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Abstract 
 

This master thesis investigates the influence of flanges on the shear capacity of reinforced non-rectangular 

members without shear reinforcement. The study adapts the evaluation procedure developed by Yang (2014) 

for rectangular cross-sections to analyze plates with holes, I-beams and T-beams.  

 

Although extensive research has been carried out on reinforced concrete with rectangular cross-sections and 

without shear reinforcement, little is known about the shear capacity of non-rectangular cross-sections 

without shear reinforcement. A number of studies have shown that the capacity increases with a T-beam 

[27, 34, 35, 38], for example, but the positive contribution of the flanges is nevertheless not taken into 

account in the standards. This conservatism may in some cases lead to unnecessary renovation and possibly 

replacement of structures. This research will focus mainly on the missing link of the non-rectangular cross-

section using the model of Yang as a starting point. The aim is to find an evaluation procedure in order to 

determine the effective web width for non-rectangular cross-sections, which can possibly be included in the 

Eurocode 2. 

 

First of all, Yang’s evaluation procedure for rectangular cross-sections is adapted for plates with holes, I-

beams and T-beams. The results obtained with this modified evaluation procedure are analyzed and then 

compared with the results of the calculated shear capacity of the web only using Yang’s model. In this way, 

insight is created to determine an effective web width. In addition, the results are also compared with test 

results, so that the accuracy of the model can be determined.  

 

The study emphasizes the significance of the location of the neutral axis in determining the shear resistance, 

with members with thick flanges often having the neutral axis inside the flange and thin flanges in the web. 

However, this depends on the height of the compression zone zc, which in turn depends on the reinforcement 

ratio ρs  

The findings show that members with thinner flanges have approximately 60% less capacity compared to 

thicker flanges, which is a consequence of the location of the neutral axis, namely in the web. As a result, 

the effective depth and crack height decreases and the width of the member over the crack height is less 

than if the major crack would be partly in the flange. The width of the flange plays a crucial role when the 

neutral axis is in the flange, which has a significant impact on the shear capacity. This is because the upper 

part of the crack contains the highest shear stresses due to aggregate interlock, which therefore results in 

higher capacity due to the width of the flange instead of the smaller web width.  

In addition, it also appears that the web width has also an important influence on the shear capacity. With a 

thinner web, the contribution of the aggregate interlock decreases, so also the total shear resistance with 

approximately 22%. Furthermore, despite the fact that the contribution of the compression zone increases 

due to larger area of the flange, aggregate interlock plays an important role and contributes most to carry 

the shear force. The contribution of aggregate interlock varies between 45%-85% 

 

In the Eurocode 2, only the smallest web width is taken into account to calculate the shear resistance of non-

rectangular cross-section. To reduce the conservative results because of this assumption in Eurocode 2, a 

scaling factor is proposed based on the comparison of the results between the modified evaluation procedure 

for non-rectangular cross-sections and the web-only scenario.  

On this basis the study determines the effective web width for plates with holes, which could be determined 

by bweff = 1,75bw. For I-beams with ρs < 1%, the effective web width is 1,25bw if hf/h ≤ 0,25, otherwise 

4,2hf/h + 0,2. In case of a reinforcement ratio of 1% ≤ ρs ≤ 2% the effective web width of I-beams becomes 
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1,35bw if hf/h ≤ 0,25, otherwise 3,5hf/h + 0,5. For T-beams the effective web width could be determined by 

1,15bw. The general limitations of these models are: 

 Only applicable for members within the ranges 0,20 ≤ bw/bf ≤ 0,60 for plates with holes; 0,10 ≤ 

bw/bf ≤ 0,50 for I/T-beams and 0,15 ≤ hf/h ≤ 0,40 for all members;  

 Only applicable for member with reinforcement ratio between 0,4% and 2%; 

 Only valid for slender members where a/d ≥ 3. 

 

Comparisons with test results demonstrate the accuracy of the evaluation procedure for non-rectangular 

cross-sections, as well as the reasonably accurate Eurocode 2 predictions using the simplified effective web 

width. The average ratio of calculated shear capacity (Vcal) to measured ultimate shear capacity during tests 

(Vu) was 0,94, with a Coefficient of Variation of 16%. In comparison, using the simplified effective web 

width bweff approach with EC2, the results also showed reasonable accuracy, with an average ratio of 0,79 

and a CoV of 21%. 
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Used symbols 
Latin upper case 

Ac   Total cross-sectional area of concrete 

Acc  Cross-sectional area of the concrete compression zone 

As   Total cross-sectional area of reinforcement bars 

Ax, Ay  Projected contact areas 

CRd   Factor in EC2 to determine the shear strength of members without shear reinforcement 

D  Diameter of the holes in reinforced concrete plate 

Ec  Elastic modulus of concrete 

Es  Elastic modulus of steel 

I  Moment of inertia of a cross-section 

M  Bending moment 

Mcr  Cracking moment 

N  Axial force 

Nc  Compressive axial force in compression zone 

Nai  Normal force component of aggregate interlock along the crack 

Ts  Tension force in the reinforcement 

V  Shear force 

Vai   Shear component of the aggregate interlock along the crack 

Vc   Shear component of the uncracked compressive area 

Vcr  Shear force when the critical inclined crack occurs 

Vcr,m  Shear force which opens the major crack located at x0 from the support 

Vd   Shear force transferred by dowel action 

Vu  Maximum shear force in the member before failure 

 

Latin lower case 

a  Shear span 

aeff  Effective shear span 

a0  Uncracked span from the support 

b   Width of a rectangular member 

bf  Total width of the member, also the flange width 

bef, bn  Netto width at reinforcement level 

bgem  Average web width according to RBK 

bw  Smallest web width in the cross-section 

bweff  Effective web width 

bwi  Width of the web of plate with holes at specific height i 

c  Concrete cover 

d  Effective height of the member 

ep  Tendon eccentricity 

fc, fck  Concrete compressive strength 

fcm  Mean concrete compressive strength 

fct  Concrete tensile strength 

fctm  Concrete mean tensile strength 

h  Total height of the member 

hf  Flange thickness 

k  Size effect according to EC2 

kb  Reduction for tensile strength of concrete 
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kc  Inclination of the stress line 

kc1  Constant factor of 0,5 

lcr  Mean crack spacing 

lcr;m  Spacing of the major cracks 

lt  Minimum crack spacing 

n  Number of reinforcement bars 

ne   Ratio between Es/Ec 

r  Radius of the holes in reinforced concrete plate 

rF  Distance between the tip of the crack and the axis where the load is applied 

s  Distance of a location on the crack profile measured from the root of the crack 

scr  Stabilized crack height/ Height of the critical crack 

sf  Scale factor 

w, wb  Crack width at reinforcement level 

wmax  Maximum crack width 

wt  Crack width at the tip of a major crack 

w0  Crack width before slip 

x  Longitudinal direction of the member 

xcr  Distance between the root of the crack and the tip of the crack in longitudinal direction 

xA, x0  Distance from the root of the crack to the centre of the support 

y  Vertical direction of the member/ deflection of the member 

z  Internal level arm 

zc, hF  Height of the uncracked compressive area of the concrete member 

 

Greek upper case 

∆  Vertical crack opening, also shear displacement  

∆cr  Critical shear displacement 

Ψs  Ratio between the mean crack spacing and the minimum crack spacing at reinforcement level 

∅  Diameter of reinforcement bars 

 

Greek lower case 

α  Grade of fullness 

ε  Normal strain 

µ  Friction coefficient between aggregate and matrix material 

ρeff  Effective reinforcement ratio 

ρ, ρs  Reinforcement ratio   

σ  Normal stress 

σm  Normal stress due to bending moment 

σpu  Matrix yielding strength 

τ  Shear stress 

τbm  Bond stress between concrete and reinforcement 

τm  Maximum shear stress in the cross-section 
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Abbreviations 

AI  Aggregate interlock 

DA  Dowel action 

CZ  Compression zone 

EC  Eurocode   

CoV  Coefficient of  Variation  

STA  Shear transfer action 

mvd  Shear slenderness ratio calculated by M/Vd 
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1. Introduction 
This chapter describes the problem statement and the scope of the research. The relevance of the research 

and the structure of the report are also described in this chapter. 

1.1 Problem statement 

In recent decades, much research has been conducted on the shear design of reinforced concrete members 

without shear reinforcement [1, 4, 5, 18]. These studies have shown the different shear-transfer actions 

(STA's) that contribute to the shear strength of these members. Shear is recognized as a potential failure 

mode that could govern the design at ultimate limit state (ULS) and it is particularly critical due to its limited 

capacity for deformation and brittleness [19]. Most of the studies on this topic have mainly focused on 

rectangular cross-sections. 

 

While several studies have shown the benefits of a compression flange in improving the shear capacity of 

for example T-beams [27, 34, 35, 38], most current codes do not take into account the beneficial effect of 

the flanges on the shear strength. In many codes of practice, the shear design of members without shear 

reinforcement mainly relies on empirical equations, for example Eurocode 2 and ACI 318. 

 

Despite the lack of a generally-accepted mechanical model and approach, the understanding of the shear-

transfer actions in reinforced concrete has led to the development of several mechanical models for shear 

design [4, 7, 8, 43, 44]. These models have reached a level of reliability and are starting to be included into 

codes. It is noteworthy that while the various mechanical models predict comparable shear strengths, they 

are not in agreement on the governing shear-transfer action carrying the load. This disagreement could be 

explained by the fact that the mechanical models are often based on the assumption and interpretation of a 

crack pattern after failure or the measured kinematics prior to failure. 

 

1.2 Scope of the research 

The main focus of this master thesis is to investigate the shear capacity of non-rectangular reinforced 

concrete members without shear reinforcement. Yang's mechanical model [7] will be used as a basis for this 

research and will be further extended for non-rectangular cross-sections. The aim of this research is to 

determine the effective width of the cross-section, which could be included in the Eurocode 2 to calculate 

more accurate shear capacities for non-rectangular cross-sections. The cross-sections that will be studied in 

this research are: I-beams, T-beams and plates with holes. 

 

  
 

Figure 1: From left to right: I-beam, T-beam and Typical section of plate with holes 
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The following conditions apply to this study: Yang's method will be extended for a simply supported beam 

loaded with a point load, without taken into account the effects of the location of the point load or the 

influence of a distributed load. Research has shown that loads located close to support are transferred 

directly to the support via another mechanism [8].  

The study is limited for concrete elements made of normal concrete mixtures. The effects of high strength 

concrete and lightweight aggregate concrete on the shear capacity will not be further investigated. The 

influence of size effect has also not been extensively investigated. 

 

After completion of this research, the results and insights obtained will make it possible to adapt the 

formulas for determining the shear capacity of members without shear reinforcement in the next-generation 

Eurocode 2. However, this is not the scope of this research. 

 

1.3 Relevance of the research 

Non-rectangular cross-sections such as I and T-beams are used as structural elements in most existing 

bridges. Another example of structural elements with a non-rectangular cross-section are the plates with 

holes. Reinforced plates with holes were frequently used in the 1960s and nowadays are still maintained by 

Rijkswaterstaat. In total there are 731 objects containing plate elements as road deck, however there are an 

estimation of 15 objects that have a road deck with reinforced plate with holes. Based on the capacity checks 

according to Eurocode 2, these plates do not have sufficient shear capacity. However, the code only assumes 

the smallest (web) width of the cross-section, which is a conservative approach based on several researches 

[27, 34, 35, 38]. This may result in a structure being replaced or renovated, while it may be unnecessary.  

 

1.4 Content 

The thesis is structured as follows: 

 

Chapter 2: Literature review 

 Overview of shear failure in reinforced concrete structures 

 Discussion of shear transfer mechanisms and failure mechanism 

 Review of relevant studies and research on shear behaviour of rectangular and non-rectangular cross-

sections without shear reinforcement 

 Summary of key finding from the literature review 

 

Chapter 3: Analysis of failure mechanism as described by Yang (2014) 

 Detailed analysis of the failure mechanism in reinforced concrete members without shear 

reinforcement based on the work of Yang: “Shear Behavior of Reinforced Concrete Members 

without Shear Reinforcement, A New Look at an Old Problem”. 

 Examination of the assumptions used by Yang 

 

Chapter 4: Adaption of Yang’s evaluation procedure for non-rectangular cross-sections 

 Development and description of the modified evaluation procedure for non-rectangular cross-

sections based on Yang’s model for rectangular cross-sections 

 Explanation of the methodology and adjustments made to account for the specific geometry and 

characteristics for non-rectangular cross-sections 

 Presentation of the equations and evaluation procedure 
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Chapter 5: Comparison and discussion of the results 

 Comparison of the results obtained with the modified evaluation procedure for non-rectangular 

cross-sections with the shear resistance of the web only 

 Analysis of the effects of the cross-sectional parameters, neutral axis location and other parameters 

 Identification of any discrepancies or limitations observed in the results 

 Comparison of the results with relevant test data 

 

Chapter 6: Conclusion and recommendations 

 Summary of the main findings 

 Recommendations for further research and potential areas of improvement in the evaluation 

procedure 
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2. Shear failure in literature 

2.1 Introduction 

This chapter contains a literature review of the shear transfer and failure mechanisms. 

2.2 Shear transfer mechanism 

Several researchers investigated the shear transfer actions after the concrete is cracked. An important study 

on this was carried out by Kani (1964, 1966), in which he investigated the shear transfer by taking into 

account the strength of the concrete teeth between two flexural cracks.  

Muttoni et al. investigated the shear transfer actions which are possible by this concrete teeth in [A. Muttoni 

& F. Ruiz 2008]. The influence of the cracking pattern on the shear transfer actions was first investigated 

by [Fenwick and Paulay 1968]. Others researched the amount of shear that could be transferred by a specific 

transfer mechanisms. In [S. Campana, F. Ruiz, A. Anastasi & A. Muttoni 2013] Campana et al. investigated 

the activation of various shear transfer mechanisms for one-way RC members. In his research, Yang has 

paid attention to the influence of dowelling action on the failure mechanism [Yang, 2014]. Cavagnis (2017) 

conducted an extensive research on the shear-carrying and failure mechanism of RC members without shear 

reinforcement. 

 

Although there is no general agreement on the shear failure mechanism of reinforced concrete without shear 

reinforcement, there is agreement in the literature on the shear transfer actions. The shear force can basically 

be transferred by the following mechanisms [F. Ruiz, A Muttoni & J. Sagesta 2015]: 

 

 Cantilever action 

 Aggregate interlock 

 Dowel action 

 Residual tensile strength of concrete 

 

The activation of a specific transfer action depends on the shape and kinematics of the critical crack. The 

development of a critical shear crack does not necessarily mean the failure of the member. Depending on 

the crack path and geometry of the crack, another shear-carrying mechanism, the arching action, could be 

developed.  

This chapter will take a closer look at the shear transfer mechanisms mentioned above. 

 

2.2.1 Cantilever action 

The cantilever action is the ability to transfer the shear force by means of the uncracked concrete in between 

two flexural cracks, which acts like a cantilever beam or a teeth structure. This structural behaviour was 

observed by Kani (1964). The shear force is transferred by a compression chord and tension tie within the 

tooth, strut and tie model as described by Yang (2014).  

 

The shear carrying capacity of this action is reduced or even cancelled when the flexural crack progress 

with a quasi-horizontal crack, which makes the capacity of the tension tie impossible [A. Muttoni & F. Ruiz 

2008] & [F. Cavagnis, F. Ruiz & A. Muttoni 2018]. This phenomenon applies also to the aggregate interlock 

and dowel action. According to Cavagnis et al. these shear transfer actions induce tensile stresses at the tip 

of the crack and the reinforcement level. When the tensile stress reaches the tensile strength of the concrete, 
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the existing flexural crack is extended by a quasi-horizontal crack at the crack tip or a new crack is created 

at the reinforcement level [A. Muttoni & F. Ruiz 2008]. 

 

In uncracked concrete the stress distribution follows the theory of elasticity. According to Yang (2014) the 

simplified shear stress distribution of Mörsch provides sufficient accuracy in order to calculate the shear 

force in the compression zone. The shear force in the compression zone could be determined by assuming 

the contribution of the entire uncracked area. Therefore, the effective width of the concrete member has an 

important influence on the shear force in the compression zone. 

2.2.2 Aggregate interlock 

In normal concrete the strength of the hardened cement paste (matrix) is lower than the strength of the 

aggregate particles. Therefore, crack occurs in the cement paste along the particles at the bond zone, the 

weakest link. This is the two-phase system described by Walraven in [Walraven 1980, 1981], wherein the 

matrix is phase I and the collection of aggregate particles phase II, see the crack structure below. 

 

 
Figure 2: Crack structure 

 

A well-known and extensive research on aggregate interlock has been conducted by Walraven (1980 & 

1981). After defining a mechanical model, he verified the validity of it by several experiments. In his study, 

Walraven concluded that normal stress, shear stress, crack width and shear displacement are all involved in 

describing the mechanism of aggregate interlock properly. 

He assumed spherical aggregate particles with different diameters and distribution. The crack occurs along 

the particles with crack width w. After this moment the shear displacement takes place. So, he assumed that 

first the crack opens and then slides. During shear displacement the crack faces make contact, which 

develops contact areas and interlocking due to the plastic behaviour of the matrix. The aggregate particle at 

one of the crack face interlocks with the other face and resist the shear displacement. At this contact area 

normal and tangential stresses are generated due to slip and crushing of the particles, see figure below for 

the schematic model. 

 

 
Figure 3: Schematic model Walraven, (a) Contact area, (b) Stress conditions 
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The (projected) contact areas Ax and Ay depend on the diameter of the aggregates, crack width, shear 

displacement and the ratio of aggregate volume and concrete volume. This ratio could be considered as the 

roughness parameter according to [T. Huber, P. Huber & J. Kolleger 2019]. The mechanical model derived 

is compared with a number of experiments by fitting the theoretical results to the experimental results. 

According to this, the best result is obtained for a friction coefficient of μ = 0,40 (Walraven 1981). For the 

matrix yielding strength σpu he found: σpu = 6,39 x f ’cc
0,56  MPa. 

 

However, the assumption of that the crack opens (w) prior to sliding (Δ) is doubtful. Taylor (1970) was the 

first who observed that the opening and sliding of the crack happens simultaneously. Hamadi and Regan 

also noted in [Y. D. Hamadi & P.E. Regan, 1980] that the crack first opens and then shears with a continuous 

increase of crack width. Ulaga (2003) and Guidotti (2010) both applied the model of Walraven with different 

assumptions. Ulaga assumed that the crack opening and sliding occurs simultaneously at a constant angle 

and recognized a phase of decreasing contact followed by separation. Guidotti assumed that a fraction of 

the crack width (w0) develops before the slip, followed by an increase of both at an angle. Comparison of 

these three methods gives that the method of Walraven leads to an upper bound solution of the aggregate 

interlock stresses, the kinematics of Guidotti develops intermediate stress values depending on the initial 

crack width w0 and the method of Ulaga leads to a lower bound solution [Cavagnis 2017]. 

 

Considering the researches done recently, Huber et al. conducted 18 push-off tests and ten shear beam tests 

in order to determine the influence of aggregate interlock on the shear capacity of RF beams without shear 

reinforcement in [T. Huber, P. Huber & J. Kolleger 2019]. They investigated the influence of different 

concrete mixtures on the crack surface roughness. This study confirmed the observations of Cavagnis et al. 

(2017) that aggregate interlock mostly depends on the crack pattern [F. Cavagnis, M. Fernadez Ruiz, A. 

Muttoni 2017]. The influence of crack surface roughness was firstly observed by Fenwick et al. [R. Fenwick 

& T. Paulay 1968]. They showed with direct tests that the influence of aggregate interlock increases with 

concrete strength and a reduction in crack width. This is in line with the research of Walraven (1980), 

wherein he observed that the projected contact areas Ax and Ay increase with decreasing crack width w and 

increasing value of Δ. Also, according to the study of Huber et al. it can be assumed that the roughness of 

the crack surface is influenced by the concrete strength. Hamadi and Regan (1980) noticed that the stiffness 

of the interlock action mainly depends on the crack width and aggregate type, while in the same conditions 

the ultimate shear resistance depends on aggregate type and normal stress. 

 

Contrary to the assumption of Walraven that the crack will propagate along the aggregate particle, it is 

observed that cracks occur through the aggregate particle in case of high-strength concrete or lightweight 

aggregates. A crack through the aggregate particle leads to a smooth crack surface, reducing the shear 

transfer by aggregate interlock. This is shown by Hamadi and Regan in [Y. D. Hamadi & P.E. Regan, 1980]. 

They used push-off test on concretes made with lightweight (expanded clay) and natural gravel aggregates 

and T-beam tests. The tests demonstrate that the shear transfer and stiffness is higher with natural gravel 

aggregates. 

 

Cavagnis et al. observed by measurements on the crack relative displacements that aggregate interlock 

stresses were mainly developing along the steeper part of the crack, because large crack sliding occurred [F. 

Cavagnis, M. Fernandez Ruiz, A. Muttoni 2015]. According to Yang (2014), the large crack sliding occurs 

when a quasi-horizontal branch starts to develop. In some cases, concentration of the aggregate interlock 

stresses led to the propagation of new crack, which eventually leads to member failure. 
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As described above, the aggregate interlock depends on the aggregate type, crack width, shear displacement, 

concrete strength and the ratio of aggregate volume-to-concrete volume, integrated along the crack. 

Therefore, the effective width of the concrete members has no direct influence on the aggregate interlock 

mechanism. However, the shear transfer capacity of this mechanism is determined by integration of the 

aggregate interlock stresses around the crack curve, including the width of the member [F. Cavagnis, M. 

Fernandez Ruiz, A. Muttoni 2018]. 

 

2.2.3 Dowel action 

The dowelling action is the resistance of the reinforcement bars to shear displacement (reinforcement bars 

crossing a crack and loaded perpendicular to their axis). Several studies are conducted to the mechanism 

and contribution of the dowel action. According to Krefeld and Thurston (1966) failure happens when dowel 

cracking at reinforcement level occurs. This phenomenon is supported by Yang’s findings in [Y. Yang, 

2014].  

 

Chana also noticed in his tests that beam failure is predated by dowel cracking at 95% of the ultimate load. 

According to his research, the crack width opens up with increasing shear force, resulting into increase in 

the dowel force and tension in the surrounding concrete. This causes splitting cracks in the concrete along 

the reinforcement bar resulting in loss of bond. At the peak load the crack width is so small that it is unlikely 

that aggregate interlock mechanism failed, while the dowel crack is in the same of order measured by other 

researches at the peak load. This indicates that dowel cracking triggered the member failure and that ones 

the cracking occurs, the restraint between the two beam parts is lost, resulting in an abrupt failure. Therefore, 

the shear failure mechanism is closely associated with dowel action. 

 

According to Jelic et al. kinking of the reinforcement bars is the only mechanism of dowel action in case of 

reinforcement with negligible flexural stiffness [I. Jelic, M.N. Pavlovic, M.D. Kotsovos 1999]. In order to 

provide shear resistance with kinking, the crack surfaces should undergo large shear displacements. They 

performed several tests on RC beams and compared the results with FEM and observed that the obtained 

FEM results correspond to the test results, with an underestimation of 5,6% of the failure load. Bearing in 

mind that the FEM does not take dowel action into account, contrary to the above findings, they concluded 

that dowel action has a negligible contribution to the shear failure mechanism. Ruiz et al. noticed in [M. 

Ruiz, A. Muttoni & J. Sagaseta, 2015] that the dowelling action in slender beams is limited, yet not 

negligible. Jelic et al. also observed that ‘’as long as the reinforcement cross-sectional area is constant, the 

ultimate shear capacities of the beams tested are practically identical, irrespective of the bar sizes and steel 

yield strength’’. This is in contrast to the findings of Ruiz et al., who conclude that the dowelling action is 

affected by strain and size effects depending on mainly the ratio between bar diameter and the effective 

depth. They noticed that for members without shear reinforcement the dowelling capacity decreases with 

increasing strains in the reinforcement bars. 

 

According to Cavagnis (2017), the following are the governing parameters of the dowel action: tensile 

strength of concrete, bar diameter, concrete cover, the net width and the strains in the reinforcement bars. 

Ruiz et al. noted in [M. Ruiz, A. Muttoni & J. Sagaseta, 2015] that all shear transfer actions in fact depend 

on the same parameters in mechanical models: strength of concrete, effective depth and width of the 

member, strains in the reinforcement bars and maximum aggregate size. 

 

Cavagnis et al. (2015) also observed that the influence of the dowelling action is notable for short-span 

beams with limited distance between the critical shear crack and the edge of the support, which is supported 
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by the research of Campana et al (2013). Furthermore, cracks related to dowel action lead to increase of the 

critical shear crack opening, weakening other shear transfer action such aggregate interlock. This behavior 

was also observed by Yang (2014). 

Another observation of Cavagnis et al. (2017) is that if the reinforcement yields partially, the dowelling 

action is reduced so much, that the contribution of it to the shear strength is negligible. 

 

According to Ruiz et al. (2010) [F. Ruiz, S. Plumey, A. Muttoni] the capacity of the shear transfer capacity 

of dowel action depends on the concrete effective area around the reinforcement bars. Also the model of 

Baumann and Rüsch (1970) depends on the effective width of the concrete member at reinforcement level. 

Based on this, we can assume that the effective width around the reinforcement bars has a significant 

influence on the shear transfer capacity of the dowel action. 

 

2.2.4 Residual tensile strength of concrete 

After concrete has cracked, it still has some capacity to transfer shear forces through the crack, because of 

the softening residual strength of concrete. Hillerborg (1976) presented a method (fictitious crack model) 

using fracture mechanics in FEM where stressed are assumed to be transferred through a crack as long as it 

is narrowly opened. He assumed that the crack starts to propagate when the tensile strength is reached at the 

crack tip. The stress is not assumed to go down to 0 directly, but to decrease with growing crack width w. 

In case where w < wmax, the crack is able to transfer stresses. Therefore, energy is absorbed in the crack. For 

ordinary concrete wmax seems to be in the order of 0,01 – 0,02mm. He showed that the combination of 

fracture mechanics FEA gives reliable results regarding crack formation, propagation and failure.  

According to Yang (2014) tensile stresses could be transferred through cracks when the crack width is 

smaller than 0,1mm, while according to Cavagnis (2017) this limit is 0,2mm.  

 

Hordijk (1986, 1991) developed a model for the nonlinear material behavior of concrete in the basic 

principle of the fictitious crack model. This one of the most known and accepted stress-crack width 

relationship, as well as the one proposed by Reinhardt (1984). 

 

According to Cavagnis et al. (2017) the quasi-horizontal part of the crack is characterized by pure mode I 

opening response and therefore governing by the residual tensile strength of concrete. Campana et al. (2013) 

observed that the contribution of this shear transfer mechanism is limited due to the crack widths. 

  

The shear transfer capacity of residual tensile strength depends not directly on the member width. However, 

integration of the stresses along the crack makes that the shear transfer capacity of this mechanism becomes 

dependent on the member effective width. 

 

2.2.5 Arching action 

Arching action is a plasticity-based shear-carrying mechanism observed by Mörsch (1908), assuming a 

constant force in the reinforcement and varying depth of the compression zone, which leads to an inclined 

compression strut. This action is governed by short-span beams where the flexural cracks remain below the 

compression strut [J. Sagaseta & R.L. Vollum, 2011]. However, Cavagnis (2017) noticed that this shear 

transfer mechanism could also be governing for slender beams, depending on the height and location of the 

critical shear crack. 
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As described for the cantilever action, the shear force in the compression zone could be determined by 

assuming the contribution of the entire uncracked area. Therefore, the effective width of the concrete 

member has an important influence on the shear force in the compression zone. 

 

2.3 Shear failure mechanism 

2.3.1 Role of cracking pattern on the shear-carrying mechanism 

Based on the test results available in the literature, the shear-carrying mechanism will be discussed and 

described.  

Cavagnis (2017) describes four possible regimes governing the shear failure based on his literature review 

(Kani 1979, Leonhardt & Walther 1962), which is also reflected in the research of Ruiz et al. using Kaní’s 

valley [M. Ruiz, A. Muttoni & J. Sagaseta, 2015]: 

 For very short shear spans, the flexural cracks remain below the inclined compression strut and 

therefore the shear strength depend on the yielding of the longitudinal reinforcement (arching 

action). This corresponds to the plastic strength of the beam. 

 For beams with a rather short span, the arching action is still governing. In this case, the flexural 

cracks propagate through the compression strut in a stable manner. Assuming the plastic strength 

may overestimate the shear capacity of the beam, because the strength of the inclined compression 

strut is reduced due to the flexural cracks through it. The compression strut develops in an elbow 

shape from the point load to the support. The failure occurs due to crushing of the concrete, because 

of the reduced compressive strength caused by the crack propagation and transverse tensile stresses. 

However, it should be noticed that the position of the critical crack is decisive for the shear strength 

and a large spread in the experimental results has been reported for these type of members. 

 In case of larger shear spans, the arching action start to act in combination with the beam shear-

transfer actions (aggregate interlock, dowel action, residual tensile strength and cantilever action), 

which becomes dominant thereafter. For these members, the critical shear crack propagates through 

the compression strut, leading to a brittle failure. 

 In case of very slender members, the yielding of the flexural reinforcement is again governing the 

shear strength. The beam shear-transfer actions are able to carry sufficient loads, leading to flexural 

failure. 

 

2.3.1.1 Influence of shear slenderness 

Several studies are conducted to the influence of the location of the critical shear crack. Cavagnis et al. 

observed that the development of the critical crack and the influence of it on the shear strength strongly 

depends on the shear slenderness ratio in [F. Cavagnis, M. Fernandez, A. Muttoni, 2017], as already noted 

by Kani (1964). They also observed that for members with values of a/d > 2,5 the critical cracks propagated 

through the theoretical compression strut, consequently decreasing the shear strength, which is in line with 

the observation in literature described above. Another observation in this study was that for slender beams 

the shear resistance increases when uniformly distributed load is applied. Perez Caldentey et al. showed in 

their study that the distributed loads near the support are directly strutted to the support, increasing the shear 

resistance of members subjected to distributed loading. For non-slender beams this influence depends on 

the location of the critical crack in [P. Caldentey, A. Padilla, M. Fernandez Ruiz, 2012]. 

 

A mechanical approach on the size and strain effects has been implemented by Ruiz et al. in [M. Ruiz, A. 

Muttoni & J. Sagaseta, 2015]. They observed that the contribution of the aggregate interlock and residual 

tensile strength decreases for increasing openings of the critical shear crack, which occurs due to increasing 
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strains and sizes. Ruiz et al. also showed that the contribution of dowelling action is limited for slender 

elements, but not necessarily negligible. It is noted that the dowelling action if affected by size and strain 

effects.  

 

 

2.3.1.2 Cracking pattern 

Several researchers have studied the kinematics of the crack formation. In [M. Ruiz, A. Muttoni & J. 

Sagaseta, 2015] the shape of the critical shear crack of slender beams is described. They assume that the 

crack is composed of three parts: quasi-vertical part, quasi-horizontal part and a delamination crack at the 

reinforcement level. The quasi-vertical part has mostly a bending origin and extends about to the neutral 

axis. The quasi-horizontal part develops due to the tensile stresses resulting from the beam shear-transfer 

actions. The formation of the quasi-horizontal crack leads to rotation of the crack around the crack tip. In 

the quasi-horizontal part there is only pure opening of the crack (no slip), whereas in the quasi-vertical part 

there is variable opening and constant sliding along the crack. The vertical component of the displacement 

at the reinforcement level leads to the formation of the delamination crack, which increases the critical shear 

crack opening. These observations are in agreement with the test results obtained by other researchers [Yang 

2014, Cavagnis et al. 2015]. 

 

Cavagnis et al. (2015) describes a similar composition of the crack pattern, but more extensive and detailed:  

 Type A: primary flexural cracks under a rather steep slope and normally develop up to the theoretical 

location of the fibre where the concrete tensile strength is reached, but in all of the cases it develop 

at least up to 1,5d. The angle of this crack type depends on the ratio bending moment – shear force 

and gets flatter with reduced bending moment. The crack distance between the flexural cracks varies 

between 0,4d and 0,8d for all tested beams. 

 Type B: secondary flexural cracks located in between two type A cracks or near the support. They 

initiate at a later stage with increasing load and are usually shorter than crack type A. The spacing 

between type A and B depends on the amount of reinforcement and the bond conditions. 

 Type C: secondary or primary crack merging with another primary flexural crack. 

 Type D: Delamination crack at the reinforcement level, with three possible kinematics (see the paper 

for more details). The delamination crack as described in Yang (2014) and Ruiz et al. (2015) is also 

observed in this research (type D’’ and D’’’). These were usually observed to initiate after the 

maximum load was reached, but not at the maximum load itself or before it. 

 Type E: Aggregate interlock induced cracks which could develop at both sides of an (existing) crack 

type A or B transferring shear by aggregate interlock. The development of this crack type is studied 

by Jacobsen et al. (2012). According to this study, when an existing crack mode I (pure tension) is 

then subjected to a shear displacement, inclined cracks initiate due to the aggregate interlock forces. 

These inclined cracks develop according to the geometry of the existing crack and possibly at both 

sides of the crack. 

 Type F: Growth of a primary flexural crack (type A) into the compression chord, named quasi-

horizontal part in [M. Fernandez Ruiz, A. Muttoni & J. Sagaseta, 2015]. The length of this crack 

type at maximum load was varying between 0,05d and 0,8d and the angle between 5o and 50o. In 

cases of crack type F became critical the angle varied between 5o and 30o. However, the length of 

crack type F is limited by the distance to the load introduction area. The development of this crack 

type strongly depends on the ratio acting bending moment – shear. It was observed that this crack 

type developed close to failure for low values of bending moment (area near the support or point of 

moment inflection) and also in cases of relatively low loading when the bending moment was 

significant. 
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 Type G: Crack development within the compression chord, not originated from a crack type A.  

Develops due to local bending of the compression chord or near the load introduction area. 

 

 
Figure 4: Crack types according to Cavagnis et al.: a)primary and secondary crack; b) cracks due to shear transfer actions 

 

Yang (2014) also pays attention to the crack pattern in his study. According to him, the concrete starts to 

crack when the tensile strength of concrete is reached, at crack moment Mcr. After this moment (crack height 

s1), the crack becomes unstable and further development of the crack height does not require any loading, 

until the moment resistance of the cross section gets higher. At this point (crack height s2), the crack becomes 

stable. The values of s1 and s2 depends on the reinforcement ratio and fracture energy of concrete, with a 

higher reinforcement ratio resulting in a lower stabilized crack height s2 and a lower critical moment M1.  

He also noted that with increasing load multiple flexural cracks over the span will initiate and makes 

difference between cracks which are able to develop to the stabilized crack height scr (called major cracks) 

and those are not. The stabilized crack height is assumed to be independent to the crack shape and depends 

on the moment in the cross section. Ones the moment in the cross section reaches Mcr, a crack with height 

scr will develop. The value of scr could be calculated if the reinforcement ratio and the beam height is known.  

 

 
Figure 5: Crack height vs cross-sectional moment for beams with differential reinforcement ratios (Yang 2014) 
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According to Yang, major cracks have a spacing of scr / kc, where kc is the inclination of the stress line with 

kc=1,28 for 52o in Krips (1985). He observed that the results of this theory compare well with the test results. 

Comparing the results of beams with different heights (3000mm, 1000mm and 100mm) he noticed that the 

cracks at reinforcement level for a beam h= 3000mm have a limited crack height, while the crack height in 

beam with h= 1000mm develop to a larger height. This observation confirms the theory of the crack 

distribution. Another important observation is that 100mm seems to be a lower bound of the effective height, 

so the crack pattern of the major crack is not influenced by tension softening behaviour of the concrete.  

 

Cavagnis (2017) observed that the distance between two major cracks varies between 0,4d to 0,8d, with an 

average value of 0,56d in agreement to other researches. The assumption of Yang described above is also 

within this range, with a value of around 0,63d for a beam 300x500 with 3- ⌀32 reinforcement. 

 

2.3.1.3 Location of the critical shear crack 

According to Yang (2014) the critical shear crack for beams with high shear slenderness ratio (a/d) will 

develop in the vicinity of the loading point. However, for small values of Mcr/Vcr the critical section will be 

close to the support. 

 

Cavagnis et al. (2018) observed that the distance between the tip of the critical shear crack and the loading 

point varies between d and 2d for slender beams, which is also observed by Leonhardt and Walther. 

Cavagnis et al. also noticed that the shear capacity does not significantly differ between the investigated 

sections xA = d, xA = 0,5a en xA = a – d (xA is distance from the support). However, the contribution of the 

shear transfer actions show some levels of variation. Increasing shear slenderness ratio leads to different 

position of the critical crack, where the critical crack for less slender members is close to mid-span 0,5a. 

This is logical and in agreement with the observation of Yang, where the arching action becomes more 

dominant for less slender members. 

Furthermore, the research has shown that for increasing reinforcement ratio the governing location of the 

critical crack shifts towards mid-span. Other parameters, for example the depth d, have low influence on the 

location of the critical shear crack. 

Considering the test results, it is noticed that the curves around the minimum shear capacity is very flat 

between 1,5d and 2,5d from the load introduction plate (and between 0,4a and 0,6a). In order to adapt a 

fixed control section, Cavagnis assumed xA = 0,5a based on the considerations of Reineck et al. [K. Reineck, 

E.C. Bentz, B. Fitik, D.A. Kuchma, O. Bayrak, 2013]. This assumption is not very in line with the 

assumption of Yang. This difference can be explained by the fact that Yang’s method is theoretical and that 

of Cavagnis is based on the test results.  

2.3.2 Influence of compression flange 

As described above, the effective width of the beam has an important influence on the shear transfer capacity 

of the transfer mechanisms. The presence of the flanges could also influence the crack pattern and 

kinematics. Gonzales et al. (2017) recently did a research on the influence of flanges on the shear-carrying 

capacity of RC without web reinforcement. They analysed the cracking pattern and kinematics, compared 

this with that of a rectangular cross section.  

 

The crack does have a similar crack propagation process as for rectangular cross sections. The first cracks 

are bending cracks and extend approximately to the neutral axis. With increasing load, the quasi-horizontal 

branch develops above the neutral axis in the same way. These two steps were also observed by Thamrin et 

al. (2016) for both rectangular cross sections and T-beam. 
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Until the interface of web-to-flange is reached. For T-beams with large flange, the crack develops 

horizontally at the interface as this corresponds to the weakest area of the tension tie. They observed two 

patterns in most of the T-beams without shear reinforcement, based on the data collected from the literature: 

 

 Diagonal shear crack in the web continued as a delamination crack at the interface, causing bending 

in the flange. This allows the development of the arching action or the strut and tie model with the 

elbow-shaped strut. This model allows the concrete strut to deviate by activating tensile forces in 

the concrete, as described by Muttoni and Schwartz (1991) and observed during measurements 

performed by Ribas and Cladera (2013). Thamrin et al. also observed this phenomenon, the 

maximum compression strain of T-beams is smaller than rectangular cross sections. Consequently 

leading to higher tensile strain of the reinforcement in T-beams. This shear transfer action fails in 

case of failure of the concrete flange in tension, leading to collapse of the beam. 

 Diagonal shear crack in the web continued in the flange as an inclined crack. Failure occurs due to 

collapse of the strut and tie model, where dowel action is required which is not available. 

 

Gonzales et al. (2017) also noticed during their study that the strut and tie models acting in the two patterns 

above neglect the aggregate interlock in the inclined branch of the crack in the web. This seems also in line 

with the observations for rectangular beams, where the quasi-horizontal branch has no slip and thus no 

aggregate interlock. 

 

Thamrin et al. (2016) noted that the maximum load for T-beams is higher than that for rectangular cross 

sections (5 to 20% higher), confirming that the flange affects the shear stress distribution and initiation of 

the diagonal cracks in the web. Comparison between load-deflection curves confirmed that the contribution 

of the flange in the compression zone results in higher capacity and stiffness of T-beams. They observed 

that for T-beams with higher reinforcement ratio the height of the flexural crack remain relatively small. 

This indicates that the ratio of longitudinal reinforcement influences the crack formation, see figure below 

for the crack patterns from their research. They noticed that the reinforcement ratio also affects the crack 

angle in the shear span zone (second branch). This angle decreases with increasing reinforcement ratio for 

both rectangular cross sections and T-beams. 
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Figure 6: Crack patterns from Thamrin et al. 

  

As described above, for rectangular beams with a shear span ratio of a/d < 2,5, the force can be directly 

strutted to the support. For beams a/d > 2,5 the shear transfer actions become governing. Gonzales et al. 

noted a similar behaviour for T-beams using the data from the literature. In case of a crack pattern with a 

delamination crack, the force could be directly strutted to the support for more slender beams compared 

with rectangular cross sections. This gives a shift in the limit value from a/d = 2,5 to a/d = 4.  

 

A.K. Tureyen and R.J. Frosch (2003 & 2006) developed a design model to determine the shear strength of 

reinforced concrete with rectangular cross-section and T-beams without transverse reinforcement. In their 

research they only assume the concrete contribution to the shear strength of reinforced concrete beams. 
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According to Tureyen and Frosch, it was hypothesized that a RC beam without shear reinforcement fails in 

shear when the principal tensile stresses in the compression zone in a cracked region within the shear span 

of the beam exceed the concrete tensile stress. The results of the design model are validated with several 

test results. 

They observed that the effective shear area does not include the total flange area in compression, but a part 

of it. In order to determine this, they developed two methods: form factor and shear-funnel. For detailed 

information about this, see [A.K. Tureyen, T.S. Wolf and R.J. Frosch, 2006]. 

The form factor is a multiplication factor on the design model, which is determined as √(bw/bf) based on test 

results. The angle of the shear funnel is conservatively taken as 45 degrees. The shear funnel method gives 

more conservative results compared to the form factor. 

2.3.3 Influence of prestressing 

A number of studies have been conducted on the influence of normal force on the shear capacity of 

reinforced concrete members. Considering prestressing as an external action, these researches are relevant 

to this study. 

 

Bui et al. (2017) observed that the strength of specimens loaded with axial compression increased. For 

specimens without axial loading the stiffness after cracking (about 300 kN shear force) reduced strongly, 

while for members with axial compression the stiffness remained constant and later reduced slightly. 

According to Bui et al. this can be explained by the fact that the compression forces delay the crack 

development. Therefore, axial compression give greater shear resistance. However, when the member was 

loaded with a high compression force a sudden drop was observed in the force-displacement diagram after 

the post-peak phase. This behaviour corresponds to the brittle shear failure. 

 

Muttoni and Ruiz (2008) also noticed that when axial force is present, the critical crack width may be 

increased (tension) or diminished (compression). This in accordance with the observations of Bui et al. 

According to Muttoni and Ruiz, the effective shear span is smaller than the geometric span in presence of 

an axial compressive force. In order to determine this effective shear span aeff, the effect of the axial force 

on the arching action should be accounted:  

 

𝑎𝑒𝑓𝑓 = 𝑎 +
𝑁ℎ

2𝑉
            (2.1) 

 

According to Ruiz et al. [M. Fernandez Ruiz, S. Campana and A. Muttoni 2009] the shorter effective shear 

span is due to the fact that prestressing doesn’t allow flexural cracks to the support area. Therefore, aeff could 

be determined by: 

 

𝑎𝑒𝑓𝑓 = 𝑎 −  
𝑃𝑧

𝑉
           (2.2) 

 

 

Cavagnis (2017) also studied this phenomenon and came up with the following formula in order to 

determine the influence of a compressive axial force: 

 

𝑎𝑒𝑓𝑓 = 𝑎 +  
𝑁

𝑉

𝑑

3
           (2.3) 
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In case of prestressing, formula (2.3) could be replaced by: 

 

𝑎𝑒𝑓𝑓 = 𝑎 −  
𝑃

𝑉
∙ (

𝑑

3
+ 𝑒𝑝)          (2.4) 

 

Furthermore, Cavagnis (2017)  noted that the crack angle decreases due to aeff, which leads to a reduction 

of the shear capacity. However, the decreasing shear span leads to an increase of the shear strength which 

is dominant on the global response. 

 

2.3.4 Mechanical models 

There are several mechanical models in order to determine the shear capacity of reinforced concrete beam 

without shear transfer [4, 7, 8, 43, 44]. In this chapter only two relevant models will be discussed: models 

of Yang (2014) and Cavagnis (2017). 

 

According to Cavagnis the total shear strength Vu can be calculated by summing the contribution of the 

various shear transfer actions: Aggregate interlock, dowel action, compressive area and residual tensile 

capacity of concrete. 

 

Also following Yang the shear resistance is a summation of the contribution of the shear transfer actions, 

but he does not include the residual tensile capacity of concrete in his model. The reason for that is that the 

contribution of this shear transfer action is only present in case of small crack width and in case of failure 

the crack width is much larger. So the contribution of the residual tensile capacity is according to Yang 

negligible. 

 

Although the general assumption of both mechanical models is almost the same, there are also differences 

between the assumed contributions of each shear transfer actions. In the following, these differences will be 

discussed. 

 

2.3.4.1 Dowelling action 

Yang uses the method of Baumann and Rüsch (1970) in his mechanical model: 

 

𝑉𝑑 = 1,64∅𝑏𝑛𝑓𝑐𝑘
1/3

           (2.5) 

 

According to Cavagnis the dowelling force causing a splitting failure can be calculated by: 

 

𝑉𝑑 = 2𝑛𝑓𝑐𝑡𝑘𝑏𝑏𝑒𝑓∅           (2.6) 

 

where bef = min(b/n-∅, 4-c) and kb is a reduction factor for the tensile strength of concrete  

kb = (0,063εs
-1/4 ≤ 1) 

 

However, research of Autrup et al. (2020) showed that both methods above predict the dowel cracking load 

inaccurately. Therefore, the contribution of the dowelling action requires further research which is beyond 

the scope of this study. 

Also, both models are applicable to rectangular cross-sections and should be extended to non-rectangular 

cross-sections. 
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2.3.4.2 Compressive area 

Yang assumed the classic beam theory (according to the theory of Mörsch 1909) in order the determine the 

contribution of the uncracked concrete compressive area for rectangular cross sections: 

 

𝑉𝑐 =
2

3

𝑧𝑐

𝑧
𝑉            (2.7) 

 

where zc = d - scr, scr is the crack height of the critical shear crack 

 

Cavagnis (2017) has derived a formula based on test results: 

 

𝑉𝑐 =
𝑘𝑐1

ℎ𝐹
𝑟𝐹

(1−𝑘𝑐1) 
ℎ𝐹
𝑟𝐹

            (2.8) 

 

where kc1 is a constant approximately 0,5, obtained by fitting, rF is the distance between the tip of the crack 

and the axis where the load is applied and hF is the thickness of the compression zone above the tip of the 

crack. 

 

Also for this case the models are only valid for rectangular cross-sections and therefore needed to be 

extended for a non-rectangular shape. 

 

2.3.4.3 Aggregate interlock 

Both Yang and Cavagnis used the model of Walraven as a basic assumption, but Cavagnis considered the 

kinematics of Guidotti in his model. The kinematics of Guidotti is that there is an initial opening w0 followed 

by a combination of opening w and sliding γ.  

 

Yang simplified the model of Walraven into: 

 

𝑉𝑎𝑖 = 𝑓𝑐
0,56𝑠𝑐𝑟𝑏𝑤

0,03

(𝑤𝑏−0,01)
(−978∆2 + 85∆ − 0,27)       (2.9) 

 

where bw is the web width, wb is the crack width and ∆ is the shear displacement. 
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The final formula of Cavagnis is: 

 

 

 
 

For the used notification of this formula, see research of Cavagnis (2017).  

 

Both models are valid for rectangular cross-sections. Since aggregate interlock is develop in the steeper part 

of the crack and the contribution is determined by integration over this height, the formula is also applicable 

for non-rectangular cross-sections with a constant width over this height. In case of plates with holes, the 

bw should be changed into a formula that describes the width over the height. 
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2.4 Conclusion and discussion 

Despite the fact that there is no general agreement about the governing shear failure mechanism, most 

studies have shown the same with regard to the contribution of aggregate interlock and the influence of 

dowel action on the failure of a reinforced concrete beam. It has been proven that aggregate interlock has a 

significant contribution to the transfer of shear force in slender members. Due to the increasing tensile 

stresses in concrete at reinforcement level, dowel crack along the reinforcement bar occur. This crack leads 

to an increase of the (critical shear) crack width, reducing the contribution of other mechanisms. In 

particular, the contribution of aggregate interlock declining sharply. This leads to the failure of the member. 

 

Furthermore, the researchers agree on the possible failure regimes according to Kani’s valley and the 

cracking pattern. The crack is composed of three parts: quasi-vertical part, quasi-horizontal part and a 

delamination crack at the reinforcement level. Several studies have shown that an average value of 0,56d 

for crack spacing is a safe assumption. Despite differing beliefs regarding the location of the critical shear 

crack, research of Cavagnis has shown that this has little impact on the shear capacity.  

 

Research has shown that for reinforced T-beams without shear reinforcement the crack does have a similar 

crack propagation process as for rectangular cross sections. It is also observed that T-beams have a higher 

shear capacity compared to rectangular cross-sections. A possible reason to this is the flange in compression, 

which makes it possible to activate the arching action. However, it is noted that using the full width of the 

compression flange leads to conservative results. The effective shear area does not include the total flange 

area in compression, but a part of it. 

 

It is generally accepted that the effective shear span is smaller than the geometric span in presence of an 

axial compressive force (prestress). A smaller shear span leads to an higher shear capacity. The proposed 

formulas in order to calculate aeff (effective shear span) differ little from each other. 

 

Although extensive research has been carried out on reinforced concrete with rectangular cross-sections and 

without shear reinforcement, little is known about the shear capacity of non-rectangular cross-sections 

without shear reinforcement. A number of studies have shown that the capacity increases with a T-beam 

[27, 34, 35, 38], for example, but the positive contribution of the flanges is nevertheless not taken into 

account in the standards. 

In addition, little research has been conducted into the effect of prestress on the shear capacity. 

This research will focus mainly on the missing link of the reinforced non-rectangular cross-section using 

the model of Yang as a starting point. The aim is to find an evaluation procedure in order to determine the 

effective web width for non-rectangular cross-sections, which can possibly be included in the EC2. 
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3. Analysis of the failure mechanism 
Because the model of Yang will be used as a starting point, it is important to fully understand the 

assumptions of this model. In this chapter the failure mechanism as described in Yang’s research is studied 

and compared to other relevant studies.  

 

3.1 Crack development 

Several experimental studies in the past have shown that the shear force capacity strongly depends on the 

crack pattern in the shear span [7, 8]. Therefore it is important to gain insight into the crack pattern of the 

structure. 

3.1.1 Crack height 

The first cracks start to initiate from the ultimate tensile fibre, where the tension capacity of concrete is 

reached. The initiating of the crack and the crack height are related to the stress distribution, thus to the 

bending moment in the cross-section. Using the layered model principle of (Hordijk 1991), Yang has shown 

that at the cracking moment Mcr the crack becomes unstable and short after the cross sectional moment M 

has exceeded the cracking moment Mcr, the crack becomes stable again. At this point, the increase of the 

moment does not lead to the change of the crack height and thus means that the stabilized crack height scr 

is reached. The assumption of this method is a linear strain and stress distribution in the cross-section. 

Therefore, this method is also applicable for non-rectangular cross-sections. By calculating the force and 

moment equilibrium per layer, the stabilized crack height can be calculated.  

The stabilized crack height scr is expressed by: 

 

𝑠𝑐𝑟 = (1 − 1,05(𝜌𝑠𝑛𝑒)0,45)𝑑          (3.1) 

 

According to the experimental results obtained by Cavagnis et al. (2015), the crack extends at least up to 

0,5d. Assuming a reinforcement ratio of 1% and ne = 5,7, scr becomes 0,71d, which is in agreement with the 

observations of Cavagnis et al.. 

 

However, it should be noted that both theories are based on rectangular cross-sections and with some 

changes, can also be used for non-rectangular cross-sections. So the methods cannot be adopted directly, 

which will be discussed in more detail in the following paragraphs. 

3.1.2 Crack spacing 

When a crack develops, the tension stress in the adjacent areas decreases. This decrease of stresses prevents 

new cracks from developing within this area. With increasing moment above Mcr, new cracks are formed at 

a specific distance depending on the bond conditions and stress τbm between concrete and reinforcement. 

The minimum crack spacing lt is calculated by: 

 

𝑙𝑡 =
𝑓𝑐𝑡𝑚∅

4𝜏𝑏𝑚𝜌𝑒𝑓𝑓
            (3.2) 
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The maximum crack spacing is equal to 2 times lt. According to the literature, the mean crack spacing lcr at 

the reinforcement level at the tension side can be calculated by lcr = ψslt, where the value of ψs differs from 

1,3 to 1,5. However, according to Yang, a concrete beam with reinforcement at the tensile side behaves 

differently than a tensile member. In the former case the stressed area of the uncracked part must build up 

again over a certain length from the area adjacent to the reinforcement level at the crack face, see figure 

below for an overview. 

 

 
Figure 7: Stress lines and crack patterns: left) with reinforcement bars in the middle; right) at the bottom (Yang 2014) 

 

The boundary of this stressed area could be simplified by a stress line kc, which represents the part of the 

member where the stresses can develop. The geometry of the stress line shows that not all cracks can grow 

to the neutral line. This phenomena has also been seen in experiments Cavagnis et al (2015). In Yang’s 

research, the ones that can develop till scr are called major cracks. Considering the stress line, the spacing 

of the major cracks could be determined by: 

 

𝑙𝑐𝑟,𝑚 =
𝑠𝑐𝑟

𝑘𝑐
            (3.3) 

 

When the crack spacing between lt and 2lt is reached, increase of the load only leads to the growth of the 

crack width. Yang confirmed the theory of crack height and spacing described above with a FEM analysis 

using kc = 1,28 (52o). He observed that 100mm is a lower bound of the effective height where the crack 

pattern of the major cracks is influenced by the tension softening behaviour, which means in that case the 

theories above could not be used.  

According to the test results obtained by Cavagnis et al. (2015), the spacing differs between 0,4d and 0,8d 

for all values of slenderness, load types and reinforcement ratios. The average value is 0,56d. Assuming 

the example of ρs = 1% and scr = 0,71d, lcr,m becomes 0,56d. This is equal to the average value obtained by 

experiments. 
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3.1.3 Inclination of the crack 

For the inclination of the crack, several theories are present in the literature. The most well-known is the 

theory of elasticity. Here the inclination depends on the direction of the principal stresses. Since the 

maximum shear stress is at half of the height, the inclination of the crack should depend on this. The most 

commonly accepted value here is 45o. However, test results show that this is not always the case. According 

to the experimental results obtained by Cavagnis et al. (2015), for high values of M/Vd (values > 3) the 

angle becomes steeper, to a maximum value of 85o as shown in Figure 8. For values < 1 the angle of the 

crack becomes flatter. This will mainly occur nearby the supports. 

 

 
Figure 8: Angle of major cracks (Cavagnis et al. 2015) 

 

Also, according to Yang, the value of M/Vd (which is equal to shear slenderness ratio in case of a simple 

supported beam) at a specific location will directly affect the inclination of the crack generated on that 

section. This is in line with the experimental observations of Cavagnis (2017). M and V are the bending 

moment and the shear force where the flexural crack intercept the reinforcement. 

3.1.4 Equilibrium system of a crack 

Once the shape of the major crack is defined, a part of the concrete along the crack close to the support 

could be taken out in order to determine the internal forces using a free body diagram, see figure below. 

In this free body, the forces should be in equilibrium.  

 

 
Figure 9: Free body diagram (Yang 2014) 
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The following vertical forces are acting on the free body diagram: 

 Vc: shear component of the uncracked compressive area; 

 Vai: shear component of the aggregate interlock along the crack; 

 Vd: shear force transferred by dowel action; 

 V: support reaction. 

 

 

The following horizontal forces are acting on the free body diagram: 

 Nc: normal force component of the uncracked compressive area; 

 Nai: normal force component of aggregate interlock along the crack; 

 Ts: tension force in the reinforcement bars. 

 

The following equilibrium conditions should be satisfied: 

 

Vertical force equilibrium:   𝑉 =  𝑉𝑐 + 𝑉𝑎𝑖 + 𝑉𝑑  

Horizontal force equilibrium:  𝑁𝑐 + 𝑁𝑎𝑖 + 𝑇𝑠 = 0 

Moment equilibrium around Nc: 𝑉(𝑥0 + 𝑥𝑐𝑟) =  𝑉𝑑𝑥𝑐𝑟 − 𝑁𝑎𝑖𝑧𝑎𝑖 + 𝑇𝑠𝑧 + 𝑉𝑎𝑖𝑥𝑎𝑖 

 

The contribution per component will be further studied in chapter 4. 

 

3.2 Development of the critical inclined crack 

The further increase of the load does not influence the crack pattern, but the kinematics of the major cracks. 

In case the major crack does not change from kinematics, it is not possible to achieve force equilibrium at 

the crack. Therefore, an additional shear displacement ∆ must occur. After the vertical opening of the crack, 

the shear resistance of the cross-section increases, which is linked to aggregate interlock. This process is 

described below. 

3.2.1 Critical inclined crack and failure mechanism 

After the major cracks are formed, increasing the load leads to the formation of secondary crack branches. 

On the compression side, a secondary crack branch at the crack tip in longitudinal direction is propagated 

in order to generate a shear displacement to balance the shear force. This phenomena is also observed by 

Cavagnis et al. (2015), see crack type F in Figure 4. Another secondary crack branch forms at the 

reinforcement level, the dowel cracking (type D’’ and D’’’ in Figure 4). When the tensile strength of 

concrete is exceeded, delamination cracks develop towards the support along the reinforcement bar. The 

formation of the secondary crack branches leads to an increase of the crack width of the major crack, 

becoming an unstable opened crack. This is defined as the critical inclined crack.  

In order to achieve an unstable failure, the contribution of the aggregate interlock should be reduced. 

Therefore, the longitudinal crack width w has to increase, which reduces the contact area of the 

aggregates. As mentioned before, short before failure delamination crack starts to develop at 

reinforcement level (dowel cracking). This causes the detachment of the reinforcement from the concrete 

and increase of the crack width. Increase of the crack width w results in the reduction of the aggregate 

interlock, leading to unstable failure of the beam. This is also observed by Cavagnis (2017) during the 

experiment. Therefore, the occurrence of the dowel cracking is directly linked to the unstable failure of the 

member. 
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However, according to Yang the maximum dowel action is easily reached during the loading process 

while the crack stays stable. The reason for this is the fact that the contribution of the dowel action is 

limited. Therefore, the force as a failure criterion is not acceptable to determine the moment that the crack 

becomes unstable. Instead the shear displacement ∆ is assumed as a criterion, because it depends on the 

shear force and also determines the contribution of other shear transfer mechanisms such as aggregate 

interlock. 

3.2.2 Location of the critical inclined crack 

It is also important to understand where the critical inclined crack could occur on the member. As 

mentioned earlier, the crack pattern depends on the value of M/Vd. This value is also an important value in 

order to determine the location of the critical inclined crack. Experimental results of Yang and den Uijl 

2011 showed that the minimum shear displacement occurs between M/Vd = 1 and M/Vd = 2, see figure 

below for the test results of several beams with different shear capacities. For a simple supported beam 

loaded with point load, this means that the crack will occur in the area below the point load, because this 

area will reach the value of ∆crit (value of ∆ when the critical inclined crack develops) earlier. 

 

 
Figure 10: Shear displacements for beams with different shear capacities (Yang 2014) 

  

However, for smaller values of M/Vd than that of the lowest point (left side from the lowest point toward 

M/Vd =1) the shear displacement ∆ increases. According to Yang this means that the cracks that develop 

at sections closer to the supports can transfer less shear force than those further away. 

This sounds contradictory with the test results of beams with short shear span a/d, where the beam can 

achieve high shear capacities. This is due to the arching action, where the shear force is transferred through 

the uncracked area. As long as the crack does not disturb this area, the beam can achieve plastic strength.  

According to Yang, this could be explained as follows: 

Assuming that the major crack starts to form when reaching cracking moment Mcr and that the crack is x0 

away from the support, the cracking shear force Vcr,m must be: 

 

𝑉𝑐𝑟,𝑚 =
𝑀𝑐𝑟

𝑥0
            (3.4) 
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Yang plotted this value of Vcr,m against every location of the beam, see Figure 11.  

The shear resistance is represented by the section between where the load is applied and the intersection 

with the cracking shear force line. After the intersection point (towards the support) the shear resistance is 

replaced by the cracking shear force line. The location with the lowest value of the shear resistance is where 

the critical inclined crack will develop. Based on this, for beams with high shear slenderness ratio (a/d) it is 

a safe assumption that the crack will occur below loading point. However, according to Yang it is also 

necessary to check the uncracked span from the support a0: 

 

𝑎0 ≤  
𝑀𝑐𝑟

𝑉𝑐𝑟
            (3.5) 

 

In case the value of a0 is very small based on the formula above, then there is a high chance that the critical 

inclined crack is close to the support. 

 
Figure 11: Overview of shear resistance versus cracking force at shear failure (Yang 2014) 
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4. Evaluation of the shear capacity of non-rectangular cross-
sections 
It was noted in the previous chapter that the failure occurs when dowel cracks and cracks in the compression 

zone develop, which has also been observed in experiments. In chapter 4, this failure mechanism will be 

translated into an analytical model in order to determine the shear resistance of the member. 

 

It was also noted in the previous chapter that the shear force is carried by three mechanisms: aggregate 

interlock Vai, compression zone Vc and the dowel action Vd. These mechanism together form a parallel 

system, so that the total shear force can be transferred to the supports. In this chapter, the contribution of 

each of them will be determined for plates with holes and I-beams. For T-beams, see chapter 5. 

 

4.1 Compression zone 

In this paragraph, the method and derivation of Yang for the compression zone will be analysed. After this, 

the method will be adapted for the plate with holes.  

4.1.1 Rectangular cross-sections 

Since the compression zone is the only uncracked area in compression in the cross-section, it is likely that 

this whole area will contribute to carrying the total shear force. The stress distribution in the uncracked 

compression zone could be described by the classic beam theory. Yang’s method is based on Mörsch’s 

theory (1909), which investigated the amount of shear force carried by the compression zone. Mörsch 

assumes that the maximum shear stress τm in de compression zone is equal to the difference in normal force. 

Assuming a small length of ∆x, the shear stress could be determine by τm = dN/dx. The compressive force 

in the cross-section is equal to Nc = M/z. The substitution of these 2 functions results in the following 

formula: 

 

𝜏𝑚 =
𝑑𝑀

𝑑𝑥

1

𝑏𝑧
=  

𝑉

𝑏𝑧
           (4.1) 

 

According to the theory of Jourawski, the maximum shear stress in elastic beams with any cross-section can 

be determined as follows: 

 

𝜏𝑚 =
𝑉𝑆

𝑏𝐼
            (4.2) 

 

where S is the first moment of area (also called statical moment of area) and I the moment of inertia. 

 

For rectangular cross-sections, the maximum shear stress could be determined as follows: 

 

𝑆 =  
1

2
𝑏ℎ ∙

1

4
ℎ =  

1

8
𝑏ℎ2           (4.3a) 

 

𝐼 =  
1

12
𝑏ℎ3            (4.3b) 

 

𝜏𝑚 =
𝑉∙

1

8
𝑏ℎ2

𝑏∙
1

12
𝑏ℎ3

=  
3

2

𝑉

𝑏ℎ
           (4.3) 
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Rewriting this in the terms of V for the compression zone formula (4.4) is obtained. The factor 2/3 in this 

formula is the degree of fullness of the shear stress diagram for specifically rectangular cross-section, 

because it depends on the shape of the cross-section. 

 

𝑉𝑐 =
2

3
𝜏𝑚𝑧𝑐𝑏            (4.4) 

 

The substitution of (4.1) and (4.4) gives the amount of shear force which could be transferred by the 

compression zone of a rectangular cross-section: 

 

𝑉𝑐 =
2

3

𝑧𝑐

𝑧
𝑉            (4.5) 

 

This means that the contribution of the compression zone depends on the height of the compressive zone 

and the total shear force V. However, this formula is only suitable for rectangular cross-sections. Therefore, 

it will be adapted for non-rectangular cross-sections, focusing on plates with holes and I-beams. 

 

4.1.2 The approach 

In this research, three types of non-rectangular cross-sections are studied to determine the influence of 

flanges, namely: plates with holes, I-beams and T-beams. Structural elements with these cross-sections are 

often used in engineering practice and are therefore relevant for research. Especially with emphasis on 

existing structures with the plates with holes without shear reinforcement, which seem to have insufficient 

shear capacity according to current standards. To determine the stresses in the cross-section of a plate with 

holes, a typical section is taken from the cross-section, see figure below. The cross-sectional parameters of 

this typical section are also showed in Figure 12. 

 

 

 

 

 

 

 

 

 

Figure 12: Example of a typical section of plate with holes and the cross-sectional parameters. 
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Following the steps as described in 4.1.1 it is possible to determine the shear stress in any type of cross-

section. However, for a non-rectangular cross-section, the degree of fullness factor is not easy to determine 

analytically by following the previous steps, which results in long and complex formulas. The reason is that 

these cross-sections depend on several cross-sectional parameters, for example the flange width and 

thickness, web height and thickness, centre of gravity etc... 

Therefore, the following approach is used to determine the degree of fullness for a non-rectangular cross-

section, with formula (4.4) as a starting point. Doing this, the formula for rectangular cross-sections is 

translated into a formula for non-rectangular cross-sections. Calling the degree of fullness α, the formula 

becomes: 

 

𝑉𝑐 = 𝛼𝜏𝑚𝑧𝑐𝑏𝑤            (4.6) 

 

Expressing (4.6) into terms of degree of fullness α, it becomes: 

 

𝛼 =
𝑉𝑐

𝜏𝑚𝑧𝑐𝑏𝑤
            (4.7) 

 

This makes it possible to determine the degree of fullness of each type of cross-section. To be able to do 

this, the shear force in the compression zone Vc and the maximum shear stress at neutral axis level τm must 

first be determined. These unkowns can be determined in a layer model using Jourawski’s theory (formula 

(4.2)).  

A layer model divides the cross-section into small elements of approximately 10mm. This allows per layer 

to calculate the first moment of area S, second moment of inertia I and the shear stress τ (with τ = VS/bI). In 

order to do this, a unit load of V = 100 kN is assumed as shear force in the cross-section in this layer model. 

Now the shear stress per layer could be calculated and so the shear force in every layer with:  

 

𝑉𝑖 = 𝜏𝑖𝑏𝑖ℎ𝑖            (4.8) 

 

where i is the number of the specific layer. With this data it is possible to determine the degree of fullness 

per cross-section using equation (4.7). The calculations with the layer model are attached in appendix I.  

To determine the height of the compression zone and then to calculate the degree of fullness, a number of 

cross-sections are assumed, see Table 1. 
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Table 1: Input parameters for the height effect 

Member hf [mm] bf [mm] bw [mm] h [mm] r [mm] h/D [-] 

1 100 400 200 400 100 2,0 

2 200 400 200 600 100 3,0 

3 300 400 200 800 100 4,0 

4 100 500 200 500 150 1,7 

5 200 500 200 700 150 2,3 

6 300 500 200 900 150 3,0 

7 100 600 200 600 200 1,5 

8 200 600 200 800 200 2,0 

9 300 600 200 1000 200 2,5 

10 100 800 200 800 300 1,3 

11 200 800 200 1000 300 1,7 

12 300 800 200 1200 300 2,0 

13 100 700 200 900 350 1,3 

14 200 700 200 1100 350 1,6 

15 300 700 200 1300 350 1,9 

16 100 1000 200 1000 400 1,3 

17 200 1000 200 1200 400 1,5 

18 300 1000 200 1400 400 1,8 

19 100 1100 200 1100 450 1,2 

20 200 1100 200 1300 450 1,4 

21 300 1100 200 1500 450 1,7 

 

where: hf is the thickness of the flange; bf is the flange width; bw is the web width at 0,5h, also smallest 

width in the cross-section of non-rectangular members; h is the height of the members; r is the radius of the 

opening and h/D is the ratio between height and diameter of the hole. See also Figure 12 for an overview. 

 

The minimum flange thickness used is 100mm, because the reinforcement bars in the flange needs a 

minimum cover of 30mm at both sides. So in principle the minimum flange thickness could be 60mm, but 

because this is not really common in engineering practice, 100mm has been assumed. 

Furthermore, the diameter of the holes varies from 100mm to 900mm. In reality, diameters of 300mm to 

500mm are usually used in engineering practice. The other assumed values are used to capture the size 

effect. The width and the height of the members depend on the diameter, flange height and web width.  

 

Based on this, the following ranges for height h and width b are possible: 

 

1,2D ≤ h ≤ 4D and 1,1D ≤ b ≤ 3,0D, where D is the diameter of the hole. 

 

The width of the member has no influence on the grade of fullness. This only depends on the location of the 

neutral axis, which in turn depends on the effective height and reinforcement ratio. 
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4.1.3 Height of the compression zone 

The height of the compression zone zc is an important parameter to determine the amount of shear force in 

the compression zone. The test results obtained by the research of Cavagnis (2017) showed that the height 

of the compression zone varies between 0,2d (for members with reinforcement ratio ρs < 1%) and 0,4d (for 

ρs > 3%). He concludes that an assumption of 0,3d for the height of the compression zone is on the safe and 

realistic side. Since the plates with holes generally have a reinforcement ratio of around 0,4%, this would 

mean that the height of the compression zone should be assumed to be 0,2d. 

Yang’s method has a more theoretical approach. Here the stabilized crack height scr, and thus the height of 

the compression zone, is calculated by determining the equilibrium of the forces in the cross-section 

assuming a linear stress distribution. As mentioned in 3.1.1, the crack height scr depend on the reinforcement 

ratio and the effective height d. To compare this assumption with the test results of Cavagnis, the degree of 

fullness of different cross-sections from Table 1 has been determined for both methods. The comparison of 

the plate configurations for different values of zc are shown the overview on the next page. 
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Yang’s method Cavagnis’ test results 
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Figure 13: Overview of the height effect for different values of zc, from top left to bottom right: ρ = 0,4%; zc = 0,2d; : ρ = 

1,0%; zc = 0,3d; : ρ = 1,5%; zc = 0,4d; 

 

The vertical lines in Figure 13 represents the limit values of h/D which are feasible and realistic. For 

example, h/D = 1 means that the diameter equals the beam height, which is not possible.  

 

Figure 13 shows that there are small differences between the values of grade of fullness calculated with zc 

= 0,2d and zc calculated with Yang’s method assuming 0,4% reinforcement ratio. However, these 

differences are so small (on average 0,01) that they are negligible. So this means that the zc calculated by 

Yang’s method assuming ρs = 0,4% agrees well with zc = 0,2d based on the test results Cavagnis obtained. 

The overview also shows that for plates with a diameter of 200mm to 400mm, assuming zc = 0,2d always 

results in the neutral axis being in the flange. For the other plates (500mm < D < 900mm) the grade of 

fullness grows very limited, to a maximum of 0,70, for a small range of h/D. This means that in most cases 

the neutral line is in the flange or just below it, where the shape of the compression zone is almost equal to 

a rectangular cross-section. So in case of zc = 0,20d the compression zone of all studied plates is (almost) 

equal to a rectangular cross-section (the flange area). As a result the grade of fullness does not change. 

 

From the overview in Figure 13 it can be deduced that assuming a compression zone of 0,3d corresponds 

much to a compression zone calculated with the method of Yang by using 1% reinforcement ratio. In case 

of h/D ≤ 1,5, the grade of fullness differs between 0,69 to 0,73 depending on the diameter of the hole. A 

compression zone of 0,4d almost corresponds to zc calculated using 1,5% reinforcement ratio according to 

Yang’s method. For h/D ≤ 2,0 the grade of fullness is higher than 0,69. It can be observed that for all values 

of zc the compression zone of plates with D < 400mm is in the flange or just below it (flange area). 
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However, it should be noted that the methods of Cavagnis and Yang are both based on solid rectangular 

cross-sections. As explained earlier, Yang determines the height of the compression zone using force 

balance in the cross-section. However, when the neutral axis is outside the flange, this force balance is no 

longer correct and so the height of zc is not correct either. This is because the area of the compression zone 

is smaller compared to a rectangular cross-section based on the flange width. This is demonstrated by means 

of a simple calculation: 

 

Based on a linear (normal) stress distribution the compressive force in the compression zone Nc of a 

rectangular cross-section could be determined by Nc;rect = σmbzc, where zc = 0,2d. So Nc;rect = 0,2σmbd. In 

case of a non-rectangular cross-section the compressive force could be calculated by Nc;non-rect = σm∑bzc. By 

equating these 2 equations, the zc for a non-rectangular cross-section could be determined. This has been 

calculated in a layer model for a number of examples where hf < 0,2d (so the neutral axis is below the 

flange): 

 
Table 2: Evaluation of zc 

Member bw [mm] bf 

[mm] 

hf [mm] h [mm] D [mm] 0,2d [mm] Acc;rect [mm2] zc [mm] 

1 200 400 50 300 200 52 20.800 0,20d 

2 200 600 100 600 400 112 67.200 0,21d 

3 200 600 50 500 400 92 55.200 0,25d 

4 200 800 100 800 600 152 121.600 0,24d 

5 200 900 100 900 700 172 154.800 0,26d 

6 200 1100 100 1100 900 212 233.200 0,31d 

 

From Table 2 it can be deduced that if the neutral axis is just below the flange, this has little influence on 

the height of the compression zone. The reason for this is that the width just below the flange is not much 

smaller than the flange width itself. However, the further the neutral line is from the flange, the higher the 

height of the compression zone. In most cases this results for plates with holes up to a compression zone 

height of 0,25d on average. The combination of a large diameter and slender flanges is also a good 

approximation of an I and T-beam. 

 

Based on the results shown in Table 2, in case of a reinforcement ratio of 0,4%, the compression zone height 

zc is assumed to be 0,2d if the neutral axis is in the flange. For plates with holes, in case of flange thickness 

hf < 0,25d, zc is assumed to be 0,25d. For I-beams and T-beams this becomes 0,3d to balance the internal 

force balance due to smaller web width compared to plates with holes. 

 

For reinforcement ratio ρ > 1% the compression zone height becomes 0,3d if the neutral axis is in the flange, 

0,35d for plates with holes and 0,4d for I and T-beams in case the neutral axis is in the web. 
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4.1.4 Contribution of the compression zone 

The height of the compression zone is described and determined in 4.1.3. With this assumption, the 

definitive graphs for the members in Table 1 have been determined, see figure below. 

 

 
Figure 14: Influence of height effect on the contribution of compression zone of plates with holes 

 

For rectangular cross-sections the degree of fullness is equal to 0,67. For values of h/D > 1,4 the degree of 

fullness is (almost) equal to 0,67. This means that the neutral axis is located in the flange of just below it. 

So the shape of compression zone is rectangular. Therefore, formula (4.4) is applicable to determine the 

contribution of the compressive zone.  

 

Figure 14 shows that between a range of 1,2 < h/D < 1,4 the degree of fullness differs between 0,69 and 

0,72. This is an increase of 5% compared to rectangular cross-sections. Because the degree of fullness only 

increases in a very small range, formula (4.4) will also be used conservatively in this case to determine the 

contribution of the compressive zone. 

 

In order to generalize the influence of the flanges, the degree of fullness of several I-beams according to 

Table 1 is studied. The height of the compressive zone is assumed to be 0,3d (ρ = 0,4%). As shown in Figure 

15 the degree of fullness of I-beams is in the most cases higher than 0,70, with an average of 0,75. On this 

basis, the contribution of the contribution zone for I-beams and T-beams is determined as follows: 

 

𝑉𝑐;𝐼 =
3

4

𝑧𝑐

𝑧
𝑉            (4.9) 
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Figure 15: Degree of fullness of I-beams, also valid for T-beams 
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4.2 Aggregate interlock 

To determine the contribution of the aggregate interlock, Walraven’s method (1980 & 1981) is applied. The 

method describes the relationship between the normal stress, shear stress and the crack opening in normal 

and tangential directions. The contribution of the aggregate interlock could be calculated by integration of 

Walraven’s formula along the crack height. However, because of the complexity it is not possible to 

calculate this analytically. Therefore the method of Walraven is not directly applicable in engineering 

practice.  

 

In his research, Yang translated the method into a simplified relationship between Vai, w and ∆. In this 

section the approach of Yang is first studied, then the method is adapted for non-rectangular cross-sections. 

4.2.1 Rectangular cross-sections 

In order to simplify the method of Walraven, Yang studied the critical inclined crack at failure. He simplified 

the crack profile observed during tests into straight lines, see figure below. 

 
Figure 16: Simplification of the crack profile (Yang 2014) 

 

The comparison of simplifications b) and c) showed that there are hardly any differences in the calculated 

stresses. Also, the contribution of the secondary branch appears to be small. This in accordance with the 

observations of Cavagnis (2017). Therefore the contribution of this secondary branch is neglected in 

simplification c). The crack width at reinforcement level is assumed to be: 

 

𝑤𝑏 = 𝑙𝑐𝑟,𝑚𝜀𝑠            (4.10) 

 

The term lcr,m is the crack spacing which could be determined by equation (3.3). εs is the average strain of 

the reinforcement. At the top of the crack the crack width depends on the rotation around the crack tip, so 

on the shear displacement ∆. Yang made a rough estimation of wt = 0,01mm based on previous studies.  

The crack opening w could now be described by a linear distribution along the crack height scr: 

 

𝑤(𝑠) = 𝑤𝑡 +  
𝑤𝑏−𝑤𝑡

𝑠𝑐𝑟
𝑠           (4.11) 

 

Based on all the assumptions above the contribution of Vai for rectangular cross-section could be determined 

with: 

 

𝑉𝑎𝑖 = 𝜎𝑝𝑢𝑏 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠
𝑠𝑐𝑟

0
 = 

𝑉𝑎𝑖 = 𝜎𝑝𝑢𝑏𝑠𝑐𝑟 ∫ 𝐴𝑥(∆, 𝑤(𝑠′)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠′))𝑑𝑠′
1

0
       (4.12) 
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The failure criterion ∆cr is determined by Yang (2015) by a regression analyses between ∆cr (obtained during 

the tests) and effective height d: 

 

∆𝑐𝑟= 3,3555 ∙ 10−5𝑑 + 0,005         (4.13) 

 

Another important boundary condition is that the maximum value of ∆cr could not be higher than 0,025mm 

to limit the influence of the specimen size. 

4.2.2 Non-rectangular cross-sections 

The assumptions made in 4.2.1 are in principle also valid for non-rectangular cross-sections. The difference 

is in the shape of the cross-section. The contribution is determined by integration over the crack height and 

multiplied by the width. With a rectangular cross-section, the width is constant, but this will nog be the case 

with a non-rectangular cross-section.  

In the case of plates with holes, the width from the flange varies over the height. Therefore, the constant 

term b in (4.12) should be changed and replaced in the integral. The width of a typical section of a plate 

with holes could be described by using Cartesian coordinates for the holes. The x-coordinate defines the 

width, y-coordinate the height and r is the radius of the hole. The centre of the coordinate system is located 

at half the height of the cross-section on both left and right sides, see Figure 17.  

Remark: this coordinate system is only used to determine the varying width. 

 

 
Figure 17: Cartesian coordinate system to determine the varying width 

 

Based on this the width above the flange could be determined by: 

 

𝑏𝑤𝑖 = 𝑏𝑓 −  2√𝑟2 − 𝑦2              (4.14) 

 

Formula (4.12) can now be adapted for plates with holes: 

 

𝑉𝑎𝑖 = 𝜎𝑝𝑢{𝑏𝑓 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠
ℎ𝑓

0
+ ∫ [𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))]𝑏𝑤𝑖(𝑠)𝑑𝑠

𝑠𝑐𝑟

ℎ𝑓
}   (4.15) 

 

In order to generalize the result, a comparison is also made with an I-beam. Therefore, for an I-beam, the 

contribution of aggregate interlock is also determined: 

 

𝑉𝑎𝑖;𝐼 = 𝜎𝑝𝑢{𝑏𝑓 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠
ℎ𝑓

0
+ 𝑏𝑤 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠

𝑠𝑐𝑟

ℎ𝑓
}       (4.16) 
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4.3 Dowel action 

To determine the contribution of the dowel action, the method of Baumann and Rüsch (1970) is assumed 

by Yang. Baumann and Rüsch showed the relationship between the vertical crack opening and the dowel 

force (resistance from dowel action), which is linear elastic before the maximum dowel force Vdmax is 

reached. After Vdmax is reached, contribution of dowel action becomes constant for any increasing 

displacement. Baumann and Rüsch also observed that at the peak dowel force Vdmax the vertical crack 

opening ∆ was 0,08mm. The contribution of the dowel action for rectangular cross-sections could be 

determined with: 

 

𝑉𝑑 = 1,64𝑏𝑛∅√𝑓𝑐
3

               (4.17) 

 

Where:  bn = b – n∅  (the netto width at reinforcement level) 

 

For non-rectangular cross-sections formula (4.15) is not directly applicable. The starting point of formula 

(4.15) is that in case of a rectangular cross-section, the dowel crack will occur at the weakest point in the 

cross-section. This is at the reinforcement level where the net width of the cross-section is the smallest. 

Based on this, with an I-beam the dowel crack will occur in the web just above the flange, because this is 

the weakest point of the cross-section: 

 

 𝑉𝑑;𝐼 = 1,64𝑏𝑤∅√𝑓𝑐
3

                (4.18) 

 

However, with the typical cross-section of plates with holes, this is somewhat more difficult to determine. 

This behaviour should be determine with test results. It is way too conservative to assume that the crack will 

occur at where the web width is smallest (bw), because this is about half the height in the cross-section. It is 

likely that the dowel cracking will occur at the bottom closer to the longitudinal reinforcement. Given that 

previous studies (Cavagnis 2017) have shown that dowel action only has a small contribution to the total 

shear capacity, it is conservatively assumed that the crack will occur just below the smallest web width bw, 

with bn = 1,25bw. 

This results in the following formula to determine the contribution of dowel action for plates with holes: 

 

𝑉𝑑 = 1,64(1,25𝑏𝑤)∅√𝑓𝑐
3 = 2,05𝑏𝑤∅√𝑓𝑐

3
             (4.19) 
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4.4 Evaluation procedure 

Now that the contribution of all mechanisms are defined and the failure criteria are known, it is possible to 

determine the shear capacity of reinforced concrete plates with holes without shear reinforcement under a 

point load. The steps that should be taken are the same as defined by Yang (2014): 

 

Step 1:  Calculate the maximum shear force carried by dowel action: 

 

𝑉𝑑 = 2,05𝑏𝑤∅√𝑓𝑐
3

                (4.19) 

 

Step 2:  Start with a shear force value Vu, calculate the moment at the design cross-section, and the 

crack width wb at that cross-section: 

 

𝑀𝑑 = 𝑉𝑢𝑑
𝑀

𝑉𝑑
, 𝑤𝑏 =

𝑀𝑑

𝑧𝐴𝑠𝐸𝑠
𝑙𝑐𝑟,𝑚              (4.20) 

 

Step 3:  Determine the critical shear displacement ∆cr: 

 

∆𝑐𝑟= 3,3555 ∙ 10−5𝑑 + 0,005              (4.13) 

 

Step 4:  Evaluate the shear force carried by aggregate interlock effect with the calculated ∆cr and wb: 

 

𝑉𝑎𝑖 = 𝜎𝑝𝑢{𝑏𝑓 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠
ℎ𝑓

0
+ ∫ [𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))]𝑏𝑤𝑖(𝑠)𝑑𝑠

𝑠𝑐𝑟

ℎ𝑓
}  (4.15) 

 

Step 5:  Calculate the shear force carried in the concrete compressive zone: 

 

𝑉𝑐 =
2

3

𝑧𝑐

𝑧
𝑉                 (4.5) 

 

Step 6:  Update the overall shear force Vu of the whole cross-section and repeat this from step 2 to 

step 6 till the value of Vu converges: 

 

𝑉𝑢 = 𝑉𝑎𝑖 + 𝑉𝑐 + 𝑉𝑑                            (4.21) 

  

To determine the shear capacity of reinforced I-beams without shear reinforcement, the same steps should 

be taken with the contributions specifically determined for this cross-section in 4.1, 4.2 and 4.3. 

The shear capacity must be determined iteratively with the procedure described above. 
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5.  Comparison and discussion of the results 
In this chapter the results obtained with the evaluation procedure are shown. The evaluation procedure is 

implemented in a Matlab code with which the shear capacity can be determined, see appendix II. The results 

of non-rectangular cross-sections are compared to rectangular cross-sections. With this comparison, a 

proposal is made to apply as effective width in the Eurocode 2. Furthermore, the results are compared with 

test results from the literature.  

 

5.1 Results 

In this section the results for plates with holes, I-beams and T-beams will be showed and discussed.  

5.1.1 Plates with holes 

To achieve a reliable final result, 27 different cross-sections of plate with holes were calculated. The 

corresponding parameters of these members are shown in the table below: 

 
Table 3: Cross-sectional parameters plate with holes 

  

Member 

Assumpties Beam parameter 

mvd da dr fc hf h bf r d zc bw 

1 3 16 16 34 200 800 600 200 720 144 200 

2 3 16 16 34 100 600 600 200 540 135 200 

3 3 16 16 34 200 800 500 200 720 144 100 

4 3 16 16 34 300 1000 600 200 900 180 200 

5 3 16 16 34 300 1000 500 200 900 180 100 

6 3 16 16 34 200 1000 800 300 900 225 200 

7 3 16 16 34 150 900 800 300 810 203 200 

8 3 16 16 34 300 1200 800 300 1080 216 200 

9 3 16 16 34 200 1000 700 300 900 225 100 

10 3 16 16 34 75 450 500 150 405 101 200 

11 3 16 16 34 75 450 400 150 405 101 100 

12 3 16 16 34 150 600 500 150 540 108 200 

13 3 16 16 34 200 900 700 250 810 203 200 

14 3 16 16 34 400 1300 700 250 1170 234 200 

15 3 16 16 34 400 1300 600 250 1170 234 100 

16 3 16 16 34 200 1100 900 350 990 248 200 

17 3 16 16 34 300 1300 900 350 1170 234 200 

18 3 16 16 34 200 1100 800 350 990 248 100 

19 3 16 16 34 200 1200 1000 400 1080 270 200 

20 3 16 16 34 100 1000 1000 400 900 225 200 

21 3 16 16 34 300 1400 1000 400 1260 315 200 

22 3 16 16 34 200 1200 900 400 1080 270 100 

23 3 16 16 34 200 1200 1000 400 1080 270 200 

24 3 16 16 34 200 600 400 100 540 108 200 

25 3 16 16 34 300 800 400 100 720 144 200 

26 3 16 16 34 200 600 300 100 540 108 100 

27 3 16 16 34 75 350 400 100 315 79 200 
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All the members have a reinforcement ratio of 0,4%. In this section the results obtained for plates with holes 

are shown and discussed. Also, contribution of each shear transfer mechanism is determined, which is shown 

in the figures below.  

 

 
Figure 18: Overall results plate with holes 

 

Figure 18 shows an overall overview of the calculated resistance per member. It shows that members 10, 

11, 26 and 27 have the lowest shear resistance. A similarity between members 10, 11 and 27 is that they 

have very slender flanges, namely 75mm. Member 26 has a flange thickness of 200mm. The diameter of 

the holes is small, for members 10 and 11 this is 300mm and members 26 and 27 200mm. So the member 

height h and effective depth d is also limited, as it depends on the diameter of the hole. These 4 members 

all have a shear resistance of less than 100 kN.  

 

Members with a resistance higher than 250 kN are 4, 8, 14, 15, 17 and 21. All these members have in 

common that the flanges are 300mm or thicker, see table 3. Member 17 has the highest shear resistance, 

with a flange thickness of 300mm. The diameter of the holes vary between 400mm and 800mm.  

All other members have a shear resistance between 100kN and 250kN. The flange thickness and web width 

bw varies between 100mm and 200mm. The results show that a smaller web width leads to a smaller shear 

resistance, see Figure 19. This is logical, because the contribution of aggregate interlock and dowel action 

decreases due to thinner web. As a result, the total shear resistance Vu also decreases. This in turn has a 

small influence the contribution of the compression zone, as it depends on the ratio zc/z and the total 

resistance Vu in the evaluation procedure.  

 

It also appears that a thinner flange thickness leads to a lower shear resistance, see Figure 20 which shows 

the overall results in terms of flange thickness.  

An explanation is the fact that aggregate interlock decreases, because the crack height scr decreases due to 

a higher compression zone as explained in 4.1.3. For non-rectangular cross-sections the height of the 

compression zone increases if the neutral axis falls outside the flange. This is the case with thin flanges, 

where the ratio zc/z increases because of the shift, see example below. So in case the neutral axis is outside 
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the flange, the contribution of the compression zone increases by 4% in proportion to the total shear 

resistance. This seems logical, because the compressive area also increases. However, it should be noted 

that the total shear resistance is lower in case of thinner flanges. So at the bottom line the real contribution 

of compression zone with thinner flanges is less. The location of the neutral axis affects the distribution of 

the shear transfer action contributions. 

 

 
Figure 19: Influence of web width on the shear resistance 

 

 
Figure 20: Overall results plates with holes in terms of flange thickness 

 

 

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

0,00 0,10 0,20 0,30 0,40 0,50 0,60

R
es

is
ta

n
ce

 [k
N

]

bw/bf [-]

bw= 100mm bw = 200mm

0,0

50,0

100,0

150,0

200,0

250,0

300,0

350,0

400,0

200 100 200 300 300 200 150 300 200 75 75 150 200 400 400 200 300 200 200 100 300 200 200 200 300 200 75

R
es

is
ta

n
ce

 [k
N

]

hf [mm]

Dowel action Aggregate interlock Compression zone



 

55 

 

Example of the ratio zc/z: 

Member 1: hf = 200mm; zc = 144mm; d = 720mm; z = d – 1/3zc = 672mm 

  zc / z = 144 / 672mm = 0,21 [-] 

Member 2: hf = 100mm; zc = 135mm; d = 540mm; z = d – 1/3zc = 495mm 

  zc / z = 135 / 495mm = 0,27 [-] 

 

The main reason of the lower shear resistance is that the neutral axis is below the flange. If the neutral axis 

is in the flange, the top part of the major crack is also in the flange. This part of the crack has the largest 

shear stress due to aggregate interlock, hence the largest contribution, see Figure 23. If the major crack is 

partly in the flange, the contribution of aggregate interlock grows enormously because of the flange width. 

In the evaluation method the compression zone depends on the total shear resistance and not directly on the 

web or flange width. The shear resistance increases strongly due to aggregate interlock, which increases due 

to the influence of the flange width. So the effect of the flange width on the compression zone is simulated 

through iterations in the evaluation method.  

 

The observations described above indicate that the flange thickness and the location of the neutral axis are 

an important parameter for determining the shear resistance of non-rectangular cross-sections. Therefore, 

the calculated shear capacity is plotted against the parameter hf/h, see Figure 21. 

 

 
Figure 21: Shear capacity plotted against hf/h. Blue: neutral axis is inside the flange; Yellow: neutral axis is below the 

flange 

 

Figure 21 shows a clear separation between members where the neutral axis is inside the flange (blue) and 

where it is below the flange (yellow). This shows that the members with the neutral axis in the flange have 

a higher shear capacity. In cases where the shear capacity is less than 150 kN, the limiting factor on the 

shear capacity is the limited member height h. 

 

  

0

50

100

150

200

250

300

350

400

0,00 0,05 0,10 0,15 0,20 0,25 0,30 0,35 0,40

R
es

is
ta

n
ce

 [k
N

]

hf/h [-]

hf => 300mm hf = 200mm hf < 200mm hf = 200mm hf < 200mm



 

56 

 

From Figure 18 it can be concluded that for members 1, 3, 4, 5, 8, 12, 14, 15, 17, 24, 25 and 26 the 

contribution of the compression zone is 14%. The neutral axis of all these members is located in the flange. 

In the evaluation procedure, the contribution of the compression zone is a certain ratio of the total shear 

resistance. As shown in the example above, the ratio zc/z is equal to 0,21. The grade of fullness of a 

rectangular compression zone is 2/3 and the multiplication of these 2 parameters gives 0,14, which explains 

the contribution of 14% for the compression zone.  

The contribution of aggregate interlock and dowel action varies between 63% - 81% and 4% - 19% 

respectively. Members 5 and 15 have the highest contribution of aggregate interlock in percentages (81%). 

These members have in common that they both have thick flanges, 300mm and 400mm respectively, with 

a thin web of 100mm. Members 4 and 14 have the same flange thickness, but a web width of 200mm. The 

latter have higher total shear resistance, but a different ratio of contributions where aggregate interlock is 

slightly less and dowel action is slightly more. This can be easily explained by the fact that in case of a 

thinner web the contribution of the dowel action decreases, so does the contribution ratio in %.  

 

For the other members the contribution of the compression zone is approximately 18%, explained by the 

multiplication of 0,27 x 2/3 = 0,18. The contribution of aggregate interlock and dowel action varies between 

48%/74% and 8%-34% respectively. Member 27 has the largest contribution of dowel action relative to 

other shear transfer actions, followed by members 2, 10 and 11. All these members have thin flanges, which 

explains the large contribution of dowel action: The contribution of aggregate interlock and compression 

zone decreases, but the contribution of dowel action remains unchanged.  

As explained in section 4.3, dowel action reaches the plastic limit of Vdmax when the shear displacement is 

0,08mm. This is quickly reached during loading the member. After this the value of Vdmax remains the same 

for increasing shear displacements.  

 

In summary, the location of the neutral axis is an important parameter, which also determines the height of 

the compression zone zc. In case the neutral axis is in the flange, the height of the compression zone for 

plates with holes is 0,2d. When the neutral axis is below the flange, zc becomes 0,25d to ensure the internal 

force balance. This causes an increase in the contribution of the compression zone, because the compressive 

area becomes larger. The calculations have shown that if the neutral axis is located in the flange, the width 

of the flange is used optimally. In this case, the top of the major crack is in the flange, where the shear 

stresses due to aggregate interlock are highest and the width of the cross-section is greatest. This increases 

the contribution of aggregate interlock enormously and therefore the total shear capacity.  

In addition, it appears that the width of the web and the flange also play an important role in calculating the 

shear capacity. A smaller web width, and if the neutral axis is in the flange also the flange width, leads to a 

smaller capacity. The results also show that aggregate interlock contributes the most to the total shear 

capacity of the cross-section. 
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5.1.2 I-beams 

For the I-beams the same parameters as Table 3 have been applied, whereby the parameter r (radius of the 

holes) is omitted. This is done so that a one to one comparison can be made with plates with holes. It should 

be noted, however, that a shear lag effect could occur, whereby the full flange width cannot be used with 

wide flanges. This will be discussed further in the remainder of the study. 

 

In addition, it has been found in 4.1.3 that the compression zone for I-beams with ρs = 0,4% is equal to 0,3d 

if the neutral axis is below the flange.  

 
Table 4: Cross-sectional parameters I-beams 

Member 
Assumptions Beam parameter 

mvd da dr fc hf h bf d zc bw 

1 3 16 16 34 200 800 600 720 216 200 

2 3 16 16 34 100 600 600 540 162 200 

3 3 16 16 34 200 800 500 720 216 100 

4 3 16 16 34 300 1000 600 900 180 200 

5 3 16 16 34 300 1000 500 900 180 100 

6 3 16 16 34 200 1000 800 900 270 200 

7 3 16 16 34 150 900 800 810 243 200 

8 3 16 16 34 300 1200 800 1080 324 200 

9 3 16 16 34 200 1000 700 900 270 100 

10 3 16 16 34 75 450 500 405 122 200 

11 3 16 16 34 75 450 400 405 122 100 

12 3 16 16 34 150 600 500 540 162 200 

13 3 16 16 34 200 900 700 810 243 200 

14 3 16 16 34 400 1300 700 1170 234 200 

15 3 16 16 34 400 1300 600 1170 234 100 

16 3 16 16 34 200 1100 900 990 297 200 

17 3 16 16 34 300 1300 900 1170 351 200 

18 3 16 16 34 200 1100 800 990 297 100 

19 3 16 16 34 200 1200 1000 1080 324 200 

20 3 16 16 34 100 1000 1000 900 270 200 

21 3 16 16 34 300 1400 1000 1260 378 200 

22 3 16 16 34 200 1200 900 1080 324 100 

23 3 16 16 34 200 1200 1000 1080 324 200 

24 3 16 16 34 200 600 400 540 108 200 

25 3 16 16 34 300 800 400 720 144 200 

26 3 16 16 34 200 600 300 540 108 100 

27 3 16 16 34 75 350 400 315 95 200 
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The results of the I-beams are shown in the figures below. 

 

 
Figure 22: Overall results I-beams 

 

The results from Figure 22 show the same patterns and observations as for plates with holes, with some 

minor difference. This is discussed further in section 5.2. 

It can be deduced that the contribution of the compression zone varies between 14% and 25% for I-beams. 

For members where the neutral axis falls in the flange, the contribution of compression zone of I-beams is 

the same as plates with holes, because the compression zone has a rectangular shape. This is the case for 

members 4, 5, 14, 15, 24, 25 and 26, where the contribution of the compression zone is 14%. 

The neutral axis of the other members is below the flange, with the contribution of the compression zone 

increasing proportionally to 25% due to larger compressive area. As a result, the aggregate interlock 

decreases slightly, because the crack height scr decreases slightly due to higher compression zone zc.  

To further explain and highlight the influence of the location of the neutral axis, a comparison made between 

members 1 and 24. The effective heights are 720mm and 540mm respectively. The neutral line of member 

1 is below the flange, while that of member 24 is inside the flange. The thickness off the flange and the web 

width are the same for both members. The results of both members are given in the table below: 

 
Table 5: Results of member 1 and 24 

Member Vd Vai Vc Vu  

1 17 kN, 15% 68, 60% 28, 25% 114 kN 

24 17 kN, 14% 84, 71% 17, 15% 118 kN 

 

The contribution of the dowel action is the same, because the web thickness is the same.  

Although member 24 has a smaller effective height and overall width b, it has almost the same shear 

resistance as member 1. This is due to the location of the neutral axis in the cross-section. As explained 

earlier, the flange width of the member is best used when the neutral axis is in the flange. This is shown 

by the shear stresses due to aggregate interlock, see Figure 23. The shear force is equal to the area under 

the shear stress distribution.  
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As it can be seen in the figure below, the shear stress is highest at the top of the crack and decreases 

sharply towards 0 towards the root of the crack. If the neutral axis is in the flange, a part of the peak shear 

stress will be multiplied with the flange width b in order to calculate the shear force. This results in a 

favourable contribution of the aggregate interlock, which can be seen in the results of Table 5. 

 

 
Figure 23: Shear stresses due to AI member 1 

Remark: although a large part of the shear stresses from figure 23 appear to be 0, this is not the case. The stresses 

are very low (but not 0), which creates a distorted picture.  
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5.1.3 T-beams 

By comparing the results of I-beams with T-beams, it is possible to determine the added value of the bottom 

and top flange. In order to do that, the same cross-sectional parameters as in Table 4 is assumed for the T-

beams. The influence of shear lag effect will be discussed later. 

There are small differences between a T-beam and I-beam in the evaluation procedure. One of these changes 

is the dowel action. Instead of the web width, the net width of the web should be taken, because the 

reinforcement is located in the web in case of a T-beam. Therefore, formula (4.16) should be replaced by 

formula (4.15). 

The change into a T-beam from an I-beam also leads to the omission of the term for the bottom flange in 

the calculations of aggregate interlock: 

 

𝑉𝑎𝑖;𝑇 = 𝜎𝑝𝑢{𝑏𝑓 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠

ℎ𝑓

0

+ 𝑏𝑤 ∫ 𝐴𝑥(∆, 𝑤(𝑠)) − 𝜇𝐴𝑦(∆, 𝑤(𝑠))𝑑𝑠

𝑠𝑐𝑟

ℎ𝑓0

} 

 

The comparison of these two cross-sections is shown below. 

 

There is a slight difference in the total shear capacity between I-beams and T-beams. The biggest differences 

can be seen with members with thick flanges. This is because the contribution of a thick lower flange is 

eliminated in case of T-beams. 

 

 
Figure 24: Comparison of I-beams and T-beams 
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Zooming in further on shear transfer action level appears that the dowel action decreases, which is logical 

because of the reduced net width of the web. In addition, small differences can be seen in the aggregate 

interlock and compression zone. The reason of a small decrease in the contribution of the compression zone 

is because it depends on the total shear force Vu in the evaluation procedure. This doesn’t quite make sense 

since a bottom flange should not affect the compression zone since it is at the top flange. But given the fact 

that this is small (5 kN) this is accepted. 

 

 
Figure 25: Comparison of AI for I-beams and T-beams 

 

 
Figure 26: Comparison of CZ for I-beams and T-beams 
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It can therefore be concluded from the above that the bottom flange has little added value for the shear 

capacity of non-rectangular cross-sections. The absence of a bottom flange leads to a small decrease in 

capacity.  

However, unlike the bottom flange, the contribution of the top flange will be crucial, because the 

contribution of the compression zone depends entirely on it. If the neutral axis is in the top flange, the 

aggregate interlock also strongly depends on the width and thickness of the top (compression) flange. 

 

5.2 Comparison with rectangular cross-sections 

In order to determine the contribution of flanges, the shear force capacity of the web alone is also 

determined. For plates with holes, this web alone area is shown with a orange region in the figure below.  

 

 
Figure 27: Web only area of plates with holes 

 

The web alone area results is a rectangular cross-section with width bw and height h according to tables 3 

and 4. In this section, the results of the rectangular cross-sections will be compared to non-rectangular cross-

sections. The results of rectangular cross-sections per member are shown below. 

 

 
Figure 28: Results of only web 
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5.2.1 Comparison of the results 

The comparison of the total shear resistance of the web with non-rectangular cross-sections is shown in 

Figure 29: Overall comparison of the shear resistance. 

 

 
Figure 29: Overall comparison of the shear resistance 

 

Figure 29 also includes the resistance according to EC2 for comparison. The equation from Eurocode 2 

section 6.2a to calculate the shear resistance of beams without shear reinforcement is: 

 

𝑉𝐸𝐶 = 𝐶𝑅𝑑;𝑐𝑘√100𝜌𝑠𝑓𝑐𝑘
3 𝑏𝑑          (5.1) 

 

where, 

𝑘 = 1 +  √
200

𝑑
≤ 2,5 and          (5.2) 

𝐶𝑅𝑑;𝑐 =  
𝐶𝑅𝑑

𝛾𝑐
            (5.3) 

 

According to EC2, the value of CRd is equal to 0,18 and γc is 1,5, leading CRd;c = 0,18/1,5 = 0,12. The 

background of these values are given in the study of Walraven [52]. 

 

For non-rectangular cross-sections, the smallest width in the cross-section should be used for the width b. 

As can be seen in Figure 29, this results in conservative results for plates with holes and I-beams, therefore 

also for T-beams. Also, it shows that the results of the web only (rectangular cross-section) using evaluation 

procedure of Yang (2015) and the Eurocode are almost identical.  

 

The smallest difference of the shear resistance between web and web including flanges can be seen in 

members 10, 11 and 27. These members have in common that the flanges are very thin (75mm). The greatest 

differences are observed in case the neutral line is in the flange. 
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Furthermore, there are also differences between the resistance of I-beams and plate with holes. These 

differences are mainly observed in members with thick flanges. The reason for this is the change of the 

compression zone height zc in case of I-beams. If the flange thickness hf is smaller than 0,25d for plates with 

holes or 0,3d for I-beams, the neutral axis is below the flange.  This causes the neutral axis to be outside the 

flange more often in case of I-beams, slightly reducing the shear resistance due to the decrease of aggregate 

interlock. Taking into account the shear lag effect, this difference will only increase. 

 

Contrary to what the Eurocode 2 prescribes, the Dutch Guideline for the Assessment of Existing Bridges 

(RBK) states that an average width (bgem) for non-rectangular cross-sections may be used in (5.1), with an 

upper limit of 1,25bw. For the procedure to determine bgem, please refer to the RBK [53].  

According to this procedure, the upper limit of bgem applies to plates with holes, resulting in to an 

underestimation of the shear capacity. The upper limit value is also applied for the I-beams. Figure 30 shows 

that in most cases this gives a reasonable estimate of the shear capacity of I-beams. However, if the neutral 

axis is in the flange, the RBK approach leads to an underestimation. 

 

 
Figure 30: Comparison of the calculated results with RBK method 

 

Before an extensive comparison is made, attention should be paid to the influence of shear lag on the 

shear capacity of I-beams with wide flanges. According to the research of Zanuy et al. [54], for slender 

beams where bf/L <0,20 loaded with a point load at 0,5L, the shear lag effect is nil and therefore 

negligible. This study only focusses on slender beams with a shear slenderness lower bound of a/d = 3. 

This results in a bf/L value of up to 0,20 for the members shown in Table 3. However, despite this 

outcome, it has been decided to limit the width of the flange to 3bw when calculating the shear capacity. 

The influence of this is shown in the figure below. In most cases it leads to little or no decrease in shear 

capacity. However, if the neutral axis is in the flange, the capacity decreases by approximately 40%. It is 

therefore decided to take the shear lag effect into account for I and T-beams in the remainder of the study. 
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Figure 31: Influence of shear lag on the shear capacity of I-beams 

 

Back to the comparison between non-rectangular cross-sections and rectangular cross-sections, the 

contributions of the shear transfer actions are discussed in more detail, see figures below. 

 

 
Figure 32: Comparison of AI 
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in the web, I-beams still show a greater contribution of aggregate interlock compared to web alone. This is 
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huge increase and difference in aggregate interlock compared to web-only scenario. In addition, the shear 

lag effect on I-beams also creates differences between plates with holes and I-beams. 

 

 
Figure 33: Comparison of compression zone 

 

The contribution of the compression zone also increases, proportionally much more than the aggregate 

interlock. This is because the area of the compression zone is increased by the flanges compared to web-

only scenario.  

Figure 34 on the next page compares the contribution of dowel action. The contribution of plates with holes 

is the highest due to the varying width of the web. This is more favorable compared to I-beams, where the 

web width bw is decisive. As a result, the increase in dowel action of I-beams compared to web alone is 

limited. The width is the same in both cases, but in the case of only the web, the net width bn is used in the 

calculation. 

 

 
Figure 34: Comparison of dowel action 
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5.2.2 Scale factor 

The effective web width bweff is determined for each member by dividing the calculated shear resistance 

for non-rectangular cross-sections by the shear resistance of the web only. This determines a scaling factor 

for the effective width per member, which could be used in the EC2. 

 

The calculated scale factor for plates with holes per member are shown in Figure 35. The scale factor is 

plotted against hf/h and bw/b, because it was shown in section 5.1 that the resistance strongly depends on 

the flange thickness, flange width and web width. Of course, the member height and thus the effective 

depth is also an importance factor to calculate the shear resistance. The overview shows that members 

with a thin web width lead to a large spread in the data, because the scale factor is much higher than the 

average. Given that this research aims to serve as an aid to engineering practice, it is decided to maintain a 

realistic range of cross-sectional parameters. This range is shown with a red box in Figure 35. 

 

 

 
Figure 35: Effective web width of plates with holes, top: flange thickness divided by height; bottom: web width divided 

by width. The red box indicates the realistic range of cross-sectional parameters. 
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Figure 35 shows that for an increasing value of hf/h the scale factor increases, which means that the 

resistance of non-rectangular members increases more compared to the web alone. With an increasing factor 

hf/h the neutral axis is most likely in the flange. This also explains the fact that the scale factor increases, 

because previous results have already shown that the resistance increases sharply when the neutral axis is 

located in the flange.  

However, the shear resistance of non-rectangular cross-sections also depends on the web width. Figure 35 

shows that with an increasing value of bw/bf the scale factor decreases, so also the resistance for non-

rectangular cross-section compared to only the web.  

 

5.2.3 Parameter study 

The scale factors calculated in 5.2.2 are only based on a number of specific parameters, such as 

reinforcement ratio of 0,4%, shear slenderness ratio of 3 and concrete compressive strength of 34 MPa. 

This section examines the influence of these parameters on the scale factor. To determine this, the 

parameters are changed on a case-by-case basis: the reinforcement ratio becomes 2%, the shear 

slenderness becomes 5 and the concrete compressive strength becomes 60 MPa. The results of these 

changes are shown on the next page. 

 

The overview in Figure 36 shows that changing the concrete compressive strength or the shear slenderness 

ratio has hardly any influence on the scale factor. It can therefore be concluded that the effect of these 

parameters on the scale factor is negligible. However, it appears that the reinforcement ratio does 

influence the scale factor. For plates with holes, a higher reinforcement ratio leads to a lower scale factor. 

This is because the height of the compression zone increases with higher reinforcement ratio, so the 

neutral axis falls outside the flange in most cases. As a result, the capacity of plates with holes decreases 

sharply, resulting in a lower scale factor. 

 

For I-beams and T-beams, the increase in reinforcement ratio leads to a small increase in scale factors 

when the neutral axis was in the web with ρs = 0,4%. For cases where the neutral axis was in the flange 

and with a higher reinforcement ratio move into the web, this change leads to a decrease in the scale factor 

as noted by plates with holes.  
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Figure 36: From top to bottom influence of reinforcement ratio, concrete compressive strength and shear slenderness 

ratio on the scale factor for plates with holes 
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5.2.4 Determining effective web width 

With the results shown previously, it is possible to calculate the effective web width bweff. This width can 

then be used for non-rectangular cross-sections to calculate the shear resistance according to the EC2 with 

formula (5.1), which is comparable with the RBK approach. The calculated scale factors are generalized 

in this section to a uniform factor formula, with which a general bweff can be determined. A distinction is 

made here between reinforcement ratios <1% and >1%, so that the spread of the data is smaller.  

To determine the dependence of the scale factor with parameters bw/bf and hf/h, a multiple linear 

regression analysis is performed. The effective web width can be determined using the scale factor: 

 

𝑏𝑤𝑒𝑓𝑓 = 𝑠𝑓 ∙ 𝑏𝑤           (5.4) 

 

Plates with holes: 

The regression analysis resulted in the following relationship for ρ < 1% for plates: 

 

𝑠𝑓 = 2,9 + 7,4
ℎ𝑓

ℎ
− 7

𝑏𝑤

𝑏𝑓
          (5.5) 

Limitations: 

 Formula (5.5) is only applicable for members within the ranges 0,20 ≤  bw/bf ≤ 0,60 and 0,15 ≤ hf/h 

≤ 0,40. Outside these ranges, the formula may lead to incorrect results. 

 Formula (5.5) is only applicable for member with reinforcement ratio lower than 1%, but not lower 

than 0,4%, because in these cases flexural failure will be decisive. 

 Formula (5.5) is only valid for slender members where a/d ≥ 3. 

 

The regression analysis resulted in an average of 1,01 (sfcal/sfregression) with a Coefficient of Variation 

(CoV) of 10%. This means that formula (5.5) gives a good approximation of the scale factor.  

The results of this regression model is shown below in Figure 37. The calculated shear capacity using the 

evaluation procedure from this research is named Vcal and calculated according to EC2 using bweff in EC2 

is called VEC2;new. The mean value of the adapted model using formula (5.4) for bweff is 1,11 (Vcal/VEC2), 

with a CoV of 18%. The standard Eurocode 2 approach (taking the minimum web width bw) has an 

average of 2,73 with a CoV of 16%. The model thus provides better results compared to the current 

approach.  

 

  
Figure 37: Distribution of Vcal/VEC2;new using formula (5.5) 
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However, in 23% of the cases this model leads to an overestimation of the shear capacity. This is a 

significant portion. Therefore, a lower limit value is sought. Figure 36 shows that a scale factor of 1,75 is 

a reasonable value as a lower limit. So, this means bweff = 1,75bw, resulting an average of 1,56 and CoV of 

16%, see figure below for the distribution. The limitations for this model are: 

 Only applicable for members within the ranges 0,20 ≤ bw/bf ≤ 0,60 and 0,15 ≤  hf/h ≤ 0,40. Outside 

these ranges, the formula may lead to incorrect results. 

 Only applicable for member with 0,4% ≤ ρs ≤ 2%. In case the reinforcement ratio is lower than 

0,4% flexural failure will be decisive. In case the reinforcement ratio is higher than 2% the height 

of the compression zone may change, leading to incorrect results. 

 Only valid for slender members where a/d ≥ 3. 

 

  
Figure 38: Distribution of Vcal/VEC2;new using bweff = 1,75bw 

 

For plates with holes with reinforcement ratio higher than 1%, but lower than 2% the following formula 

for the scale factor is determined using a regression analysis: 

 

𝑠𝑓 = 1,75 + 3
ℎ𝑓

ℎ
− 4,60

𝑏𝑤

𝑏𝑓
          (5.6) 

 

Limitations: 

 Formula (5.6) is only applicable for members within the ranges 0,20 ≤ bw/bf ≤ 0,60 and 0,15 ≤ hf/h 

≤ 0,40. Outside these ranges, the formula may lead to incorrect results. 

 Formula (5.6) is only applicable for member with reinforcement ratio between 1% and 2%. 

Reinforcement ratio higher than 2% may change the height of the compression zone, leading to 

incorrect results. 

 Formula (5.6) is only valid for slender members where a/d ≥ 3. 
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The results of this model are shown in Figure 39. The average of Vcal / VEC2;new for this model is 1,43 with 

a CoV of 7%. It also does not lead to an overestimation of the capacity and gives reasonably good results. 

It is also possible to use the model with bweff = 1,75bw for plates with holes 1% ≤ ρs ≤ 2%, but is compared 

to the regression model less accurate. 

 

  
Figure 39: Distribution of Vcal/VEC2;new using formula (5.6) 

 

I-beams: 

The same approach is also used for the I-beams and T-beams. For I-beams with reinforcement ratio lower 

than 1%, the following formula is determined using a regression analysis: 

 

𝑠𝑓 = 0,5 + 6,4
ℎ𝑓

ℎ
− 1,4

𝑏𝑤

𝑏𝑓
          (5.7) 

 

Limitations: 

 Formula (5.7) is only applicable for members within the ranges 0,10 ≤ bw/bf ≤ 0,50 and 0,15 ≤ hf/h 

≤ 0,40. Outside these ranges, the formula may lead to incorrect results. 

 Formula (5.7) is only applicable for member with reinforcement ratio lower than 1%, but not lower 

than 0,4%, because in these cases flexural failure will be decisive. 

 Formula (5.7) is based on the shear capacity with shear lag effect: bf;eff = 3bw. In formula (5.7) the 

full flange width bf should be used.  

 Formula (5.7) is only valid for slender I-beams where a/d ≥ 3 

 

For I-beams with 1% ≤ ρs ≤ 2% the following formula for the scale factor is determined using a regression 

analysis: 

 

𝑠𝑓 = 1,4 + 2,2
ℎ𝑓

ℎ
− 1,3

𝑏𝑤

𝑏𝑓
          (5.8) 
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Limitations: 

 Formula (5.8) is only applicable for members within the ranges 0,10 ≤ bw/bf ≤ 0,50 and 0,15 ≤ hf/h 

≤ 0,40. Outside these ranges, the formula may lead to incorrect results. 

 Formula (5.8) is only applicable for member 1% ≤ ρs ≤ 2%.Formula (5.8) is based on the shear 

capacity with shear lag effect: bf;eff = 3bw. In formula (5.8) the full flange width bf should be used.  

 Formula (5.8) is only valid for slender I-beams where a/d ≥ 3 

 

The results of both models are shown below. Formula (5.7) resulted in an average of 1,01 (sf;cal /sf;regression) 

and CoV of 16%. The model for I-beams with ρs < 1% has an average of 1,22 for Vcal / VEC2;new and CoV 

of 19%. However, this model leads to overestimation of the shear capacity in 14% of the cases. The 

standard Eurocode 2 approach has in this case an average of 1,92 with a CoV of 28%. 

 

Formula (5.8) has an average of 1,00 (sf;cal / sf;regression) and CoV of 13%. Using this formula in the 

Eurocode 2 for I-beams with 1% ≤ ρs ≤ 2%, the mean becomes 1,39 with a CoV of 14%. The model does 

not overestimate the shear capacity. The standard Eurocode 2 approach has in this case an average of 2,15 

with a CoV of 15%. 

 

  

  
Figure 40: Results of I-beams. Top: results EC2 with formula (5.7); bottom results EC2 with formula (5.8) 
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In addition, a simplified method for bweff for I-beams has also been developed. This is done because the 

model for I-beams with ρs < 1% overestimates the shear capacity and also that the capacity can be 

determined in a practical way in the engineering practice. It is basically a lower bound approach. Based on 

this applies: 

 

For I-beam with ρ < 1%: 𝑏𝑤𝑒𝑓𝑓 = 1,25𝑏𝑤   𝑖𝑓 
ℎ𝑓

ℎ
≤ 0,25       (5.8a) 

Otherwise: 𝑏𝑤𝑒𝑓𝑓 = 4,2
ℎ𝑓

ℎ
+ 0,2         (5.8b) 

 

For I-beam with 1% ≤ ρ ≤ 2%: 𝑏𝑤𝑒𝑓𝑓 = 1,35𝑏𝑤   𝑖𝑓 
ℎ𝑓

ℎ
≤ 0,25      (5.9a) 

Otherwise: 𝑏𝑤𝑒𝑓𝑓 = 3,5
ℎ𝑓

ℎ
+ 0,5         (5.9b) 

 

The same limitations as for formulas (5.7) and (5.8) apply.  

The results of these simplified models are shown below. Using formulas (5.8a) and (5.8b) in Eurocode 2 

the average gets 1,42 with a CoV of 20%. Model for I-beams with 1% ≤ ρs ≤ 2% has an average of 1,49 

and CoV of 9%. 

 

  

  

Figure 41: Simplified method for I-beams. Top: for ρ < 1%, Bottom: for 1% ≤ ρ ≤ 2% 
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It should be noted that for I-beams with 1% ≤ ρs ≤ 2% the approach with formula (5.8) leads to more 

accurate results compared to the simplified method. 

 

T-beams: 

According to the regression analysis, the relationship between scale factor and parameters bw/b and hf/h  

for T-beams could be described with: 

 

For ρ < 1%:  𝑠𝑓𝑇 = 0,5 + 5,6
ℎ𝑓

ℎ
− 1,2

𝑏𝑤

𝑏
        (5.10) 

For 1% ≤ ρ ≤ 2%: 𝑠𝑓𝑇 = 1,3 + 1,5
ℎ𝑓

ℎ
−

𝑏𝑤

𝑏
        (5.11) 

 

Limitations: 

 Formulas (5.10) and (5.11) are only applicable for members within the ranges 0,10 ≤ bw/bf ≤ 0,50 

and 0,15 ≤ hf/h ≤ 0,40. Outside these ranges, the formula may lead to incorrect results. 

 Formula (5.10) is only applicable for member with reinforcement ratio lower than 1%, but not 

lower than 0,4%, because in these cases flexural failure will be decisive. 

 Formula (5.11) is only applicable for member 1% ≤ ρs ≤ 2%.Formula (5.11) is based on the shear 

capacity with shear lag effect: bf;eff = 3bw. In formula (5.11) the full flange width bf should be used.  

 Formulas (5.10) and (5.11) are only valid for slender T-beams where a/d ≥ 3 

 

The results of both models are shown below. The model with formula (5.10) has an average of 1,21 for 

Vcal / VEC2;new and CoV of 19%. However, this model leads to overestimation of the shear capacity in 22% 

of the cases. The standard Eurocode 2 approach has in this case an average of 1,75 with a CoV of 27%. 

 

For T-beams with 1% ≤ ρs ≤ 2%, by using formula (5.11) the average becomes 1,43 with a CoV of 14%. 

Standard Eurocode approach results for these members to an average of 1,92 and a CoV of 18%. The 

model does not overestimate the shear capacity. 

 

  

0

50

100

150

200

250

0 50 100 150 200 250

V
E;

ca
l

[k
N

]

VEC2;new [kN]



 

76 

 

  
Figure 42: Results of T-beams. Top: results EC2 with formula (5.10); bottom results EC2 with formula (5.11) 

 

Because of the overestimation of the regression model for T-beams with ρs < 1% and to provide the 

engineering practice with a practical method, a simplified model for T-beams is developed. 

 

For T-beams with 0,4%  ≤ ρs ≤ 2% the effective width can be calculated by: 

 

𝑏𝑤𝑒𝑓𝑓 = 1,15𝑏𝑤   𝑖𝑓 
ℎ𝑓

ℎ
≤ 0,25          (5.12a) 

Otherwise: 𝑏𝑤𝑒𝑓𝑓 = 3,85
ℎ𝑓

ℎ
+ 0,19         (5.12b) 

 

The results of the simplified model for T-beams are shown below. The model has an average of 1,41 for 

Vcal / VEC2;new and CoV of 19% for members with ρs < 1%. In case of 1%  ≤ ρs ≤ 2% the model leads to an 

average of 1,58 with a CoV of 9%. 
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Figure 43: Results of T-beam with simplified method. Top: for ρ < 1%, Bottom: for 1% ≤ ρ ≤ 2% 

 

It should be noted that for T-beams with 1% ≤ ρs ≤ 2% the approach with formula (5.11) leads to more 

accurate results compared to the simplified method. 
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5.3 Comparison with tests from literature 

A literature review has been carried out on test results for reinforced plates with holes and I-beams. 

However, this has yielded little, because I-beams are generally used prestressed. No experimental research 

has been found for the plate with holes. One relevant study by Regan (2000) was found, in which five 

reinforced I-beams were tested. Three of these correspond to the typical cross-section adopted for plates 

with holes and the remaining are normal I-beams, see Figure 44. The results of this study will be compared 

with the test results. The geometry of the 5 members is shown in Table 6. 

 

Remark: member 14.5 is a T-beam 

 
Member 14.1 

 
Member 14.2 

 
Member 14.3 

 
Member 14.4 

 
Member 14.6 

 

Figure 44: Cross-section of the I-beams from experiment of Regan (2000) 

 
Table 6: Cross-sectional parameters from experiment of Regan (2000), where PWH = plate with holes 

Beam Type 
mvd  
[-] 

fc  
[MPa] 

bw 
[mm] 

bf 

[mm] 
hf 
[mm] 

h 
[mm] 

r 
[mm] 

d 
[mm] 

ρs 

[-] 
dr 
[-] 

n 
[-] 

14.1 PWH 4,9 21,1 45 250 47,5 300 102,5 276 0,0486 16 3 

14.2 Ibeam 4,9 19,2 45 250 50 300 - 276 0,0486 16 3 

14.3 PWH 4,9 24,1 45 200 72,5 300 77,5 276 0,0486 16 3 

14.4 PWH 5,2 25,2 95 300 47,5 300 102,5 276 0,023 16 3 

14.6 Ibeam 4,9 19,6 95 300 50 300 - 276 0,023 16 3 
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The reinforcement ratio of the beams from Table 6 is much higher than that of plates with holes. This has 

consequences for the height of the compression zone zc. As explained in section 4.1.3, a zc of 0,3d is assumed 

for the beams from Table 6. 

 

The comparison of the results is shown in Table 7. This shows that the evaluation procedure of this study 

predicts reasonable results, the calculated capacity is quite close to the test results. Only beam 14.3 is 

overestimated. However, the test result of beam 14.3 is questionable, because it is much smaller than beam 

14.1, while concrete strength is higher and the effective concrete area is even larger. This is against 

expectations. A possible reason for this may be another failure mechanism, which is not taken into account 

in this study. Regan has observed in his research that all beams failed in shear, but there was no visible 

flexural cracks or only very minor ones in the regions where the shear cracks formed. The starting point of 

this study, on the other hand, is that the critical shear crack originates from a flexural crack, which does not 

correspond with Regan’s observations in the tests. This could explain the overestimation of the model, 

because the beam failed before a crack could develop. 

Also the simplified method for bweff leads reasonable results, except for member 14.3.  

 
Table 7: Experimental results of Regan (2000) and calculated results 

Beam Type sf [-] Vu [kN] Vcal [kN] VEC2;new [kN] Vcal/Vu [-] VEC2;new/Vu [-] 

14.1 PWH 1,75 26,2 24,0 22,6 0,91 0,86 

14.2 Ibeam 1,35 21,2 20,2 16,9 0,95 0,80 

14.3 PWH 1,75 19,3 26,5 23,6 1,37 1,22 

14.4 PWH 1,75 42,5 33,5 39,4 0,79 0,93 

14.5 Tbeam 1,15 30,1 27,3 24,0 0,91 0,80 

14.6 Ibeam 1,35 37,5 30,4 28,0 0,81 0,75 

 

In addition, the test results for reinforced T-beams from literature were collected and compared with the 

results according to the evaluation procedure. The following test results are used: 5 from Regan45, 3 from 

Thamrin35, 4 from Palaskas49 and 16 from al-Alusi50. A total of 28 test results were therefore used for 

comparison of T-beams. The cross-sectional parameters and test results are included in annex III. The 

calculated shear capacity and the results of the tests are in good agreement.  

 

The comparison of all collected data with the calculated ones is shown on the next page. Top results from 

Figure 45 are the comparison of the calculated results with test results. This shows that the evaluation 

procedure for non-rectangular cross-sections gives reasonably accurate results. The mean of Vcal/Vu is 0,94 

and CoV is 16%.  

The bottom part of Figure 45 is the comparison of EC2 using the simplified bweff with test results. This 

model also predicts reasonably accurate results in comparison to the test results, where the mean is 0,79 

and CoV is 21%. Less consistent compared to the own model, but still acceptable. 
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Figure 45: Comparison of the calculated results with test results: top comparison calculated results with test results; 

bottom comparison EC2 results with bweff with test results 
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6. Conclusions and recommendations 

6.1 Conclusions 

The literature search has shown that there is a lack to knowledge regarding the shear capacity of non-

rectangular cross-sections of reinforced concrete without shear reinforcement. Therefore, the primary focus 

of this study was to address this knowledge gap by using Yang’s model as a starting point. The aim was to 

develop an evaluation procedure for non-rectangular cross-sections, by which the effective width for non-

rectangular cross-sections could be determined and possibly included in Eurocode 2. 

The evaluation procedure for rectangular cross-sections developed by Yang (2014) was adapted for plates 

with holes, I-beams and T-beams, which is used for the analysis. 

 

The study results emphasized the importance of the location of the neutral axis in determining the shear 

resistance and has provided insights into the compression zone for plates with holes, I-beams and T-beams. 

It was observed that for a reinforcement ratio of 0,4%, the compression zone is 0,2d when the neutral axis 

is in the flange and 0,25d otherwise, ensuring internal force balance. Similarly, for I-beams and T-beams 

the height of the compression zone is also 0,2d if the neutral axis is inside the flange and 0,3d when it is 

outside the flange.  

With thick flanges the neutral axis is in most cases inside the flange, while with thin flanges in the web. It 

was observed that thinner flanges resulted in lower shear capacity (approximately 60%) due to reduced 

aggregate interlock caused by a decrease in effective depth, crack height and the smaller width over the 

crack height. The width of the flange played a crucial role when the neutral axis was inside the flange, 

resulting in higher shear capacity. This is because, in this case, the top part of the major crack is in the 

flange, where the shear stresses due to aggregate interlock are the highest. The contribution of aggregate 

interlock is equal to shear stress multiplied by the member width along the crack height, resulting in a higher 

contribution when the neutral axis is in the flange. In addition, it has been found that the web width also has 

an important influence on the shear capacity. A smaller web width leads to a smaller capacity 

(approximately 22%), because the contribution of aggregate interlock decreases. 

 

Furthermore, the study investigated the added value of the bottom and top flanges by comparing the results 

of I-beams and T-beams. It was found that there is a slight difference (7%-13%) in the total shear capacity 

between I-beams and T-beams, with greatest differences for members with thick flanges. This is because 

the contribution of a thick lower flange is eliminated in case of T-beams. 

On the shear transfer action level, dowel action decreases due to the reduced net width of the web in T-

beams. Additionally, small differences were observed in aggregate interlock. Nevertheless, the impact of 

the bottom flange on the shear capacity of non-rectangular cross-sections was found to be minimal. 

Conversely, the top flange plays a crucial role, as the contribution of the compression zone completely 

depends on it. When the neutral axis is in the top flange, the aggregate interlock is strongly influenced by 

the width and thickness of the top compression flange. 
 

A comparison was made between the results of the modified evaluation procedure for non-rectangular cross-

sections and the shear capacity of the web only (rectangular cross-section) calculated using Yang’s model. 

Dividing these two results provided a scale factor on the web width, which can be used in the Eurocode 2 

to determine the shear capacity of non-rectangular cross-sections without shear reinforcement. This is 

necessary because Eurocode 2 only takes into account the smallest width of the cross-section, which leads 

to conservative results. The smallest differences of the shear capacity between the web-only and flange-

included scenarios were observed for members with thin flanges, while significant difference were found 

for thick flanges (where the neutral axis was in the flange). 
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The comparison between web-only scenario and web including flanges showed that the contribution of 

aggregate interlock to the shear capacity of non-rectangular cross-sections significantly increases when the 

neutral axis is in the flange. On the other hand, if the neutral axis is in the web, the contribution of aggregate 

interlock always increases for plates with holes due to the increasing width along the height and for I-beams 

slightly due to the involvement of the bottom flange. The contribution of the compression zone always 

increases in all cases because the area of the compression zone expands compared to the web-only scenario. 

However, most of the contribution comes from aggregate interlock varying between 45% to 85%.  

This comparison has shown that for plates with holes the effective web width could be determined by  

bweff = 1,75bw. For I-beams with ρs < 1%, the effective web width is equal to 1,25bw if hf/h ≤ 0,25 otherwise 

4,2hf/h + 0,2. In case of a reinforcement ratio of 1% ≤ ρs ≤ 2% the effective web width of I-beams becomes 

1,35bw if hf/h ≤ 0,25, otherwise 3,5hf/h + 0,5. For T-beams the effective web width could be determined by 

1,15bw. The general limitations of these models are: 

 Only applicable for members within the ranges 0,20 ≤ bw/bf ≤ 0,60 for plates with holes; 0,10 ≤ 

bw/bf ≤ 0,50 for I/T-beams and 0,15 ≤ hf/h ≤ 0,40 for all members;  

 Only applicable for member with reinforcement ratio between 0,4% and 2%; 

 Only valid for slender members where a/d ≥ 3. 

 

The study also conducted a literature review of test results for reinforced plates with holes, I-beams and T-

beams. Limited information was available regarding plates with holes and experimental research on I-beams 

primarily focussed on prestressed applications. However, one relevant study by Regan (2000) was found to 

compare the results of the evaluation procedure with test results. In addition, the test results for reinforced 

T-beams from literature were collected and compared with the results according to the evaluation procedure.  

In short, an extensive comparison of all collected data width the calculated values showed that the evaluation 

procedure for non-rectangular cross-sections gave reasonably accurate results. The average ratio of 

calculated shear capacity (Vcal) to measured ultimate shear capacity during tests (Vu) was 0,94, with a 

Coefficient of Variation of 16%. In comparison, using the simplified effective web width bweff approach 

with EC2, the results also showed reasonable accuracy, with an average ratio of 0,79 and a CoV of 21%. 

Although slightly less consistent compared to the developed model, these results are still considered 

acceptable. 

 

6.2 Recommendations 

1. Conduct additional tests on reinforced I-beams and plates with holes: These tests can help verify the 

accuracy of the model for these type of cross-sections better and provide valuable insights into the 

behaviour and shear capacity of such members. Also because Regan’s research probably revealed 

another failure mechanism. 

2. Investigate dowel action: The study by Autrup et al. (2020) highlighted the inaccuracies in the dowel 

cracking load prediction using the method applied in this research (method of Baumann and Rüsch). 

Therefore, it is recommended to investigate the phenomenon of dowel action and explore alternative 

methods or approaches that can accurately predict the dowel force in reinforced members without 

shear reinforcement. Also, it is not known where in the cross-section the dowel crack will occur in 

a plate with holes. This research will contribute to a better understanding of the structural behaviour 

and shear capacity. 

3. Explore shear capacity of prestressed non-rectangular cross-sections: The research conducted so far 

has primarily focused on reinforced non-rectangular members. To broaden the knowledge base, it is 

proposed to investigate the shear capacity of prestressed non-rectangular cross-sections. This 
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research can provide insight into the behaviour of such members under shear loading and help 

develop design guidelines specific to prestressed non-rectangular members. 

4. Extend the model for other types of loads: In this study, the model developed focussed on analysing 

the shear capacity of non-rectangular members without shear reinforcement under point loading. It 

is recommended to extend the model to other types of loads, such as distributed loads. By 

considering different loading scenarios, the model’s applicability can be expanded, providing a tool 

for the engineering practice to evaluate the shear capacity of non-rectangular members in various 

structures. 

5. Explore the influence of rebar configuration on the shear capacity. There are few insights into the 

mechanism how rebar configuration influences shear capacity. With this research, the behaviour can 

be better understood. 

 

Pursuing these research recommendations will enable further progress in understanding and predicting the 

shear capacity of reinforced non-rectangular elements, contribution to the development of more precise 

design guidelines and improving the structural performance of such elements. With the current knowledge 

it is possible to make a lower bound approximation of the shear capacity of reinforced non-rectangular 

cross-sections without shear reinforcement, but with the help of the studies listed above it may be possible 

to improve and refine this lower bound. 
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Annex I 

Layer model 

 
In this annex the layer model to determine the grade of fullness is shown. 

 

 

The theory of Jourawski is used to determine the shear stress: 

 

𝜏 =  
𝑉𝑆

𝑏𝐼
 

 

where: 

V is the shear force in N 

S is the statical moment of the area 

I is the moment of ineartia of the entire cross-section 

b is the web width at the neutral axis 

 

The shear stress has been determined for different heights in the cross-section using the formula above, 

where the height of a layer is 5mm. Because the layer height is so small, it is possible to approach it as a 

rectangular cross-section. Based on this assumption, the required parameters are determined as follows: 

 

∆𝐴𝑖 =  (ℎ𝑖−ℎ𝑖−1)
𝑏𝑤 + 𝑏𝑤−1

2
 

 

𝐴𝑖 = 𝐴𝑖−1 + ∆𝐴𝑖 
 

𝑧𝑖 =
∆𝐴𝑖 (ℎ𝑖−1 +

ℎ𝑖 − ℎ𝑖−1

2 ) + 𝐴𝑖−1𝑧𝑖−1

𝐴𝑖
 

 

𝑆𝑖 = 𝐴𝑖(𝑧𝑐 − 𝑧𝑖) 

 

𝐼𝑖 =
1

12

𝑏𝑖 + 𝑏𝑖−1

2
(ℎ𝑖 − ℎ𝑖−1)3 + ∆𝐴𝑖(𝑧𝑐 − (ℎ𝑖−1 +

ℎ𝑖 − ℎ𝑖−1

2
))2 + 𝐼𝑖−1 

 

𝑉 = (ℎ𝑖 − ℎ𝑖−1) ∗
𝑏𝑖+𝑏𝑖−1

2

𝜏𝑖+𝑡𝑖−1

2
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Plate with holes         

Beam parameters          
b 600           
hf 100           
              
              
bw 200           
hw 400           
h 600           
D 400           
Ratio 
hf/h 0,17           
            
            
Unit shear force: V =  100 kN     
Concrete cover c =   30 mm     
Rebar diameter dr =  20 mm     
Effective depth d =  560 mm     
Height of the compression zone: zc = 0,2d = 112 mm     
Internal lever arm z =  504 mm     
            
            

Layer 
hi 
[mm] 

ΔAi 
[mm2] 

Ai 
[mm2] 

zi 
[mm] 

Si 
[mm3] 

bi [mm] Ii [mm4] τi [MPa] 
τ x b 

[N/mm] 
V [N] 

 
1 0 0 0 0 0 600 0,00E+00 0 0    
2 5 3000 3000 3 328500 600 3,60E+07 0,10 58 146  
3 10 3000 6000 5 642000 600 6,87E+07 0,19 114 432  
4 15 3000 9000 8 940500 600 9,85E+07 0,28 167 704  
5 20 3000 12000 10 1224000 600 1,25E+08 0,36 218 963  
6 25 3000 15000 13 1492500 600 1,49E+08 0,44 266 1209  
7 30 3000 18000 15 1746000 600 1,71E+08 0,52 311 1441  
8 35 3000 21000 18 1984500 600 1,90E+08 0,59 353 1660  
9 40 3000 24000 20 2208000 600 2,06E+08 0,65 393 1865  

10 45 3000 27000 23 2416500 600 2,21E+08 0,72 430 2058  
11 50 3000 30000 25 2610000 600 2,33E+08 0,77 464 2236  
12 55 3000 33000 28 2788500 600 2,44E+08 0,83 496 2402  
13 60 3000 36000 30 2952000 600 2,53E+08 0,88 525 2554  
14 65 3000 39000 33 3100500 600 2,60E+08 0,92 552 2693  
15 70 3000 42000 35 3234000 600 2,66E+08 0,96 576 2818  
16 75 3000 45000 38 3352500 600 2,71E+08 0,99 597 2930  
17 80 3000 48000 40 3456000 600 2,74E+08 1,03 615 3029  
18 85 3000 51000 43 3544500 600 2,77E+08 1,05 631 3115  
19 90 3000 54000 45 3618000 600 2,79E+08 1,07 644 3187  
20 95 3000 57000 48 3676500 600 2,80E+08 1,09 654 3245  
21 100 3000 60000 50 3720000 600 2,81E+08 1,10 662 3291  
22 105 2778 62778 52 3746389 511 2,81E+08 1,30 667 3344  
23 110 2466 65243 54 3757484 475 2,81E+08 1,41 669 3343  
24 112 939 66182 55 3758423 464 2,81E+08 1,44 669 1338  
25 112 0 66182 55 3758423 464 2,81E+08 1,44 669 0  
26   66181,97         5,62E+08        

        Vc =  50,00 kN 

            

Grade of fullness 
 

 

      
α = = 0,67     
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Comparison with only web (rectangular cross-section):   
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Annex II 

Matlab Code 

 
In this annex the Matlab scripts wherein the evaluation procedure is integrated for plates with holes, I-beams 

and T-beams are shown. For rectangular cross-sections, see PhD Thesis Yang (2014). 

 

Plates with holes: 
function [V, Vdw, Vai, Vc] = Vm(mvd, da, fc, bw, h, dr, hf, b, r, rho) 
global Es Ec 
Es = 210000; % elastic modules of steel in MPa 
Ec = 40000; % elastic modules of concrete in MPa, only effecting the 
% crack height calculation, thus a rough estimation is sufficient. 
ne = Es/Ec; % ratio between Es and Ec for crack height calculation 
d = 0.9*h; %rough estimation of the effective height 
Ac = b*h-(pi*r^2)-(h-d)*b; % effective concrete area 
As = rho*Ac; %reinforcement area appr. 0,4% for plates 
delta = min((3.3555e-5.*d+.005), .025);%critical shear displacement 
if rho<0.01 
    if hf<= 0.25*d %height of the compression zone 
        zc = 0.25*d; 
    else 
        zc = 0.2*d;  
    end 
 
else 
    if hf<= 0.35*d %height of the compression zone 
        zc = 0.35*d; 
    else 
        zc = 0.3*d;  
    end 
end 
scr = d-zc; % major crack height 
lcrm = scr./1.28; % average crack spacing of major cracks 
z = (2*d + scr)/3; % internal level arm 
V1 = 1.5*d*bw; % first guess of shear resistance 
V0 = 0; count = 0; % initiation of iteration 
while abs(V0-V1) > 10 
M0 = V1*d*mvd; % cross sectional moment 
w = M0/z/As/Es*lcrm; % estimation of average crack width 
V0 = V1; 
Vdw = V_dw(bw, fc, dr, b); %dowel action 
Vai = V_ai(delta, w, da, scr, fc, hf, b, r, h, d); % aggregate interlock 
Vc = V_c(z, d, V0); % shear force in compression zone 
V1 = Vai + Vc + Vdw; % summation of total shear force 
V = V1; 
if count == 1000 % maximum iteration number is 100 
    disp("Calculation didn't converge") 
break 
end 
count = count+1; 
end 
end 
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%------------------------------------------------------------------------ 
function Vai = V_ai(delta, w, da, scr, fc, hf, b, r, h, d) 
% shear resistance contributed by aggregate interlock, based on eq..(4.13) 
w0 = 0.01; % crack width at crack tip 
dw = (w0-w)/100; % increment of crack width in the linear crack profile 
CrackProfile = (w: dw: w0); % crack profile, divided into 100 sections 
n = numel(CrackProfile); 
L = scr/n; 
fc = min(fc,60); % limitation for high strength concrete 
tau = zeros(size(CrackProfile)); 
bwi = zeros(size(CrackProfile)); 
for l = 1:n 
    hL = l * L; 
[~,tau(l)]=AI_walraven(CrackProfile(l), delta, da, fc); 
% Walraven's aggregate interlocking formula 
    if hL<=(hf-0.1*h) 
        bwi(l)=b; 
    elseif hL>=(d-hf) 
        bwi(l)=b; 
    elseif hL>(hf-0.1*h) 
        bwi(l)=abs(b-2*sqrt((r^2)-((hL+0.1*h)-hf-r)^2)); 
    end 
%Adding the term of bwi 
end 
Vai = -sum(tau.*bwi.*L); 
end 
 
%------------------------------------------------------------------------ 
function Vdw = V_dw(bw, fc, dr, b) 
% maximum dowel action force, based on eq..(4.17) 
Vdw = 1.64*min((bw*1.25),b-3*dr)*dr*(fc).^.333; 
end 
 
%------------------------------------------------------------------------ 
function Vc = V_c(z, d, V) 
% shear force contrition in compression zone, based on eq..(4.3) 
Vc = 2*(d-z)/z*V; 
end 
 
%======================================================================== 
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I-beams: 
function [V, Vdw, Vai, Vc] = Vm(mvd, da, fc, bw, h, dr, hf, b, rho) 
global Es Ec 
Es = 210000; % elastic modules of steel in MPa 
Ec = 40000; % elastic modules of concrete in MPa, only effecting the 
% crack height calculation, thus a rough estimation is sufficient. 
ne = Es/Ec; % ratio between Es and Ec for crack height calculation 
d = 0.9*h; %rough estimation of the effective height 
Ac = 2*b*hf+(h-2*hf)*bw-(h-d)*b; % effective concrete area 
As = rho*Ac; %reinforcement area  
delta = min((3.3555e-5.*d+.005), .025); %critical shear displacement 
if rho<0.01 
    if hf<= 0.3*d %height of the compression zone 
        zc = 0.3*d; 
    else 
        zc = 0.2*d;  
    end 
 
else 
    if hf<= 0.4*d %height of the compression zone 
        zc = 0.4*d; 
    else 
        zc = 0.3*d;  
   
    end 
end 
scr = d-zc; % major crack height 
lcrm = scr./1.28; % average crack spacing of major cracks 
z = (2*d + scr)/3; % internal level arm 
V1 = 1.5*d*bw; % first guess of shear resistance 
V0 = 0; count = 0; % initiation of iteration 
while abs(V0-V1) > 10 
M0 = V1*d*mvd; % cross sectional moment 
w = M0/z/As/Es*lcrm; % estimation of average crack width 
V0 = V1; 
Vdw = V_dw(bw, fc, dr, b); %dowel action 
Vai = V_ai(delta, w, da, scr, fc, hf, b, bw, h, d); % aggregate interlock 
Vc = V_c(z, d, V0, hf, rho); % shear force in compression zone 
V1 = Vai + Vc + Vdw; % summation of total shear force 
V = V1; 
if count == 1000 % maximum iteration number is 100 
    disp("Calculation didn't converge") 
break 
end 
count = count+1; 
end 
end 
 
%------------------------------------------------------------------------ 
function Vai = V_ai(delta, w, da, scr, fc, hf, b, bw, h, d) 
% shear resistance contributed by aggregate interlock, based on eq..(4.14) 
w0 = 0.01; % crack width at crack tip 
dw = (w0-w)/100; % increment of crack width in the linear crack profile 
CrackProfile = (w: dw: w0); % crack profile, divided into 100 sections 
n = numel(CrackProfile); 
L = scr/n; 
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fc = min(fc,60); % limitation for high strength concrete 
tau = zeros(size(CrackProfile)); 
bwi = zeros(size(CrackProfile)); 
for l = 1:n 
    hL = l * L; 
[~,tau(l)]=AI_walraven(CrackProfile(l), delta, da, fc); 
% Walraven's aggregate interlocking formula 
    if hL<=(hf-0.1*h) 
        bwi(l)=b; 
    elseif hL>=(d-hf) 
        bwi(l)=b; 
    else 
        bwi(l)=bw; 
    end 
%Adding the term of bwi 
end 
Vai = -sum(tau.*bwi.*L); 
end 
 
%------------------------------------------------------------------------ 
function Vdw = V_dw(bw, fc, dr, b) 
% maximum dowel action force, based on eq..(4.16) 
Vdw = 1.64*min(bw,b-3*dr)*dr*(fc).^.333; 
 
end 
 
%------------------------------------------------------------------------ 
function Vc = V_c(z, d, V, hf, rho) 
% shear force contrition in compression zone, based on eq..(4.7) 
if rho<0.01 
    if hf<= 0.3*d %height of the compression zone 
        zc = 0.3*d; 
    else 
        zc = 0.2*d;  
    end 
 
else 
    if hf<= 0.4*d %height of the compression zone 
        zc = 0.4*d; 
    else 
        zc = 0.3*d;  
    end 
end 
 
if hf>=zc 
    Vc = 2*(d-z)/z*V; %compression zone if neutral axis is in de flange 
else 
    Vc = (3/4)*(zc/z)*V;%compression zone if neutal axis is below hf 
end 
end 
 
%======================================================================== 
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T-beams: 
function [V, Vdw, Vai, Vc] = Vm(mvd, da, fc, bw, h, dr, hf, b, rho) 
global Es Ec 
Es = 210000; % elastic modules of steel in MPa 
Ec = 40000; % elastic modules of concrete in MPa, only effecting the 
% crack height calculation, thus a rough estimation is sufficient. 
ne = Es/Ec; % ratio between Es and Ec for crack height calculation 
d = 0.9*h; %rough estimation of the effective height 
Ac = b*hf+(h-hf)*bw-(h-d)*bw; % effective concrete area 
As = rho*Ac; %reinforcement area 
delta = min((3.3555e-5.*d+.005), .025); %critical shear displacement 
if rho<0.01 
    if hf<= 0.3*d %height of the compression zone 
        zc = 0.3*d; 
    else 
        zc = 0.2*d;  
    end 
 
else 
    if hf<= 0.4*d %height of the compression zone 
        zc = 0.4*d; 
    else 
        zc = 0.3*d;  
    end 
end 
scr = d-zc; % major crack height 
lcrm = scr./1.28; % average crack spacing of major cracks 
z = (2*d + scr)/3; % internal level arm 
V1 = 1.5*d*bw; % first guess of shear resistance 
V0 = 0; count = 0; % initiation of iteration 
while abs(V0-V1) > 10 
M0 = V1*d*mvd; % cross sectional moment 
w = M0/z/As/Es*lcrm; % estimation of average crack width eq..(4.8) 
V0 = V1; 
Vdw = V_dw(bw, fc, dr, As); %dowel action 
Vai = V_ai(delta, w, da, scr, fc, hf, b, bw, h, d); % aggregate interlock 
Vc = V_c(z, d, V0, hf, rho); % shear force in compression zone 
V1 = Vai + Vc + Vdw; % summation of total shear force 
V = V1; 
if count == 100 % maximum iteration number is 100 
    disp("Calculation didn't converge") 
break 
end 
count = count+1; 
end 
end 
 
%------------------------------------------------------------------------ 
function Vai = V_ai(delta, w, da, scr, fc, hf, b, bw, h, d) 
% shear resistance contributed by aggregate interlock, based on eq..(4.14) 
w0 = 0.01; % crack width at crack tip 
dw = (w0-w)/100; % increment of crack width in the linear crack profile 
CrackProfile = (w: dw: w0); % crack profile, divided into 100 sections 
n = numel(CrackProfile); 
L = scr/n; 
fc = min(fc,60); % limitation for high strength concrete 
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tau = zeros(size(CrackProfile)); 
bwi = zeros(size(CrackProfile)); 
for l = 1:n 
    hL = l * L; 
[~,tau(l)]=AI_walraven(CrackProfile(l), delta, da, fc); 
% Walraven's aggregate interlocking formula eq..(3.30) 
    if hL>=(d-hf) 
        bwi(l)=b; 
    else 
        bwi(l)=bw; 
    end 
%Adding the term of bwi 
end 
Vai = -sum(tau.*bwi.*L); 
end 
 
%------------------------------------------------------------------------ 
function Vdw = V_dw(bw, fc, dr, As) 
% maximum dowel action force, based on eq..(4.15) 
n = As/(pi*(dr/2)^2); 
if ceil(n) <= 3 
    br = dr * ceil(n); 
elseif ceil(n)>= 4 
    br = dr * 3; 
end 
Vdw = 1.64*(bw-br)*dr*(fc).^.333; 
 
end 
 
%------------------------------------------------------------------------ 
function Vc = V_c(z, d, V, hf,rho) 
% shear force contrition in compression zone, based on eq..(4.7) 
if rho<0.01 
    if hf<= 0.3*d %height of the compression zone 
        zc = 0.3*d; 
    else 
        zc = 0.2*d;  
    end 
 
else 
    if hf<= 0.4*d %height of the compression zone 
        zc = 0.4*d; 
    else 
        zc = 0.3*d;  
    end 
end 
 
if hf>=zc 
    Vc = 2*(d-z)/z*V; %compression zone if neutral axis is in de flange 
else 
 
    Vc = (3/4)*(zc/z)*V; %compression zone if neutal axis is below hf 
 
end 
end 
%========================================================================  
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Annex III 

Shear Database 
 

In this annex the collected test results from literature are shown. In total 32 tests found and used during this 

study. The data is selected considering the following criteria: 

 

 Ratio of shear slenderness divided by the effective depth a/d should be bigger than 2,5 

 Reinforced non-rectangular cross-sections, especially plates with holes, I-beams and T-beams 

 

 

The model predicts accurate results, with an average of 0,94 and Coefficient of Variation of  16%. The 

calculations according to EC2 assuming bweff also gives a good match with the test results. The average of 

this model is 0,79 and CoV is 21%.
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Reference Beam Type 
mvd  
[-] 

fc 

[Mpa] 
bw 

[mm] 
bf 
[mm] 

hf 
[mm] 

h  
[mm] 

r  
[mm] 

d  
[mm] 

ρs  
[-] 

n  
[-] 

Ac 
[mm2] 

As 
[mm2] 

bw/bf  

[-] 
hf/h  
[-] 

sf  
[-] 

dr 
[mm] 

da 
[mm] 

Vu  

[kN] 
Vcal 

[kN] 
VEC2;new 

[kN] 
Vcal/Vu 

[-] 
VEC2;new/Vu 

[-] 

R
eg

an
 

14.1 PWH 4,9 21,1 45 250 47,5 300 102,5 276 0,0486 3 35994 604 0,18 0,16 1,75 16 20 26,2 24,0 22,6 0,91 0,86 

14.2 Ibeam 4,9 19,2 45 250 50 300 - 276 0,0486 3 28000 604 0,18 0,17 1,35 16 20 21,2 20,2 16,9 0,95 0,80 

14.3 PWH 4,9 24,1 45 200 72,5 300 77,5 276 0,0486 3 36331 604 0,23 0,24 1,75 16 20 19,3 26,5 23,6 1,37 1,22 

14.4 PWH 5,2 25,2 95 300 47,5 300 102,5 276 0,023 3 49794 603 0,32 0,16 1,75 16 20 42,5 33,5 39,4 0,79 0,93 

14.5 Tbeam 4,9 21,4 95 300 50 300 - 262 0,0242 2 35140 602 0,32 0,17 1,15 16 20 30,1 27,3 24,0 0,91 0,80 

14.6 Ibeam 4,9 19,6 95 300 50 300 - 276 0,023 3 41800 961 0,32 0,17 1,35 20 20 37,5 30,4 28,0 0,81 0,75 

1.2 Tbeam 2,62 32 200 400 75 300 - 264 0,012 2 67800 804 0,50 0,25 1,15 16 20 84 71,1 45,8 0,85 0,55 

1.3 Tbeam 2,62 31,2 200 400 75 300 - 264 0,012 2 67800 804 0,50 0,25 1,15 16 20 80 70,6 45,4 0,88 0,57 

1.4 Tbeam 2,7 28,1 200 400 75 300 - 272 0,006 2 69400 402 0,50 0,25 1,15 16 20 75 53,0 35,3 0,71 0,47 

1.6 Tbeam 2,7 28,7 100 400 75 300 - 272 0,008 2 49700 402 0,25 0,25 1,15 16 20 45 34,3 19,9 0,76 0,44 

Th
am

ri
n

 

T-01E Tbeam 3,7 32 125 250 70 250 - 219 0,010 2 36125 265 0,50 0,28 1,27 13 20 36,6 33,6 25,9 0,92 0,71 

T-02E Tbeam 3,7 32 125 250 70 250 - 219 0,015 3 36125 398 0,50 0,28 1,27 13 20 38,5 32,2 29,6 0,84 0,77 

T-03E Tbeam 3,8 32 125 250 70 250 - 212 0,025 3 35250 664 0,50 0,28 1,27 13 20 47,5 39,6 34,2 0,83 0,72 

P
al

as
ka

s No2 Tbeam 4,14 32,8 191 610 102 457 - 374 0,007 3 114172 494 0,31 0,22 1,15 13 19 72,38 53,0 48,3 0,73 0,67 

A00 Tbeam 3,92 32,7 191 610 102 457 - 395 0,007 3 118183 494 0,31 0,22 1,15 13 19 64,98 55,3 49,5 0,85 0,76 

B00 Tbeam 3,88 32 191 610 102 457 - 399 0,005 3 118947 371 0,31 0,22 1,15 11 19 71,42 48,4 44,9 0,68 0,63 

C00 Tbeam 3,96 29,4 191 610 102 457 - 391 0,009 3 117419 703 0,31 0,22 1,15 15 19 59,28 62,0 53,5 1,05 0,90 

A
l-

A
lu

si
 

11 Tbeam 3,32 29 76 330 32 146 - 127 0,026 2 17741,9 255 0,23 0,22 1,15 13 6 17,4 17,5 12,7 1,00 0,73 

2 Tbeam 3,45 28 76 330 32 146 - 127 0,015 2 17741,9 142 0,23 0,22 1,15 10 6 14,4 12,9 10,4 0,90 0,72 

3 Tbeam 4 27 76 330 32 146 - 127 0,015 2 17741,9 144 0,23 0,22 1,15 10 6 14,3 12,1 10,3 0,84 0,72 

10 Tbeam 4 29 76 330 32 146 - 127 0,027 2 17741,9 261 0,23 0,22 1,15 13 6 14,7 16,3 12,8 1,10 0,87 

4 Tbeam 4,01 27 76 330 32 146 - 127 0,015 2 17741,9 145 0,23 0,22 1,15 10 6 13,9 12,1 10,3 0,87 0,74 

13 Tbeam 4,02 29 76 330 32 146 - 127 0,027 2 17741,9 263 0,23 0,22 1,15 13 6 17,0 16,3 12,9 0,96 0,76 

18 Tbeam 4,39 27 76 330 32 146 - 127 0,027 2 17741,9 256 0,23 0,22 1,15 13 6 14,0 15,2 12,5 1,08 0,89 

7 Tbeam 4,5 25 76 330 32 146 - 127 0,027 2 17741,9 262 0,23 0,22 1,15 13 6 13,5 14,8 12,3 1,10 0,91 

24 Tbeam 4,51 28 76 330 32 146 - 127 0,027 2 17741,9 262 0,23 0,22 1,15 13 6 15,4 15,3 12,8 0,99 0,83 

17 Tbeam 5,36 30 76 330 32 146 - 127 0,027 2 17741,9 256 0,23 0,22 1,15 13 6 13,8 14,4 12,9 1,04 0,93 

8 Tbeam 5,5 26 76 330 32 146 - 127 0,027 2 17741,9 262 0,23 0,22 1,15 13 6 13,4 13,8 12,5 1,03 0,93 

19 Tbeam 5,5 31 76 330 32 146 - 127 0,042 2 17741,9 407 0,23 0,22 1,15 16 6 14,0 17,7 15,2 1,26 1,09 

25 Tbeam 5,79 26 76 330 32 146 - 127 0,029 2 17741,9 276 0,23 0,22 1,15 13 6 13,5 13,8 12,6 1,02 0,93 

9 Tbeam 6,5 32 76 330 32 146 - 127 0,027 2 17741,9 262 0,23 0,22 1,15 13 6 14,1 13,7 13,3 0,97 0,94 

20 Tbeam 6,54 27 76 330 32 146 - 127 0,042 2 17741,9 407 0,23 0,22 1,15 16 6 15,0 15,8 14,6 1,05 0,98 

23 Tbeam 7,76 28 76 330 32 146 - 127 0,044 2 17741,9 426 0,23 0,22 1,15 16 6 14,0 15,2 15,0 1,08 1,07 

 

 

 


