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Summary

Cracking is inherent in design of reinforced concrete, and it influences the structure’s durability
and its appearance. If the cracks are too wide, the structure might not fulfill requirements with
regard to durability and serviceability e.g. liquid tightness. Therefore a good design and detailing
of a structure should be made to limit crack widths. But unexpected cracking might occur.

Many factors influence the cracking behavior of concrete structures: Cracks can not only be
caused by imposed loads, but also by (partially) restrained imposed deformations. In the latter case
there is an interaction between the forces generated and the stiffness of the structure, which is
influenced by the cracking behavior: the more the stiffness is reduced by cracking, the lower the
forces. It is difficult to make a design in which all influencing factors are taken into account. So,
when structural modeling imposed deformations, engineers often reduce the uncracked stiffness
when modeling the structure and designing the reinforcement. The question arises which reduction
factor to use. In practice, Young’s modulus is often reduced to 1/3 of its original value. Answering
the question whether this is a suitable value is the main goal of the research.

The research focused on basic theories on cracking behavior. The tension stiffening law is used
and it is researched from micro size to macro size, from cross-section to system, from effect to
action. Finally, an appropriate stiffness reduction value is obtained. The procedure is:

1. By using the cross section stress balance, the accurate compression zone height will be
obtained under both axial force and bending moment.

2. The elastic modulus is an important parameter related to the moment caused by restrained
deformation. After the compression zone height is obtained, by using the Tension Stiffening
Law, the Elastic Modulus in the crack is calculated.

3. After transferring the cross sectional stiffness into system stiffness, the accurate moment —

curvature curve and the design mean stiffness are obtained.

The design mean stiffness is not constant for different loading combinations. It is larger than one
third of the uncracked stiffness when there is a tensile axial force and a high positive temperature
gradient. On the other hand, the design mean stiffness might also be less than one third of
uncracked stiffness. There is no difference for the loading sequence. That means that whether
external loading or restrained deformation is applied first, the results will be same at the final state.
After cracking, the non-linear response of the member investigated will influence the bending
moment distribution. As a result, the bending moment in a cross-section is not only influenced by
external loading and restrained deformation, but also by the stiffness distribution over the length
of the member.

It is not suitable for engineers to always use one third of the uncracked stiffness to design the
reinforcement since they might then underestimate the forces caused by the temperature gradient:
It will be higher when there is an axial tensile force in combination with a high positive
temperature gradient. A program to obtain the accurate value of the stiffness of a clamped beam is
developed. This will help engineers to prepare a more accurate structural model.
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CHAPTER 1

GENERAL INTRODUCTION
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1.1 Introduction

Nowadays, concrete is one of the most important construction materials in the world.
Concrete projects are distributed in many fields, such as buildings, tunnels, bridges and so
on. Concrete is a kind of construction material with high compressive strength and a good
durability, but a relatively low tensile strength. The tensile strength of concrete is much
lower than its compressive strength. Cracks might occur in concrete at a low tensile stress.

Cracking is inherent in design of reinforced concrete. These cracks might influence the
structure’s durability and its appearance. If the cracks are too wide, the structure might not
fulfill requirements with regard to durability and service ability e.g. liquid tightness.
Therefore a good design and detailing of a structure should be made to limit crack widths.

Fig. 1-1 Cracks in a concrete structure

1.2 Problem description

&

In order to prevent the failure of a structure caused by cracking, a good understanding of
cracking is required. Usually, cracks which have small width will not or hardly affect the
structure. The crack width should therefore be controlled under a limit level.

Unexpected or excessive cracking might occur. An example is the new cast wall which is
restrained at both sides at early age when there is no external loading on it. But still some
cracks might occur as shown in Fig.1-2. The design of the wall is ok with regard to ULS
design, but why are there some cracks? What is the reason for the formation of these
cracks? Might these cracks influence the durability of the structure? How to model these
cracks with the cracks together caused by the other actions?

Van Hattum en Blankevoort 2 'ﬁj
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Fig.1-2 Early age cracking on concrete structure

Generally, cracking can be caused by various kinds of reasons, such as external loading,
restrained deformation, creep and so on. External loading and restrained deformation
always are the main reasons of cracking. But codes often deal extensively with the first
category which is the external loading, whereas the second category is hardly dealt with.
Therefore, cracking caused by restrained deformation might be ignored by using codes to
design. The cracking in the Fig.1-2 mostly is caused by the restrained deformation. Or
cracks might be caused by a combination of external loading and restrained deformation.
The key point is how to calculate the stiffness, for the stiffness is used to transfer a
restrained deformation from an action to an effect on the structure. Before cracking, the
stiffness will be constant as the stiffness of the uncracked cross-section, but if the
concrete is cracked by external loading or restrained deformation, the stiffness of the
structure also change. The stiffness will decrease as the cracking increases.

1.3 Goal of the research

&

The goal of this research is to find an expression of the structural crack width calculation
for cracking caused by different action combinations in different structures, such as
combinations of external loading and thermal deformation, or external moment and
imposed curvature. There might be a difference in the order of the actions that occurred.
So what is the difference between the imposed deformation first and the external loading
first? Is there also any difference when an imposed deformation and an external load
occur together?

Firstly cracking caused by an individual action should be investigated. After this, there is
a problem about how to combine the individual actions. In order to solve the problem of
action combination, the stiffness of the structure should be calculated exactly. Also the
conversion from the structure action to the cross-sectional effect is another important
point.

Van Hattum en Blankevoort 3 'ﬁj
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1.4 Research outline

Understand the background and
define the aim of the master thesis

Literature reading and Codes
cooperation

Focus on the cross-section
calculation

Focus on one element and structure
calculation

Use the method in calculation of
some actual projects

Fig. 1-3 Outline of the research
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CHAPTER 2

LITERATURES SURVEY
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In the literatures survey chapter ,the main contents will be presented as two parts: “crack
width calculation in different codes” and “theoretical model for the calculation the crack
width”.

The literature study on comparison with different codes includes four different codes to
calculate the crack width.

® Dutch Code

® Furocode

® American Code

® Chinese Code

The literature study on theoretical models is divided into four parts:
® [ntroduction of crack width control
® (auses of crack formation
® Crack combinations
® Height of compression zone
® (Continuous theory to determine crack widths

2.1 Different codes in calculation crack

Nowadays, in an actual project, the crack width has always been calculated by following
a Code. But there are differences between different codes, which depend on their different
theories. Four different codes will be compared, namely the Dutch Code, EuroCode,
American Code and Chinese Code.

In these codes, the theories for the calculation of crack width are not totally the same.
Mostly, the equations are found by an empirical equation or a semi-theoretical and
semi-empirical equation. Crack width control based on steel stress and bar
diameter/spacing is derived from crack width equations, so their basis is the same in
different codes. But the calculation methods or criteria in different code have a little
difference. For example, in the American code the crack width will be controlled by
controlling the reinforcement stress or bar spacing. In the Chinese code it will be
controlled by calculating the crack width and comparing with the maximum width. In the
Eurocode both methods are mentioned. For these two methods, the basic theory is the
same. If the maximum crack width is substituted into the equation of the crack width
calculation, the maximum steel stress will be obtained. So crack width control might be

transferred into steel stress control which is much easier for an engineer to use.
2.1.1 Crack width calculation equations and comparison
In the Eurocode 1992-1-1 and the Chinese Code GB50009 is presented the method

of directly calculating the crack width to control crack width. The equations to
calculate the crack width are shown below.

Van Hattum en Blankevoort 6 .ﬁ.'
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In the Eurocode 1992-1-1 [4], the equation of calculating crack width is,

Wk = Sr,max (gsm - Scm) (1'1)

Sy max 1S the maximum crack spacing $

=K,C+ kKK, b/ p, o Eq.(7.11) in [4]

r,max

&gy 1s the mean strain in the reinforcement under the relevant combination of loads,
including the effect of imposed deformations and taking into account the effects
of tension stiffening. Only the additional tensile strain beyond the state of zero
strain of the concrete at the same level is considered

&,y 1s the mean strain in the concrete between cracks

Where

k fct,eff 1
o5 — tp ( +aepp,eff)
ff O
Eqy— Een = — >0.6—= (1-2)
ES ES

O, is the stress in the tension reinforcement assuming a cracked section. For
pretensioned members, O, may be replaced by AO'p the stress variation in
prestressing tendons from the state of zero of the concrete at the same level.

a, istheratio E,/E,

2 A'
. (A§ + ‘fl P )

Prpet 18

A:,eff

k1 is a factor dependent on the duration of the load

A, ¢ is the effective area of concrete in tension surrounding the reinforcement or

prestressing tendons of depth, see Fig 2-1

- level of steel centroid

FrrrrrrrA
hc-“ /. L {
gy K ¥ S ——— R ——
.1 * 0
ri

ra £

- gffective tension area, Acan

Fig 2-1 Effective tension area of cross section
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And in the Chinese Code GB50009 [7], the equation for calculating crack width is

d
(;Sk (1.9¢ +0.08 1) (1-3)

S IOtS

W, = aCI’l//

max

(1-4)
o is the coefficient in [7] table 8.1.2-1

cr

I is a strain coefficient of steel between cracks. When y<0.2, then y=0.2. When

y>1, theny=1. v = 1.1—().65L

,0 teask

O is calculated in [7] equation 8.1.3

ftk is the concrete tensile strength.
C is concrete cover, when ¢c<20mm, then ¢=20mm; when ¢>65mm, then c=65mm.

P, 1s the ratio of reinforcement in the effective tension zone which is similar as
A, s inFig2-1. When p,:<0.01, then p,, =0.01.

deq is equivalent diameter of the reinforcement.

V. 1is bond coefficient in [7] table 8.1.2-2.

1

Also in the American code ACI 318-02 [5], there is an equation to calculate the crack
width. This equation is based on the Gergely-Lutz equation [14]. This equation is
derived by data fitting from many experiments. After Frosch’s derivation [15], the
equation used in ACI 318-02 is shown as below.

2
o S
W =28—=[(d ) +| = 1-5
. ,BES d,) £2j (1-5)
W, is the crack width,

[ s the ratio of the distances to the neutral axis from the extreme tension fiber and
from the centroid of the reinforcement,

O, is calculated stress in the reinforcement at service loads,

dc 1s thickness of the concrete cover measured from the extreme tension fiber to the

center of the bar or wire located closest to it,
A is effective tension area of concrete surrounding the flexural tension

reinforcement and having the same centroid as that reinforcement, divided by

Van Hattum en Blankevoort 8 .ﬁ.'
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the number of bars or wires .

S is bar spacing.

In Eurocode 1992-1-1 [4] and the Chinese Code GB50009 [7], the allowable crack
width will be determined by different exposure class and reinforcement condition.
The allowable crack width is derived from Table 1 and Table 2 in Eurocode 1992-1-1
and Chinese Code GB50009.

The maximum crack width in Eurocode will be found in Table 2-1 [4].

Exposure Reinforced members and prestressed Prestressed members with
Class members with unbonded tendons bonded tendons
Quasi-permanent load combination Frequent load combination
X0, XC1 0,4' 0,2
XC2, XC3, XC4 0,2
0,3
XD1, XD2, XS81, D .
XS2. XS3 gcompression
Note 1: For X0, XC1 exposure classes, crack width has no influence on durability and this limit
is set to guarantee acceptable appearance. In the absence of appearance conditions
this limit may be relaxed.
Note 2: For these exposure classes, in addition, decompression should be checked under the
guasi-permanent combination of loads.

Table 2-1 Recommended values of Wy, in Eurocode 1992-1-1 [4]

In Table 2-1, the exposure class is defined in Table 2-3 as below:

Van Hattum en Blankevoort
5
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there is freeze/thaw. abrasion or chemical
attack

For concrete with reinforcement or embedded
metal: very dry

Class Description of the environment Informative examples where exposure classes
designation may occur
1 No risk of corrosion or attack
For concrete without reinforcement or
X0 embedded metal: all exposures except where

Concrete inside buildings with very low air humidity

2 Corrosion

induced by carbonation

XCA Dry or permanently wet Concrete inside buildings with low air humidity
Concrete permanently submerged in water

XC2 Wet, rarely dry Concrete surfaces subject to long-term water
contact
Many foundations

XC3 Moderate humidity Concrete inside buildings with moderate or high air
humidity
External concrete sheltered from rain

XCz4 Cyclic wet and dry Concrete surfaces subject to water contact, not

within exposure class XC2

3 Corrosion

induced by chlorides

XDA1 Moderate humidity Concrete surfaces exposed to airborne chlorides
XDz Wet, rarely dry Swimming pools
Concrete components exposed to industrial waters
containing chlorides
XD3 Cyclic wet and dry Parts of bridges exposed to spray containing

chlorides
Pavements
Car park slabs

4 Corrosion

induced by chlorides from sea water

X351 Exposed to airbormne salt but net in direct Structures near to or on the coast
contact with sea water

X52 Permanently submerged Parts of marine structures

X53 Tidal. splash and spray zcnes Parts of marine structures

5. Freeze/Thaw Attack

sea water

XF1 Moderate water saturation, without de-icing Vertical concrete surfaces exposed to rain and
agent freezing
XF2 Moderate water saturation, with de-icing agent | Vertical concrete surfaces of road structures
exposed to freezing and airborne de-icing agents
XF3 High water saturation, without de-icing agents | Horizontal concrete surfaces exposed to rain and
freezing
XF4 High water saturation with de-icing agents or Road and bridge decks exposed to de-icing agents

Concrete surfaces exposed to direct spray
containing de-icing agents and freezing
Splash zone of marine structures exposed to
freezing

6. Chemical attack

accordingto EN 206-1, Table 2

KA1 Slightly aggressive chemical environment Matural soils and ground water
accordingto EN 206-1, Table 2

XAZ Mederately aggressive chemical envirenment | Matural soils and ground water
accordingto EN 206-1, Table 2

XA3 Highly aggressive chemical environment Matural soils and ground water

Van Hattum en Blankevoort
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And the maximum crack width in Chinese Code GB50009 will be found in Table

2-3.
Only reinforced members in Prestressed members in the
Exposure concrete concrete
Class Cracking Crack width Cracking Crack width
control level (mm) control level (mm)
1 3 0.3 3 0.2
2 3 0.2 2 Decompression
3 3 0.2 1 Decompression

Table 2-3 Recommended values of wy,,x in Chinese Code GB50010 [7]

In Table 2-3, the exposure class is defined as below:

Exposure Class 1: Normal environment indoor.

Exposure Class 2: Moist environment indoor or outdoor except in cold area and
corrosion environment.

Exposure Class 3: The other exposure condition.

Compared with the above two tables, the Chinese code GB50009 seems more strictly
than Eurocode 1992-1-1. And in Eurocode, it is divided with bonded tendons. But in
Chinese Code GB50009, it is divided with whether contain pre-stressed
reinforcement.

The crack width calculation equations in the codes and its influential factors are
compared in the following Table 2-4. A illustrates that the factor is present the
equation. A illustrates that the factor is not in the equation but it is already considered

in the equation.

Influence factor Direct method in Chinese Code Eq.(5) refer to
Eurocode 1992-1-1 GB90005 ACI 318-02
Concrete cover A A A
thickness
Concrete tensile A A
strength
E modulus of steel A A A
Steel stress A A A
Reinforcement A A A
diameter
Bar spacing A A A
Exposure A A
environment
Tension A A
reinforcement ratio
Effective tension A A A
area of concrete

Table 2-4 Comparison the factors in crack width calculation equations of three codes

Van Hattum en Blankevoort 11 .ﬁ.'
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From Table 2-4 and above equations, some conclusions will be obtained as below.

1> All the equations consider the concrete cover thickness, steel stress, steel
diameter and bar spacing. Especially for the steel stress which directly
influences the crack width.

2> Changing the steel diameter, bar spacing and reinforcement ratio has impact on
the crack width. It will also respond to a change in the steel stress. So in
American code ACI 318-02 and Dutch Code NEN6720, they use the method of
controlling steel stress to control crack width is used.

3> This direct calculation method is more complicated compared with the other
methods. When changing the reinforcement properties, it should be recalculated
again.

2.1.2 Steel stress equations under crack width control and comparison

By using this method, it is only necessary to substitute the structural parameters and
exposure parameters in to the equations to find out the maximum allowable steel
stress. And comparing the steel stress with the maximum steel stress, it will let the
engineers know whether it is sufficient. Or even it can use the steel stress and the

maximum crack width to determine the maximum bar spacing or bar size.

The following tables will illustrate the different indirect crack width controls in
different codes.

Steel stress” Maximum bar size [mm)

[MPa] w.= 0.4 mm w.= 0,3 mm w.= 0.2 mm
160 40 32 25

200 32 25 16

240 20 16 12

280 16 12 8

320 12 10 5]

360 10 8 5

400 8 6 4

450 B 5 -

Notes: 1. The values in the table are based on the following assumptions:
c = 25mm; Ly = 29MPa; fe-= 0.5, (h-d)=0,7h k=08 k2= 0.5 k=04 k=1,
k=04andk =10
2. Under the relevant combinations of actions

Table 2-5 Maximum bar diameters for crack control in Eurocode 1992-1-1 [4]

Van Hattum en Blankevoort 12 'ﬁj
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Steel stress” Maximum bar spacing [mm]
[MPa] w.=0.4 mm w,=0.3 mm w,=0.2 mm
160 200 300 200
200 300 260 150
240 250 200 100
280 200 150 50
320 150 100 -
360 100 50 -

Table 2-6 maximum bar spacing for crack control in Eurocode 1992-1-1 [4]

Clear Cover (in.)
Steel Siress a4 1 1-1/4 1-1/2 1-3/4 2 2-1/2 3
fy = 36 ksi 12 12 11.88 11.25 10.68 10 875 | 7.5
fg = 40 ksi 10.8 10.8 10.38 8.75 8.18 85 7.25

Table 2-7 maximum bar spacing for crack control in ACI 318-02 [5]

. 'U‘
Environmental class N/mm?2
without, with | 100 [ 125 [ 150 | 200 | 250 | 300 | 350 | 400
prestreslsulg prestreﬁsulg
stee stee
| - 870 | 670 | 540 | 370 | 270 | 200 | 155 | 120
2 | 620 | 470 | 370 | 245 | 170 | 120 85 55
3, 4ens 2 370 | 270 | 200 | 120 70 40 10 -
- 3. 4ens 120 | 70 | 35 - - - - -
Voor omhulde strengen volgens NEN 3868:1991 is de kolom “zonder voorspanstaal™ van
toepassing.

Table 2-8 Maximum bar diameters for crack control in NEN6720 [6]
2.1.3 Conclusion

From above it can be seen that there are two different methods to compute crack
width. One method is to calculate the crack width directly and compare with the
maximum width. On the other hand, detailing requirements with regard to bar
diameter or bar spacing linked to steel stress are linked with the crack width equation,
acquired by presenting this equation in a different form. The latter method is more
convenient for engineers, which do not need to calculate the crack width.

Van Hattum en Blankevoort 13 'ﬁj
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2.2 General literatures

2.2.1 Introduction of crack width control

Generally, a concrete crack is generated when the stress in the concrete is larger
than the cracking stress. So in a reinforced concrete cross-section the concrete
carries the compressive stress and the reinforcement has to carry the tensile stress.
In the beginning of the crack stage, if too little reinforcement is used, the crack
can be too wide, even if the cracking force is only exceeded to a small extend. So
we also have to define a maximum crack width value to check whether the crack
in the structure is sufficient.

2.2.2 Causes of cracks

Though there are many reasons for cracking, the main reasons are external

loading and restrained deformation.
2.2.2.1 External Loading
From [1, 2], the axial force — strain diagram of a reinforced concrete tension

member is obtained see Fig.2-1. From this diagram it can be seen that there are

four stages of cracking behavior.
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"
m
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Fig. 2-1 The axial force — strain relation diagram in a reinforced concrete

Stage I is the uncracked stage. In this stage concrete does not crack, and the axial
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force is smaller than the cracking force of the concrete N, So in this stage, the
equivalent stiffness is equal to the concrete stiffness.

E A, =(EA)s (2-1)
Eb is the concrete elastic modulus

An is the equivalent area of the section which is transfer the steel area into

concrete area by times E_S .

c

Stage II is the crack development stage. This stage only occurs under the
condition of gy >e>e, and N = N¢.. When the imposed strain is larger than the
cracking strain, the crack will occur, and in the whole stage II the axial force will
be equal to cracking force. So in this stage, the equivalent stiffness will be

computed by the following equation,

&m (2-2)

& 1s the mean steel strain

m

Stage III is the crack widening stage and the crack pattern is fully developed. In
this stage, the number of cracks will be constant while their width will increase.
The tensile force will be fully carried by the steel, and the bond force will transfer
part of the force from the steel to the concrete. In this stage, the equivalent
stiffness will be calculated by the following equation,

(gm + Ag) EAll

" (2-3)

E,A, =

&

EA" is the steel stiffness only.

& 1s the mean steel strain.

m

Ag, is the tension stiffening.

Stage IV is the final stage. In this stage, the force reaches the yield strength of the
steel. The deformation will increase when the force remains unchanged. The
equivalent stiffness will be calculated by the following equation,

N

sy
ém (2-4)

E A, =
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2.2.2.2 Imposed strain

Mostly the response caused by an imposed strain is similar to the axial force
without two major differences.

Firstly, the force caused by an imposed deformation dose not exceed the stiffness
of the tensile member in stage I times the imposed strain,

N,, <(EA) Ae 05)

This stage it only present for small imposed deformations, because the imposed
deformation must be limited to

Ae<g, (2-6)

&,

. 1s cracking strain of concrete

So mostly (EA) A& will be larger than N, .

On the other hand, the length of the stage II largely depend on the reinforcement
ratio. Because the external loading is constant in this stage, so the lower

reinforcement ratio will cause the longer in this stage.

2.2.3 Loading combination

In actual projects, there usually is not only one action that will act on the
structure. External loading and deformation will often take place together.

From the previous part the substantive force or deformation calculation method
and theory are obtained. But if two or more different types of force and
deformation together are combined, what will happen? From [1], several
examples will be demonstrated here.

2.2.3.1 Axial force and Imposed strain in tensile member

1> The external load will occur before the restrained deformation.

N>N,:

If the external load is larger than the cracking force, then the crack pattern will be
fully developed which directly in the 3" stage in Fig.4. After that, the imposed
deformation will be added. The existing crack will become larger due to the
imposed deformation. From [1], to calculation of crack width, there is not a
purely theoretically exact method. In this method, the incremental crack width is
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the mean crack spacing times the imposed strain at the level of reinforcement,

which is also equivalent to the steel stress of E €, .

N <N,

On the other hand, if the external load will not exceed the cracking force, the
member will be in the 1% stage in Fig.2-1. The crack is caused by the following
imposed strain. This is mostly a not fully developed crack pattern, since a fully

developed crack pattern will be found for a really large imposed strain.

2> The external load will occur after the imposed deformation.

Ag > &4y,

If the imposed deformation is larger than the fully developed crack pattern

straingg.. , an increased of the external load will result in an increase of the stress

in the steel. So the increase of the steel stress is Nz /A . So the total

stress O, = O-s,cr

(at Ncr)+&.
A
Ag < &gy,

The crack pattern now is not fully developed due to the imposed deformation. So
the following external load will cause the fully developed crack pattern mostly. In
[1], the calculation method can be that the resulting steel stress in a crack is: if the

concrete is not cracked under imposed deformation(AgE,+Ng)/ A ; if the

concrete is cracked under imposed deformation (N, +Ng)/ A

2.2.3.2 Bending moment and imposed strain
1>Bending moment before imposed strain

If the bending moment is larger than the crack bending moment, there will be a
fully developed crack pattern. This is similar as in section the 2.2.3.1, the

widening of existing cracks will be caused by the imposed strain.

If the bending moment is smaller than the cracking bending moment, there will
be a not fully developed crack pattern. So in [1], the fully developed crack
pattern will mostly develop, and the resulting steel stress is the steel stress due to
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the bending moment plus the stress due to the imposed deformation times the

incremental stiffness from stage IITM  / (zA)) + Eé, .

2>Bending moment after imposed strain

If the imposed strain is larger than the cracking strain, the bending moment

causes an increase of the steel stress equal to M, /(zA,) . The stress due to the
strain will be calculated by using Fig.2-1.
On the other hand, if the imposed strain is smaller than the cracking strain,the

crack pattern will stay in the not fully developed pattern. From [1], the resulting

steel stress in a crack is o, + M, /(ZA))

From the above we can obtain that a critical part in a loading combination is the
definition of the stiffness. In general, the stiffness will be estimated in practice.
But this value is often not exactly correct. Considering this, we will work out a
more exact result in the latter part of the thesis.
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CHAPTER 3

CALCULATION OF COMPRESSION ZONE
HEIGHT
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In this section, the calculation of compression zone height in different condition and with

different forces will be illustrated.

comprassion zone height

=T = =
4= - i 7 - £ i) .
_ G - 4
= - . - A n ot £
) ) < 4% 4 g
- 4 - 4 A= 4
PSR 4 -
4 . A - < i
’ - T 4: i
] : - . {j & P -4 d - .
T L {3 PR L4 Fa
_ﬂh - . "T-T
L 4 A l
G : .t

Fig 3-1 Compression zone height in a concrete element

The compression zone is the compressive area of the cross section after cracking. It will bear
the compressive stress due to moment or a normal force. Also in the cross section equilibrium,
the compressive force taken by the compression zone is equal to the tensile force taken by
tension reinforcement for pure bending. If the compression zone height is equal to zero, that
means the cross section is all under tensile stress. On the other hand, if the compression zone
height reaches its maximum value which is equal to h, the section is all under a compressive

stress.

The compression zone height is a very important parameter in the concrete cross section
calculation. The stiffness of the cross section after cracking largely depends on the

compression height. So obtain the exact value of the compression zone height is necessary.

In order to obtain the compression zone height in a crack, we need to calculate in a cracking
cross section as Fig 3-2. The Normal force balance >N =0 and moment balance
2. M =0 will be used in the calculation for solving the compression zone height. And the
cross section parameters and materials parameters also are needed for solving the compression

zone height. The calculation process will be found in the following sections and Appendix.1.

The compression zone height calculation will be divided into several conditions as below:

1>
2>
3>
4>

Only moment & only tension reinforcement (bottom reinforcement)
Moment and Normal force & only tension reinforcement (bottom reinforcement)
Only moment & both compression and tension reinforcement

Moment and Normal force & both compression and tension reinforcement

At last, the general equation for solving the compression zone height will be obtained.
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compression
corper x | compression zonep
Z zone height

Fig 3-2 Cross section in a crack

3.1 Compression zone height under only tension reinforcement and only
bending moment

In this condition, there is only bending moment and tension reinforcement. So the cross

section parameters are shown in Fig 3-3 as below.

b

<

h-d |

Fig 3-3 Cross section M & only tension reinforcement

By using the normal force Z N =0 the compression zone height will be calculated. The

stress and strain distribution is shown in Fig 3-4. The process of obtaining the
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compression zone height is illustrated later.

ocC

Nc

EC

1 ——— L

os*As
£S

Fig 3-4 Stress and strain of the cross section

By using the normal force equilibrium z N =0, which is derived from the stress
distribution in Fig 3-4 the following relationship will be obtained:

D> N=0->N-N,=0
Where,

bx

The concrete area force N = 7 E.&.

The tension reinforcement force Ns = Ag Esé‘s
So the relationship can be rewritten as
bx
> E.e.—AEz&, =0 (3-1)

In this equation,
b is the cross section width
X is the compression zone height

AS is the tension reinforcement area

EC is the elastic modulus of concrete

Es is the elastic modulus of tension reinforcement
&, is the concrete strain

&, is the tension reinforcement strain
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The relationship between concrete strain &, and reinforcement strain &, can be

derived by the strain relation in the Fig 3-4 as below

d-x
= & (3-2)
If we substitute Eq. (3-2) into Eq. (3-1), the following relationship will be obtained:
bx d—x bx d—-x
65 E~AE——)=0>—E -AE, =0 (3-3)

Finally, the compression zone height X will be obtained by solving the Eq. (3-3) and

the result is as below.

. ~AE, +/AE,(AE, +2Ebd)
- E.b

(3-4)

E
If we use the ratio of E-modulus @, =—- and reinforcement ratio p :% in the

c

equations, the Eq. (3-4) will be rewritten as below.

x=d(-a,p+(a.p) +2a,p) (3-5)

3.2 Compression zone height under both compression and tension
reinforcement with only bending moment

In this condition, there is only bending moment with both compression and tension

reinforcement. So the cross section basic parameters are shown in Fig 3-5 as below.

b

Cu

<

h-d |

Fig 3-5 Cross section M & both compression and tension reinforcement
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By using the normal force Z N =0 the compression zone height will be calculated. The

stress and strain distribution is shown in Fig 3-6. The process of obtaining the
compression zone height is illustrated later.

Ec G -
1 T Cu
C %3
T 17 e,
Escomp Ne
X x
1, I

1 e 1L

o-*As

€

Fig 3-6 Stress and strain of the cross section

By using the normal force equilibrium z N =0, which is derived from the stress
distribution in Fig 3-8 the following relationship will be obtained:
D> N=0->N+N N, =0

scomp

Where,

bx
The concrete area force N, =—E_&,
The tension reinforcement force Ns = Ag Esé‘s

The compression reinforcement force N0 = A Eqcomn Escomp

So the relationship can be rewritten as

b_2X Ecgc + A%comp Escompgscomp - ASEsgs =0 (3'6)

In this equation,

b is the cross section width
X is the compression zone height

AS 1s the tension reinforcement area

ﬂcomp is the compression reinforcement area
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E

. 1s the elastic modulus of concrete

E

s 1s the elastic modulus of tension reinforcement

Eswmp is the elastic modulus of compression reinforcement

£. 1s the concrete strain

c

&. 1s the tension reinforcement strain

S

Esomp 18 the compression reinforcement strain

The relationship between concrete strain £, , tension reinforcement strain &, and

compression reinforcement strain &, can be derived by the strain relation in the Fig

3-6 as below

& =d_xg (3-7)

S c

X
_X=6,
X

If we substitute Eq. (3-7) and Eq. (3-8) into Eq. (3-6), the following relationship will be

& (3-8)

scomp c

obtained:

bx X—C d—x
—E + E “_AE =0
gc( 2 (o &comp scomp X A% S X )

bx X

(3_9)
——E,+A,.E X C“—ASE d =0
2 c comp —scomp X s X

Finally, the compression zone height X will be obtained by solving the Eq. (3-9) and

the result is as below.

_ _As Es - Ascomp Escomp + \/As2 Es2 + 2A§ Ascomp Es Escomp +2 Ecbdp% Es + &zcomp Escomp +2 Ecbcu Ascomp Escomp

X
Eb
(3-10)
. Es Escomp .
If we use the ratio of E-modulus &, =E—, Xescomp = = and reinforcement
C C
. _ Ag _ A%comp . . . .

ratio p —E, Pscomp —b— in the equations, the Eq. (3-10) will be rewritten as

below.

2 2
x=d (_aep - aescomp pscomp + \/(aep) + 2aepaescomppscomp + (aescomp pscomp) + 2Otescomploscomp + 2aep)
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(3-11)
3.3 Compression zone height under only tension reinforcement with both
bending moment and normal force

In this condition, there is both normal force and bending moment with only tension

reinforcement. So the cross section basic parameters are shown in Fig 3-7 as below.

b

h-d |

Fig 3-7 Cross section M and N & only tension reinforcement

By using the normal forcez N=0 andz M =0 the compression zone height will

be calculated. The stress and strain distribution is shown in Fig 3-8. The process of
obtaining the compression zone height is illustrated below.

Ec Cc

T 1 | s 1

Ne

T

Fig 3-8 Stress and strain of the cross section
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By using the normal force equilibriumz N =0 and Z M =0, which are derived from
the stress distribution in Fig 3-8 the following relationship will be obtained:
D> N=0->N,-N =N
h h X
M=0—>N(d-—)+N_(=——)=M
2 (d-D+ NG -3)
Where,

X
The concrete area force N = 7 E.&.

The tension reinforcement force Ns = Ag Esé‘s

h is the total height of the cross section
d is the distance between the reinforcement and the top of the cross section

So the relationship can be rewritten as

AE.é, —%X Ee =N (3-12)
bx h x h
ZE e (C-2)+AE.e(d-2)=M 3-13
B3+ AEs [ -2) 613

In this equation,
b is the cross section width
X is the compression zone height

AS is the tension reinforcement area
EC is the elastic modulus of concrete
E. is the elastic modulus of tension reinforcement

is the concrete strain

is the tension reinforcement strain

The relationship between concrete strain &, , tension reinforcement strain &, and

compression reinforcement strain & can be derived by the strain relation in the Fig

scomp

3-8 as below

g, = & (3-14)

If we substitute Eq. (3-14) and Eq. (3-15) into Eq. (3-16), the following relationship will
be obtained:
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d-x bx
E -—E)=N 3-15
& (AE, VI ¢) (3-15)
bx h x d—x h
—E (———= E d-——)=M 3-16
«9(;(2 c(z 3)+Ag T ( 2)) (3-16)

From equations (3-15) and (3-16), the relationship between M/N ration and compression
zone height x is as below:

d—x bx o (3-17)
AEES _EEC N
X

So we can obtain the value of compression zone height X by given a certain M / N

bx h x d—x h
—E(——= E.——(d——
5 c(z 3)+Ag S ( 2):

value.

E .
If we use the ratio of E-modulus o, = E—S , the moment and normal force ratio € = —

C

and reinforcement ratio p = % , in the equations, the Eq. (3-17) will be rewritten as
below.
X h x d-—x h
S raps (A=)
2d 2 2 X 2 _ e (3-18)
S
“ox o2

3.4 Compression zone height under both compression and tension
reinforcement with both normal force and bending moment

In this condition, there is both normal force and bending moment with both compression

and tension reinforcement. So the cross section basic parameters are shown in Fig 3-9 as

below.
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b

| e

h-d |

Fig 3-9 Cross section N and M & both compression and tension reinforcement

By using the normal force Y N =0 and Y M =0 the compression zone height will
g g

be calculated. The stress and strain distribution is shown in Fig 3-10. The process of
obtaining the compression zone height is illustrated below.

& _ _ - o B
Cl Ezcomp /,"'/.. E(/(B Osco C[
4 X Ne
o X
d d
! B
L < oA
Es -

Fig 3-10 Stress and strain of the cross section

By using the normal force equilibriumz N =0 and Z M =0, which are derived from
the stress distribution in Fig 3-10 the following relationship will be obtained:

D> N=0->N-N—-N, =N

scomp
h

h h x
M=0—->N.(d-—)+N ——C)+N (——)=M
Z _> S( 2) scomp(z LI) 0(2 3)
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Where,
bx

The concrete area force N, =— E &
The tension reinforcement force Ns = Ag Esé‘s

The compression reinforcement force N &

scomp A%comp scomp < scomp

h is the total height of the cross section

d is the distance between the reinforcement and the top of the cross section

So the relationship can be rewritten as

As E s~ % E & Ascomp Escomp gscomp =N (3'19)

bx h x h
Ec c(2 3) A%comp scomp scomp —C )+ AsE (d _E) =M (3'20)

In this equatlon,
b is the cross section width
X is the compression zone height

AS is the tension reinforcement area

&Comp is the compression reinforcement area

EC is the elastic modulus of concrete

Es is the elastic modulus of tension reinforcement

Eswmp is the elastic modulus of compression reinforcement

& 1s the concrete strain

C

&, 1is the tension reinforcement strain

Esomp 18 the compression reinforcement strain

The relationship between concrete strain &, , tension reinforcement strain &, and

compression reinforcement strain & can be derived by the strain relation in the Fig

scomp

3-10 as below

&= & (3-22)
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X—C

Eqcomp = Tug° (3-21)
If we substitute Eq. (3-7) and Eq. (3-8) into Eq. (3-6), the following relationship will be
obtained:
d-x bx X—C
& (AE, 2 E. = Acomp Escomp Tu) =N (3-22)
=2 Ay Ery S (G -0)+ AE, T2 @Dy =M @23)

Finally, the compression zone height X will be obtained by solving the Eq. (3-9) and

the result is as below.
d-—x h,  bx h x X—C, . h
E.(—)d-——)+—E (——2)+ E —)(—-cC
AE(S =D+ B = )+ Ay )0 =6,

X—C d—-x. bx
E WY _AE.(—H)+—E
A%comp scomp( X ) A& s( X ) 7 C

N (3-24)

E

If we use the ratio of E-modulus &, :E_S s Cogeomp = somp o nd reinforcement
C C
. _ Ag _ A%comp . . . .
ratio p —E, Pscomp _W in the equations, the Eq. (3-10) will be rewritten as
below.
d-x,h x, x h X X—-c,. h
aep( X )(5 - E) + E (5 - g) + aescomppscomp( X )(5 - Cu)

=e (3-25)
escomp /7~ scomp X e X 2d
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3.5 The compression zone height equation of Noakowski

I 1)) 5

LA PR B LAOLMLLRLAALL L LRLJ3AA S HINTN O

From [17], Noakowski obtained an equation of calculation compression zone height. In
his equation he moved the centroidal axis to the position where the area moment equal to
0 after cracked which is shown in Fig 3-11. His basic theory is using the area inertia equal
to 0 and the stress at compression zone height position equal to 0 to obtain the
relationship between compression zone height and force.

Situation | = Situation Il
ml ° n

Fig 3-11 Stress and strain in situation I and II by Noakowski

h
In Fig 3-11, situation I is the uncracked stage, the centroidal axis is at positionE. After

moved, the centroidal axis from O to O . The position of 0 is the stress equal to 0

only under moved bending moment after cracked. After calculation [17], the compression
zone height equation is shown as Eq. (3-26).

k! +4Ak> —12BK> +12Ck, +12AC —12B* _
6k’ —18AK: —12(A°—B)k_+12AB

(3-26)

In this equation,

A= a, (775 + nscomp)
B= a, (775 + ku Uscomp)

C =, (17, + K 1omy)

u Uscomp

E

Ole is the modulus ratio between reinforcement and concrete o, = —

C
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A
A\:,eff

1), is the area ratio between tension reinforcement and concrete 77, =

_ &comp

is the area ratio between compression reinforcement and concrete Mscomp = A?
Jeff

nscomp

Where A*e” =bd

C
ku is the related height from the reinforcement to bottom K, = F“

17, is the moment and normal force ratio after moved the centroidal axis,

_(2B+k))

=7, +kK
1, =1 T Ko 2(A+k)

77, is the moment and normal force ratio before moved the centroidal axis,

e M
h ===

“d dN

kx() is the ratio of centroidal position and total height, in rectangular cross section, it is

always 0.5.
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3.6 Example by using two method of calculation compression zone height
There is a cross section shown in Fig 3-12. The external normal force and moment is

applied on it. Both top and bottom have the reinforcement. The two methods in section

3.4 and 3.5 will be applied to calculate in this example.

400

55 Ascomp=1000mm?2
M

005

55 | As=1000mm?2

Fig 3-12 Cross section of example

The basic parameters of the cross section and the external force are shown as below:

E, =16000N / mm’ s , E
Eomp =2-10°N/mm* n=—==125
E,=2-10°N/mm’ E.
h=605mm d=550mm ¢, =55mm
A, o =bd =550x400 =220000mm’
1000

=1000mm* =1000mm* =————=0.00455

K A%comp 775 220000

1000

Mo =0 _0.00455 €= —14344mm 7, =0 = 2,608
220000 N dN

Substituting the above values into the Eq. (3-25) and Eq. (3-26), the compression zone
height will be obtained. The process of calculation is shown in Appendix 1.

After calculation, the results of Noakowski equation and Eq. (3-25) are similar which are
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165mm and 164.99mm respectively. The difference between Eq. (3-26) and Eq. (3-25) is
that, for Eq. (3-25) the basic theory is the cross section strain and stress balance. But for
Eq. (3-26), Noakowski use the area moment equal to 0 and stress balance after moved
centroidal axis to obtain the compression zone height equation. The result obtained by
both methods is similar, so that either of the methods can be used in compression zone

height calculation.

The n; -k curves by using equation (3-25) and (3-26) are plotted as Fig 3-13 and Fig 3-14.
In these figures, n; is the moment and normal force ratio, and k, is related height of

compression zone height.
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Fig 3-13 n; -k relationship curve by using Eq. (3-25)
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Fig 3-14 n; -k, relationship curve by using Eq. (3-26)

CHAPTER 4

CALCULATION OF THE STIFFNESS
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Stiffness is a very important parameter in crack width calculation. Always the stiffness can be
easily found if only one type of action is applied on the element. But if there are two or more
different actions on the structure, such as external loading and restrained deformation, the

calculation of stiffness is much more complicated.

For obtaining the mean stiffness of the element(El), and(EA),,, the Tension Stiffening

Law [2, 3, 16, 17] is applied. The moment-curvature relationship in Fig 4-1 is used to obtain
a realistic determination of the bending moment or normal force. Also after having obtained
the stiffness of the element, every parameters of the element in both the uncracked and the
cracked stage will be known. So the mean stiffness of the element is the key parameter in the

future calculation.

stage III

N.) P
Y -
A B
stage o o / - (EA]S,CI’

M, [ o
El

: .

Mcr _____ stagel Ak ’I/
(Ncr] E /LQE/“(;/

stage 0 (E”C /’///
E A,]g/ (Ed<cr
: (EAke:

P

ra : : : : :
Kcr dec Kx Ks KSY
(ECI’] (Efdc] (Ex) (88] (ESy]

Fig 4-1 Tension Stiffening Law moment-curvature relationship

By using Tension Stiffening Law in Fig 4-1, the stiffness calculation process is divided into

several steps in Fig 4-2 as below, and it will be described detailed in the following sections.
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Moved
centroidal axis
position

Stiffness in a
crack

Cracking force

Mean stiffness Compression Tension
of the element zone height stiffening value

Fig 4-2 Process of mean stiffness calculation

4.1 Cracking Force

In the cracking force calculation, there are three conditions. For every condition, there is a
different expression for the cracking force.

1> Only bending:

Cracking moment M =W - f

W is the area moment of the cross section in the uncracked stage

f

« 1s the concrete cracking tensile strength

2> Only Normal force
Cracking normal force N, = A- f,

A s the area of the cross section in the uncracked stage

3> Both bending and normal force

: . N,
Cracking moment with a constant normal force M, =W -| f_ — 7
N, >0 for tension.
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4.2 Bending stiffness in a crack

From Fig 4-1, the stiffness in a crack(El),_ is equal to the mean stiffness of the

s,cr
element in stage II.

(EDyo =EI'" (4-1)
And the inertia modulus in a crack is equal to

3
" =%+bx-(§)2 +a,A(d - x)? 4-2)

b is the cross section width
X is the compression zone height

AS is the tension reinforcement area

S

a, is the ratio of E-modulus where «, = E—

C

So that the stiffness in a crack should be
I bx’ X2 2
(El)s,cr :Ecl :Ec'(E-i_bX'(E) +ae&(d_x) ) (4'3)

The stiffness in a crack can also be calculated by another method as below

E1"=EA( —%x)(d —X) (4-4)

By using the same theory, the axial stiffness also will be obtained as below.

(EA),,, =E,A" = E_bx

s,cr
4.3 Difference of the centroidal axis AX after moved

The centroidal axis moves from the original axis which always is at position 5 in the

uncracked stage to the area moment equal to 0 after cracking which is shown in Fig 3-11.
By using the area moment equal to 0 to determine the position of the centroidal axis

after cracking. The difference AX is

2B +k;

W"=0=Ax=
2W, 2(A+kp

(4-5)

Where

A= a, (775 + nscomp>

B= a, (775 + kunscomp)
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a, is the modulus ratio between reinforcement and concrete «, = ES

C

A
A\:,eff

1), is the area ratio between tension reinforcement and concrete 77, =

Msomp 18 the area ratio between the compression reinforcement and the

_ A&comp

concrete nscomp = A:
Jeff

Where A =hd

Ky is the related height of compression zone K, =—

4.4 Tension stiffening value

From Fig 4-1, the distance Ax(Ag) between the mean moment-curvature line and
the cracked cross section moment-curvature line is called the tension stiffening effect.
The value of Ax(Ag) describes the magnitude of the tension stiffening effect.

Between the cracks the bond stresses are active and the concrete takes over part of the
tension from the steel. Thus the reinforcement is being stiffened by the concrete. [16,
17]. Fig 4-3 shows the strains for calculating the crack spacing and the average strains.
[18]

[ WoTR-N

Eg2 es (Nsg > N,)
\/
<
&g Nsg > N) m—T—>= —T1—
&2 - M m m m M & (Nsg = N))
/I /{\ 7 [\ 7\ 7 {\
/N VAN ALY AR ¢
/ N/ N NS NS _
ese (Nsg = Np) = 51 = p e - - Ectu
& N\ LN,

Fig 4-3 Strains for calculating the crack spacing and the average strains

By using the mean bond law from the Model Code [18], Fig 4-4 and Fig 4-5 show the
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basic theory to obtain the tension stiffening value. In Fig 4-4, &, means the maximum

curvature in a cracked section at the beginning of the crack formation stage. By using
the mean bond law [18], the mean curvature in a cracked section should be

K,; =0.44x, by using the theory in CEB-FIP Model Code [18]. So that the

a
Ax =(1-0.44)x, = 0.56x, . And the transfer length is ?1 . In Fig 4-5, the element is

in fully developed crack pattern. So the transfer length will be changed to

a a
) =0.75 ?1 [2]. So the tension stiffening factor Ax also will be changed.

ai | AK1=0.56Ki
I I

Fig.4-4 Curvature at crack section in beginning of crack formation stage by mean bond

law

Ki

a | AK=0.4Kk

Fig 4-5 Curvature at crack in fully developed crack pattern by mean bond law

The value of the tension stiffening factor at a fully developed crack pattern is equal to

Ak =Ko — Ky =0.75AKk, =042k, (4-6)

Ae =&, —&y. =0.75A¢, =0.42¢ 4-7)
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Where
_ . M + NAX
Ko 18 the curvature at a cracked section &, = W
s,cr
. . _ N
&, 1s the strain at a cracked section & = W
s,cr

4.5 Calculation of the mean stiffness

In the calculation of the mean stiffness of a element, if there is only one action on the
element it is easily obtained by the tension stiffening law [1, 2, 16, 17]. But if there is two
or more different actions on the element, the method should be followed as presented
below. The black line is the moment-curvature effect line in total element. The red line is
the moment-curvature effect in the cracked cross section. The blue line is the
moment-curvature effect in the cracked cross section without AM  which is caused by

moving the centroidal axis.

37

| :|(£-.IVI
/7% PSR

MCI"]->

Ak

N, |
Z e

Kcr K‘dc Km KS

Fig 4-5 Moment-curvature relationship by applying both moment and normal force

Van Hattum en Blankevoort 42 'ﬁj
& Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

The procedure to obtain the mean moment-curvature relationship of whole element which

is shown as black line in Fig 4-5 is described as below:

1

\

Defining the M, value and position in Y axis.

2> Calculating the stiffness at a crack (EI)

s,cr *

3> Using the stiffness at a crack, the slope of the blue line in Fig 4-5 can be defined.
4> Adding the extra moment due to normal force AM

5> The position of red line in Fig 4-5 will be defined by using AM .

6> Calculating the tension stiffening value Ax .

7> By using tension stiffening law, the position of &, will be found.

8> At last, the mean moment-curvature relationship of whole element shown as black

line will be obtained.

From Fig 4-5, the there are 3 different stages in the cracking development: uncracked
stage, crack formation stage and fully developed crack stage. So each stage will have

different expression of mean stiffness.

Uncracked stage: (El), =E_I, (4-7)

M
Crack formation stage: (El), =— K, =K, —Ax
K

m

= 4-8
. (EI )s,cr @9

M, M,-NAXx
Fully developed crack stage: (El), = —2%=—
K

m

4-9
K, —Ax @9

M, is the bending moment after moving the centroidal axis

M, = (x, + AK)(El), , =, (EI)

s,cr s,cr

M, is the original moment without moving the centroidal axis

AM s the extra moment caused by moving centroidal axis AM = NAX

AX is the moving distance of centroidal axis

Ak is the tension stiffening effect Ax =0.42k

K, . 1s the curvature at the cracked cross section under cracking moment

K, is the curvature at the cracked cross section at the load considered

(El),,, isthe stiffness in a crack Eq. (4-5).
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CHAPTER 5

BEAM UNDER DEAD LOAD AND
TEMPERATURE GRADIENT
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After discussed about the cross section problem, in this chapter, the calculation based on a

simple structure will be illustrated. In order to illustrate it more clearly, a clamped beam will

be discussed in this chapter to show the characteristics under different loading combination.

As solving this problem, the theory of the simple element can be used in some complicated

real projects.

The simple element is shown in Fig 5-1. It is a clamped beam with tension reinforcement

under both dead load and temperature gradient effects. The dead load can be transferred as a

uniform distribute load q, and the temperature gradient is AT | So there will be a bending
moment due to self-weight, and also a bending moment due to thermal difference. A big

problem is that how to combine these two actions together, and is there any difference among

different combinations? The following calculation will illustrate it.

g
NN ! !

Fig 5-1 Clamped beam under both dead load and temperature gradient

For a combination of dead load and temperature gradient, there are many various situations.

Such as dead load is given first, and then the temperature gradient is loaded, or exchange the

order. For different situations, there will be different procedures and results respectively. So

using an appropriate calculation procedure is essential to obtain correct results. All the

different situations are listed as below:

I. M>AT
1.1 M - Uncracked
1.1.1 AT - Uncracked
1.1.2 AT - Not fully developed cracked pattern
1.1.3 AT - Fully developed cracked pattern
1.2 M - Cracking at ends only
1.2.1 AT-> Ends Cracking increased
1.2.1.1No cracking at middle span
1.2.1.2 Cracking at middle span
1.2.2 AT -> Ends cracking decreased
1.2.2.1No cracking at middle span
1.2.2.2 Cracking at middle span
1.2.2.3 Cracking at middle span but ends cracking disappeared
1.3 M - Cracking at both ends and middle span
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1.3.1 AT -> Ends cracking increased
1.3.1.1Middle span cracking is not disappeared
1.3.1.2Middle span cracking is disappeared

1.3.2 AT -> Ends cracking decreased
1.3.2.1 Ends cracking is not disappeared
1.3.2.2 Ends cracking is disappeared

2. AT>M
2.1 AT-> Uncracked

2.1.1 M - Uncracked

2.1.2 M - Cracking at ends

2.1.3 M - Cracking at both ends and middle span

2.1.4 M - Cracking at middle span

2.2 AT - Not fully developed cracked pattern

2.2.1 M - Cracking at ends

2.2.2 M - Cracking at both middle span and ends

2.2.3 M - Cracking at middle span

2.3 AT - Fully developed cracked pattern

2.3.1 M - Cracking at ends

2.3.2 M - Cracking at both middle span and ends

2.3.3 M - Cracking at middle span

3. AT&M
3.1 Uncracked
3.2 Cracked

3.2.1 Cracking at ends

3.2.2 Cracking at both middle span and ends

3.2.3 Cracking at middle span

In order to illustrate it, one typical condition will be discussed in the following section. And one
example will be calculated to prove this theory.

51 M >AT & M - cracking at both ends &AT - enlarge the cracking at
ends and no cracking at middle span

In this situation, the moment due to uniformly distribute load q will be added first. The
beam will crack at both ends for this moment. Then the temperature gradient is loaded, the
cracking at ends will increase. It is shown as Fig 5-2.

[ | | % L1 1] j
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Fig 5-2 Loading procedure

So the effect caused by dead load only need to be analyzed first, then added the

temperature gradient.
5.1.1 Dead load effect.

Dead load of a beam is uniformly distributed. So it can be recognized as a uniform
distributed load q. The moment due to dead load should be a parabola line. In order to
make the calculation easier, the linear line is instead of parabola line. The moment

curve due to dead load is shown as Fig 5-3. The moment due to dead load at end is

1 1
equalto —@l* and at mid span is equal to —ql?.
q 12q p q 24q

1/12%g12 1/12%g12

1/24%g12

Fig 5-3 Moment curve due to dead load

In the first step, the cracking length due to moment will be estimated. The length is the

area where moment is larger than cracking moment on an uncracked beam which is
also shown in Fig 5-3. This estimated length is called L,, and this value will be used in

the future calculation. Usually the estimated cracking length can be used as the area
where the moment is larger than cracking moment on an uncracked beam. The

cracking moment can be calculated as
1
M, =gbh20cr (5-1)

Since the cracking length is estimated, the moment curve due to dead load will be
calculated as below.

In order to obtain the exact moment due to dead load, the following method will be
used. Firstly, this uniformly distributed load can be divided into two parts: one is dead
load on a simple support beam, and the other one is a simple support beam with a
constant moment which is shown as Fig 5-4. By using this method, the clamped beam
will be translated into two simple support beam problems with the rotation at ends

equal to 0. It is much easier to calculate the moment curve.
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g
N A PR AN
El: | El | ElL
=
i
q Mq,end qund
oo VN ( >

Fig 5-4 Transition from clamped beam to simple support beam

In the Fig 5-4, El, is the stiffness of uncracked part, El, is the stiffness of cracked

part which is not fixed and M is the moment at both ends.

qg,end

Considering the first part which is the dead load on the simple support beam, by using
symmetry, the stiffness curve, the moment curve and the curvature curve can be easily
calculated as shown in the Fig 5-5:
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2 q

A Load

L, Lo

El | El Stiffness

11812 Moment

Curvature

Fig 5-5 Stiffness, moment and curvature of first part

From the second graph in the Fig 5-5, the stiffness in the cracked section can be calculated
which is specified in chapter 3 and 4.

By applying the equation (3-4), (3-10), (3-17), and (3-14), the compression zone height of
the cracked section can be drawn. In this case the compression zone height will be

calculated as below,

_ —AE, +AE,(AE, +2Ebd)
- Eb

X

(5-2)

After obtained the compression zone height, the stiffness on the cracked section will be

calculated by using equation (4-3) as below
0 bx’ X2 2
(El)s,cr :Ecl :Ec'(E-i_bX'(E) +ae&(d_x) ) (5'3)

By using the knowledge in chapter 4, the stiffness at position Lx should be calculated as

below:
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qLL, aL;
Mend,DL T_T
(EI )x = 2 (5_4)
gLL, gL,
“Aem,DL'+“E£‘*"‘E£*
+ Ak
(ED)ger
Where
Ax =042k,

M

cr

Kser =
(EDser

The final curvature at point 1, 2, 3 can be calculated as below:

M,
ST
2 (5-5)
M, (5-6)
K, =—= -
P OEl
M rig
S
: (5-7)
The rotation at cracked section with a certain position LX is
gLL, _aL
__2 2
Kx,cracked - (El )X (5'8)
And the rotation at uncracked section with a certain position Lx is
qLL, _aL
__2 2
Kx,uncracked - (El )C (5'9)

The rotation at end due to dead load on the simple support beam is the uncracked part plus

cracked part. So the uncracked part rotation is ¢, ,, and the uncracked part rotation is
@, , , so the total rotation at end should be

¢q,end =0u + Do (5—10)
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Where

¢L1:_[2le‘x
5o (B, (5-11)

L2 ﬁ_ql_i
§0L2 = _[ 2 de
o M x—qL2 (5-12)

end,DL
2

Ivlend,DL +TX_qLi

(EI )SCI‘

Considering the second part which is the constant moment on the simple support beam

which is shown in Fig 5-6, by using symmetry, for the moment on the simple support
beam, the stiffness curve, the moment curve and the curvature curve are shown in Fig 5-7:

M qend M"'}-‘-"-':

- -,
l:.,__ r \ _.-'-'l_l __:’l

¥ \
& !

Fi K.

Fig 5-6 The second part which is only moment applied on the beam

9
\L\l/§\l/¢

A Load

L Lo

El El, Stiffness

Mq,end

Morment

Ul
| Curvature
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Fig 5-7 Stiffness, moment and curvature of second part
From the fourth graph in Fig 5-6, the curvature at cracked and uncracked parts can be

calculated as below:

_ M g,end
K = El
! (5-13)
M
Ky =0 (5-14)
El,
Similar as before, the rotation at the end due to moment at this case is:
Py end = Pt T Py (5-15)
Where
Pwi = Kuily

L2
DOyr = IKM ,dL,
0

By substituting Equation (5-4), the expression of the total rotation due to moment

can be written as

L, 1
(oend,M ((EI)c '(')‘ M .\ qLLX _qil_i x) qg,end ( )
end,DL 2 2

gLL, _aL,
I\/lend,DL + T A
2 2 +Ax
(EI )scr

Because it is a clamped beam, there is no rotation at the end. So the rotation due to
dead load plus the rotation due to constant moment should be equal to O:

goq,end + gDMq)end end — 0 (5-17)

Substituting (5-10) and (5-16) into (5-17), the moment at end due to dead load on a
clamped beam should be

M ~Deng ,DL

gend — L L, ) (5-18)
! +J- —dL,
ED, ), oL _aC

end,DL 2 2

gLL, _aL;
Ivlend,DL_'_ TS

2 2 4 Ax

(El)scr
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So the moment curve due to dead load should be shown as Fig 5-8:

Me-ncl Me-ncl

1/8G12-Me.us

Fig 5-8 Moment curve due to dead load

For the cracking length L, is estimated, so find the moment value at L, from the

curve in the Fig 5-8.

q.end (5-19)

M, =(=2-1)-—gl>+M
L (L )2q

And then compare M L with M __, if they are equal, then the estimation is correct.

cr»

Otherwise, re-estimate L, until M L =M.

5.1.1 Temperature gradient effect.

Caused by the dead load effect, the beam has already changed to three parts, two
cracked parts and one uncracked part. The cracking length due to dead load is known

as L2 after several iterations.

The moment due to temperature gradient should be constant as the Fig 5-9. But the
value should be calculated by using the rotation at end which is equal to 0. So by using
the similar method in 5.1.2, the clamped beam with temperature gradient can be
divided into two parts as in the Fig 5-10.

Fig 5-9 Moment due to a temperature gradient on an uncracked beam
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||
M(g/ Bl 3,

Ls

£ M \ 1))

Fig 5-10 Transition from clamped beam to simple support beam
In order to obtain the actual moment, the cracking length L, also should be
estimated first.
In section graph in Fig 5-10, there is a constant moment on the simple support beam.
Similar with Dead load section, by using symmetry, for the moment on the simple

support beam, the stiffness curve, the moment curve and the curvature curve are

shown in Fig 5-11:
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Fig 5-11 Stiffness, moment and curvature of beam

2 M
A> Load
| | |
I [ |
L I
! 5
b  El
El | Stiffness
H
K |
Mers Moment
b/i]
0
2 | Curvature

From the fourth graph in Fig 5-11, the curvature at each part can be calculated as

below:
M AT ,end
K'1 =
El,
M AT ,end
K'2 =
El

Similar as before, the rotation at end due to moment at this case is:

L 71
_ _ 1
¢MAT’end,end _(01+(02 _MAT,end(E I +'[ El de)
c C 0 ( )X
Where
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LL L2
Mend,DL + Mend,AT qzx_qzx
(El), = . (5-23)
gLL, gL
Mend,DL + Mend,AT +T‘7
+ Ak
(EDy,

In third graph in Fig 5-10, there is a rotation at end on the simple support beam. The
value of this rotation can be directly calculated by the temperature gradient and
temperature gradient coefficient as below:

(Drotation = KAT (Ll + LS) (5‘24)

From equation (5-24) and (5-22), the total rotation should be equal to O for it is a
clamped beam.

PM 1 e e + Protation =0 (5-25)

Substitute (5-22) and (5-24) into (5-25), the moment due to temperature gradient will
be obtained:

L
M, = - Ky (L +1) (5-26)
EL1I +J 1 qLL, gL ak)
ce o M +M + "
end,DL end, AT 2 2
oLL, _aL;

I\/lend,DL + Mend,AT +

(EDsr

2 2

+Ax

At last, plus the moment due to temperature gradient and dead load, the final moment

curve will be obtained. Then the moment at position L, should be calculated and
compare with cracking moment Mcr. If they are same, that means the estimated

cracking length L, is correct. If not same, the cracking length L, should be

estimated again until they are same.
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5.2 Example:

There is an example which will be used by Tension Stiffening Law to calculate the exact
moment distribution shown in Fig 5-12. This is a clamped beam with dead load and a
constant temperature gradient. All the parameters of the beam and load are shown as

below.

Fig 5-12 Clamped beam with dead load and temperature gradient

The basic parameters:

E, =30000N / mm* E )
n=—=12.5 o, =3N/mm
E,=2-10°N/mm’ E.

L=10000mm h=605mm d=550mm c, =55mm

A o =bd =550x400 = 220000mm’

A =4000mm®  p. =—290 _ 46180

220000
g=40N/mm AT =25°C «=10"/°C

By using the calculation method in 5.1, the final moment distribution will be obtained.

See workings in Appendix 2. The final moment distribution is shown in the Fig 5-13 as

below. In this example, the cracking moment is equal to 2x10* Nmm . The moment at

end and middle span are 4.387x10°Nmm, 0.6135x10°* Nmm respectively. The

cracking length is 1400mm at both end, and there is no cracking at midspan.
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43874108
M‘.i}'.

MCF _ - N

|

|

1

——
|—] 0.6135*10"%

1400mm

Fig 5-13 The moment distribution on the beam [Nmm]

In order to compare the moment distribution with other condition, the moment

distribution under following condition will be also calculated and compared.

A. Calculation with the uncracked stiffness in the whole span.

5.533*10"8

MCI____ ______

—— 0.5333*%10"8
2262mm

Fig 5-14 Moment distribution with uncracked stiffness

B. Calculation with the 1/3 uncracked stiffness in whole span. [Nmm]

4.066%10"8 4.066%10"8

0.9333*10"8

[169Mmm

Fig 5-16 Moment distribution with 1/3 uncracked stiffness whole span [Nmm]
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CHAPTER ©

CALCULATION INCLUDING NORMAL
FORCE
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Actually, there are many actions on a structure in real projects. Due to many complicated
factors, moment and normal stress are the direct effects on the structure. All the loading
actions are transformed into effects on the structure. If the complicated system can be
easily analysis. In Chapter 5, the clamped beam under both temperature gradient and
external loading is discussed. These actions cause moments only, whereas a normal stress
will be caused by a normal force. After having applied the normal force, the
reinforcement ratio and compression zone height will be changed. Also the moment
distribution and stiffness will be changed as the reinforcement ratio and compression zone
height changed. So if there is a normal force on the clamped beam, what will be changed?
Will one third of the uncracked stiffness still be suited for designing the reinforcement

correctly?

< AT —

/

Fig 6-1 Clamped beam under temperature gradient, uniformly distributed load and normal force

In this chapter, the clamped beam will be also used, and the normal force is considered
too, which is shown in Fig 6-1. With the similar method of chapter 5, the final state of the
moment curve and mean stiffness will be obtained. The specific procedure is shown as

Fig 6-2 as shown below.

» Estimated reinforcement and compression zone height

o [terative and obtain the correct results

® Cracking area stiffness

e Estimated cracking length and end moment

* Find the moment curve

o [terative and obtain the correct results

S W W N S N

Fig 6-2 Analysis procedure

There is another matter to which attention should be paid attention that the source of the
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normal force. Usually the normal force is a mechanic load, but there is another important
part which might be ignored easily. That is the temperature difference between
construction temperature and operating temperature. Due to the difference between two
states, some shrinkage or expansion will occur. It also will produce a normal stress. Thus
in this chapter, the normal force’s source will be considered as both mechanic load and

temperature difference.

6.1 Analysis procedure

The procedure is similar to the one used in chapter 5, though a little more complicated
since including the normal force implies that there is one more procedure in the

calculation of the compression zone height.

In order to make the calculation procedure much easier, both dead load effect and
temperature gradient effect will be considered together in this chapter which is different
from that in chapter 5. In this way, the moment of each individual effect is not read
directly, but is the result that can be calculated in one formula. The procedure is described

below.

6.1.1 Determine the compression zone height

If the reinforcement is unknown, the reinforcement ratio should be determined by
cross-section equilibrium.But the compression also is unknown, so the reinforcement
ratio and compression zone height need to be estimated first. In the estimated

process, one empirical formula is given as below which is close to the correct value.

M N, -0.39-h

max

s = +
09.-0,-d 09-d-0,

(6-1)

In this equation, the value of M __ contain both moment due to external load and

temperature gradient. The moment due to temperature gradient can be calculated by
using one third of the uncracked stiftness first which is an estimated value but close

to the accurate value.

After estimated the compression zone height and reinforcement, the following two
equations should be checked. If they are not equal, the compression zone height and
reinforcement should be estimated iterative again until equation (6-2) and (6-3) are
tenable.

X h X

d-x h
E(E—E)ﬁLaef(T)(d —5) _ M

a5 (

d—x. X N, 6-2)

2d
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Mmax + NT (g_x)
A= -— (6:3)
O (d _g)

When equation (6-2) and (6-3) are tenable, the required reinforcement AS and
compression zone height X are obtained. The two values will be used in the future

calculation.

With the value of compression zone height and reinforcement ratio, the stiffness at
cracked cross-section will be obtained by equation (6-4) as below.

bx? X E
El = (E. (22 +bx(2)* +— A (d - x)? -
o = (Ec( 12 +bX(2) + 3 A(d-x)7)) (6-4)

6.1.2 End rotation calculation

The clamped beam will be divided into 3 parts which is shown in Fig 6-3: simple
support beam with moment at ends; simple support beam with a rotation at end;
simple support beam with uniform distributed load on the beam. The length of

cracked area will be estimated. The length of end cracked area is estimated as |_2 )

also the length of middle cracked area is estimated as L, . These two parameters

should be given the estimated values which will be used in the future calculation. At
the end of the calculation, these will be checked and iterative.

q
PN RN N N
S = R O =
L L L
Mq_em Mq,end

NN A N PN ¢
o+

Fig 6-3 Transition from clamped beam to simple support beam
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After estimated the length of cracked zone, the mean stiffness can be obtained by

using equation (6-4) by tension stiffening law. According to section 4.5, the stiffness

at position L, will be obtained as below.

-M + thotaI Lx _ qu2

El, = il 2 2 (6-5)
-M + thotaI Lx _ qu

end
2 2 +Ax
El

scr

Before calculation, the moment at end M, should be estimated too. Using this
estimated moment in the calculation of rotation at end.
For the uniformly distributed load on the beam, with the similar method in chapter 5,

by using symmetry system the stiffness, moment and curvature distribution will be

shown in Fig 6-4 as below.

[ 5

rd ", M
g 3\

| A / Load
g LA
| | |
[/\\I‘-(/(i La L I L
T ER " EL|
“i Ell lfj_ Stiffness

ey Moment

) : Curvature

Fig 6-4 Stiffness, moment and curvature distribution

From Fig 6-4, the curvature at section 1, 2 and 3 can be obtained with the stiffness

and moment.
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thotaI Lx _ qu2
2 2
g El

X

(6-6)

Then the rotation at end due to the uniformly distributed load will be obtained by

equation (6-6), which is shown as below:

Total rotation of section 2:

thotaI Lx _ qu2

Lz,esumated

2 2
¢|_2,D|_ = de
I[ _Mend + thotaI I‘x _ ql-x2
2 2
2
_Mend + thotaI Lx _ qu
2 2 LAk
El

scr

Total rotation of section 1:

L L2
Ly +Ls estimated M — qix

¢L1,DL = J. 2 E | 2 de

c'C

L2 Jestimated

Total rotation of section 3:

% thotaI Lx _ qu2
2 2
¢|_1,D|_ = dLX
L1+L2£timated -M g quotaI I‘x _ ql-x2
2 2
2
_Mend + thotaI Lx _ ql—x
2 2 LAk

El

scr

The total rotation at end of the whole beam:

¢end,DL = ¢L1,DL + ¢L2,DL + ¢L3,DL

(6-7)

(6-8)

(6-9)

(6-10)

For the second part which is a simply supported beam with a moment at its ends, a

similar method can be used to obtain the rotation at the end. The stiffness, moment

and curvature distribution are illustrated in Fig 6-5 below.
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- . Curvature

Fig 6-4 Stiffness, moment and curvature distribution

The total rotation at end in this situation is

Ly o
2 estimated 1
Pnam = ~Meng ( x
d’M ’ .(|). _M +qL[0taI Lx _ql-x2
end 2 2
2
_Mend + qL[otaI Lx _ qu
EI2 2 i Ax
L(otal N (6_1 1)
2
+ Ll + J. 1 2 de)
EC I ¢ Ll*'-Z,eslimaled —_ M + M - h
end 2 2
2
_Mend + thotaI Lx _ qu
2 2 4 Ak
El

scr

For the third part which is only a rotation at the end of the simply supported beam,
the rotation can be easily calculated by the temperature gradient.

Bong.o = K % (6-12)
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end

6.1.3 End moment and moment due to temperature gradient

In order to obtain the moment at end, the boundary condition of the beam is needed.
Because it is clamped beam, there is no rotation at end. The sum of rotation at end of
all three parts should be equal to zero which is shown in equation (6-13). If it is
simple support beam or one end simple support and the other end clamped, the
boundary condition will be changed.

¢end.DL + end,M + end,0 = 0 (6'13)

By using the boundary condition, the relationship of moment and other parameters
will be obtained. Substitute equation (6-10), (6-11) and (6-12) into (6-13), the
equation of moment at end will be obtained as below.

L2 estimated M — ﬂ [ — M _ ﬁ L";‘e‘ M _ C]Lx2
—Kyr Lota _ '[ 2 2 5 dL, - j #dl-x _ j 2 2 . dL,
2 0 M+ M_ gL, Ly animates E.l. Lty e M +M N qL,
o 2 2 end 2 2 -
’ 2
~Meng +M*& ,MeerM,qu
2 2 LAk 2 2 Ak
EISCY Elscr
Ly esimated Lu;lal
! —dL, + Lo, J' 1 ; )
v My, + Jhewb G50 Bl s, + el AL
2 2 0 5
’ 2
_Mend+M_h —Mend+M_qu
2 2 Ak 2 2 Ak
EI scr EISCT
(6-14)

This end moment should be compared with estimated end moment. These two values
should be equal, so that the estimation is correct. If not, the end moment should be
estimated again, until the two values are equal. In order to check the estimated value,

the moment at position L, and L, should be calculated as equation (6-15) and

(6-16) as below.

2

L, .. L, ..
M = _Mend _ thotaI 22,est|mated + q z,es;mated (6-15)
M = _Mend _ thotaI (Lz,estimated + Ll) + q(Lz,estimated + Ll)z (6-16)
2 2

If in the estimated stage, one of L, and L, is equal to 0, which means the cracks
is occurred at ends or middle span. So the moment related to the edge of cracking

zone should be equal to cracking moment. The moment of L, and L, which is

not equal to 0 should be equal to M. If not, the cracking length should be
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estimated again, until M, ;=M.

If the cracking occurred at both ends and middle span, the estimation of L, and
L, are both not equal to 0. Now the moment at L, and L, should be both equal
to cracking moment M, . If not, estimating both values again, until the moment at

L, and L, areequalto M.

After three parameters’ iteration, the end moment and cracking zone position will be
determined. The moment curve will be obtained by using these. By using the similar
method, the moment due to temperature gradient will be obtained as below. In this
calculation, only second and third parts of Fig 6-3 are used. Because the temperature
gradient on clamped beam can be divided into a rotation at end on simple support

beam and a moment at end on simple support beam.

AT —

L[otal
—K,. —wotal
AT 2
L Liotal
2 estimated 2
l LR : —
0 _Mend +M_% Eclc Ly +Ls estimated _Mend +%_&
2 2 2 2
2 2
_Mend+m_& _Mend +%_%
2 2 Ak 2 2 Ak
Elscr Elscr
(6-17)

6.2 Design stiffness and mean stiffness

In the structural modeling process, there are many influential factors, such as: shrinkage,
expansion or some external loading. For the influence of restrained imposed deformation,
there is an interaction between the forces generated and the stiffness of the structure,
which is influenced by the cracking behavior: the more the stiffness is reduced by
cracking, the lower the forces. It is difficult to make a design in which all influencing
factors are taken into account. So, when structural modeling imposed deformations,
engineers often reduce the uncracked stiffness when modeling the structure and designing
the reinforcement. The question arises which reduction factor to use. In practice, Young’s
modulus is often reduced to 1/3 of its original value.

Actually, this value is unlikely to be appropriate for all conditions. Due to the design
procedure, the beam is considered as an uncracked beam which only reduced the stiffness
to 1/3. But in practice, the beam’s geometry is not linear. Due to the nonlinear of geometry,
the moment curve due to uniformly distributed load will be changed. If there is some
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cracking at ends, the stiffness at end will be reduced and the stiffness of middle span has
no changes. The system looks like a beam with two plastic hinges at end which is shown
in Fig 6-5.

{E|]crcc<ec| (Elluncrackea ll[E”crcc-\ec

Fig 6-5 Stiffness distribution on cracked beam

So the moment distribution due to a uniformly distributed load will alter. A constant
moment change related to the geometry of the cracked zone should be added to the
original moment curve. For example, if there are some cracks at the both ends of clamped

beam, the moment curve will move down relative to the original moment curve in Fig 6-6.
As the cracking length increase, the changed moment value M, will increase. But after

the cracking length reach 1/4 of the total length, the changed moment value will start to
decrease. When the whole beam is cracked, the changed value will be again reduced to 0.

(E”uncrucked

112'ql2 Nz'gl2

l124'ql2

(E”crucked ‘ {E”U”UOCkEd :(E”crocked

_ nZqz_ 1nzql2

l124'ql2

Fig 6-6 Moment translational movement with end cracked

Oppositely, if the cracking is occurred at middle span, the stiffness of the middle span
zone will reduce. So the stiffness at ends will be higher than middle span. For this
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situation, the clamped beam will be looked like two cantilever beams. Then the moment
at end will increase, and the moment and middle span will decrease due to the lower
stiffness. The moment curve trend has no changes, so there will be an upward
translational movement of the moment curve compared with the original uniformly
distributed loading moment. Similar with cracking at ends, after the cracking length is
more than half total length, the translational movement of the moment will stop increase
but start to decrease. When the total beam is cracked, the moment curve will be changed

to the original geometry which is the moment distribution on uncracked beam.

(E”uncrocked

1n2ql2

1124°gl2

(E”umcracked | (E”crocked | (E”umcracked

MXI * | | 22

1124°ql2

Fig 6-7 Moment translational movement with middle span cracked

From Fig 6-6 and Fig 6-7, it is seen clearly that in the final state the moment is not only
combined with the original uniformly distributed loading moment and the temperature
gradient moment, but also with a moment decrease or increase due to the nonlinear

properties of the beam.

1
Mend # MAT +Eq|—fotal

1
Mey =M +§quma| +M, (6-18)

So two definitions of stiffness are given as below:

Mean stiffness: Average stiffness including all uncracked and cracked zone. It is the actual
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mean stiffness of the whole beam.This value directly influences the moment due to

restrained imposed deformation.

(EI )actual = %

AT

(6-19)

Design stiffness: The stiffness difference between the original uniformly distributed
loading moment and the moment at final stage. Both the moment due to temperature
gradient and the moment changes due to the nonlinear geometry of beam are considered.
This value is not actual stiffness. It can be used in the design procedure where engineers
need moment estimation due to temperature gradient but with uncracked beam estimation.
This value can be directly compared with 1/3 uncracked stiffness which is used in actual
projects. In the future of the report, this value will be considered as mean stiffness.
M, +M,

(EI )design(mean) - (6-19)

KAT

After obtained the moment due to temperature gradient in equation (6-17) and (6-19), the
actual stiffness of the beam can be easily calculated with the curvature of temperature

gradient. For the mean stiffness, the value M ar T M . can be obtained by the equation

(6-20). Then the mean stiffness also can be easily calculated.

1
My +M, =M, —Equ.z (6-20)

The value in equation (6-19) can be instead of 1/3 uncracked stiffness in the structural
modeling and the reinforcement design procedure. This value is more accurate than 1/3
uncracked stiffness. By using the 1/3 uncracked stiffness, there might always be some
unexpected cracking or too much reinforcement might be used. If the stiffness in
equation (6-19) is used, one can avoid these problems.

6.3 Comparison of mean stiffness with different situations

In order to find the difference between mean stiffness and 1/3 uncracked stiffness, and
the influence factors of mean stiffness, different situation will be discussed and
compared in this chapter. The trend of mean stiffness with different value of different
parameters is very important for engineers to understand this topic. It can help engineer
to improve their design.

6.3.1 Comparison with different temperature gradient
Different temperature gradient may cause different magnitude and direction

moment. The moment due to temperature gradient depend on the actual stiftness
of beam and the magnitude of temperature difference. In this section, comparisons
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of different temperature gradient under 3 different situations are discussed: no
normal force, tensile normal force and compressive normal force. All the

calculation sheets and moment curves are shown in Appendix 4.

When there is no normal force on the beam, and the temperature gradient and

related mean stiffness are shown as Table 6-1 as below.

T(°C) EIm(N=0) (*10"13Nmm"2)
-80 8. 289
-70 8.116
-60 7.924
-50 7. 862
-40 8. 041
-30 8. 938
20 7.343
30 9.229
40 10. 017
50 10. 84
60 11. 11
70 11.31
80 11.27
90 11.02

Table 6-1 Temperature gradient and related mean stiffness with no normal force

So the relationship between temperature gradient and mean stiffness can be

illustrated by the curve in Fig 6-8.

EIm(N=0)

1
p s

[ ®]

[HEY
as]

«

(=]

—¢—EIm(N=0)

S

[y ]

Mean stiffness(*10"13Nmm*2)

an]

-100 -50 0 50 100
Temperature gradient(2C)

Fig 6-8 Relationship between temperature gradient and mean stiffness with no
normal force
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When the normal force on the beam is positive, which is a tensile normal force
with the value equal to 400kN, and the temperature gradient and related mean
stiffness are shown in Table 6-2 below.

T(°C) EIm(N=400) (10 13Nmm"2)
—-80 9. 902
-70 9.916
—-60 9.919
-50 9.912
—40 10. 2
-30 10. 79
—25 11. 45
15 9. 458
20 10. 84
30 12. 23
40 12. 8
50 13. 04
60 13.03
70 12. 88
75 12. 62
80 12. 46

Table 6-2 Temperature gradient and related mean stiffness with 400kN tensile
normal force

And the relationship between temperature gradient and mean stiffness can be
illustrated by the curve in Fig 6-9.

EIm(N=400)

o 14
<
E 17
; 1L
’ . . M 10
ﬂ v ‘
S 8
L ]
*
7 6
o —o— EIm(N=400)
E =
iz 2
c
m
1] 0
b=
100 50 0 50 100

Temperature gradient(2C)

Fig 6-9 Relationship between temperature gradient and mean stiffness with 400kN
tensile normal force
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When the normal force on the beam is negative, which is a compressive normal
force with the value equal to 400kN, and the temperature gradient and related
mean stiffness are shown in Table 6-3 below.

T(°C) EIm(N=-400) (%10 13Nmm"2)
—-80 6. 945
=70 6. 709
—-60 6. 469
-50 6. 423
—40 6. 828
-30 8. 104
—25 9. 325
30 6. 562
40 8. 047
50 8. 887
60 9. 448
70 9. 812
80 10. 02
90 10. 08
100 9.919

Table 6-3 Temperature gradient and related mean stiffness with 400kN
compressive normal force

And the relationship between temperature gradient and mean stiffness can be
illustrated by the curve in Fig 6-10.

Elm(N=-400)

[ ®]

as]

(=]

4— EIm(N=-400)

i

8]

Mean stiffness(*10213Nmm#~2)

an]

-100 -50 0 50 100 150

Temperature gradient(2C)

Fig 6-10 Relationship between temperature gradient and mean stiffness with

400kN compressive normal force
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From Fig 6-8 to Fig 6-10, the moment curve due to temperature gradient is similar
as double parabola curve. When the temperature gradient is negative, which
means upper temperature is larger than lower temperature, the mean stiffness will
increase as the value of temperature gradient decrease. Oppositely, when the
temperature gradient is positive, which means upper temperature is less than lower
temperature, the mean stiffness will increase as the value of temperature gradient

increase.

Fig 6-8 to 6-10 are combined in one graph which is shown in Fig 6-11, it is clearly
seen that the value of mean stiffness compared with 1/3 uncracked stiffness. Under
the condition with positive temperature gradient and tensile normal force, the
mean stiffness is larger than 1/3 uncracked stiffness, which means the actual
moment due to temperature gradient will be larger than the estimated moment due
to temperature gradient. So the reinforcement which is designed by estimated
temperature gradient moment under 1/3 uncracked stiffness is not enough to carry
the actual moment, the cracks might be happened then. It is dangerous when there
is both positive temperature gradient and tensile normal force existed. Obviously
in this condition the 1/3 uncracked stiffness is not suitable to be used to design the
reinforcement. More accurate design stiffness should be calculated by using
equation (6-19).

Comparison with different AT

~
< 14
E I
£ 4n /-_'\
s P e
? _/ 10 [ /_
L] ’
5 —_— 8 [ EIm(+400)
(7]
9 6 Eim
: o
£ 2
= 4 Eim(-400)
: |
8 2 1/3El
= 0
-100 -50 0 50 100 150

Temperature gradient(2C)

Fig 6-11 Relationship between temperature gradient and mean stiffness

On the other hand, when there is no normal force or compressive normal force
with negative temperature gradient, from Fig 6-11, the mean stiffness is much less
than 1/3 uncracked stiffness. Under this circumstance, the structure designed by
1/3 uncracked stiffness is over safe. So less reinforcement can be used compared
with the reinforcement designed by 1/3 uncracked stiffness. From Table 6-4 as
below, whether using 1/3 uncracked stiffness to estimate moment due to
temperature gradient is safe will be illustrated.
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High Low Low High
negative negative positive positive
temperature temperature temperatur temperature
gradient gradient e gradient gradient
Tensile Safe Safe Safe or Dangerous
normal force dangerous
No normal Over safe Safe Over safe Safe
force
Compressive Over safe Safe Over safe Over safe

normal force

Table 6-4 Different combination of temperature gradient and normal force

6.3.2 Comparison with different normal force

Different normal force will influence the reinforcement ratio of the structure and

the compression zone height of cross-section. These factors will direct or indirect

influence the mean stiffness of the structure. Different normal force under

different temperature gradient will be compared in this section. Due to the curve

of the relationship between normal force and mean stiffness looks like linear line,

the regression of the curve will be obtained. All the calculation sheets and moment

curves are shown in CD-ROM.

When the temperature gradient is negative with the value of -40 degree, which

means the upper temperature is higher than lower temperature of the structure, the

normal force and the related mean stiffness are shown as Table 6-5 as below.

N (kN) EIm(T=-40) (%10 13Nmm"2)
-800 5. 953
-600 6. 328
—400 6. 828
—-200 7.353
0 8. 041
200 8.95
400 10. 02
600 10. 73
800 11. 65

Table 6-5 Normal force and related mean stiffness with -40° C temperature gradient

From Table 6-5, the relationship between normal force and mean stiffness can be

illustrated as curve as Fig 6-12.
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Fig 6-12 Relationship between normal force and mean stiffness with a -40°C
temperature gradient

By using software Origin, the curve and equation can be regressed as Fig 6-13 and
equation (6-21).

(=B

—— Linear Fitof B

12 1

114

Equation y=a+bx
Adj R-Squers | 097712
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B Intercept | 8.42811 010225
10 1 B Sleps 0.00285 1979724

s 4———7—-+—F——7——"7—71 77"
41000 -800 -600 -400 -200 O 200 400 600 800 1000
A

Fig 6-13 Regression of the mean stiffness-normal force curve

(El),, =8.42811+0.00366N (6-21)

When the temperature gradient is negative with the value of -60 degree, which
means the upper temperature is higher than lower temperature of the structure, the
normal force and the related mean stifthess are shown as Table 6-6 as below.
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N (kN) EIm(T=—60) (10" 13Nmm 2)
-800 9. 219
-600 5. 844
—-400 6. 469
-200 7.135
0 7.924
200 8. 802
400 9.919
600 11.12
800 12. 64

Table 6-6 Normal force and related mean stiffness with -60° C temperature gradient

From Table 6-6, the relationship between normal force and mean stiffness can be

illustrated as curve as Fig 6-14.
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Fig 6-14 Relationship between normal force and mean stiffness with a -60°C

temperature gradient

By using software Origin, the curve and equation can be regressed as Fig 6-15 and

equation (6-22).
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Fig 6-15 Regression of the mean stiffness-normal force curve

(El),, =8.34133+0.00451N (6-22)

When the temperature gradient is negative with the value of 40 degree, which
means the upper temperature is less than lower temperature of the structure, the
normal force and the related mean stifthess are shown as Table 6-7 as below.

N (kN) EIm(T=+40) (10 13Nmm 2)
-800 5. 797
-600 6. 922
—-400 8. 047
-200 9. 047
0 10. 017
200 11.42
400 12. 8
600 14.3
800 15.92

Table 6-7 Normal force and related mean stiffness with 40° C temperature gradient

From Table 6-7, the relationship between normal force and mean stiffness can be

illustrated as curve as Fig 6-16.
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Fig 6-16 Relationship between normal force and mean stiffness with a 40°C

temperature gradient

By using software Origin, the curve and equation can be regressed as Fig 6-17 and
equation (6-23).

= |B
—— Linear Fit of B

14 Equstion V=T b
T AdjR-Squsre | 0.99127

Vee  Stndad Erar

B Imeroept | 1067466 0.10532

B Slope 0.00621 20591564

4 s B e B L B e e e e L s e |
-1000 -800 -600 -400 -200 0 200 400 600 800 1000

A

Fig 6-17 Regression of the mean stiffness-normal force curve

(El),, =10.47444+0.0062IN (6-23)

From Fig 6-12, Fig 6-14 and Fig 6-16, the trend is clearly seen that the mean
stiffness will increase as the normal force increase. From equation (6-21) to (6-23),
the slope and constant value (when normal force is 0) will increase as the positive

temperature gradient increase and negative temperature gradient decrease which is

Van Hattum en Blankevoort 79 'ﬁj
a Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

announced similar in previous section. So as the same result with previous section,
it is dangerous for engineers to use 1/3 uncracked stiffness to estimate the moment
due to temperature gradient when positive temperature gradient and tensile normal

force are happened together.

Comparison with different AT

w
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Normal force (kN)

Fig 6-18 Relationship between normal force and mean stiffness

6.3.3 Comparison with different q load

If the uniformly distributed load is different, the cracking pattern and length will
be different too. In this case, the uniformly distribute load is the only mechanic
load which directly influence the moment value. So the cracking position of the
clamped beam will be influence by the uniformly distributed load. If the q load is
not big enough, the cracks will always at ends or middle span which is also
depend on the temperature gradient. But if the q load is big enough and the
temperature gradient is suitable, there will be cracking at both ends and middle
span. What is happened in this situation? Is there any difference with only one part

cracking?

So in this section, in order to make all cracking phenomenon happened, different q
load will be compared under different temperature gradient. In this case there is no
normal force added, so mostly the obtained mean stiffness is less than 1/3
uncracked stiffness. The main point of this section is to find out the difference of
mean stiffness with different cracking pattern. All the calculation sheets and
moment curves are shown in CD-ROM.

When the temperature gradient is negative with the value of -40 degree, which
means the upper temperature is higher than lower temperature of the structure, the
uniformly distributed load and the related mean stiffness are shown as Table 6-8 as

below.
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q (N/mm) EIm(T=—40) (%10 13Nmm  2) Cracking length (mm)
100 11.13 218*%2 mid
150 9. 306 325%2 mid
211.5 8. 041 420%2 mid
250 7. 406 468%2 mid 7*2 end
300 7.563 570%2 mid 88%2 end
350 7. 969 635%2 mid 147%2 end
400 8.5 680%2 mid 191%2 end

Table 6-8 Uniformly distributed load with related mean stiffness and cracking
length with -40° C temperature gradient

From Table 6-8, the relationship between uniformly distributed load and mean

stiffness can be illustrated as curve as Fig 6-19
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=
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o M f=y a3} co
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Fig 6-19 Relationship between uniformly distributed load and mean stiffness

When the temperature gradient is negative with the value of -60 degree, which
means the upper temperature is higher than lower temperature of the structure, the
uniformly distributed load and the related mean stiffness are shown as Table 6-9 as

below.
q (N/mm) EIm(T=—60) (*10" 13Nmm 2) Cracking length (mm)
100 11.25 455%2 mid
150 10. 44 500%2 mid
211.5 10. 017 685%2 mid
250 10. 19 716%2 mid
300 10. 38 747%2 mid 7*2 end
350 10. 56 791%2 mid 67%2 end
400 10. 87 820%2 mid 113%2 end

Table 6-9 Uniformly distributed load with related mean stiffness and cracking
length with -60° C temperature gradient
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From Table 6-9, the relationship between uniformly distributed load and mean
stiffness can be illustrated as curve as Fig 6-20.
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Fig 6-20 Relationship between uniformly distributed load and mean stiffness

When the temperature gradient is negative with the value of 40 degree, which
means the upper temperature is higher than lower temperature of the structure, the
uniformly distributed load and the related mean stiffness are shown as Table 6-10

as below.
q (N/mm) EIm(T=40) (*10"13Nmm" 2) Cracking length (mm)
100 8. 167 298%2 end
150 7.983 363%2 end
211.5 7.924 424%2 end
250 7. 958 453%2 end
300 8. 083 484%2 end
350 8. 542 511%2 end
400 9. 167 532%2 end

Table 6-10 Uniformly distributed load with related mean stiffness and cracking
length with 40° C temperature gradient

From Table 6-10, the relationship between uniformly distributed load and mean
stiffness can be illustrated as curve as Fig 6-21.
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Fig 6-21 Relationship between uniformly distributed load and mean stiffness

Fig 6-22 is the combination of Fig 6-19 to 6-21. In Fig 6-22, when temperature
gradient is positive in this case, there is only cracking at end, so the mean stiffness
will increase as the q load increase. If the temperature gradient is negative in this
case, there will be cracks at both ends and middle span when the value of
temperature gradient is large enough. So as shown in Fig 6-22, the curve with
negative temperature gradient has a transition point when the ends start to crack.
When the cracking is only occurred at middle span, the mean stiffness decrease as
the q load increase, but after the cracking is occurred at middle span and ends, the

mean stiffness start to increase as the q load increase.

= Comparison with different cracking pattern
T
£ ¢
Z 10
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S
S 8
% —4—EIm(T=-40)
a 6
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c
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Fig 6-22 Relationship between q load and mean stiffness
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CHAPTER 7

BIO-DIESEL PROJECT
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The Bio-diesel project is an oil industry project. A bracing structure is designed to support
the oil tanks on it. Around the slab there is a wall to keep the oil from tanks inside in case
of an emergency. As shown in the Fig 7-1 which is a corner part of Bio-diesel project, the
oil tank is direct on the slab. In this tank, there is some high temperature liquid oil. For the
oil tank is made of steel, so the high temperature will directly have impact at the top of
the slab.

Fig 7-1 A corner of Bio-diesel project

7.1 Project analysis

&

Due to the structure and condition of the project, there are some load actions on it: dead
load of slab, dead load of tank, storage loading of oil in the tank, temperature gradient due
to higher temperature at upper of slab and a temperature difference between construction
period and using period. Due to these load actions, the corresponding load effects are:

uniformly distributed load, normal force and temperature gradient.

The normal force on the slab is caused by the temperature difference between
construction period and operating period. So a definition will be given of the reference
temperature. A normal force will be caused by temperature difference at a specific time or
within a specific environment;a standard should be made to distinguish the normal force
value caused by temperature difference. So the temperature in the construction period will
be considered as reference temperature. During the operating period, the gap between
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reference temperature and operating temperature will cause a normal force which is

shown in the Fig 7-2 as below.

Working Temperature AT = +

Reference Temperature

Working Temperature AT = -
i : LT
t d
\ |
| | [¥
: %

Fig 7-2 Reference temperature and normal force caused by it

So in this case the axial loading effect is not only caused by a mechanic normal force, but
also by a temperature difference.

Even with a proper design of the reinforcement in the Bio-diesel project, there might still
be some unexpected cracking in the slab. Engineers ofter assume that this phenomenon
has no problem for the whole design procedure. The estimated moment due to
temperature gradient in design process is based onl/3 of the Young modulus. From
Chapter 6 it is clearly seen that the reinforcement is underestimated when tensile normal
force and positive temperature gradient has been applied. When structural modeling
imposed deformations, engineers often reduce the uncracked stiffness to 1/3 of uncracked
stiffness when modeling the structure and designing the reinforcement. This is the
question why the reinforcement might not be enough to carry the load in fact.

More accurate design is needed in this project to prevent unexpected cracking occurring.
The method mentioned in chapter 6 can be used to make a more exact estimation of
reduced Young’s modulus. Then a superior reinforcement design can be made by the new
Young’s modulus.

7.2 Redesign of the project

In the original design of Bio-diesel project, some estimations are used to analyse: no
cracking of the slab, Young’s modulus is reduced to 1/3 of its original value due to many
influenced factors. Under this estimation, a reinforcement ratio can be calculated.
Actually, this reinforcement is not proper to every condition. A better design of
reinforcement is needed to prevent unexpected cracking or reduce the reinforcement

amount. As to this case, the model is a slab. In order to simplify the calculation, the most
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unfavorable part of the slab will be recognized as a clamped beam to analysis.

From the stress distribution as a result of a Scia Engineering, the most unfavorable part is
the inner part of the edge of the tank which is shown in Fig 7-3. All the parameters at that
part will be used in the clamped beam calculation. The calculation procedure is shown in
Appendix 5.

=g
o

Fig 7-3 the stress distribution by Scia Engineering

So the calculation result is the mean stiffness in design should be used

as 1.02x10"“N-mm? , and where the 1/3 of uncracked stiffness

is1.076x10" N -mm?*.

mxD+-max [kNm/m] il maax ]

1/3 uncracked stiffness Mean design stiffness
Fig 7-4 Comparison of stress distribution with different design stiffness

Van Hattum en Blankevoort 87 .ﬁ.'
Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

When compared with the stress distributions due to the two design stiffnesses in the Fig
7-4, the difference between both is not too wide. The reason is that the temperature
gradient is negative in this case and the tensile force is not very strong. So the actual
design mean stiffness should not be larger than 1/3 of the uncracked stiffness.

If the normal force is changed, what’s happened with the same reinforcement? So a
normal force equal to 600kN, 400kN, 200kN, -200kN, -400kN and -600kN was also
calculated, and the result is shown in Fig 7-5. The calculation procedures are shown in

Appendix 6.
Comparation of stiffness

12
&
g 10
£
= e N=-600kN
< 3
i
< e N=-400kN
i
£ 6 - = N=-200kN
5 —— N=200kN
S 4
2 e N=400kN
]
£ > e N=600kN
b —1/3(El)c

0

0 1 2 3 4 5 6 7
Moment (¥*10"8Nmm)

&

Fig 7-5 comparison with different normal force

From the Fig 7-5,the higher the tensile normal force added, the higher the mean design
stiffness that should be used. If the normal force is higher than 600kN in this case, 1/3 of
uncracked stiffness will be a considerable underestimated of actual stiffness.

On the other hand, if the temperature gradient is changed from negative to positive, what
will happen then? The calculation working is included in the CD-files. After calculation,

the mean design stiffness will change from 1.02x10"*N-mm’ to

1.28x10""N-mm’ as the temperature gradient is changed from -40 degree to +40

degree.

So the stress distribution will be changed. The stress distribution under two mean design
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stiffnesses is shown in the Fig 7-6 as below.

mxD+max [kNm/m]

1/3 uncracked stiffness Mean design stiffness
Fig 7-6 Comparison of stress distribution with different design stiffness

It is clearly seen that the stress is much higher by using mean design stiffness than using
1/3 of uncracked stiffness. So in order to make a better design of Bio-diesel project, the
mean design stiffness is suggested to be instead of 1/3 of uncracked stiffness in
reinforcement design.
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CHAPTER 8

PROGRAM FOR OBTAINING MEAN
STIFFNESS
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In order to make the calculation simply, some easier method is needed to obtain. Due to
the mean stiffness calculation procedure is too complicated, it is impossible for
engineering to calculate the mean stiffness every time in each project. According to the

experience, some solutions can be used:

* Calculation table: Making a calculation sheet which includes all the parameter and
different situations. Engineers can directly search and find the corresponding value.

e Calculation program: A calculation program of computer can be developed. Engineers
input all the parameters to the program, and the results will be obtained automatic.

e Safe reduction factor: Because 1/3 Young’s modulus is dangerous to be used in the

design procedure, so a safer reduction factor can be given to instead of 1/3.

From the above three solutions, each of them has positive and negative. For calculation
table, the parameters of the case are a little too much which is around 8 parameters. So the
table should be very complicated, even there are some appendix tables. Engineers cannot
find the result in a short time. For the calculation program, it should be designed by some
computer language software. So the computer language should be also good at. For the
safe reduction factor, this is the simplest method. But in some other conditions, it might
be too much to be used. The reinforcement ratio will be over designed; the budget also
will be higher than actual.

Finally, the calculation program is chosen to be focused on. The software Matlab and C++
language will be used to design this program. Firstly, the Mathcad equations should be
translated to Matlab input as Fig 8-1.

1 funct t = UL )
Gonoral calculation of a clamped beam with cracking {metion varargow (varargin)
2 % UL B-file for ULfig
P 3 % UL by itsslf, crestes a nev UL or raises the existing
1 q vV ¢ % singletons.
i .
4 NN I 5
y (v 5 5 H = UI returns the handle to a new UT or the handle to
/
A [ AT % the existing singleton.
, ! £ 8 %
.
b 9 % UL( CALLBACK’, hObject, eventData, handles, ...) calls the local
10 % function naned CALLBACK in UL W with the given input argunents.
1 %
N N B 12 % UL Property’,*Value’,...) creates a new UL or raises the
000 200000 , -8
- — E 13 % existing singletons. Starting from the left, property value pairs are
14 % applied to the GUI before UL OpeningFen gets called An
N
Ty = F——r Ligtg] ™ 300mm h = 500mm d = &50mm 15 % unrecognized property name or invalid value makes property application
L 16 % stop. ALl inputs are passed to UI_OpeningFen via varargin.
1w %
fymh-damm b = 1000mm Agg = bed = dfx 10 mm . . JR— - .
18 % +5ee GUI Options on GUIDE's Tools menu. Choose “GUI allows only one
L P 19 % instance to run (singleton).
n 2 %
2 % See also: GUIDE, GUIDAIA, GUIHANDLES
Mgy = 17058 m Ny = 400 =
3 % Edit the above text to modify the response to help UI
Calculation the design refoecement and comprissmn zone hinght 24
5 % Last Modified by GUIDE v2.5 13-Jul-2010
ary w200 *
s
- bif % Begin initizlization code - DO NOT EDIT
28 - gui_Singleton = 1;
M Ny 041h 2 A, . . R
g w o mas T - 5128 10 mm Eom ot 10 29 - | gui_State = struct ( gui_Nane’, nfilename, ...
Voapd  OSdo, Aca 30 “gui_Singletor’, gui_Singleton, ...
Compression zon height i eui_OpeningFort, U1 OpeningFer, ...
. 32 gui_OutputFen’, @UI_QutputFen, ...
= Timm . .
k<] gui_LayoutFer’, 1[I, ...
s (b CES T 34 “gui_Callback’,  [1);
2 L 2 ) . 35 - | if nargin & ischar (varargin{i})
aet{ 2] L 3% - gui_State. gui_Callback = str2funcivarargin{l});
/24 - |end
e .
- m
Br

Fig 8-1 Translation from Mathcad file to Matlab file
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&

After input all the data to the Matlab program, combined with C++ language, the program
of mean stiffness calculation will be obtained. As shown in Fig 8-2, in this program all the
parameters will be input in the left window. The results will be shown in the right window
such as: cracked zone, moment at end and mean stiffness. All the input files and program
will be included in the CD-ROM.

Calculation of Design Mean Stiffness

Calculation of Design Mean Stiffness

Cracked at end & Uncracked at middle span

-203652656 819

036022

Fig 8-3 Example of calculation

This program is only under the condition of clamped beam which mean both the ends are
clamped. Under other conditions such as one end clamped and one end simple support, or
both ends are simple support are not developed due to time limited and my computer
language is not very good. So in the future, the rest conditions will be developed by me or
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someone else. These programs can help engineers to make a better design.

Types of
boundary Input K=1/3
condition

Load action

Tensile & +AT
Others

Geometry

Material

To be continue... . To be continue...

To be continue... To be continue...

Fig 8-4 Condition of the program developed
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CHAPTER 9

CONCLUSION AND RECOMMENDATIONS
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9.1 Conclusion:

Compression zone height

* If there is no axial loading on the cross-section, the compression zone height will be
constant when the cross-section is cracked. This value is due to the cross-section
properties but not due to the external loading or imposed deformation.

* The compression zone height is influenced by the ratio of moment and normal force.
The relationship looks like a double parabola as in Fig 3-14.

Stiffness distribution on a cracked beam

* Stiffness depends on the moment of inertia, and inertia depends on the compression
zone height. So the stiffness of the cracked area is influenced by the compression
zone height.

* Mean stiffness which is used to calculate the moment due to temperature is the average
value of the whole beam. The stiffness distribution on the cracked beam is
non-linear.

* The normal force can also be caused by the temperature difference between the
construction period and using period. A negative temperature difference can result in

shrinkage; a positive temperature difference can result in expansion.

Stiffness used in design procedure

* When structural modeling imposed deformations, engineers often reduce the uncracked
stiffness when modeling the structure and designing the reinforcement. A new
definition is given of a mean design stiffness which is to be used in design
reinforcement.

* This reduction factor already considers all the influential action, such as shrinkage,
expansion and creep. Usually a factor as 1/3 is used, but this value is not suitable for
all the conditions. Some unexpected cracking may occur.

* The actual mean stiffness is larger than one third of the uncracked stiffness when there is
a tensile axial force and a high positive?? temperature gradient. On the other hand,
the design mean stiffness might also be less than one third of the uncracked stiffness.

Loading sequence

* There is no difference for the loading sequence. That means that whether external
loading or restrained deformation is applied first, the results will be same at the final
state.

Moment distribution influenced factors

e After cracking, the non-linear response of the member investigated will influence the
bending moment distribution. As a result, the bending moment in a cross-section is
not only influenced by external loading and restrained deformation, but also by the
stiffness distribution over the length of the member.

9.2 Recommendations
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Different conditions imply different reinforcement

*In the condition with positive temperature gradient and tensile normal force, more
reinforcement should be used compared with the reinforcement designed with the
reduction factor of Young’s modulus of 1/3, and especially when the temperature
gradient and normal force are high.In order to prevent some unexpected cracking, a
more accurate mean stiffness should be calculated

* In the condition with a negative temperature gradient and a compressive normal force,
less reinforcement can be used compared with the reinforcement designed with the
reduction factor of Young’s modulus to 1/3.

*In the condition with negative temperature gradient and a tensile normal force, or
positive temperature gradient and compressive normal force, the mean stiffness is

almost similar to 1/3 of the uncracked stiffness.
Program developed

* A program to calculate the mean stiffness on the clamped beam is developed, which can
help the engineers in the design procedure.
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For Noakowski’s equation (23),
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kx:= 0.3 i= kx-d x= 163

The compression zone height is 165mm
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So the compression zone height is 165mm

Van Hattum en Blankevoort 99 'ﬁj
a Delft
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And check
1= 1630 . '—E—x
'n =73 ¥y, = 1375
Given
‘d-x\ 7 n) bx_ (b x) (x-cy)( 3
'—"i.E!d x'!d h_+be!h x'+'—"!|. E [ iih \
g 5;‘h : JI-;‘-._ EJ.'- 3 E;al 3| “scomp scnmp;k % .-"-;al j b
e . X
(X~ g | (d-x\| b
Ao Eecome| —— | - AE 1|+ Z2E
p scomp | x ) | x ) ;¢
Fi.ﬂdlex} — 1434 1438336164383562
EX
B = 14341 My o= 1 1y = 2.607
27 %" ¥n ey = 1572 10°
&2
M = — T, = 2.857
12 p) 12
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Appendix 2

This is the calculation procedure of mean stiffness on a clamped beam.
g /
74 P — —

E
N N
E. = 30000 E_ = 200000 o, = o 6.667
2 2 E
mim mim c
- N - - - <
Ty =3 . Ligtal = 10000mm h = 1000mm d = 930mm
min
= T
&y = h-d=30mm b = 400mm ""'"cd =bd=38x ll}j-rmn*
- A _ 1 .
A= 2000mm”™ £ = L 3263 = 10 3 L.= —-‘r:t-h3 = I}.I}33m4
Ad 12
-3
N 10 AT —41
= 40— AT =22C o= baT=——=22=10 —
1 mim C AT h m
1. Dead Load Effect
1) Estimated cracking length due to dead load only
-1 2 g
liEﬂdD]-_ = E'q'l_tntal = —3333 b 1'} N:I']"IJ']‘I
1 2 - 3
}"irmdDL = i.q.LtDtﬂl = 1667 = 10 -N-mm
337108 dA410E
f{x’
\\ o
s M
. ya q
" ~
|BETIDE
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and the cracking moment is
1 2 3.
}"ic:r =—b-h Top = 2w 107 -IN-mm

So the cracking length can be calculated by the follow graph

333103 33310
\ Ms /
\i /f
R e S |-
cr
| e
| ™
1
Lo |6BTI0"E
2
Ilptaly  ala
}"1&11:1.[}1_ - }"'ic:r = 5 T
L3 estimated = /18mm
2
@Ligtar Ly estimated 912 estimated | 8
:LiEI.tESt = ﬁiEﬂdD]-_ =+ | 3 - . J|- = —-_J, = ].D -_\‘\11']’].1']’1

5o the estimated cracking length is 718mm

After several iterative, the real cracking length is:
Ly = 481 5mm

{2} Calculation of the moment curve due to dead load only

Firstly, the dead load on the clamped beam can be divided into two parts:
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. g
4 I N N RN SN
| |
El: | El |
1

g Mazns MQE‘“
e = — \J' “,l( ! ( A ) “\'
A '\_ / ! - "z A
! & II" £ \"\ £ H'.

The stiffness of the crack section should be calculated as below:

By using the equation (3-4), the compression zone height of the cracked section is

“AgEg + JASES(AGE + B bd)
x=

= 0221'm
E.b

So the stifiness on the cracked section should be calculated as below by using (4-3)

,

b- (xy" E 2 : 2

B =E | o +bx| o] +—A(d-%°|=2558x 10" N-mm
12 \2) E,

So due to chapter 4, the stiffness in cracked should be related to the position Lx
Tension stiffening value is:

M

20T

=782 m_41
=CT m
-41
Ak =042k =3284x 10 —
m
\

I:l'I‘tu::ntal'I‘x q'LxH
My=Mpdpr +

2 2
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Moment at simple support beam should be

-

q I‘tu::utal'I‘:{ q'Lx*

Mix= T 2 .
Iliptaly aly
M, MenapL* ——> — ~
EL = v EL = 5
- Ak Tligtaly Ly
El oy MendDL Y ——— —
o+ AR
Such as EL..
2
e T I ) 7
My, o= — o 2 = 0166 x 10’ -N-mm
12 »
M + M
aDL + Mo : 2
Eljy = ——————— =392 x 10" N-mm
Mepdpr ~ M2
et ML Ak
EIEI'_'.I
M
dDL : 2
Bl g=—o  _3419% 10" Nomm
M
end DL
e 4 Ak
EIEEI'

E.I.=1 ll}lj“‘l :
cla=1x -N-mimn

Considering the first part which is dead load on the simple support beam

i B g \lr \Lr
/zz l'"q. z;’ III'.
[ SS—1 P §
Van Hattum en Blankevoort 104 'ﬁj
Delft

&
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Then by using symmetry

> 9 ;
S L A

/\J\ Load

L

N
r

El El, Stiffness

Curvature

At third graph, the middie span moment shouid be equai io
1 2 . 8
Mpid DLsS = 3 3 ltotal = 3% 10°-N-mm

So the curvatures at point 1, 2 and 3 in the fourth graph are

M
L2 —41
gl = ——— = 2338 = 10 4—

M
Ko = L2 _ 0166« 10
Ec' C

i1
m

MpidDLss . —4
T 5k 10

1
K 3 - —_
1 E. I, m
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Yongzhen Li

Curvature in uncracked section is

-

I:l'I‘t-:utal'I‘:{ q'Lx‘

2 2

wuncracked =
Eu:'In:

[

And curvature in cracked section is

N
I:I'I‘tu::ntal'l‘:': q'Lx

2 2

Fycracked =
EL,

So the rotation at the end is

1 -
L]. = ;'Ltotal - I_E =4519m

Ltl}tal

"
.l Bl

I:1'I‘t|::nta.1'1‘:': q'Lx‘

iy = - dl, = 1644 10
L1 E. I, b1
Ly
r'I-] -
q Ltntal'Lh q I‘:»:
2 2
bp3 = 3
i Tligtatly - a1y
MepdDL Y ———— —
2
ligtatly  aly
MepdpL* ———— ~
o+ ARk
\ E“Iscr
0

-

hendDL = Py + Ppa=1705x 107~
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Then considering the second part which is the moment at end on a simple support beam

MQE"E Mﬂ.':'!'\:
VA 7\

By using symmetry:

2N q

\lf \l’ : \|/ \lr'
; /\ Load

| —

A L I

N

El ElL Stiffness

Mn:—.n.‘]

Moment

0
kl LLJ
: Curvature

The curvature at fouth graph will be obtained as below:

qend
KML = KMz
E.-L EL,
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So the rotation at end is

i = B Ly
.‘I-]

tnp = j K dly
0

Pend M = a1 T Pan

{ L 3
]'_1 i : 1 1
Pend M= E 1 * 2 dLy | Mgend
€c . 3 Ligtarly oLy
Mepg DL +——3 .
. q'Lt-}tal'Lx q'Lx‘
Mepd DLt 1
-  tAK
E:[S':}f
L ‘0 )
For it is clamped beam, so
Pend M T PenanL =0
So the moment at end due to dead load is
~Pend DL
Mend = = = 2917 x 10°N-mm
gen Ly
Ly - 1
E 1 + - dI_x
Coe . Tliotatle 2Ly
Mepg DLt ﬁ
q Lmtal'Lx q Lx‘
MepgDLt—— .
- - +A K
EJSC.‘I
“0
Van Hattum en Blankevoort 108
'ﬁJDeIft

&



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

So the curvature due to dead load with a estimated cracking length is as below

2810%10°% 18104108
b, Mq g
L /____
V||:r \\ 7_
| . L
I -
Lo 1181%10°8

So the moment at L2 from the above curve is

.
aliotaly  aly
M) check = Mgend * —— -~

=2 IDS-E-m.m

The moment at L2 is not equal to the cracking moment, so the estimation is uncorrect.
An iteration step is needed.

After several iterations, the final results will be obtained as below:

So the real moment curve is

29171008 291708
At Mq /
* s
N P
Mcr | -\\ ?_,//
N L
M\“'“H-_ .f"ff
48] 5mm 20835108
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Yongzhen Li

2. Temperature Gradient Effect

Firstly, kgy.— k., 15 neededto be calculated.
So
M
S —-41 . ) —-41
Keop, ™ =T782= 10 ; M = I}.=I-2-h5m= 3284 % 10 ;
sCr
M
M
_4at = 11 =
Kfde = Kgpr — &k = 43536 10 i { 114091 2
il _-—":._5-: d- - biih i}
M
—41
Kep = =2x= 10 4—
EE-IC m
- —41
K - K. =2336=10 —
fde cr m
And
-4 1 R —-41
KaT=22=10 -— < kK - K. =2336=10 —
AT m fde cr m

(1) The cracking length due to temperature gradient also should be estimated

The estimated final cracking length should be
L3 estimated = 1200mm

So the estimated final cracking length is 918mm

lteration of L3:

I_3 = 1400mm
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(2) Calculation of the mean stifiness

Then for this beam is a clamped beam, so the rotation at end should be equal to 0.

N fT

AN 0

So the rotation at end from the secon graph should be:

!r -‘L3 ) H"
INLATS I+ — dly |- MATend
| Ec'lc EIX |
\ 1] S
where
2
I:l'I‘t-:utal'I‘x q'Lx
qund + MaTend * 3 T2
I:l'I‘tu::ntal'I‘x q'Lx*
M M, -
gend MaTend + 2 2
+ MK
E"Isc:r
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The rotation at end from the third graph should be:

Ltntal 3

AT = KA =11=10
Py AT = KAT 3 B

And Ltotal

I_13 = - I_3 = 36m

PpAT T PpaT="0
So g
MATend = —147-10"N-mm
\
1 | ) -3
dL, |- MATeng = 1103 x 10

!

¢ Ly

Il'I‘tcstal'l‘x q'Lx

liqmd"'li’_ffmd t -

1
PMAT= | T

cC

[ ]

q']‘m[al']‘x q'Lx
l-iqmd+}-.-i ATendt - -

+AK

Eloer

\ J
which is equal to minus dy A

So the moment due to temperature gradient is 5.778"1047TNmm

After iteration the moment is changed to 6.27*1047Mmm

The moment at L3 position is
|

Aleotarls  als g
:\i]_g = :\i.lI‘Eﬂd + :\quﬂd + ; - 5 =—-197% = 10 -N-mm

3
M, =2x 103.}1.m Ly=14x10"-mm

So the final cracking length :
3
I_3 =14 107 -mm
The final moment at end:

Meng = MATend + Mgeng = =387 10"-N-mm

" fuert
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The final moment at middle span: +

1 2 - 7
Mod =Mapq t+ E'q'Ltntal = §.135 = 10 -N-mm

So the moment curve is

4 387108

_-_\—\_\_\_\_‘_\_'_'_'_'_,_-—'_-_
0.6135%10"8

[400mm
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Appendix 3

Berondoorsnede Beronsterkieklasse C28/35
Breedee b = 1000 mm o= 3% N/mm’
Hooge h = 500 mm Fo= 21 N/mn®
Trekaijde Aantasting door chemicalién fo= 1,40 N/mm®
Milizuklasse: XA2 Madg agressicve chemische omgeving fo = 274 N/ mm®
Betnndekking ¢ = 50 mm Teslg { mm Betonstaalsoort FeBs0D
Vendeelwapening = 1] mm T = 30 mm f= 435 N/mm’
Drukzijde Corrosie ingeleid door carbonatate
Milizuklasse: XC2  Nat, zelden droog
Betondekking ¢ = 50 mm Teslig i} mum L
Verdeelwapening = i} mim . = 25 mm
& & & & & & & & & B
Belastingen eplosie/swot/borsing: nee
_\[1? = 64,0 kNm .\Z.:_, =Wl kN (rek)
M.= 200 kNm Ny= 1200 kN (rek)
M, = 00 kNm N, = i} kM
Tocgepaste wapening
rekzijde drukzijde
& hoh. AL [} hah. AL
staven hag 1 25 100 = 809 mm® 2 100 = 4909 mm’
staven hag 2 0 { = 0 o’ 0 i = { mm’
Apa= 4000 mm’ A H00 e
afstand ssen hag lenlaag2  x= { mm ® = i) mm
nuttige hoogre d = 438 mm d= 63 mm
Controle wapening art, 8.1.1
A= 4009 mm® Aue X568 mm®
X = 6,80 mm A= X068 mm’ =  accoord!
Ao = 16146 mm®
Mo=Mo==> 6l28 kKNm> 210 kNm = accoord!
Controle rowticcapaciceic art, 8,13
hwm = 0535 — % .= B0l mm = nn
dypemn = 438 mm
Epmaiemizn = 8,70 mm %= -218 mm
geen voorspanstaal aanwezig
Controle scheurwijdee art, 8.7 w= {15 mm=max tochatbare scheurwijdee k. = 1873
Opgelegde vervormingen: nee Ag = 0 N/mm® ks= 1,67 k; = 375
b= B0 mm @ = 18,1 N/mm' k,= 1,29 k= 3000
e = W00 mm a.= 0 N/mm’ m™ = 100 k.= 1,00
o, = ARY N/mm? for = 274 N/ mm’ = toetsing volgens art, 8.7.2
mersing volgens arr 8.7.2 Volledig onrwikkeld scheurenparroon
B = W4 x 1,67 = 17,4 mm
5= TR x1,20= 101 mm
g, A= B0 N/mm?< 435 N/mm? = wersing volgens art 87,2 accoord!
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Appendix 4

These figures are the moment and moment due to temperature gradient under different

temperature gradient situations.

243
\ /
5\ !
66.96 \ 7
7098
Fig A-1 Temperature gradient is -40
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Fig A-2 Temperature gradient is -80

Fig A-3 Temperature gradient is -70
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2112
2168l
Fig A-4 Temperature gradient is -60
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Fig A-5 Temperature gradient is -50
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105
\ /
\ Id
8987 \ /
14606
Fig A-6 Temperature gradient is -30
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Fig A-7 Temperature gradient is -25

Fig A-8 Temperature gradient is -20
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Fig A-9 Temperature gradient is -10

Van Hattum en Blankevoort 121

'fl.l Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

20446
188
499
Fig A-10 Temperature gradient is +20
Van Hattum en Blankevoort 122

'fl.l Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

Fig A-11 Temperature gradient is +30
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240

Fig A-12 Temperature gradient is +40
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Fig A-13 Temperature gradient is +50
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292

Fig A-14 Temperature gradient is +60

Van Hattum en Blankevoort 126

'fl.l Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

Fig A-15 Temperature gradient is +70
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3387

Fig A-16 Temperature gradient is +80
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Fig A-17 Temperature gradient is +90

Fig A-18 Temperature gradient is +100

Van Hattum en Blankevoort 129

'fl.l Delft



Predicting of the Stiffness of Cracked Reinforced Concrete Structure Yongzhen Li

Appendix 5

This is the calculation procedure of Bio-diesel project.

General calculation of a clamped beam with cracking

q
V4 S PN N
/ T

Iy N Es
EE = 31000 — E5 = 200000 — O, = — = 6.432
2 2 E
mm mm c
- N - - = - <
oy = 3 - Ltntal = 3000mm h = 500mm d = 450mm
mimn
= A
oy = h-d=30mm b = 1000mm _'-"Lcd =bd=43x ll}:'-m.m*
1 ;
IE = —-b-h3 = I:I'.Elllm_1
12
Mmax = 170.98kN-m NI- = 4006

Calculation the design reinforcement and compression zone height:

N
og = _?‘,IZI'[I'—‘I

min

M, Np-04Lh , A _
A= — s = 3123 107 -mm” = — =694x10°
09c.d  08d-o, Ay
Compression zone height:
%= T3mm
x (b %) (d—=x (", h)
Wl )
€N o 2N S 04m
fd- }{H'l X
o
ox ) 2d
M
o 042Tm
T
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Predicting of the Stiffness of Cracked Reinforced Concrete Structure

{ xH'I
Mass 315 - ) s
Ag= ~ ‘_FH'I = 3060 » 107 -mm~
Us': a- X1
% i)

L -L
total “total
_total “total

'_\I .
p = 25000 — 2 a4l
3 qta_ﬂk = = 1873 = 10 -—
o Ltotal m
For the storage load
.
A L - - -
KN “total - 5N 1 2 - 5
Qstorage = 1§ —- 1L = L= 10— E'qstnrageltntal = 1837 = 107-N-m
m- < “total m

For the floor load

I-t-::utal'I-tu::utal h
g ;
- = 1875 = 1[I'4-E

m

Qslab = Lo
tot

So the uniform distributely load should be

L -L
total “total
o (n ] h

S
=215

N 1 2 _haq g
+ qstgrage + qs]_ab LtDtEl =2370« 10 -N-mm

P

q=
I-tuc:tal

107" AT-ox 41

AT = —40C o= — K === 10 —

C AT Ty m

1. Estimating the cracking length.

L3 estimated =

— =TT
L3.Estimated = J//mm

. fuert
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q
74 S —a— — —
ABE 1 Eh oy El o EbGER
L L L
S J | ||
Mnem | qurv
-~ T

_ 0 S
N AN /N /N

1 2 g
}"’Ic:r = E-b-h Ty = 125 % 10 -N-mm

1
L= E'Ltutal = L3 estimated ~ 13 estimated = 923-mm
L1 is uncracking length, L2 and L3 are cracked length.
EN is uncracking stiffness, EI2 and EI3 are cracked stiffness

Cracked stiffness:
3 2 E
b-
El =|E.|— +bxl EJ + A (d- 97| =928 x 107 Nomm®

C

Cracking aera stiffness:

M
-31
Koo = —— = 1347 10 i1
Elsu:;r m
—41
MAr o= '[|'.4-2H5GI =3637T= 10 4—
m
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Iliptatly 2Ly
_:"‘iend + = R
B, = ﬁ
q'l‘tutal']l‘x q Lx
Mg +——————
— — + Ak
El oy

where Mend is estimated

M —T7.1-6N-m = —7.71 x 10" -N-mm

end.estimated

1 P, B
Mpig = E'q'Ltntal + Mend estimated = 1608 x 10 -N-mm

Then calculate the stifness at L2 and L3 parts

Considering the second part which is dead load on the simple support beam

(I S

A A

7 h" 4 1!
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Then by using symmetry

A w\‘iM

Load

| A\
| |
) |

sl L L
Ek _EE]
N OB Stiffness

1

" Moment

Curvature
27
DAl Ly aly |
_ L -L
3 > N 9 Ltotal ™1 B
Ky = = [ 13 2
\ 2 J
2
g-L L gL 2
total —x _ X Lo Ly a1y
2 2 -
Hl = b = 2 -_J,
3
2
Lottt Ly
_:""Iend.esn'mated * 5 T T4
EIH = - : = 7814« 10
Lttt 9Ly
_Mend.esn'mated + 5 T T,
- I
Elscr
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So the rotation at end is ) ” .
—E. [.=1076x 10 N-mm
3
I‘Ll.sstimated -
q'Ltotal'Lx q-I_x
2 2
¢r2pL = — -0
. q'Lmtal'Lx q-I_x
—Mend estimated™ 5 -
. q'Lmtal'Lx q-I_x‘
~ Mend estimated™ 5 S
- - +AK
Bl
“0
~L1+L2 estimated .
Qligtat Ly 2Ly
2 2 . -4
PL1DL = — dL, = 3327 10
c e
L].estimated
Liotal
"
2 T
Sligtarly  aly
2 2 ) 1
PL3DL = —— dL, = 165x 10
. q'Lmtal'Lx q-I_x
- }"1md.35t1'mat ed” 3 3
. q'Lmtal'Lx q-Lx‘
~ Mo estimated™ - -
- tAK
ElL

“L1+L7 estimated

-3
PendDL = $L1DL + PLapL * dr3pL = 1982 % 10

Then considering the fistt part which is the moment at end on a simple support beam
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-

T 2\

By using symmetry:

AV
/A
<

4 Ls L L
[>'\ :
Els El»
| Ell Stiffness
1
K |
Men Morment

/ Curvature

So the rotation at end is

b = kL

Ltutal
L7 estimated 2
= I kg dly gz = kg dly
0 L1+ estimated
Pendv= Prin+ Pron+ Pram
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[ L2 estimated ) h\'
Pend M= Mend 2 dy -
. 4Ligtarly oLy
- Mmd.ss.timatsd ' - -
. q'Ltc-tal'Lx q'Lxd
- Maﬂd.sstimated ! - -
- T
Eloe
0
Liotat
"
;
L - 1
+ T 1 + - d].x
ce Tliotarly oLy
- Mmd.estimatad : 4 -
. Ligrarly oly
- Hmd.sstimated ' - -
- AR
Eleer
\ "L estimated ™1 J
For the rotation part
L
total —
ol 12k’

Pend b = KAT —
So the total rotation should be equal to 0

Pend DL + Pend M * Pendo ="

Then Mand will be obtained.

v fuert
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~Pend DL ~ Pend b 7
end = = e = —7.706 % 10’
L )
=2.eztimated {
; dL, ..
. qutal'Lx qu
- Mmd.zstimat ad” - -
. q Lt-}tal'Lx q Lx‘
- Mmd.astimated ' - -
-  +AR
Ely
“0
L
+
Ec'Ic
Ltl}tal
"
2
1
+ - dl,
. FLigtarly oLy
= Mend estimated™ - -
. $Ligratly oly
- }‘Imd.estimated ' - -
- AR
El,
"L estimated ™11

Mend estimated =

—771% 10" -N-mm

The moment at section L2 and L3

-
Fa

9Lligtatly  al

:'pi]'_l= —:"..'ieﬂd + . .

. .7
q'Ltntal'l_Llestimated + Ll_:' N g |_L2.E5timated + I'1_:I

Mp3 = Menq -

8
M, =

2 2

1.25 = 10 -N-mm

Iterative part

Here Mj 3
M,
And Mva:ﬂu:i

should be equal to

should be equal to Mcr

-

= —-b-h‘-crm

]

MEﬂd. estimated
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The results

Mgpg = —7.706 x 10" -N-mm

M, g = 1.608 x 10°N-mm

Pend.f
e = 1064 % 10°N-mm

f'LI.astimatad 1
dL

- -
Iq'Ltl}tal'Lx vLy
Mend estimated™ 4

(3]

q'Lmtal'Lx q'Lx‘

Mmd.astimated ; - 4
-  tAK
EI

i

- 1
+ - dL
q'Lmtal'Lx q'Lx‘

Mmd.astimated ; -

X

[ I )

3 Ligrarly oLy

Mmd.estimat ed’ - -
= AR
EI

Lin

L estimated™ 1

My = 3L37KN-m = 8.137 x 10 -N-mm

:"r'i.- 4 T
A =102x 1014-}I-mm‘

TRAT

E.-I.= 1076 II}H‘I :
Eo-L.=1076 % -N-min

(PR e

E.-I.=3220= 1014-\I-mm:
cla=3 I
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Appendix 6

Concrete property:

E.= 31000'—1 b = 1000mm h = 800mm
mm
5 2
&= 30mm + 30mm = 80-mm d=h-c=720mm A =bd=T72x lﬂj-m:n‘
_ 1 i 10 4 _ .
L= = bd”=311x 10" -mm E_I = 9642 1014-_\:-n1m‘
1 N *
o -
W= —-b-h™ = 1067 = 10'8-111.1'11:I £ =28—
mim
Reinforement property:
N 2 2
E = QDI}EI'DI}—: Ao = 490%mm Ay = 20%4mm
mm

A. Only Bending:

The compression zone height:

Due to Chapter 3.2 equation (3-10)

7 I

7 I 7
A E A E + J_ast E +2A ALE T +2E bdALE +A TE +2E boA

E.b

c sc.'Es
i=

= 117.8-mm

Bending stiffness in a crack (Chapter 4.2 equation (4-3)):

ES
o = — = 6432

EC

. b E2N 2 4, 2
El. =E. BT + b.:\li E) +ogAg(d — )7 = 1688 < 107 -N-mm
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Cracking Force (chapter 4.1):

. I
}"Ic:r = “'f-:t = 2887 » 10 - -mm

Difference of the centroidal axis (chapter 4.3 equation {4-5)):

A

A
Mg = — =2008x 107" Mee = — = 6818 % 107"
Aceff Speff
c X
g o= — = 0111 by =—=0164
Ty 474
A= ogng + Mg ) = 0.063
B = oy {ng + kg ) = 0.024
A
L= Ol Mgt + k, Mse ) = 0.019
2B + kdz
== 016—1-
2A + ky)
Tension stiffening value (chapter 4.4 equation 4.6):
M=
M
Bger = =1
EIEGI
Ak =042k =1 Kge = 038k =1

Mean stifness (chapter 4.5):

M

M: : :
M. _
5 Ak
s ; 7
EN. | -

& | Ebi _
K:r K.‘dc Km Ks
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M
Hmaan '_ M_Mcr
H—’f"*fdc

20T

= y-N-mm

Moment and Stiffness relationship

12

10

ks
m
]
-]
'i =
— ST L
‘ l
2 lk
o
1] 1 2 3 4 5 ]
Moment [ * 10~48 Nmm)
B. Tension and Bending
MMy, = 600000000N - mm Ny, = —600000
Compresssion zone height (chapter 3.4 equation (3-24)):
1= 137 =T oo
#= o == kg =03
[ 4 3 p) 2 i g
k' +4Ak - 12Bk+12Ck + 12AC- 12B LZ-B +k ) 3

-d = —1.008 = 107 -mmn

- T L‘x{! +
6k’ - 184k - 12la% - Blx + 2B YA+

M
— =-1% 10" -mm
Ny

Cracking moment {chapter 4.1):
N

b = 3876 = IDS-N-mm
Ace:EE'

M4, = W-[fct -
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Bending stifness in a crack (chapter 4.2 equation (4-3)):

By = xl = 157-mm

3 - 2
b-xy, [x H" .2 14 v
EL ., = Eo- 5 + by 7) + o Agr(d -5 |7) = 1727 10

-N-mm~

Difference of the centroidal axis (chapter 4.3 equation (4-5)):

Mg = 2808 x 10" Mg = 6818 x 10~°
k, = 0.111 kyq = 0.164
= 24
A = 0.063 5 =00
2
2B+ kd
Axy = | ———— |-d = 117.8-mm
A+ ky)

Tension Stiffening value { chapter 4.4 equation (4-6)):

My + Ny -Ax
b b b —-31
Kooy = ———— 2 = 3064 x 1077 =
Elserp m
A - . 197 -31
.':th = D.*I-_,hscm = 1287 = 10 ;

Mean stiffness (chapter 4.5):

AMy, = Ny -Axy, = -7.068 < 10 -N-mm

ML
My - 14 pl 14 2
Elmeanb = l'd‘vib+ ; ‘vibW = 3376 » 107 -N-mm EE-IC= 0642 » 107 -N-mm
| ————— | - Ax 14 2
| | b = M-
\ Hs ) Hsc:r 1.688 » 107 -N-mm

14

,
El ., = 1727 % 107 -N-mm"
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4 ™
N=600KN

m x;2:09;,500
ﬁ‘. ——
< E
: £
z £
< e (E| )SCE
<° =
‘é’ — 1;'3(Eﬁc
2 ]
g —x 7
2 o
g (="
£ g
B (v}

€ight (mm)

e (El )5
(E1)

ne h

—1/3

ession%io

Stiffness value (*10~14 Nmm~2)

Comprg

L,—-ﬂmm,w X375, 80X, 4x88-, 91
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'd ™
N=200KN
_f_
X, 6,500 N *-2-69,560

£
£
e
=
A=l

e (E1 )G

(E1)
—1/3

oGar b

10

=

Comprqess

Stiffnegs value ( *1074 Nmm”2)

| A, Lﬂ;,M;SmB; 9 “1 581&8EE 103

-

e ~N
N=-Z00KN
o aTal __--\ o e Yo B e ¥

— X, U, J00 X, o 29,300 —
o £
<
£ £
£ =
S )
=5 —(El)stg
< =
[=]
£ (EN)m@
o —1,'3(E§c
= 0
g —x 2

_Wn -
2 [ 5
< £
= BE1345, 833
[75]
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'd ™
N=-400KN
=500 N %3-59-500
g T
£ £
£ ot
= =
< )
- = (El)st@
g =
T (ENm@
o —1/3(Mc
3 6
g X g
%] Q
[74] | =
Q o
£ T
[75]
o {FiRiEIR, 9,
N
'd

T

d
d

t {mm)

igh

—(

m
=
Ln-
e

ne h

=
S~
w
ionZq
[m]

k3

S

am
Compress

$tiffness value ((*10714 Nmm~2
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