
1 +

1

α2

)2

− 9
1

α

]
(1 + κ) + 12

1

α

for κ <
1

3
and α > 2(

1 +
1

α2

)2

(1.675− 0.675κ)

for κ ≥ 1

3
(3.9)

The boundary constant ks for τE is equal to:

ks = C1

[
4

(
1

α2

)
+ 5.34

]
(3.10)

The factors C1 and C2 depend on the type of stiffener which define the bound-
aries of the panel. For T and angle shaped stiffeners C1 and C2 are equal to
1.1 and 1.2 respectively.
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3.1.2 Ultimate Strength under Combined In-Plane Stresses

The ultimate strength of panels between stiffeners subjected to in-plane load-
ing is expressed with the following interaction formula:(

σx,max
ησUx

)2

+

(
σy,max
ησUy

)2

+

(
τ

ητU

)2

− ϕ
(
σx,max
ησUx

)(
σy,max
ησUy

)
≤ 1 (3.11)

The factor ϕ is a coefficient to reflect interaction between longitudinal and
transverse stresses and is defined as:

ϕ = 1− β

2
(3.12)

Where β is the slenderness ratio of the panel which is defined as:

β =
s

t

√
σyield
E

(3.13)

The ultimate buckling stresses σUx, σUy and τU are defined as:

σUx = Cxσ0 ≥ σCx (3.14)

σUy = Cyσ0 ≥ σCy (3.15)

τU = τc + 0.5
σ0 −

√
3τc√

1 + α + α2
≥ τc (3.16)

Where σCx, σCy, τC and α are as defined in section 3.1.1. The ultimate buckling
stresses should not be lower than the critical buckling stresses. The factors
Cx and Cy are defined as:

Cx =


2

β
− 1

β2
for β > 1

1 for β ≤ 1
(3.17)

Cy = Cx
1

α
+ 0.1

(
1− 1

α

)(
1 +

1

β2

)2

(3.18)

3.1.3 Uniform Lateral Pressure

When panels are subjected to lateral pressure alone or combined with in-plane
stresses the following interaction formula has to be satisfied.

q

η4.0σ0

(
t

s

)2(
1 +

1

α2

)√
1−

(
σe
σ0

)2
≤ 1 (3.19)

All parameters are as defined before except the equivalent stress according to
von Mises:

σe =

√
(σx,max)

2 + (σy,max)
2 − σx,maxσy,max + 3τ 2 (3.20)
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3.2 Stiffened Panels

This section describes the fundamentals of buckling checks on stiffened pan-
els according to the ABS guide. The load which is applied to the stiffeners
depends on the load acting on the associated panels. Furthermore the beam-
column buckling check takes into account the geometry of both the panels and
the attached stiffeners. Therefore an algorithm which detects the properties
of the associated panels to stiffeners is required.

3.2.1 Stiffeners and Associated Panels

The algorithm runs for every stiffener element which is modelled with beam
elements in the finite element model. Stiffeners which are only attached to
one panel will be discarded.

1. xA = x-coordinate of node A of the stiffener element

xB = x-coordinate of node B of the stiffener element

y = y-coordinate of the stiffener element

2. Group 1 = Find all panel elements which have the minimum x-coordinate
same as xA

Group 2 = Find all panel elements which have the maximum x-coordinate
same as xB

Group 3 = Find all panel elements which have the maximum y-coordinate
same as y

Group 4 = Find all panel elements which have the minimum y-coordinate
same as y

3. Group A = Union Group 3 and Group 4

Group B = Union Group 1 and Group 2

Group C = Find panel elements in Group B which are not in Group A

4. 1st check

If Group C contains any panel elements

Remove panel elements of Group C from Group B

5. If the number of remaining panel elements in Group B is equal to two

The stiffener element is attached to the remaining panel elements of
Group B
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The first check of the algorithm covers most general cases. Figure 3.2 shows
in schematic way the different groups for the algorithm where the solid red
stiffener is the target.

Figure 3.2: Finding associated panels to stiffeners for general cases

6 2nd check

If the number of remaining panel elements in Group B is equal to
one

Group D = Intersect Group B and Group 3

Group E = Intersect Group B and Group 4

7 If there are any panel elements in Group D

Index = Find the element in Group 4 which have minimum x-
coordinate smaller than xA and maximum x-coordinate greater than
xB

The stiffener element is attached to the panel element of Group B
and Index

8 If there are any panel elements in Group E

Index = Find the element in Group 3 which have minimum x-
coordinate smaller than xA and maximum x-coordinate greater than
xB

The stiffener element is attached to the panel element of Group B
and Index
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The second check covers the cases where the lengths of the associated panels
differ. Figure 3.3 shows in schematic way the different groups for the algorithm
where the solid red stiffener is the target.

Figure 3.3: Finding associated panels to stiffeners for severe cases

The stresses applied to the stiffeners are derived from the stresses applied
to the panels. Due to numerical deviation from both the finite element analysis
and the determination of design stress from the Stress Check Model, the stress
results at the location of a stiffener might differ between two panels. The
design stress applied to stiffeners is taken as the greater compressive value of
σ1 and σ2 showed in figure 3.4 where the solid red stiffener is the target.

σa = max (σ1,σ2) (3.21)

Figure 3.4: Stresses applied to stiffeners

The formulation of the ABS guide assumes that associated panels have the
same geometrical and material properties. For the cases where the properties
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of the associated panels of stiffeners differ the Stress Check Model warns the
user. The buckling checks are computed for both property types and the
result is based on the worst outcome.

3.2.2 Beam-Column Buckling State Limit

The beam-column buckling state limit is to satisfy the following expression:

σa
ησCA (Ae/A)

+
Cmσb

ησ0

[
1− σa/

(
ησE(C)

)] ≤ 1 (3.22)

The first term at the left hand side of expression 3.22 is associated with
axial forces and the second term is associated with bending action. The
maximum allowable strength utilization factor η is as defined in section 3.1.1
and the parameter Cm is a moment adjustment coefficient (recommended value
is 0.75). The axial stress, σa acting on the stiffener is determined according
to equation 3.21 and figure 3.4. The total sectional area and the effective
sectional area are defined as:

A = As + st = dwtw + bf tf + st (3.23)

Ae = As + set = dwtw + bf tf + set (3.24)

Where the effective width se is defined as:

se =

{
s if the buckling state limit is satisfied

CxCyCxys if the buckling state limit is not satisfied
(3.25)

The factor Cx is as defined in section 3.1.2. The factors Cy and Cxy are defined
as:

Cy = 0.5ϕ

(
σy,max
σUy

)
+

√
1− (1− 0.25ϕ2)

(
σy,max
σUy

)2

(3.26)

Cxy =

√
1−

(
τ

τ0

)2

(3.27)

Where ϕ, σUy and τ0 are as defined before. The critical buckling stress σCA is
defined as:

σCA =

σE(C) for σE(C) ≤ Prσ0

σ0

[
1− Pr (1− Pr)

σ0

σE(C)

]
for σE(C) > Prσ0

(3.28)

Where the proportional linear elastic limit of the structure Pr is defined as in
section 3.1.1 and the Euler’s buckling stress σE(C) is defined as:

σE(C) =
π2Er2

e

l2
(3.29)
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Where re is the radius of gyration of the effective sectional area Ae:

re =

√
Ie
Ae

(3.30)

The moment of inertia of the effective sectional area is based on the sectional
area of the stiffener and the effective width of the associating plate.

Ie =
1

12

(
t3se + d3

wtwt
3
fbf
)

+ 0.25 (t+ dw)2 dwtw

+ (0.5t+ dw + 0.5tf )
2 bf tf − Aez2

ep

(3.31)

Where zep is the distance from the the centre of the plate to the centroid of
the effective sectional area, determined as:

zep =
0.5 (t+ dw) dwtw + (0.5t+ dw + 0.5tf ) bf tf

Ae
(3.32)

The bending stress, σb, is determined according to:

σb =
M

SMw

(3.33)

Where M is the maximum bending moment induced by lateral pressure and
SMw is the effective section modulus of the stiffener.

M =
qsl2

12
(3.34)

SMw =
Iw

0.5t+ dw + tf − zwp
(3.35)

Where:

Iw =
1

12

(
t3se + d3

wtwt
3
fbf
)

+ 0.25 (t+ dw)2 dwtw

+ (0.5t+ dw + 0.5tf )
2 bf tf − Awz2

wp

(3.36)

Aw = As + swt = dwtw + bf tf + swt (3.37)

zwp =
0.5 (t+ dw) dwtw + (0.5t+ dw + 0.5tf ) bf tf

Aw
(3.38)

The effective breadth sw is related to the distance between zero bending mo-
ments along the stiffener. The Stress Check Model uses a conservative value
for the effective breadth equal to 58% of the total width s. Further discussion
about the effective breadth can be found in section 5.3.

The yield stress σ0 is determined from weighted areas of the stiffener and
its associated panels.

σ0 =
(Ae-Astiffener)σ0,panel + Astiffenerσ0,stiffener

Ae

(3.39)

47



3.2.3 Flexural-Torsional Buckling State Limit

The flexural-torsional buckling state limit is to satisfy the following expression:

σa
ησCT

≤ 1 (3.40)

Where the axial stress σa is as defined in section 3.2.2 and the maximum
allowable strength utilization factor η is as defined in section 3.1.1. The
critical torsional-flexural buckling stress is defined as:

σCT =

σET for σET ≤ Prσ0

σ0

[
1− Pr (1− Pr)

σ0

σET

]
for σET > Prσ0

(3.41)

Where σ0 is determined as in section 3.2.2 and σET is the elastic flexural-
torsional buckling stress with respect to the axial compression of a stiffener
including its associated panel, defined as:

σET =

K

2.6
+
(nπ
l

)2

Γ +
C0

E

(
l

nπ

)2

I0 +
C0

σcL

(
l

nπ

)2 E (3.42)

Where K is the St. Venant torsion constant for the stiffener cross section, Γ
is a warping constant and I0 is the polar moment of inertia of the stiffener.

K =
bf t

3
f + dwt

3
w

3
(3.43)

Γ = mIzfd
2
w +

d3
wt

3
w

36
(3.44)

Izf =
tfb

3
f

12

(
1 + 3

u2dwtw
As

)
(3.45)

I0 = Iy +mIz + As
(
y2
o + z2

0

)
(3.46)

Iy and Iz are the moment of inertia of the stiffener about the y-and z-axis, y0 is
the horizontal distance between the centroid of the stiffener and the centerline
of the plate and z0 is the vertical distance between the centroid of the stiffener
and its flange toe.

Iy =
1

12

(
d3
wtw + t3fbf

)
+ 0.25d3

wtw + bf tf (dw + 0.5tf )
2 − Asz2

0 (3.47)

Iz =
1

12

(
t3wdw + b3

f tf
)

+ bf tf (b1 − 0.5bf )
2 − Asy2

0 (3.48)
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y0 =
(b1 − 0.5bf ) bf tf

As
(3.49)

z0 =
0.5d2

wtw + (dw + 0.5tf ) bf tf
As

(3.50)

The parameter b1 is the smaller outstand dimension of flange with respect to
the web’s centreline. The factor m accounts for unsymmetry of the stiffener
cross section.

m = 1− u
(

0.7− 0.1
dw
bf

)
(3.51)

u = 1− 2
b1

bf
(3.52)

The factor C0 is defined as:

C0 =
Et3

3s
(3.53)

The critical buckling stress σcL for associated plating corresponding to n-half
waves is defined as:

σcL =

π2E
(n
α

+
α

n

)2
(
t

s

)2

12 (1− ν2)
(3.54)

Where α is the aspect ratio of the associated panels and n is the number
of half waves which yield the lowest value for the elastic flexural-torsional
buckling stress σET. By default the Stress Check Model determines σET for
the first ten half waves and the lowest value is used to carry out the buckling
check. Figure 3.5 show how the number of half waves influence the elastic
flexural-torsional buckling stress for three different examples which are dealt
with in section 4.1.

Figure 3.5: Elastic flexural-torsional buckling stress for various number of half
waves
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Chapter 4

Verification, Examples and
Comparison

The functionality of the Stress Check Model is explained in this Chapter. In
the first section the Stress Check Model is verified by comparing it to examples
from a design code. The second section shows the usage of the Stress Check
Model, starting from a finite element model. In the third section the Stress
Check Model is compared to commercial buckling check software and in the
fourth section the Stress Check Model is compared to classical plate buckling
examples.

4.1 Verification

The ABS package of the Stress Check Model is verified using examples from
Commentary on the guide for buckling and ultimate strength assessment for
offshore structure on Smith’s panels [13] (hereby called the Commentary on
the ABS guide). The properties of the Smith’s panels can be found in table 4.1.
The Young’s modulus and the Poisson’s ratio are the same for each panel,
equal to 206,000N/mm2 and 0.3.

Table 4.1: Properties of Smith’s Panels
Panel 1a 1b 2a 2b 3a 3b 4a 4b 5 6 7

Panel Properties
L 6096.0 6096.0 6096.0 6096.0 6096.0 6096.0 1219.2 1219.2 6096.0 6096.0 6096.0
l 1219.2 1219.2 1524.0 1524.0 1524.0 1524.0 1219.2 1219.2 1524.0 1219.2 1524.0
B 3048 3048 3048 3048 3048 3048 1016 1016 3048 3048 3048
s 609.6 609.6 304.8 304.8 304.8 304.8 254.0 254.0 609.6 609.6 609.6
t 8.00 7.87 7.72 7.37 6.38 6.40 6.43 6.40 6.43 6.32 6.30
σyield 249.1 252.2 261.3 259.7 250.6 252.2 259.7 264.3 247.6 256.7 290.1

Stiffener Properties
dw 153.7 152.4 115.6 114.3 77.7 77.2 76.7 77.0 116.1 76.2 115.1
tw 7.21 7.11 5.44 5.38 4.52 4.65 4.85 4.55 5.33 4.55 5.16
bf 78.99 76.20 45.97 44.70 25.91 27.94 27.69 26.16 46.23 27.43 45.21
tf 14.22 14.22 9.53 9.53 6.35 6.35 6.35 6.35 9.53 6.35 9.53
σyield 253.7 252.3 253.1 263.3 246.8 247.3 252.5 257.3 244.9 255.2 303.3

Loading
σx 190.3 184.2 239.4 218.5 170.3 150.9 207.1 213.6 176.3 125.0 197.1
q 0 0.103 0.048 0 0.021 0 0 0.055 0 0 0
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Where:

L - Total length of the plate field [mm]
l - Length between transverse frames [mm]
B - Total width of the plate field [mm]
s - Width between longitudinals [mm]
t - Plate thickness [mm]
σyield - Specific minimum yield point [N/mm2]
dw - Web height [mm]
tw - Web thickness [mm]
bf - Flange width [mm]
tf - Flange thickness [mm]
σx - Stress in the longitudinal direction [N/mm2]
q - Lateral pressure [N/mm2]

There are in total eleven different models with four different panel config-
uration, meaning that the total length and width of the plate field and the
length and width of the sub-panels are the same. Figure 4.1 shows the four
panel configurations. However the cross section properties of the stiffeners,
the plate thickness and the yield stress vary between all the models.

Figure 4.1: Smith panels, a) models 1a, 1b and 6, b) models 2a, 2b, 3a and
3b, c) models 4a and 4b, d) models 5 and 7

According to the Commentary on the ABS guide the design load which
is applied to each sub-panel is the same as the load which is applied to the
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boundary of the plate field. Figure 4.2 shows a schematic view of the loading
for model 1a.

Figure 4.2: Uniformly distributed load applied to model 1a

All the Smith’s panels are modelled with the finite element software Femap.
Figure 4.3 shows how the boundary conditions and load are applied to model
1a. At the left edge, displacements in all directions and rotation about the
x- and z-axis are constrained. At the right edge, displacements in y- and z-
directions and rotation about the x- and z-axis are constrained. The model is
loaded with uniformly distributed load at the right edge of the plate field. The
load is tuned until the stress results in the x-direction of the sub-panel marked
with dotted red square from the Stress Check Model match the examples from
the Commentary on the ABS guide.

Figure 4.3: Boundary conditions and applied load to model 1a for finite ele-
ment analysis

Figure 4.4 shows the stress results for model 1a from the finite element
analysis. It is noticeable that the stress results are close to being uniformly
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distributed around the sub-panel located in the middle of the plate field.
However close to the boundaries of the plate field the stress results are far
from being uniformly distributed. Therefore the results from the Commentary
on the ABS guide are compared to the sub-panel of the finite element model
located in the middle of the plate field.

Figure 4.4: Finite element results for model 1a

The same procedure was carried out for the rest of the models. Table 4.2
shows a comparison between the load applied to the sub-panels according to
the Commentary on the ABS guide and the load applied on the sub-panel
located in the middle of the plate fields according to the Stress Check Model.
Results show that stresses in the x-direction and lateral pressure are almost
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identical. However stresses in the y-direction and shear stresses are introduced
in the Stress Check Model.

Table 4.2: Load applied to panels [N/mm2]
Stress Check Model

ABS (SCM)
Model σx σy τ q σx σy τ q

1a 190 0 0 - 190 3 0 -
1b 184 0 0 0.103 184 17 0 0.103
2a 239 0 0 0.048 239 17 2 0.048
2b 219 0 0 - 218 17 1 -
3a 170 0 0 0.021 169 9 1 0.021
3b 151 0 0 - 151 9 0 -
4a 207 0 0 - 207 61 5 -
4b 214 0 0 0.055 213 62 7 0.055
5 176 0 0 - 176 10 1 -
6 125 0 0 - 125 3 0 -
7 197 0 0 - 197 11 1 -

These additional stresses can be traced to the modelling of the finite el-
ement models. First of all the boundary conditions highly affect the stress
results of the finite element model. As an example the shorter edges of the
sub-panels of models 4a and 4b define the boundaries of the plate field and are
therefore highly affected by the boundary conditions (see figure 4.1c). Sec-
ondly the load applied in the x-direction is applied at the level of the plate
elements. This causes eccentric loading on the beam elements. Consequently
the results of the buckling checks are affected.

The difference between the ABS guide and the Stress Check Model is
defined as:

% =
ABSvalue − SCMvalue

ABSvalue
× 100 (4.1)

Table 4.3 and figure 4.5 show the results for the buckling checks according
to section 3.1. Due to stress results in the y-direction and shear stresses from
the Stress Check Model more conservative outcome of the buckling checks is
expected. Great mismatch is between the results of the example from the
ABS guide and the Stress Check Model for models 4a and 4b.

The remaining results for the buckling state limits match within 5% differ-
ence and the Stress Check Model yields more conservative results except for
model 3a. The explanation is that the σx result from the Stress Check Model
is slightly less for panel 3 than from the ABS example (see table 4.2).

The results for the ultimate state limit state match within 10%. For models
2a, 2b, and 3a the Stress Check Model yields less conservative results. The
explanation is that the factor ϕ in equation 3.11 is defined positvie in these
cases and has positive influences.

The buckling checks for lateral pressure are equal or less conservative for
the Stress Check Model in all cases. The interaction between different stress
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Table 4.3: Verification of results for unstiffened panels
Buckling Ultimate Lateral

Limit State Limit State Pressure
Model ABS SCM % ABS SCM % ABS SCM %

1a 1.82 1.82 0.0 1.56 1.57 -0.6 - - -
1b 1.82 1.90 -4.4 1.46 1.59 -8.9 0.72 0.69 4.2
2a 1.08 1.09 -0.9 1.00 0.98 2.0 0.17 0.15 11.8
2b 0.94 0.95 -1.1 0.88 0.86 2.3 - - -
3a 0.67 0.66 1.5 0.66 0.64 3.0 0.06 0.06 0.0
3b 0.52 0.52 0.0 0.50 0.50 0.0 - - -
4a 0.81 0.98 -21.0 0.76 0.81 -6.6 - - -
4b 0.85 1.01 -18.8 0.79 0.85 -7.6 0.13 0.11 15.4
5 3.76 3.81 -1.3 1.90 2.05 -7.9 - - -
6 2.02 2.02 0.0 0.94 0.97 -3.2 - - -
7 5.11 5.17 -1.2 2.05 2.24 -9.3 - - -

Figure 4.5: Results for unstiffened panels

components yield lower value for the equivalent stress according to von Mises
in equation 3.19.

Table 4.4 and figure 4.6 show the results for the buckling checks according
to section 3.2. Results for beam-column buckling check match within 5% limit
and the Stress Check Model yields more conservative results except for model
3a. The reason for the difference can be traced to different result obtained
between the approaches for the effective section modulus from equation 3.35.
There are three possible explanations for the difference.

� There could be an error in the Stress Check Model programming code
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� The formula in ABS guide could be wrong which consequently leads to
wrong results for the Stress Check Model

� The value in the ABS example is wrong

Table 4.4: Verification of results for stiffened panels
Beam Column Flexural-Torsional

Buckling Buckling
Model ABS SCM % ABS SCM %

1a 1.04 1.05 -1.0 0.88 0.88 0.0
1b 1.14 1.16 -1.8 0.86 0.86 0.0
2a 1.15 1.15 0.0 1.01 1.01 0.0
2b 0.87 0.87 0.0 0.92 0.92 0.0
3a 1.02 1.00 2.0 0.79 0.79 0.0
3b 0.67 0.67 0.0 0.69 0.69 0.0
4a 0.85 0.85 0.0 0.89 0.88 1.1
4b 1.18 1.23 -4.2 0.91 0.90 1.1
5 1.19 1.23 -3.4 1.04 1.04 0.0
6 0.93 0.94 -1.1 1.05 1.05 0.0
7 1.19 1.24 -4.2 1.09 1.09 0.0

Figure 4.6: Results for stiffened panels

Excellent correspondence is between results for the torsional-flexural buck-
ling state limit which was expected since the buckling check only depends on
the stresses in the x-direction.
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4.2 Example

The following example demonstrates the functionality of the Stress Check
Model and the ABS package. Consider the finite element model showed in
figure 4.7. It is part of a larger model which is loaded in compression in both
in-plane directions and with constant lateral pressure.

Figure 4.7: Finite element model of the example

Two different panel sizes can be recognised from the model. The outer
boundaries of the model and the boundaries of the smaller panels are mod-
elled with plate elements. The longitudinal angle stiffeners (blue) and the
transverse stiffeners (dark grey) are modelled with beam elements. Figures 4.8
- 4.10 show the stress results for the finite element analysis.

Figure 4.8: Stress results in x-direction at bottom and top fibre [N/mm2]

The geometrical and material properties of the model along with the stress
results are exported to the Stress Check Model. The Stress Check Model
numbers the stiffeners and the panels according to figure 4.11.
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Figure 4.9: Stress results in y-direction at bottom and top fibre [N/mm2]

Figure 4.10: Shear stress results at bottom and top fibre [N/mm2]

Figure 4.11: Stiffener and panel numbering from Stress Check Model (coor-
dinates in [mm])

The users settings for the Stress Check Model are the following:

� The mean value of stress results at top and bottom fibre of plate elements
is used
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� The design in-plane stresses σx and σy are determined according to clause
4.6.(3) in Eurocode 3 part 1.5

� The design shear stress is based on the weighted average shear results

� The design lateral pressure is based on maximum value (not relevant for
this example since constant lateral pressure is applied to the model)

The Stress Check Model gives a warning that buckling check will not be
performed on stiffeners 1-16 and 25-40 since they are modelled with plate
elements. Next the Stress Check Model warns the user which panels and
stiffeners fail the buckling checks. In this case panels 10 and 11 and 13-
16 failed the buckling state limit from section 3.1.1. The results for every
buckling check from sections 3.1 and 3.2 are displayed in tables. The Stress
Check Model also displays all intermediate results. The complete report can
be found in appendix B.

----------------------------

----------------------------------- ABS Stiffened panels

ABS Plate buckling stress check buckling stress check

----------------------------------- ----------------------------

Beam/ Flexural/

Panel Critical Ultimate Lateral Stiffener Column Torsional

Nr. check check check Nr. check check

1 0.15 0.14 0.07 17 0.41 0.32

2 0.13 0.13 0.07 18 0.74 0.33

3 0.13 0.12 0.07 19 0.67 0.33

4 0.12 0.12 0.07 20 0.41 0.32

5 0.12 0.12 0.07 21 0.65 0.32

6 0.13 0.12 0.07 22 0.74 0.33

7 0.13 0.13 0.07 23 0.70 0.33

8 0.15 0.14 0.07 24 0.67 0.32

9 0.82 0.72 0.15 ----------------------------

10 1.11 0.85 0.15

11 1.11 0.85 0.15

12 0.82 0.72 0.15

13 1.08 0.82 0.15

14 1.19 0.85 0.15

15 1.19 0.85 0.15

16 1.08 0.82 0.15

17 0.31 0.29 0.07

18 0.30 0.29 0.07

19 0.29 0.28 0.07

20 0.29 0.28 0.07

21 0.29 0.28 0.07

22 0.29 0.28 0.07

23 0.30 0.29 0.07

24 0.30 0.29 0.07

25 0.68 0.54 0.14

26 0.81 0.59 0.14

27 0.81 0.59 0.14

28 0.68 0.54 0.14

-----------------------------------
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Due to the shifted linear regression of the finite element results the Stress
Check Model determines the in-plane design loads always in a conservative
way. Therefore if a panel or a stiffener fails a buckling check it can be useful
to look closer at how the Stress Check Model determines the stress distri-
bution. The Stress Check Model can plot the design in-plane stresses and
compare them graphically to the stress results from the finite element anal-
ysis. Figure 4.12 shows the in-plane stress results for panel 16, which failed
the buckling state limit check.

Figure 4.12: Stress results from the Stress Check Model

The middle plot of figure 4.12 represents the panel number and its coor-
dinates. The plots to the left and right represent the σx distribution and the
plots at the top and bottom represent the σy distribution. The solid cyan
coloured plot represents the stress results from the finite element analysis.
The solid blue line is the results of linear regression through the finite element
results which has been shifted to include the maximum compressive stress
values. The red line represents the symmetric design load.

The σy distribution for panel 16 has a maximum design value equal to 77
N/mm2. It is up to the user to determine if this really is a representative
value for the panel since it is highly affected by a stress concentration due to
transverse stiffener located at the middle of the top edge (see figure 4.11). If
one would use the design value for σy equal to 60 N/mm2 the panel would
pass the buckling state limit with a result of 0.80 instead of 1.09.
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4.3 Comparison to the SDC Verifier

In this section the Stress Check Model is compared to the buckling tool of the
SDC Verifier. The comparison is demonstrated using a simple model governed
by in-plane bending action. Figure 4.13 shows a finite element model of a plate
field. The length of the plate field is 19m and the height is 1.8m. The plate
field is modelled as simply supported beam loaded with uniformly distributed
load in the downward direction equal to 40.8kN/m. The length, width and
thickness of the panels are 1000mm, 600mm and 12mm respectively. Only part
of the model is analysed for plate buckling (see the shaded area of figure 4.13).
The influences of the mesh size is taken into account in the analysis. Table 4.5
shows an overview of the mesh sizes.

Table 4.5: Mesh sizes
Elements

Mesh per panel
1x1 1
3x5 15
6x10 60
9x15 135
12x20 240
15x25 375
18x30 540

Figure 4.13: Finite element model of simple plate field using 6x10 elements
for each panel

The SDC Verifier can perform buckling check according to the buckling
limit state and the ultimate limit state as described in sections 3.1.1 and 3.1.2.
The user has to manually define the panel sizes and select the finite elements
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which belong to every panel. The buckling checks are performed on every
finite element as if they had the length and width from the panel they are
linked to. Uniform stress distribution is assumed for every element. For the
comparison to the Stress Check Model two different settings are considered
for the SDC verifier

� Settings 1: Average buckling factor of all the finite elements selected
to a panel of interest

� Settings 2: The result of finite element selected to a panel of interest
which yields the highest buckling factor

The buckling check equations used for the SDC Verifier are in nature
the same as the one used for the Stress Check Model [14]. However they
are derived from a ABS guide for assessment of ship structures and some
intermediate calculations differ. In order to compare the Stress Check Model
with the SDC Verifier the ABS package of the Stress Check Model is adjusted
to the equations used for the SDC Verifier. The coefficient of interaction
between longitudinal and transverse stresses becomes (see equation 3.12):

ϕ = 1.5− β

2
(4.2)

The factors Cx and Cy from equations 3.17 and 3.18 change to:

Cx =


2.25

β
− 1.25

β2
for β > 0

1 for β ≤ 1.25
(4.3)

Cy = Cx
s

l
+ 0.115

(
1− s

l

)(
1 +

1

β2

)2

≤ 1 (4.4)

Two different settings are analysed for the Stress Check Model.

� Settings 1: Average stress value in the cross section of the plate ele-
ments, weighted average shear stresses acting on the edge of the panels
and stress distribution according to clause 4.6(3) in Eurocode 3, part
1.5

� Settings 2: Maximum stress value in the cross section of the plate
elements, maximum shear stresses acting on the edge of the panels and
in-plane stress distribution according based on maximum stress value
acting on the panel

Figure 4.14 shows an overview of the different settings for the SDC Verifier
and the Stress Check Model and in figure 4.15 the numbering of the panels is
showed. Panel 1 is under tension with respect to the stresses in the x direction
which is the governing factor in the unity checks for this example, therefore
the unity checks are close to zero in all cases and the mesh size has negligible
influences.
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Figure 4.14: Overview of settings for buckling analysis

Figure 4.16 shows the maximum design stress in the x-direction for panel 2
according to both the SDC verifier and the Stress Check Model for all settings.
The mesh size has little influence on settings 1 and 2 of the Stress Check
Model and acceptable design load is obtained using only one finite element
for the panel. The difference between the two settings is around 3.5%.

Panel 2 can be considered being under pure in-plane bending with respect
to σx. Therefore settings 1 of the SDC Verifier, which are based on average
stress results of all the finite elements belonging to the panel, yields zero
loading, independent on the mesh size. The results for Settings 2 of the SDC
Verifier are highly influenced by the mesh size. In appendix A an expression is
derived to estimate the deviation of the design load of the SDC Verifier. The
expression is valid for panels loaded with linear distributed in-plane stresses
in one direction. The deviation (ε) depends on the ratio (ψ) between the
maximum and minimum stresses applied to the panel and the number of
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Figure 4.15: Panel numbering for buckling analysis

Figure 4.16: Maximum compressive stress in the x-direction for panel 2

finite elements (Nel) located on the edge of the panel.

ε =
1− ψ

2 (Nel − 1)
(4.5)

For pure in-plane bending ψ is equal to -1. For the 3x5 mesh, three finite
elements are located along the panel edge which is loaded and the deviation
is equal to 50%, that is the load should be increased by 50%. The value of
the load for settings 2 of the SDC Verifier corresponding to the 3x5 mesh is
equal to 47.2N/mm2 and increasing that value by 50% gives 70.8N/mm2. For
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the 18x30 mesh, 18 finite elements are located along the panel edge which is
loaded and the deviation is equal to 5.9%. The value corresponding to the
18x30 mesh is equal to 67.4N/mm2 and increasing that value by 5.9% gives
71.4N/mm2.

Figures 4.17 and 4.18 show the buckling check results for panel 2. As for the
design load the Stress Check Model shows rather stable behaviour with regard
to the mesh size. The difference between the two settings is approximately
20% for the buckling limit state and 15% for the ultimate limit state.

Figure 4.17: Buckling limit state results for panel 2

Since the mesh size highly influence the design load for settings 2 of the
SDC Verifier the results of the buckling checks are also highly affected and
the buckling factor increases with each mesh refinement. The SDC Verifier as-
sumes uniformly distributed load on the edges which is the most unfavourable
condition. However the Stress Check Model takes into account the positive
influence of the in-plane bending effects leading to much greater resistance
compared to the SDC Verifier. Therefore the SDC Verifier yields higher buck-
ling factor even though the design load is less.

For the buckling limit state the results becomes greater than both the
settings from the Stress Check Model. For the 18x30 mesh the difference is
25% compared to settings 1 of the Stress Check Model and 6% compared to
settings 2. Nevertheless the results for the settings 1 of the SDC Verifier
have not converged so even greater difference is expected.

For the ultimate limit state settings 2 of the SDC Verifier gives 9% higher
buckling factor compared to settings 1 of the Stress Check Model for the
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Figure 4.18: Ultimate limit state results for panel 2

18x30 mesh but 6% lower factor compared to settings 2 of the Stress Check
Model. However the results have not converged so the difference could be
greater.

Although the σx design stress is close to being zero for settings 2 of the
SDC Verifier the σy and τ stresses have little influence on the buckling results.
Still the results are significantly lower compared to the other settings.

Figure 4.19 shows the maximum design stress in the x-direction for panel 3
according to both the SDC verifier and the Stress Check Model for all settings.
The mesh size slightly influences settings 1 and 2 of the Stress Check Model
and the difference between the two settings is around 4.5%. As for panel 2,
settings 2 of the SDC Verifier gives less design load for both settings 1
and 2. Panel 3 is under compression with respect to the stresses in the x
direction with ratio of maximum and minimum stresses equal to 0.33. The
deviation according to equation 4.5 for mesh 18x30 is 2.0% and increasing
the corresponding load gives 219N/mm2 which match well with load from
settings 1 of the Stress Check Model.

Figures 4.20 and 4.21 show the buckling check results for panel 3. The
Stress Check Model starts to show rather stable behaviour with regards to
the mesh size after mesh refinement 6x10. The difference in results between
the two settings is approximately 13% for the buckling limit state and 6% for
the ultimate limit state.

As for panel 2 the mesh size highly influence the buckling checks for set-
tings 2 of the SDC Verifier. For the buckling limit state settings 2 of the
SDC Verifier gives 10% higher buckling factor compared to settings 1 of the
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Figure 4.19: Maximum compressive stress in the x-direction for panel 3

Figure 4.20: Buckling limit state results for panel 3

Stress Check Model for the 18x30 mesh but 3% lower factor compared to set-
tings 2 of the Stress Check Model. For the ultimate limit state settings 1
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Figure 4.21: Ultimate limit state results for panel 3

of the SDC Verifier gives 1% lower buckling factor compared to settings 1 of
the Stress Check Model and 7% compared to settings 2.
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4.4 Classical Examples

In this section the Stress Check Model is compared to analytical solutions
of classic unstiffened plate buckling examples. Results are also compared to
linear buckling analysis and geometrical non-linear analysis where geometrical
imperfections and non-linear material behaviour are taken into account.

The length, width and thickness of the panel are 2000mm, 1000mm and
10mm respectively and the Young’s modulus and the Poisson’s ratio are taken
as 210000N/mm2 and 0.3.

The analysis is performed for three different load cases; case 1 - uniform
compression acting in the x-Direction, case 2 - uniform compression acting
in both x- and y-direction and case 3 - in-plane bending.

4.4.1 Case 1 - Uniform Compression Acting in x-Direction

Figure 4.22 shows schematic view of the load case.

Figure 4.22: Schematic view of load case 1

Analytical solution

The analytical solution for simply supported plate under pure compression in
one direction is the following [15]:

σcr = k
π2E

12 (1− ν2)

(
t

b

)2

= k · 18.98N/mm2 (4.6)

Where σcr is the critical load the plate buckling coefficient k can be determined
from figure 4.23 [15].

The aspect ratio of the panel is equal to 2 so the the plate buckling coeffi-
cient becomes equal to 4 and number of half waves for the buckling mode are
equal to 2. The resulting critical stress is σcr = 75.9N/mm2.

Linear Buckling Analysis

Figure 4.24 shows the boundary conditions and the load applied to the finite
element model. Displacements along the edges in the z-direction are con-
strained (not showed in the figure). Displacements in both x- and y-direction
are constrained in middle of the upper edge and displacements in x–direction
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Figure 4.23: Plate buckling coefficient k for a simple supported plate under
pure compression in one direction

is constrained in middle of the lower edge. The load applied to the panel is
tuned until the lowest eigenvalue from linear buckling analysis becomes equal
to 1.00. The mesh size is 50mmx50mm.

Figure 4.24: Boundary conditions for finite element analysis (above), applied
load to finite element model (below)
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The panel is free to deform in both x- and y-direction causing neither
stresses in the y-direction nor shear stresses as showed in figure 4.25.

Figure 4.25: Linear elastic deformation of the panel and stress results

Figure 4.26 shows the buckling mode corresponding to the lowest eigen-
value. Two half waves can be seen in the figure which correspond to the an-
alytical solution. The corresponding buckling load is equal to 75.5N/mm2

which is slightly less than the analytical solution.

Figure 4.26: Buckling mode corresponding to the lowest eigenvalue

Stress Check Model - Buckling Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the buckling limit state stress check.
The yield stress is taken as 255N/mm2.(

σx,max
σCx

)2

+

(
σy,max
σCy

)2

+

(
τ

τC

)2

=

(
75, 5

75, 9

)2

+ 0 + 0 = 0.99 (4.7)

Equivalent load factor for the unity check is 1.01 which means that the ap-
plied load of the finite element analysis can be increased by 1% for the Stress
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Check Model. According to the ABS guide for this example, the critical buck-
ling stress σCx corresponds to the critical buckling stress from the analytical
solution for yield stress greater than 127N/mm2 (see equation 3.2).

Non-Linear Analysis

Geometrical imperfections are introduced to the model by using the deforma-
tion from the linear buckling analysis corresponding to the lowest eigenvalue.
The magnitude of the imperfections is equal to 5mm (1/200 of the width of
the panel) which is in accordance with recommended value from Eurocode 3,
part 1.5 [9].

Geometrical non-linear analysis is performed using both linear elastic and
elastic-plastic material behaviour where the Von Mises yield criterion is used
for yield stress equal to 255N/mm2. The load control method is used for the
analysis with load increment equal to 0.1 and maximum 15 iterations per load
step.

Figure 4.27 shows a load-displacement graph of the node corresponding to
the maximum out of plane deformation from the linear buckling mode. For the
linear elastic material behaviour a load factor equal to 5.77 is obtained. The
deformation for several load steps is showed in figure 4.27. The analysis stops
shortly after the panel starts to yield for the case of elastic-plastic material
behaviour, giving load factor equal to 1.43.

Figure 4.27: Load-displacement graph for non linear analysis for both linear
elastic (blue line) and elastic-plastic (black line) material
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Stress Check Model - Ultimate Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the ultimate limit state stress check.(

σx,max
σUx

)2

+

(
σy,max
σUy

)2

+

(
τ

τU

)2

− ϕ
(
σx,max
σUx

)(
σy,max
σUy

)
=

(
75.5

125.4

)2

+ 0 + 0 + 0 = 0.36

(4.8)

Equivalent load factor for the unity check is 1,67 which is larger than the load
factor from the geometrical non-linear analysis with elastic-plastic material
behaviour.

Summary

The result from the Stress Check Model for the buckling limit state match well
with the analytical solution and the linear buckling analysis. However when
the outcome of the ultimate limit state check is compared to the geometrical
non-linear analysis using elastic-plastic material behaviour the Stress Check
Model gives a higher load capacity.
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4.4.2 Case 2 - Uniform Compression Acting in both x-
and y-Direction

Figure 4.28 shows schematic view of the load case.

Figure 4.28: Schematic view of load case 2

Analytical solution

The analytical solution for simply supported plate under uniform compression
in both x- and y-direction with ratio between the stress components equal to;

ψ =
σy
σx

< 0.5 (4.9)

is the following with respect to stresses in the x-direction [16]:

σcr,x = kx
π2E

12 (1− ν2)

(
t

b

)2

= kx · 18.98N/mm2 (4.10)

The plate buckling coefficient kx can be determined as:

kx =

(
m2

α2
+ n2

)2

m2

α2
+2

(4.11)

Where m and n are the number of half waves in longitudinal and transverse
directions. For aspect ratio α equal to 2 and stress ratio ψ equal 0.3 (same
as the Poisson’s ratio of the material) the buckling coefficient has a minimum
value for m = n = 1 resulting in kx equal to 2.84. The resulting critical stress
is σcr,x = 56.8N/mm2.

Linear Buckling Analysis

Figure 4.29 shows the boundary conditions and the load applied to the fi-
nite element model. Displacements along the edges in the z-direction are
constrained (not showed in the figure). Displacements in y-direction are con-
strained at the upper and lower edge and displacements in x–direction are
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constrained in middle of the panel. The load applied to the panel is tuned un-
til the lowest eigenvalue from linear buckling analysis becomes equal to 1.00.
The mesh size is 50mmx50mm.

Figure 4.29: Boundary conditions for finite element analysis (above), applied
load to finite element model (below)

The panel is free to deform only in the x-direction causing constant stresses
in the x- and y-direction with ratio between the stress components equal to
0.3 (same as the Poisson’s ratio). The shear stresses are zero as showed in
figure 4.30.

Figure 4.31 shows the buckling mode corresponding to the lowest eigen-
value. One half wave in both transverse and longitudinal directions can be
seen in the figure which correspond to the analytical solution. The corre-
sponding buckling load is equal to 53.9N/mm2 which is 5% less than the
analytical solution.

Stress Check Model - Buckling Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the buckling limit state stress check.
The yield stress is taken as 255N/mm2.(

σx,max
σCx

)2

+

(
σy,max
σCy

)2

+

(
τ

τC

)2

=

(
53.9

75.9

)2

+

(
16.2

29.7

)2

+ 0 = 0.80

(4.12)
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Figure 4.30: Linear elastic deformation of the panel and stress results

Figure 4.31: Buckling mode corresponding to the lowest eigenvalue

Equivalent load factor for the unity check is 1.12 which means that the applied
load of the finite element analysis can be increased by 12% for the Stress Check
Model leading to greater value than the analytical solution.

Non-Linear Analysis

Geometrical imperfections are introduced to the model by using the deforma-
tion from the linear buckling analysis corresponding to the lowest eigenvalue.
The magnitude of the imperfections is equal to 5mm (1/200 of the width of
the panel) which is in accordance with recommended value from Eurocode 3,
part 1.5 [9].

Geometrical non-linear analysis is performed using both linear elastic and
elastic-plastic material behaviour where the Von Mises yield criterion is used
for yield stress equal to 255N/mm2. The load control method is used for the
analysis with load increment equal to 0.1 and maximum 15 iterations per load
step.

Figure 4.32 shows a load-displacement graph of the node corresponding to
the maximum out of plane deformation from the linear buckling mode, located
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at the middle of the panel.

Figure 4.32: Load-displacement graph for non linear analysis for both linear
elastic (blue line) and elastic-plastic (black line) material

For the linear elastic material behaviour a load factor equal to 31.2 is
obtained. When the load factor is equal to 2.3 the buckling mode changes
from one half wave into three half waves and again for load factor equal to
7.8 the buckling mode changes into five half waves mode (see figure 4.32).
The graph in figure 4.32 only show results for load factor up to 10.0. If a
displacement control or arc-length control method would have been used the
snap-back behaviour showed in figure 4.32 could probably have been analysed
further.

When the analysis is performed with elastic-plastic material behaviour an
opposite buckling shape occurs after load factor equal to 2.3 compared to
the linear elastic material behaviour. The analysis stops immediately due to
yielding of the panel resulting in load factor equal to 2.2.
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Stress Check Model - Ultimate Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the ultimate limit state stress check.(

σx,max
σUx

)2

+

(
σy,max
σUy

)2

+

(
τ

τU

)2

− ϕ
(
σx,max
σUx

)(
σy,max
σUy

)
=

(
75.5

125.4

)2

+

(
16.2

77.6

)2

+ 0 + 0.74

(
75.5

125.4

)(
16.2

77.6

)
= 0.30

(4.13)

Equivalent load factor for the unity check is 1,82 which is lower than the load
factor from the geometrical non-linear analysis with elastic-plastic material
behaviour.

Summary

The result from the Stress Check Model for the buckling limit state gives
higher load capacity compared to the analytical solution and the linear buck-
ling analysis. When the outcome of the ultimate limit state check is compared
to the geometrical non-linear analysis using elastic-plastic material behaviour
the Stress Check Model gives a lower load capacity.
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4.4.3 Case 3 - In-Plane Bending

Figure 4.33 shows schematic view of the load case.

Figure 4.33: Schematic view of load case 1

Analytical solution

The analytical solution for simply supported plate under in-plane bending is
the following [15]:

σcr = k
π2E

12 (1− ν2)

(
t

b

)2

= k · 18.98N/mm2 (4.14)

Where σcr is the critical load the plate buckling coefficient k can be determined
from figure 4.34 [15].

Figure 4.34: Plate buckling coefficient k for a simple supported plate under
bending

The aspect ratio of the panel is equal to 2 so the the plate buckling coeffi-
cient becomes equal to 23.92 and number of half waves for the buckling mode
are equal to 3. The resulting critical stress is σcr = 454.0N/mm2.
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Linear Buckling Analysis

Figure 4.35 shows the boundary conditions and the load applied to the fi-
nite element model. Displacements along the edges in the z-direction are
constrained (not showed in the figure). Displacements in x-direction are con-
strained in the middle of the panel and for the node located at the middle
of the panel, displacement in y-direction is constrained. The load applied to
the panel is tuned until the lowest eigenvalue from linear buckling analysis
becomes equal to 1.00. The mesh size is 50mmx50mm.

Figure 4.35: Boundary conditions for finite element analysis (above), applied
load to finite element model (below)

The panel is free to deform in both x- and y-direction causing relatively
small stresses in the y-direction and shear stresses compared to the stresses
in the x-direction as showed in figure 4.25.

Figure 4.37 shows the buckling mode corresponding to the lowest eigen-
value. Three half waves can be seen in the figure which correspond to the an-
alytical solution. The corresponding buckling load is equal to 452.4N/mm2

which is slightly less than the analytical solution.

Stress Check Model - Buckling Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the buckling limit state stress check.
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Figure 4.36: Linear elastic deformation of the panel and stress results

Figure 4.37: Buckling mode corresponding to the lowest eigenvalue

The yield stress is taken as 255N/mm2.(
σx,max
σCx

)2

+

(
σy,max
σCy

)2

+

(
τ

τC

)2

=

(
452.4

220.0

)2

+ 0 + 0 = 4.23 (4.15)

Equivalent load factor for the unity check is 0.49 which is significantly lower
than the analytical and linear buckling solution. The reason for the difference
is that for the Stress Check Model the resistance of the panel depends on the
yield stress (see equation 3.2). Figure 4.38 shows a graph where the outcome
of the unity check is plotted against the yield stress. To obtain the same
results for the Stress Check Model as for the analytical solution the material
would have a yield stress equal to 750N/mm2 which is a unrealistic solution
for general structures.

Non-Linear Analysis

Geometrical imperfections are introduced to the model by using the deforma-
tion from the linear buckling analysis corresponding to the lowest eigenvalue.
The magnitude of the imperfections is equal to 5mm (1/200 of the width of

81



Figure 4.38: Unity check as a function of the yield stress

the panel) which is in accordance with recommended value from Eurocode 3,
part 1.5 [9].

Geometrical non-linear analysis is performed using both linear elastic and
elastic-plastic material behaviour where the Von Mises yield criterion is used
for yield stress equal to 255N/mm2. The load control method is used for the
analysis with load increment equal to 0.05 and maximum 15 iterations per
load step.

Figure 4.39 shows a load-displacement graph of the node corresponding to
the maximum out of plane deformation from the linear buckling mode. For the
linear elastic material behaviour a load factor equal to 4.43 is obtained. The
deformation for several load steps is showed in figure 4.27. The analysis stops
shortly after the panel starts to yield for the case of elastic-plastic material
behaviour, giving load factor equal to 0.59.

Stress Check Model - Ultimate Limit State

The Stress Check Model uses the stress results from the linear elastic finite
element analysis on the panel to perform the ultimate limit state stress check.(

σx,max
σUx

)2

+

(
σy,max
σUy

)2

+

(
τ

τU

)2

− ϕ
(
σx,max
σUx

)(
σy,max
σUy

)
=
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452.4

220.0

)2

+ 0 + 0 + 0 = 4.23

(4.16)

The ultimate limit state yields the same results as the buckling limit state
for this case. Equivalent load factor for the unity check is 0.49 which is lower
than the load factor from the geometrical non-linear analysis with elastic-
plastic material behaviour.
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Figure 4.39: Load-displacement graph for non linear analysis for both linear
elastic (blue line) and elastic-plastic (black line) material

Summary

The result from the Stress Check Model show significantly lower load factors
compared to the analytical solution and the linear buckling analysis. The
reason is that in-plane bending is according to the theory a favourable case
resulting in a resistance much greater than normal yield stresses. This will
cause the panel to yield long before the critical stresses are reached. When
the outcome of the ultimate limit state check is compared to the geometrical
non-linear analysis using elastic-plastic material behaviour the Stress Check
Model gives a lower load capacity.
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Chapter 5

Conclusions and
Recommendations

5.1 Conclusion

In this thesis a post processing tool for finite element analysis, Stress Check
Model, has been developed to perform buckling checks on stiffened panels
based on design codes. The procedure is completely automatic apart from
user’s initial settings related to what type of method should be used to de-
termine stresses acting on panels. It is possible to use the tool to analyse flat
rectangular plate fields with stiffeners and girder oriented in the longitudinal
and transverse directions. Both geometrical and material properties of panels,
stiffeners and girders may vary.

The design load which is applied to panels is based on stress results from
finite element analysis located along the edges of the panels. The approach
is conservative leading to design load which is equivalent or greater than the
finite element results. The user is given the option to verify the results by
comparing graphically the finite element stress results to the design load as
shown in figure 4.12.

In section 4.1 the Stress Check Model is used to perform buckling checks on
examples from the ABS’s Commentary on the guide for buckling and ultimate
strength assessment for offshore structure. Identical results were expected
between the Stress Check Model and the examples but results show some
variation. In most cases the Stress Check Model yielded more conservative re-
sults. The difference in results was mainly traced to the finite element models
which provoked stresses in the Stress Check Model which were not included
in the examples.

The example from section 4.2 demonstrates the functionality of the Stress
Check Model on a small finite element model. The results of the buckling
checks are compared to each panel and the stiffeners which are modelled with
beam elements. A panel which failed the buckling state limit check is in-
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vestigated further to give clearer vision on whether the applied load is too
conservative.

The Stress Check Model is compared to the SDC Verifier in section 4.3. The
following conclusions can be drawn from the comparison.

� The Stress Check Model gives a representative value for the whole panel
instead of every finite element as the buckling tool of the SDC Verifier
does.

� The Stress Check Model does not require as fine finite element mesh as
the buckling tool of the SDC Verifier to obtain safe design load.

� The Stress Check Model takes into account the in-plane bending influ-
ences of the loading leading to higher buckling resistance and conse-
quently lower buckling factors.

In section 4.4 the Stress Check Model is compared to three different plate
buckling examples where an analytical solution exists. Results are also com-
pared to linear buckling analysis and geometrical non-linear analysis using
non-linear material behavior.

Major conclusion from the comparison indicates that the analytical so-
lution and the linear buckling analysis leads to great overestimation of the
buckling load for in-plane bending loading. The Stress Check Model includes
the influences of the yield stress leading to more accurate results for this type
of cases. Furthermore the Stress Check Model saves engineering time on post
analysing the results for this type of cases where the theoretical buckling load
significantly exceeds the yield stress of the material.

5.2 Improvements for the Stress Check Model

The practical usefulness of the Stress Check Model can be increased signifi-
cantly by implementing into the program a more extensive algorithm to detect
geometrical properties, reduce the user’s settings options and add alternative
stress checks according to different design codes.

5.2.1 Determining Settings for the Stress Check Model

A parametric research could be done on the user’s settings for the Stress
Check Model to determine appropriate settings which yield acceptable level
of conservatism. The questions which need to be answered are:

� Should stress values in the cross section of a plate element be taken as
the maximum compressive value at the outer fibres or as the average
value?
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� In order to obtain symmetric design stress distribution at the edges of
panels should the method describes in Clause 4.6(3) in Eurocode 3 part
1.5 be used or maximum stress values at edges be used?

� Should the design shear stresses be based on average shear stress results
acting on the edges of the panels or use the maximum value? Alternative
approach could be using the root of the sum of the squares of the shear
stress results as a design value.

� Should the design lateral pressure be based on average or maximum
pressure acting on the panel?

For practise it is recommended to perform first analysis using the most
conservative settings. If all the buckling checks pass the analysis the the re-
sults can be considered being verified. If a buckling checks fails using the
conservative setting the analysis can be run again using less conservative set-
ting.

If the buckling checks fails again the user should compare the design load
with the finite element stress results using the plot option of the Stress Check
Model. If the design load match the finite element stress results the design of
the structure must be improved. If the design load does not match the finite
element stress results more accurate analysis should be performed, e.g. using
geometrical non-linear analysis.

If the buckling checks which failed the analysis using more conservative
settings pass the analysis using less conservative settings a more accurate
analysis is required.

5.2.2 Detecting Geometry

Element Types

Section 2.1.2 explained that the Stress Check Model recognises four noded
flat shell elements and two noded beam elements with either angle shaped
or T-shaped cross sections. The database of finite element types which the
Stress Check Model can detect should be increased in order to read more
complicated finite element models. The starting point could be implementing
three noded plate elements and beam elements with closed cross sections.

Stiffeners Modelled with Plate Elements

The buckling checks on stiffeners and girders can be improved if the cross
sectional properties of stiffeners and girders which are modelled with plate
elements can be detected. In section 2.2.1 a method is described to detect the
orientation of stiffeners and girders which are modelled with plate elements.
The same algorithm which is used to detect panel sizes can be used to detect
the height and thickness of the webs since the plate elements of the stiffen-
ers and girders which are attached to the reference plane of the panels are
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known. Only the reference plane of the webs has to determined. To detect
the properties of the flanges free edges have to be detected.

Inclined Stiffeners and Girders

The Stress Check Model can only recognise rectangular plate fields. However
it often happens in practise that some panels have non rectangular form.
Those panels can be analysed using the greater dimensions as the length and
width as showed in figure 5.1. Therefore the algorithm needs to be extended
to detect panels which have inclined stiffeners and girders.

Figure 5.1: Non rectangular panel

Reference Plane

The reference plane in the Stress Check Model is by default set to z equal to
zero, meaning that only plate elements in the x-y plane with the z-coordinate
equal to zero will be analysed. It would be optimal to have an algorithm
which would detect the reference plane automatically, allowing any kind of
orientation of the finite element model. Furthermore it would be advantageous
to have an algorithm which could analyse more than one reference planes at
once.

Free Edges

In order to detect flange properties of stiffeners or perform local buckling
check on flanges modelled with plate elements, free edges (unsupported edges)
need to be detected. During the development of the Stress Check Model an
algorithm was written to detect plate fields with simple geometry including
free edges. However the algorithm would not run for plate fields including
openings or different panel sizes. It would be possible to combine the old
algorithm with the current algorithm with some modification to solve the
problem.

5.2.3 Alternative Buckling Checks

For various reasons the user of the Stress Check Model should have an option
to perform buckling checks according to different design codes, for example
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according to Eurocode 3 or the DNV guide. Furthermore the ABS pack-
age is not completed. Additional checks to the ones described in Chapter 3
have to be carried out to perform sufficient buckling check on stiffened panels
according to the ABS guide. These checks are:

� Stiffness of stiffeners to avoid local buckling of stiffeners prior to buckling
of the plates

� Proportions of stiffeners flange, web and face plate to avoid local buck-
ling of the stiffeners

� Buckling of tripping brackets

� Buckling checks on girders

5.2.4 Determining the Effective Breadth for the ABS
Package

Figure 5.2 shows in a schematic way how the effective breadth from sec-
tion 3.2.2 can be determined.

Figure 5.2: Effective breadth of plating sw

The effective breadth depends on the distance between zero bending mo-
ments. Equation 3.34 determines the maximum moment assuming uniformly
distributed lateral load and clamped boundary conditions. The moment dis-
tribution for such case can be expressed as:

M =
qs (6lx− l2 − 6x2)

12
(5.1)
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The locations of the zero bending moments can be determined by solving the
quadratic equation in the brackets.

6lx− l2 − 6x2 = 0⇒ x = [0.211L, 0.789L] (5.2)

The distance between the zero bending moments is therefore equal to 0.578
times the length of the stiffener. By replacing this value for the parameter
c in the table in figure 5.2 makes it possible to determine for which aspect
ratios l/s the effective breadth can be increased. The result is that for aspect
ratios greater than 2.6 the effective breadth can be increased.

Therefore it could improve the ABS package of the Stress Check Model to
use interpolation according to the table in figure 5.2 to determine the effective
breadth instead of using the current conservative value of 0.58 times the width
of the panel.

5.3 Recommendation for the SDC Verifier

Results in section 4.3 indicate that for coarse finite element mesh the buckling
tool of the SDC Verifier might lead to unsafe results. It is therefore recom-
mended to use maximum stress results within each finite element instead of of
average stress results when performing buckling checks using the SDC Verifier.
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Appendix A

Estimation of the Accuracy of
the Design Load

The SDC Verifier determines the design load for buckling checks based on
average stress results within each finite element. This approach is righteous
for uniformly distributed load but for varying stress distribution the peak
stresses are reduced leading to less conservative results. Below an expression
is derived to estimate the required number of finite elements (Nel) to establish
acceptable value for the design load. The expression is valid for panels loaded
with linear distributed in-plane stresses in one direction and depends on the
deviation (ε) of the peak stress and the ratio (ψ) between the maximum and
minimum stresses applied to the panel.

Figure A.1 shows a strip of a panel loaded with linear distributed stress
in one direction with the greater stress value equal to σ1 and the lower stress
value equal to σ2. The length of the strip is equal to L and the length of each
element is equal to L/Nel. The purpose is to estimate the accuracy of the
design stress σd acting on element number Nel.

Figure A.1: Linear stress distribution acting on panel
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Simple trigonometry leads to the following relation:

σ1 − σ2

L
=
σ1 − σd
L

2Nel

(A.1)

Introducing the ratio between the maximum and minimum stresses and the
deviation of the design stress from the peak stress:

ψ =
σ2

σ1

→ σ2 = ψσ1 (A.2)

σd = σ1 (1− ε) (A.3)

Inserting equations A.2 and A.3 into equation A.1 gives:

σ1 − ψσ1

L
=

2Nel (σ1 − σ1 (1− ε))
L

(A.4)

Eliminating L and σ1 from equation A.4 and solve for the number of elements
leads to:

Nel =
1− ψ

2ε
(A.5)

For uniformly distributed stress pattern (ψ = 1) equation A.5 becomes equal
to zero. Therefore the equation is adjusted to minimum number of elements
equal to one.

Nel =
1− ψ

2ε
+ 1 (A.6)

Figure A.2 shows the number of required finite elements for 10%, 5% and
2% deviation of the design stress from the peak stress for ratio between the
maximum and minimum stresses varying from -1 to 1.

Figure A.2: Required number of finite elements

Equation A.6 can be rearranged to determine the deviation of the design
stress from the peak stress for known number of elements and stress pattern.

ε =
1− ψ

2 (Nel − 1)
(A.7)

93



Appendix B

Report For Example

-------------------------------------------------------------------

It is not possible to perform beam-column buckling check on the

following stiffeners because they are either modelled with plate

elements or the stiffeners are only attached to one panel, buckling

check will not be proceded on these stiffeners

-------------------------------------------------------------------

Stiffener

Nr. Reason

1 Modelled with plate elements

2 Modelled with plate elements

3 Modelled with plate elements

4 Modelled with plate elements

5 Modelled with plate elements

6 Modelled with plate elements

7 Modelled with plate elements

8 Modelled with plate elements

9 Modelled with plate elements

10 Modelled with plate elements

11 Modelled with plate elements

12 Modelled with plate elements

13 Modelled with plate elements

14 Modelled with plate elements

15 Modelled with plate elements

16 Modelled with plate elements

25 Modelled with plate elements

26 Modelled with plate elements

27 Modelled with plate elements

28 Modelled with plate elements

29 Modelled with plate elements

30 Modelled with plate elements

31 Modelled with plate elements

32 Modelled with plate elements

33 Modelled with plate elements

34 Modelled with plate elements

35 Modelled with plate elements

36 Modelled with plate elements

37 Modelled with plate elements

38 Modelled with plate elements

39 Modelled with plate elements

40 Modelled with plate elements

----------------------------------------------------------

The following panels failed the Buckling state limit check

----------------------------------------------------------

10

11

13

14

15

16
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-----------------------------------

ABS Plate buckling stress check

-----------------------------------

Panel Critical Ultimate Lateral

Nr. check check check

1 0.15 0.14 0.07

2 0.13 0.13 0.07

3 0.13 0.12 0.07

4 0.12 0.12 0.07

5 0.12 0.12 0.07

6 0.13 0.12 0.07

7 0.13 0.13 0.07

8 0.15 0.14 0.07

9 0.82 0.72 0.15

10 1.11 0.85 0.15

11 1.11 0.85 0.15

12 0.82 0.72 0.15

13 1.08 0.82 0.15

14 1.19 0.85 0.15

15 1.19 0.85 0.15

16 1.08 0.82 0.15

17 0.31 0.29 0.07

18 0.30 0.29 0.07

19 0.29 0.28 0.07

20 0.29 0.28 0.07

21 0.29 0.28 0.07

22 0.29 0.28 0.07

23 0.30 0.29 0.07

24 0.30 0.29 0.07

25 0.68 0.54 0.14

26 0.81 0.59 0.14

27 0.81 0.59 0.14

28 0.68 0.54 0.14

------------------------------------------

ABS Stiffened panels buckling stress check

------------------------------------------

Beam/ Flexural/

Stiffener Column Torsional

Nr. check check

17 0.41 0.32

18 0.74 0.33

19 0.67 0.33

20 0.41 0.32

21 0.65 0.32

22 0.74 0.33

23 0.70 0.33

24 0.67 0.32

----------------------------------------------------------

Geometry and material properties of panels

----------------------------------------------------------

Panel Aspect Youngs Poissons Yield

Nr. Length Width ratio Thickness modulus ratio Stress

1 1000 800 1.25 15.0 210000 0.3 255.0

2 1000 800 1.25 15.0 210000 0.3 255.0

3 1000 800 1.25 15.0 210000 0.3 255.0

4 1000 800 1.25 15.0 210000 0.3 255.0

5 1000 800 1.25 15.0 210000 0.3 255.0

6 1000 800 1.25 15.0 210000 0.3 255.0

7 1000 800 1.25 15.0 210000 0.3 255.0

8 1000 800 1.25 15.0 210000 0.3 255.0

9 2000 1000 2.00 15.0 210000 0.3 255.0

10 2000 1000 2.00 15.0 210000 0.3 255.0

11 2000 1000 2.00 15.0 210000 0.3 255.0

12 2000 1000 2.00 15.0 210000 0.3 255.0

13 2000 1000 2.00 15.0 210000 0.3 255.0

14 2000 1000 2.00 15.0 210000 0.3 255.0

15 2000 1000 2.00 15.0 210000 0.3 255.0

16 2000 1000 2.00 15.0 210000 0.3 255.0
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17 1000 800 1.25 15.0 210000 0.3 255.0

18 1000 800 1.25 15.0 210000 0.3 255.0

19 1000 800 1.25 15.0 210000 0.3 255.0

20 1000 800 1.25 15.0 210000 0.3 255.0

21 1000 800 1.25 15.0 210000 0.3 255.0

22 1000 800 1.25 15.0 210000 0.3 255.0

23 1000 800 1.25 15.0 210000 0.3 255.0

24 1000 800 1.25 15.0 210000 0.3 255.0

25 2000 1000 2.00 15.0 210000 0.3 255.0

26 2000 1000 2.00 15.0 210000 0.3 255.0

27 2000 1000 2.00 15.0 210000 0.3 255.0

28 2000 1000 2.00 15.0 210000 0.3 255.0

--------------------------------------------------------------------------

Geometry and material properties of stiffeners

--------------------------------------------------------------------------

Stiffener Web Web Flange Flange Youngs Poissons Yield

Nr. Length height thickness width thickness modulus ratio Stress

17 2000 192 8.0 120 8.0 210000 0.3 255.0

18 2000 192 8.0 120 8.0 210000 0.3 255.0

19 2000 192 8.0 120 8.0 210000 0.3 255.0

20 2000 192 8.0 120 8.0 210000 0.3 255.0

21 2000 192 8.0 120 8.0 210000 0.3 255.0

22 2000 192 8.0 120 8.0 210000 0.3 255.0

23 2000 192 8.0 120 8.0 210000 0.3 255.0

24 2000 192 8.0 120 8.0 210000 0.3 255.0

----------------------------------------------------------------------------------

Modelled stress distribution

----------------------------------------------------------------------------------

Panel Maximum Minimum Ratio Maximum Minimum Ratio Shear Lateral

Nr. x-stress x-stress x-stress y-stress y-stress y-stress stress pressure

1 47.6 42.4 0.89 45.7 41.8 0.92 -24.6 0.0400

2 49.5 43.6 0.88 46.1 35.9 0.78 -16.6 0.0400

3 50.1 43.2 0.86 46.4 36.3 0.78 -12.8 0.0400

4 50.7 44.0 0.87 47.4 31.4 0.66 -0.9 0.0400

5 50.9 43.9 0.86 47.5 31.4 0.66 1.0 0.0400

6 49.9 43.2 0.86 46.4 36.3 0.78 12.9 0.0400

7 49.7 43.5 0.87 46.1 35.9 0.78 16.7 0.0400

8 47.6 42.4 0.89 45.7 41.9 0.92 24.6 0.0400

9 65.0 56.9 0.88 74.6 58.4 0.78 -21.2 0.0400

10 67.0 59.7 0.89 84.2 74.8 0.89 -7.4 0.0400

11 67.0 59.7 0.89 84.3 74.9 0.89 7.4 0.0400

12 65.1 57.0 0.88 74.7 58.5 0.78 21.2 0.0400

13 77.2 62.4 0.81 77.5 72.8 0.94 -23.4 0.0400

14 81.6 65.2 0.80 79.9 79.0 0.99 -8.0 0.0400

15 81.5 65.2 0.80 79.9 79.0 0.99 7.9 0.0400

16 77.1 62.5 0.81 77.4 72.8 0.94 23.3 0.0400

17 77.0 69.7 0.91 69.4 63.5 0.91 -21.6 0.0400

18 80.6 73.4 0.91 68.0 55.4 0.81 -15.9 0.0400

19 81.6 74.7 0.92 66.8 55.9 0.84 -6.8 0.0400

20 83.8 76.2 0.91 68.0 47.0 0.69 -5.5 0.0400

21 83.7 76.4 0.91 68.1 47.0 0.69 5.4 0.0400

22 81.5 74.5 0.91 66.7 56.0 0.84 6.7 0.0400

23 80.5 73.6 0.91 68.0 55.4 0.81 15.9 0.0400

24 77.0 69.7 0.91 69.4 63.5 0.92 21.6 0.0400

25 55.3 54.3 0.98 64.7 56.5 0.87 -17.9 0.0400

26 56.9 56.0 0.98 69.1 65.8 0.95 -6.2 0.0400

27 57.0 55.9 0.98 69.2 65.7 0.95 6.3 0.0400

28 55.3 54.3 0.98 64.7 56.5 0.87 18.0 0.0400

-------------------------------------------------------------------------

Applied stresses on panels

-------------------------------------------------------------------------

Panel Maximum Maximum Shear Lateral Von Mises Bending Bending

Nr. x-stress y-stress stress load stress x-stress y-stress

1 47.6 45.7 -24.6 0.0 63.2 0.89 0.92

2 49.5 46.1 -16.6 0.0 55.9 0.88 0.78

3 50.1 46.4 -12.8 0.0 53.2 0.86 0.78

4 50.7 47.4 -0.9 0.0 49.2 0.87 0.66

5 50.9 47.5 1.0 0.0 49.3 0.86 0.66

6 49.9 46.4 12.9 0.0 53.2 0.86 0.78
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7 49.7 46.1 16.7 0.0 56.1 0.87 0.78

8 47.6 45.7 24.6 0.0 63.2 0.89 0.92

9 65.0 74.6 -21.2 0.0 79.3 0.88 0.78

10 67.0 84.2 -7.4 0.0 78.1 0.89 0.89

11 67.0 84.3 7.4 0.0 78.2 0.89 0.89

12 65.1 74.7 21.2 0.0 79.4 0.88 0.78

13 77.2 77.5 -23.4 0.0 87.3 0.81 0.94

14 81.6 79.9 -8.0 0.0 81.9 0.80 0.99

15 81.5 79.9 7.9 0.0 81.9 0.80 0.99

16 77.1 77.4 23.3 0.0 87.2 0.81 0.94

17 77.0 69.4 -21.6 0.0 82.5 0.91 0.91

18 80.6 68.0 -15.9 0.0 80.0 0.91 0.81

19 81.6 66.8 -6.8 0.0 76.2 0.92 0.84

20 83.8 68.0 -5.5 0.0 77.7 0.91 0.69

21 83.7 68.1 5.4 0.0 77.7 0.91 0.69

22 81.5 66.7 6.7 0.0 76.1 0.91 0.84

23 80.5 68.0 15.9 0.0 80.0 0.91 0.81

24 77.0 69.4 21.6 0.0 82.4 0.91 0.92

25 55.3 64.7 -17.9 0.0 68.1 0.98 0.87

26 56.9 69.1 -6.2 0.0 64.8 0.98 0.95

27 57.0 69.2 6.3 0.0 64.9 0.98 0.95

28 55.3 64.7 18.0 0.0 68.1 0.98 0.87

--------------------------------------------------

Stress on stiffeners

--------------------------------------------------

Stiffener Modelled Modelled Modelled Modelled

Nr. x-Stress y-stress shear pressure

17 65.0 74.6 21.2 0.040

18 67.0 84.2 7.4 0.040

19 67.0 74.9 7.4 0.040

20 65.1 64.7 21.2 0.040

21 65.0 74.6 23.4 0.040

22 67.0 84.2 8.0 0.040

23 67.0 79.9 7.9 0.040

24 65.1 77.4 23.3 0.040

-------------------------------------------------------

Resistance of panels panels 1/2

-------------------------------------------------------

Panel Euler Slenderness Coefficient of

Nr. stress ratio interaction

1 66.7 1.86 0.07

2 66.7 1.86 0.07

3 66.7 1.86 0.07

4 66.7 1.86 0.07

5 66.7 1.86 0.07

6 66.7 1.86 0.07

7 66.7 1.86 0.07

8 66.7 1.86 0.07

9 42.7 2.32 -0.16

10 42.7 2.32 -0.16

11 42.7 2.32 -0.16

12 42.7 2.32 -0.16

13 42.7 2.32 -0.16

14 42.7 2.32 -0.16

15 42.7 2.32 -0.16

16 42.7 2.32 -0.16

17 66.7 1.86 0.07

18 66.7 1.86 0.07

19 66.7 1.86 0.07

20 66.7 1.86 0.07

21 66.7 1.86 0.07

22 66.7 1.86 0.07

23 66.7 1.86 0.07

24 66.7 1.86 0.07

25 42.7 2.32 -0.16

26 42.7 2.32 -0.16

27 42.7 2.32 -0.16

28 42.7 2.32 -0.16

-------------------------------------------------------------------------
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Resistance of panels panels 2/2

-------------------------------------------------------------------------

Panel Critical Ultimate Critical Ultimate Critical Ultimate

Nr. x-stress x-stress y-stress y-stress shear stress shear stress

1 204.6 204.6 186.4 186.4 138.25 142.23

2 204.9 204.9 192.0 192.0 138.25 142.23

3 205.4 205.4 191.8 191.8 138.25 142.23

4 205.2 205.2 196.0 196.0 138.25 142.23

5 205.3 205.3 196.0 196.0 138.25 142.23

6 205.3 205.3 191.8 191.8 138.25 142.23

7 205.0 205.0 191.9 191.9 138.25 142.23

8 204.6 204.6 186.4 186.4 138.25 142.23

9 176.9 176.9 91.8 104.1 129.76 135.47

10 176.3 176.3 86.1 104.1 129.76 135.47

11 176.3 176.3 86.1 104.1 129.76 135.47

12 176.9 176.9 91.8 104.1 129.76 135.47

13 179.5 179.5 83.3 104.1 129.76 135.47

14 179.9 179.9 80.6 104.1 129.76 135.47

15 179.8 179.8 80.7 104.1 129.76 135.47

16 179.4 179.4 83.3 104.1 129.76 135.47

17 204.2 204.2 186.5 186.5 138.25 142.23

18 204.1 204.1 190.6 190.6 138.25 142.23

19 204.0 204.0 189.7 189.7 138.25 142.23

20 204.1 204.1 195.1 195.1 138.25 142.23

21 204.1 204.1 195.1 195.1 138.25 142.23

22 204.0 204.0 189.7 189.7 138.25 142.23

23 204.0 204.0 190.6 190.6 138.25 142.23

24 204.2 204.2 186.5 186.5 138.25 142.23

25 172.7 172.7 86.9 104.1 129.76 135.47

26 172.6 172.6 82.7 104.1 129.76 135.47

27 172.7 172.7 82.8 104.1 129.76 135.47

28 172.6 172.6 86.9 104.1 129.76 135.47

-----------------------------------------------------------------------

Resistance of stiffeners with identical associated panels

-----------------------------------------------------------------------

Effective Euler Critical Elastic Critical

Stiffener yield Buckling Buckling Bending torsional torsional

Nr. stress stress stress stress stress stress

17 255.0 1600.4 245.2 46.9 308.9 204.5

18 255.0 2982.0 249.8 47.1 308.9 204.5

19 255.0 2719.7 249.3 47.0 308.9 204.5

20 255.0 1600.4 245.2 46.9 308.9 204.5

21 255.0 2729.5 249.3 47.0 308.9 204.5

22 255.0 2982.3 249.8 47.1 308.9 204.5

23 255.0 2848.1 249.5 47.1 308.9 204.5

24 255.0 2797.5 249.4 47.1 308.9 204.5

-----------------------------------------------------------------------------------

Stiffeners with identical associated panels

-----------------------------------------------------------------------------------

Stiffener Stiffener Total Effective Section St. Venant Polar moment Warping

Nr. area area area modulus constant of inertia constant

17 2496 17496 17496 284334 53248 58600081 5.57e+010

18 2496 17496 7813 283301 53248 58600081 5.57e+010

19 2496 17496 8963 283424 53248 58600081 5.57e+010

20 2496 17496 17496 284334 53248 58600081 5.57e+010

21 2496 17496 8917 283419 53248 58600081 5.57e+010

22 2496 17496 7811 283301 53248 58600081 5.57e+010

23 2496 17496 8380 283362 53248 58600081 5.57e+010

24 2496 17496 8605 283386 53248 58600081 5.57e+010
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Appendix C

Reading Information from
Femap

The programming of the Stress Check Model is done with MATLAB where
results from Femap are exported out of Femap as text files. The ”data table”
feature of Femap is used to collect the information and save it as a text files.
The text files are given a name and are imported into MATLAB as matrices
with the same names. The following sections describe how the necessary
information are gathered from Femap.

C.1 Nodes

The Entity Selector is set to Node and the Mode Selector is set to select
Multiple. All the nodes of the model are selected and the data table is saved
under the name nodes.txt.
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C.2 Material

The Entity Selector is set to Material and the Mode Selector is set to select
Multiple. All the elements of the model are selected and the data table is
saved under the name material.txt.

C.3 Plate Elements

The Entity Selector is set to Elements and the Mode Selector is set to select
Multiple. Only element properties which belong to plates are checked in the
Properties Branch of the Model Info Tree. All plate elements of the model
are selected.
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A small application was written with the VB programming in Femap to
add the cross sectional properties of plate elements to the data table. This
application is not part of the standard Femap applications.

A new column is added to the data table containing the thickness of the
plate elements. The data table is saved under the name plates.txt.
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C.4 Plate Element Properties

The Entity Selector is set to Property and the Mode Selector is set to select
Multiple. All plate elements of the model are selected and the data table is
saved under the name plateprop.txt.

C.5 Beam Elements

The Entity Selector is set to Elements and the Mode Selector is set to select
Multiple. Only element properties which belong to beams are checked in the
Properties Branch of the Model Info Tree. All beam elements of the model
are selected.
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A small application was written with the VB programming in Femap to
add the cross sectional properties of beam elements to the data table. This
application is not part of the standard Femap applications.

New columns are added to the data table containing the cross section
properties of the beam elements. The data table is saved under the name
beams.txt.
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C.6 Beam Element Properties

The Entity Selector is set to Property and the Mode Selector is set to select
Multiple. All beam elements of the model are selected and the data table is
saved under the name beamprop.txt.

C.7 Stresses

A small application was written with the VB programming in Femap to add
stress results in global directions at plate elements nodes as an output vector.
This application is not part of the standard Femap applications.
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The results can be accessed by selecting the List drop down menu and
then Output and Results to Data Table.

The output selection should be Elemental and for conveniance the Include
Element Corner Result box is unchecked.
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The stresses at top and bottom fibres at every node are selected for x- and
y-normal stresses and xy-shear stresses.

All the elements of the model are selected using the Select All option in
the Entity Selection.
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The final step is to save the data table under the name stresses.txt.

A small application was written with the VB programming in Femap to
add lateral load acting at plate elements surfaces as an output vector. This
application is not part of the standard Femap applications.
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All the elements of the model are selected using the Select All option in
the Entity Selection.

When the program ask ”‘Do you want to select another panel?”’ cklick no.
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The results can be accessed by selecting the List drop down menu and
then Output and Results to Data Table.

The output selection should be Elemental.
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The output set Pressure and the output vector Pressure Bottom are se-
lected.

All the elements of the model are selected using the Select All option in
the Entity Selection.
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The final step is to save the data table under the name stresses.txt.
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Appendix D

MATLAB Programs

D.1 Assemble.m

% Function name: Assemble.m
% Written by: Ottar Hillers, September 2011
% Purpose: To assemble sub−programs
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
clear
close all
clc

% Sub−programs
Settings
FEMread
Geometry
Stresses
ABSpackage panels
ABSpackage stiffened panels
Results

D.2 Settings.m

% Function name: Settings.m
% Written by: Ottar Hillers, September 2011
% Purpose: To set plot and stress determination settings for the Stress
% Check Model
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Plotting settings [0−off, 1−on]
% Plot plate FEM elements and their ID to compare to element numbering from
% the FEM model
plot plates = 0;

% Plot beam FEM elements and their ID to compare to element numbering from
% the FEM model
plot beams = 0;

% Plot normal stress distribution within every panel
plot planestresses = 0;

% Plot shear stress distribution within every panel
plot shearstresses = 0;
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%% Calculation preferences
% Determine whether to use the mean value of the top and bottom stresses at
% nodes or use the higher value (compressive)
% [0−max values, 1−average values]
stress settings = 1;

% Determine whether to use clause 4.6.(3) in Eurocode 3 part 1−5 to
% determine the in−plane design stresses or use maximum values
% [0 = Maximum values, 1 = clause 4.6.(3)]
inplane settings = 1;

% Determine constant shear stress from actual shear stress distribution.
% The maximum shear stress value along the edges of the panel or
% average absolute value or average value along the edges of the panel
% [0−max absolute value, 1 = average absolute value, 2 = average value]
shear settings = 2;

% Determine constant lateral pressure from actual lateral pressure
% distribution. The maximum lateral pressure applied to each panel or
% average value appiled to the panel
% [0−max values, 1−average values]
lateral settings = 1;

D.3 FEMread.m

% Function name: FEMread.m
% Written by: Ottar Hillers, May 2011
% Purpose: To read and organise necessary parameters for the Stress Check
% Model analysis of stiffened panels from Femap
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% INPUTS
% nodes.txt
% material.txt
% plateprop.txt
% beamprop.txt
% plates.txt
% beams.txt
% stresses.txt
% lateral.txt
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUTS
% plate coordinate(ID,ID fem,x1,y1,z1,x2,y2,z2,x3,y3,z3,x4,y4,z4)
% plate information(ID,ID fem,E,v,t)
% beam coordinate(ID,ID fem,x1,y1,z1,x2,y2,z2)
% beam information(ID,ID fem,E,v,hw,bf,tf,tw,type(1=T−shape,2=L−shape))
% stress information (ID,IDfem,C1x,C1y,C1xy,C2x,C2y,C2xy,C3x,C3y,C3xy,
% C4x,C4y,C4xy,q)
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Read nodes
node = importdata('nodes.txt');
% Sort the nodes information (ID,x,y,z)
node info = str2double(node.textdata(2:end,[1 12:14]));
ez = 1e−10;
node info(find(abs(node info(:,4))<ez),4) = 0;

%% Read material properties
material = importdata('material.txt');
% Recognise different types of material to compare later to plate and beam
% materials
material type = material.textdata(2:end,2);
% Sort the material information (E,v)
material info = material.data(:,[6 8]);

%% Read plate nodes
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plate = importdata('plates.txt');
% Sort the plate nodes information
plate info = [str2double(plate.textdata(2:end,1)) plate.data];

% Relate coordinates of plates to nodes (ID,ID fem,x1,y1,z1,x2,y2,z2,x3,y3,
% z3,x4,y4,z4)
n = size(plate info);
plate coordinate = zeros(n(1),14);
% New ID
plate coordinate(:,1) = 1:n(1);
% Femap ID
plate coordinate(:,2) = plate info(:,1);
for i = 1:n(1)

index1 = find(node info(:,1)==plate info(i,2));
index2 = find(node info(:,1)==plate info(i,3));
index3 = find(node info(:,1)==plate info(i,4));
index4 = find(node info(:,1)==plate info(i,5));
plate coordinate(i,3:5) = node info(index1,2:4);
plate coordinate(i,6:8) = node info(index2,2:4);
plate coordinate(i,9:11) = node info(index3,2:4);
plate coordinate(i,12:14) = node info(index4,2:4);

end

% Plot the plate elements
if plot plates == true

figure
hold on
for i = 1:n(1)

plot3(plate coordinate(i,[3 6 9 12 3]), ...
plate coordinate(i,[4 7 10 13 4]), ...
plate coordinate(i,[5 8 11 14 5]))

text((plate coordinate(i,3)+plate coordinate(i,9))/2, ...
(plate coordinate(i,4)+plate coordinate(i,10))/2, ...
(plate coordinate(i,5)+plate coordinate(i,11))/2, ...
num2str(plate coordinate(i,2)))

end
axis equal

end

%% Read plate properties
plate prop = importdata('plateprop.txt');
% Recognise different plate types to compare later to every plate element
% of the mesh
plate type = plate prop.textdata(2:end,2);
% Recognise plate material
v = char(plate prop.textdata(2:end,4));
v = v(1:end,4:end);
plate material = cellstr(v);
% Sort plate properties with material properties (E,v,t)
n = size(plate material);
plate properties = zeros(n(1),2);
% Match plate material with material type
for i = 1:n(1)

index = find(ismember(material type, plate material(i))==1);
plate properties(i,1:2) = material info(index,1:2);

end
% plate properties(:,3) = str2double(plate prop.textdata(2:end,7));

%% Recognise plate element properties
v = char(plate.textdata(2:end,2));
v = v(1:end,4:end);
b = find(v==char(46));
if isempty(b) == false

c = v(b,2:end);
c(:,end+1) = char(32);
v(b,:) = c;

end
plate char = cellstr(v);
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% Sort plate properties and materials with plate elements (ID,ID fem,E,v,t)
n = size(plate char);
plate information = zeros(n(1),5);
plate information(1:end,1:2) = plate coordinate(1:end,1:2);
for i = 1:n(1)

index = find(ismember(plate type, plate char(i))==1);
plate information(i,3:4) = plate properties(index,1:2);
plate information(i,5) = plate info(i,end);

end

%% Read beam nodes
beam = importdata('beams.txt');
% Sort the beam nodes information
beam info = [str2double(beam.textdata(2:end,1)) beam.data];

% Relate coordinates of beams to nodes
n = size(beam info);
beam coordinate = zeros(n(1),8);
% New ID
beam coordinate(:,1) = 1:n(1);
% Femap ID
beam coordinate(:,2) = beam info(:,1);
for i = 1:n(1)

index1 = find(node info(:,1)==beam info(i,2));
index2 = find(node info(:,1)==beam info(i,3));
beam coordinate(i,3:5) = node info(index1,2:4);
beam coordinate(i,6:8) = node info(index2,2:4);

end

% Plot the beam elements
if plot beams == true

figure
hold on
for i = 1:n(1)

plot3(beam coordinate(i,[3 6 3]), ...
beam coordinate(i,[4 7 4]), ...
beam coordinate(i,[5 8 5]))

text((beam coordinate(i,3)+beam coordinate(i,6))/2, ...
(beam coordinate(i,4)+beam coordinate(i,7))/2, ...
(beam coordinate(i,5)+beam coordinate(i,8))/2, ...
num2str(beam coordinate(i,2)))

end
axis equal

end

%% Read beam properties
beam prop = importdata('beamprop.txt');
% Recognise different beam types to compare later to every beam element
% of the mesh
beam type = beam prop.textdata(2:end,2);
% Recognise beam material
v = char(beam prop.textdata(2:end,5));
v = v(1:end,4:end);
beam material = cellstr(v);
% Sort beam properties with material properties (E,v)
n = size(beam material);
beam properties = zeros(n(1),2);
% Match plate material with material type
for i = 1:n(1)

index = find(ismember(material type, beam material(i))==1);
beam properties(i,1:2) = material info(index,1:2);

end

%% Recognise beam element properties
v = char(beam.textdata(2:end,2));
v = v(1:end,4:end);
b = find(v==char(46));
if isempty(b) == false

c = v(b,2:end);
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c(:,end+1) = char(32);
v(b,:) = c;

end
beam char = cellstr(v);

n = size(beam char);
beam information = zeros(n(1),9);
beam information(1:end,1:2) = beam coordinate(1:end,1:2);

for i = 1:n(1)
index = find(ismember(beam type, beam char(i))==1);
tf = max(beam info(i,6),beam info(i,7));
type = find([beam info(i,6),beam info(i,7)]== ...

max(beam info(i,6),beam info(i,7)));
beam information(i,3:4) = beam properties(index,1:2);
beam information(i,7) = tf;
beam information(i,9) = type;

end

beam information(:,5:6)= beam info(:,4:5);
beam information(:,8)= beam info(:,8);

%% Read stress results and lateral pressure
stresses = importdata('stresses.txt');
lateral = importdata('lateral.txt');

A = stresses.data;
[R C] = find(isnan(A));
A(unique(R),:) = [];

B = lateral.data;
B(unique(R),:) = [];
q = A(:,[1 3]);

sigma = A(:,3:end);
n = size(A);
% stress information (ID,IDfem,C1x,C1y,C1xy,C2x,C2y,C2xy,C3x,C3y,C3xy,
% C4x,C4y,C4xy,q)
stress information = zeros(n(1),15);
stress information(:,1) = 1:n(1);
stress information(:,2) = A(:,1);
stress information(:,15) = B(:,3);
if stress settings == 0

stress information(:,3) = min(sigma(:,[1 4]),[],2);
stress information(:,4) = min(sigma(:,[2 5]),[],2);
stress information(:,5) = min(sigma(:,[3 6]),[],2);
stress information(:,6) = min(sigma(:,[7 10]),[],2);
stress information(:,7) = min(sigma(:,[8 11]),[],2);
stress information(:,8) = min(sigma(:,[9 12]),[],2);
stress information(:,9) = min(sigma(:,[13 16]),[],2);
stress information(:,10) = min(sigma(:,[14 17]),[],2);
stress information(:,11) = min(sigma(:,[15 18]),[],2);
stress information(:,12) = min(sigma(:,[19 22]),[],2);
stress information(:,13) = min(sigma(:,[20 23]),[],2);
stress information(:,14) = min(sigma(:,[21 24]),[],2);

else
stress information(:,3) = mean(sigma(:,[1 4]),2);
stress information(:,4) = mean(sigma(:,[2 5]),2);
stress information(:,5) = mean(sigma(:,[3 6]),2);
stress information(:,6) = mean(sigma(:,[7 10]),2);
stress information(:,7) = mean(sigma(:,[8 11]),2);
stress information(:,8) = mean(sigma(:,[9 12]),2);
stress information(:,9) = mean(sigma(:,[13 16]),2);
stress information(:,10) = mean(sigma(:,[14 17]),2);
stress information(:,11) = mean(sigma(:,[15 18]),2);
stress information(:,12) = mean(sigma(:,[19 22]),2);
stress information(:,13) = mean(sigma(:,[20 23]),2);
stress information(:,14) = mean(sigma(:,[21 24]),2);

end
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D.4 Geometry.m

% Function name: Geometry.m
% Written by: Ottar Hillers, August 2011
% Purpose: Gather the necessary input parameters for stress check model
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUTS
% panel info(ID,Length,Width,E,v,t)
% transtiff info(ID,Length,E,v,hw,bf,tf,tw)
% longstiff info(ID,Length,E,v,hw,bf,tf,tw,type(1=T−shape,2=L−shape))
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Nodes attached to stiffeners and girders
ex = 1e−10; % Tolerances in x−direction
ey = 1e−10; % Tolerances in y−direction
ez = 1e−10; % Tolerances in z−direction

z ref = 0; % Reference z−coordinate

% Beam elements
% Length and width differences
delta x = abs(beam coordinate(:,3)−beam coordinate(:,6));
delta y = abs(beam coordinate(:,4)−beam coordinate(:,7));

% ID number of longitudinal and transverse stiffeners
longstiff ID = find(delta y<=ey);
transtiff ID = find(delta x<=ex);

% Coordinate informations of longitudinal and transverse stiffeners
longstiff coordinate = beam coordinate(longstiff ID,:);
transtiff coordinate = beam coordinate(transtiff ID,:);

% Plate elements ID which have two nodes in the x−y reference plane
N xy = [plate coordinate(:,5) == z ref] + ...

[plate coordinate(:,8) == z ref] + ...
[plate coordinate(:,11) == z ref] + [plate coordinate(:,14) == z ref];

plate id = find(N xy==2);

% Initialise number of longitudinal and transverse plate elements which
% define girders and stiffeners and their coordinates
N long = 0;
N tran = 0;
long plategirder = [];
tran plategirder = [];
for i = 1:length(plate id)

% Find the nodes of the plate elements which are in the x−y refernece
% plane
index = find(abs(plate coordinate(plate id(i),[5 8 11 14]))<=ez);
% Determine whether the element is longitudinal or transverse
deltaplate x = abs(plate coordinate(plate id(i),index(1)*3) − ...

plate coordinate(plate id(i),index(2)*3));
deltaplate y = abs(plate coordinate(plate id(i),index(1)*3+1) − ...

plate coordinate(plate id(i),index(2)*3+1));
% Longitudinal element
if deltaplate y < deltaplate x

N long = N long+1;
long plategirder(N long,1) = plate id(i);
long plategirder(N long,2:7) = plate coordinate(plate id(i), ...

[index(1)*3 index(1)*3+1 index(1)*3+2 index(2)*3 ...
index(2)*3+1 index(2)*3+2]);

% Transverse element
elseif deltaplate y > deltaplate x

N tran = N tran+1;
tran plategirder(N tran,1) = plate id(i);
tran plategirder(N tran,2:7) = plate coordinate(plate id(i), ...

[index(1)*3 index(1)*3+1 index(1)*3+2 index(2)*3 ...
index(2)*3+1 index(2)*3+2]);
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end
end

% Group A − Nodes attached to longitudinal stiffeners
node Abeam = [];
node Aplate = [];
% Find the nodes attached to longitudinal beam elements
if isempty(longstiff coordinate) == 0

node 1beam = [longstiff coordinate(:,3) longstiff coordinate(:,4) ...
longstiff coordinate(:,5)];

node 2beam = [longstiff coordinate(:,6) longstiff coordinate(:,7) ...
longstiff coordinate(:,8)];

node Abeam = union(node 1beam,node 2beam,'rows');
end

% Find the nodes attached to longitudinal plate elements
if isempty(long plategirder) == 0

node 1plate = [long plategirder(:,2) long plategirder(:,3) ...
long plategirder(:,4)];

node 2plate = [long plategirder(:,5) long plategirder(:,6) ...
long plategirder(:,7)];

node Aplate = union(node 1plate,node 2plate,'rows');
end

% Occurrence of both longitudinal beam and plate elements
if isempty(node Abeam) == 0 && isempty(node Aplate) == 0

node A = union(node Abeam,node Aplate,'rows');
node Adiffbeam = [setdiff(node Abeam,node 1beam,'rows')

setdiff(node Abeam,node 2beam,'rows')];
% Nodes at ends
node Adiffplate = [setdiff(node Aplate,node 1plate,'rows')

setdiff(node Aplate,node 2plate,'rows')];
node Adiff = union(node Adiffbeam,node Adiffplate,'rows');

% Occurrence of only longitudinal beam elements
elseif isempty(node Abeam) == 0 && isempty(node Aplate) == 1

node A = node Abeam;
% Nodes at ends
node Adiff = [setdiff(node Abeam,node 1beam,'rows')

setdiff(node Abeam,node 2beam,'rows')];
% Occurrence of only longitudinal plate elements
elseif isempty(node Abeam) == 1 && isempty(node Aplate) == 0

node A = node Aplate;
% Nodes at ends
node Adiff = [setdiff(node Aplate,node 1plate,'rows')

setdiff(node Aplate,node 2plate,'rows')];
end

% Group B − Nodes attached to transverse stiffeners
node Bbeam = [];
node Bplate = [];
% Find the nodes attached to transverse beam elements
if isempty(transtiff coordinate) == 0

node 1beam = [transtiff coordinate(:,3) transtiff coordinate(:,4) ...
transtiff coordinate(:,5)];

node 2beam = [transtiff coordinate(:,6) transtiff coordinate(:,7) ...
transtiff coordinate(:,8)];

node Bbeam = union(node 1beam,node 2beam,'rows');
end

% Find the nodes attached to transverse plate elements
if isempty(tran plategirder) == 0

node 1plate = [tran plategirder(:,2) tran plategirder(:,3) ...
tran plategirder(:,4)];

node 2plate = [tran plategirder(:,5) tran plategirder(:,6) ...
tran plategirder(:,7)];

node Bplate = union(node 1plate,node 2plate,'rows');
end

% Occurrence of both transverse beam and plate elements
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if isempty(node Bbeam) == 0 && isempty(node Bplate) == 0
node B = union(node Bbeam,node Bplate,'rows');
% Nodes at ends
node Bdiffbeam = [setdiff(node Bbeam,node 1beam,'rows')

setdiff(node Bbeam,node 2beam,'rows')];
node Bdiffplate = [setdiff(node Bplate,node 1plate,'rows')

setdiff(node Bplate,node 2plate,'rows')];
node Bdiff = union(node Bdiffbeam,node Bdiffplate,'rows');

% Occurrence of only transverse beam elements
elseif isempty(node Bbeam) == 0 && isempty(node Bplate) == 1

node B = node Bbeam;
% Nodes at ends
node Bdiff = [setdiff(node Bbeam,node 1beam,'rows')

setdiff(node Bbeam,node 2beam,'rows')];
% Occurrence of only transverse plate elements
elseif isempty(node Bbeam) == 1 && isempty(node Bplate) == 0

node B = node Bplate;
% Nodes at ends
node Bdiff = [setdiff(node Bplate,node 1plate,'rows')

setdiff(node Bplate,node 2plate,'rows')];
end

% Group C − Nodes which belong to both Group A and Group B
node AB = intersect(node A,node B,'rows');

% Free longitudinal and transeverse nodes
free long = setdiff(node Adiff,node AB,'rows');
free trans = setdiff(node Bdiff,node AB,'rows');
free nodes = union(free trans,free long,'rows');

%% Define longitudinal stiffeners
% Nodes belonging to longitudinal stiffeners
long nodes = sortrows(union(node AB,free long,'rows'),2);
n = size(long nodes);

% Connect the longitudinal nodes
k = 0;
for i = 1:n(1)−1

C1 = long nodes(i,:);
if long nodes(i+1,2) == C1(2) % If same y−coordinate

C2 = long nodes(i+1,:);
k = k+1;
% long stiffener(ID,x1,y1,z1,x2,y2,z2)
long stiffener(k,1) = k;
long stiffener(k,2:7) = [C1 C2];

end
end

%% Connect beam element properties to longitudinal stiffeners
% Total number of FE longitudinal elements
n1 = size(longstiff coordinate);
n2 = size(long plategirder);
n = n1(1)+n2(1);

% element centre(element ID,xcentre,ycentre,zcentre,type(1=beam,2=plate))
element centre = zeros(n,5);
element centre(1:n1(1),1) = longstiff coordinate(:,1);
element centre(1:n1(1),5) = 1;
if isempty(long plategirder) == 0

element centre(n1(1)+1:n,5) = 2;
element centre(n1(1)+1:n,1) = long plategirder(:,1);

end

% Centre of longitudinal beam elements
for i = 1:n1(1)

element centre(i,2:4) = [sum(longstiff coordinate(i,3:3:6))/2 ...
sum(longstiff coordinate(i,4:3:7))/2 ...
sum(longstiff coordinate(i,5:3:8))/2];

end
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% Centre of longitudinal plate elements
for i = 1:n2(1)

element centre(i+n1(1),2:4) = [sum(long plategirder(i,2:3:5))/2 ...
sum(long plategirder(i,3:3:6))/2 ...
sum(long plategirder(i,4:3:7))/2];

end

% Find the coordinates limits of the the longitudinal elements
n = size(long stiffener);
N longstiff = n(1);
% longstiff limit(longstiff ID,xmin,xmax,ymin,ymax,zmin,zmax)
longstiff limit = zeros(N longstiff,7);
longstiff limit(:,1) = 1:sum(N longstiff);
for i = 1:N longstiff

longstiff limit(i,2) = min(long stiffener(i,[2 5]));
longstiff limit(i,3) = max(long stiffener(i,[2 5]));
longstiff limit(i,4) = min(long stiffener(i,[3 6]));
longstiff limit(i,5) = max(long stiffener(i,[3 6]));
longstiff limit(i,6) = min(long stiffener(i,[4 7]));
longstiff limit(i,7) = max(long stiffener(i,[4 7]));

end

% Connect the FE elements to the stiffener elements
% element longstiff(element ID,longstiff ID,type)
n = n1(1)+n2(1);
element longstiff = zeros(n(1),3);
element longstiff(:,[1 3]) = element centre(:,[1 5]);
for i = 1:n(1)

for j = 1:sum(N longstiff)
a = element centre(i,2)>=longstiff limit(j,2) & ...

element centre(i,2)<=longstiff limit(j,3);
b = element centre(i,3)>=longstiff limit(j,4) & ...

element centre(i,3)<=longstiff limit(j,5);
if a == 1 && b == 1

element longstiff(i,2) = j;
end

end
end

% Find the ID's of the actual longitudinal stiffener elements, here
% previous defined longitudinal stiffener elements which no FE elements
% belong to are eliminated
Nr longstiff = unique(sort(element longstiff(:,2)));
real longstiff(:,1) = 1:length(Nr longstiff);
real longstiff(:,2:7) = long stiffener(Nr longstiff,2:7);
n = size(real longstiff);

% Plot the longitudinal elements
figure
hold on
for i = 1:n(1)

plot3(real longstiff(i,[2 5]), ...
real longstiff(i,[3 6]), ...
real longstiff(i,[4 7]), ...
'k','LineWidth',2)

text((real longstiff(i,2)+real longstiff(i,5))/2, ...
(real longstiff(i,3)+real longstiff(i,6))/2, ...
(real longstiff(i,4)+real longstiff(i,7))/2, ...
num2str(real longstiff(i,1)))

end
axis equal

% Determine the material and geometrical properties of the longitudinal
% stiffeners
longstiff info = zeros(length(Nr longstiff),9);
longstiff info(:,1) = real longstiff(:,1);
for j = 1:length(Nr longstiff)

i = Nr longstiff(j,1);
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index = find(element longstiff(:,2)==i);
if element longstiff(index,3) == 1

t = mean(beam information(element longstiff(index),3:9));
else

% In case the stiffener is modelled with plate elements the cross
% section properties cannot be obtained
t = [mean(plate information(element longstiff(index),3:4)) ...

NaN NaN NaN NaN NaN];
end
longstiff info(j,3:9) = t;

end
longstiff info(:,2) = real longstiff(:,5)−real longstiff(:,2);

%% Define transverse stiffeners
% Nodes belonging to transverse stiffeners
tran nodes = union(node AB,free trans,'rows');
n = size(tran nodes);

% Connect the longitudinal nodes
k = 0;
for i = 1:n(1)−1

C1 = tran nodes(i,:);
if tran nodes(i+1,1) == C1(1) % If same x−coordinate

C2 = tran nodes(i+1,:);
k = k+1;
% tran stiffener(ID,x1,y1,z1,x2,y2,z2)
tran stiffener(k,1) = k;
tran stiffener(k,2:7) = [C1 C2];

end
end

%% Connect beam element properties to transverse stiffeners
% Total number of FE transverse elements
n1 = size(transtiff coordinate);
n2 = size(tran plategirder);
n = n1(1)+n2(1);
% element centre(element ID,xcentre,ycentre,zcentre,type(1=beam,2=plate))
element centre = zeros(n,5);
element centre(1:n1(1),1) = transtiff coordinate(:,1);
element centre(1:n1(1),5) = 1;
if isempty(tran plategirder) == 0

element centre(n1(1)+1:n,5) = 2;
element centre(n1(1)+1:n,1) = tran plategirder(:,1);

end

% Centre of transverse beam elements
for i = 1:n1(1)

element centre(i,2:4) = [sum(transtiff coordinate(i,3:3:6))/2 ...
sum(transtiff coordinate(i,4:3:7))/2 ...
sum(transtiff coordinate(i,5:3:8))/2];

end

% Centre of transverse plate elements
for i = 1:n2(1)

element centre(i+n1(1),2:4) = [sum(tran plategirder(i,2:3:5))/2 ...
sum(tran plategirder(i,3:3:6))/2 ...
sum(tran plategirder(i,4:3:7))/2];

end

% Find the coordinates limits of the the transverse elements
n = size(tran stiffener);
N transtiff = n(1);
% transtiff limit(transtiff ID,xmin,xmax,ymin,ymax,zmin,zmax)
transtiff limit = zeros(N transtiff,7);
transtiff limit(:,1) = 1:sum(N transtiff);
for i = 1:N transtiff

transtiff limit(i,2) = min(tran stiffener(i,[2 5]));
transtiff limit(i,3) = max(tran stiffener(i,[2 5]));
transtiff limit(i,4) = min(tran stiffener(i,[3 6]));
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transtiff limit(i,5) = max(tran stiffener(i,[3 6]));
transtiff limit(i,6) = min(tran stiffener(i,[4 7]));
transtiff limit(i,7) = max(tran stiffener(i,[4 7]));

end

% Connect the FE elements to the stiffener/girder elements
% element transtiff(element ID,panel ID,type)
n = n1(1)+n2(1);
element transtiff = zeros(n(1),3);
element transtiff(:,[1 3]) = element centre(:,[1 5]);
for i = 1:n(1)

for j = 1:sum(N transtiff)
a = element centre(i,2)>=transtiff limit(j,2) & ...

element centre(i,2)<=transtiff limit(j,3);
b = element centre(i,3)>=transtiff limit(j,4) & ...

element centre(i,3)<=transtiff limit(j,5);
if a == 1 && b == 1

element transtiff(i,2) = j;
end

end
end

% Find the ID's of the actual transverse stiffener elements, here the
% previous defined transverse stiffener/girder elements which no FE
% elements belong to are eliminated
Nr transtiff = unique(sort(element transtiff(:,2)));
real transtiff(:,1) = 1:length(Nr transtiff);
real transtiff(:,2:7) = tran stiffener(Nr transtiff,2:7);
n = size(real transtiff);

% Plot the transverse elements
figure
hold on
for i = 1:n(1)

plot3(real transtiff(i,[2 5]), ...
real transtiff(i,[3 6]), ...
real transtiff(i,[4 7]), ...
'k','LineWidth',2)

text((real transtiff(i,2)+real transtiff(i,5))/2, ...
(real transtiff(i,3)+real transtiff(i,6))/2, ...
(real transtiff(i,4)+real transtiff(i,7))/2, ...
num2str(real transtiff(i,1)))

end
axis equal

% Determine the material and geometrical properties of the transverse
% stiffeners
transtiff info = zeros(length(Nr transtiff),8);
transtiff info(:,1) = real transtiff(:,1);
for j = 1:length(Nr transtiff)

i = Nr transtiff(j,1);
index = find(element transtiff(:,2)==i);
if element transtiff(index,3) == 1

t = mean(beam information(element transtiff(index),3:8));
else

% In case the stiffener is modelled with plate elements the cross
% section properties cannot be obtained
t = [mean(plate information(element transtiff(index),3:4)) ...

NaN NaN NaN NaN];
end
transtiff info(j,3:8) = t;

end
transtiff info(:,2) = real transtiff(:,6)−real transtiff(:,3);

%% Define plate panel between stiffeners
n = size(real longstiff);
panel = zeros(n(1)−1,15);
for i = 1:n(1)−1

C1 = real longstiff(i,2:4);
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if any(real transtiff(:,6)>C1(2))
C2 test = real longstiff(i,5:7);
index3 x = find(real transtiff(:,2)==C2 test(1));
index3 y = find(real transtiff(:,3)==C2 test(2));
index3 = intersect(index3 x,index3 y);
k = 0;
while length(index3) ˜= 1

k = k+1;
C2 test = real longstiff(i+k,5:7);
index3 x = find(real transtiff(:,2)==C2 test(1));
index3 y = find(real transtiff(:,3)==C2 test(2));
index3 = intersect(index3 x,index3 y);

end
C2 = C2 test;
C3 test = real transtiff(index3,5:7);
index4 x = find(real longstiff(:,5)==C3 test(1));
index4 y = find(real longstiff(:,6)==C3 test(2));
index4 = intersect(index4 x,index4 y);
k = 0;
while length(index4) ˜= 1

k = k+1;
C3 test = real transtiff(index3+k,5:7);
index4 x = find(real longstiff(:,5)==C3 test(1));
index4 y = find(real longstiff(:,6)==C3 test(2));
index4 = intersect(index4 x,index4 y);

end
C3 = C3 test;
C4 = [C1(1) C3(2) 0];

else
C2 = [NaN NaN NaN];
C3 = [NaN NaN NaN];
C4 = [NaN NaN NaN];

end
panel(i,2:13) = [C1 C2 C3 C4];

end

[R C] = find(isnan(panel));
R = unique(R);
panel(R,:) = [];
n = size(panel);
panel(:,1) = 1:n(1);

panel centre = zeros(n(1),1);
panel centre(:,1) = panel(:,1);

% panel limit(panel ID,xmin,xmax,ymin,ymax,zmin,zmax)
panel limit = zeros(n(1),7);
panel limit(:,1) = panel(:,1);

for i = 1:n(1)
panel centre(i,2:4) = [sum(panel(i,2:3:11))/4 ...

sum(panel(i,3:3:12))/4 ...
sum(panel(i,4:3:13))/4];

panel limit(i,2) = min(panel(i,[2 5 8 11]));
panel limit(i,3) = max(panel(i,[2 5 8 11]));
panel limit(i,4) = min(panel(i,[3 6 9 12]));
panel limit(i,5) = max(panel(i,[3 6 9 12]));
panel limit(i,6) = min(panel(i,[4 7 10 13]));
panel limit(i,7) = max(panel(i,[4 7 10 13]));

end

k = 0;
for i = 1:n(1)

for j = 1:n(1)
a = panel centre(i,2)>=panel limit(j,2) & ...

panel centre(i,2)<=panel limit(j,3);
b = panel centre(i,3)>=panel limit(j,4) & ...

panel centre(i,3)<=panel limit(j,5);
if a == 1 && b == 1
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if j ˜= i
k = k+1;
combine(k,1) = i;
combine(k,2) = j;

end
end

end
end

if isempty(combine) == 0
combine = sortrows(sort(combine,2),2);

vertical panel = unique(combine(:,2));
count1 = 0;
k = panel(end,1);
h = 0;
d = [];
if length(vertical panel)>1

for i =1:length(vertical panel)−1
count2 = length(find(combine(:,2)==vertical panel(i)));
if isempty(d)

a = unique(combine(count1+1:count1+count2,:));
else

a = d;
end
count1 = count1+count2;
count2 = length(find(combine==vertical panel(i+1)));
b = unique(combine(count1+1:count1+count2,:));
c = intersect(a,b);
if isempty(c)

k = k+1;
h = h+1;
newpanel limit(h,1) = k;
newpanel limit(h,2) = min(panel limit(a,2));
newpanel limit(h,3) = max(panel limit(a,3));
newpanel limit(h,4) = min(panel limit(a,4));
newpanel limit(h,5) = max(panel limit(a,5));
newpanel limit(h,6) = min(panel limit(a,6));
newpanel limit(h,7) = max(panel limit(a,7));
d = [];

else
d = union(a,b);

end
if i == length(vertical panel)−1

if isempty(c) == 0
k = k+1;
h = h+1;
newpanel limit(h,1) = k;
newpanel limit(h,2) = min(panel limit(d,2));
newpanel limit(h,3) = max(panel limit(d,3));
newpanel limit(h,4) = min(panel limit(d,4));
newpanel limit(h,5) = max(panel limit(d,5));
newpanel limit(h,6) = min(panel limit(d,6));
newpanel limit(h,7) = max(panel limit(d,7));

else
k = k+1;
h = h+1;
newpanel limit(h,1) = k;
newpanel limit(h,2) = min(panel limit(b,2));
newpanel limit(h,3) = max(panel limit(b,3));
newpanel limit(h,4) = min(panel limit(b,4));
newpanel limit(h,5) = max(panel limit(b,5));
newpanel limit(h,6) = min(panel limit(b,6));
newpanel limit(h,7) = max(panel limit(b,7));

end
end

end
else

a = unique(combine);

130



k = k+1;
h = h+1;
newpanel limit(h,1) = k;
newpanel limit(h,2) = min(panel limit(a,2));
newpanel limit(h,3) = max(panel limit(a,3));
newpanel limit(h,4) = min(panel limit(a,4));
newpanel limit(h,5) = max(panel limit(a,5));
newpanel limit(h,6) = min(panel limit(a,6));
newpanel limit(h,7) = max(panel limit(a,7));

end

n = size(newpanel limit);
for i = 1:n(1)

index = panel(end,1)+1;
panel(index,1) = newpanel limit(i,1);
panel(index,[2 11]) = newpanel limit(i,2);
panel(index,[5 8]) = newpanel limit(i,3);
panel(index,[3 6]) = newpanel limit(i,4);
panel(index,[9 12]) = newpanel limit(i,5);
panel(index,[4 7]) = newpanel limit(i,6);
panel(index,[10 13]) = newpanel limit(i,7);

end

panel(unique(combine),:) = [];
end
panel(:,14) = panel(:,5)−panel(:,2);
panel(:,15) = panel(:,9)−panel(:,6);

%% Connect plate element properties to plate panels
n = size(plate coordinate);
nn = size(panel);
N panels = nn(1);
% element centre(element ID,xcentre,ycentre,zcentre)
element centre = zeros(n(1),4);
for i = 1:n(1)

element centre(i,:) = [i sum(plate coordinate(i,3:3:12))/4 ...
sum(plate coordinate(i,4:3:13))/4 ...
sum(plate coordinate(i,5:3:14))/4];

end

[r c] = find(element centre(:,end)==0);
test = plate coordinate(r,2);
% panel limit(panel ID,xmin,xmax,ymin,ymax,zmin,zmax)
panel limit = zeros(N panels,7);
panel limit(:,1) = 1:N panels;
for i = 1:N panels

panel limit(i,2) = min(panel(i,[2 5 8 11]));
panel limit(i,3) = max(panel(i,[2 5 8 11]));
panel limit(i,4) = min(panel(i,[3 6 9 12]));
panel limit(i,5) = max(panel(i,[3 6 9 12]));
panel limit(i,6) = min(panel(i,[4 7 10 13]));
panel limit(i,7) = max(panel(i,[4 7 10 13]));

end

% element panel(element ID,panel ID)
panelelement centre = element centre(r,:);
n = size(panelelement centre);
element panel = zeros(n(1),2);
element panel(:,1) = panelelement centre(:,1);
for i = 1:n(1)

for j = 1:N panels
a = panelelement centre(i,2)>panel limit(j,2) & ...

panelelement centre(i,2)<panel limit(j,3);
b = panelelement centre(i,3)>panel limit(j,4) & ...

panelelement centre(i,3)<panel limit(j,5);
if a == 1 && b == 1

element panel(i,2) = j;
end

end
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end

Nr panels = unique(sort(element panel(:,2)));
real panel = panel(Nr panels,:);
n = size(real panel);
N panels = n(1);
real panel(:,1) = 1:N panels;

figure
hold on
for i = 1:N panels

plot(real panel(i,[2 5 8 11 2]), ...
real panel(i,[3 6 9 12 3]))

text((real panel(i,2)+real panel(i,8))/2, ...
(real panel(i,3)+real panel(i,9))/2, ...
num2str(real panel(i,1)))

end
axis equal

panel info = zeros(N panels,6);
panel info(:,1) = real panel(:,1);
for j = 1:N panels

i = Nr panels(j);
index = find(element panel(:,2)==i);
value = element panel(index,1);
t = mean(plate information(value,3:5));
panel info(j,4:6) = t;

end
panel info(:,2:3) = real panel(:,14:15);

D.5 Stresses.m

% Function name: Stresses.m
% Written by: Ottar Hillers, September 2011
% Purpose: To determine design stresses for the Stress Check Model using
% results from Femap
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% OUTPUTS:
% modelled stress(panel ID,s x,max,s x,min,Rx,s y,max,s y,min,Ry,s t,max,q)
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Location of stresses within elements
% Relate the inital panel relation of the FE elements to the actual panel
% numbering
A = real panel(:,1);
B = element panel;
C = [A unique(B(:,2))];

for i = 1:length(A)
a = C(i,2);
b = find(B(:,2)==a);
B(b,2)=C(i,1);

end

sort panel = sortrows(B,2); % sortrows(element panel,2);

% index − summation of plat elements belonging to the panels
% [0 0+N 1 0+N 1+N 2 ... 0+N 1+N 2+...+N i]
index = zeros(1,N panels+1);
for i = 1:N panels

index(i+1) = find(sort panel(:,2)==real panel(i),1,'last');
end

% Stress boundaries, columns represent the panels
% 1st row − stresses at left edge of the panel
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% 2nd row − stresses at right edge of the panel
% 3nd row − stresses at bottom edge of the panel
% 4th row − stresses at top edge of the panel
% 5th − 8th row − shear stresses around the boundaries
stress boundaries = cell(8,N panels);
edge coordinate = cell(4,N panels);
lateral pressure = cell(1,N panels);
for i = 1:N panels

% Find the ID fem of the plate elements of each panel within the
% plate coordinate
element number = plate coordinate(sort panel(index(i)+ ...

1:index(i+1),1),2);

n = size(element number);
R = zeros(n(1),1);
for t = 1:n(1)

R(t) = find(plate coordinate(:,2)==element number(t));
end

%% LEFT EDGE OF PANELS
% Finds the index of ID fem of the elements belonging to the left edge
% of each panel within element location
minx = find(plate coordinate(R,3)== ...

min(plate coordinate(R,3)));
% Finds the actual FEM element ID
minx location = element number(minx,1);
n = length(minx location);
y left = zeros(2*n,1);
stresses left = zeros(2*n,1);
stresses shearleft = zeros(2*n,1);
% For every element on the left edge
for j = 1:n

% Real ID
id = find(plate coordinate(:,2)== minx location(j));
% x coordinates of the element nodes
x nodes = plate coordinate(id,3:3:12);
% sort the nodes x−coordinate in ascend order
ascend x = sort(x nodes);
% the two smalles values define the edge
C nodes = ascend x(1:2);
% Find the corresponding node (1,2,3 or 4)
C = union(find(x nodes == C nodes(1)), ...

find(x nodes == C nodes(2)));
% y coordinates of the element nodes
y left(2*j−1:2*j) = plate coordinate(id,C*3+1);
% x stresses at the edge nodes
stresses left((2*j−1:2*j)) = −1*stress information(id,C*3);
% shear stresses at the edge nodes
stresses shearleft((2*j−1:2*j)) = stress information(id,C*3+2);

end
% Assemble y coordinates and stresses at the left edge of each panel
edge coordinate{1,i} = y left;
stress boundaries{1,i} = stresses left;
stress boundaries{5,i} = stresses shearleft;

%% RIGHT EDGE OF PANELS
% Finds the index of ID fem of the elements belonging to the right edge
% of each panel within element location
maxx = find(plate coordinate(R,6)== ...

max(plate coordinate(R,6)));
% Finds the actual FEM element ID
maxx location = element number(maxx,1);
n = length(maxx location);
y right = zeros(2*n,1);
stresses right = zeros(2*n,1);
stresses shearright = zeros(2*n,1);
% For every element on the right edge
for j = 1:n

% Real ID
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id = find(plate coordinate(:,2)== maxx location(j));
% x coordinates of the element nodes
x nodes = plate coordinate(id,3:3:12);
% sort the nodes x−coordinate in descend order
descend x = sort(x nodes,'descend');
% the two largest values define the edge
C nodes = descend x(1:2);
% Find the corresponding node (1,2,3 or 4)
C = union(find(x nodes == C nodes(1)), ...

find(x nodes == C nodes(2)));
% y coordinates of the element nodes
y right(2*j−1:2*j) = plate coordinate(id,C*3+1);
% x stresses at the edge nodes
stresses right((2*j−1:2*j)) = −1*stress information(id,C*3);
% shear stresses at the edge nodes
stresses shearright((2*j−1:2*j)) = stress information(id,C*3+2);

end
% Assemble y coordinates and stresses at the left edge of each panel
edge coordinate{2,i} = y right;
stress boundaries{2,i} = stresses right;
stress boundaries{6,i} = stresses shearright;

%% BOTTOM EDGE OF PANELS
% Finds the index of ID fem of the elements belonging to the bottom
% edge of each panel within element location
miny = find(plate coordinate(R,4)== ...

min(plate coordinate(R,4)));
% Finds the actual FEM element ID
miny location = element number(miny,1);
n = length(miny location);
x bottom = zeros(2*n,1);
stresses bottom = zeros(2*n,1);
stresses shearbottom = zeros(2*n,1);
% For every element on the bottom edge
for j = 1:n

% Real ID
id = find(plate coordinate(:,2)== miny location(j));
% y coordinates of the element nodes
y nodes = plate coordinate(id,4:3:13);
% sort the nodes y−coordinate in ascend order
ascend y = sort(y nodes);
% the two smalles values define the edge
C nodes = ascend y(1:2);
% Find the corresponding node (1,2,3 or 4)
C = union(find(y nodes == C nodes(1)), ...

find(y nodes == C nodes(2)));
% x coordinates of the element nodes
x bottom(2*j−1:2*j) = plate coordinate(id,C*3);
% y stresses at the edge nodes
stresses bottom((2*j−1:2*j)) = −1*stress information(id,C*3+1);
% shear stresses at the edge nodes
stresses shearbottom((2*j−1:2*j)) = stress information(id,C*3+2);

end
% Assemble y coordinates and stresses at the left edge of each panel
edge coordinate{3,i} = x bottom;
stress boundaries{3,i} = stresses bottom;
stress boundaries{7,i} = stresses shearbottom;

%% TOP EDGE OF PANELS
% Finds the index of ID fem of the elements belonging to the top edge
% of each panel within element location
maxy = find(plate coordinate(R,10)== ...

max(plate coordinate(R,10)));
% Finds the actual FEM element ID
maxy location = element number(maxy,1);
n = length(maxy location);
x top = zeros(2*n,1);
stresses top = zeros(2*n,1);
stresses sheartop = zeros(2*n,1);
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% For every element on the right edge
for j = 1:n

% Real ID
id = find(plate coordinate(:,2)== maxy location(j));
% x coordinates of the element nodes
y nodes = plate coordinate(id,4:3:13);
% sort the nodes y−coordinate in descend order
descend y = sort(y nodes,'descend');
% the two largest values define the edge
C nodes = descend y(1:2);
% Find the corresponding node (1,2,3 or 4)
C = union(find(y nodes == C nodes(1)), ...

find(y nodes == C nodes(2)));
% x coordinates of the element nodes
x top(2*j−1:2*j) = plate coordinate(id,C*3);
% y stresses at the edge nodes
stresses top((2*j−1:2*j)) = −1*stress information(id,C*3+1);
% shear stresses at the edge nodes
stresses sheartop((2*j−1:2*j)) = stress information(id,C*3+2);

end
% Assemble y coordinates and stresses at the left edge of each panel
edge coordinate{4,i} = x top;
stress boundaries{4,i} = stresses top;
stress boundaries{8,i} = stresses sheartop;

% Lateral pressure
lateral pressure{1,i} = stress information(R,end);

end

%% Actual stresses
actual stresses = cell(4,N panels);
max leftsigma = zeros(N panels,2);
min leftsigma = zeros(N panels,2);
max rightsigma = zeros(N panels,2);
min rightsigma = zeros(N panels,2);
max bottomsigma = zeros(N panels,2);
min bottomsigma = zeros(N panels,2);
max topsigma = zeros(N panels,2);
min topsigma = zeros(N panels,2);

for i = 1:N panels
%−−−−−−−−−−−−−−−−−−−−−−−−−LEFT EDGE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Sort the stresses at left edge according to ascend y − coordinates
A = sortrows([edge coordinate{1,i} stress boundaries{1,i} ...

stress boundaries{5,i}]);
% Group together the nodes which have the same coordinates
coordinate = unique(A(:,1));
% Check if there are nodes with the same coordinate
diff = size(A)−size(coordinate);
% If there are elements sharing the same node the average value at that
% node will be used
if diff(1) ˜= 0

averaging = zeros(diff(1)+2,2);
averaging(1,1:2) = A(1,2:3);
for j = 1:diff(1)

averaging(j+1,1) = mean([A(2*j,2) A(2*j+1,2)]);
averaging(j+1,2) = mean([A(2*j,3) A(2*j+1,3)]);

end
averaging(end,1:2) = A(end,2:3);

else
averaging = A(:,2:3);

end
leftedge stresses = ([coordinate averaging]);
actual stresses{1,i} = leftedge stresses;

% Values for linear interpolation between corner values
k = (coordinate(end)−coordinate(1))/(leftedge stresses(end,2)− ...

leftedge stresses(1,2));
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n = size(leftedge stresses);
sigma ed = zeros(n(1)−2,1);
for j = 1:n(1)−2

sigma ed(j,1) = (coordinate(j+1)−coordinate(1))/k+ ...
leftedge stresses(1,2);

end
% If the actual stresses form a concave pattern a linear interpolation
% between the corner values result in conservative values. Else a
% linear regression is made between the stress values and the results
% shifted corresponding to the difference of the maximum stress value
% and the corresponding value from the linera regression
diff = leftedge stresses(2:end−1,2)−sigma ed;
if any(diff >= 0)

% Linear regression
x = leftedge stresses(:,1); % Coordinates
y = leftedge stresses(:,2); % Stress values
% Factors
Sx = sum(x);
Sy = sum(y);
Sxx = sum(x.ˆ2);
Syy = sum(y.ˆ2);
Sxy = sum(x.*y);
% Slope and intersection point
n = length(x);
b = (n*Sxy−Sx*Sy)/(n*Sxx−Sxˆ2);
a = 1/n*Sy−b/n*Sx;
X = x;
% Regression line
Y = a+b*X;
% Difference of the regression line and stress results
K = Y−leftedge stresses(:,2);
% Updated conservative stress pattern
new stress = Y−min(K);
leftsigma = [coordinate(1) new stress(1);

coordinate(end) new stress(end)];
% Max stress at left edge
[Rmax,Cmax] = find(leftsigma == ...

max([leftsigma(1,2) leftsigma(2,2)]));
% Min stress at left edge
[Rmin,Cmin] = find(leftsigma == ...

min([leftsigma(1,2) leftsigma(2,2)]));
max leftsigma(i,:) = leftsigma(Rmax,:);
min leftsigma(i,:) = leftsigma(Rmin,:);

else
% Max stress at left edge
[Rmax,Cmax] = find(leftedge stresses == ...

max([leftedge stresses(1,2) leftedge stresses(end,2)]));
max leftsigma(i,:) = leftedge stresses(Rmax,1:2);
% Min stress at left edge
[Rmin,Cmin] = find(leftedge stresses == ...

min([leftedge stresses(1,2) leftedge stresses(end,2)]));
min leftsigma(i,:) = leftedge stresses(Rmin,1:2);

end

%−−−−−−−−−−−−−−−−−−−−−−−−−RIGHT EDGE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Sort the stresses at right edge according to ascend y − coordinates
A = sortrows([edge coordinate{2,i} stress boundaries{2,i}]);
% Group together the nodes which have the same coordinates
coordinate = unique(A(:,1));
% Check if there are nodes with the same coordinate
diff = size(A)−size(coordinate);
% If there are elements sharing the same node the average value at that
% node will be used
if diff(1) ˜= 0

averaging = zeros(diff(1)+2,1);
averaging(1) = A(1,2);
for j = 1:diff(1)

averaging(j+1) = mean([A(2*j,2) A(2*j+1,2)]);
end

136



averaging(end) = A(end,2);
else

averaging = A(:,2);
end
rightedge stresses = ([coordinate averaging]);
actual stresses{2,i} = rightedge stresses;

% Values for linear interpolation between corner values
k = (coordinate(end)−coordinate(1))/(rightedge stresses(end,2)− ...

rightedge stresses(1,2));
n = size(rightedge stresses);
sigma ed = zeros(n(1)−2,1);
for j = 1:n(1)−2

sigma ed(j,1) = (coordinate(j+1)−coordinate(1))/k+ ...
rightedge stresses(1,2);

end
% If the actual stresses form a concave pattern a linear interpolation
% between the corner values result in conservative values. Else a
% linear regression is made between the stress values and the results
% shifted corresponding to the difference of the maximum stress value
% and the corresponding value from the linera regression
diff = rightedge stresses(2:end−1,2)−sigma ed;
if any(diff >= 0)

x = rightedge stresses(:,1); % Coordinates
y = rightedge stresses(:,2); % Stress values
% Factors
Sx = sum(x);
Sy = sum(y);
Sxx = sum(x.ˆ2);
Syy = sum(y.ˆ2);
Sxy = sum(x.*y);
% Slope and intersection point
n = length(x);
b = (n*Sxy−Sx*Sy)/(n*Sxx−Sxˆ2);
a = 1/n*Sy−b/n*Sx;
X = x;
% Regression line
Y = a+b*X;
% Difference of the regression line and stress results
K = Y−rightedge stresses(:,2);
% Updated conservative stress pattern
new stress = Y−min(K);
rightsigma = [coordinate(1) new stress(1);

coordinate(end) new stress(end)];
% Max stress at left edge
[Rmax,Cmax] = find(rightsigma == ...

max([rightsigma(1,2) rightsigma(2,2)]));
% Min stress at left edge
[Rmin,Cmin] = find(rightsigma == ...

min([rightsigma(1,2) rightsigma(2,2)]));
max rightsigma(i,:) = rightsigma(Rmax,:);
min rightsigma(i,:) = rightsigma(Rmin,:);

else
% Max stress at right edge
[Rmax,Cmax] = find(rightedge stresses == ...

max([rightedge stresses(1,2) rightedge stresses(end,2)]));
max rightsigma(i,:) = rightedge stresses(Rmax,1:2);
% Min stress at right edge
[Rmin,Cmin] = find(rightedge stresses == ...

min([rightedge stresses(1,2) rightedge stresses(end,2)]));
min rightsigma(i,:) = rightedge stresses(Rmin,1:2);

end

%−−−−−−−−−−−−−−−−−−−−−−−−−BOTTOM EDGE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Sort the stresses at bottom edge according to ascend x − coordinates
A = sortrows([edge coordinate{3,i} stress boundaries{3,i}]);
% Group together the nodes which have the same coordinates
coordinate = unique(A(:,1));
% Check if there are nodes with the same coordinate
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diff = size(A)−size(coordinate);
% If there are elements sharing the same node the average value at that
% node will be used
if diff(1) ˜= 0

averaging = zeros(diff(1)+2,1);
averaging(1) = A(1,2);
for j = 1:diff(1)

averaging(j+1) = mean([A(2*j,2) A(2*j+1,2)]);
end
averaging(end) = A(end,2);

else
averaging = A(:,2);

end
bottomedge stresses = ([coordinate averaging]);
actual stresses{3,i} = bottomedge stresses;

% Values for linear interpolation between corner values
k = (coordinate(end)−coordinate(1))/(bottomedge stresses(end,2)− ...

bottomedge stresses(1,2));
n = size(bottomedge stresses);
sigma ed = zeros(n(1)−2,1);
for j = 1:n(1)−2

sigma ed(j,1) = (coordinate(j+1)−coordinate(1))/k+ ...
bottomedge stresses(1,2);

end
% If the actual stresses form a concave pattern a linear interpolation
% between the corner values result in conservative values. Else a
% linear regression is made between the stress values and the results
% shifted corresponding to the difference of the maximum stress value
% and the corresponding value from the linera regression
diff = bottomedge stresses(2:end−1,2)−sigma ed;
if any(diff >= 0)

x = bottomedge stresses(:,1); % Coordinates
y = bottomedge stresses(:,2); % Stress values
% Factors
Sx = sum(x);
Sy = sum(y);
Sxx = sum(x.ˆ2);
Syy = sum(y.ˆ2);
Sxy = sum(x.*y);
% Slope and intersection point
n = length(x);
b = (n*Sxy−Sx*Sy)/(n*Sxx−Sxˆ2);
a = 1/n*Sy−b/n*Sx;
X = x;
% Regression line
Y = a+b*X;
% Difference of the regression line and stress results
K = Y−bottomedge stresses(:,2);
% Updated conservative stress pattern
new stress = Y−min(K);
bottomsigma = [coordinate(1) new stress(1);

coordinate(end) new stress(end)];
% Max stress at bottom edge
[Rmax,Cmax] = find(bottomsigma == ...

max([bottomsigma(1,2) bottomsigma(2,2)]));
% Min stress at bottom edge
[Rmin,Cmin] = find(bottomsigma == ...

min([bottomsigma(1,2) bottomsigma(2,2)]));
max bottomsigma(i,:) = bottomsigma(Rmax,:);
min bottomsigma(i,:) = bottomsigma(Rmin,:);

else
% Max stress at bottom edge
[Rmax,Cmax] = find(bottomedge stresses == ...

max([bottomedge stresses(1,2) bottomedge stresses(end,2)]));
max bottomsigma(i,:) = bottomedge stresses(Rmax,1:2);
% Min stress at bottom edge
[Rmin,Cmin] = find(bottomedge stresses == ...

min([bottomedge stresses(1,2) bottomedge stresses(end,2)]));
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min bottomsigma(i,:) = bottomedge stresses(Rmin,1:2);
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−TOP EDGE−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−%
% Sort the stresses at top edge according to ascend y − coordinates
A = sortrows([edge coordinate{4,i} stress boundaries{4,i}]);
% Group together the nodes which have the same coordinates
coordinate = unique(A(:,1));
% Check if there are nodes with the same coordinate
diff = size(A)−size(coordinate);
% If there are elements sharing the same node the averag value at that
% node will be used
if diff(1) ˜= 0

averaging = zeros(diff(1)+2,1);
averaging(1) = A(1,2);
for j = 1:diff(1)

averaging(j+1) = mean([A(2*j,2) A(2*j+1,2)]);
end
averaging(end) = A(end,2);

else
averaging = A(:,2);

end
topedge stresses = ([coordinate averaging]);
actual stresses{4,i} = topedge stresses;

% Values for linear interpolation between corner values
k = (coordinate(end)−coordinate(1))/(topedge stresses(end,2)− ...

topedge stresses(1,2));
n = size(topedge stresses);
sigma ed = zeros(n(1)−2,1);
for j = 1:n(1)−2

sigma ed(j,1) = (coordinate(j+1)−coordinate(1))/k+ ...
topedge stresses(1,2);

end
% If the actual stresses form a concave pattern a linear interpolation
% between the corner values result in conservative values. Else a
% linear regression is made between the stress values and the results
% shifted corresponding to the difference of the maximum stress value
% and the corresponding value from the linera regression
diff = topedge stresses(2:end−1,2)−sigma ed;
if any(diff >= 0)

x = topedge stresses(:,1); % Coordinates
y = topedge stresses(:,2); % Stress values
% Factors
Sx = sum(x);
Sy = sum(y);
Sxx = sum(x.ˆ2);
Syy = sum(y.ˆ2);
Sxy = sum(x.*y);
% Slope and intersection point
n = length(x);
b = (n*Sxy−Sx*Sy)/(n*Sxx−Sxˆ2);
a = 1/n*Sy−b/n*Sx;
X = x;
% Regression line
Y = a+b*X;
% Difference of the regression line and stress results
K = Y−topedge stresses(:,2);
% Updated conservative stress pattern
new stress = Y−min(K);
topsigma = [coordinate(1) new stress(1);

coordinate(end) new stress(end)];
newsigma 1 = zeros(n(1)−1,1);
% Max stress at top edge
[Rmax,Cmax] = find(topsigma == ...

max([topsigma(1,2) topsigma(2,2)]));
% Min stress at top edge
[Rmin,Cmin] = find(topsigma == ...
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min([topsigma(1,2) topsigma(2,2)]));
max topsigma(i,:) = topsigma(Rmax,:);
min topsigma(i,:) = topsigma(Rmin,:);

else
% Max stress at top edge
[Rmax,Cmax] = find(topedge stresses == ...

max([topedge stresses(1,2) topedge stresses(end,2)]));
max topsigma(i,:) = topedge stresses(Rmax,1:2);
% Min stress at top edge
[Rmin,Cmin] = find(topedge stresses == ...

min([topedge stresses(1,2) topedge stresses(end,2)]));
min topsigma(i,:) = topedge stresses(Rmin,1:2);

end
end

%% Modelled stress distribution
% modelled stress(panel ID,s x,max,s x,min,Rx,s y,max,s y,min,Ry,s t,max,q)
modelled stress = zeros(N panels,9);
modelled stress(1:end,1) = panel info(:,1);
modelled location = zeros(N panels,4);

% Sort the corner stress values into matricies
stress left = [max leftsigma min leftsigma];
stress right = [max rightsigma min rightsigma];
stress bottom = [max bottomsigma min bottomsigma];
stress top = [max topsigma min topsigma];

for i = 1:N panels

% a = length of the panel, b = width of the panel
a = panel info(i,2);
b = panel info(i,3);
L stress = min(0.4*a,0.5*b);

% x direction − top stress
[R left C left] = max(stress left(i,1:2:end));
[R right C right] = max(stress right(i,1:2:end));

sigma max = max([stress left(i,2*C left) stress right(i,2*C right)]);
sigma min = min([stress left(i,2*C left) stress right(i,2*C right)]);
if inplane settings == true

% Eurocode 3 part 1−5 clause 4.6.(3)
sigma top = sigma max−L stress/a*(sigma max−sigma min);

else
% Maximum stresses at edges
sigma top = sigma max;

end

% x direction − bottom stress
[R left C left] = min(stress left(i,1:2:end));
[R right C right] = min(stress right(i,1:2:end));

sigma max = max([stress left(i,2*C left) stress right(i,2*C right)]);
sigma min = min([stress left(i,2*C left) stress right(i,2*C right)]);
if inplane settings == true

% Eurocode 3 part 1−5 clause 4.6.(3)
sigma bot = sigma max−L stress/a*(sigma max−sigma min);

else
% Maximum stresses at edges
sigma bot = sigma max;

end

% max and min x−stresses
X max = max([sigma bot sigma top]);
X min = min([sigma bot sigma top]);
if X max<0 && X min<0

Rx = NaN;
else

Rx = X min/X max;
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end
modelled stress(i,2:4) = [X max X min Rx];
modelled location(i,1:2) = [sigma top sigma bot];

% y direction − left stress
[R bottom C bottom] = min(stress bottom(i,1:2:end));
[R top C top] = min(stress top(i,1:2:end));

sigma max = max([stress bottom(i,2*C bottom) stress top(i,2*C top)]);
sigma min = min([stress bottom(i,2*C bottom) stress top(i,2*C top)]);
if inplane settings == true

% Eurocode 3 part 1−5 clause 4.6.(3)
sigma left = sigma max−L stress/b*(sigma max−sigma min);

else
% Maximum stresses at edges
sigma left = sigma max;

end

% y direction − right stress
[R bottom C bottom] = max(stress bottom(i,1:2:end));
[R top C top] = max(stress top(i,1:2:end));

sigma max = max([stress bottom(i,2*C bottom) stress top(i,2*C top)]);
sigma min = min([stress bottom(i,2*C bottom) stress top(i,2*C top)]);
if inplane settings == true

% Eurocode 3 part 1−5 clause 4.6.(3)
sigma right = sigma max−L stress/b*(sigma max−sigma min);

else
% Maximum stresses at edges
sigma right = sigma max;

end

% max and min y−stresses
Y max = max([sigma left sigma right]);
Y min = min([sigma left sigma right]);
if Y max<0 && Y min<0

Ry = NaN;
else

Ry = Y min/Y max;
end
modelled stress(i,5:7) = [Y max Y min Ry];
modelled location(i,3:4) = [sigma right sigma left];

% Shear stresses
if shear settings == 0

% Maximum values
% Max and min shear stress at left edge
Min L = min(stress boundaries{5,i});
Max L = max(stress boundaries{5,i});
% Max and min shear stress at right edge
Min R = min(stress boundaries{6,i});
Max R = max(stress boundaries{6,i});
% Max and min shear stress at bottom edge
Min B = min(stress boundaries{7,i});
Max B = max(stress boundaries{7,i});
% Max and min shear stress at top edge
Min T = min(stress boundaries{8,i});
Max T = max(stress boundaries{8,i});
% Max shear stress
S = [Min L Max L Min R Max R Min B Max B Min T Max T];
modelled stress(i,8) = max(abs(S));

elseif shear settings == 1
% Average absolute values
% Average shear stress at left edge
Left coordinate = edge coordinate{1,i};
Left value = abs(stress boundaries{5,i});
n = size(Left coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2
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weight = abs(Left coordinate(2*j)−Left coordinate(2*j−1))/ ...
panel info(i,3);

value = mean(Left value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av L = sum(weighted stress);

% Average shear stress at right edge
Right coordinate = edge coordinate{2,i};
Right value = abs(stress boundaries{6,i});
n = size(Right coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Right coordinate(2*j)− ...
Right coordinate(2*j−1))/panel info(i,3);

value = mean(Right value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av R = sum(weighted stress);

% Average shear stress at bottom edge
Bottom coordinate = edge coordinate{3,i};
Bottom value = abs(stress boundaries{7,i});
n = size(Bottom coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Bottom coordinate(2*j)− ...
Bottom coordinate(2*j−1))/panel info(i,2);

value = mean(Bottom value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av B = sum(weighted stress);

% Average shear stress at top edge
Top coordinate = edge coordinate{4,i};
Top value = abs(stress boundaries{8,i});
n = size(Top coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Top coordinate(2*j)−Top coordinate(2*j−1))/ ...
panel info(i,2);

value = mean(Top value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av T = sum(weighted stress);

% Total circumference of the panel
Circ = 2*panel info(i,2)+2*panel info(i,3);
% Weighted shear values along the edges
S = sum([av L*panel info(i,3) av R*panel info(i,3) ...

av B*panel info(i,2) av T*panel info(i,2)]);
modelled stress(i,8) = S/Circ;

elseif shear settings == 2
% Average values
% Average shear stress at left edge
Left coordinate = edge coordinate{1,i};
Left value = stress boundaries{5,i};
n = size(Left coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Left coordinate(2*j)−Left coordinate(2*j−1))/ ...
panel info(i,3);

value = mean(Left value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av L = sum(weighted stress);

% Average shear stress at right edge
Right coordinate = edge coordinate{2,i};
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Right value = stress boundaries{6,i};
n = size(Right coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Right coordinate(2*j)− ...
Right coordinate(2*j−1))/panel info(i,3);

value = mean(Right value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av R = sum(weighted stress);

% Average shear stress at bottom edge
Bottom coordinate = edge coordinate{3,i};
Bottom value = stress boundaries{7,i};
n = size(Bottom coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Bottom coordinate(2*j)− ...
Bottom coordinate(2*j−1))/panel info(i,2);

value = mean(Bottom value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av B = sum(weighted stress);

% Average shear stress at top edge
Top coordinate = edge coordinate{4,i};
Top value = stress boundaries{8,i};
n = size(Top coordinate);
weighted stress = zeros(n(1)/2,1);
for j = 1:n(1)/2

weight = abs(Top coordinate(2*j)− ...
Top coordinate(2*j−1))/panel info(i,2);

value = mean(Top value(2*j−1:2*j));
weighted stress(j) = weight*value;

end
av T = sum(weighted stress);

% Total circumference of the panel
Circ = 2*panel info(i,2)+2*panel info(i,3);
% Weighted shear values along the edges
S = sum([av L*panel info(i,3) av R*panel info(i,3) ...

av B*panel info(i,2) av T*panel info(i,2)]);
modelled stress(i,8) = S/Circ;

end

% Lateral pressure
if lateral settings == true

pressure = lateral pressure{:,i};
modelled stress(i,9) = mean(pressure);

else
pressure = lateral pressure{:,i};
modelled stress(i,9) = max(pressure);

end
end

%% Plots
for i = 1:N panels

if plot planestresses == true
figure
subplot(3,3,2)
actual values = actual stresses{4,i};
area(actual values(:,1),actual values(:,2))
hold on
plot([max topsigma(i,1) min topsigma(i,1)], ...

[max topsigma(i,2) min topsigma(i,2)],'LineWidth',2)
plot(sort([max topsigma(i,1) min topsigma(i,1)],'descend'), ...

modelled location(i,3:4),'−−r','LineWidth',2)
colormap cool
axis tight

143



subplot(3,3,4)
actual values = actual stresses{1,i};
area(actual values(:,1),actual values(:,2))
hold on
plot([max leftsigma(i,1) min leftsigma(i,1)], ...

[max leftsigma(i,2) min leftsigma(i,2)],'LineWidth',2)
plot(sort([max leftsigma(i,1) min leftsigma(i,1)],'descend'), ...

modelled location(i,1:2),'−−r','LineWidth',2)
colormap cool
view(−90,90)
axis tight

j = panel info(i,1);
subplot(3,3,5)
textstr(1) = {['panel − ',num2str(j)]};
textstr(2) = {'In plane stresses'};
text((min(panel(i,2:3:11))+max(panel(i,2:3:11)))/2, ...

(min(panel(i,3:3:12))+max(panel(i,3:3:12)))/2,textstr)
axis([min(panel(i,2:3:11)) max(panel(i,2:3:11)) ...

min(panel(i,3:3:12)) max(panel(i,3:3:12))])

subplot(3,3,6)
actual values = actual stresses{2,i};
area(actual values(:,1),actual values(:,2))
hold on
plot([max rightsigma(i,1) min rightsigma(i,1)], ...

[max rightsigma(i,2) min rightsigma(i,2)],'LineWidth',2)
plot(sort([max rightsigma(i,1) min rightsigma(i,1)],'descend'), ...

modelled location(i,1:2),'−−r','LineWidth',2)
colormap cool
view(90,−90)
axis tight

subplot(3,3,8)
actual values = actual stresses{3,i};
area(actual values(:,1),actual values(:,2))
hold on
plot([max bottomsigma(i,1) min bottomsigma(i,1)], ...

[max bottomsigma(i,2) min bottomsigma(i,2)],'LineWidth',2)
plot(sort([max bottomsigma(i,1) ...

min bottomsigma(i,1)],'descend'),modelled location(i,3:4), ...
'−−r','LineWidth',2)

colormap cool
view(0,−90)
axis tight

end
end

if plot shearstresses == true
for i = 1:N panels

figure
subplot(3,3,2)
area(sort(edge coordinate{4,i}),stress boundaries{8,i})
hold on
plot([min(panel(i,2:3:11)) max(panel(i,2:3:11))], ...

[modelled stress(i,8) modelled stress(i,8)], ...
'−−r','LineWidth',2)

plot([min(panel(i,2:3:11)) max(panel(i,2:3:11))], ...
[−modelled stress(i,8) −modelled stress(i,8)], ...
'−−r','LineWidth',2)

colormap cool

subplot(3,3,4)
area(edge coordinate{1,i},stress boundaries{5,i})
hold on
plot([min(panel(i,3:3:12)) max(panel(i,3:3:12))], ...

[modelled stress(i,8) modelled stress(i,8)], ...
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'−−r','LineWidth',2)
plot([min(panel(i,3:3:12)) max(panel(i,3:3:12))], ...

[−modelled stress(i,8) −modelled stress(i,8)], ...
'−−r','LineWidth',2)

view(−90,90)
colormap cool

j = panel info(i,1);
subplot(3,3,5)
textstr(1) = {['panel − ',num2str(j)]};
textstr(2) = {'Shear stresses'};
text((min(panel(i,2:3:11))+max(panel(i,2:3:11)))/2, ...

(min(panel(i,3:3:12))+max(panel(i,3:3:12)))/2,textstr)
axis([min(panel(i,2:3:11)) max(panel(i,2:3:11)) ...

min(panel(i,3:3:12)) max(panel(i,3:3:12))])

subplot(3,3,6)
area(edge coordinate{2,i},stress boundaries{6,i})
hold on
plot([min(panel(i,3:3:12)) max(panel(i,3:3:12))], ...

[modelled stress(i,8) modelled stress(i,8)], ...
'−−r','LineWidth',2)

plot([min(panel(i,3:3:12)) max(panel(i,3:3:12))], ...
[−modelled stress(i,8) −modelled stress(i,8)], ...
'−−r','LineWidth',2)

view(90,−90)
colormap cool

subplot(3,3,8)
area(sort(edge coordinate{4,i}),stress boundaries{7,i})
hold on
plot([min(panel(i,2:3:11)) max(panel(i,2:3:11))], ...

[modelled stress(i,8) modelled stress(i,8)], ...
'−−r','LineWidth',2)

plot([min(panel(i,2:3:11)) max(panel(i,2:3:11))], ...
[−modelled stress(i,8) −modelled stress(i,8)], ...
'−−r','LineWidth',2)

view(0,−90)
colormap cool

end
end

D.6 ABSpackage panels.m

% Function name: ABSpackage panels.m
% Written by: Ottar Hillers, July 2011
% Purpose: Determine parameters for buckling checks according to the ABS
% buckling guide
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Buckling parameters
Pr = 0.6; % Proportional linear elastic limit
C1 = 1.1; %
C2 = 1.2; %
eta = 1.0; % Maximum allowable strength utilization factor
Syield plate = 259.7; % Yield point of plate
Tauyield plate = Syield plate/sqrt(3); % Shear strength
%% Geometry and material
% Length
l = panel info(:,2);
% Width
s = panel info(:,3);
% Thickness
t = panel info(:,6);
% Aspect ratio
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a = l./s;
% Young's modulus
E = panel info(:,4);
% Poisson's ratio
v = panel info(:,5);
% Yield stress
Syield(1:length(l),1) = Syield plate;

Panel details = [panel info(:,1) l s a t E v Syield];

%% Applied stresses
% Maximum x−stress
Smax x = zeros(N panels,1);
% Maximum y−stress
Smax y = zeros(N panels,1);
% Shear stress
Tau = zeros(N panels,1);
% Laterl pressure
q = zeros(N panels,1);
% Von Mises stress
S vm = zeros(N panels,1);
% Bending influence of x− and y stresses
kx = zeros(N panels,1);
ky = zeros(N panels,1);

for i = 1:N panels
Smax x(i) = modelled stress(i,2);
if Smax x(i) < 0

Smax x(i) = 0;
end
Smax y(i) = modelled stress(i,5);
if Smax y(i) < 0

Smax y(i) = 0;
end
Tau(i) = modelled stress(i,8);
q(i) = modelled stress(i,9);
S vm(i) = sqrt(Smax x(i)ˆ2+Smax y(i)ˆ2−Smax x(i)*Smax y(i)+ ...

3*Tau(i)ˆ2);
kx(i) = modelled stress(i,4);
ky(i) = modelled stress(i,7);

end

Applied stresses = [panel info(:,1) Smax x Smax y Tau q S vm kx ky];

%% Resistance
% Euler's buckling stress
S Euler = zeros(N panels,1);
% Slenderness ratio
beta = zeros(N panels,1);
% Coefficient to reflect interaction between longitudinal and transverse
% stresses
phi = zeros(N panels,1);
% Critical x−stress
Sc x = zeros(N panels,1);
% Ultimate x−stress
Su x = zeros(N panels,1);
% Critical y−stress
Sc y = zeros(N panels,1);
% Ultimate y−stress
Su y = zeros(N panels,1);
% Critical shear stress
Sc tau = zeros(N panels,1);
% Ultimate shear stress
Su tau = zeros(N panels,1);

for i = 1:N panels
% Euler's buckling stress
S Euler(i) = piˆ2*E(i)*(t(i)/s(i))ˆ2/(12*(1−v(i)ˆ2));
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% Slenderness ratio
beta(i) = s(i)/t(i)*sqrt(Syield plate/E(i));
phi(i) = 1−beta(i)/2;

% Boundary constant for load applied along the short edge
if kx(i) >= 0

ks x = C1*8.4/(kx(i)+1.1);
elseif kx(i) >= −1

ks x = C1*(7.6−6.4*kx(i)+10*kx(i)ˆ2);
else

ks x = C1*24;
end
% Critical buckling stress in x−direction
if ks x*S Euler(i) <= Pr*Syield plate

Sc x(i) = ks x*S Euler(i);
else

Sc x(i) = Syield plate*(1−Pr*(1−Pr)*Syield plate/ ...
(ks x*S Euler(i)));

end
% Ultimate buckling stress in x−direction
if beta(i) > 1

Cx = 2.0/beta(i)−1/beta(i)ˆ2;
else

Cx = 1;
end
Su x(i) = max(Cx*Syield plate,Sc x(i));

% Boundary constant for load applied along the long edge
if ky(i) >= 1/3

ks y = C2*(1+1/a(i)ˆ2)ˆ2*(1.675−0.675*ky(i));
elseif ky(i) >= −1 && a(i) >=2

ks y = C2*((1.0875*(1+1/a(i)ˆ2)ˆ2−9/a(i))*(1+ky(i))+12/a(i));
elseif ky(i) <= −1 && a(i) >=2

ks y = C2*12/a(i)ˆ2;
elseif ky(i) >= −1 && a(i) >=1

ks y = C2*((1.0875*(1+1/a(i)ˆ2)ˆ2−18/a(i)ˆ2)*(1+ky(i))+24/a(i)ˆ2);
elseif ky(i) <= −1 && a(i) >=1

ks y = C2*24/a(i)ˆ2;
end
% Critical buckling stress in y−direction
if ks y*S Euler(i) <= Pr*Syield plate

Sc y(i) = ks y*S Euler(i);
else

Sc y(i) = Syield plate*(1−Pr*(1−Pr)*Syield plate/ ...
(ks y*S Euler(i)));

end
% Ultimate buckling stress in y−direction
Cy = min(Cx/a(i)+0.1*(1−1/a(i))*(1+1/beta(i)ˆ2)ˆ2,1);
Su y(i) = max(Cy*Syield plate,Sc y(i));

% Boundary constant for shear
ks tau = C1*(4/a(i)ˆ2+5.34);
% Critical shear stress
if ks tau*S Euler(i) <= Pr*Tauyield plate

Sc tau(i) = ks tau*S Euler(i);
else

Sc tau(i) = Tauyield plate*(1−Pr*(1−Pr)*Tauyield plate/ ...
(ks tau*S Euler(i)));

end
% Ultimate shear stress
Su tau(i) = max(Sc tau(i)+0.5*(Syield plate−sqrt(3)*Sc tau(i))/ ...

sqrt((1+a(i)+a(i)ˆ2)),Sc tau(i));
end

Resistance panel1 = [panel info(:,1) S Euler beta phi];

%% Plate panels checks
% Buckling state limit
Critical check = zeros(N panels,1);

147



% Ultimate strength under combined in−plane stresses
Ultimate check = zeros(N panels,1);
% Uniformal lateral pressure
Lateral check = zeros(N panels,1);

for i = 1:N panels
Critical check(i) = (Smax x(i)/(eta*Sc x(i)))ˆ2+ ...

(Smax y(i)/(eta*Sc y(i)))ˆ2+(Tau(i)/(eta*Sc tau(i)))ˆ2;

Ultimate check(i) = (Smax x(i)/(eta*Su x(i)))ˆ2+ ...
(Smax y(i)/(eta*Su y(i)))ˆ2+(Tau(i)/(eta*Su tau(i)))ˆ2− ...
phi(i)*(Smax x(i)/(eta*Su x(i)))*(Smax y(i)/(eta*Su y(i)));

Lateral check(i) = q(i)/(eta*4*Syield plate*(t(i)/s(i))ˆ2* ...
(1+1/a(i)ˆ2)*sqrt(1−(S vm(i)/Syield plate)ˆ2));

end

Panel check = [panel info(:,1) Critical check ...
Ultimate check Lateral check];

% Critical failure
[R C] = find(Panel check(:,2)>1);
Critical fail = Panel check(R,1);

% Ultimate failure
[R C] = find(Panel check(:,3)>1);
Ultimate fail = Panel check(R,1);

% Lateral failure
[R C] = find(Panel check(:,4)>1);
Lateral fail = Panel check(R,1);

D.7 ABSpackage stiffened panels.m

% Function name: ABSpackage stiffened panels.m
% Written by: Ottar Hillers, July 2011
% Purpose: Determine parameters for buckling checks according to the ABS
% buckling guide
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Buckling parameters
Pr = 0.6; % Proportional linear elastic limit
C1 = 1.1; %
C2 = 1.2; %
Csw = 0.58; % Factor for effective breadth of plating
Cm = 0.75; % Moment adjusment factor
eta = 1.0; % Maximum allowable strength utilization factor
N waves = 10; % Number of half sinus waves
Syield stiff = 255; % Yield point of plate
Tauyield stiff = Syield stiff/sqrt(3); % Shear strength

%% Invalid stiffeners
[R C] = find(isnan(longstiff info));
invalid = longstiff info(unique(R),1);

%% Valid stiffeners
% Stiffeners modelled with beam elements
beam stiffener = longstiff limit(Nr longstiff,:);
beam stiffener(:,1) = real longstiff(:,1);
beam stiffener(invalid,:) = [];
n = size(beam stiffener);

A = real panel(:,1);
B = panel limit(Nr panels,:);
C = [A (B(:,1))];
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for i = 1:length(A)
a = C(i,2);
b = find(B(:,1)==a);
B(b,1)=C(i,1);

end

panel limit = B;

% panel stiffener(stiffener, panel below, panel above)
panel stiffener = zeros(n(1),3);
panel stiffener(:,1) = beam stiffener(:,1);
for i = 1:n(1)

% x and y coordinates for the stiffener
x1 = beam stiffener(i,2);
x2 = beam stiffener(i,3);
y = beam stiffener(i,4);
% Find panels wich have edges that correspond to the stiffeners
% coordinates
px1 = find(panel limit(:,2)==x1);
px2 = find(panel limit(:,3)==x2);
py1 = find(panel limit(:,5)==y);
py2 = find(panel limit(:,4)==y);
% 1st check
a = union(py1,py2);
b = union(px1,px2);
c = setdiff(b,a);
if isempty(c) == 0

for j = 1:length(c)
d(j) = find(b==c(j));

end
b(d) = [];
clear d

end
if length(b) == 2

panel stiffener(i,2:3) = b;
% 2nd check

elseif intersect(b,py1)
for j = 1:length(py2)

if panel limit(py2(j),2) < panel limit(b,2) ...
&& panel limit(py2(j),3) > panel limit(b,2)

e = py2(j);
panel stiffener(i,2:3) = [b e];

end
end

elseif intersect(b,py2)
for j = 1:length(py1)

if panel limit(py1(j),2) < panel limit(b,2) ...
&& panel limit(py1(j),3) > panel limit(b,2)

e = py1(j);
panel stiffener(i,2:3) = [b e];

end
end

end

end
[R C] = find(panel stiffener==0);
exclude2 = panel stiffener(unique(R),1);
panel stiffener(unique(R),:) = [];

n = size(panel stiffener);
Nr stiffener = n(1);
k = 0;
different panel = [];
for i = 1:Nr stiffener

if any(panel info(panel stiffener(i,2),2:6)− ...
panel info(panel stiffener(i,3),2:6)>abs(1e−10))

k = k+1;
different panel(k) = panel stiffener(i,1);
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end
end

%% Associated panels
% Stiffeners with same properties of associated panels
valid = panel stiffener(:,1);
stiff same = setdiff(valid,different panel);
N same = length(stiff same);

% Associated samepanels(Panel ID, Length, Width, Thickness, Young's
% modulus, Poisson's)
Associated samepanels = zeros(N same,7);
Associated samepanels(:,1) = stiff same;
index same = zeros(N same,1);
for i = 1:N same

index same(i) = find(panel stiffener(:,1)==stiff same(i));
Associated samepanels(i,2) = ...

panel info(panel stiffener(index same(i),2),2);
Associated samepanels(i,3) = ...

panel info(panel stiffener(index same(i),2),3);
Associated samepanels(i,4) = ...

panel info(panel stiffener(index same(i),2),6);
Associated samepanels(i,5) = ...

panel info(panel stiffener(index same(i),2),4);
Associated samepanels(i,6) = ...

panel info(panel stiffener(index same(i),2),5);
Associated samepanels(i,7) = ...

Associated samepanels(i,2)/ ...
Associated samepanels(i,3);

end

% Stiffeners with different properties of associated panels
N diff = length(different panel);
% Associated samepanels(Panel ID, Length, Width, Thickness, Young's
% modulus, Poisson's)
Associated diffpanels = zeros(2*N diff,7);
Associated diffpanels(1:2:end,1) = different panel;
Associated diffpanels(2:2:end,1) = different panel;
index diff = zeros(N diff,1);
for i = 1:N diff

index diff(i) = find(panel stiffener(:,1)==different panel(i));
Associated diffpanels(2*i−1,2) = ...

panel info(panel stiffener(index diff(i),2),2);
Associated diffpanels(2*i−1,3) = ...

panel info(panel stiffener(index diff(i),2),3);
Associated diffpanels(2*i−1,4) = ...

panel info(panel stiffener(index diff(i),2),6);
Associated diffpanels(2*i−1,5) = ...

panel info(panel stiffener(index diff(i),2),4);
Associated diffpanels(2*i−1,6) = ...

panel info(panel stiffener(index diff(i),2),5);
Associated diffpanels(2*i−1,7) = ...

Associated diffpanels(2*i−1,2)/ ...
Associated diffpanels(2*i−1,3);

Associated diffpanels(2*i,2) = ...
panel info(panel stiffener(index diff(i),3),2);

Associated diffpanels(2*i,3) = ...
panel info(panel stiffener(index diff(i),3),3);

Associated diffpanels(2*i,4) = ...
panel info(panel stiffener(index diff(i),3),6);

Associated diffpanels(2*i,5) = ...
panel info(panel stiffener(index diff(i),3),4);

Associated diffpanels(2*i,6) = ...
panel info(panel stiffener(index diff(i),3),5);

Associated diffpanels(2*i,7) = ...
Associated diffpanels(2*i,2)/ ...
Associated diffpanels(2*i,3);

end
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%% Geometry and material
% Height of web (excluding flange thickness)
dw = longstiff info(valid,5)−longstiff info(valid,7);
% Thickness of web
tw = longstiff info(valid,8);
% Width of flange
bf = longstiff info(valid,6);
% Thickness of flange
tf = longstiff info(valid,7);
% Length
l stiff = longstiff info(valid,2);
% Young's modulus
E stiff = longstiff info(valid,3);
% Poisson's ratio
v stiff = longstiff info(valid,4);
% Yield stress
Syield stiffener(1:length(dw),1) = Syield stiff;

% Type (1=T−shape,2=L−shape)
type = longstiff info(valid,9);

Stiffener details = [longstiff info(valid,1) l stiff dw tw bf tf ...
E stiff v stiff Syield stiffener];

%% Applied stresses
% Panel stress (Panel ID,Top stress,Bottom stress,Right stress,Left stress)
Panel stress(:,1) = panel info(:,1);
Panel stress(:,2:5) = modelled location;

% Stress acting on stiffener
Stiffener stress = zeros(Nr stiffener,5);
Stiffener stress(:,1) = panel stiffener(:,1);
for i = 1:Nr stiffener

Stiffener stress(i,2) = max(Panel stress(panel stiffener(i,2),2), ...
Panel stress(panel stiffener(i,3),3));

if Stiffener stress(i,2) < 0
Stiffener stress(i,2) = 0;

end
Stiffener stress(i,3) = max(Panel stress(panel stiffener(i,2),4), ...

Panel stress(panel stiffener(i,3),5));
if Stiffener stress(i,3) < 0

Stiffener stress(i,3) = 0;
end
Stiffener stress(i,4) = ...

max(abs(modelled stress(panel stiffener(i,2),8)), ...
abs(modelled stress(panel stiffener(i,3),8)));

Stiffener stress(i,5) = ...
max(modelled stress(panel stiffener(i,2),9), ...
modelled stress(panel stiffener(i,3),9));

end

%% Area properties
% Stiffener area
area stiffener(:,1) = valid;
area stiffener(:,2) = dw.*tw+bf.*tf;

area samestiffener = area stiffener(index same,:);
area diffstiffener = zeros(2*N diff,2);
area diffstiffener(1:2:end,1) = panel stiffener(index diff,1);
area diffstiffener(2:2:end,1) = panel stiffener(index diff,1);
area diffstiffener(1:2:end,2) = area stiffener(index diff,2);
area diffstiffener(2:2:end,2) = area stiffener(index diff,2);

% Total area of stiffener and associated panels
area sametotal(:,1) = panel stiffener(index same,1);
area sametotal(:,2) = area stiffener(index same,2)+ ...

Associated samepanels(:,3).*Associated samepanels(:,4);

area difftotal = zeros(2*N diff,2);
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area difftotal(:,1) = area diffstiffener(:,1);
area difftotal(1:2:end,2) = area stiffener(index diff,2)+ ...

Associated diffpanels(1:2:end,3).*Associated diffpanels(1:2:end,4);
area difftotal(2:2:end,2) = area stiffener(index diff,2)+ ...

Associated diffpanels(2:2:end,3).*Associated diffpanels(2:2:end,4);

% Effective area
beta same(:,1) = panel stiffener(index same,1);
beta same(:,2) = Associated samepanels(:,3)./ ...

Associated samepanels(:,4).*sqrt(Syield plate./ ...
Associated samepanels(:,5));

beta diff = zeros(2*N diff,2);
beta diff(:,1) = area difftotal(:,1);
beta diff(1:2:end,2) = Associated diffpanels(1:2:end,3)./ ...

Associated diffpanels(1:2:end,4).* ...
sqrt(Syield plate./Associated diffpanels(1:2:end,5));

beta diff(2:2:end,2) = Associated diffpanels(2:2:end,3)./ ...
Associated diffpanels(2:2:end,4).* ...
sqrt(Syield plate./Associated diffpanels(2:2:end,5));

Cx same = zeros(N same,2);
Cx same(:,1) = panel stiffener(index same,1);
for i = 1:N same

if beta same(i,2) > 1
Cx same(i,2) = 2/beta same(i,2)−1/beta same(i,2)ˆ2;

else
Cx same(i,2) = 1;

end
end

Cx diff = zeros(2*N diff,2);
Cx diff(:,1) = area difftotal(:,1);
for i = 1:2*N diff

if beta diff(i,2) > 1
Cx diff(i,2) = 2/beta diff(i,2)−1/beta diff(i,2)ˆ2;

else
Cx diff(i,2) = 1;

end
end

phi same(:,1) = beta same(:,1);
phi same(:,2) = 1−beta same(:,2)/2;

phi diff(:,1) = beta diff(:,1);
phi diff(:,2) = 1−beta diff(:,2)/2;

Cy same = zeros(N same,2);
Cy same(:,1) = panel stiffener(index same,1);
for i = 1:N same

crit ultimate = Stiffener stress(index same(i),3)/ ...
min(Su y(panel stiffener(index same(i),2)), ...
Su y(panel stiffener(index same(i),3)));

Cy same(i,2) = 0.5*phi same(i,2)*crit ultimate+sqrt(1−(1−0.25* ...
phi same(i,2).ˆ2)*crit ultimateˆ2);

if Cy same(i,2) > 1
Cy same(i,2) = 1;

end
end

Cy diff = zeros(2*N diff,2);
Cy diff(:,1) = beta diff(:,1);
for i = 1:N diff

crit ultimate = Stiffener stress(index diff(i),3)/ ...
Su y(panel stiffener(index diff(i),2));

Cy diff(2*i−1,2) = 0.5*phi diff(2*i−1,2)* crit ultimate+ ...
sqrt(1−(1−0.25*phi diff(2*i−1,2).ˆ2)*crit ultimateˆ2);

if Cy diff(2*i−1,2) > 1
Cy diff(2*i−1,2) = 1;
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end

crit ultimate = Stiffener stress(index diff(i),3)/ ...
Su y(panel stiffener(index diff(i),3));

Cy diff(2*i,2) = 0.5*phi diff(2*i,2)* crit ultimate+sqrt(1−(1−0.25* ...
phi diff(2*i,2).ˆ2)*crit ultimateˆ2);

if Cy diff(2*i,2) > 1
Cy diff(2*i,2) = 1;

end
end

Cxy same(:,1) = panel stiffener(index same,1);
Cxy same(:,2) = sqrt(1−(Stiffener stress(index same,4)/Tauyield plate).ˆ2);

Cxy diff(:,1) = beta diff(:,1);
Cxy diff(1:2:end,2) = sqrt(1−(Stiffener stress(index diff,4)/ ...

Tauyield plate).ˆ2);
Cxy diff(2:2:end,2) = sqrt(1−(Stiffener stress(index diff,4)/ ...

Tauyield plate).ˆ2);

se same = zeros(N same,2);
se same(:,1) = panel stiffener(index same,1);
for i = 1:N same

if any(ismember(Critical fail,panel stiffener(index same(i),2))) | | ...
any(ismember(Critical fail,panel stiffener(index same(i),3)))

se same(i,2) = Associated samepanels(i,3).* ...
Cx same(i,2).*Cy same(i,2).*Cxy same(i,2);

else
se same(i,2) = Associated samepanels(i,3);

end
end

se diff = zeros(2*N diff,2);
se diff(:,1) = beta diff(:,1);
for i = 1:N diff

if any(ismember(Critical fail,panel stiffener(index diff(i),2))) | | ...
any(ismember(Critical fail,panel stiffener(index diff(i),3)))

se diff(2*i−1,2) = Associated diffpanels(2*i−1,3).* ...
Cx diff(2*i−1,2).*Cy diff(2*i−1,2).*Cxy diff(2*i−1,2);

se diff(2*i,2) = Associated diffpanels(2*i,3).* ...
Cx diff(2*i,2).*Cy diff(2*i,2).*Cxy diff(2*i,2);

else
se diff(2*i−1,2) = Associated diffpanels(2*i−1,3);
se diff(2*i,2) = Associated diffpanels(2*i,3);

end
end

area sameeffective(:,1) = panel stiffener(index same,1);
area sameeffective(:,2) = area samestiffener(:,2)+ ...

se same(:,2).*Associated samepanels(:,4);

area diffeffective(:,1) = beta diff(:,1);
area diffeffective(:,2) = area diffstiffener(:,2)+ ...

se diff(:,2).*Associated diffpanels(:,4);

Area same = [area samestiffener area sametotal(:,2) ...
area sameeffective(:,2)];

Area diff = [area diffstiffener area difftotal(:,2) ...
area diffeffective(:,2)];

%% Geometric properties
% St. Venant torsion constant
K = zeros(Nr stiffener,2);
K(:,1) = panel stiffener(:,1);

% Warping constant
Gamma = zeros(Nr stiffener,2);
Gamma(:,1) = panel stiffener(:,1);
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% Polar moment of inertia
I 0 = zeros(Nr stiffener,2);
I 0(:,1) = panel stiffener(:,1);

% Effective moment of inertia
Ie same = zeros(N same,2);
Ie same(:,1) = panel stiffener(index same,1);

Ie diff = zeros(2*N diff,2);
Ie diff(:,1) = beta diff(:,1);

% Effective radius of gyration
re same = zeros(N same,2);
re same(:,1) = panel stiffener(index same,1);

re diff = zeros(2*N diff,2);
re diff(:,1) = beta diff(:,1);

% Effective section modulus
SMw same = zeros(N same,2);
SMw same(:,1) = panel stiffener(index same,1);

SMw diff = zeros(2*N diff,2);
SMw diff(:,1) = beta diff(:,1);

% C 0 factor
C0 same = zeros(N same,2);
C0 same(:,1) = panel stiffener(index same,1);

C0 diff = zeros(2*N diff,2);
C0 diff(:,1) = beta diff(:,1);

% Properties which are the same for all stiffeners
K(:,2) = (bf.*tf.ˆ3+dw.*tw.ˆ3)/3;
u = zeros(Nr stiffener,1);
b1 = zeros(Nr stiffener,1);
for i = 1:Nr stiffener

if type(i) == 1
u(i) = 0;
b1(i) = bf(i)/2;

elseif type(i) == 2
u(i) = 1;
b1(i) = 0;

end
end
m = 1−u.*(0.7−0.1*dw./bf);
As = area stiffener(:,2);
y0 = (b1−0.5*bf).*bf.*tf./As;
z0 = (0.5*dw.ˆ2.*tw+(dw+0.5*tf).*bf.*tf)./As;
Iy = (dw.ˆ3.*tw+tf.ˆ3.*bf)/12+0.25*dw.ˆ3.*tw+bf.*tf.*(dw+0.5*tf).ˆ2− ...

As.*z0.ˆ2;
Iz = (tw.ˆ3.*dw+bf.ˆ3.*tf)/12+bf.*tf.*(b1−0.5*bf).ˆ2−As.*y0.ˆ2;
I 0(:,2) = Iy+m.*Iz+As.*(y0.ˆ2+z0.ˆ2);
Gamma(:,2) = m.*tf.*bf.ˆ3/12.*(1+3*u.ˆ2.*dw.*tw./As).*dw.ˆ2+ ...

dw.ˆ3.*tw.ˆ3/36;

% Stiffeners with associated panels with same properties
Dw = dw(index same);
Tw = tw(index same);
Bf = bf(index same);
Tf = tf(index same);
t = Associated samepanels(:,4);
Se = se same(:,2);
Ae = area sameeffective(:,2);
Aw = Csw*Associated samepanels(:,3).*t+area samestiffener(:,2);
zep = (0.5*(t+Dw).*Dw.*Tw+(0.5*t+Dw+0.5*Tf).*Bf.*Tf)./Ae;
zwp = (0.5*(t+Dw).*Dw.*Tw+(0.5*t+Dw+0.5*Tf).*Bf.*Tf)./Aw;
Ie same(:,2) = 1/12*(t.ˆ3.*Se+Dw.ˆ3.*Tw+Tf.ˆ3.*Bf)+ ...
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0.25*(t+Dw).ˆ2.*Dw.*Tw+Bf.*Tf.*(0.5*t+Dw+0.5*Tf).ˆ2−Ae.*zep.ˆ2;
re same(:,2) = sqrt(Ie same(:,2)./Ae);
Iw = 1/12*(t.ˆ3.*Se+Dw.ˆ3.*Tw+Tf.ˆ3.*Bf)+ ...

0.25*(t+Dw).ˆ2.*Dw.*Tw+Bf.*Tf.*(0.5*t+Dw+0.5*Tf).ˆ2−Aw.*zwp.ˆ2;
SMw same(:,2) = Iw./((0.5*t+Dw+Tf)−zwp);
C0 same(:,2) = Associated samepanels(:,5).* ...

Associated samepanels(:,4).ˆ3./(3*Associated samepanels(:,3));

clear Dw Tw Bf Tf t Se Ae Aw zep zwp
% Stiffeners with associated panels with different properties
n = size(index diff);
Dw(1:2:2*n(1)−1,1) = dw(index diff);
Dw(2:2:2*n(1),1) = dw(index diff);
Tw(1:2:2*n(1)−1,1) = tw(index diff);
Tw(2:2:2*n(1),1) = tw(index diff);
Bf(1:2:2*n(1)−1,1) = bf(index diff);
Bf(2:2:2*n(1),1) = bf(index diff);
Tf(1:2:2*n(1)−1,1) = tf(index diff);
Tf(2:2:2*n(1),1) = tf(index diff);
t = Associated diffpanels(:,4);
Se = se diff(:,2);
Ae = area diffeffective(:,2);
Aw = Csw*Associated diffpanels(:,3).*t+area diffstiffener(:,2);
zep = (0.5*(t+Dw).*Dw.*Tw+(0.5*t+Dw+0.5*Tf).*Bf.*Tf)./Ae;
zwp = (0.5*(t+Dw).*Dw.*Tw+(0.5*t+Dw+0.5*Tf).*Bf.*Tf)./Aw;
Ie diff(:,2) = 1/12*(t.ˆ3.*Se+Dw.ˆ3.*Tw+Tf.ˆ3.*Bf)+ ...

0.25*(t+Dw).ˆ2.*Dw.*Tw+Bf.*Tf.*(0.5*t+Dw+0.5*Tf).ˆ2−Ae.*zep.ˆ2;
re diff(:,2) = sqrt(Ie diff(:,2)./Ae);
Iw = 1/12*(t.ˆ3.*Se+Dw.ˆ3.*Tw+Tf.ˆ3.*Bf)+ ...

0.25*(t+Dw).ˆ2.*Dw.*Tw+Bf.*Tf.*(0.5*t+Dw+0.5*Tf).ˆ2−Aw.*zwp.ˆ2;
SMw diff(:,2) = Iw./((0.5*t+Dw+Tf)−zwp);
C0 diff(:,2) = Associated diffpanels(:,5).* ...

Associated diffpanels(:,4).ˆ3./(3*Associated diffpanels(:,3));

%% Bending stress, critical buckling stress and compressive stress
% Maximum bending moment
M same = zeros(N same,2);
M same(:,1) = panel stiffener(index same,1);
q same = Stiffener stress(index same,5);
M same(:,2) = q same.*Associated samepanels(:,3).* ...

Stiffener details(index same,2).ˆ2/12;

M diff = zeros(2*N diff,2);
M diff(:,1) = beta diff(:,1);
q diff = zeros(2*N diff,1);
q diff(1:2:end) = Stiffener stress(index diff,5);
q diff(2:2:end) = Stiffener stress(index diff,5);
stiff length = zeros(2*N diff,1);
stiff length(1:2:end) = Stiffener details(index diff,2);
stiff length(2:2:end) = Stiffener details(index diff,2);
M diff(:,2) = q diff.*Associated diffpanels(:,3).* ...

stiff length.ˆ2/12;

% Bending stress
Sbending same = zeros(N same,2);
Sbending same(:,1) = panel stiffener(index same,1);
Sbending same(:,2) = M same(:,2)./SMw same(:,2);

Sbending diff = zeros(2*N diff,2);
Sbending diff(:,1) = beta diff(:,1);
Sbending diff(:,2) = M diff(:,2)./SMw diff(:,2);

% Euler buckling stress
Seuler same = zeros(N same,2);
Seuler same(:,1) = panel stiffener(index same,1);
Seuler same(:,2) = piˆ2*Stiffener details(index same,7).* ...

re same(:,2).ˆ2./Stiffener details(index same,2).ˆ2;

Seuler diff = zeros(2*N diff,2);
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Seuler diff(:,1) = beta diff(:,1);
stiff youngs = zeros(2*N diff,1);
stiff youngs(1:2:end) = Stiffener details(index diff,7);
stiff youngs(2:2:end) = Stiffener details(index diff,7);
Seuler diff(:,2) = piˆ2*stiff youngs.* ...

re diff(:,2).ˆ2./stiff length.ˆ2;

% Specific minimum yield point of composite stiffener and effective plate
Syield same = zeros(N same,2);
Syield same(:,1) = panel stiffener(index same,1);
Syield same(:,2) = ((area sameeffective(:,2)−area samestiffener(:,2))* ...

Syield plate+area samestiffener(:,2)*Syield stiff)./ ...
area sameeffective(:,2);

Syield diff = zeros(2*N diff,2);
Syield diff(:,1) = beta diff(:,1);
Syield diff(:,2) = ((area diffeffective(:,2)−area diffstiffener(:,2))* ...

Syield plate+area diffstiffener(:,2)*Syield stiff)./ ...
area diffeffective(:,2);

% Critical buckling stress
Scritical same = zeros(N same,2);
Scritical same(:,1) = panel stiffener(index same,1);
for i = 1:N same

if Seuler same(i,2) <= Pr*Syield same(i,2)
Scritical same(i,2) = Seuler same(i,2);

else
Scritical same(i,2) = Syield same(i,2)*(1−Pr*(1−Pr)* ...

Syield same(i,2)/Seuler same(i,2));
end

end

Scritical diff = zeros(2*N diff,2);
Scritical diff(:,1) = beta diff(:,1);
for i = 1:N diff

if Seuler diff(2*i−1,2) <= Pr*Syield diff(2*i−1,2)
Scritical diff(2*i−1,2) = Seuler diff(2*i−1,2);

else
Scritical diff(2*i−1,2) = Syield diff(2*i−1,2)*(1−Pr*(1−Pr)* ...

Syield diff(2*i−1,2)/Seuler diff(2*i−1,2));
end

if Seuler diff(2*i,2) <= Pr*Syield diff(2*i,2)
Scritical diff(2*i,2) = Seuler diff(2*i,2);

else
Scritical diff(2*i,2) = Syield diff(2*i,2)*(1−Pr*(1−Pr)* ...

Syield diff(2*i,2)/Seuler diff(2*i,2));
end

end

% Critical buckling stress of associted plates coresponding to N−half waves
Shalfwaves same = zeros(N same,N waves+1);
Shalfwaves same(:,1) = panel stiffener(index same,1);
for i = 1:N waves

Shalfwaves same(:,i+1) = piˆ2*Associated samepanels(:,5).* ...
(i./Associated samepanels(:,7)+ ...
Associated samepanels(:,7)./i).ˆ2.* ...
(Associated samepanels(:,4)./Associated samepanels(:,3)).ˆ2./ ...
(12*(1−Associated samepanels(:,6).ˆ2));

end

Shalfwaves diff = zeros(2*N diff,N waves+1);
Shalfwaves diff(:,1) = beta diff(:,1);
for i = 1:N waves

Shalfwaves diff(:,i+1) = piˆ2*Associated diffpanels(:,5).* ...
(i./Associated diffpanels(:,7)+Associated diffpanels(:,7)./i).* ...
(Associated diffpanels(:,4)./Associated diffpanels(:,3)).ˆ2./ ...
(12*(1−Associated diffpanels(:,6).ˆ2));

end
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% Elastic flexuaral torsional buckling stress
Storsional same = zeros(N same,N waves+1);
Storsional same(:,1) = panel stiffener(index same,1);
K same = K(index same,2);
Gamma same = Gamma(index same,2);
I0 same = I 0(index same,2);
L same = Stiffener details(index same,2);
for i = 1:N waves

Storsional same(:,i+1) = (K same/2.6+(i*pi./L same).ˆ2.*Gamma same+ ...
C0 same(:,2)./Associated samepanels(:,5).* ...
(L same./(i*pi)).ˆ2)./(I0 same+C0 same(:,2)./ ...
Shalfwaves same(:,i+1).*(L same/(i*pi)).ˆ2) ...
.*Associated samepanels(:,5);

end

Storsional diff = zeros(2*N diff,N waves+1);
Storsional diff(:,1) = beta diff(:,1);
K diff = zeros(2*N diff,1);
K diff(1:2:end) = K(index diff,2);
K diff(2:2:end) = K(index diff,2);
Gamma diff = zeros(2*N diff,1);
Gamma diff(1:2:end) = Gamma(index diff,2);
Gamma diff(2:2:end) = Gamma(index diff,2);
I0 diff = zeros(2*N diff,1);
I0 diff(1:2:end) = I 0(index diff,2);
I0 diff(2:2:end) = I 0(index diff,2);
L diff = zeros(2*N diff,1);
L diff(1:2:end) = Stiffener details(index diff,2);
L diff(2:2:end) = Stiffener details(index diff,2);
for i = 1:N waves

Storsional diff(:,i+1) = (K diff/2.6+(i*pi./L diff).ˆ2.*Gamma diff+ ...
C0 diff(:,2)./Associated diffpanels(:,5).* ...
(L diff./(i*pi)).ˆ2)./(I0 diff+C0 diff(:,2)./ ...
Shalfwaves diff(:,i+1).*(L diff/(i*pi)).ˆ2) ...
.*Associated diffpanels(:,5);

end

% Compressive stress
Scompressive same(:,1) = panel stiffener(index same,1);
Scompressive same(:,2) = Stiffener stress(index same,2);

Scompressive diff = zeros(2*N diff,2);
Scompressive diff(:,1) = beta diff(:,1);
Scompressive diff(1:2:end,2) = Stiffener stress(index diff,2);
Scompressive diff(2:2:end,2) = Stiffener stress(index diff,2);

Prop same(:,1:4) = Area same;
Prop same(:,5:8) = [SMw same(:,2) K same I0 same Gamma same];

Prop diff(:,1:4) = Area diff;
Prop diff(:,5:8) = [SMw diff(:,2) K diff I0 diff Gamma diff];

%% Stiffened plate panels checks
% Beam−Column Buckling State limit
BeamColumn samecheck(:,1) = Stiffener stress(index same,1);
Sa = Scompressive same(:,2);
Sca = Scritical same(:,2);
Sb = Sbending same(:,2);
Se = Seuler same(:,2);
Ae = area sameeffective(:,2);
A = area sametotal(:,2);
BeamColumn samecheck(:,2) = Sa./(eta*Sca.*(Ae./A))+ ...

Cm*Sb./(eta*Syield same(:,2).*(1−Sa./(eta*Se)));
Resistance samestiffeners(:,1:5) = [Stiffener stress(index same,1) ...

Syield same(:,2) Se Sca Sb];

BeamColumn diffcheck(:,1) = beta diff(:,1);
Sa = Scompressive diff(:,2);
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Sca = Scritical diff(:,2);
Sb = Sbending diff(:,2);
Se = Seuler diff(:,2);
Ae = area diffeffective(:,2);
A = area difftotal(:,2);
BeamColumn diffcheck(:,2) = Sa./(eta*Sca.*(Ae./A))+ ...

Cm*Sb./(eta*Syield diff(:,2).*(1−Sa./(eta*Se)));
Resistance diffstiffeners(:,1:5) = [beta diff(:,1) Syield diff(:,2) ...

Se Sca Sb];

diff check = zeros(N diff,2);
diff check(:,1) = Stiffener stress(index diff,1);
for i = 1:N diff

diff check(i,2) = max(BeamColumn diffcheck(2*i−1,2), ...
BeamColumn diffcheck(2*i,2));

end

BeamColumn check = sortrows([BeamColumn samecheck;diff check]);

% Flexural−Torsional buckling state limit
Torsional samecheck(:,1) = Stiffener stress(index same,1);
Sa = Scompressive same(:,2);
Set = [Storsional same(:,1) min(Storsional same(:,2:end),[],2)];
Sct = zeros(N same,2);
Sct(:,1) = Stiffener stress(index same,1);
for i = 1:N same

if Set(i,2) <= Pr*Syield same(i,2)
Sct(i,2) = Set(i,2);

else
Sct(i,2) = Syield same(i,2)*(1−Pr*(1−Pr)* ...

Syield same(i,2)/Set(i,2));
end

end
Torsional samecheck(:,2) = Sa./(eta*Sct(:,2));
Resistance samestiffeners(:,6:7) = [Set(:,2) Sct(:,2)];

Torsional diffcheck(:,1) = beta diff(:,1);
Sa = Scompressive diff(:,2);
Set = [Storsional diff(:,1) min(Storsional diff(:,2:end),[],2)];
Sct = zeros(2*N diff,2);
Sct(1:2:end,1) = Stiffener stress(index diff,1);
Sct(2:2:end,1) = Stiffener stress(index diff,1);
for i = 1:N diff

if Set(2*i−1,2) <= Pr*Syield diff(2*i−1,2)
Sct(2*i−1,2) = Set(2*i−1,2);

else
Sct(2*i−1,2) = Syield diff(2*i−1,2)*(1−Pr*(1−Pr)* ...

Syield diff(2*i−1,2)/Set(2*i−1,2));
end

if Set(2*i,2) <= Pr*Syield diff(2*i,2)
Sct(2*i,2) = Set(2*i,2);

else
Sct(2*i,2) = Syield diff(2*i,2)*(1−Pr*(1−Pr)* ...

Syield diff(2*i,2)/Set(2−1,2));
end

end
Torsional diffcheck(:,2) = Sa./(eta*Sct(:,2));
Resistance diffstiffeners(:,6:7) = [Set(:,2) Sct(:,2)];

diff check = zeros(N diff,2);
diff check(:,1) = Stiffener stress(index diff,1);
for i = 1:N diff

diff check(i,2) = max(Torsional diffcheck(2*i−1,2), ...
Torsional diffcheck(2*i,2));

end

Torsional check = sortrows([Torsional samecheck;diff check]);
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Stiffener check = [Torsional check(:,1) BeamColumn check(:,2) ...
Torsional check(:,2)];

% Beam−Column Buckling failure
[R C] = find(BeamColumn check(:,2)>1);
BeamColumn fail = BeamColumn check(R,1);

% Flexural−Torsional Buckling failure
[R C] = find(Torsional check(:,2)>1);
Torsional fail = Torsional check(R,1);

D.8 Results.m

% Function name: Results.m
% Written by: Ottar Hillers, August 2011
% Purpose:
% −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%% Stiffeners which are not valid for unity checks
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('It is not possible to perform beam−column buckling check on the')
disp('following stiffeners because they are either modelled with plate')
disp('elements or the stiffeners are only attached to one panel, buckling')
disp('check will not be proceded on these stiffeners')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffener ')
disp(' Nr. Reason')
disp1 = sprintf('%8.0f Modelled with plate elements\n',invalid);
disp2 = sprintf('%8.0f Stiffener only attached to one panel\n',exclude2);
disp(disp1)
disp(disp2)

%% Stiffners which have associated panels with differnet properties
if isempty(different panel) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('The associated panels to the following stiffener have different')
disp('properties. Buckling check for these stiffeners will be based on')
disp('worst case scenario')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(' Stiffener Nr.')
fprintf(1,'%6.0f\n',different panel)

end

%% Unity checks which fail
% Buckling state limit check
if isempty(Critical fail) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('The following panels failed the Buckling state limit check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(Critical fail)

end

% Ultimate strength under combined in−plane stresses
if isempty(Ultimate fail) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('The following panels failed the Ultimate strength under')
disp('combined in−plane stresses check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(Ultimate fail)

end

% Uniformal lateral pressure
if isempty(Lateral fail) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
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disp('The following panels failed the Uniformal lateral pressure check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(Lateral fail)

end

% Beam−Column Buckling State limit
if isempty(BeamColumn fail) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('The following stiffeners failed the Beam−Column Buckling')
disp('State limit check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(BeamColumn fail)

end

% Flexural−Torsional Buckling State limit
if isempty(Torsional fail) == 0

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('The following stiffeners failed the Flexural−Torsional')
disp('Buckling State limit check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(Torsional fail)

end

%% All unity checks
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('ABS Plate buckling stress check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Critical Ultimate Lateral')
disp(' Nr. check check check')
fprintf(1,'%4.0f %10.2f %9.2f %8.2f\n',Panel check')

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('ABS Stiffened panels buckling stress check')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(' Beam/ Flexural/')
disp('Stiffener Column Torsional')
disp(' Nr. check check')
fprintf(1,'%6.0f %10.2f %10.2f\n',Stiffener check')

%% Geometry and material properties
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Geometry and material properties of panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Aspect Youngs Poissons Yield')
disp(' Nr. Length Width ratio Thickness modulus ratio Stress')
fprintf(1,'%4.0f %8.0f %6.0f %7.2f %10.1f %7.0f %9.1f %7.1f\n',Panel details')

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Geometry and material properties of stiffeners')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffener Web Web Flange Flange Youngs Poissons
Yield')
disp(' Nr. Length height thickness width thickness modulus ratio Stress')
fprintf(1,'%6.0f %10.0f %7.0f %10.1f %7.0f %10.1f %7.0f %9.1f % 7.1f\n',Stiffener details')

%% Modelled and applied stresses
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Modelled stress distribution')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Maximum Minimum Ratio Maximum Minimum Ratio Shear Lateral')
disp(' Nr. x−stress x−stress x−stress y−stress y−stress y−stress stress pressure')
fprintf(1,'%4.0f %10.1f %9.1f %9.2f %9.1f %9.1f %9.2f %7.1f %8.4f\n',modelled stress')

disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Applied stresses on panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Maximum Maximum Shear Lateral Von Mises Bending Bending')
disp(' Nr. x−stress y−stress stress load stress x−stress y−stress')
fprintf(1,'%4.0f %10.1f %9.1f %7.1f %8.1f %10.1f %8.2f %9.2f\n',Applied stresses')
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disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stress on stiffeners')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffener Modelled Modelled Modelled Modelled')
disp(' Nr. x−Stress y−stress shear pressure')
fprintf(1,'%6.0f %12.1f %9.1f %9.1f %9.3f\n',Stiffener stress')

%% Resistance of panels
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Resistance of panels panels 1/2')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Euler Slenderness Coefficient of')
disp(' Nr. stress ratio interaction')
fprintf(1,'%4.0f %8.1f %12.2f %15.2f\n',Resistance panel1')

Resistance panel2 = [panel info(:,1) Sc x Su x Sc y Su y Sc tau Su tau];
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Resistance of panels panels 2/2')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Panel Critical Ultimate Critical Ultimate Critical Ultimate')
disp(' Nr. x−stress x−stress y−stress y−stress shear stress shear stress')
fprintf(1,'%4.0f %10.1f %9.1f %9.1f %9.1f %13.2f %13.2f\n',Resistance panel2')

%% Resistance of stiffeners
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Resistance of stiffeners with identical associated panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(' Effective Euler Critical Elastic Critical')
disp('Stiffener yield Buckling Buckling Bending torsional torsional')
disp(' Nr. stress stress stress stress stress stress')
fprintf(1,'%6.0f %13.1f %9.1f %8.1f %7.1f %9.1f %10.1f\n',Resistance samestiffeners')

if isempty(Resistance diffstiffeners) == 0
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Resistance of stiffeners with different associated panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp(' Effective Euler Critical Elastic Critical')
disp('Stiffener yield Buckling Buckling Bending torsional torsional')
disp(' Nr. stress stress stress stress stress stress')
fprintf(1,'%6.0f %13.1f %9.1f %8.1f %7.1f %9.1f %10.1f\n',Resistance diffstiffeners')

end

%% Properties of stiffeners
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffeners with identical associated panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffener Stiffener Total Effective Section St. Venant Polar moment Warping')
disp(' Nr. area area area modulus constant of inertia constant')
fprintf(1,'%6.0f %12.0f %6.0f %10.0f %8.0f %11.0f %13.0f %4.2e\n',Prop same')

if isempty(Area diff) == 0
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffeners with different associated panels')
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
disp('Stiffener Stiffener Total Effective Section St. Venant Polar moment

Warping')
disp(' Nr. area area area modulus constant of inertia

constant')
fprintf(1,'%6.0f %12.0f %6.0f %10.0f %8.0f %11.0f %13.0f %4.2e\n',Prop diff')

end

161


