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Abstract 
 
Seaway Heavy Lifting (SHL) is an offshore contractor offering Transport and Installation (T&I) 
and Engineering, Procurement, Construction and Installation (EPCI) solutions for the offshore 
industry. Offshore structures often consist of Circular Hollow Sections (CHS). During 
installation the structure is loaded when lifted at multiple lift points, which each consist of a 
padeye welded to the CHS. The padeye-to-CHS connection is denoted as the padeye load 
case. Within Seaway Heavy Lifting, the stresses in the CHS cross-section are calculated using 
the Roark equations and Finite Element Modelling (FEM). From the Roark equations a quick 
but conservative solution is obtained for the load capacity using a two-dimensional model, 
while from a FEM program an accurate solution is obtained using a three-dimensional model. 
However, the use of a FEM program is time-consuming and therefore expensive to use for 
every padeye-to-CHS connection.  
 
The objective of this thesis is to determine an engineering tool which will be an advanced 
method of the Roark equations, providing a quick and accurate solution of the load capacity in 
the padeye load case.  
 
In order to obtain better understanding of the structural behaviour of the padeye load case at 
first, a simplified model is assumed. In this simplified model a plate-to-CHS connection is 
considered, denoted as the plate load case. A numerical three-dimensional model is 
constructed for both the plate and padeye load case using the FEM program Ansys. Because 
little plastic strain is allowed in this connection, the average linearized plastic strain is limited 
to 0.04. Besides the numerical models, an analytic two-dimensional ring model is derived for 
both the padeye load case and the plate load case using the Euler Bernoulli curved beam 
theory. This ring model is similar to the model used in the derivation of the load case from 
Roark. From the ring model it follows that the CHS will deform due to loading of the padeye, 
mainly causing bending moment stresses in the cross-section. The governing stresses in the 
CHS cross-section occur at the connection between the padeye and the CHS. 
 
A parametric study of the FEM models is performed using multiple variable dimensions, in 
which the plastic strain criterion is used. From the finite element analysis (FEA) the relation 
between the ultimate load and the geometry is obtained, which is similar in both the plate and 
the padeye load case. Varying the geometry of the CHS cross-section results in a variable 
stiffness of the CHS. When varying the (padeye) main plate geometry, the force is distributed 
over a varying surface of the main plate-to-CHS connection and bending moments occur in 
the main plate. 
 
Using the equation from the analytical ring model and a curve fitting tool, the data from the 
FEA is fitted. By fitting the data an engineering tool is derived for the padeye load case. The 
engineering tool is validated by comparing the load capacity results with Roark and the FEA 
results for padeye geometries used in projects performed by Seaway Heavy Lifting. From this 
comparison it is concluded that the derived tool gives an accurate load capacity for padeye 
geometries within a specific range. Within this range, the derived engineering tool predicts the 
load capacity with a deviation that meets the convergence criterion of 5%, while the results 
from Roark have a large deviation of around 70%. Therefore it is concluded that the 
engineering tool is an advanced method of the Roark method in the load capacity calculation 
of the padeye load case. 
 
Outside the considered range the results from the engineering tool have a smaller deviation 
from the FEA results relative to the Roark equations. However, the results from the engineering 
tool are unknown outside this range. Therefore it is recommended to expand the range in which 
the engineering tool is valid.  
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List of symbols  
 

D  = shackle pin diameter 

FLp  = sling force 

Fx Fy Fz = longitudinal, lateral and radial force component respectively 

LTM, LTN, LTV  = Load terms belonging to the various load cases in Roark 

M, MLat  = padeye in-plane and out-of-plane bending moment respectively 

Mend,i  = end moment at the CHS boundary 

Mi  = internal moment at i 

Ni  = internal normal force at i 

R  = d0/2 = radius of the CHS 

R0, Rm  = Radius of the pinhole and the main plate respectively 

R2  = Coefficient of determination 

U  = total elastic energy of the system 
Vi  = internal shear force at i 
W  = force acting on the two-dimensional ring model 

 

bm  = base width of the padeye main plate 

beff  = effective width 
d0   = diameter of the CHS 
dsc  = width between bottom and centre stiffener 

dsc,0  = width between pinhole and centre stiffener 

fy  = yield stress 

h0  = height of the pinhole centre 

hsi  = height of front, back and centre stiffener 
k2  = hoop-stress deformation factor 
l0  = length of the CHS chord 
t0  = thickness of the CHS chord 

tm  = main plate thickness 

tc  = cheek plate thickness 

tsi  = thickness of the stiffener plates 

ui  = displacement in the direction of the i-axis 
 

Δ   = Displacement of the centroid segment in Roark 

Δx, Δy   = Nodal displacement components in x and y direction respectively 

ΔH, ΔV   = Changes is horizontal and vertical diameters of the ring respectively 

α  = 2L/d0 = chord length parameter of the hollow section 

αip, αop  = in-plane and out-of-plane sling angle respectively 

β  = t1/d0 = plate thickness over diameter ratio 
γ  = d0/2t0 = radius to thickness ratio of the hollow section 

εii  = normal strain in the i-plane in direction of the i-plane 

εp  = plastic strain 

η = bm/d0 = effective width ratio between the chord and the padeye main plate 

θ  = rotational angle in the CHS cross-section 
ξ   = ratio between extensional stiffness and total stiffness of the cross-section 
σeqv  = Von Mises equivalent stress 
σi  = normal stress in the i-plane in direction of the i-plane 
σij  = shear stress in the i-plane in direction of the j-plane 
σy  = yield stress 
τ ij  = shear stress in the i-plane direction of the j-plane 

φ  = rotation of the element cross-section 
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List of abbreviations 
 
CHS  = Circular Hollow Section 
DOF  = Degree Of Freedom 
ELT  = External Lifting Tool 
EPCI  = Engineering, Procurement, Construction and Installation 
FEA  = Finite Element Analysis 
FEM  = Finite Element Modelling 
ILT  = Internal Lifting Tool 
RMD  = Relative Mean Deviation 
RMSD  = Root Mean Squared Deviation 
RMSE  = Root Mean Squared Error  
SHL  = Seaway Heavy Lifting 
SPAR  = Single Point Anchor Reservoir 
T&I  = Transport and Installation 
TLP  = Tension Leg Platform 
WTG  = Wind Turbine Generator 
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1 Introduction 
Equation Chapter 1 Section 1 
 
 
 

1.1 Seaway Heavy Lifting 

Seaway Heavy Lifting (SHL) is an offshore contractor established in the 1990s and active in 
the Oil & Gas and Renewable industry. The activity of SHL in the renewables industry has 
increased in recent years. Within both markets, SHL offers Transport and Installation (T&I) and 
Engineering, Procurement, Construction and Installation (EPCI) solutions for offshore 
constructions. While executing these services, safety, efficiency and quality have a high priority 
in the process.  
 
SHL operates in the North Sea, Mediterranean, America, Africa, Asia Pacific and Middle East. 
With the operational spread expanding internationally, SHL has multiple offices across Europe. 
These offices are located in Aberdeen, Cyprus, Glasgow, Paris and Zoetermeer. This latter 
office is the head office at which most of the engineering work is performed.  
 
The transport and installation solutions are delivered using the two vessels Oleg Strashnov 
and Stanislav Yudin. The Oleg Strashnov has a fully revolving crane with a lifting capacity of 
5000 tonnes. The Stanislav Yudin is also equipped with a fully revolving crane, which has a 
lifting capacity of 2500 tonnes. In addition to these two vessels, SHL owns a wide range of 
equipment which is used to operate in a safe and efficient manner. This equipment includes 
rigging, hammers and a variety of pile handling tools.  
 
SHL has installed over 150 platforms and hundreds of wind energy foundations. The 
installation projects in the oil and gas industry cover platform, module and deepwater 
installations. In the renewables industry the projects consist of Wind Turbine Generator (WTG) 
and substation installations. 
 

 

Figure 1: Installation of a topside by Seaway Heavy Lifting vessel Stanislav Yudin [1] 
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Many of the offshore constructions, such as floating SPAR platforms, Tension Leg Platform 
(TLP) constructions and deepwater templates, consist of Circular Hollow Sections (CHS). 
Besides these constructions there is also equipment, such as spreaderbars, that consist of 
CHS. These CHS are steel sections with a circular hollow cross-section, shown in Figure 2. 
During installation and transportation, forces will be applied on the structures causing stresses. 
These stresses in the cross-section are called ring stresses.  
 
When the stresses in the cross-section exceed a certain stress limit, the CHS cross-section 
will deform and possibly fail. Therefore the ring stresses have to be examined. These 
calculations are performed within Seaway Heavy Lifting by using the Roark equation for 
stresses and strains. The Roark equations consist of hand calculations that are based on 
analytical derivation and experimental data, assuming that the CHS cross-section fails if the 
maximum stress in the ring exceeds the yield stress. Because of this assumption the Roark 
equations give a conservative stress distribution. 
 
As an alternative method, Finite Element Modelling (FEM) is used in the ring stress 
calculations. A FEM program translates the physical system into a mathematical model of the 
system, which is able to simulate and predict aspects of behaviour of a system. In a FEM 
program the model is split up in a finite number of elements. In order to determine the stress 
distribution a numerical analysis of the model is performed, called the Finite Element Analysis 
(FEA). Despite the fact that the use of a FEM program gives an accurate representation of 
reality, the program and the implementation of the results can be misunderstood by 
inexperienced users. Besides this the program is time-consuming and only available on a 
computer, making it expensive to use for every CHS connection appearing in a project.  
 
Finally, there are alternative calculation methods to determine the load capacity of a similar 
load case. This load case is the plate-to-CHS connection, in which a rectangular plate is 
welded to a circular hollow section and loaded in-plane by a distributed force. The equations 
that describe the load capacity of the plate-to-CHS load case are derived by, amongst others, 
Wardenier et al. [2] and Voth [3]. These calculations are based on plastic theory, numerical 
analysis and experiments. However, the padeye geometry used within projects performed by 
Seaway Heavy Lifting is beyond the range used in the equations of Wardenier et al. and Voth.  
 

 
Figure 2: Steel Circular Hollow Sections (CHS) [4] 
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1.2 Objective  

The objective of this thesis is to determine an engineering tool which is an advanced method 
of the Roark equations, giving a more accurate solution of the CHS load capacity. This 
engineering tool will be based on the finite element model in which plastic material behaviour 
is taken into account.  
 

1.3 Approach 

In order to reach the proposed objective, the appropriate background is determined first in 
chapter 2. The background contains the different possible load cases to which the CHS can 
be subjected during the transport and installation. Besides this the available calculation 
methods of the ring stresses, and hence the load capacity, in the CHS are obtained. Finally 
the elastic and plastic material behaviour is described with the corresponding failure criteria.  
 
In chapter 3 the boundaries are determined. In order to obtain an engineering tool for the load 
capacity that is suitable for the projects performed by Seaway Heavy Lifting, the proper 
boundaries have to be determined. These boundaries are obtained by comparing the load 
case geometries that are used in present practice, resulting in a range of the geometry.  
 
In order to derive an engineering tool, a numerical model must be constructed using the FEM 
program Ansys. This model is constructed in chapter 4, in which the appropriate boundaries 
from chapter 3 are applied. Next, the proper element type, element size and analysis type will 
be determined for the numerical model.  
 
The analysis results from the analytical model and the FEM model have to be compared in 
order to obtain an engineering tool. Therefore the analytical model has to be derived, which is 
achieved in chapter 5. In the analytical derivation a two-dimensional ring model is assumed for 
the CHS cross-section. From this model the analytical equation for the load capacity can be 
determined. This equation will not only be used to compare the results from both types of 
analysis, but also to obtain the influence of the different dimensions in the load case.  
 
The results from the FEA with the model derived in chapter 4 are described in chapter 6. The 
proper limit criterion is determined in order to describe the load capacity of the load case from 
the numerical analysis. These analysis are performed for each geometry within the range 
obtained in chapter 3, which will result in a load capacity of the entire load case. The load 
capacities will be evaluated and the influence of the different dimensions are obtained.  
 
Finally, the engineering tool is derived in chapter 7, using the results from the FEA from chapter 
6 and the analytical equation from chapter 5. The influences of the dimension on the load 
capacities are compared for both the analytical and the numerical analysis. The analytical 
equation will then be adapted to describe the results from the numerical analysis. This will lead 
to an engineering tool which described the load capacities of the CHS load case present in 
projects performed by Seaway Heavy Lifting, which is an advanced version of the Roark 
method. 
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2 Background 
 Equation Chapter (Next) Section 1 
 
 

2.1 Load cases 

During installation of an offshore construction, the circular hollow sections (CHS) can be loaded 
by multiple types of loading. These different types of loading are called load cases which cause 
ring stresses in the cross-section. These ring stresses could lead to failure of the CHS. Several 
load cases which cause ring stresses in the CHS cross-section are the use of a padeye, pipe 
trunnion, pile catcher and Internal- and External Lifting Tools (ILT and ELT respectively). These 
load cases are shortly described below:  

 Padeyes and pipe trunnions (Figure 3) are welded to the structure and connect the 
structure to the crane by use of slings. The construction is then lifted from the deck 
onto the seabed or onto a substructure. In the case of a padeye a shackle is put through 
the pinhole to connect the sling with the structure, while in the case of a trunnion the 
slings are put around the trunnion. Both cases cause radial loading of the CHS. 

 

 
Figure 3: Padeye on a jacket member and a pipe trunnion on an offshore structure [5] 

 Pile catchers are used to guide the foundation pile through the jacket during installation. 
The pile catcher is welded to the top of the jacket leg. When the foundation pile is 
guided via the pile catcher, this causes a radial distributed load over the circumference 
of the jacket leg.  

 The internal and external lifting tools (Figure 4) are used to lift piles off the deck of a 
vessel or barge. In case of an ILT the load is evenly distributed over the CHS 
circumference, where for an ELT the load is applied in two points of the CHS. This 
causes distributed axial load in case of an ILT and radial point loads in case of an ELT.  

 

 
Figure 4: ELT clamped to a monopile [6] and an ILT lifting a monopile [7]  
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2.2 Padeye load case 

Because there’s limited time and the analysis is expected to be time-consuming, the scope of 
this study is narrowed. This is done by choosing a single load case. From this point onwards, 
only the padeye load case is considered.  
 

2.2.1 Load case description  
Padeyes are used to connect the to-be-lifted offshore construction and the crane by use of 
slings. The padeyes that are used in practice have various geometries, depending on the type 
of load. In case of a solely vertical force the geometry is symmetrical. However in the case of 
a force under an in-plane angle αip, the geometry is asymmetrical due to the different force 
components. When looking at the padeye load case, the asymmetric geometry is used in most 
lifts performed by Seaway Heavy Lifting, because the force is acting under an angle. 
 
In many cases an intermediate spreaderbar is used between the crane and the lift point. The 
spreaderbar is used to ensure that the slings are acting under an angle within the allowed 
range. Each lift point consists of a padeye which is welded to the structure and connected to 
the sling by a shackle. The lifting force (FLp) acting on the padeye is caused by the weight of 
the structure and the equipment used. This lifting force is transferred to the sling by a shackle 
put through the padeye pinhole, creating a pinned connection. In this pinned connection the 
force has its origin at the centre of the shackle pin cross-section, which is acting in the centre 
of the pinhole (Figure 5). 

 
Figure 5: Shackle connecting the padeye and sling, working under an angle αip 

The pinhole centre lies at a height h0 above the bottom of the main plate. Because the sling is 
acting under an angle αip in the plane of the main plate, the force at the pinhole will be under 
the same angle (αip). Due to this angle of the force αip, the force can be divided into a vertical 
component Fy and a horizontal component Fx. Because the horizontal force components is 
acting at a height h0, this will result in an in-plane bending moment Mip.  
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2.2.2 Load resistance 
To withstand these loads during operation, a padeye consists of a main plate and occasional 
ring stiffeners (Figure 6). The main plate is conducted with a pair of cheek plates to stiffen the 
pinned connection and to prevent the main plate from failing due to bearing stress. The ring 
stiffeners are attached to the main plate to take on the radial and lateral forces and prevent 
excessive deformation of the CHS.   

 
Figure 6: Description of the components in the padeye load case 

In the padeye load case with ring stiffeners applied, the load is transferred from the padeye 
pinhole to the main plate. The load on the main plate is then distributed over the ring stiffener 
to the CHS. From the connecting face, the load is transferred via the circumference of the CHS 
to the supports. The different force components are transferred from the main plate to the CHS 
as described below: 

 The horizontal force component Fx is taken by the weld between the padeye main plate 
and the CHS 

 The vertical force component Fy is taken by the top and centre ring stiffener 

 The in-plane bending moment Mip is taken by the top and bottom ring stiffener 
 
The force distributions in the padeye load case with additional ring stiffeners is shown in Figure 
7. These ring stiffeners are not always present in the padeye load case. The force distribution 
in the case of a padeye without additional ring stiffeners is also shown in Figure 7 and is 
described below. 
 

 

Figure 7: Force distribution in the padeye load case with ring stiffeners (top) and without ring stiffeners (bottom) 
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In the case that there are no ring stiffeners present, the horizontal and vertical force 
components will be distributed over the total main plate-to-CHS connection interface. In this 
case the load is transferred from the padeye pinhole through the padeye main plate to the 
CHS. From the connecting face, the force flows to the supports in the same manner as in the 
case with ring stiffeners. The force components are transferred from the main plate to the CHS 
as described below: 

 The horizontal force component Fx is taken by the weld between the padeye main plate 
and the CHS 

 The vertical force component Fy is distributed over the base of the main plate 

 The in-plane bending moment Mip is distributed over the base of the main plate 
 
In order to narrow down the scope of this study, only the padeye load case without ring 
stiffeners is considered from this point onwards. 
 

2.2.3 Padeye failure modes 
Due to the loads and hence the stresses that pass through the structure, multiple padeye 
failure modes can occur. The location at which failure could occur can be determined by 
looking at the load path. The load path is the manner in which the load is transferred to the 
supports. This load path is already described in 2.2.2 for the padeye load case without 
additional ring stiffeners. From this it can be obtained that the possible failure modes are failure 
of the cheek plate and the main plate and failure of the welds. The conditions and the effects 
of the possible failure modes can be obtained from the General criteria for lift points [8].  
 
In case the main plate has a low thickness-to-width ratio (γ = d0/t) and the plate has sufficient 
ductility, the yield capacity of the plate can be governing. This could lead to the following failure 
modes shown in Figure 8 and described below: 

 Bearing stress can occur at the contact area with the shackle pin. This is a local 
phenomenon caused by the compressive loading of the shackle pin at the pinhole.  

 Tear-out stress can occur at section α-α, due to the shear stresses. 

 Yielding at section β-β and section γ-γ can occur, due to the tension stress.  

 
Figure 8: Possible failure of the padeye main plate and cheek plate due to loading 

If the strength of the weld is lower than the strength of the main plate, the weld may yield and 
eventually crack. This could occur at the weld between the main plate and the cheek plate and 
the weld between the main plate and the CHS. In the case of plastic deformation due to yielding 
of the weld this will result in little rotational capacity of the joint, which is not allowed.  
 
The goal of this thesis is to describe the ring stresses in the CHS due to padeye loading. In 
many cases standard padeye dimensions are used, which are designed to resist the applied 
load. Because of these reasons, it is assumed that the padeye and the welds are adequately 
designed and are non-critical.   
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2.3 CHS ring stresses 

Due to loading of the padeye, the CHS will experience deformations. These deformations will 
be bigger in circumferential direction than in the longitudinal direction, due to the low 
circumferential rigidity. Because the deformation and curvature correspond with the stresses, 
it can be expected that the stresses in circumferential direction are governing. The allowable 
stresses in the structure depend on the type of material behaviour. If the stress-strain relation 
is based on linear elastic material behaviour, it is assumed that the material will fail when the 

maximum stress in the cross-section reaches the yield stress (σy). If the stress-strain relation 

is based on nonlinear plastic material behaviour, the material will fail due to cracking when the 

strain is reached which coincides with the ultimate strength (Figure 9). 
 
When the nonlinear plastic material behaviour is taken into account, the stress becomes 

constant (σPL) when the maximum stress in the cross-section exceeds the yield stress (σEL in 
Figure 9). When the load is increased, only the strain (ε) will increase and adjacent material 
will start to yield. This will continue until the strain hardening part of the stress-strain curve is 
reached, causing both the stress and the strain to increase. Finally, when the stress reaches 

the ultimate stress (σU), the material will begin to crack. Due to these cracks the material will 

no longer be able to take any stresses or strains, causing the adjacent material to take the 
load. Because the remaining area has to take a relatively higher load, crack prolongation will 
occur in the cross-section. By increasing the load this crack prolongation will eventually lead 
to failure of the cross-section. 
 

 

 
Figure 9: Stress-strain curve for mild steel [9] 
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2.3.1 CHS failure modes 
The forces acting on the padeye are transferred to the supports via the CHS. Both the vertical 
force component Fy and the in-plane bending moment Mip result in radial tension load on the 
CHS cross-section. Due to this radial loading of the CHS, local concentrated yielding will occur 
introducing plastic strains. These plastic strains can lead to failure of the cross-section. 
Different modes of failure are possible in CHS under padeye loading. 
 
Chord plastification can develop due to high stresses in the chord. In the case of plastification, 
the chord experiences large plastic deformations while the connecting member will remain 
intact. Due to these large deformations at the connection, a practical deformation limit is 
reached before the ultimate stress is reached. The deformations can also cause secondary 
moments due to, for instance, plastic rotation of the joint. In order to prevent this the connection 
must have sufficient rotational capacity.  
 
In many cases the padeye is connected to the leg of a jacket structure, which consist of a 
circular hollow section (CHS). When this jacket structure is installed, a foundation pile is driven 
through the legs of the structure in order to maintain its position during the structural lifetime. 
When the jacket leg experiences large deformations during the installation, the foundation pile 
will no longer fit. Therefore the deformations of the structure must be limited in order to avoid 
loss of serviceability. 
 
When the plastic strains in the CHS reach the ultimate strain, cracks can develop in the chord. 
By increasing the loads, the cracks will propagate which will lead to brittle failure of the 
connection. This brittle failure can have different causes. Due to high localized shear stresses 
in the chord connection face, chord punching shear could occur. Punching shear occurs when 
a crack is initiated at a point of high stress concentration in the chord. When the load on the 
connection increases, the crack could propagate around the weld perimeter, causing punching 
shear failure. Besides punching shear failure, the padeye-to-CHS connection can encounter 
lamellar tearing. This is cracking due to manganese-sulphide inclusions (MnS), which result in 
a weakened cross-section. These inclusions can be present if the thickness of the CHS is very 
large. 
 
Finally the plastic strain can affect the low cycle fatigue lifetime. Low cycle fatigue is a 
progressive and localised damage due to repeated plastic strain in the material under tensile 
stress. The padeye loading only takes place during the installation, therefore it won’t cause 
fatigue damage. However, in most cases the padeye is connected to the CHS member at a 
joint of multiple braces. These joints are subjected to high stresses and hence stress variations 
during the lifetime of the structure. If the CHS locally experiences large plastic strains due to 
the padeye loading, the fatigue lifetime of the CHS joint could be affected. Because this could 
affect the fatigue lifetime of the total structure, the plastic strain due to the padeye loading must 
be limited. 
 
In most cases the CHS will be stiffened by using a larger thickness of the CHS at the location 
of the padeye connection. The padeye is also located near a joint at the top of the structure, 
causing the member to be rigid and relatively free of wave forces. Due to these facts the plastic 
deformation in the CHS due to padeye loading will not cause fatigue failure, as long as the 
plastic strain remains small. 
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2.4 Limit state criteria 

In order to prevent failure of the padeye-to-CHS connection, the yielding and therefore the 
plastic strain must be limited. Several limit state criteria are present for the elastic and plastic 
strains. Some of these criteria applicable on the padeye load case are given in this paragraph. 
 
To check if the stresses in the cross-section do not exceed the yield stress, the Von Mises 
criterion is used. This criterion determines an equivalent one-dimensional stress for the multi-
dimensional stress state of an element. This equivalent stress is the stress performed on a 
tensile test and is stated in (2.1). In the three-dimensional model, all six stress components 
shown in Figure 10 in are considered. When using a two-dimensional ring model, only three 
stress components are considered. These stress components are the normal and shear 
stresses in the yz-plane (σy, σz, τyz). 
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  (2.1) 

 

 
Figure 10: Stress components in a three-dimensional cartesian coordinate system and in a two-dimensional cartesian and 
polar coordinate system 

When taking into account nonlinear material behaviour, plastic stresses and strain can develop 
in the model. The DNV-RP-C208 report [10] describes the strain limit for tensile failure due to 
gross yielding of plane plates. Because the CHS is a curved plate with large diameter and thus 
a small curvature, these strain limits are used as the limit state criteria. These strain limits state 
that  for steel S355, the structure may experience a principal plastic linearized strain with a 
maximum value of 0.04 (4%). This principal plastic linearized strain is the average plastic strain 
over a rectangular prismatic volume at the location with the largest strain.  
 
For out-of-plane bending of the plate, the length, width and thickness of the prismatic volume 
are equal to the thickness (t0) of the plate. In case of local cut outs in the tensile part of the 
cross-section, the ratio between the net area and the gross area (net section ratio) must be at 
least 0.95. The net area is the cross-sectional area in which cut outs are subtracted. In case 
the net section ratio is less than 0.95, the influence of the cut outs have to be taken into 
account. However, in the padeye load case there are no cut outs present and this criterion will 
not be used.  
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Figure 11: Tables from DNV-RP-C208 [10] giving the limit state criteria for the maximum principal plastic linearized strain and 
the maximum plastic critical strain 

To prevent tensile failure due to cracking at local strain concentrations, a critical plastic strain 
limit is given in the DNV-RP-C208 report [10]. This critical plastic strain is the largest locally 
occurring plastic strain in the governing volume, and has a maximum value of 0.12 (12%). The 
governing volume in which the strain occurs is the same volume as used for the principal plastic 
linearized strain. 
 
In the Eurocode EN 1993-1-5 [11] a limit state criterion is presented for the plastic strain. This 
limit state criterion is similar to the criterion stated in the DNV report for the principal plastic  
linearized strain. The limit state criterion given by the Eurocode states that for a connection 
loaded in tension, a maximal plastic principal strain of 5% is recommended. The governing 
plastic strain is a local strain, and does not need to be averaged over a certain volume. 
 
Another criteria which assumes ductile failure after reaching a maximum plastic strain is 
derived by Lemaitre. In this criteria the maximum strain is dependent of the Poisson’s ratio, the 
isotropic stress and the Von Mises stress. The isotropic stress occurs when a material is under 
equal compression/tension in all directions. The stress in this case is directed perpendicular to 
the surface, independent of the surface’s orientation. By introducing the ratio between the 
isotropic stress and the Von Mises stress (the triaxiality ratio), triaxiality is taken into account. 
In case of triaxial stress, a combination of different types of stress are active on an element. 
This causes different stresses in different directions which are nonzero. The equation of the 
maximal plastic strain derived by Lemaitre is stated below for ν = 0.3:  
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  (2.2) 

By rewriting this equation the equivalent plastic strain εeq,p (=  ε f/ε0) can be obtained, which is 
a function of the triaxiality. Failure of the material according to the Lemaitre strain criterion is 
shown in Figure 12 for the Poisson’s ratio ν equal to 0.3.  
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Figure 12: Master curve of Lemaitre failure criterion for v=0.3 

As described before, yielding of the material causes large deformations. Therefore there are 
also limit state criteria for the deformation instead of the plastic strain. In Wardenier [2] and 
Voth [3] a deformation limit is used, which is determined by Lu et al. [12]. This criterion states 
that the CHS cross-section may not experience a deformation that is larger than 3% of the 
CHS diameter d0. 
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2.5 Load capacity calculation methods 

Multiple calculation methods are present to determine the stress distribution in the padeye load 
case. Within SHL, Roark’s formulas for stress and strain [13] and Finite Element Modelling 
(FEM) are used. Besides these two methods, different calculation methods are available that 
describe the load capacity of a similar load case. This load case is the plate load case, which 
consists of a T-type plate-to-CHS connection shown in Figure 15. 
 

2.5.1 Roark’s formulas for stress and strains [13] 
Roark’s formulas describe the stress distribution in a large number of cross-sections due to 
different load cases. It is intended as a reference book consisting of three parts, which can 
help in the design and strength check of a diversity of structures. The first part describes the 
terminology, properties and units used. The second part describes the stress-strain 
relationship of materials, the behaviour of bodies under stress and the methods of stress 
analysis used. Finally the third part describes the stress, strain and strength calculations of 
structural elements under multiple loading conditions.  
 
The formulas given in the third part are stated in tables and are based upon analytical and 
experimental stress analysis of structural components. The formulas give a quick calculation 
method which determines the linear elastic stress distribution. In case multiple loads are active 
on the system, the stress distributions can be superimposed. The maximum stress from 
Roark’s formulas is checked on exceedance of the yield stress, allowing only linear elastic 
material behaviour.  
 
For the stresses in the CHS in the padeye load case, Roark’s formulas for bending of curved 
beams are used. In these formulas the ring is assumed as a curved beam with wide flanges. 
In the case of ring stiffeners the cross-section is considered to be a T-section (Figure 13 right), 
in which the CHS is acting as the flange and the stiffener is acting as the web. The width of the 
CHS cross-section, which is contributing to the stiffness, is called the effective width beff and is 
used to account for the stiffness of the cross-section in longitudinal direction. This effective 
width is a function of the diameter (d0 = 2R) and the thickness (t0) of the CHS, and is stated 
below: 

 
0 01,56effb d t   (2.3) 

 

 
Figure 13: Two dimensional ring model of load case 20 from Roark [13] (left) and its effective width (right) 
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To determine the stress distribution in the two-dimensional model the forces acting in this cross 
section have to be calculated. For the padeye load case, Roark’s load case 20 can be used 
(Figure 13 left). This load case consists of a ring under a point load, which is supported by 
transverse shear. The point load represents the padeye load onto the CHS, while the 
transverse shear represents the shear resistance of the adjacent rings onto the considered 
ring. The transverse shear stress in Roark’s load case 20 is described below: 
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The general formulas for the moment (M), hoop load (N) and radial load (V) given by Roark 
(2.5) are derived from the curved beam theory. With the formulas for the ring loads the stress 
distribution along the ring can be determined for different load cases.  
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With the force and moment distributions known, the stresses are calculated using the theory 
for straight beams. With these stresses the Von Mises equivalent stress can be calculated, 
with which the maximum stress is checked for exceedance of the yield stress. 
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2.5.2 Finite Element Analysis 
Besides the use of Roark’s method, the stresses can be calculated using a numerical computer 
based Finite Element Modelling (FEM) program. Within Seaway Heavy Lifting the FEM 
program Ansys is used.  
 
As described before, in a FEM model the physical system is translated into a mathematical 
model of the system, which simulates and predicts the behaviour of the system. The model is 
split up in a finite number of elements, hence the name Finite Element Modelling, in which the 
behaviour is determined. This subdivision of the model into a number of elements is called 
meshing. A fine mesh means that the model contains many elements which are analysed, and 
thus gives an accurate solution. However, an increase in the number of elements also means 
an increase in computation time. This means that an optimum number of elements have to be 
determined which gives an accurate solution of the model.   
 
To obtain the stresses from the Finite Element Model, an analysis has to be performed. A 
distinction can be made between the linear and nonlinear analysis types. In the linear elastic 
analysis the displacements are assumed small, the strain is proportional to the stress, the 
loads are independent on displacements and the supports remain unchanged during loading. 

 

The nonlinear analysis can be subdivided in geometrical nonlinearities, material nonlinearities 
and boundary nonlinearities. The geometrical nonlinearities take into account the effect of large 
displacements on the overall geometric configuration of the structure. Because of these large 
displacements the angle of the force on the structure will change during loading, causing the 
force to change. The material nonlinearities take into account the fact that the material 
behaviour is not linear. The material models that can be used in this analysis are nonlinear 
elastic, elastoplastic, viscoelastic and viscoplastic. Finally for the boundary nonlinearities, 
displacement dependant boundary conditions are taken into account. These nonlinearities are 
usually found in contact problems, in which a force is modelled that can only have influence 
on a structure when it has a contact area. 
 
The numerical analysis of the model is an iterative process, which is shown in Figure 14. In 
the analysis, the stiffness of each element is stored in an element stiffness matrix. These 
element stiffness matrices are used to solve the displacements for a given external load on the 
structure, applied at each load step. With the displacement known, the strains and therefore 
the stresses are determined at each element using Gaussian co-ordinates or Gauss points. 
When more Gauss points are used in an element, both the accuracy of the solution and  the 
computation time will increase. By using the stresses at each element, the internal load on the 
structure can be determined. The internal load is compared with the applied external load on 
the structure. If the internal load is equal to the external load, the calculated deformations, 
stresses and strains are correct and the next load step can be applied. If the internal load is 
not equal to the external load, a new iteration has to be performed.  
 

 
Figure 14: Iterative procedure Finite Element Analysis (FEA) [14] 
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2.5.3 Comparative calculation methods 
In the design guide for CHS by Wardenier et al. [2] and in the study by Voth [3], the load 
capacity of a similar load case, a T-type plate-to-CHS connection (Figure 15), is determined. 
For this case the boundaries of the connection strength are given, which are the two possible 
failure mechanisms. These failure mechanisms are chord plastification and chord punching 
shear, and are dependent on many of the geometry parameters. Chord plastification is a ductile 
failure due to excessive plastic deformation of the joint interface, while chord punching shear 
is a brittle failure under local loads due to formation of diagonal tension cracks. Both failure 
mechanisms are dependent on the connection geometry.  

 
Figure 15: Longitudinal T-type branch plate-to-CHS connection, described in Wardenier [2] et al. and Voth [3] 

For punching shear failure, it is assumed that local stresses at a surface through the chord wall 
limits the joint strength. These local stresses may not exceed the punching shear stresses.  
In the case of chord plastification, several plastic hinges are formed due to the exceeding of 
the yield stress, forming a mechanism. When a mechanism is formed, the CHS experiences 
large deformations. In order to determine the ultimate capacity of the joint, a deformation limit 
is used. The out-of-plane deformation of the connecting CHS face is limited to 3% of the CHS 
diameter d0. The ultimate load is reached when the deformation in the CHS exceeds this 
deformation limit. 
 
The equations of the load capacity due to plasticity are derived using the ring model by Togo 
for a CHS-to-CHS connection, and is described by van der Vegte [15]. By using symmetry, the 
three-dimensional T-type CHS-to-CHS connection configuration can be translated into a two-
dimensional half ring model representing the CHS chord. Brace forces are applied on the 
model as a line load, acting over a certain length. By using plasticity theory, the locations of 
possible plastic hinges are assumed and an analytical equation is derived. This model is shown 
in Figure 16. 

 
Figure 16: Three-dimensional CHS-to-CHS T-joint translated into a two-dimensional ring model with plastic hinges 
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The two-dimensional ring model is loaded by a point load at an angle φ1 and a transverse 

shear stress q(φ), which is similar to ring model used in Roark. The transverse shear stress is 
equal to: 
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Due to the applied load on the joint the stresses in the ring will increase. When somewhere in 
the structure the bending moment reaches the plastic moment, a plastic hinge develops. When 
the load is increased, multiple plastic hinges will develop until a mechanism is formed. When 
the structure becomes a mechanism it can deform unlimitedly without the load being increased. 
The number of plastic hinges that is needed to create a mechanism is equal to the degree of 
static indeterminacy of the structure. In the considered ring model there are three plastic hinges 

needed in order to create a mechanism. Hinge 1 is located at an angle φ1 at which the brace 
is connected to the chord. Hinge 3 is located at the bottom of the CHS cross-section at an 

angle φ3. The angle φ2 at which plastic hinge 3 is located is unknown. This location can be 

determined by looking at the minimal force to create a mechanism.  
 
In order to determine the load capacity of a T-joint plate-to-CHS connection, the model used 
for the CHS-to-CHS connection is adapted. The plate-to-CHS ring connection can be simplified 
to a CHS-to-CHS connection with a very small diameter ratio β (d1/d0), and therefore a small 

angle φ1. Due to the small plate diameter, hinge 1 will be located near the upper support of the 
ring. With this assumption, an analytical equation is obtained that is used to describe the 
numerical and experimental results.  
 
This equation of the capacity of the T-type plate-to-CHS connection is derived by Wardenier 
et al. [2] (2008, 2009). This equation is given in (2.8). One of the most significant changes is 
the way the axial load is taken into account. The influence of the axial load is based on 
numerical analysis and is presented in the chord stress function Qf.  In this function the value 
C1 is equal to 0.25 for chord compressive stress (n < 0) and equal to 0.20 for chord tension 
stress (n ≥ 0). 
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Recently Voth [3] (2010) conducted a research using numerous experimental connections and 
finite element models, in order to gain a better understanding of branch plate-to-CHS 
connections and determine the influence of different geometries and loads on the connection 
capacity.  In contrast to the research by Wardenier et al., Voth conducts that the plate thickness 
is significant for the connection capacity. Therefore the influence of the plate thickness is 
included in the calculations by Voth. The proposed calculation for chord face plastification is 
given in (2.9).  
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Besides plastification of the chord, punching shear could also lead to an ultimate load due to 
failure of the chord. By using the numerical and experimental data, the load capacity can be 
determined using the limit state criteria that the local maximum stress cannot exceed the 
punching shear stress. The equation for punching shear failure described by both Wardenier 
and Voth is given in (2.10). In this equation the normal force and both in-plane and out-of-plane 

bending moments are taken into account. In case only a normal force under an angle θ1 is 

present in the model, the equation can be simplified into equation (2.11). 
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The equations given for the failure modes plastification and punching shear are valid within a 

certain range. The range in which the equations of both Wardenier et al. and Voth are valid, 

are given in Table 1. 

Table 1: Range for load capacity equations derived by Wardenier et al. and Voth 

 Wardenier et al.  Voth 

Minimum Maximum  Minimum Maximum 

β = t1/d0 0.2 1.0  0.09 0.27 
γ = d0/t0 0 50  14 50 
η = h1/d0 1.0 4.0  0.2 4.5 

 
 

2.6 Conclusion 

A lot of research is performed for branch plate-to-CHS connections, similar to the studies by 
Wardenier et al. [2] and Voth [3]. However, in the application of a padeye to CHS connection 
there is little research to be found. The present method of using Roark’s formulas of stress and 
strain only assumes linear elastic material behaviour, which makes this method very 
conservative. Besides the material behaviour, the model is based on a two-dimensional ring 
model which assumes the resistance of the adjacent cross-sections to be influenced by an 
effective width and a distributed shear force. This is however a simplification of reality, in which 
some influencing factors are lost with respect to the three-dimensional model. 
 
In order to obtain a three-dimensional model which includes the non-linear plastic material 
behaviour, a Finite Element Modelling (FEM) program is used. When using non-linear plastic 
material behaviour in the Finite Element Analysis (FEA), multiple failure criteria can be used 
to determine the load capacity. The disadvantages of performing a FEA is that the use of such 
programs require thorough understanding, are not always available and are time-consuming. 
 
It is desired to gain an engineering tool that describes the load capacity of the padeye load 
case, using one of these failure criteria. This engineering tool will be similar to the equations 
from Wardenier et al. [2] and Voth [3], and must be an advanced method of the Roark 
equations. This means that the engineering tool must give a load capacity that is less 
conservative than the Roark equations, which can be obtained using non-linear material 
behaviour. The tool can be obtained by using multiple Finite Element Analysis (FEA) of the 
padeye load case.  
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3 Padeye model  
Equation Chapter (Next) Section 1 
 
 

3.1 Model 

In order to describe the ring stresses in the CHS cross-section in the padeye load case, the 
load case is translated into a three-dimensional model. The load case can be modelled as a 
simply supported CHS with a padeye at midspan, subjected to a tensile point load at the 
pinhole. The CHS has a length L on either side of the padeye. Due to the vertical component 
of the load (Fy) on the padeye and the length of the CHS, a bending moment will be present in 
the CHS. This bending moment causes normal stresses in the cross-section, which are tensile 
at the top and compressive at the bottom. The maximum moment occurs at midspan and is 
described below: 

 
1

4
Max yM F L   (3.1) 

To determine the influence of padeye loading on the ring stresses in the CHS cross-section, 
the normal stresses due to the bending moment must be removed.  With the bending moment 
at midspan due to the length being equal to zero, the tension and compression in the cross-
sections of the connecting CHS face will be independent of the length L. In the study performed 
by Voth [3], a similar model is used in which end moments are used to remove the bending 
moment at midspan. By applying end moments that are opposite to the maximum moment, the 
bending moment and hence the normal forces due to the length become equal to zero at the 

padeye (Figure 17Fout! Verwijzingsbron niet gevonden.).  

 

Figure 17: Moment distribution in case of end moments applied equal to the bending moment at midspan 

Besides the bending moment due to the length of the CHS, the influence of the rigid end plates 
is also considered. Due to these rigid end plates, the circumferential deformation of the cross-
section is restrained over an unknown length. This restraint deformation influences the stress 
distribution in the CHS cross-section. 
 
In the literature, the chord length is described as the ratio between the length and the radius 
(R = d0/2) of the CHS. This ratio is the chord length parameter α = 2L0/d0. The value α for which 
the end plates no longer have influence on the deformation of the CHS at the padeye 
connection, is the so called ‘’effective chord length parameter’’. For values of α larger than the 
effective chord length parameter, the restrained deformation is no longer present at the 
padeye.  
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In the book on Tubular Structures by Packer and Willibald [16] an effective chord length 
parameter αeff = 20 (Leff = 10d0) is given for a CHS-to-CHS T-joint, with end moments applied 
at both chord end supports. A similar study is performed by Voth [3] for a longitudinal plate-to-
CHS X-type connection. For this connection the effective chord length parameter αeff = 12 (L = 
6d0) for γ = 19.7 and γ = 27.6. The effective chord length parameter for the padeye load case 
without ring stiffeners is studied in the Finite Element Modelling in chapter 4. From this study 
an αeff will be determined, at which the end plates have no effect on the deformation at the 
padeye. 
 

3.2 Geometry 

The model of a padeye load case must be a representation of the load case occurring in 
projects performed by Seaway Heavy Lifting. Therefore a proper geometry has to be chosen. 
Because failure of the padeye is beyond the scope of this thesis, it is assumed that the padeye 
is adequately designed and non-critical. It is also assumed that the welded connections are 
stronger than the main plate, therefore the welds are non-critical, and have sufficient rotational 
capacity.  
 
Full penetration welds are used in present practice to connect the main plate to the CHS. For 
this type of weld, shown in Figure 18, the excess weld thickness Δtw on either side of the plate 
is limited to a thickness of 3 mm [17]. From comparison of padeyes used in practice (Appendix 
B) it can be determined that the commonly used main plate thickness tm is equal to 70 mm. 
This causes the width of the welded plate-to-CHS connection (tm+2Δtw) to be roughly the same 
as the cross-sectional width of the main plate (tm). Therefore the weld will not have significant 
influence on the stress distribution in the CHS cross section, and will not be taken into account.  

 
Figure 18: Full penetration weld with angle α, plate thickness T and additional weld thickness Δtw 

The remaining geometry of the padeye load case can be subdivided into the padeye geometry 
and the CHS geometry, both consisting of multiple dimensions. These dimensions can be 
determined by considering several projects performed by Seaway Heavy Lifting, in which 
padeyes are used to lift the offshore structure. The dimensions of these different padeye 
connections are compared and stored in a project comparison table, Table 11 in Appendix B. 
In this table a minimum, maximum and mean value is determined for each dimension. The 
individual padeye dimensions are compared with the mean value from the comparison table, 
and the relative deviation from the mean value is obtained using equation (3.2).  

 ,rel

1 1 i mean
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d d
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n n d
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With these relative deviations, a mean relative deviation is determined for the individual 

geometries. This mean relative deviation is given in Table 12, Appendix B. It is assumed that 

the padeye geometry with the least mean relative deviation gives the best representation of a 

padeye used in practice by Seaway Heavy Lifting. From this table it is concluded that the 

geometry used in project 27.1726 meets this criterion. Therefore the geometry from project 

27.1726 is assumed to be the mean padeye geometry. The dimensional values from this 

project are given in Table 2, and an impression is shown in Figure 19. 

The dimensions used in the padeye load case can be compared with the range in which the 
equations of Wardenier et al. [2] and Voth [3] are valid. In Table 11 it can be seen that the β 
ratio between the main plate and the CHS diameter (β = t1/d0) is ranging from 0.05 till 0.09. 
This is smaller than the ratio for which both the equations are valid. Therefore a new 
engineering tool must be determined which is valid for the geometric range considered in this 
thesis. 
 
When only considering the mean geometry, the load capacity study will have no significant 
value. Therefore a parametric study will be performed within the geometrical boundaries from 
the padeye comparison table. In order to obtain a limited number of variable parameters, the 
dimensions of the padeye model will be subdivided into constant and variable dimensions. The 
constant dimensions are the padeye dimensions that are assumed to have little influence on 
the ring stress distribution. The variable dimensions on the other hand are the dimensions that 
are assumed to have a significant influence on the ring stress distribution.  
 
Table 2: Constant padeye dimensions from project 27.1726 by Seaway Heavy Lifting 

 

 

 

 

 

 

 

 

 

Figure 19: Geometry of the padeye load case, consisting of a padeye-to-CHS connection 

Division Subdivision Sign Unity Value 

CHS Diameter jacket/leg d0 [mm] 1219.2 

Thickness jacket/leg t0 [mm] 57.15 

Padeye Main plate base width bm [mm] 1300 

Main plate radius Rm [mm] 375 

Pinhole radius R0 [mm] 111 

Cheek plate radius Rc [mm] 325 

Height pinhole centre h0 [mm] 425 

Main plate thickness tm [mm] 70 

Cheek plate thickness tc [mm] 50 

Height of padeye bottom h2 [mm] 490 
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3.2.1 Variable dimensions 
The variable dimensions are determined from reference studies performed by Wardenier et al. 
[2] and Voth [3], in which the following variable dimensions are used: 

 Base width of the main plate (bm) 

 Diameter of the circular hollow section member (d0) 

 Thickness of the circular hollow section member (t0) 
 
These dimension can be varied in different ways. First of all the padeye dimensions can be 
taken as a function of the plate width. When increasing the plate width, the total geometry of 
the padeye will increase linear (Figure 20 left padeye geometry). Second, the plate width can 
be varied while the height of the padeye remains constant (Figure 20 right padeye geometry). 
In the latter case a ratio between the padeye plate width and height is present, which is stated 
as λ = bm/(Rm + h0). 
 

 

Figure 20: Variable dimensions in the padeye load case; plate width bm (left), CHS diameter d0 (middle) and CHS thickness t0 
(right) 

The boundaries for the base width of the main plate (bm) and the diameter and thickness of the 
circular hollow section (d0 and t0) are given by the minimum and maximum dimensional values 
from the comparison of padeyes used in practice (Table 3). In order to reduce the number of 
variable dimensions, the following two dimensionless ratios are determined: 

 Nominal plate depth ratio, η = bm/d 

 Half diameter to thickness ratio, γ = d0/2t0 
 
These dimensionless ratios are obtained from the reference studies of Wardenier et al and 
Voth. The values of the present ratios are given in Table 3. 
 
Table 3: Boundary values of the variable dimensions: 

Variable Unit  Mean Min Max 
d0 [mm] 1219.2 800 1397 
t0 [mm] 57.2 35 64 
bm [mm] 1300 1100 2000 
η = bm/d0 [-] 1.07 0.92 1.64 
γ = d0/2t [-] 10.67 9.33 13.50 
λ = bm/(R0+h0) [-] 1.63 1.38 2.50 
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3.2.2 Constant dimensions 
The values of the constant dimensions are equal to those used in the governing geometry from 
project 27.1726. These values are given in Table 4. As described in 3.2.1, the variable padeye 
plate width is varied in two different ways. In the first case the constant dimensions are 
assumed to be a function of the plate width. The ratios in which these constant dimensions are 
present, are equal to those found in the mean geometry and given in Table 4. 
 
In the second case, the variable plate width is varied while the height of the padeye remains 
constant. This means that the height of the pinhole centre (h0) and the radii of the main plate 
(Rm), cheek plate (Rc) and pinhole (R0) will obtain the constant values stated in Table 4. 
 
Table 4: Constant padeye dimensions from project 27.1726 by Seaway Heavy Lifting 

  
 

  

Division Subdivision Sign Unity Value Ratio  

Main plate Main plate radius Rm [mm] 375 bm/3.5 

Pinhole radius R0 [mm] 111 bm/11.7 

Cheek plate radius Rc [mm] 325 bm/4.0 

Height pinhole centre h0 [mm] 425 bm/3.1 

Height padeye bottom h2 [mm] 490 bm/2.7 

Thickness main plate tm [mm] 70 bm/18.6 

Thickness cheek plate tc [mm] 50 bm/26.0 
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3.3 Simplified geometry 

The padeye load case consist of many different parameters, both constant and variable. Many 
of these parameters influence the stiffness of the main plate. The stress distribution in the 
padeye, and hence the stress distribution in the CHS, is dependent of this main plate stiffness. 
In order to obtain a good understanding of the load path active in the load case, the load case 
has to be simplified. This can be achieved by narrowing down the number of dimensions that 
is used.  
 
The influence on the padeye stiffness is due to the presence of cheek plates and the variation 
between the height at top and bottom of the padeye main plate. By neglecting these influencing 
factors, the remaining geometry is equal to that of a plate-to-CHS model shown in Figure 21.  

 
Figure 21: Geometry of the plate load case, consisting of a plate-to-CHS connection 

The plate model consists of an rectangular plate with a height h0, a plate width of bm and a 
plate thickness tm. The CHS geometry remains equal to the padeye model, in which it consists 
of a diameter d0 and a thickness t0. The variable dimensions in the plate model are the same 
as in the padeye model (d0, t0, bm). These dimensions will vary between the same minimal and 
maximal values and are shown in Figure 22.The constant dimensions in the model are the 
plate height h0 and plate thickness tm, which will be the function of the plate width bm as stated 
in Table 4.  
 
With a reduction of dimensions in the plate model with respect to the padeye model, the padeye 
model is simplified significant. The plate model is used to gain a good understanding of the 
load case behaviour for the variable dimensions. 

 

Figure 22: Variable dimensions in the plate load case: plate width bm (left), CHS diameter d0 (middle) and CHS thickness t0 

(right) 
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3.4 Conclusion 

In order to obtain a geometry for the padeye load case which is a representation of the padeyes 
used in practice within Seaway Heavy Lifting, several projects performed by Seaway Heavy 
Lifting are compared. From this comparison, a governing padeye geometry is chosen. The 
padeye geometry assumed to be governing is used in project number 27.1726. This geometry 
is subdivided into constant and variable dimension. The variable dimensions are the 
dimensions which have a large influence on the stress distribution and hence the load capacity, 
while the constant dimensions are those with little influence on the stress distribution.  
 
Besides the padeye load case, a simplified plate load case is modelled with a reduced amount 
of dimension as in the padeye load case model. Because the plate model has less dimension 
influencing the stress distribution, it will be used to gain a good understanding of the variable 
dimension on the load case behaviour. By using the similarities in the two load cases, the load 
capacity in the padeye load case can be determined. The constant and variable dimensions 
used in the plate load case are equal to those used in the padeye load case. 
 
Finally it must be noted that the padeye geometry is beyond the range used in the equations 
of Wardenier et al. and Voth. Therefore an engineering tool must be determined which is valid 
for the geometric range of the padeye load case. 
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4 FEM Modelling 
Equation Chapter (Next) Section 1 
 
 
 
To gain a thorough understanding of the behaviour of the padeye load case, a finite element 
analysis (FEA) will be performed. To perform a finite element analysis, the structure is turned 
into a mathematical model of the system. In this model the structure is divided into a finite 
number of elements, hence the name finite element model. The model, consisting of many 
elements, is able to simulate and predict the behaviour of the structure.  
 
Because the solution from the finite element method heavily relies on the factors and 
parameters that are used, the validity of the model has to be investigated. Without a thorough 
understanding of the solution method, input needed and the correct functions, a correct 
behaviour of the response cannot be gained. As they say: “garbage in, garbage out”. The 
validity of the models can be investigated using the theory of finite element modelling by Wells 
[18]. The several factors that have to be validated are the boundary conditions, the elements 
type, the element size and the type of analysis. These factors will be discussed in the following 
paragraphs.  
 

4.1 Geometry 

As described in chapter 2.6, two simplified three-dimensional models will be used: a plate-to-
CHS connection and the padeye-to-CHS connection (Figure 23). The first model will be used 
to gain a good understanding of the behaviour of the CHS under radial loading by a plate, and 
will be denoted as the plate load case. With this knowledge the behaviour of the CHS under 
radial loading by a padeye can be studied, which is in fact a more complex plate-to-CHS 
connection. This model will be denoted as the padeye load case from this point onwards.  

 
Figure 23: Three-dimensional plate-to-CHS connection model (top) and padeye-to-CHS model (bottom) 
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4.1.1 Boundary conditions 
The boundary conditions which are used in both the padeye and the plate load case can be 
divided into essential and natural boundary conditions. The essential boundary conditions 
involve conditions with respect to displacements, whereas the natural boundary conditions 
involve conditions with respect to forces.  

 
The essential boundary conditions contain several types of displacement conditions, which 
can be used to provide a better prediction of the system or to gain a shorter computational 
time. Support constraints are applied such that the construction is statically determined, 
preventing rigid body motion of the structure. The degrees of freedom, according to the active 
coordinate system, which have to be constrained are the following: 

 ux, uy, uz = translations in the direction of the x,y and z axis respectively  

 θx, θy, θz = rotations around the x,y and z axis respectively  
 
In the models a rigid end plate is attached at the CHS at the supports, which means that a rigid 
cross section is assumed. This can be obtained by using the CERIG command in Ansys, 
generating constraint equations needed for defining rigid links between a master and slave 
node (Figure 24). The boundary conditions are applied at the master node and then translated 
to the slave nodes. For both boundaries the master node lies in the origin of the CHS cross-
section and is defined as a ‘‘Mass 21 elements’’. The slave nodes are defined as the nodes in 
the CHS cross-section. The end moments which are active in the model are applied on the 
master nodes at both boundaries and act on the origin of the CHS. The master nodes translate 
the bending moment to normal forces working on the CHS cross-section. 
 
Besides the support constraints, symmetry conditions can be applied in the model using solid 
elements. These conditions impose symmetry at the vertical y-axis, along the z = 0 plane in 
longitudinal direction of the CHS. By applying these symmetry conditions, the computation time 
is reduced. The essential conditions used are shown in Figure 24 and described below: 

 Left support: 
o Translation:  ux = 0, uy = 0, uz = 0 
o Rotation:  θx = 0, θy = 0 

 Right support: 
o Translation  uy = 0, uz = 0 
o Rotation:   θx = 0, θy = 0 

 Along plane z = 0  
o Translation:  uz = 0 
o Rotation: θx = 0, θy = 0 

 

 
Figure 24: Support constraints and symmetry conditions in the case of solid elements (left) and shell elements (right) 
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The natural boundary conditions contain the applied forces, which can be applied as 
concentrated point loads and distributed line, area or volume loads. Distributed loads are more 
commonly used than concentrated point loads, because a point load isn’t a very good 
representation of reality. The distributed line, area and volume loads are measured in force 
per unit length, area or volume respectively.  
 
In the plate load case, a distributed load is applied on the top of the plate. This is done in both 
the model consisting of shell and solid elements. In the case of solid elements, only half the 
force is applied due to the applied symmetry conditions. 
 
The force acting on the padeye is applied at the centre of the pinhole. Two different methods 
are used to model the force for both the model using shell elements and the model using solid 
elements. In the model using shells elements the force is modelled similar to the boundary 
condition. This model is called the cartwheel model, which is used within Seaway Heavy Lifting. 
Link 10 elements are created between a node at the pinhole centre and the nodes on the 
interior of the pinhole. The link elements only transfer force when in compression. The force is 
applied on the node in pinhole centre as a component in x- and y-direction (Figure 25). 
 
In the model using solid elements a bearing load is derived from Ansys Workbench. This 
bearing load uses ‘‘Surface 154 elements’’ which are applied on the interior area of the pinhole. 
The load is transferred from the surface elements to the connecting nodes. The force is applied 
on the surface elements and only transfers load if the normal of the surface elements is 
negative with respect to x-axis in the local coordinate system. This local coordinate system 
has its origin in the pinhole centre and is applied under an angle αiP, having its positive x-axis 
in the direction of the force. Similar to the plate load case using solid elements, only half the 
load is applied due to the use of symmetry. 

 
Figure 25: Natural boundary conditions in the plate load case using distributed loading (left) and the padeye load case using 
the cartwheel model (right) 
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4.2 Mesh 

Meshing gives a discrete representation of the system geometry. Meshing divides areas or 
volumes of the finite element model into small elements over which the equations are 
numerically approximated. By using a finer mesh, the model consists of more elements than it 
would in a coarse mesh. By approximating the equations for many elements, a good 
representation is given of the stress/strain distribution over the area/volume. If the mesh is for 
instance coarse, the model consists of fewer elements and thus a rough representation of the 
stress/strain distribution is given. A representation of a fine and a coarse mesh is shown in 
Figure 26. Because a fine mesh results in a longer computation time, an optimal mesh should 
be determined. As an alternative of choosing a fine mesh for the total model, the mesh can 
also be refined at certain locations. The locations at which mesh refinement may be necessary 
are regions where a high stress/strain ratio is expected such as near entrance corners, at 
concentrated (point) loads, at abrupt changes in geometry and at abrupt changes in material 
properties. 
 

 
Figure 26: Model element size; Coarse mesh (left) versus a fine mesh (right) 

The mesh can be made out of several element shapes. Because both the padeye and the 
plate load case are three-dimensional, only the three-dimensional shapes are considered, 
these are: 

 Tetrahedron  

 Pyramid 

 Triangular prism 

 Hexahedron  

 
The accuracy of the mesh is, besides the density, also depending on some other factors. These 
factors are the skewness (indicator of the mesh quality and suitability), smoothness (change 
in size should be smooth) and aspect ratio (ratio of shortest and longest side of the cell) of the 
different mesh elements. Improving these factors would improve the quality of the outcomes 
of the FEM analysis. 
 

4.2.1 Element type 
Each element has multiple degrees of freedom (DOF’s), representing the translations and 
rotations of the element in which the response is expressed. The number of degrees of 
freedom used is dependent on the element dimensions. The elements can have one, two or 
three dimensions. Each element also consists of a number of nodal points or nodes. These 
nodes define the element geometry and are the points at which the DOF’s of the element are 
applied. The element shape is defined between these nodes and the accuracy of each element 
depends on the number of nodes that is used, which is depending on the order of the element 
used. Multiple element geometries are shown in Figure 27. 
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Figure 27: Dimension and order of elements, depending on the number of nodes active in the element 

 
The different types of structural elements (beams, plates, shells etc.) rely on different theories. 
Therefore different types of element are applicable. The different types of elements are link, 
beam, pipe, solid, shell and solid-shell elements. In the case of both the padeye and plate load 
case, a three-dimensional model is considered. These models consist of a circular hollow 
section (CHS) and a plate, therefore the following element types are considered: 

 Shell elements are used to model structural elements in which two dimensions are 
much greater than the third one and when the change of the analysed stresses/strains 
in this third direction can be neglected. This is applicable for static analysis of elements 
such as plates, slabs and thin-walled shells. The advantages of the use of shell 
elements results mainly in time-saving due to reduced number of finite elements (and 
thus the number of equations to solve).  

 Solid elements are used if the change of the analysed stresses/strains is significant in 
all directions of the analysed element. This will be the case if the thickness of the CHS 
is large with respect to the diameter.  

 Solid-shell elements are used in case of shell structures with a wide range of thickness. 
This type of elements can be used for multi-layered materials such as composites in 
which thickness, material and orientation differ through the thickness. However, both 
the padeye and the plate load case consist of steel which is an isotropic material. 
Therefore the solid-shell elements is not used to create the finite element model.  

 
The analysis is performed using the Shell 181, Shell 281, Solid 185 and Solid 186 elements. 
The applied elements are shown in Figure 28. Both Shell 181 and Solid 185 use only nodes 
on the edges, whereas Shell 281 and Solid 185 elements use additional mid-side nodes. Using 
mid-side nodes makes the element more accurate. However, it is possible mid-side nodes get 
linked to edge nodes in a connection. This causes numerical inaccuracy of the solution 
obtained from the analysis.  
 

 
 

Figure 28: Elements used in the padeye/plate load case: Solid 185, Solid 186, Shell 181 and Shell 281 elements 
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4.2.2 Element size 
The size of the elements that is used in the model, determines if the mesh is coarse or fine. 
With smaller element sizes, the mesh becomes finer.  Because a smaller element size means 
a more accurate solution but also a longer computation time, an optimal element size is 
determined. In order to obtain such optimal element size, the results from the finite element 
analysis using different element sizes have to be compared. 
 
The accuracy of the model is defined as the difference of the displacement and stress in a 
certain point of the structure, for varying element sizes. Using different element sizes, a 
difference in the results that is less than 5% is considered sufficient [18]. This would mean that 
for smaller element size results will converge to a single solution. 
 
Because the padeye load case is governing, the results are considered for this load case only. 
From the finite element model the displacement vector (usum) and the Von Mises equivalent 
stress (σeqv) are obtained. These results are taken from a node at a significant location in the 
model, where there are no abrupt changes in geometry which could lead to inaccuracy due to 
peak stresses. The goal of this thesis is to determine the governing ring stresses at the padeye, 
therefore the results are taken from the CHS cross-section at bottom of the padeye. Because 
peak stresses occur at the intersection of the main plate and the CHS, the results will be 
obtained from the location of node 1 in Figure 29. This node is located in the CHS cross-section 
at the padeye main plate bottom, at half the diameter in y- and z-direction. 
 

 
Figure 29: Location of node 1 in which the output from the Finite Element Analsysis (FEA) is obtained 

The analysis is performed using the Shell 181, Shell 281, Solid 185 and Solid 186 elements. 
When using the solid elements, the CHS thickness (t0) is divided into 2, 4 and 8 elements to 
determine the accuracy. For all types of element the element sizes 150 mm, 100 mm, 50 mm 
and 20 mm are used in the analysis. 
 
The displacement (usum) and stress (σeqv) obtained from node 1 in the padeye load case, are 
plotted against the corresponding element size (Appendix C). For both solid elements the 
governing number of elements over the thickness is determined, which can be compared with 
the use of shell elements. In Figure 30 the resulting Von Mises stress and the displacement 
vector are compared. From these graphs it is obtained that for all element types, the results 
converge to a single solution for element sizes smaller than 50 mm. The Shell 281 and the 
Solid 185 elements converge rather quickly with respect to the Shell 181 and Solid 185 
elements, due to the use of mid-side nodes. The computation time of these element using mid-
side nodes is however much longer. Besides this, it can also be noted that both shell elements 
converge to a single solution, where the solid elements each converge to a separate solution. 
From these results the optimal element type is assumed to be the Shell 181 elements with an 
element size of 20 mm.  
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Figure 30: Von Mises equivalent stress at location of node 1 for different element type and size 

In order to reduce the computation time of the model using ‘‘Shell 181 elements’’, the element 
size will be changed for locations with uniform cross-section. The cross-section is uniform for 
the CHS with no added padeye or plate. The model can be divided into a non-uniform mid-
section and two uniform end-sections, shown in Figure 29. In order to maintain the accuracy 
at the location of the padeye/plate, the mid-section spans beyond the main plate with a length 
ΔL. The mid-section will have element size N1 = 20 mm, while the end-sections will have a 
different element size N2 to reduce computation time. In order to determine the element size 
N2 and the length ΔL, both will be varied while element size N1 will remain unchanged. By 
comparing the displacement vector and the Von Mises stress in node 1 for the different element 
size N2 and the length ΔL, a final model can be assumed.  
 

  
Figure 31: Displacement vector and Von Mises stress at the location of node 1 for different length ΔL and element size N2 

The displacements and stresses from these analysis are given in Appendix C, and are shown 
in Figure 31. In these graphs the case of element size N2 = 20 mm is equal to the case of 
uniform element size N1 = 20 mm. At the transition from mid-section to the edge-section the 
element size N1 and N2 are active. Due to this, the elements in the edge-section will have a 
height equal to N1 and a width equal to N2, creating elements with an aspect ratio may not 
exceed a value of 20. If the aspect ratio exceeds this value, the solution could contain 
numerical errors. In order to obtain an accurate model with low computation time, an element 
size N2 is assumed to be 300 mm and a length ΔL equal to 400 mm. 
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4.3 CHS length 

By using the end moments at the support, the bending at mid-span due to the chord length is 
balanced. The length of the chord does however still influence the stress distribution in the 
CHS cross-section. Because end plates are used at the supports, the deformations in the CHS 
cross-section are restrained. This restrained deformation of the cross-section occurs over a 
certain length of the CHS, influenced by the end plates. Because the stresses are related to 
the displacements, the stress distribution over this length is also influenced by the end plates.  
 
The chord length is chosen in such a manner that the influence of this chord length on the 
stresses and displacements at the padeye can be neglected. The chord length can be 
expressed as the ratio between the length and the diameter of the CHS, which is known as the 
chord length parameter α = 2L0/d0. The parameter for which the stresses and displacements 
are no longer influenced is called the effective chord length parameter. To determine the 
effective chord length parameter, the displacement of the CHS in radial direction is obtained 
for different chord lengths. The results are obtained for node 1 (Figure 29) in the CHS at the 
location of the padeye, in which the radial displacements are assumed to be large. 
 
A linear elastic analysis is performed with chord length parameters α for the minimal, maximal 
and mean ratios of γ0. The results are plotted in Figure 32 for the padeye load case and the 
plate load case. From these graphs it can be seen that the radial displacement meet the 5% 
convergence criterion at an effective chord length parameter of α = 12. This constant value will 
be used from this point onwards. 
 

 
 

Figure 32: Effective chord length for the padeye load case (left) and the plate load case (right), with β = 0.94 
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4.4 Reinforced band 

With a length parameter α of 12, both the padeye model and the plate model consist of a 

slender CHS with a bending moment at the supports. These bending moments cause normal 

forces in the CHS cross-section. In case of a small CHS diameter d0 these normal forces will 

be high, resulting in local yielding of the CHS at the support. Due to this local yielding, failure 

of the CHS can occur at the support before failure at the plate-to-CHS connection. This failure 

mode, shown in Figure 33, is however not the considered failure mode of this study. 

 

Figure 33: Local plastic yielding in the plate model due to bending moments at supports 

The local failure due to the bending moment can be prevented by using a cross-section with a 
higher strength at the supports. This cross-section can be seen as a reinforced band of the 
CHS. The reinforced band may not influence the deformation and stresses of the padeye to 
CHS connection. Therefore it must have the same stiffness and geometry as the rest of the 
CHS, but a higher yield stress. This is obtained by applying the same Young’s modulus and a 
higher yield stress of σy = 500 N/mm2 at the reinforced band.   
 
By varying the length of the reinforced band, the optimal length can be determined at which an 
increase of the length does not lead to variations in the deformations of the CHS cross section 
at the location of the padeye. In Appendix C, a feasible length of 800 mm is determined. 

 

4.5 Analysis 

To obtain the stresses from the Finite Element Model, an analysis is performed. A distinction 
can be made between the linear and nonlinear analysis type. In the linear elastic analysis the 
displacements are assumed small, the strain is proportional to the stress, the loads are 
independent of displacements and the supports remain unchanged during loading. 

 

The nonlinear analysis can be subdivided in geometrical nonlinearities, material nonlinearities 
and boundary nonlinearities. These nonlinearities are briefly described below:  

 The geometrical nonlinearities take into account the effect of large displacements on 
the overall geometric configuration. Because of these large displacements the applied 
force angle will change during loading, causing the force to change.  

 The material nonlinearities take into account the fact that the material behaviour is not 
linear. The material models that can be used in this analysis are nonlinear elastic, 
elastoplastic, viscoelastic and viscoplastic. 

 The boundary nonlinearities takes into account the displacement dependant boundary 
conditions. These nonlinearities are usually found in contact problems, in which a force 
is modelled that can only have influence on a structure when it has a contact area. 
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With the limited displacements in the padeye load case in order to maintain the serviceability, 
geometrical nonlinearity is not applied. Because peak stresses occur in both the padeye and 
the plate load case, the yield stress is reached at a relatively low load. Therefore plasticity is 
wanted in the model in order to allow redistribution of the stress. In order to allow plasticity to 
occur, a nonlinear analysis is performed using material nonlinearity. 
 
In the padeye used in projects performed by Seaway Heavy Lifting, S355 steel is mainly used. 
During this plastic behaviour of this type of steel,  some of the stiffness is regained, which is 
called strain hardening. The material properties of S355 steel are obtained from DNV [10] and 
are shown in Table 5. The plastic behaviour can be described using simplified multi-linear 
plastic stress-strain curve with a yield plateau and strain hardening (Figure 34). 
 
Table 5: Proposed non-linear properties for S355 steels (Engineering stress-strain) from DNV RP-C208 [10] 

 

 

Figure 34: Multi-linear stress-strain curve with strain hardening from DNV [10] for steel S355;  
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4.6 Conclusion 

By using Ansys Mechanical, the padeye load case can be translated into a finite element 
model. In this numerical model of the padeye load case, the load capacity can be determined 
by performing a non-linear plastic analysis.  
 
In order to properly use the model, a number of assumptions are made. These assumptions 
are given below: 

 The length of the CHS is taken equal to 6 times the CHS diameter d0. By doing this the 
stiff end plates have little influence on the deformation of the CHS cross-section at the 
location of the padeye. 

 The element size is assumed to be 20 mm in order to obtain an accurate solution for 
the stresses and deformations in the load cases.  

 To reduce computation time without losing accuracy of the solution, the element size 
at both end spans of the CHS is chosen to be 300 mm, gaining a coarser mesh. This 
end span is the length of the CHS from the support onto a point 400 mm from the 
padeye/plate.  

 At both sides of the CHS end span, a reinforced band of 800 mm is applied, with a yield 
stress of 500 N/mm2 instead of the 335 N/mm2 used for the rest of the construction. 
The reinforced band prevents the CHS to yield due the applied end moments. If no 
reinforced band will be applied, the CHS at the support could fail before the padeye-to-
CHS connection fails due to plastic yielding. 

 

 

Figure 35: Finite Element Model of the padeye and plate load case 
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5 Analytical model  
Equation Chapter (Next) Section 1 
 
 
 
Beside the use of a finite element method, the padeye load case is described analytical. For 
the derivation of the analytical two-dimensional ring model, the Euler-Bernoulli curved beam 
theory is used. In this theory it is assumed that the thickness of the ring is relatively thin, 
causing little variation in shear stress over the height of the beam cross-section. In contrast to 
the use of a FEM model, the Euler-Bernoulli theory assumes a linear stress-strain relation, 
meaning that there is no plastic material behaviour. Therefore the analytical model will only be 
used to describe the data, which follow from the model using a FEM program.  
 

5.1 Euler-Bernoulli curved beam theory 

In order to derive a ring model which describes the padeye load case, the load case is 
simplified. In present practice within Seaway Heavy Lifting, Roark load case 20 (Figure 36) is 
used to calculate the load capacity of the padeye load case. Therefore the model geometry is 
assumed that be identical to the geometry used in Roark load case 20. Because the ring 
geometry is symmetrical, only half of the model will be considered. In this model half a ring is 
subjected to a point load W/2, which is balanced by a uniform distributed transverse shear 
force v. The transverse shear force in the ring model is representing the resistance of the 
adjacent cross-sections against displacement due to applied force. This shear force is 
assumed constant and is given below: 

 
4

W
v

Rb
   (5.1) 

The direction of the force in the Euler-Bernoulli model is however different from the force used 
in the Roark load case. In the Euler-Bernoulli model the applied force W/2 is working as a 
tensile force on the structure, whereas in the model used in Roark the force is applied as a 
compressive force. Besides this it must be noted that the Roark load case model and the model 
using Euler-Bernoulli have a different orientation of the axis. To compare the results between 
both models, the shear force and bending moment values f from Roark have to be multiplied 
by -1.  
 

 
Figure 36: Roark load case 20 [13] (left) and the Euler-Bernoulli curved beam model (right), including notation 
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Using the model geometry described above, the decoupled differential equations given in (5.2)
can be solved. In these differential equation there are two unknowns, which are the transverse 

displacement (uθ) and the radial displacement (ur). The strains, stresses and forces are related 

to the displacements. Thus by solving the equations for the displacements, the stress 
distribution is known. 
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In order to solve the equations, boundary conditions have to be applied. Just like in the FEM 
model, essential and natural boundary conditions are used. The essential boundary conditions 
are expressed in symmetry conditions at the top and bottom of the ring. At the top of the ring 

(θ = π) the transverse displacement and rotation are restrained, while the radial displacement 

is free. At the bottom of the ring (θ = 0) the model is fixed, meaning that all displacements and 

rotations are restrained. Beside the essential conditions only one natural boundary condition 

is used in the model. This condition is the force which is the applied at the top of the ring (θ=π). 

All the boundary conditions used in the padeye load case model are shown in (5.3). 
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  (5.3) 

Both differential equations stated in (5.2) are solved in Appendix D with the boundary 
conditions stated above, obtaining the equations for the displacements. With these 
displacement equations, the solution for the normal force, shear force and the bending moment 
are obtained. The results from the model using the Euler-Bernoulli curved beam theory are 
stated in (5.4) and can be compared with those from Roark load case 20 (5.5). Due to the 
difference in directions in both the coordinate systems, the shear force and the bending 
moment have to be multiplied with -1 in order to be compared, as denoted before. 
 
It can be seen that both methods give similar equations for normal force, shear force and 
bending moment. All equations consist of sine and cosine functions, whereas in the equations 
of the bending moments and additional constant is applied. In the bending moment equation 
from Roark, this constant factor is called the hoop stress deformation factor k2. This factor is a 
ratio between the bending stiffness and the extensional stiffness.  
 

A similar factor is used in equations from the Euler-Bernoulli model. This factor ξ is a ratio 

between the extensional stiffness and the sum of both the rotational and extensional stiffness. 

Where the factor k2 is only used in the bending moment equation, the factor ξ is present in the 

equations of the normal force, shear force and the bending moment.  
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Because there is an interaction between the normal force, shear force and bending moment, 
the Von Mises equivalent stresses is considered. In order to calculate the Von Mises stress 
distribution in the ring model, the transverse and radial stress must be determined. The 
transverse stress consist of the stress due to bending moment and normal force in the beam, 
while the radial stress consists of stress due to shear force. The Von Mises equivalent stress 
in the ring is obtained with the equations stated in (5.6). 

      22 2 2 2

, ,3 3eqv r r N M r                  (5.6) 

The transverse and radial stress distributions in the ring can be derived using the forces and 
bending moment from equations (5.4). The transverse stress due to normal force and the radial 
stress can be determined in a similar manner as for straight beams. This is not the case for 
the transverse stress due to the bending moment. Because a curved beam is considered, the 
length on the inside of the ring is shorter than the length on the outside of the ring. The 
difference in length result in an unequal elongation on both sides of the ring, when loaded by 
a bending moment. This difference in elongation cause the bending moment stress to be 
influenced by the eccentricity between the neutral axis and the centroid axis [19]. Therefore an 
eccentricity factor (e) is used to determine the transverse stress due to the bending moment. 
This factor derived in Appendix D and is stated below: 
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When substituting the diameter and the thickness of the CHS in the cross-sectional area and 
the second moment of inertia, the factor ξ  is determined. With the diameter of the ring being 
about 10 times larger than the thickness of the ring, it can be seen in (5.7) that (d0-t)

2/t2 is much 

larger than 1/3. By assuming that this constant 1/3 can be neglected, ξ becomes equal to 1.  
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With the assumption of the factor ξ  equal to 1, the transverse and radial stresses can be 
determined and are stated in (5.8).  The stresses are dependent of the load W, the diameter 

d0, the thickness t0, the effective width beff and the location θ. 
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Using the equations derived above, the stress distributions from the Euler-Bernoulli curved 
beam model is compared with Roark’s formulas of load case 20. In both the Roark load case 
equation and the padeye model equations, sated in equations (2.6) and (5.8) respectively, the 
mean CHS geometry is applied. Both Von Mises equivalent stress (σeqv) distributions are given 
in Figure 37, together with the contribution of the normal force, shear force and bending 
moment. From this graph is can be noticed that the stress is mainly dependent of the bending 
moment stress. This bending moment stress cause tension at the top and bottom of the CHS, 
and compression at the mid-surface.   

 
Figure 37:Comparison of Von Mises equivalent stress with Euler-Bernoulli curved beam theory and Roark's formulas for load 
case 20 

In Figure 37 it can also be seen that the governing stress in the cross-section occurs at the top 
of the ring, θ = π, where the force is applied. Because the Von Mises equivalent stress is mainly 
influenced by the transverse stresses due to the bending moment, it is assumed that the 
bending moment stress at the top of the ring is governing. With these assumptions, the Von 
Mises stress becomes equal to the following: 
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The load W on the ring consists of two parts, the force due to the vertical component Fy and 
the in-plane bending moment Mip (Figure 38). The bending moment is a function of the 
horizontal force component Fx and the pinhole height, which is equal to bm/3.05. This leads to 
the equation for load W given below: 
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  (5.10) 

 
Figure 38: Influence of the force components on the force W on the ring model 

By rewriting equation (5.9) and substituting the expression for the load W (5.10), an equation 
is determined that describes the load capacity of the ring. Because the Euler-Bernoulli curved 
beam theory assumes linear elastic material behaviour, the maximum load capacity is reached 
for the Von Mises equivalent stress σeqv equal to the yield stress σy. This result in an equation 
for the linear elastic load capacity, given in (5.11), which is a function of the CHS diameter d0, 
CHS thickness t0, the plate width bm and the angle of the force αip.  
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The present dimensions in the equation can be rewritten into dimensionless ratios. By using 
the dimensionless ratios, two non-dimensionalised engineering tools are obtained, stated in 
(5.12). These capacity are obtained by dividing the load by f0yt0

2 or f0yt0d0. The governing 
equation of the two will be determined by using the FEA results. 
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Besides using Euler-Bernoulli curved beam theory to create the ring model, the ring model can 
be derived using other theories.  Plastic theory is used in the ring model derived by Togo 
(Figure 39), which describes the load capacity of a T-type plate-to-CHS connection. In this 
model it is assumed that plastic hinges are formed in the ring in case the plastic moment is 
reached at this location. The locations of the plastic hinges are unknown. In order to determine 
the load capacity of the model, the locations of the plastic hinges have to be determined at 
which the lowest load capacity is reached. This leads to a load capacity equation given in 
(5.13).  
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Figure 39: Ring model derived by Togo using plastic theory 

In this equation Be is the effective connection length of the CHS. In case the effective length is 
equal to the plate length, Be/d0 becomes equal to bm/d0 = η. The equation can be rewritten into 
equation (5.14). When comparing the equation from both the model using Euler-Bernoulli 
curved beam theory and the plastic ring model derived by Togo, it can be seen that both 
equations are dependent of the yield stress, CHS thickness and dimensionless ratio’s η and γ.  

 

2
2

1 ,0 02
5.7

1.64 1
yN f t







  (5.14) 

  



5.2. Conclusion  47 

CIE5060-09 MSc Thesis M. Oorebeek 

5.2 Conclusion 

By using the Euler-Bernoulli curved beam theory, a ring model can be made which is similar 
to Roark’s formulas, and give a similar stress distribution along the ring. The model consist of  
a point load applied on half a ring, which is compensated by a distributed transverse shear 
force. Linear elastic material behaviour is assumed in the model, allowing only stresses which 
are lower than the yield stress. 
 
Because there is interaction between the normal force, shear force and bending moment, the 
stresses are expressed in the Von Mises equivalent stress. It is found that the Von Mises 
mainly consist of stress due to the bending moment. Because of this the Von Mises equivalent 
stress is assumed equal to the absolute transverse stress due to the bending moment.  
 
From the ring stress distribution it is found that the maximum stress occurs at top of the ring, 
at the location where the load is applied. In order to obtain an equation which determines the 
load capacity of the ring, the stress at the top of the ring is considered. With these assumptions 
the load capacity of the ring model is determined by the bending moment at the top of the ring. 
The equation for the load capacity is described in (5.15) and is a function of CHS thickness t0, 
the CHS diameter d0, the main plate width bm and the force angle αip. 
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The equation for the load capacity can be rewritten into a non-dimensionalised load. This 
normalised load can be obtained by dividing the force N1 by fy0t0

2 or  fy0d0t0. Both normalised 
loads are given in equation (5.16). 
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6 FEM Analysis 
Equation Chapter (Next) Section 1 
 
 
 
The goal of this thesis is to derive an engineering tool that describes the relation between the 
load case geometry and the load capacity. In order to obtain the behaviour of the padeye and 
plate load case during loading, the FEM model derived in chapter 4 will be analysed. In these 
analysis, the influence of the variable dimensions will be determined by varying their values. 
To determine the load capacity, the results from the FEM analysis will be examined using a 
limit state criteria stated in 2.3.1. This limit state criteria will be discussed in this chapter for the 
plate- and padeye load case. 

 

6.1 Location governing strain 

In order to apply the limit state criteria on the plate and padeye load case, the location at which 
the governing plastic strain occurs has to be determined. From theory it is obtained in chapter 
5 that largest stresses, and thus strains, occur at the intersection of the CHS and the main 
plate. Because of the sudden change of geometry at the top and bottom of the main plate, it 
can be assumed that peak stresses will be active at these locations. By analysing the padeye 
model for the mean geometry, it can be noted from Figure 40 that this is correct. Therefore the 
location of the governing plastic strain can be assumed at the edge of the plate-to-CHS 
connection.  

 
Figure 40: Von Mises plastic strain in the padeye load case with mean geometry 

From the finite element analysis it is noticed that the location of the governing plastic strain 
shifts when varying the diameter to thickness ratio γ. For a low ratio γ, the governing plastic 
strain lies on the inside of the plate-to-CHS connection edge, while for a large ratio γ the plastic 
region lies just outside the connection edge. This shifting of the plastic region is shown in 
Figure 41, and is caused by the influence of the thickness on the stiffness of the CHS.  

 
Figure 41: Von Mises plastic strain at the plate-to-CHS connection edge, for varying γ ratio. Left to right: γ = 9.25, 12.19, 17.42. 
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The CHS cross-section has a high rigidity in the longitudinal direction, causing mainly bending 
deformation in the circumferential direction (Figure 42 left). Due to this deformation, plastic 
strains occur in the cross-section at the location where the force is applied. Besides this, the 
deformation in circumferential direction causes a variation in deformation with respect to the 
adjacent cross-sections. This variation cause a bending moment in longitudinal direction, 
which lead to stresses. The combination of the stresses in circumferential and longitudinal 
direction, together with the abrupt change in geometry, result in high stresses in the edge of 
the plate-to-CHS connection. At this location plastic strains occur due to these stresses.  
 
In case of a small γ ratio, the rigidity of the CHS is quite large. This causes a small variation in 
bending deformation between the adjacent cross-sections in the longitudinal direction of the 
CHS. Therefore the stresses, and thus plastic strains, are mainly caused by the circumferential 
deformation. In this case the plastic region will be on the inside of the plate edge. When the γ 
ratio of the CHS becomes larger, the rigidity decreases. Due to the decrease in rigidity, a larger 
variation of bending deformation between the adjacent cross-sections occurs (Figure 42 left). 
This will result in stresses caused by a combination of circumferential and longitudinal 
deformation. In this case the plastic region appears on the outside of the plate edge. 

 

Figure 42: Circumferential and longitudinal deformation of the CHS cross-section at the plate connection (left); Location of 
the volume over which the average plastic strain is determined (right) 

Because of the shifting of the location of the governing plastic strain, the volume over which 
the principal plastic linearized strain is obtained will also shift. In order to process the results 
correctly, three volumes are considered over which the average plastic strain is determined. 
The volume which gives the highest average strain will be governing and the related load will 
be the ultimate load. The locations of the volume are shown in Figure 42 (right) and are stated 
below: 

 High: Middle of the volume on the outside of the plate-to-CHS  intersection 

 Middle: Middle of the volume at the edge of the plate-to-CHS  intersection 

 Low: Middle of the volume on the inside of the plate-to-CHS  intersection 
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6.2 Limit state criteria 

These failure criterion are compared in the force-displacement graph and the force-strain 
graph. These are shown in Figure 43 for the mean geometry of the padeye load case. Because 
the 4% principal plastic linearized strain and the 5% principal plastic strain are very similar, 
only the first one is shown. The different failure criteria are denoted below: 

 Yield stress (ε y, uy) 

 4% principal plastic linearized strain (ε4%, u4%) 

 5% principal plastic strain 

 12% principal plastic strain (ε12%, u12%) 

 Lemaitre strain criterion (ε f, uf) 

 3%d0 displacement (ε3%d, u3%d) 
 
In Figure 43 it can be seen the lowest limit state is given by the yield stress. This criterion 
assumes that no plastic stresses and strains are allowed. The smallest limit state using plastic 
material behaviour is given by the 4% principal plastic linearized strain, leading to an ultimate 
load that is roughly double the load from the yield stress criterion. The 12% principal plastic 
strain occurs at the point from which both the displacement and the strain will increase linear 
with the force. This limit state leads to a ultimate load that is roughly triple the yield stress 
criterion. The displacement criterion of 3%d0 gives an ultimate load which is slightly larger than 
the ultimate load from the 12% plastic strain criterion. Finally the largest load capacity is 
obtained from the Lemaitre strain criterion, which occurs at very high strain with respect to the 
other limit state criteria. Because of the low slope of the graphs at this point, the load capacity 
due to the Lemaitre criterion is only 10% larger than the load from the displacement criterion.  
 

 
Figure 43: Comparison of limit state criteria, plotted in a force-strain diagram and a force-displacement diagram (right) 

In practice the padeye is connected to a CHS member, like a jacket leg or a similar structure, 
at a joint in which several braces coincide. Multiple forces are active in such a joint, causing 
stresses and therefore stress variations during the lifetime of the structure. This means that 
the joint is subjected to fatigue loading. Because of this the plastic deformation due to the 
padeye loading must be limited. Besides this, a foundation pile has to be driven through the 
jacket leg in order to secure the structure to the bottom. This also will dictate a deformation 
limit of the connection due to padeye loading.  
 
Because the plastic strains correspond with the plastic deformation, this plastic deformation 
has to be limited. In order to obtain a solution which is less conservative than the use of the 
yield stress criterion and limits the plastic deformation, the 4% plastic strain criterion from the 
DNV [10] is assumed to be the governing criterion.  
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6.3 Parametric numerical study 

In order to determine the influence of the variable dimensions on the behaviour of the plate 
and padeye load case, a numerical parametric study is performed.  This parametric study takes 
into account the variable dimensions, determined in 3.2.1 and used in the model geometry. 
The minimal, maximal and mean values of these dimensions are given in Table 6 and shown 
in Figure 44: Visualisation of the variable dimensions in the padeye model and the plate model.  
In the parametric study, these values will be varied independent from each other, in which a 
single variable dimension is varied between the minimal and maximal value. In this case the 
other variable dimensions will adopt the mean value.    
 
Table 6: Variable dimensions for the padeye load case with the corresponding mean, minimum and maximum values 

Variable Unit  Mean Min Max 

d0 [mm] 1219.2 800 1397 

t0 [mm] 57.2 35 64 

bm [mm] 1300 1100 2000 

η = bm/d0 [-] 1.07 0.92 1.64 

γ = d0/2t [-] 10.67 9.33 13.50 

 
Figure 44: Visualisation of the variable dimensions in the padeye model and the plate model 

Because the padeye model consist of many dimensions which could influence the load 
capacity, the plate model will be considered at first. In this model less variable dimensions are 
used with respect to the padeye model. By using the plate model, a conception can be made 
about the influence of each variable dimension. The plate model will be analysed with a force 
under an angle of 90 degrees, in order to except the influence of the bending moment due to 
the horizontal force component. This analysis is followed by an analysis of the force under an 
angle of 60 degrees, which includes the influence of the bending moment. Finally the padeye 
model is analysed, in which the force angle is variable. For both the plate model and the 
padeye model, the 4% plastic strain limit is used to determine the  ultimate load capacity.  
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6.4 Plate load case 

6.4.1 Force angle αip = 90˚ 
The plate model is subjected to an equally distributed load at the top of the plate. By analysing 
the model using the FEM program Ansys the distribution of the resulting stresses, strains and 
deformations can be obtained. These results are shown in Figure 45, in which the overall and 
local Von Mises stress and the local Von Mises plastic strain are given.  
 
From the overall stress distribution it can be noticed that the stresses in the CHS are highest 
in the cross-sections at the connection with the plate and at the supports. In the local stress 
distribution, the stress distribution shows a constant stress distribution in the middle of the 
plate-to-CHS connection. At the edges of the plate, the region with high stress is larger than in 
the middle of the plate. The high stresses at the plate-to-CHS connection cause the plastic 
strains, shown in the local strain distribution. 
 

 

 
Figure 45: Plate load case, angle αip = 90˚, at 4% strain limit state N1,4% .Overall (top) and local (bottom) Von Mises stress 
and plastic strain distribution 

The high stresses in the CHS at the supports are caused by the applied end moments. The 
end moments can be dissolved as two normal forces, working on the top and bottom of the 
CHS. By doing this the stress at the middle of the cross-section becomes very low, which is 
the case.   
 
When looking at the plate-to-CHS connection in circumferential direction, the stresses in the 
cross-section are highest at the plate intersection and at the sides of the CHS. The stresses 
shown in Figure 45 from the FEM analysis can be described using the stress distribution 
obtained from the Euler-Bernoulli curved beam theory in chapter 5. The force on the plate 
causes circumferential deformation in the CHS. The deformation, mentioned earlier as 
ovalisation, causes mainly bending moments which lead to stresses. Similar to Figure 37, 
these stresses are highest at the plate-to-CHS intersection and at the height of the CHS normal 
line.  
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When looking at the plate-to-CHS connection in longitudinal direction, the stresses are highest 
on both sides of the plate edge. These stresses are due to the variation in deformation of the 
adjacent cross-sections, causing bending moment in longitudinal direction. This effect is also 
described in 6.1. 
 
As a result of the stresses caused by the deformations and the abrupt change in geometry, 
peak stresses occur at the top and bottom of the plate-to-CHS connection. When the load on 
the plate increases, the stresses reach the yield stress and the plate-to-CHS connection will 
experience plastic strain. When increasing the load even further, the plastic strain will reach 
the plastic limit strain. The load at which the plastic limit strain is reached is called the ultimate 
load N1,4%. For each geometry the ultimate load N1,4% is obtained.  
 
The resulting load capacities of the plate load case, obtained from the FEM analysis, are shown 
in Figure 46 for the mean diameter d0. For the remaining diameters the results are given in 
Appendix E. These results from the FEM analysis are expressed as a function of the radius-
to-thickness ratio γ (=d0/2t0) and the nominal depth ratio η (=bm/d0). In these graphs is can be 
seen that the load capacity is linearly dependent of the ratio η and inverse dependent of the 
ratio γ. Because in this case the diameter is constant, the only variables will be the CHS 
thickness t0 and the plate width bm. The stress distribution for some corresponding geometries 
and loads from Figure 46 are shown in Figure 47. 
 

 

Figure 46: Load capacity of the plate load case for the mean diameter d0, with variable ratios γ and η 

 

Figure 47: Plate load case with variable η and γ (top left to right η = 0.90, 1.07, 1.64; bottom left to right: γ = 9.5, 12.2, 17.4) 
and mean diameter d0 = 1219.2 mm 
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From the results (Figure 47) it can be obtained that for an increasing plate width bm (and thus 
an increasing ratio η), the stress distribution at the plate-to-CHS connection is linearly 
expanding with the plate width. For a small plate width the in-plane bending stiffness of the 
plate is small, causing relatively large deformations in the plate. When increasing the plate 
width, the in-plane bending stiffness also increases. This leads to a small deformation of the 
plate and a stress distribution that is almost constant. Because the force on the plate is evenly 
distributed over the plate width, the distributed load on the CHS becomes smaller when the 
same load is applied on an increasing plate width. Due to this behaviour of the plate-to-CHS 
connection, the ultimate load is linearly dependent on the plate width and therefore on η. 
 
In the case of an increasing CHS decreasing t0 (and thus an increasing ratio γ), the stiffness 
of the CHS will also decrease. For a small CHS stiffness the deformations due to loading are 
large. Because large deformations result in large strains, the plastic strain limit is reached at a 
relatively low load in the plate load case with small stiffness. Due to this behaviour ultimate 
load is inverse dependent on the thickness of the CHS, and therefore on γ.  
 
The load capacity can be expressed as a dimensionless parameter. This can be done by 
dividing the ultimate load N1,4% by fyt0

2 or fyd0t0, as stated in equation (5.12) in 5.1. For both 
cases the non-dimensionalised parameter, called the normalised load, is plotted as function of 
the ratios γ and η in Figure 48 and Figure 49 for different diameters d0. 
 

  
Figure 48: Dimensionless load capacity N1,4%/fyd0t0 for similar ratios γ and η with varying diameter d0 

 

 
Figure 49: Dimensionless load capacity N1,4%/fyt0

2 for similar ratios γ and η with varying diameter d0 
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In the results a large influence of the diameter d0 can be denoted, which is present in both the 
ratio γ and η. When dividing the ultimate load by fyd0t0 (Figure 48), there is little scatter in the 
result for similar ratios γ and η with a different diameter d0. However, when looking at the 
ultimate load divided by fyt0

2 (Figure 49), a lot of scatter is obtained for similar ratios γ with 
different diameter d0. Due to the small scatter between the results in case the normalised load 
is equal to N1,4%/fy0d0t0, this notation for the normalised load will be used from this point 
onwards.  
 
As mentioned before, the stresses at the support are large because of the applied bending 
moments. In case of a small diameter d0, these stresses will exceed the yield stress and plastic 
strain will occur. For ratios η = bm/d0 larger than 2.0, the plastic strain at the supports will reach 
the strain limit at before the plastic strain at the plate-to-CHS connection will. By applying 
reinforced band with a larger stiffness and length in these cases, the circumferential 
displacement of CHS at the plate will change. This will cause the stress distribution to differ 
from the models used for other geometries. Therefore the load capacity of the geometry in 
which η is larger than 2.0 is much higher with respect to the other geometries (Figure 50). 
Because of this, geometries for which the ratios η is larger than 2.0 will be neglected.  
 

 
 
Figure 50: Dimensionless load capacity N1,4%/fyd0t0 for diameter d0 = 900 mm and variable ratios γ and η, showing relatively 
large load for η > 2.0 
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6.4.2 Force angle αip = 60˚ 
By applying the force on the plate under an angle of 60 degrees, a bending moment is 
introduced in the plate due to the horizontal force component. This bending moment causes 
compressive load in one end of the plate and tensile load in the other. Due to the compressive 
load, the existing tensile stresses due to the vertical force component are reduced. On the 
other end of the plate, the tensile load will increase the existing tensile stresses. This will cause 
the strains at the latter location to reach the plastic limit strain at a lower force than in the case 
of a force angle of 90 degrees.  
 
The Von Mises stress and plastic strain distribution, for the mean geometry at the ultimate load 
N1,4%, are given in Figure 51. In these figure the effects of the bending moment, described 
above, is visible. In the overall Von Mises equivalent stress distribution it can be seen that the 
high stresses over the CHS cross-section are only present at one side of the plate. This is due 
to the large deformations and the variation in deformation with respect to the adjacent cross-
section. On the other side of the plate however, the stresses will be low due to small 
deformations. The stresses in the CHS will reach the yield stress, and therefore the plastic 
strain limit, on one side of the plate only.   
 

 

 
Figure 51: Plate load case, angle αip = 60˚, at 4% strain limit state N1,4% .Overall (top) and local (bottom) Von Mises stress 
and plastic strain distribution 

The load capacity of the different plate load case geometries, with a force angle of 60 degrees, 
will be determined. This is done in a similar manner as the load case with the force angle of 
90 degrees, by varying the ratios η and γ. The results from the finite element analysis are 
shown in Figure 52 for the mean diameter d0. The analysis results for the other geometries are 
given in Appendix E. From Figure 52 it can be seen the normalised load capacity is inversely 
dependent on the ratio γ, and linearly dependent on the ratio η. This is the same loading 
behaviour as for the plate load case under an angle of 90 degrees.  
 
The Von Mises stress distribution in the plate-to-CHS connections corresponding with the 
geometry and load from Figure 52 are shown in Figure 53. These stress distributions are given 
for a geometry with a minimal, maximal and intermediate value of the ratios γ and η.  In these 
geometries the diameter d0 is constant and equal to 1219.2 mm, therefore the only variables 
will be the CHS thickness t0 and the plate width bm. 
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Figure 52: Load capacity of the plate load case (αip = 60˚) for mean diameter d0 and variable ratios γ and η 

 

 

Figure 53: Plate load case with variable η and γ (top left to right η = 0.90, 1.07, 1.64; bottom left to right: γ = 9.5, 12.2, 17.4) 
and mean diameter d0 = 1219.2 mm 

From Figure 52 and Figure 53 it can be seen that an linear increasing plate width (and thus an 
increasing η) leads to a linear increasing normalised load. When applying the same force on 
the load case with increasing plate width, the distributed load on the CHS will decrease. This 
is also true for the bending moment due to the horizontal force component, which will a have 
small resulting vertical load when applied over a large length.  
 
Besides the decrease in distributed load, the in-plane bending stiffness of the plate becomes 
larger for increasing plate width. This causes less deformation, and hence stresses, in the 
plate. Due to this rigid plate behaviour and the applied bending moment, there will be little 
deformation in the CHS on one side of the plate and large deformation on the other. For large 
plate width this will result in the end with large deformations to behave like the plate load case 
with a force angle of 90 degrees, while at the other end the plate will act as if there is no load 
applied. The behaviour of the plate-to-CHS connection described above due to an increasing 
ratio η, causes the normalised load to increase linearly with this ratio.  
 
When varying the thickness t0 (and thus the ratio γ) of the CHS, an inverse relation with the 
ultimate load can be obtained. Decreasing the thickness (therefore increasing η) will result in 
an decreasing stiffness of the CHS, causing larger deformation of the cross-section when the 
load remains the same. These large deformations will lead to large strains and therefore large 
stresses. Due to this behaviour the ultimate strain limit is reached at a relatively low load for 
small CHS thickness, causing a decrease in normalised load capacity for increasing ratio γ. 
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6.5 Padeye load case 

6.5.1 Constant geometry 
The Von Mises stress and plastic strain distribution are given in Figure 54 for the mean padeye 
geometry at reaching the ultimate load N1,4%. In these figures it can be seen that, despite the 
fact that the force is acting under an angle of 60 degrees, the stress distribution in the CHS is 
similar to the plate load case with a force angle of 90 degrees. This causes a plastic strain 
distribution over the total length of the connection between the padeye and the CHS, which is 
also similar to the plate load case.  
 

 

 
Figure 54: Overall (top) and local (bottom) Von Mises stress and plastic strain distribution in the padeye load case, with force 
under angle αip = 60˚ 

This similar stress distribution between the padeye and the plate load case (αip = 90˚) is due to 
the fact that the line of the force coincides with the main plate centre, shown in Figure 55. 
Therefore no bending moment is active in the main plate and the stress distribution is caused 
by bending as a result of the vertical force component. In case the line of the force doesn’t 
coincide with the main plate centre, a bending moment will occur due to the eccentricity Δbm of 
the of the force with respect to the plate centre. 
 

 
Figure 55: Force distribution in the main plate with bending (right) and without bending (left) due to eccentricity Δbm  
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The force is applied at the pinhole and transferred to the plate-to-CHS connection by induced 
strain in the main plate. Relatively high stresses are present due to the contact force at the 
pinhole. Because the cheek plates are relatively stiff, it is assumed that these will experience 
little strain. Therefore the force at the pinhole is assumed evenly distributed over the cheek 
plate cross-section, causing strains in the main plate. The largest strains occur in line with the 
force (normal force) and perpendicular to the force (shear force). Strain that is not in line with 
the force will be lower due to the triangulation, which causes the force to be divided into three 
principal direction.  
 
In this case it means that the strain between the cheek plates and the bottom and top edge of 
the main plate will be largest, due to the tensile and shear force respectively. The strain 
underneath the cheek plates will be lower, because these are not in line with the force. 
Because the strains correspond with the stresses, high stresses will occur at both edges of the 
plate-to-CHS connection. This stress distribution in the main plate is shown in Figure 56.  
 

 

Figure 56: Theoretical stress distribution in the padeye (left) versus Von Mises stress distribution following the Finite Element 
Analysis (right) . 

The load capacity of the padeye load case can be determined for different geometries of the 
padeye and the CHS. Similar to the plate load case, these different geometries are obtained 
by varying the ratios γ and η in the model used in the finite element analysis. The results of 
the analysis are given in Appendix E for all geometries, and is shown in Figure 57 and Figure 
58. In these figure the ratios γ and η are varied with mean diameter d0, resulting in a varying 
thickness t0 and plate width bm respectively. The relations between the normalised load and 
the variable ratios γ and η are similar to those in the plate load case. The ratio γ is inverse 
related to the normalised load, while the ratio η is linear related to the normalised load.  
 
As described in chapter 3, the other dimensions of the padeye will vary proportional to the width 
bm, preserving constant geometrical ratios. When increasing the plate width bm, and therefore 
the ratio η, the distance between the cheek plates and the plate-to-CHS connection will 
increase. This causes the strains, and therefore the stresses, in the main plate directly beneath 
the cheek plates to become significantly smaller with respect to the plate edges. Because the 
force on the padeye is distributed over a larger length, the distributed load becomes smaller. 
Therefore the force at which the plastic limit strain is reached increases with the increasing 
plate width. Due to this behaviour, the stress distribution in the CHS  becomes similar to the 
plate load case with a force angle of 90 degrees. 
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Figure 57: Load capacity of the padeye load case for mean diameter d0 and variable ratios γ and η 

 

 
Figure 58: Padeye load case with variable η and γ (top left to right η = 0.90, 1.07, 1.64; bottom left to right: γ = 9.5, 12.2, 17.4) 
and mean diameter d0 = 1219.2 mm 

When decreasing the thickness t0 of the CHS, hence increasing the ratio γ, the stiffness of the 
CHS cross-section is reduced. This will result in larger deformations of the CHS cross-section 
at an equal load. These large deformations cause large strains at the intersection of the plate 
and the CHS. This will result in an inverse relation between the load capacity of the padeye 
load case and the ratio γ.  
 
In case of a small ratio γ and η (γ ≤ 7.0 and η ≤ 1.38), the stiffness of the CHS cross-section is 
large and the padeye geometry is small. This causes high contact stresses at the pinhole due 
to the high load capacity of the CHS. Due to these stresses, the cheek plates will start to yield 
at the contact area with the force (Figure 59). This behaviour of the padeye only occurs in two 
lower bound geometries within the considered range.  These lower bound geometries are in 
the case of a plate width bm = 1100 mm, a thickness t0 = 64 mm and a diameter d0 = 800 and 
900 mm (γ = 6.3, η ≤ 1.38 and γ = 7.0, η = 1.22). Because only these two geometries 
experience plastic strains at the cheek plates, this behaviour will not be taken into account.  
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Figure 59: Von Mises stress (left) and plastic strain (right) distribution for small ratios of γ and η 

In case of a large ratio η (η > 2.22), the load capacity will be high. This will cause high stresses 
in the CHS at the support due to the applied bending moments. Similar to the plate load case, 
this will result in large plastic strains of the CHS at the support, despite the applied reinforced 
band. Because of this structural behaviour the load capacities of padeye geometries in which 
η is larger than 2.22 will not be taken into account. 
 

6.5.2 Variable geometry 
By assuming the padeye dimensions as a function of the main plate width, the connection 
behaviour is determined for geometries equal to the mean geometry only. In order to obtain 
the behaviour of multiple padeye geometries, the main plate width is varied while the height of 
the padeye remains constant. This results in the use of an additional ratio λ, which is stated as 
the ratio between the padeye width and the height (λ = bm/(Rm + h0)).  
 
By varying the ratios γ and λ, the relation between the ratios and the normalised load is 
obtained. The connection behaviour is shown in Figure 60 and Figure 61. In Figure 60 the Von 
Mises stress distribution is shown for a variable ratio λ and mean diameter d0. The stress 
distribution for variable ratio γ is already given in Figure 58. In the stress distributions in Figure 
58 it is obtained that for geometries other than the mean geometry, the highest stresses are 
present on only one side of the main plate. This behaviour is similar to the plate load case with 
a force angle of 60 degrees, and is caused by the presence of a bending moment. The bending 
moment occurs when the line of the force doesn’t coincide with the centre of the main plate, 
as described in 6.5.1.  
 

 
Figure 60: Padeye load case with variable ratio λ (left to right η = 1.38, 1.63, 2.50) and mean diameter d0 = 1219.2 mm 

From Figure 61 it can be noted that the relation between the normalised load and the ratio γ 
remains the same as in the case of a constant padeye geometry. When looking at the 
normalised load as a function of the ratio λ, it can be noted that two different relations are 
present. The ratio λ equal to 1.63 represents the mean padeye geometry which is used in 
6.5.1.  
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The first relation, ranging between λ = 1.38 and λ = 1.63, between the normalised load and λ 
is linear. In this case a relatively small plate width is used, which is shown in the left geometry 
given in Figure 60. This results in an eccentricity of the load with respect to the plate centre 
and hence a clockwise bending moment. Therefore the largest stresses occur at the left side 
of the main plate. 
 
The second relation, ranging between λ = 1.63 and λ = 250, between the normalised load and 
λ is inverse. A relatively large plate width is used, shown in the geometry stated at the right 
side of Figure 60. The eccentricity of the load with respect to the plate centre causes a 
anticlockwise bending moment, resulting in large stresses at the right side of the main plate.  
 

 
 
Figure 61: Load capacity of the padeye load case for mean diameter d0 and variable ratios γ and λ 
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6.6 Conclusion 

In the plate load case with a force angle of 90 degrees, a vertical force is uniformly distributed 
over the plate width. This causes a uniform deformation of the plate. In the plate load case with 
a force angle of 60 degrees, both a vertical and a horizontal force component are uniformly 
distributed over the plate width. The horizontal force component causes a bending moment in 
the plate, resulting in a variation of the plate deformation in the longitudinal direction. The 
resulting deformations of the CHS cause bending moments in the cross-section. These 
bending moments, and the abrupt change in geometry at the edges of the plate-to-CHS 
connection, cause governing peak stresses. 
 
When looking at the padeye load case, the force is applied at the pinhole. Cheek plates are 
applied at the pinhole to stiffen the cross-section and prevent the main plate from bearing load 
failure. Due to the relatively high stiffness, the load is distributed over the cheek plate cross-
section. The largest strains, and therefore stresses, are active in line with and perpendicular 
to the force angle. These stresses are therefore caused by normal and shear force.  
 
In the mean padeye geometry, the line of the force coincides with the main plate centre. 
Therefore no bending moments are active in the main plate, causing a stress distribution which 
is similar to the stress distribution in plate load case with a force of angle 90 degrees. With the 
geometry remain constant, this stress distribution remains similar when varying the variable 
dimensions. However, when varying the geometry of the padeye the stress distribution will 
change. Because the line of the force does no longer coincide with the main plate centre in 
padeye geometries other than the mean geometry, bending moments will occur in the main 
plate.  
 
Due to these stresses, plastic strains will develop in the cross-section. The load at which the 
plastic strain criterion is reached is denoted as the ultimate load N1,4%. In Figure 62 the relations 
between the normalised load and the variable ratios γ and η is given for the mean geometry. 
In Figure 61 the relation between the normalised load and the variable ratio λ is shown. 
 

 

Figure 62: Load capacity comparison for the mean geometry in the plate load case (αip = 90 and αip = 60) and the padeye 
load case   
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From Figure 61 and Figure 62 it can be noticed that the relations of both the plate load case 
and the padeye load case are similar, when loaded in radial direction. These relations between 
the ultimate load and the ratios are stated below: 

 Ultimate load N1,4% - γ = inverse relation 

 Ultimate load N1,4% - η = linear relation 

 Ultimate load N1,4% - λ = linear relation for 1.38 ≤ λ ≤ 1.63 

 Ultimate load N1,4% - λ = inverse relation for 1.63 ≤ λ ≤ 2.50 
 
In case of a small CHS diameter, large plastic strains can occur at the support due to the 
applied bending moments. Because this type of failure is not considered in this study, 
boundaries are applied. Within these boundaries, the load cases will be subjected to failure 
due to exceeding of the plastic limit strain at the plate-to-CHS connection. The applied 
boundaries are described in Table 7.  
 
Table 7: Boundaries of the plate load case (αip =90˚ and αip =60˚) and the padeye load case (constant and variable geometry) 

Load case γ = d0/2t0 

[-] 

η = bm/d0 

[-] 

λ = bm/(Rm+h0) 

[-] 
αip 

[deg] 

Plate (αip = 90˚) 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.00 

 

- 90˚ 

Plate (αip = 60˚) 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.50 

 

- 60˚ 

Padeye const. geom. 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.22 

 

λ = 1.63 60˚ 

Padeye var. geom. 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.22 

 

1.38 ≤ λ ≤ 2.50 60˚ 
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7 Post processing FEM results 
Equation Chapter (Next) Section 1 

 
 
 
The results following the FEA are processed to obtain an engineering model that describes the 
load capacity of the padeye load case. These FEA results are processed using the curve fitting 
tool from Matlab, in which it is possible to fit a curve or surface onto the gained data from the 
FEA. An custom equation is applied in the curve fitting tool, containing the variable dimensions 
and a number of constants. Matlab will fit the equation to the data by determining the constant 
values for which the error is as little as possible. 
 

7.1 Curve fitting 

7.1.1 Matlab curve fitting tool 
In order to determine the accuracy of the prediction with respect to the data obtained from the 
FEA, the Matlab curve fitting tool uses the coefficient of determination. This coefficient, 
denoted as R2, is a number that indicates how well the applied equation fits the data. The value 
of R2 varies between 0 and 1, where 0 indicates that the data is not fit at all and 1 indicates 
that the data is fit perfectly. In order to calculate R2, the total sum of squares and the residual 
sum of squares is needed. The total sum of squares is the variance of the data and the residual 
sum of squares is the deviation between the prediction and the FEA data. 
 
The mean deviation of the curve with respect to the data is denoted as the Root Mean Squared 
Error (RMSE) or the Root Mean Squared Deviation (RMSD). This RMSE represents the 
standard deviation of the differences between the FEA data and the predicted load capacity. 
The individual differences for each data point are called residuals. Low residuals, and therefore 
a low RMSE, mean that there is little variation between the data and the prediction.   
 

7.1.2 Analytic equation 
To find an equation that fits the data from the FEM models, the equation of the normalised load 
capacity from the Euler-Bernoulli curved beam theory (5.16) is used. From chapter 6 it is 
obtained that the normalised load N1/fy0d0t0 is governing, because of the large variation of the 
ultimate load for variable diameter d0. Therefore the equation derived in chapter 5 is used as 
a first estimation of the curve predicting the load capacity. This equation is described below: 
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To use the formula as a first estimation, the constant factors are replaced by constants Ci, 
shown in (7.2). By doing this, Matlab can find the appropriate constants needed to fit the data 
found in the FEA. Because of the similarities in both the plate load case and the padeye load 
case, the equation will be used to curve-fit the FEA data for both load cases.  
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7.2 Plate load case 

7.2.1 Force angle αip = 90˚ 
When using a force angle αip of 90 degrees, the is no reduction due to the force angle. When 
substituting αip into equation (7.2) the reduction factor becomes equal to 1.0 and is therefore 
not present in the equation. From this the following equation is obtained for the load capacity 
in the plate load case: 
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From 6.4, the relations between the variable ratios and the normalised load is obtained. This 
relation is inverse for the γ ratio and linear for the η ratio. From the equation stated in (7.3), it 
can be seen that these relations are already present. When applying this equation in the Matlab 
curve fitting tool, the accuracy of the resulting curve is determined. In Figure 63, the dots are 
the data obtained from the FEA and the curve is a three-dimensional plot of equation (7.3). At 
the left figure the curve is compared with the data, where at the right figure the deviation 
between the curve and the data is shown. 

 
Figure 63: Curve fitting the data for the plate load case using Matlab curve fitting tool; Main plot (left) and residuals plot 
(right) 

From Figure 63 it can be seen that that the use of equation (7.3) gives a poor fit over the 
variable ratio η. The deviation between the normalised load obtained from the FEA and the 
equation is quite large and has an inverse relation with the ratio η. This results in a R2 of 0.927 

and a RMSE of 0.04 (±8%). Because the curve does not coincide well with the data along the 

η axis, the η ratio has to be altered in the equation. This is done by applying an additional 
constant C3 to the ratio η, which is determined in the curve fitting tool. The equation becomes 
the following: 
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By using equation (7.4), the deviation between the FEA data and the analytical equation is 
small with respect to the use of equation (7.3). However, the constant values that are obtained 
from the Matlab curve fitting tool, given in Table 8, are very large. These large constant values 
can be solved by changing the -1 in the denominator to +1. Because the function 1/(γ+1) has 
a gradient that is less steep than the function 1/(γ-1), the constant values will be lower. These 
constant values are also given in Table 8. The resulting engineering model for the ultimate 
load in the plate load case (αip = 90˚) is the equation stated below: 
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The ultimate loads according to the FEA data and the acquired engineering model are plotted 
in Figure 64 and Figure 65, from which it can be noted that there is still little deviation in the 
case of a CHS diameter of 900 mm. For a CHS diameter of 1400 mm the largest deviation 
appears at the lowest γ, and thus the largest CHS thickness t0. However, the mean deviation 
is 2.3% and therefore meets the convergence criterion. This convergence criterion states that 
the deviation must be smaller than 5%.  
 
Table 8: Constant values, R2 and RMSE following the Matlab curve fitting tool 

Denominator C1 C2 C3 R2 RMSE 

C2γ – 1  1.5E+4 3672 0.59 0.995 0.011 

C2γ + 1 17.1 8.4 1.0 0.995 0.011 

 
 

 

Figure 64: Comparison of FEA and analytical  data for variable η, with diameter d0 = 900 mm 

 

 

Figure 65: Comparison of FEA and analytical  data for variable η, with diameter d0 = 1400 mm  
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7.2.2 Force angle αip = 60˚ 
When considering the plate load case with a force angle αip of 60 degrees, the reduction factor 
caused by the force angle is taken into account. Therefore the equation stated in (7.2) is used, 
with the constants determined in 7.2.1. When substituting both the angle αip and the constants 
C1, C2 and C3 into this equation, the following equation is obtained for the load capacity: 
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In this equation only one constant value C4 is present, which is solved by curve fitting the data 
from the FEA. By applying equation (7.6) in the curve fitting tool, a constant value C4 of 0.75 is 
obtained. By substituting this constant value into (7.6), equation (7.7) is determined. When 
using this equation, the coefficient of determination (R2) is equal to 0.991 and the mean 
deviation (RMSE) is equal to 0.015. This corresponds with a mean deviation of 2.8%, which 
meets the convergence criterion. Therefore equation (7.7) is assumed to be a proper 
engineering model for the plate load case under an force angle of 60 degrees. The ultimate 
load prediction is plotted in Figure 66 and Figure 67 for a CHS diameter d0 of 800 mm and 
1400 mm, along with the data following the FEA. For the other diameters, similar plots are 
given in 0.  
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Figure 66: Comparison of FEA and analytical data in the plate load case for variable η, with diameter d0 = 800 mm  

 

 

Figure 67: Comparison of FEA and analytical data in the plate load case for variable η, with diameter d0 = 1400 mm 
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7.3 Padeye load case 

7.3.1 Constant padeye geometry 
In 6.5, the relation between the ultimate load and the variable ratios is obtained for the padeye 
load case with a constant geometry. These relations are similar to those in the plate load case 
(αip = 90˚). Besides the similarities in connection behaviour, the stress distribution in the CHS 
in the both load case is also similar. Therefore the ultimate load in the padeye load case is 
derived by using the same engineering model as for this plate load case (αip = 90˚). In this 
engineering model, the constants are assumed to be unknown, giving the equation stated 
below: 
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By applying equation (7.8) in the Matlab curve fitting tool (Figure 68), the constant values are 
obtained. By substituting these constant the resulting engineering tool for the padeye load case 
is described in (7.9). For this engineering tool the coefficient of determination (R2) is 0.992 and 
the mean deviation (RMSE) is 0.017. This corresponds with a mean deviation of 2.7%, which 
meets the convergence criterion. The ultimate load prediction from the engineering tool is 
plotted in Figure 69 and Figure 70 for the variable dimension in the padeye load case, along 
with the data following the FEA. In Figure 69 the plot contains the data for a diameter equal to 
800 mm, while in Figure 70 the plot contains data for a diameter of 1400 mm. For the other 
diameters, similar plots are given in 0. 
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Figure 68: Curve fitting the data for the padeye load case using Matlab curve fitting tool; Main plot (left) and residuals plot 
(right) 
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Figure 69: Comparison of FEA and analytical  data in the padeye load case for variable η, with diameter d0 = 800 mm 

 

 
Figure 70: Comparison of FEA and analytical  data in the padeye load case for variable η, with diameter d0 = 1400 mm 
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7.3.2 Variable padeye geometry 
Besides the assumption of a constant geometry described in 6.5, the structural behaviour of 
the padeye is also determined for the use of a variable geometry. In the latter case, the 
structural behaviour is dependent of an additional plate width over height ratio (λ=bm/(Rm+h0)). 
The relation between the normalised load capacity and the λ ratio is divided over two ranges. 
The λ ratio is implied in the present engineering tool for the padeye load capacity, derived in 
7.3.1. 
 
For a ratio λ equal to the ratio used in the mean geometry (λ = 1.63), the present engineering 
tool stated in (7.9) is applied. When the ratio λ is lower than this mean value, the relation 
between the normalised load and λ is linear. Therefore the ratio λ is added as a linear factor 
in the engineering tool. For values of λ larger than the mean value used in the mean geometry, 
the relation between the normalised load and λ is inverse. In this case the ratio λ is added to 
(7.9) as an inverse factor instead of linear. Because the ratios γ and η must remain as derived 
in (7.9), the λ ratio is applied instead of the constant C1. Both equations are shown in (7.10) 
below for λ larger and smaller than the mean value.  
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With this equation equal to (7.9) for the mean λ, the unknown constant C5 can be solved in 
both cases. This is done in (7.11). By substituting this value into (7.10), the equation is used 
to determine an engineering tool that describes the load capacity in the padeye load case with 
variable geometry and λ. 
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  (7.11) 

When varying the constant values of C5 from their determined values, an optimal solution can 
be obtained for the engineering tool of the padeye load case with variable geometry. This 
optimal solution is stated in , for which a coefficient of determination (R2) of 0.996 and a mean 
deviation (MRSE) of 0.016 are determined. This corresponds with a mean deviation of 2.3%, 
which is well within the boundary of the convergence criterion. 
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The comparison between the ultimate load prediction from the engineering tool and the FEA 
data is plotted in Figure 71 and Figure 72 for the variable dimension in the padeye load case. 
In Figure 71 the plot contains the data for a diameter equal to 800 mm. In Figure 72 the data 
for a diameter of 1400 mm is plotted. Similar plots are given in 0 for the other diameters.   
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Figure 71: Comparison of FEA and analytical  data in the padeye load case for variable η, with diameter d0 = 800 mm 

 

 

Figure 72: Comparison of FEA and analytical  data in the padeye load case for variable η, with diameter d0 = 1400 mm 
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7.4 Validation 

In order to validate the obtained engineering tool for the load capacity in the padeye load case, 
the tool is used on the geometries used in the padeye comparison. For each padeye geometry 
in this comparison, the ultimate load is determined using FEA and the engineering tools of the 
plate and padeye load case. Besides the load capacity calculation of the engineering tools, the 
capacity is also determined by using the Roark method and the equations by Wardenier et al. 
and Voth. The deviation between the FEA data and the different calculation methods is 
described in (7.13). The resulting deviations from the FEA data are given in Table 9, in which 
a positive value corresponds with an underestimation and a negative value corresponds with 
an overestimation. 
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In this figure it can be noted that the Roark method gives an underestimation of 60% to 70%. 
The deviation confirms that the Roark method is very conservative in the calculation of the load 
capacity in the padeye load case. This is due to the use of the linear elastic material behaviour 
and therefore the yield stress criterion. 
 
The equation derived by Wardenier et al. gives a load prediction that deviates 3% to 20% from 
the FEA results. Despite the fact that the equation describes the load capacity of a plate-to-
CHS connection, it still gives a ultimate load prediction which is more accurate than using the 
Roark method. However, the equation derived by Wardenier et al. is based upon a different 
load case and a different failure criterion. Therefore it this equation is not a good prediction of 
the ultimate load in the padeye load case. 
 
Voth adjusted the equation by Wardenier et al, such that it includes the influence of the plate 
thickness. The same load case and failure criteria are used as in the derivation by Wardenier. 
The equation by Voth gives an overestimation of the load capacity, which deviation between 
60% and 100% from the FEA data. From this it is concluded that the equation by Voth cannot 
be used to describe the load capacity in the padeye load case. 
 
 Table 9: Comparison of the deviations between the FEA data and Engineering tool calculations 

 

 Deviation ≤ 5% 

 5% ≤ Deviation ≤ 10% 

 Deviation > 10% 

 

  

Project  FEA results Deviation 

 Row N1,4% 

[N] 
Roark Wardenier Voth Plate 

(αip=90˚) 
Plate 

(αip=60˚) 
Padeye 
Const. 

Padeye 
Var. 

Wintershall 
Noordzee bv 

1 1.10E+07 61.0 4.7 -97.8 -5.9 14.6 -24.5 -6.2 

2 1.12E+07 61.7 6.4 -94.3 -4.0 16.2 -22.2 -8.3 

GFD Suez  7.80E+06 71.7 11.7 -78.1 12.9 29.8 -2.7 -0.4 

A1 1.18E+07 74.2 19.6 -60.3 16.1 32.4 1.6 3.1 

A2 1.08E+07 74.2 16.4 -66.5 15.6 32.0 0.8 -0.8 

Chevron  
A18 

A 1.04E+07 70.2 10.3 -80.5 7.3 25.3 -8.9 -2.6 

C 9.60E+06 72.1 7.0 -84.5 6.9 25.0 -9.4 0.7 

Ika-JZ  4.80E+06 70.9 23.5 -57.2 18.2 34.1 3.8 8.5 

Cardon-Perla  1.04E+07 70.9 2.7 -102.7 -0.7 18.9 -18.3 2.1 
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When considering the engineering tool derived for the plate load case with a force angle of 90 
degrees, it is noted that the deviation is similar to that from the equation by Wardenier et al. 
From the engineering tool a load capacity is obtained that deviates between 1% and 18% from 
the FEA data. Although this is a rather rough ultimate load prediction for the padeye load case, 
it is still more accurate than using the Roark method. 
 
By including the reduction factor for the force angle, the engineering tool of the plate load case 
with a force angle of 60 degrees can be considered. Because a reduction factor is applied, the 
resulting load capacity gives a underestimation of the load capacity. The deviation between 
the engineering tool and the FEA data range from 15% to 35%. 
 
Finally the engineering tool for padeye load case is considered. By using this tool, the ultimate 
load prediction deviates between 1% and 25% from the FEA data. In four of the compared 
padeye geometries the engineering tool gives a prediction for which the deviation meets the 
convergence criteria of 5%. However, in three cases an overestimation is obtained for which 
the deviation is around 20%. This is due to the fact that only the mean geometry is considered 
in the determination of the engineering tool. Therefore the load prediction is inaccurate for 
geometries other than the mean geometry. 
 
Due to the difference in geometry for the padeyes used in the padeye comparison, the 
engineering tool geometries is developed for variable. By using this engineering tool, the 
deviations between the ultimate load prediction and the FEA data range from 0.5% to 8.5%. 
The three largest deviations, from the projects of Wintershall Noordzee B.V. and Ika-JZ, are 
due to the different height over main plate radius ratio that is present in these geometries. In 
the mean geometry, this ratio is 1.1, while in the geometries with a large deviation this ratio is 
around 1.4. These different geometrical ratios are shown in Figure 73. 
 

 
Figure 73: Comparison between the mean geometry with variable plate width (left) and the padeye geometry used in the 
project of Wintershall Noordzee B.V. 

Due to this influencing factor, the range in which the derived engineering tools are valid has to 
be narrowed. This is done by including the ratio between the height of the pinhole centre and 
the radius of the main plate. Including this factor leads to a range stated in Table 10. 
 
Table 10: Range for which the different engineering tools are valid 

Load case γ = d0/2t0 

[ - ] 

η = bm/d0 

[ - ] 

λ = bm/(Rm+h0) 

[ - ] 
αip 

[deg] 

h0/Rm 

[ - ] 

Plate (αip = 90˚) 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.00 

 

- 90˚ - 

Plate (αip = 60˚) 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.50 

 

- 60˚ - 

Padeye const. geom. 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.22 

 

λ = 1.63 60˚ 1.1 

Padeye var. geom. 6.3 ≤ γ ≤ 20.0 

 

0.79 ≤ η ≤ 2.22 

 

1.38 ≤ λ ≤ 2.50 60˚ 1.1 
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7.5 Conclusion 

From the load capacities obtained from the FEA data in chapter 6, engineering tools are 
derived that describe the load capacity for the corresponding load case. This is done by using 
the Matlab curve fitting tool to describe the data with the input of a custom equation. The 
engineering tools from this curve fitting tool are described below. In the first case the equation 
of the plate load case with αip = 90˚ is described in order to obtain a the proper behaviour of 
the variable dimensions in the CHS. The obtained equation is stated below: 
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Because the force in the padeye load case is predominantly under an angle of 60 degrees, 
this force angle is applied in the plate load case. Because of this force angle, a reduction term 
is added to the plate load case with αip = 90˚ that takes into account the load reduction due to 
the bending moment. This load case contains the force angle αip. Including this reduction factor 
does result in the equation of the plate load case with αip = 60˚, which is stated below: 
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Finally the engineering tool of the load capacity in the padeye load case is determined. This 
tool is similar to that of the plate load case with αip = 90˚. However, by varying the plate width 
while the height of the padeye remains constant, a bending moment is included in the main 
plate. To take the influence of the bending moment into account, an additional ratio λ is used. 
Because the force angle does not vary, the reduction factor due to the angle is not included in 
this engineering tool. The obtained equation for the load capacity in the padeye load case is 
stated below: 
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  (7.16) 

In order to validate the equation of the padeye load case, the padeye geometries used in the 
padeye comparison in chapter 3 are analysed using FEA. The ultimate load of these 
geometries is determined using both the derived engineering tools and the available 
calculation methods, stated in 2.5. By comparing these results it is obtained that the 
engineering tool for the padeye load case gives an accurate prediction of the ultimate load for 
padeye geometries equal within the range given in Table 10.  
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8 Conclusions and recommendations 
Equation Chapter (Next) Section 1 
 
 

8.1 Conclusions 

The objective of this thesis is to determine an engineering tool which is an advanced method 
of the Roark equations, giving a more accurate solution of the load capacity of a padeye 
connected to a circular hollow section (CHS). This load case is denoted as the padeye load 
case. The engineering tool is based on the finite element model (FEM) in which plastic material 
behaviour is taken into account.  
 
Present methods of calculating the load capacity in the padeye load case are determined in 
chapter 2. The available methods are the Roark method and finite element modelling (FEM). 
The Roark method is a quick but conservative calculation method, while FEM software is 
accurate but also very time consuming and therefore expensive to use. For a plate load case, 
which is a simplified model of the padeye load case, multiple calculation methods are available. 
Two of these are the method derived by Wardenier et al. and Voth. In contrast to the Roark 
method, these methods allow plastic material behaviour.  
 
Subsequently the considered models are determined in chapter 3. The padeye load case 
model consists of a padeye connected to a simply supported CHS section. Besides this model, 
the plate load case is used as a simplified model of the padeye load case. In both load cases 
end plates and bending moments are applied at the supports. The considered geometries are 
obtained by comparing the geometries used in projects performed by Seaway Heavy Lifting. 
From this comparison a mean geometry is determined, in which the dimensions are divided 
into constant and variable dimensions.  
 
The variable dimensional have a large influence on the load capacity in the corresponding load 
case, while the constant dimension are assumed to have little influence. In order to reduce the 
number of variables, the ratios of these variable dimensions are used. These are the radius to 
thickness ratio of the CHS (γ0 = d0/2t0), the effective width ratio between the chord and the 

padeye main plate (η = bm/d0) and the ratio between the plate width and height (λ = bm/(Rm+h0)). 
The constant dimensions are varied as a function of the plate width bm, while in the padeye 
load case the plate width is also varied while the  height remains constant. The range of the 
variable dimensions is obtained from the comparison of padeye geometries used in projects. 
This range is stated below: 

 CHS diameter:  d0 = 800 - 1400 mm 

 CHS thickness: t0 = 35 – 64 mm 

 Padeye plate width: bm = 1100 – 2000 mm 
 
In order to derive an engineering tool, the numerical model is constructed in chapter 4 using 
the FEM program Ansys. In this model the appropriate boundaries from chapter 3 are applied. 
The three-dimensional model consists of four-node shell elements with a fine mesh at the 
plate-to-CHS connection.  At the end sections of the CHS the mesh is chosen relatively coarse. 
In order to exclude the influence of the stiff end plates at the main plate, the chord length of 
the CHS is determined to be 6 times the diameter d0. 
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An analytical, two-dimensional ring model is derived in chapter 5 for both the padeye load case 
and the plate load case. In this model the CHS is represented as a ring with a point load,  which 
is balanced by a distributed transverse shear force. A similar model is used to determine the 
equations used in Roark, Wardenier et al. and Voth. The deformation of the CHS mainly 
causes bending moments in the cross-section. The governing stresses in the CHS are due to 
these bending moments and occur at the location of the applied point load. 
 
The results following the FEA of the FEM model derived in chapter 4 are described in chapter 
6. By allowing plastic material behaviour in the FEM model, a limit state criterion must be 
determined. The governing failure criterion is assumed to be the average linearized plastic 
strain of 4%. This linearized strain is the mean plastic strain at the governing section of the 
CHS, over a volume with dimensions equal to the CHS thickness. When using the failure 
criterion in the finite element analysis (FEA) of the padeye load case, the load capacities of the 
considered geometries are obtained. When processing the results from the FEA, a 
dimensionless normalised force N1,4%/fyd0t0 is used. The relation between the ratios η, γ and λ 
and the ultimate load is obtained by varying these ratios in the FEA. The relations are stated 
below: 

 N1,4%/fyd0t0 – γ: inverse relation 

 N1,4%/fyd0t0 – η: linear relation 

 N1,4%/fyd0t0 – λ: linear relation for 1.38 ≤ λ ≤ 1.63  

 N1,4%/fyd0t0 – λ: inverse relation for 1.63 ≤ λ ≤ 2.50 
 
The value of γ is inversely related to the stiffness of the CHS. As the stiffness decreases the 
load capacity will decrease as well. For an increasing value of η the area over which the force 
is distributed increases, resulting in a lower distributed load and therefore an increasing load 
capacity. The mean value of λ causes the line of the force to coincide with the centre of the 
main plate, causing only normal and shear force in the main plate-to-CHS connection. When 
varying the ratio λ an eccentricity will be present between the line of the force and the main 
plate centre, causing a bending moment in the main plate. Due to this reason the relation is 
divided over two ranges, for both a positive and negative bending moment. 
 
Finally, the engineering tools are derived in chapter 7 for the different load cases, using the 
results from the FEA from chapter 6 and the analytical equation from chapter 5. The relation 
between the variable ratios and the normalised load are similar for both the FEA results and 
the derived analytical equation. This equation is fit to the FEA data with the Matlab curve fitting 
tool. From this an engineering tool is derived for both the plate load case and the padeye load 
case.  
 
When validating the engineering tool by comparing the ultimate loads of other padeye 
geometries, it is concluded that the derived method is only valid for padeye geometries within 
a specific range. Within this range the derived engineering tool predicts the load capacity with 
a deviation that meets the convergence criteria. This results in a engineering tool that is an 
advanced method of the Roark method.  
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8.2 Recommendations 

This study resulted in an engineering tool for the padeye load case. Because the developed 
engineering tool is valid within a specific range, it is recommended to expand this range for 
different geometries. This can be done by: 

 Expanding the present variable ratios γ, η and λ.  

 Studying the influence of the ratio between the height of the pinhole centre and the 
main plate radius (h0/Rm).  

 Varying the angle of the applied force. Within projects performed by Seaway Heavy 
Lifting the force is applied under an angle of 60 degrees, with a deviation of 7.5 
degrees. Therefore it is desired to obtain the influence of the variable force angle. 

 Applying ring stiffeners. These ring stiffeners are neglected in this study, but are 
present in most projects performed by Seaway Heavy Lifting. These ring stiffeners have 
significant influence on the stress distribution in the CHS and therefore on the load 
capacity.  

 
The padeye load case is only one of many load cases in which CHS cross-section are present. 
These load cases have some similarities, but also many differences. When it is desired to 
obtain the load capacity of other load cases containing CHS, these load cases can be 
considered separately or in relation with the padeye load case. 
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Appendix A Literature study 
Equation Chapter (Next) Section 1 
 
 
 

A.1  Padeye design criteria 

In order to design a padeye, the general criteria for lift points [8] have to be met. These criteria 
which the lift points have to fulfil are criteria prepared by Seaway Heavy Lifting, which form a 
part of the Seaway Heavy Lifting Quality System. These criteria are based on the codes AISC 
2010 for the checks of lift points, API 2007 for the checks on jackets and topsides during 
installation and the Eurocode for the design of welded and bolted connections.  
 
In the lift point criteria it is stated that the padeye should be strong enough and be easy to 
reach in order to install and remove the shackle. Besides its strength, the padeye should have 
a low impact on the module structure. In order to determine if the strength of the padeye is 
sufficient, the design criteria have to be checked. These criteria can be divided into three 
groups, which are criteria of the main plate, the stiffener plates and the welds. The strength of 
the welds is however beyond the scope of this thesis, and will therefore not be taken into 
account.  
 

A.1.1 Force distribution  

The lifting force (FLp) acting on the padeye is caused by the weight of the structure and the 
equipment used. This lifting force is transferred to the sling by a shackle through the padeye 
pinhole and has its origin at the centre of the shackle cross-section, which is acting in the 
centre of the pinhole (Figure 74). This pinhole centre lies at a height h0 above the bottom of 
the main plate. Because the sling is acting under an in-plane angle αip with the main plate, the 
force at the pinhole will be under the same angle (αip). The in-plane sling angle βip is given in 
the criteria from the SHL Quality System [8] and is assumed to be 60 degrees with a variation 
of 7.5 degrees.  
 
Due to this angle of the force αip, the force can be divided into a transverse component Fy and 
a longitudinal component Fx. Because the force is acting at a height h0 the longitudinal 
component causes an in-plane bending moment Mip.  
 

 

Figure 74: Padeye geometry, as given in the Seaway Heavy Lifting Quality System [8] 
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Besides these force components a lateral force (Fz) can occur as a result of any misalignment, 
causing the sling to act under an out-of-plane angle (β), perpendicular to the plain of the padeye 
main plate (Figure 74). This lateral force also causes a bending moment (MLat). The lateral load 
will be 5% of the total load for misalignments smaller than 1˚. For misalignments larger than 
1˚, the lateral load will be and 5% of the total load, plus an additional factor tan(β). 
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A.1.2 Main plate design 

Following the criteria from the Quality System prepared by Seaway Heavy Lifting, a number of 
design considerations applicable on this load case are given. First the main plate should have 
an outer radius (Rm) of 1.75 times the diameter of the shackle pin (D) and should not have 
more than one cheek plate at each side. This cheek plate thickness (tc) should not exceed the 
thickness of the main plate (tm) and its radius (Rc) will be taken as 1.5 times the diameter of the 
shackle pin. Besides these design consideration some standard dimensions are given in the 
criteria, shown below. 
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  (9.2) 

 
Beside these dimensional criteria in relation to the shackle pin, the main plate should be strong 
enough to withstand stresses due to the load. The stresses in the main plate could lead to 
multiple failure mechanisms, which can be obtained from the General criteria for liftpoints [8]. 
These failure mechanisms, shown in Figure 75, are: 

 Bearing stress at contact area with shackle pin (fp) 

 Shear stress at section α-α (fS) 

 Shear stress at weld between the main plate and the cheek plate (fc) 

 Tension stress at section β-β (fT) 

 Tear-out stress at section γ-γ (fS) 
 

 
Figure 75: Padeye main plate failure mechanism, from Seaway Heavy Lifting general criteria for liftpoints [8] 
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A.1.3 Stiffener plate design 

The geometry of the ring stiffeners is depending on the load distribution. The forces are 
distributed over the different stiffeners, depending on the geometry.  

 The longitudinal force (Fx) is taken by the padeye main plate to CHS connection (Figure 
76 a). Because the weld is assumed non-critical, the cross-section of the main plate 
has to take the stresses caused by this force. 

 The bending moment (M) is taken by the top and bottom stiffener (Figure 76 b).  

 The radial force (Fy), the lateral force (Fz) and the lateral bending moment (MLat) are 
distributed over the top and centre stiffener (Figure 76c and d).  

 
With the force distribution known, the stiffener geometry is designed such that the stiffener 
plates can withstand the stresses due to the load. This means that the stiffeners plates and 
the main plate must have sufficient intersecting cross-section to transfer the stresses.  

 
Figure 76: Force distribution over the padeye with ring stiffeners 

   

  



90 Appendix A Literature study 
 

M. Oorebeek CIE5060-09 MSc Thesis 

A.2  Roark [13] 

In Roark’s approach a two dimensional model is considered in which multiple formulas are 
used to determine the stress distribution in the cross section due to different types of loading. 
Roark’s formulas for stress and strain are based upon analytical, numerical and experimental 
stress analysis of structural components. It was meant  for the purpose of making available a 
compact, adequate summary of the formulas, facts and principles on determining these stress 
distributions.   

 
With Roark’s formulas the solutions and data for the ring stresses can be approximated with 
the use of tables. This can be done for problems which otherwise have to be solved with a 
Finite Element Analysis. In the formulas two basic systems of unit are used: SI units and USCU 
units. The SI units are mass-based units using kilogram (kg), meter (m), second (s) and Kelvin 
(K) or degree Celsius (°C). The USCU units are force-based units using the pound force (lbf), 
inch (in), foot (ft), second (s) and degree Fahrenheit (°F). 

 
For the use of the Roark formulas on circular rings and arches some assumptions are made, 
because the equations used to derive the Roark formulas are for general use of curved beams. 
First of all the closed ring is regarded as a statically indeterminate beam and analysed as such 
by the use of Castigliano’s second theorem (9.3) described in Welleman [20]), which is a 
method to calculating displacements. This theorem states that a deformation is the summation 
of individual parts contribution to this deformation, better known as superposition, using the 
total elastic energy of the system (U). 
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   (9.3) 

 

A.2.1 Castigliano’s theorem 

As an example from Alexiou [21], Castigliano’s second theorem is used to solve the internal 
force distribution for a thin circular ring subjected to a point load, shown in Figure 77, only half 
of the ring can be considered using the accompanying boundary conditions. 

 

Figure 77: Thin ring subjected to a point load on a hinged support [10] 
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In this problem there are six unknowns: two horizontal forces (Ax, Bx), two vertical forces (Ay, 
By) and two bending moments (MA, MB). By using horizontal, vertical and moment equilibrium 
and the fact that the vertical force Ay is equal to the force F/2, these unknowns can be 
expressed in a constant, unknown, horizontal force (Ax) and bending moment (MA). The 

equations of the internal forces, as a function of the angle (θ), can be determined, containing 
these two unknown constants (9.4). 
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The equations of the internal forces can be solved with the boundary conditions, using elastic 
energy as described in (9.3). It is assumed that, because of symmetry the rotation and the 
horizontal displacement at A are zero, leading to the conditions stated in (9.5). By substituting 
the moment distribution from (9.4) in (9.5), the two unknown constants can be found. The 
values for the constants Ax and MA can then be substituted back into equations (9.4), giving 
the internal force distributions for the ring under a point load. 

 0; 0Ax A

x A

U U
u

A M


 
     

 
  (9.5) 

 

A.2.2 Assumptions 

In the formulas of Roark the ring formulas are based upon the following assumptions: 

 The ring is of uniform cross section and has a symmetry about the plane of curvature. 
An exception is made if moment restraints are provided to prevent rotation of each 
cross section out of its plane of curvature. 

 All loadings are applied at the radial position of the centroid of the cross section. 

 It is nowhere stressed beyond the elastic limit. 

 It is not severely deformed as to lose its original cylindrical shape. 

 It’s deflection is primarily due to bending. For thicker rings the deflection due to 
deformation by axial tension or compression and/or by transverse shear stresses in the 

ring may be included. This is included by the axial stress deformation factor α  and the 

transverse shear deformation factor β. 

 In the case of pipes acting as beams between widely spaced supports, the distribution 
of shear stresses across the section is in accordance with the theory of straight beams 
(Figure 78): 

 

  

Figure 78: Cross-section of a curved beam described as a straight beam [13] 
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Due to the use of ring stiffeners, the stiffness of the two-dimensional ring model changes. The 
combination of a curved sheet and attached stiffeners forms a curved beam with wide flanges. 
In the flanged sections with thin webs the radial stress may be larger at the junction of the 
flange and the web. At this position the circumferential stress is also large, which can lead to 
excessive shear stress and possible yielding if the radial and circumferential stresses are of 
opposite sign. If there is a large compressive radial stress in a cross section with a thin web, 
buckling of the web can occur.  

 

A.2.3 Ring stresses 

With the ring assumed as a curved beam with wide flanges, the stiffness of this cross section 
can be determined. This stiffness is translated to the width of a T-section, at which the tubular 
section is acting as the flange is and the stiffener is acting as the web, and used as the width 
of the two dimensional ring model. This so called ‘’effective width’’ (Figure 79 right) is given in 
equation (9.6).  

 
0 01,56effb d t   (9.6) 

For the determination of the ring stress distribution in the padeye load case, load case 20 is 
used (Figure 79 left). Load case 20 is a ring subjected to a point load, which is compensated 
by a distributed transverse shear load. By using Roark’s formulas the stress distribution in the 
ring can be determined, from which the maximum stress is checked in a unity-check. To 
determine the stress distribution in the two dimensional model, the forces acting in this cross 
section have to be calculated. The general formulas for the moment (M), hoop load (N) and 
radial load (V) from the curved beam theory and the assumptions, are given in equation (9.7). 
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  (9.7) 

 
Figure 79: Ring load case 20 and effective width from Roark [13] 

With these equations the ring stress distribution along the ring circumference can be 
determined for different load cases. This can be done by using the load term (LTM, LTN, LTV) 
corresponding to the considered load case. For load case 20, these load terms are given in 
equation (9.8). 
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The normal force, shear force and bending moment distribution in the ring is, beside load 

terms, depending on the forces and bending moment in point A. These forces and bending 

moment in point A are given in (9.9).  
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In the function of the bending moment in point A, the factor k2 is present, given in equation 

(9.10). This factor takes into account the hoop-stress, using the hoop-stress deformation 

factor α. This hoop-stress factor is a ratio between the bending moment stiffness and the 

extension stiffness. 
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Finally (9.8), (9.9) and (9.10) can be substituted into equation (9.7), obtaining the equation 

for the stress distribution of the ring in load case 20. This equation is given below. 
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  (9.11) 

 
The distribution of elastic stress across the section of a member can have a great stress 
increase over a short distance, due to the local irregularities in the geometry. The condition is 
called stress concentration, and the irregularities causing this are called stress raisers. The 
maximum intensity of elastic stress is expressed by the stress concentration factor (Kt). This 
stress concentration factor is the ratio between the true maximum stress and the nominal 
stress calculated by use of ordinary formulas of mechanics. These nominal stress calculations 
are based on the net section properties at the location of the stress raiser, ignoring the 
redistribution of stress caused by the form irregularities.  
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A.3  Reference studies 

A.3.1 Branch plate-to-circular hollow structural section connections 

In the design guide for CHS by Wardenier et al. [2] and in the study by Voth [3], the load 
capacity of a similar load case, a T-type plate-to-CHS connection, is determined. For this case 
the boundaries of the connection strength are given, which are the two possible failure 
mechanisms. These failure mechanisms are chord plastification and chord punching shear, 
and are dependent on many of the geometry parameters. Chord plastification is an ductile 
failure due to excessive plastic deformation of the joint interface, while chord punching shear 
is a brittle failure under local loads due to formation of diagonal tension cracks. Both failure 
mechanisms are dependent on the connection geometry.  
 
In the equations describing the load capacity due to punching shear failure, it is assumed that 
local stresses at a surface through the chord wall limit the joint strength. These local stresses 
may not exceed the punching shear stresses.  
 
In the case of chord plastification, several plastic hinges are formed due to the exceeding of 
the yield stress, forming a mechanism.  When a mechanism is formed, the CHS experiences 
large deformations. In order to determine the ultimate capacity of the joint, a deformation limit 
is used. The out-of-plane deformation of the connecting CHS face is limited to 3% of the CHS 
diameter d0. The force at which the deformation in the CHS reaches this limit deformation is 
denoted a the ultimate load. 
 
The equations of the load capacity due to plasticity are derived using the ring model by Togo 
for a CHS-to-CHS connection, and is described by van der Vegte [15]. By using symmetry, the 
three-dimensional T-type CHS-to-CHS connection configuration can be translated into a two-
dimensional half ring model representing the CHS chord. Brace forces are applied on the 
model as a line load, acting over a certain length. By using plasticity theory, the locations of 
possible plastic hinges are assumed and an analytical equation is derived. This model is shown 
in Figure 80. 

 
Figure 80: Three-dimensional CHS-to-CHS T-joint translated into a two-dimensional ring model with plastic hinges 

The two-dimensional ring model is loaded by a point load at an angle φ1 and a transverse 

shear stress q(φ), which is similar to ring model used in Roark. The transverse shear stress is 
equal to: 
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Due to the applied load on the joint the stresses in the ring will increase. When somewhere in 
the structure the bending moment reaches the plastic moment, a plastic hinge develops. When 
the load is increased, multiple plastic hinges will develop untill a mechanism is formed. When 
the structure becomes a mechanism it can deform unlimitedly without the load being increased.  
The number of plastic hinges that is needed to create a mechanism is equal to the degree of 
static indeterminacy of the structure. In the considered ring model there are three plastic hinges 

needed in order to create a mechanism. Hinge 1 is located at an angle φ1 at which the brace 
is connected to the chord. Hinge 3 is located at the bottom of the CHS cross-section at an 

angle φ3. Both angles are given in equation (9.13). The angle φ2 at which plastic hinge 3 is 

located is unknown. This location can be determined by looking at the minimal force to create 

a mechanism.  
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By using moment equilibrium at the location of all three hinges, the bending moment MA, 
normal force NA and force F can be obtained. This will lead to a basic ring model approach, in 
which only the plastic moment are taken into account. In these equations the plastic moment 
is equal to: 
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The three moment equilibrium equation that are used to solve the unknowns, are stated in 
(9.15). In these equations the factor f is used, which is a function of the angle φi at which the 
plastic hinge is formed. 
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In the model there are three unknowns, which are stated in the three equilibrium equations. 

With these equations the unknowns stated in MA, NA and F can be solved. When calculated, 

these can be substituted in the equilibrium equation at the location of the second hinge φ2, 
leaving this location as the only unknown variable.  By rewriting this equilibrium equation, the 
strength of the joint can be obtained: 
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The model used to derive this equation is a simplified model, in which the interaction between 
the normal force N, shear force V and bending moment M is not taken into account. This basic 
model can be turned into an ‘exact’ model by applying additional expressions of the normal 
force and shear force to the previous model. Because of the interaction between the forces, 
the Von Mises yield criterion has to be used in order to obtain the locations of the plastic hinges. 
Deriving this ‘exact’ model the following equation is obtained: 
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In order to determine the load capacity of a T-joint plate-to-CHS connection, the model used 
for the CHS-to-CHS connection has to be adapted. The plate-to-CHS ring connection can be 
simplified to a CHS-to-CHS connection with a very small diameter ratio β (d1/d0). Due to the 
small plate diameter hinge 1 will be located near the upper support of the ring. With this 
assumption, an analytical model which can that describes the numerical and experimental 
results. By comparing these results, an equation can be obtained which describes the load 
capacity of the connection. 
 
In the numerical model used in this research, the T-type plate-to-CHS joint is modelled as a 
three point bending model supported by a roller at the chord neutral axis (Figure 81). To 
prevent an unstable condition, lateral restraints were applied at the boundaries. This approach 
causes a high bending moment in the cross section at the position of the connection, leading 
to normal stresses in the chord. To remove these chord normal stresses, an opposite in-plane 
bending moment (M0,end=N1l0/4) was applied at the boundaries. This end moment (M0,end) is a 
function of the applied normal load on the plate (N1) and the effective length of the chord length 
(l0). As a result large in-plane bending moments occur at both boundaries of the CHS member, 
for which reinforcement could be needed at an area near the boundaries called ‘’reinforcement 
band’’. Reinforcement in this band is needed if the stresses at the support exceed the yield 
stress. 

 

Figure 81: T-type loading to exclude chord axial stress at joint face (Voth, 2010) [1] 
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In the numerical analysis, a parametric study was conducted with the three-dimensional model 
described above. The parametric study contains the following variable parameters (shown in 
Figure 82): 

 Effective chord length parameter, α’ = 2l0
’/d0  

 Nominal plate width ratio, β = b1/d 

 Nominal plate depth ratio, η = h1/d 

 Half diameter to thickness ratio, γ = d0/2t0 

 

 
Figure 82: Parameters of T-type plate to CHS joints [2] 

From the numerical and experimental analysis it is obtained that the load capacity due to 
compressive forces is lower than the ultimate load due to tensile forces. Because of this the 
equations derived from the data are based on the compressive forces and are therefore 
conservative in the case of tensile forces.  
 
Kurobane et al. (1976) derived an equation of the load capacity for a longitudinal T-type plate-
to-CHS connection, which is based on the simplified model. The equation is given below: 
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Wardenier (1982) used the simplified ring model and applied the influence of the axial load, 

which reduces the connection capacity. The equation derived using this model is given in 

(9.19). The influence is presented in the equation as the addition of the function f(n). This 

function is the ratio between the normal stress f0 in the connecting surface due to axial load 

and bending, and the yield stress fy0.  
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After multiple reanalysis of existing numerical and experimental results, a new equation of the 
capacity of the T-type plate-to-CHS connection is derived by Wardenier et al. [2] (2008, 2009). 
This equation is given in (9.20). One of the most significant changes is the way the axial load 
is taken into account. The influence of the axial load is based on numerical analysis and is 
presented in the chord stress function Qf.  In this function the value C1 is equal to 0.25 for chord 
compressive stress (n < 0) and equal to 0.20 for chord tension stress (n ≥ 0). 
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Most recently Voth [3] (2010) conducted a research using numerous experimental connections 
and finite element models, in order to gain a better understanding of branch plate-to-CHS 
connections and determine the influence of different geometries and loads on the connection 
capacity.  In contrast to the research by Wardenier et al., Voth conducts that the plate thickness 
is significant for the connection capacity. Therefore the influence of the plate thickness is 
included in the calculations by Voth. The proposed calculation for chord face plastification is 
given below:  
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Figure 83: Longitudinal T-type branch plate-to-CHS connection, described in Wardenier [2] et al. and Voth [3] 

Besides plastification of the chord, punching shear could also lead to an ultimate load due to 
failure of the chord. Punching shear occurs by initiation of a crack at a point of high stress 
concentration in the hollow section chord. When the load on the connection increases, the 
crack could propagate around the weld perimeter causing punching shear failure. By using the 
numerical and experimental data, the load capacity can be determined using the limit state 
criteria that the local maximum stress cannot exceed the punching shear stress. The equation 
for punching shear failure described by both Wardenier and Voth is given in (9.22). In this 
equation the normal force and both in-plane and out-of-plane bending moments are taken into 

account. In case only a normal force under an angle θ1 is present in the model, the equation 

can be simplified. 
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A.1.1 Local load stresses in cylindrical shells at plate clips 

In the paper of Dekker and Cuperus [22] the stresses in the shell due to the loaded clip are 
analysed with a finite element model. In the paper the results from the FEM analysis of the 
local load stresses in cylindrical shells are presented. 

 
Figure 84: Model of a cylindrical shell loaded by a longitudinal clip [22] 

A thin walled shells with a radius over thickness ratio (R/T) equal or larger than 50 are 
assumed. It is also assumed that thin clips with length L are being used with the same thickness 
as the shell. The clips are subjected to radial load or in-plane moment load. The dimensions 
R, T and L are given in the non-dimensional geometry ratios R/T and L/R. R/T gives the relative 
thickness of the shell and L/R gives the relative size of the clip with respect with to the radius 
of the cylinder. These ratios are set out against the highest occurring stress intensity according 
to Von Mises. These stress intensities (SI) found are transformed into a non-dimensional form 
inspired by the shrink ring method (9.23). From this formula the stress concentration factor 
(SCF) is back calculated and plotted against the non-dimensional ratios.  
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t

   (9.23) 

As expected, from this paper it follows that the largest contribution of the maximum stress is 
from the bending stress. Because of this reason the shrink ring method, which causes mainly 
longitudinal stresses, does not give a good representation of the ring stresses. From the results 
it also follows that for the general behaviour of a circular hollow section under a thrust/radial 
loading, the SCF is linearly ascending with the clip size parameter L/R for a constant relative 
thickness R/t. 
 
From the outcomes of this paper  number of equations are derived to determine the stress 
concentration factors. For longitudinal clips subjected to radial loading equation (9.24) can be 
applied, and equation (9.25) can be applied for moment loading. These equations are 
applicable in the domain given by (9.26). In case both types of loading are applied these stress 
concentration factors can be added. In this study the shear force is not considered and the 
influence of the shear stress is therefore neglected. 
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A.1.1  Two-dimensional Finite Element Model (FEM) 

As an alternative on Roark’s method, Soh et al. [23] derived a two-dimensional model to 
determine the ring stresses in a circular hollow section under radial loading. The model 
consisted of a ring supported by springs and subjected to a point load. The spring elements 
were used to simulate the interaction between the neighbouring cross sections of the CHS. 
The model consists of 18 curved beam elements, each with six degrees of freedom at every 
node, and 17 spring elements. To check the model’s reliability it was compared with Roark’s 
method for a ring under a point load. 

 
The ring with radius R and point load P consists of n segments with length . The spring stiffness 
in the model is representing the shear force between the ring segments. The spring stiffness 
(k) and thus the shear force (Fx

’) acting on this segment is given in equation (9.27). The 
changes in ring diameter used in this equation (ΔH, ΔV) are given in a table for the accompanying 
load case in the Roark method, where they are denoted as ΔDH and ΔDV.  
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  (9.27) 

Although this two-dimensional model is similar to the Roark method and gives a good 
representation of the stress distribution in a CHS, it still is too conservative. A possible solution 
would be to use a reduction of the point load on the flange plate which is integrated in the 2-
dimensional finite element model. The reduction factor scales down the point load to account 
for the effects of bending and tension. The factor is given by the ratio of q/q’, in which q is the 
force equal P/2Rθ (with θ as the angle) and q’ is the combination from the normal force (qt) 
and bending (qb).  
 
As a final remark it can be found in a second comparison that the use of a simplified model to 
calculate the ring stiffness has to be chosen properly. For this comparison three models are 
used, two of which consists of a ring model with a distributed load applied and the third consists 
of a ring model with the geometry of a stiffener applied at which a point load is active. In the 
comparison the bending moment distribution along the circumference of the ring. From this it 
can be seen that there’s a big difference between the models with the distributed load (dotted 
line) and the one with the applied stiffener geometry (straight line) in Figure 85. 

 
Figure 85: Comparison of the spring stiffness influence in bending moment distribution of the two dimensional FEM by Soh 
et al. [23] 
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In addition to this study, Choo et al. [24] studied the significance of stiffener angles on the 
strength enhancement in padeye to CHS connections. In this study an alternative indicator βD 
was used for the stiffening, which consists of the pipe diameter (D) and a parameter (β) found 
in the relation with the angle (θ) of the stiffener. The value of the parameter is: 

  sin     (9.28) 

 

Several connections where investigated, using four different locations A,B,C and D along the 
main plate at which the stiffeners could be placed (Figure 86). The four locations used where 
two edge stiffeners and two centre stiffeners, symmetric on both sides from the padeye pinhole. 
Two types of stiffener where used, namely a profiled and a non-profiled stiffener. The profiled 
stiffener is commonly used in practice and can be seen as a non-profiled stiffener with some 
material removed, both are given in Figure 86. With these variations a parametric study was 
performed.  
 
From the parametric study using nonlinear finite element analysis, it follows that using 
stiffeners with a stiffening angle θ up to 40˚ gives a significant strength enhancement, and only 
a minor enhancement for further increase from 40˚ to 90˚. It was also obtained that in case two 
stiffeners on the outside locations A and D are used, adding two stiffeners gives a 12% 
increase on the ultimate strength while relocation of the stiffeners to the inner locations B and 
C only gives a 4% increase. 

  

Figure 86: Locations of stiffeners on the CHS, modelled as a cantilever beam ( Choo et al.) [24] 
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A.4  Analytical Models 

The analytical modelling can be done in a two-dimensional model using curved beam theory 
and in a three-dimensional model using shell theory. To determine the static stress distribution, 
three conditions have to be satisfied: the condition of equilibrium, the stress-strain relations 
and the compatibility conditions. These conditions are used to describe the equations of 
elasticity. In the case of a two-dimensional elastic problem eight quantities have to be 
determined: three stress components, three strain components and two displacement 
components. For a three-dimensional problem the number of quantities that have to be 
determined is 15: six stress components, six strain components and three displacement 
components. The three-dimensional model the number of components that have to be 
determined is much bigger and therefore more complex. However, the three-dimensional 
model will be more accurate because it contains the influence of the neighbouring cross-
sections, which the two-dimensional model doesn’t. For both models the derivation and the 
assumptions to derive the equations are given in this chapter. 

 

 

A.4.1 Two-dimensional models 

The complex formulation of the three-dimensional shell problem can be greatly simplified into 
a two-dimensional case by using plane stress or plane strain, as stated in Ugural and Fenster 
[25]. By using this assumption the two-dimensional problem can be solved using Airy’s stress 
function and Euler-Bernoulli theory for curved beams. 
 

The principle of plane stress can be applied in many problems in practice. This principle can 
be applied on structures for which the stress vector is zero across a particular surface. This is 
the case for thin plates/shells which are loaded parallel to its face, for instance a pressure 
vessel in which the hoop force is much larger than the radial pressure. In the applied load case 
in this thesis this isn’t the case, thus this theory can’t be used.  

 

The idea of plain strain is that in a case where one dimension, in most cases the length, of the 
structure is much greater than the other two dimensions, the strain for this dimension is 
constrained by nearby material and small compared with the strains for the other two 
dimensions. This principle can be applied on the applied load case, and will be worked out 
below. The principle of plain strain states for the strains longitudinal that εzz = γrz = γθz = 0. This 
gives the stress and strain tensor (9.29) following the standard strain expression and the 
stress-strain relation, in which a non-zero longitudinal stress σzz is needed to keep the 
constraint ε zz = 0. This leads to the same standard expression for the strain as (9.31). 
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A.4.2 Timoshenko and Euler-Bernoulli curved beam theory 

For a structural member to be modelled as a beam if the ratio between the thickness (h) and 
the characteristic length (L) should be relatively small. In comparison with a straight beam, a 
curved beam must have a small ratio between the thickness (h) and the radius (R). From 
comparative simulations it follows that this ratio must equal or smaller than 1/10. 

 

In a two-dimensional problem a distinction can be made between thick and thin curved beams. 
In thin curved beams the transverse shear deflection is neglected, therefore allowing only 
deformation due to bending. For thin curved beams the Euler-Bernoulli can be applied. For 
thick beams however the transverse shear deflection has a large influence, therefore the Euler-
Bernoulli theory can’t be applied. Instead the Timoshenko theory is used. This theory allows a 
further rotation of the normal which results in a nonzero shearing strain. Because the 
assumption of a plane section remaining plane leads to a constant shear stress, a shear 
correction factor is used to obtain the realistic parabolic variation of shear stress. 
Gasmi et al. [26] describe the derivation of Timoshenko and Euler-Bernoulli curved beam 
theory. For the derivation of the Timoshenko curved beam theory the displacement field from 
(9.30) is assumed, following the sign conventions in Figure 87. In this equation the 
displacements in transverse (ur(θ)) and circumferential (uθ0(θ)) direction and the cross-section 
rotation (φ(θ)) are given.  

Besides this the thickness variable (z) is introduced, which is the difference between the radius 
of the curve (R) and the distance from the origin to the considered element (r). The substitution 
of the equation for strain expressed in polar coordinates into (9.30) gives (9.31). 
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Figure 87: Uniformly curved beam with rectangular cross section in 3D (left) and 1D (right) [26] 
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The bending moments, axial force and shear force can be expressed in terms of the strains. 
Given the linear relation between stresses and strains, (9.31) can be substituted into these 
equation. With this the forces and moment in (9.32) can be given in terms of displacements 
and rotation. 
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Finally the equilibrium equations (9.33) are determined with the help of the principle of virtual 
work, consisting of virtual strain energy and virtual potential energy. In the equilibrium the radial 
and circumferential distributed loads, qr(θ) and qθ0(θ) respectively, are considered. These loads 
are applied at the mid-surface of the beam.  
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With the equations stated above the governing differential equations can be derived. This is 
done by substituting (9.32) into (9.33), which gives coupled equations. To be able to solve the 
equations analytically they have to be uncoupled and expressed in only one unknown. This 
uncoupling gives three equations in (9.34) which are the equation for the transverse 
displacement and the relations between the circumferential displacement, cross-section 
rotation and transverse displacement.  
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For the derivation of the Euler Bernoulli curved beam theory it is assumed that there is no 
shear deformation in the cross-section, expressed in (9.35). Following the same procedure as 
for the Timoshenko curved beam theory this results in the general equation stated in (9.36). It 
can be seen that in if the shear stiffness (GA), which is the resistance against shear 
deformation, becomes infinitely large, equation (9.34) becomes the same as (9.36) and 
therefore the Timoshenko beam will act as a Euler-Bernoulli Beam. 
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By using the theory of the Euler-Bernoulli curved beam, the normal force, shear force and 

bending moment distribution over the circumference of the ring can be determined using 

equation (9.37). 
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Appendix B Padeye comparison table  

Equation Chapter (Next) Section 1 
Table 11: Comparison of padeyes from projects performed by Seaway Heavy Lifting containing a padeye load case 

   Wintershall Noordzee B.V.  
27.1920 

GFD Suez 
27.1726 

Chevron A18  
27.1692 

Ika-JZ 
27.1748 

Cardon-Perla 
27.200 

 Mean Min Max  

   Row 1: A1 Row 2: A2  A1 A2 Row A Row C B2      

CHS d0 [mm] 1219.2 1219.2 1371.6 1066.8 1219.2 1219.2 1219.2 800 1397  1192 800 1397 

t0 [mm] 57.2 57.2 50.8 57.2 57.2 57.2 57.2 35 63.5  55 35 64 

Main plate bm [mm] 2000 2000 1300 1330 1300 1445 1250 1100 1291  1446 1100 2000 

Rm [mm] 420 420 360 385 375 470 375 275 305  376 275 470 

R0 [mm] 103 128 105.5 113 111 140 110 92.5 102  112 93 140 

Rc [mm] 360 360 310 330 325 390 325 225 254  320 225 390 

h0 [mm] 580 625 400 400 425 500 500 348 318  455 318 625 

tm [mm] 80 100 50 70 70 70 65 55 64  69 50 100 

tc [mm] 40 65 40 50 50 60 45 30 64  49 30 65 

Stiffener  dend [mm] 280 280 300 300 300 300 300 285 631  331 280 631 

tsi,ring [mm] 200 200 300 200 200 200 200 200 -  213 200 300 

hs1 [mm] 520 675 300 300 325 450 450 268 318  401 268 675 

ts1 [mm] 50 50 50 50 50 50 50 30 50.8  48 30 51 

hs2 [mm] 400 400 400 535 490 600 500 268 64  406 64 600 

ts2 [mm] 50 50 50 50 50 50 50 30 -  48 30 50 

hsc [mm] 670 825 400 625 490 450 450 268 318  500 268 825 

tsc [mm] 50 50 30 30 30 30 30 30 50.8  37 30 51 

tsc,ring [mm] 100 100 100 100 100 100 100 80 102  98 80 102 

dsc [mm] 650 650 550 550 500 460 410 445 565  531 410 650 

Ratios γ [ - ] 10.7 10.7 13.5 9.3 10.7 10.7 10.7 11.4 11.0  10.9 9.3 13.5 

η [ - ] 1.64 1.64 0.95 1.25 1.07 1.19 1.03 1.38 0.92  1.23 0.92 1.64 

β [ - ] 0.07 0.08 0.04 0.07 0.06 0.06 0.05 0.07 0.05  0.06 0.04 0.08 
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Figure 88: Padeye geometry including additional ring stiffeners 
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Table 12: Mean relative deviation between individual dimension and mean dimensions of padeyes from projects performed by Seaway Heavy Lifting containing a padeye load case 

 

Project   Wintershall Noordzee B.V.  
27.1920 

GFD Suez 
27.1726 

Chevron A18  
27.1692 

Ika-JZ 
27.1748 

Cardon-Perla 
27.200 

   Row 1: A1 Row 2: A2  A1 A2 Row A Row C B2  
Main plate Rm [mm] 0.12 0.12 0.04 0.02 0.00 0.25 0.00 0.27 0.19 

R0 [mm] 0.08 0.15 0.06 0.01 0.01 0.25 0.01 0.17 0.09 
Rc [mm] 0.13 0.13 0.03 0.03 0.02 0.22 0.02 0.30 0.21 
h0 [mm] 0.27 0.37 0.12 0.12 0.07 0.10 0.10 0.24 0.30 
tm [mm] 0.15 0.44 0.28 0.01 0.01 0.01 0.06 0.21 0.08 
tc [mm] 0.19 0.32 0.19 0.01 0.01 0.22 0.09 0.39 0.30 

Stiffener  dend [mm] 0.15 0.15 0.09 0.09 0.09 0.09 0.09 0.14 0.91 
tsi,ring [mm] 0.06 0.06 0.41 0.06 0.06 0.06 0.06 0.06 - 
hs1 [mm] 0.30 0.68 0.25 0.25 0.19 0.12 0.12 0.33 0.21 
ts1 [mm] 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.37 0.06 
hs2 [mm] 0.02 0.02 0.02 0.32 0.21 0.48 0.23 0.34 0.84 
ts2 [mm] 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.37 - 
hsc [mm] 0.34 0.65 0.20 0.25 0.02 0.10 0.10 0.46 0.36 
tsc [mm] 0.36 0.36 0.18 0.18 0.18 0.18 0.18 0.18 0.38 
tsc,ring [mm] 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.18 0.04 
dsc [mm] 0.22 0.22 0.04 0.04 0.06 0.13 0.23 0.16 0.06 

            
MRD  0.16 0.23 0.13 0.10 0.06 0.15 0.09 0.25 0.28 
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Appendix C Finite Element Modelling 
Equation Chapter (Next) Section 1 

 
 
For the choice on element type and the elements size used in the mesh, a mesh convergence 
study will be performed. The element type and size that is most feasible is determined by using 
the convergence criterion, which states that the outputs between the different element sizes 
may not differ more than 5%. The elements used to determine the most feasible element type 
and size are given in Table 13. 
 
Table 13: Element properties derived from Ansys mechanical APDL 

Element Element 

type 

Nodes Dof’s per 

node 

Geometry Default int. 

Solid 185 3-D linear 8 ux, uy, uz Hex-,tetrahedral, 

pyramid, prism 

Full integration 

 

Solid 186 3-D quadratic 20 ux, uy, uz Hex-,tetrahedral, 

pyramid, prism 

Reduced integration 

Shell 181 2-D linear 4 ux, uy, uz  

φx, φy, φz  

square, triangular, 

membrane 

Reduced integration 

Shell 281 2-D linear 8 ux, uy, uz  

φx, φy, φz 

square, triangular, 

membrane 

Reduced integration 

Solid-Shell 190 3-D linear 8 ux, uy, uz square, triangular Reduced integration 

 

 

Figure 89:Element types from Ansys mechanical APDL Element Reference [27] 
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C.1  Element  size 

For all models the displacement vector (usum) and the Von Mises equivalent stress (σeqv) is 
considered. The displacement vector sum (usum) in node 1 in the padeye load case is plotted 
against the element size used in Figure 90. From this figure it can be seen that the shell 181, 
shell 281 converge at a large element size. For the solid 186 elements this is also true in case 
the thickness of the CHS is divided into 4 elements. The solid 85 elements converge for an 
element size smaller than 20 mm, when the thickness of the CHS is divided into 8 elements.  
 
The Von Mises stress (σeqv) in node 1 in the padeye loadcase is plotted against the element 
size used in Figure 91. In this figure a similar behaviour can be seen as for the displacement 
vector in Figure 90, except for the fact that shell 181 element converges at an element size of 
20 mm. Still both shell elements and the solid 186 element are more accurate at larger 
elements size than the solid 185 elements.  
 
Because the shell 281 and the solid 186 elements use mid-size nodes, misalignment could 
occur in the CHS to main plate connection. This means that the edge nodes could connect 
with the mid-side nodes which lead to inaccurate solutions. Because of this reason and the 
fact that the shell 181 elements is nearly as accurate as the shell 281 and solid 186 elements, 
shell 181 elements are chosen. A governing element size is 20 mm is used from this point 
onwards.  
 

 
Figure 90: Displacement vector sum (usum) for multiple element type and size 

 
Figure 91: Von Mises stress (σeqv) for multiple element type and size 
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C.1.1 Mesh refinement 

In order to reduce the computation time of the model using shell 181 elements, the mesh can 
be refined by using a fine mesh at locations which are of interest and a coarse mesh at 
locations which are not. This leads to a mid-section (at the padeye connection) with element 
size n1 and the end-sections with element size n2. The length of the mid-section is dependent 
of the length ΔL on both sides of the padeye. Both the element size n2 and the length ΔL will 
be changed while element size N1 will remain unchanged and equal to the determined 20 mm.  
 
The displacements and stresses are given in Figure 92 and Figure 93. In these graphs the 
element size n2 = 20 mm is the reference model, in which the complete model will have element 
size n1 = n2 = 20 mm. In the graph showing the displacement vector it can be seen that for 
element size n2 of 200 mm or smaller, and a length ΔL of 400 mm or larger the model is closest 
to the reference model.  
 
In the graph showing the Von Mises equivalent stress it can be noted that a similar conclusion 
can be drawn about the length ΔL. In this graph the model is closest to the reference model for 
a length ΔL of 400 or larger, but an element size up to 600 mm.  
 
From these two graphs it can be concluded that the model is closest to the reference model 
for an element size n1 = 20 mm, n2 = 200 mm and length ΔL = 400 mm. 
 

 

Figure 92: Displacement vector sum (usum) for multiple lengths ΔL and element size N2 in mesh refinement 

 

Figure 93: Von Mises stress (σeqv) for multiple lengths ΔL and element size N2 in mesh refinement 
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C.2  Reinforcement band 

In order to assume that failure of the padeye to CHS connection is governing, a reinforced 
band has to be applied to the CHS at the supports. This is to prevent plastic failure of the CHS 
due to the applied bending moment at the support. The reinforced band has a larger yield 
stress than the rest of the CHS, causing the material in this part to have linear elastic behaviour 
for high loads. The assumed yield stress of the reinforced band is σy = 500 N/mm2 instead of 
σy = 335 N/mm2.  
 
Plastic failure of the CHS can only occur when the load capacity of the padeye to CHS 
connection is larger than the load capacity of the CHS cross-section. This is in the case of a 
stiff CHS cross-section with a small diameter, causing large normal stresses in the cross-
section due to the bending moment. The governing cross-section for this type of failure is the 
CHS with diameter d0 = 800 mm. The length of the reinforced band is determined for the 
governing diameter. In order to determine the length, the load capacity of the padeye model 
with the governing diameter is obtained from finite element analysis using the 4% plastic strain 
limit. The results from these analysis are shown in Figure 94, from which it can be seen that 
the solution converges for a reinforced band length of 800 mm. This means that from a 
reinforced band length of 800 mm, an increase of the length will have no influence of the load 
capacity of the padeye load case model.   
 

 

Figure 94: Force at failure for variable reinforced band width 

C.3  Analysis 

To obtain the stresses from the Finite Element Model, an analysis has to be performed. A 
distinction can be made between the linear and nonlinear analysis types. In the linear elastic 
analysis the displacements are assumed small, the strain is proportional to the stress, the 
loads are independent on displacements and the supports remain unchanged during loading. 

 

The nonlinear analysis can be subdivided in geometrical nonlinearities, material nonlinearities 
and boundary nonlinearities. The geometrical nonlinearities take into account the effect of large 
displacements on the overall geometric configuration of the structure. Because of these large 
displacements the angle of the force on the structure will change during loading, causing the 
force to change. The material nonlinearities take into account the fact that the material 
behaviour is not linear. The material models that can be used in this analysis are nonlinear 
elastic, elastoplastic, viscoelastic and viscoplastic. Finally for the boundary nonlinearities, 
displacement dependant boundary conditions are taken into account. These nonlinearities are 
usually found in contact problems, in which a force is modelled that can only have influence 
on a structure when it has a contact area. 
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In the analysis the element stiffness matrices have to be integrated over volumes and surfaces 
and then inverted to solve for the displacements of each element. For this numerical integration 
of the function in each element, a number of points is calculated and their position is optimised. 
These points are known as Gaussian co-ordinates or Gauss points. For each of these points 
the function is multiplied by a weight function and then added together to calculate the integral. 
The more Gauss points used in the integration, the more accurate the solution will become. 
But an increase in Gauss points also means an increase in computation time.  
 
Sun [28] described that using full integration can cause a numerical problem called shear 
locking in first order elements. This is due to the fact that the edges of a first order, linear, 
element are not able to bend to curves, lacking the ability to assume a curved shape (Figure 
95). This causes the strain energy in the element to generate shear deformation instead of 
bending deformation. The effect of shear locking is that the element becomes very stiff under 
a bending moment.  

In order to prevent locking, higher order elements should be chosen of reduced integration can 
be applied to solve the problem. Using reduced integration the function will be calculated with 
less Gauss points, and thus the computation time will be less but the accuracy of the element 
will be less. In some cases reduced integration can cause instability due to the stiffness matrix 
being zero, which is known as the hourglass mode [28]. The hourglass mode is caused by a 
deformed element in which the normal- and shear stresses are zero. This can be seen in Figure 
96, in which the lines in the element remain straight and perpendicular to each other and thus 
having no strain energy. It typically occurs when a single layer of linear elements is used, 
where individual elements are severely deformed while the overall mesh is section is 
undeformed. A way to prevent this from happening is using two or more layers of higher order 
elements. 

 
Figure 96: Hourglass mode of a finite element under bending, caused by deformation in for which stresses remain zero [11] 

  

Figure 95: Shear locking of a finite element under bending, caused by the 
inability of linear elements to curve [28] 
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C.4  Ansys Mechanical APDL macro 

C.4.1 Plate load case 
!Variables 

bm = 1300   !Base width padeye main plate [mm] 

d00 = 800 

Rt = 0.5*d00   !Radius CHS    [mm] 

t = 64 

dt = 64 

L = 6*d00   !Length CHS   [mm] 

 

!Constants 

pi=ACOS(-1) 

tm = bm/18.6   !Thickness main plate   [mm] 

h0 = bm/3.06   !Height center hole=bm/3.05 [mm] 

 

!Mesh 

N1 = 20    !Element size [mm] 

N2 = 300 

dL = 400 

dl2 = 500 

 

! Force 

aaa=60 

alfa = (aaa)*pi/180  !Force angle  [radians] 

FP = 20E+6   !Force   [N] 

tsteps = 50 

 

!------------------------------------------------------------------------------------------- 

!------------------------------------------------------------------------------------------- 

 

/PREP7      !Preprocessor 

ET,1,SHELL181   !Element: 8 node solid 

ET,2,SHELL181 

ET,3,SHELL181 

ET,4,MASS21 

ET,5,SHELL181 

 

 MP,EX,1,210000   !Youngs modulus 

 MP,PRXY,1,.3    !Poisson's Ratio 

 tb,plastic,1,1,3,miso 

 tbtemp,0  

 tbpt,defi,0.004,335 !Plastic yield and stress 

 tbpt,defi,0.02,338.4  

 tbpt,defi,0.15,450 

 

 MP,EX,2,210000 

 MP,PRXY,2,.3 

 tb,plastic,2,1,3,miso 

 tbtemp,0 

 tbpt,defi,0.004,335 !Plastic yield and stress 

 tbpt,defi,0.02,338.4  

 tbpt,defi,0.15,450 

 

 MP,EX,3,210000 

 MP,PRXY,3,.3 

 tb,plastic,3,1,3,miso 

 tbtemp,0  

 tbpt,defi,0.004,335 !Plastic yield and stress 

 tbpt,defi,0.02,338.4  

 tbpt,defi,0.15,450  

 

 keyopt,4,3,0 

 r,4,0.001,0.001,0.001,0.001,0.001,0.001  

  

 MP,EX,5,210000 

 MP,PRXY,5,.3 

 tb,plastic,5,1,1,miso 

 tbtemp,0  

 tbpt,defi,0.004,500 !Plastic yield and stress 

 tbpt,defi,0.02,505  

 tbpt,defi,0.15,600    

SECTYPE,1,SHELL   !Padeye main plate 

SECDATA,tm,,,9   !Thickness and number of integration points 

SECTYPE,2,SHELL   !Cheekplates 
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SECDATA,tm+2*tc,,,9 

SECTYPE,3,SHELL   !Tubular 

SECDATA,t,,,9 

SECTYPE,5,SHELL   !Tubular 

SECDATA,t,,,9 

 

!PADEYE 

k,0,0,0,0 

k,0,0,h0+t/2,0 

k,0,-bm/2,h0+t/2,0 

k,0,bm/2,h0+t/2 

 

k,0,-L/2-bm/2,-Rt+t/2,0  !Circle center -L/2 

k,0,-L/2-bm/2,-Rt+t/2,-50 

k,0,-L/2-bm/2,-Rt+t/2+50,0 

 

k,0,-L/2-bm/2+dl2,-Rt+t/2,0  !Circle center reinf. 

k,0,-L/2-bm/2+dl2,-Rt+t/2,-50 

k,0,-L/2-bm/2+dl2,-Rt+t/2+50,0 

 

k,0,-bm/2-dL,-Rt+t/2,0   

k,0,-bm/2-dL,-Rt+t/2,-50 

k,0,-bm/2-dL,-Rt+t/2+50,0 

 

k,0,-bm/2,-Rt+t/2,0  !Circle center bottom main plate 

k,0,-bm/2,-Rt+t/2,-50 

k,0,-bm/2,-Rt+t/2+50,0 

 

k,0,0,-Rt+t/2,0 

k,0,0,-Rt+t/2,-50 

k,0,0,-Rt+t/2+50,0 

 

k,0,bm/2,-Rt+t/2,0  !Circle center top main plate 

k,0,bm/2,-Rt+t/2,-50 

k,0,bm/2,-Rt+t/2+50,0 

 

k,0,bm/2+dL,-Rt+t/2,0   

k,0,bm/2+dL,-Rt+t/2,-50 

k,0,bm/2+dL,-Rt+t/2+50,0 

 

k,0,L/2+bm/2-dl2,-Rt+t/2,0  !Circle center reinf. 

k,0,L/2+bm/2-dl2,-Rt+t/2,-50 

k,0,L/2+bm/2-dl2,-Rt+t/2+50,0 

 

k,0,bm/2+L/2,-Rt+t/2,0  !Circle center L/2 

k,0,bm/2+L/2,-Rt+t/2,-50 

k,0,bm/2+L/2,-Rt+t/2+50,0 

 

  !Create circles 

kbegin=5 

kend=31 

*do,_i,kbegin,kend,3 

 cskp,11,0,_i,_i + 1,_i + 2 

 csys,11 

 wpcsys,-1 

 pcirc,Rt-t/2,,0,360 

 adele,1 

*enddo 

 

CSYS,0     !Change active CS to global CS 

WPCSYS,-1      !Working Plane location 

 

_kpbegin=32   !Creating lines between circles 

_kpend=63 

*do,_i,_kpbegin,_kpend,1 

 lstr,_i,_i + 4 

*enddo 

 

_lbegin=1   !Creating area's between lines 

_lend=32 

*do,_i,_lbegin,_lend,1 

 *if,_i,eq,4,then 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,8 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,12 

 al,_i,_i + 4, _i + 36, _i + 33 
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 *elseif,_i,eq,16 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,20 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,24 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,28 

 al,_i,_i + 4, _i + 36, _i + 33 

 *elseif,_i,eq,32 

 al,_i,_i + 4, _i + 36, _i + 33 

 *else 

 al,_i,_i + 4, _i + 36, _i + 37 

 *endif 

*enddo 

 

k,0,-bm/2,n1,0 

k,0,0,n1,0    !Cross-section for Nodal Forces 

k,0,bm/2,n1,0 

 

lstr,2,3 

lstr,3,68 

lstr,68,45 

lstr,45,49 

lstr,49,53 

lstr,53,70 

lstr,70,4 

lstr,2,4 

lstr,2,69 

lstr,69,49 

lstr,68,69 

lstr,69,70 

 

al,69,70,75,77 

al,73,74,75,78 

al,50,71,76,77 

al,54,72,76,78 

 

lsel,s,line,,1,36,1 

lesize,all,,,(d00*pi)/(4*30) 

allsel 

 

asel,s,loc,y,0,h0   !Adding material prop. to areas 

aatt,1,1,1,,1 

asel,s,loc,y,0,-2*Rt 

asel,r,loc,x,-L/2+dl2,L/2-dl2 

AATT,3,3,3,,3 

asel,s,loc,x,-L/2-bm/2+dl2,-L/2-bm/2 

asel,a,loc,x,L/2+bm/2,L/2+bm/2-dl2 

aatt,5,5,5,,5 

ALLSEL 

 

 !MESH 

MSHAPE,0,2-D 

ESIZE,N2 

asel,s,loc,x,-bm/2-dL,-bm/2-L/2 

asel,a,loc,x,bm/2+dL,bm/2+L/2 

amesh,all 

allsel 

ESIZE,N1 

asel,s,loc,x,-bm/2-dL,bm/2+dL 

amesh,all 

allsel 

 

 ! Nodes for BC's and Force 

n,,L/2+bm/2,-Rt+t/2,0  !Nodes for BC's L/2 

nodex1=NODE(L/2+bm/2,-Rt+t/2,0)  !master node 

lsel,s,loc,x,L/2+bm/2   !slave nodes 

nsll,s,1 

cm,compx1,node 

nsel,a,node,,nodex1 

cerig,nodex1,all,all 

allsel 

 

n,,-L/2-bm/2,-Rt+t/2,0  !Nodes for BC's -L/2 

nodex2=NODE(-L/2-bm/2,-Rt+t/2,0) !master node 

lsel,s,loc,x,-L/2-bm/2   !slave nodes 

nsll,s,1 
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cm,compx2,node 

nsel,a,node,,nodex2 

cerig,nodex2,all,all 

allsel 

 

type,4    !Adding mass elements to master nodes 

mat,4 

real,4 

secnum,4 

e,nodex1 

e,nodex2 

allsel 

 

*get,_wallasol,active,,time,wall 

FINISH 

!------------------------------------------------------------------------------------------- 

/SOL    !Solution 

 

esel,s,cent,y,h0-n1,h0+t/2 

nsle,s,1 

nsel,r,loc,y,h0+t/2 

cm,fnodes,node 

allsel 

 

F,fnodes,Fy,(Fp*n1/bm)*sin(alfa) 

F,fnodes,Fx,(Fp*n1/bm)*cos(alfa) 

F,nodex1,Mz,0.25*Fp*(L)*sin(alfa) 

F,nodex2,Mz,-0.25*Fp*(L)*sin(alfa) 

 

D,nodex1,ux,0,,,,uy,uz,rotx,roty !BC's -L/2 

D,nodex2,uy,0,,,,uz,rotx,roty  !BC's L/2  

allsel 

 

!Nonlinear analysis 

 NLGEOM,OFF   

 NSUBST,tsteps !,1000,1  !nr. of substeps, max nr., min nr. 

 OUTRES,ALL,ALL 

 AUTOTS,OFF 

 LNSRCH,ON 

 NEQIT,1000 

 !CUTCONTROL,PLSLIMIT,0.04 

 

ANTYPE,0   !Analysis type:static 

SOLVE    !Solve problem 

 

*get,_wallbsol,active,,time,wall 

FINISH 

!------------------------------------------------------------------------------------------- 
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C.4.2 Padeye load case 

!Variables 

bm = 1300   !Base width padeye main plate [mm] 

d00 = 1219.2   !Diameter CHS   [mm] 

Rt = 0.5*d00   !Radius CHS    [mm] 

t = 57.2    !Thickness CHS   [mm] 

dt = 57.2 

L = 6*d00   !Length CHS   [mm] 

 

!Constants 

pi=ACOS(-1) 

tm = bm/18.6   !Thickness main plate;  bm/18.6 [mm] 

tc = bm/26   !Thickness cheek plate; bm/26 [mm] 

h0 = bm/3.06   !Height center hole;  bm/3.06 [mm] 

h2 = bm/2.65   !Height padeye bottom;  bm/2.65 [mm] 

R0 = bm/11.7   !Radius pinhole;  bm/11.7 [mm] 

Rc = bm/4   !Radius cheek plate;  bm/4 [mm] 

Rm = bm/3.47   !Radius main plate;  bm/3.47 [mm] 

a = atan((h0+Rm-h2)/(bm-1.5*Rm))!Angle main plate   

 

!Mesh 

N1 = 20    !Element size 1   [mm] 

N2 = 300   !Element size 2   [mm] 

dL = 400   !Length intermediate  [mm] 

dl2 = 800   !Length support   [mm] 

 

! Force 

aaa = 40 

alfa = (aaa)*pi/180  !Force angle    [radians] 

FP = 20E+6   !Force     [N] 

tsteps = 100 

 

!------------------------------------------------------------------------------------------- 

!------------------------------------------------------------------------------------------- 

 

/PREP7      !Preprocessor 

ET,1,SHELL181   !Element: 4 node shell 

ET,2,SHELL181 

ET,3,SHELL181 

ET,4,MASS21   !Mass element bc 

ET,5,SHELL181 

 

 

 MP,EX,1,210000   !Youngs modulus 

 MP,PRXY,1,.3    !Poisson's Ratio 

 tb,plastic,1,1,3,miso !plastic material behaviour 

 tbtemp,0  

 tbpt,defi,0.004,335 !Yield strain 

 tbpt,defi,0.02,338.4 !Yield plateau 

 tbpt,defi,0.15,450 !Ultimate strain 

 

 MP,EX,2,210000 

 MP,PRXY,2,.3 

 tb,plastic,2,1,3,miso 

 tbtemp,0 

 tbpt,defi,0.004,335  

 tbpt,defi,0.02,338.4  

 tbpt,defi,0.15,450 

 

 MP,EX,3,210000 

 MP,PRXY,3,.3 

 tb,plastic,3,1,3,miso 

 tbtemp,0  

 tbpt,defi,0.004,335  

 tbpt,defi,0.02,338.4  

 tbpt,defi,0.15,450  

 

 keyopt,4,3,0 

 r,4,0.001,0.001,0.001,0.001,0.001,0.001  

  

 MP,EX,5,210000 

 MP,PRXY,5,.3 

 tb,plastic,5,1,1,miso 

 tbtemp,0  

 tbpt,defi,0.004,500  
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 tbpt,defi,0.02,505  

 tbpt,defi,0.15,600    

 

SECTYPE,1,SHELL   !Padeye main plate 

SECDATA,tm,,,9   !Thickness and number of integration points 

SECTYPE,2,SHELL   !Cheekplates 

SECDATA,tm+2*tc,,,9 

SECTYPE,3,SHELL   !Tubular 

SECDATA,dt,,,9 

SECTYPE,5,SHELL   !Tubular 

SECDATA,dt,,,9 

 

!PADEYE 

k,0,0,h0+t/2,0   !Keypoints 

k,0,50,h0+t/2,0 

k,0,0,h0+t/2+50,0     

k,0,-bm+Rm,h2+t/2,0  

k,0,-L/2-bm+Rm,-Rt+t/2,0 !Circle center -L/2 

k,0,-L/2-bm+Rm,-Rt+t/2,-50 

k,0,-L/2-bm+Rm,-Rt+t/2+50,0 

k,0,-bm+Rm-L/2+dl2,-Rt+t/2,0 !Circle center reinf. 

k,0,-bm+Rm-L/2+dl2,-Rt+t/2,-50 

k,0,-bm+Rm-L/2+dl2,-Rt+t/2+50,0 

k,0,-bm+Rm-dL,-Rt+t/2,0  !Circle N2  

k,0,-bm+Rm-dL,-Rt+t/2,-50 

k,0,-bm+Rm-dL,-Rt+t/2+50,0 

k,0,-bm+Rm,-Rt+t/2,0  !Circle center bottom main plate 

k,0,-bm+Rm,-Rt+t/2,-50 

k,0,-bm+Rm,-Rt+t/2+50,0 

k,0,Rm,-Rt+t/2,0  !Circle center top main plate 

k,0,Rm,-Rt+t/2,-50 

k,0,Rm,-Rt+t/2+50,0 

k,0,Rm+dL,-Rt+t/2,0  !Circle N2  

k,0,Rm+dL,-Rt+t/2,-50 

k,0,Rm+dL,-Rt+t/2+50,0 

k,0,Rm+L/2-dL2,-Rt+t/2,0 !Circle center reinf. 

k,0,Rm+L/2-dL2,-Rt+t/2,-50 

k,0,Rm+L/2-dL2,-Rt+t/2+50,0 

k,0,Rm+L/2,-Rt+t/2,0  !Circle center L/2 

k,0,Rm+L/2,-Rt+t/2,-50 

k,0,Rm+L/2,-Rt+t/2+50,0 

 

CSKP,11,0,1,2,3   !Local Coordinate System, number 11, keypoints 3,4,1 

CSYS,11    !Activates local CS 11 

WPCSYS,-1      !Working Plane location 

 

pcirc,Rm,,0,90+(a*180/pi) !Circle around WP axis 

pcirc,R0,Rc,0,360   !Circle for cheekplate 

 

CSYS,0     !Change active CS to global CS 

WPCSYS,-1      !Working Plane location 

 

adele,1     !Delete area of circle 

allsel 

  !Create circles 

kbegin=5 

kend=26 

*do,_i,kbegin,kend,3 

 cskp,11,0,_i,_i + 1,_i + 2 

 csys,11 

 wpcsys,-1 

 pcirc,Rt-t/2,,0,360 

 adele,1 

*enddo 

CSYS,0     !Change active CS to global CS 

WPCSYS,-1      !Working Plane location 

 

_kpbegin=40   !Creating lines between circles 

_kpend=67 

*do,_i,_kpbegin,_kpend,1 

 lstr,_i,_i + 4 

*enddo 

ldele,2,3,,1   !Creating lines padeye  

lstr,53,4 

lstr,4,30 

lstr,29,57 
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_lbegin=12   !Creating area's between lines 

_lend=39 

*do,_i,_lbegin,_lend,1 

 *if,_i,eq,15,then 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,19 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,23 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,27 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,31 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,35 

 al,_i,_i + 4, _i + 29, _i + 32 

 *elseif,_i,eq,39 

 al,_i,_i + 4, _i + 29, _i + 32 

 *else 

 al,_i,_i + 4, _i + 32, _i + 33 

 *endif 

*enddo 

 

lsel,s,line,,1,3,1  !Creating padeye area 

lsel,a,line,,57 

lsel,a,line,,72 

al,all 

allsel 

aptn,30,2 

adele,31 

allsel 

lsel,s,line,,8,11,1  !Dividing unmeshed line by 10 

lesize,all,,,10 

allsel 

 

lsel,s,line,,12,43,1 

lesize,all,,,(d00*pi)/(4*30) 

allsel 

!----------------------------- 

CSKP,11,0,1,2,3   !Local Coordinate System, number 11, keypoints 3,4,1 

CSYS,11    !Activates local CS 11 

WPCSYS,-1      !Working Plane location 

pcirc,Rc,Rm,0,360 

aovlap,30,32 

aglue,2,33 

CSYS,0     !Change active CS to global CS 

WPCSYS,-1      !Working Plane location 

!------------------------------ 

k,0,-bm+Rm,2*n1,0  !Cross-section for Nodal Forces 

k,0,Rm,2*n1,0 

lstr,29,75 

asbl,31,1 

 

ASEL,S,AREA,,32,33 

asel,a,area,,30   !Adding material prop. to areas 

AATT,1,1,1,,1 

ASEL,S,AREA,,2 

AATT,2,2,2,,2 

ASEL,S,AREA,,6,25,1 

AATT,3,3,3,,3 

ASEL,S,AREA,,3,5,1 

asel,a,area,,1 

asel,a,area,,26,29 

AATT,5,5,5,,5 

ALLSEL 

 

 !MESH 

MSHAPE,0,2-D 

ESIZE,N2 

asel,s,loc,x,-bm+Rm-dL,-L 

asel,a,loc,x,Rm+dL,+L 

amesh,all 

allsel 

ESIZE,N1 

asel,s,loc,x,-bm+Rm-dL,Rm+dL 

amesh,all 

allsel 
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! Nodes for BC's and Force 

n,,L/2+Rm,-Rt+t/2,0  !Nodes for BC's L/2 

nodex1=NODE(L/2+Rm,-Rt+t/2,0)  !master node 

lsel,s,loc,x,L/2+Rm   !slave nodes 

nsll,s,1 

cm,compx1,node 

nsel,a,node,,nodex1 

cerig,nodex1,all,all 

allsel 

 

n,,-L/2-bm+Rm,-Rt+t/2,0  !Nodes for BC's -L/2 

nodex2=NODE(-L/2-bm+Rm,-Rt+t/2,0) !master node 

lsel,s,loc,x,-L/2-bm+Rm   !slave nodes 

nsll,s,1 

cm,compx2,node 

nsel,a,node,,nodex2 

cerig,nodex2,all,all 

allsel 

 

type,4    !Adding mass elements to master nodes 

mat,4 

real,4 

secnum,4 

e,nodex1 

e,nodex2 

allsel 

 

n,,0,h0+t/2,0   !Creating cartwheel 

cnode=node(0,h0+t/2,0) 

cartwheel,2*R0,tm+2*tc,cnode,,1 

allsel 

 

*get,_wallasol,active,,time,wall 

FINISH 

!------------------------------------------------------------------------------------------- 

/SOL    !Solution 

F,cnode,Fy,Fp*sin(alfa) 

F,cnode,Fx,Fp*cos(alfa) 

F,nodex1,Mz,0.25*Fp*sin(alfa)*L 

F,nodex2,Mz,-0.25*Fp*sin(alfa)*L 

D,nodex1,ux,0,,,,uy,uz,rotx,roty !BC's -L/2 

D,nodex2,uy,0,,,,uz,rotx,roty  !BC's L/2  

allsel 

!Nonlinear analysis 

 NLGEOM,OFF   

 NSUBST,tsteps !,1000,1  !nr. of substeps, max nr., min nr. 

 OUTRES,ALL,ALL 

 AUTOTS,OFF 

 LNSRCH,ON 

 NEQIT,1000 

 !CUTCONTROL,PLSLIMIT,0.04 

 

ANTYPE,0   !Analysis type:static 

SOLVE    !Solve problem 

 

*get,_wallbsol,active,,time,wall 

FINISH 

!------------------------------------------------------------------------------------------- 
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Appendix D Analytical model 
 Equation Chapter (Next) Section 1 
 
 

D.1  Euler Bernoulli curved beam theory 

In order to derive an equation that describes the load capacity of the padeye and plate load 
case, both load case have to be simplified. This can be done by translating the three-
dimensional plate-to-CHS model into a two-dimensional ring model. In this ring model, a ring 
is subjected to a point load, which is supported by a transverse shear force. Due to symmetry 
only half of the ring has to be considered, leaving a curved beam on two fixed supports. This 
model is shown in Figure 97, and can be solved using the Euler-Bernoulli theory for curved 
beams. 

 

Figure 97: geometry of the Euler-Bernoulli curved beam model 

The shear force v is assumed to be distributed constant over the total length of the ring, and 
can be separated into a component in z- and y-direction. From this it can be noticed that the 
summation of the shear force component in z-direction is zero, and the summation of the 
component in y-direction is equal to point load W. From this the load v can be determined, 
which is shown in equation (12.1). 
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With the distributed shear force v known, the uncoupled differential equations following the 
Euler-Bernoulli curved beam theory can be solved. By substituting the shear force v into 
equation (9.36), two separated differential equations are obtained which are stated in (12.2). 
The first differential equation with unknown radial deformation ur is a fifth order equation, while 
the second differential equation with unknown lateral deformation uθ is a first order equation. 
Because a distributed force is present, the solution of the fifth order equation is divided into a 
homogeneous and a particular solution.  
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To solve the homogeneous solution, a trial solution is substituted in the differential equation, 
which is stated in equation (12.3). Because the first differential equation is of the fifth order, 
five solutions can be found for unknown r in the trial solution. One of these solutions is the 

trivial solution, while the other four are equal to ± i. From this the homogeneous solution is 

obtained. 
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In order to solve the particular solution, a trial solution is used as well. This trial solution has 
the same form as the distributed load, which is constant. Because a constant (C5) is already 
used in the homogeneous solution, the trial solution has to be multiplied by the variable angle 
θ. By doing this the particular solution can be obtained from equation (12.4). With both the 
homogeneous and the particular solution of the radial deformation known, the total solution 
can be obtained: 
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The differential equation describing lateral deformation is a first order equation. By substituting 
the total solution for the radial displacement in equation (12.2), the equation can be solved by 
performing a single integration. The equations of the radial and lateral deformation has to be 
substituted into the equations in (12.6) to calculate the rotation, the bending moment, the shear 
force and the normal force. 
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  (12.6) 

The unknown constant C1 till C7 which are still present in these equations, can be solved by 
substituting the boundary conditions. In these conditions the rotation (ϕ), deformations (ur, uθ) 
and the shear force (V) are used to restrain the ring model. With these boundary conditions, 
given in equation (12.7), the unknown constants can be solved and the displacements and 
rotations are solved. These displacements and rotations are given in equation (12.8).  
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The normal force, shear force and bending moment distribution in the ring circumference can 
be determined by substituting equation (12.8) into equation (12.6). The resulting force and 
bending moment distributions are given below: 
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  (12.9) 

 
With the values from equation (12.9) known, the Von Mises equivalent stress distribution can 
be obtained using equation (12.10). In this equation the transverse stress due to a bending 
moment is determined in a different way for the curved beam as would be the case for a straight 
beam [19]. In case of a straight beam, the curvature at both sides is equal and therefore the 
strain due to a bending moment is equal as well. In the case of a curved beam, the outside 
and the inside of the ring have a different initial curvature due to the different radius. Therefore 
the strain at both sides of the curved beam due to a bending moment is different. 

 

  
 

 

2 2

, ,

, ,

0 0

3

; ;

eqv N M r

m

N r M

eff eff m

M A rAN V

b t b t Ar RA A

  

  

   

  

  


  



   (12.10) 

 
In the calculation of the transverse stress for a curved beam, the eccentricity between the 
neutral axis and the central axis of the cross-section is taken into account. The dimensions 
used in the equation of the transverse stress are stated in equation (12.11) and shown in Figure 
97. By substituting these dimensions into equation (12.10) an eccentricity factor e can be 
obtained, which is given in (12.12).  
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By performing this substitution a large equation is obtained, which is a function of the diameter 
d0 and the thickness t0 of the CHS. By using the formula for these CHS diameter and thickness 
within the considered geometric range, Figure 98 can be obtained. In this graph it can be seen 
that the relation between the eccentricity factor and the diameter over thickness ratio is linear. 
The dimensionless eccentricity factor, obtained from Figure 98, will be used from this point 
onwards. 
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Figure 98: Eccentricity factor in the CHS cross-section, due to eccentricity between the neutral axis and the centroid axis 

By substituting equation (12.11) into equation (12.9), the stress equations can be expressed 

as a function of the CHS dimensions. This leads to the factor ξ as described below. With the 

diameter d0 being at least 10 times larger than the thickness t0, the factor (d0-t0)
2/t0

2 is much 

larger than 1/3. Therefore the constant 1/3 can be neglected, leaving the factor ξ to become 

equal to 1. With the value of the eccentricity factor and the factor ξ known, the stress 

components of the Von Mises stress can be obtained. These are given in equation (12.13) 
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  (12.13) 

These stress distributions can be plotted for the mean geometry of the padeye load case. The 
result is shown in Figure 99, in which the Von Mises stress distribution is compared for both 
theory used by Roark and the Euler-Bernoulli curved beam theory. For the Euler-Bernoulli 
theory the different stress components are shown; the transverse stress due to normal force 
and bending moment and the shear stress due to the shear force.  
 

 

Figure 99: Von Mises stress distribution following Roark and Euler-Bernoulli curved beam theory for the mean CHS geometry, 
and the different stress components in Euler-Bernoulli curved beam theory. 

From Figure 99 it can be noted that the Von Mises stress according to the Euler-Bernoulli 
theory is largely dependent of the transverse bending moment stress. Because of this it is 
assumed that the Von Mises stress is equal to the absolute value of the transverse bending 
moment stress. The maximal Von Mises stress occurs at the top of the ring (θ = π), at which 
the force is applied. In order to determine the load capacity, the stress at this location will be 
considered as governing stress from this point onwards. Due to the use of linear elastic theory, 
the stress at the governing location cannot exceed the yield stress. By applying these 
assumptions, the stress equation becomes the following: 
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This equation is, amongst others, dependent of the force W on the ring. This force follows from 
the force N1 which is applied on the padeye/plate, which causes a vertical force and a bending 
moment. The vertical force is due to the vertical force component, while the bending moment 
is due to the horizontal force component. The relation between the force W on the ring and the 
force N1 on the padeye/plate is given below: 
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When substituting (12.15) into (12.14) and rewriting this equation, an equation can be obtained 
that describes the load capacity of the padeye/plate-to-CHS connection as a function of the 
geometry. This equation is described below: 
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This equation can be described as a normalised load. This normalised load is dimensionless 
and is a function of the dimensionless ratio’s γ = d0/2t0 and η = bm/d0. Because the equation 
stated in (12.16) is only dependent of the ratio γ, this equation has to be altered. This can be 
obtained in two different ways: by multiplying the equation with γ/γ or multiplying with η/η. The 
first multiplication leads to the normalised load stated in (12.17), while the second is stated in 
(12.18). Both equations have to be compared using  the results following the FEA, in order to 
determine which described the results in the best way. 
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Besides the ring model using the Euler-Bernoulli curved beam theory, the ring model can be 
derived using other theories.  Plastic theory is used in the ring model derived by Togo (Figure 
100), which describes the load capacity of a T-type CHS-to-CHS connection. In this model it 
is assumed that plastic hinges are formed in the ring in case the plastic moment is reached at 
this location. The locations of the plastic hinges are unknown. To determine the load capacity 
of the model, the locations of the plastic hinges have to be determined at which the lowest load 
capacity is reached. This leads to an equation of the load capacity given in (5.13). 
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Figure 100: Ring model derived by Togo using plastic theory 

This is however the case for a T-type CHS-to-CHS connection. In the case of a plate-to-CHS 
connection, the angle at which hinge number 1 is formed will be close to zero due to the small 
plate width. Therefore the β ratio (β = b1/d0) will be close to zero. By substituting this into (12.19)
, the following equation can be obtained: 
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In this equation Be is the the effective connection length of the CHS. In case the effective length 
is equal to the plate length, Be/d0 becomes equal to bm/d0 = η. The equation can be rewritten 
into equation (5.14). When comparing the equation from both the model using Euler-Bernoulli 
curved beam theory and the plastic ring model derived by Togo, it can be seen that both 
equations are dependent of the yield stress, CHS thickness and dimensionless ratio’s η and γ. 
The difference in both equations is the power of the ratio γ that is used, which is a power 2 in 
the model by Togo and a power 1 in the model using Euler-Bernoulli, while in both cases the 
power of the ratio η remains 1. 
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Appendix E FEA Results Equation Chapter (Next) Section 1 
E.1 Plate load case 

E.1.1 Force angle αip = 90˚ 

 
Table 14: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 800 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

800 1100 64.0 1.32E+07 4.68E-02 6.25 1.38 0.770 

57.2 1.08E+07 4.94E-02 6.99 1.38 0.705 

50.0 8.25E+06 4.50E-02 8.00 1.38 0.616 

45.0 6.82E+06 4.63E-02 8.89 1.38 0.566 

40.0 5.50E+06 4.72E-02 10.0 1.38 0.513 

35.0 4.30E+06 4.73E-02 11.4 1.38 0.458 

1300 64.0 1.46E+07 4.83E-02 6.25 1.63 0.851 

57.2 1.18E+07 4.76E-02 6.99 1.63 0.770 

50.0 9.12E+06 4.66E-02 8.00 1.63 0.681 

45.0 7.48E+06 4.66E-02 8.89 1.63 0.620 

40.0 6.00E+06 4.69E-02 10.0 1.63 0.560 

35.0 4.70E+06 4.73E-02 11.4 1.63 0.501 

1600 64.0 1.72E+07 5.07E-02 6.25 2.00 1.003 

57.2 1.40E+07 5.05E-02 6.99 2.00 0.913 

50.0 1.10E+07 4.95E-02 8.00 2.00 0.817 

45.0 9.02E+06 4.79E-02 8.89 2.00 0.748 

40.0 7.40E+06 4.88E-02 10.0 2.00 0.690 

35.0 5.90E+06 4.78E-02 11.4 2.00 0.629 

 
 
 

 

Figure 101: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 800 
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Table 15: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 900 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

900 1100 64.0 1.24E+07 4.80E-02 7.0 1.22 0.643 

57.2 1.01E+07 4.83E-02 7.9 1.22 0.583 

50.0 7.80E+06 4.82E-02 9.0 1.22 0.517 

45.0 6.40E+06 4.81E-02 10.0 1.22 0.472 

40.0 5.04E+06 4.49E-02 11.3 1.22 0.418 

35.0 3.96E+06 4.56E-02 12.9 1.22 0.375 

1300 64.0 1.36E+07 4.79E-02 7.0 1.44 0.705 

57.2 1.10E+07 4.74E-02 7.9 1.44 0.635 

50.0 8.55E+06 4.92E-02 9.0 1.44 0.567 

45.0 7.00E+06 4.90E-02 10.0 1.44 0.516 

40.0 5.52E+06 4.60E-02 11.3 1.44 0.458 

35.0 4.32E+06 4.60E-02 12.9 1.44 0.409 

1600 64.0 1.54E+07 4.72E-02 7.0 1.78 0.798 

57.2 1.25E+07 4.75E-02 7.9 1.78 0.722 

50.0 9.75E+06 5.06E-02 9.0 1.78 0.647 

45.0 7.90E+06 4.86E-02 10.0 1.78 0.582 

40.0 6.32E+06 4.80E-02 11.3 1.78 0.524 

35.0 4.86E+06 4.54E-02 12.9 1.78 0.461 

1800 64.0 1.66E+07 4.93E-02 7.0 2.00 0.860 

57.2 1.34E+07 4.87E-02 7.9 2.00 0.774 

50.0 1.04E+07 4.97E-02 9.0 2.00 0.687 

45.0 8.50E+06 5.02E-02 10.0 2.00 0.626 

40.0 6.72E+06 4.75E-02 11.3 2.00 0.557 

35.0 5.18E+06 4.57E-02 12.9 2.00 0.491 

2000 64.0 1.96E+07 4.77E-02 7.0 2.22 1.016 

57.2 1.49E+07 4.91E-02 7.9 2.22 0.861 

50.0 1.17E+07 4.99E-02 9.0 2.22 0.776 

45.0 9.72E+06 4.95E-02 10.0 2.22 0.716 

40.0 7.90E+06 4.82E-02 11.3 2.22 0.655 

35.0 6.24E+06 4.58E-02 12.9 2.22 0.591 

 

 

Figure 102: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 900 

Table 16: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1100 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 
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1100 1100 64.0 1.11E+07 4.77E-02 8.59 1.00 0.471 

57.2 8.85E+06 4.59E-02 9.62 1.00 0.420 

50.0 6.90E+06 4.69E-02 11.00 1.00 0.374 

45.0 5.70E+06 4.80E-02 12.22 1.00 0.344 

40.0 4.56E+06 4.74E-02 13.75 1.00 0.309 

35.0 3.55E+06 4.64E-02 15.71 1.00 0.275 

1300 64.0 1.20E+07 4.71E-02 8.59 1.18 0.509 

57.2 9.75E+06 4.87E-02 9.62 1.18 0.463 

50.0 7.50E+06 4.76E-02 11.00 1.18 0.407 

45.0 6.20E+06 4.90E-02 12.22 1.18 0.374 

40.0 4.88E+06 4.60E-02 13.75 1.18 0.331 

35.0 3.80E+06 4.51E-02 15.71 1.18 0.295 

1600 64.0 1.37E+07 4.92E-02 8.59 1.45 0.579 

57.2 1.10E+07 4.86E-02 9.62 1.45 0.519 

50.0 8.47E+06 4.89E-02 11.00 1.45 0.460 

45.0 6.90E+06 4.79E-02 12.22 1.45 0.416 

40.0 5.52E+06 4.73E-02 13.75 1.45 0.374 

35.0 4.25E+06 4.52E-02 15.71 1.45 0.330 

1800 64.0 1.46E+07 4.98E-02 8.59 1.64 0.617 

57.2 1.17E+07 4.99E-02 9.62 1.64 0.555 

50.0 9.02E+06 4.96E-02 11.00 1.64 0.490 

45.0 7.40E+06 4.97E-02 12.22 1.64 0.446 

40.0 5.84E+06 4.72E-02 13.75 1.64 0.396 

35.0 4.44E+06 4.36E-02 15.71 1.64 0.344 

2000 64.0 1.55E+07 5.10E-02 8.59 1.82 0.656 

57.2 1.25E+07 5.13E-02 9.62 1.82 0.591 

50.0 9.60E+06 5.08E-02 11.00 1.82 0.521 

45.0 7.80E+06 4.94E-02 12.22 1.82 0.470 

40.0 6.09E+06 4.56E-02 13.75 1.82 0.413 

35.0 4.68E+06 4.36E-02 15.71 1.82 0.363 

 

 

Figure 103: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1100 

Table 17: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1219.2 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1219.2 1100 64.0 1.04E+07 4.59E-02 9.53 0.90 0.396 
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57.2 8.40E+06 4.70E-02 10.66 0.90 0.360 

50.0 6.50E+06 4.69E-02 12.19 0.90 0.318 

45.0 5.36E+06 4.77E-02 13.55 0.90 0.292 

40.0 4.26E+06 4.62E-02 15.24 0.90 0.261 

35.0 3.35E+06 4.64E-02 17.42 0.90 0.234 

1300 64.0 1.13E+07 4.69E-02 9.53 1.07 0.430 

57.2 9.12E+06 4.79E-02 10.66 1.07 0.390 

50.0 7.10E+06 4.89E-02 12.19 1.07 0.348 

45.0 5.76E+06 4.75E-02 13.55 1.07 0.313 

40.0 4.62E+06 4.70E-02 15.24 1.07 0.283 

35.0 3.60E+06 4.60E-02 17.42 1.07 0.252 

1600 64.0 1.28E+07 4.90E-02 9.53 1.31 0.488 

57.2 1.03E+07 4.99E-02 10.66 1.31 0.442 

50.0 7.90E+06 4.86E-02 12.19 1.31 0.387 

45.0 6.48E+06 4.86E-02 13.55 1.31 0.353 

40.0 5.16E+06 4.71E-02 15.24 1.31 0.316 

35.0 3.95E+06 4.42E-02 17.42 1.31 0.276 

1800 64.0 1.35E+07 4.90E-02 9.53 1.48 0.516 

57.2 1.10E+07 5.05E-02 10.66 1.48 0.469 

50.0 8.40E+06 4.95E-02 12.19 1.48 0.411 

45.0 6.86E+06 4.87E-02 13.55 1.48 0.373 

40.0 5.39E+06 4.57E-02 15.24 1.48 0.330 

35.0 4.14E+06 4.34E-02 17.42 1.48 0.290 

2000 64.0 1.43E+07 4.93E-02 9.53 1.64 0.545 

57.2 1.16E+07 5.09E-02 10.66 1.64 0.494 

50.0 8.91E+06 5.05E-02 12.19 1.64 0.436 

45.0 7.20E+06 4.83E-02 13.55 1.64 0.392 

40.0 5.67E+06 4.57E-02 15.24 1.64 0.347 

35.0 4.32E+06 4.26E-02 17.42 1.64 0.302 

 

 
Figure 104: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1219.2 

Table 18: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1400 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1400 1100 64.0 9.60E+06 4.70E-02 10.94 0.79 0.320 

57.2 7.80E+06 4.83E-02 12.24 0.79 0.291 

50.0 6.00E+06 4.74E-02 14.00 0.79 0.256 
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45.0 4.90E+06 4.68E-02 15.56 0.79 0.232 

40.0 3.90E+06 4.55E-02 17.50 0.79 0.208 

35.0 3.05E+06 4.67E-02 20.00 0.79 0.186 

1300 64.0 1.04E+07 4.76E-02 10.94 0.93 0.345 

57.2 8.40E+06 4.88E-02 12.24 0.93 0.313 

50.0 6.50E+06 4.87E-02 14.00 0.93 0.277 

45.0 5.30E+06 4.79E-02 15.56 0.93 0.251 

40.0 4.26E+06 4.75E-02 17.50 0.93 0.227 

35.0 3.30E+06 4.55E-02 20.00 0.93 0.201 

1600 64.0 1.16E+07 4.83E-02 10.94 1.14 0.385 

57.2 9.45E+06 5.08E-02 12.24 1.14 0.352 

50.0 7.30E+06 5.04E-02 14.00 1.14 0.311 

45.0 5.95E+06 4.92E-02 15.56 1.14 0.282 

40.0 4.70E+06 4.66E-02 17.50 1.14 0.251 

35.0 3.60E+06 4.36E-02 20.00 1.14 0.219 

1800 64.0 1.23E+07 4.97E-02 10.94 1.29 0.410 

57.2 9.90E+06 5.00E-02 12.24 1.29 0.369 

50.0 7.70E+06 5.06E-02 14.00 1.29 0.328 

45.0 6.23E+06 4.84E-02 15.56 1.29 0.295 

40.0 4.92E+06 4.59E-02 17.50 1.29 0.262 

35.0 3.77E+06 4.40E-02 20.00 1.29 0.230 

2000 64.0 1.31E+07 5.14E-02 10.94 1.43 0.435 

57.2 1.05E+07 5.08E-02 12.24 1.43 0.390 

50.0 8.00E+06 4.91E-02 14.00 1.43 0.341 

45.0 6.51E+06 4.78E-02 15.56 1.43 0.308 

40.0 5.10E+06 4.45E-02 17.50 1.43 0.272 

35.0 3.95E+06 4.30E-02 20.00 1.43 0.241 

 

 
Figure 105: Ultimate load from FEA analysis in the plate load case αip = 90˚ for d0 = 1400 
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A.1.1 Force angle αip = 60˚ 

Table 19: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 800 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

800 1100 64.0 1.10E+07 4.93E-02 6.3 1.38 0.638 

57.2 8.64E+06 4.53E-02 7.0 1.38 0.564 

50.0 6.70E+06 4.60E-02 8.0 1.38 0.500 

45.0 5.46E+06 4.52E-02 8.9 1.38 0.453 

40.0 4.38E+06 4.52E-02 10.0 1.38 0.409 

35.0 3.40E+06 4.43E-02 11.4 1.38 0.362 

1300 64.0 1.17E+07 4.70E-02 6.3 1.63 0.682 

57.2 9.36E+06 4.64E-02 7.0 1.63 0.611 

50.0 7.20E+06 4.59E-02 8.0 1.63 0.537 

45.0 5.92E+06 4.64E-02 8.9 1.63 0.491 

40.0 4.74E+06 4.62E-02 10.0 1.63 0.442 

35.0 3.70E+06 4.57E-02 11.4 1.63 0.394 

1600 64.0 1.32E+07 4.78E-02 6.3 2.00 0.770 

57.2 1.07E+07 4.78E-02 7.0 2.00 0.695 

50.0 8.30E+06 4.75E-02 8.0 2.00 0.619 

45.0 6.93E+06 4.91E-02 8.9 2.00 0.575 

40.0 5.60E+06 4.79E-02 10.0 2.00 0.522 

35.0 4.44E+06 4.67E-02 11.4 2.00 0.473 

1800 64.0 1.39E+07 4.84E-02 6.3 2.25 0.812 

57.2 1.12E+07 4.75E-02 7.0 2.25 0.731 

50.0 8.91E+06 5.05E-02 8.0 2.25 0.665 

45.0 7.29E+06 4.87E-02 8.9 2.25 0.604 

40.0 5.92E+06 4.79E-02 10.0 2.25 0.552 

35.0 4.68E+06 4.64E-02 11.4 2.25 0.499 

2000 64.0 1.45E+07 4.77E-02 6.3 2.50 0.842 

57.2 1.19E+07 5.02E-02 7.0 2.50 0.776 

50.0 9.35E+06 5.09E-02 8.0 2.50 0.698 

45.0 7.70E+06 4.97E-02 8.9 2.50 0.638 

40.0 6.24E+06 4.85E-02 10.0 2.50 0.582 

35.0 4.90E+06 4.62E-02 11.4 2.50 0.522 

 

 

Figure 106: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 800 
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Table 20: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 900 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

900 1100 64.0 1.02E+07 4.84E-02 7.9 1.22 0.529 

57.2 8.10E+06 4.62E-02 9.0 1.22 0.470 

50.0 6.20E+06 4.51E-02 10.0 1.22 0.411 

45.0 5.11E+06 4.59E-02 11.3 1.22 0.377 

40.0 4.08E+06 4.52E-02 12.9 1.22 0.338 

35.0 3.20E+06 4.57E-02 7.0 1.22 0.303 

1300 64.0 1.10E+07 4.79E-02 7.9 1.44 0.567 

57.2 8.76E+06 4.75E-02 9.0 1.44 0.508 

50.0 6.70E+06 4.62E-02 10.0 1.44 0.444 

45.0 5.53E+06 4.72E-02 11.3 1.44 0.408 

40.0 4.38E+06 4.55E-02 12.9 1.44 0.363 

35.0 3.45E+06 4.61E-02 7.0 1.44 0.327 

1600 64.0 1.22E+07 4.84E-02 7.9 1.78 0.630 

57.2 9.72E+06 4.79E-02 9.0 1.78 0.564 

50.0 7.60E+06 4.96E-02 10.0 1.78 0.504 

45.0 6.16E+06 4.80E-02 11.3 1.78 0.454 

40.0 4.92E+06 4.69E-02 12.9 1.78 0.408 

35.0 3.85E+06 4.65E-02 7.0 1.78 0.365 

1800 64.0 1.28E+07 4.84E-02 7.9 2.00 0.661 

57.2 1.03E+07 4.95E-02 9.0 2.00 0.598 

50.0 8.00E+06 4.99E-02 10.0 2.00 0.531 

45.0 6.56E+06 4.97E-02 11.3 2.00 0.484 

40.0 5.25E+06 4.86E-02 12.9 2.00 0.435 

35.0 4.02E+06 4.53E-02 7.0 2.00 0.381 

2000 64.0 1.37E+07 4.90E-02 7.9 2.22 0.707 

57.2 1.11E+07 4.93E-02 9.0 2.22 0.644 

50.0 8.80E+06 5.11E-02 10.0 2.22 0.584 

45.0 7.29E+06 5.03E-02 11.3 2.22 0.537 

40.0 5.92E+06 4.89E-02 12.9 2.22 0.491 

35.0 4.68E+06 4.69E-02 7.9 2.22 0.443 

 

 

Figure 107: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 900 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

6 8 10 12 14

N
1,

4%
/f

y0
d

0t
0

γ = d0/2t0

η = 1.22 η = 1.44 η = 1.78
η = 2.00 η = 2.22

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

N
1,

4%
/f

y0
d

0t
0

η = bm/d0

γ = 7.0 γ = 7.9 γ = 9.0

γ = 10.0 γ = 11.3 γ = 12.9



140 Appendix E FEA Results 
 

M. Oorebeek CIE5060-09 MSc Thesis 

Table 21: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1100 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1100 1100 64.0 9.15E+06 4.85E-02 8.6 1.00 0.388 

57.2 7.28E+06 4.70E-02 9.6 1.00 0.345 

50.0 5.60E+06 4.64E-02 11.0 1.00 0.304 

45.0 4.62E+06 4.71E-02 12.2 1.00 0.279 

40.0 3.65E+06 4.50E-02 13.8 1.00 0.248 

35.0 2.90E+06 4.68E-02 15.7 1.00 0.225 

1300 64.0 9.75E+06 4.81E-02 8.6 1.18 0.413 

57.2 7.80E+06 4.76E-02 9.6 1.18 0.370 

50.0 6.00E+06 4.69E-02 11.0 1.18 0.326 

45.0 4.92E+06 4.68E-02 12.2 1.18 0.297 

40.0 3.95E+06 4.67E-02 13.8 1.18 0.268 

35.0 3.10E+06 4.65E-02 15.7 1.18 0.240 

1600 64.0 1.07E+07 4.72E-02 8.6 1.45 0.452 

57.2 8.70E+06 4.95E-02 9.6 1.45 0.413 

50.0 6.70E+06 4.88E-02 11.0 1.45 0.364 

45.0 5.53E+06 4.96E-02 12.2 1.45 0.333 

40.0 4.38E+06 4.70E-02 13.8 1.45 0.297 

35.0 3.40E+06 4.54E-02 15.7 1.45 0.264 

1800 64.0 1.13E+07 4.85E-02 8.6 1.64 0.477 

57.2 9.15E+06 5.00E-02 9.6 1.64 0.434 

50.0 7.10E+06 5.03E-02 11.0 1.64 0.385 

45.0 5.84E+06 5.03E-02 12.2 1.64 0.352 

40.0 4.62E+06 4.75E-02 13.8 1.64 0.313 

35.0 3.55E+06 4.47E-02 15.7 1.64 0.275 

2000 64.0 1.19E+07 4.99E-02 8.6 1.82 0.502 

57.2 9.57E+06 5.02E-02 9.6 1.82 0.454 

50.0 7.40E+06 4.99E-02 11.0 1.82 0.402 

45.0 6.08E+06 4.95E-02 12.2 1.82 0.367 

40.0 4.80E+06 4.66E-02 13.8 1.82 0.326 

35.0 3.70E+06 4.43E-02 15.7 1.82 0.287 

 

 
Figure 108: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1100 
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Table 22: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1219.2 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1219.2 1100 64.0 8.55E+06 4.70E-02 9.5 0.90 0.327 

57.2 6.90E+06 4.74E-02 10.7 0.90 0.295 

50.0 5.30E+06 4.66E-02 12.2 0.90 0.260 

45.0 4.38E+06 4.74E-02 13.5 0.90 0.238 

40.0 3.45E+06 4.48E-02 15.2 0.90 0.211 

35.0 2.75E+06 4.67E-02 17.4 0.90 0.192 

1300 64.0 9.15E+06 4.75E-02 9.5 1.07 0.350 

57.2 7.30E+06 4.67E-02 10.7 1.07 0.312 

50.0 5.70E+06 4.78E-02 12.2 1.07 0.279 

45.0 4.68E+06 4.78E-02 13.5 1.07 0.255 

40.0 3.75E+06 4.72E-02 15.2 1.07 0.230 

35.0 2.95E+06 4.71E-02 17.4 1.07 0.206 

1600 64.0 1.01E+07 4.79E-02 9.5 1.31 0.384 

57.2 8.20E+06 4.97E-02 10.7 1.31 0.351 

50.0 6.30E+06 4.86E-02 12.2 1.31 0.308 

45.0 5.16E+06 4.81E-02 13.5 1.31 0.281 

40.0 4.15E+06 4.76E-02 15.2 1.31 0.254 

35.0 3.20E+06 4.49E-02 17.4 1.31 0.224 

1800 64.0 1.07E+07 4.97E-02 9.5 1.48 0.407 

57.2 8.60E+06 5.01E-02 10.7 1.48 0.368 

50.0 6.70E+06 5.08E-02 12.2 1.48 0.328 

45.0 5.46E+06 4.93E-02 13.5 1.48 0.297 

40.0 4.32E+06 4.65E-02 15.2 1.48 0.264 

35.0 3.35E+06 4.47E-02 17.4 1.48 0.234 

2000 64.0 1.11E+07 4.97E-02 9.5 1.64 0.425 

57.2 9.02E+06 5.09E-02 10.7 1.64 0.386 

50.0 7.00E+06 5.09E-02 12.2 1.64 0.343 

45.0 5.67E+06 4.84E-02 13.5 1.64 0.308 

40.0 4.50E+06 4.61E-02 15.2 1.64 0.275 

35.0 3.45E+06 4.29E-02 17.4 1.64 0.241 

 

 
Figure 109: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1219.2 
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Table 23: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1400 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1400 1100 64.0 7.95E+06 4.77E-02 10.9 0.79 0.265 

57.2 6.40E+06 4.78E-02 12.2 0.79 0.239 

50.0 4.90E+06 4.62E-02 14.0 0.79 0.209 

45.0 4.08E+06 4.78E-02 15.6 0.79 0.193 

40.0 3.25E+06 4.64E-02 17.5 0.79 0.173 

35.0 2.55E+06 4.61E-02 20.0 0.79 0.155 

1300 64.0 8.40E+06 4.70E-02 10.9 0.93 0.280 

57.2 6.80E+06 4.78E-02 12.2 0.93 0.253 

50.0 5.32E+06 4.89E-02 14.0 0.93 0.227 

45.0 4.32E+06 4.73E-02 15.6 0.93 0.205 

40.0 3.50E+06 4.80E-02 17.5 0.93 0.187 

35.0 2.75E+06 4.73E-02 20.0 0.93 0.168 

1600 64.0 9.30E+06 4.88E-02 10.9 1.14 0.310 

57.2 7.50E+06 4.89E-02 12.2 1.14 0.280 

50.0 5.88E+06 5.03E-02 14.0 1.14 0.251 

45.0 4.80E+06 4.91E-02 15.6 1.14 0.227 

40.0 3.85E+06 4.78E-02 17.5 1.14 0.205 

35.0 2.95E+06 4.41E-02 20.0 1.14 0.180 

1800 64.0 9.75E+06 4.94E-02 10.9 1.29 0.325 

57.2 7.90E+06 5.00E-02 12.2 1.29 0.294 

50.0 6.16E+06 5.06E-02 14.0 1.29 0.263 

45.0 5.04E+06 4.94E-02 15.6 1.29 0.239 

40.0 4.00E+06 4.67E-02 17.5 1.29 0.213 

35.0 3.10E+06 4.45E-02 20.0 1.29 0.189 

2000 64.0 1.02E+07 5.02E-02 10.9 1.43 0.340 

57.2 8.30E+06 5.13E-02 12.2 1.43 0.309 

50.0 6.40E+06 5.00E-02 14.0 1.43 0.273 

45.0 5.25E+06 4.91E-02 15.6 1.43 0.249 

40.0 4.15E+06 4.60E-02 17.5 1.43 0.221 

35.0 3.20E+06 4.33E-02 20.0 1.43 0.195 

 

 
Figure 110: Ultimate load from FEA analysis in the plate load case αip = 60˚ for d0 = 1400 
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E.2  Padeye load case 

E.2.1 Constant padeye geometry 

Table 24: Ultimate load from FEA analysis in the padeye load case with constant geometry,  for d0 = 800 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

800 1100 64.0 1.56E+07 5.31E-02 6.3 1.38 0.91 

57.2 1.26E+07 4.78E-02 7.0 1.38 0.82 

50.0 9.75E+06 4.55E-02 8.0 1.38 0.73 

45.0 8.16E+06 4.90E-02 8.9 1.38 0.68 

40.0 6.50E+06 4.62E-02 10.0 1.38 0.61 

35.0 5.12E+06 4.69E-02 11.4 1.38 0.55 

1300 64.0 1.70E+07 4.85E-02 6.3 1.63 0.99 

57.2 1.38E+07 4.76E-02 7.0 1.63 0.90 

50.0 1.08E+07 4.85E-02 8.0 1.63 0.81 

45.0 8.88E+06 4.80E-02 8.9 1.63 0.74 

40.0 7.10E+06 4.65E-02 10.0 1.63 0.66 

35.0 5.60E+06 4.73E-02 11.4 1.63 0.60 

1600 64.0 1.92E+07 4.85E-02 6.3 2.00 1.12 

57.2 1.56E+07 4.96E-02 7.0 2.00 1.02 

50.0 1.22E+07 4.83E-02 8.0 2.00 0.91 

45.0 9.96E+06 4.76E-02 8.9 2.00 0.83 

40.0 8.00E+06 4.70E-02 10.0 2.00 0.75 

35.0 6.16E+06 4.38E-02 11.4 2.00 0.66 

 

 
Figure 111: Ultimate load from FEA analysis in the padeye load case with constant geometry,   for d0 = 800 
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Table 25: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 900 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

900 1100 64.0 1.46E+07 4.90E-02 7.0 1.22 0.75 

57.2 1.19E+07 4.86E-02 7.9 1.22 0.69 

50.0 9.15E+06 4.66E-02 9.0 1.22 0.61 

45.0 7.60E+06 4.84E-02 10.0 1.22 0.56 

40.0 6.10E+06 4.77E-02 11.3 1.22 0.51 

35.0 4.80E+06 4.80E-02 12.9 1.22 0.45 

1300 64.0 1.60E+07 4.94E-02 7.0 1.44 0.83 

57.2 1.28E+07 4.65E-02 7.9 1.44 0.74 

50.0 1.01E+07 4.85E-02 9.0 1.44 0.67 

45.0 8.20E+06 4.70E-02 10.0 1.44 0.60 

40.0 6.60E+06 4.70E-02 11.3 1.44 0.55 

35.0 5.12E+06 4.48E-02 12.9 1.44 0.49 

1600 64.0 1.78E+07 4.79E-02 7.0 1.78 0.92 

57.2 1.46E+07 5.07E-02 7.9 1.78 0.85 

50.0 1.13E+07 4.89E-02 9.0 1.78 0.75 

45.0 9.30E+06 5.02E-02 10.0 1.78 0.69 

40.0 7.30E+06 4.53E-02 11.3 1.78 0.61 

35.0 5.68E+06 4.42E-02 12.9 1.78 0.54 

1800 64.0 1.92E+07 5.03E-02 7.0 2.00 1.00 

57.2 1.56E+07 5.04E-02 7.9 2.00 0.90 

50.0 1.21E+07 4.97E-02 9.0 2.00 0.80 

45.0 9.75E+06 4.62E-02 10.0 2.00 0.72 

40.0 7.80E+06 4.53E-02 11.3 2.00 0.65 

35.0 6.00E+06 4.28E-02 12.9 2.00 0.57 

2000 64.0 2.02E+07 4.76E-02 7.0 2.22 1.05 

57.2 1.64E+07 4.80E-02 7.9 2.22 0.95 

50.0 1.28E+07 4.79E-02 9.0 2.22 0.85 

45.0 1.04E+07 4.57E-02 10.0 2.22 0.76 

40.0 8.20E+06 4.34E-02 11.3 2.22 0.68 

35.0 6.32E+06 4.17E-02 12.9 2.22 0.60 

 

 
Figure 112: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 900 
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Table 26: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1100 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1100 1100 64.0 1.32E+07 4.98E-02 8.6 1.00 0.56 

57.2 1.06E+07 4.82E-02 9.6 1.00 0.50 

50.0 8.25E+06 4.82E-02 11.0 1.00 0.45 

45.0 6.80E+06 4.83E-02 12.2 1.00 0.41 

40.0 5.40E+06 4.61E-02 13.8 1.00 0.37 

35.0 4.27E+06 4.67E-02 15.7 1.00 0.33 

1300 64.0 1.42E+07 4.84E-02 8.6 1.18 0.60 

57.2 1.14E+07 4.72E-02 9.6 1.18 0.54 

50.0 9.00E+06 4.99E-02 11.0 1.18 0.49 

45.0 7.30E+06 4.75E-02 12.2 1.18 0.44 

40.0 5.90E+06 4.79E-02 13.8 1.18 0.40 

35.0 4.55E+06 4.49E-02 15.7 1.18 0.35 

1600 64.0 1.58E+07 4.91E-02 8.6 1.45 0.67 

57.2 1.28E+07 4.97E-02 9.6 1.45 0.61 

50.0 9.90E+06 4.91E-02 11.0 1.45 0.54 

45.0 8.10E+06 4.81E-02 12.2 1.45 0.49 

40.0 6.40E+06 4.51E-02 13.8 1.45 0.43 

35.0 4.90E+06 4.20E-02 15.7 1.45 0.38 

1800 64.0 1.68E+07 4.90E-02 8.6 1.64 0.71 

57.2 1.37E+07 5.03E-02 9.6 1.64 0.65 

50.0 1.05E+07 4.88E-02 11.0 1.64 0.57 

45.0 8.60E+06 4.79E-02 12.2 1.64 0.52 

40.0 6.80E+06 4.53E-02 13.8 1.64 0.46 

35.0 5.18E+06 4.17E-02 15.7 1.64 0.40 

2000 64.0 1.78E+07 4.91E-02 8.6 1.82 0.75 

57.2 1.44E+07 4.97E-02 9.6 1.82 0.68 

50.0 1.11E+07 4.85E-02 11.0 1.82 0.60 

45.0 9.02E+06 4.67E-02 12.2 1.82 0.54 

40.0 7.10E+06 4.37E-02 13.8 1.82 0.48 

35.0 5.39E+06 4.00E-02 15.7 1.82 0.42 

 

 
Figure 113: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1100 
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Table 27: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1219.2 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1219.2 1100 64.0 1.23E+07 4.71E-02 9.5 0.90 0.47 

57.2 9.90E+06 4.64E-02 10.7 0.90 0.42 

50.0 7.80E+06 4.83E-02 12.2 0.90 0.38 

45.0 6.40E+06 4.79E-02 13.5 0.90 0.35 

40.0 5.10E+06 4.62E-02 15.2 0.90 0.31 

35.0 3.99E+06 4.51E-02 17.4 0.90 0.28 

1300 64.0 1.34E+07 4.82E-02 9.5 1.07 0.51 

57.2 1.08E+07 4.83E-02 10.7 1.07 0.46 

50.0 8.40E+06 4.84E-02 12.2 1.07 0.41 

45.0 6.90E+06 4.82E-02 13.5 1.07 0.38 

40.0 5.50E+06 4.64E-02 15.2 1.07 0.34 

35.0 4.27E+06 4.44E-02 17.4 1.07 0.30 

1600 64.0 1.48E+07 4.91E-02 9.5 1.31 0.57 

57.2 1.20E+07 4.97E-02 10.7 1.31 0.51 

50.0 9.36E+06 5.05E-02 12.2 1.31 0.46 

45.0 7.60E+06 4.83E-02 13.5 1.31 0.41 

40.0 6.00E+06 4.52E-02 15.2 1.31 0.37 

35.0 4.62E+06 4.27E-02 17.4 1.31 0.32 

1800 64.0 1.58E+07 5.03E-02 9.5 1.48 0.60 

57.2 1.28E+07 5.02E-02 10.7 1.48 0.55 

50.0 9.90E+06 5.03E-02 12.2 1.48 0.48 

45.0 8.00E+06 4.74E-02 13.5 1.48 0.44 

40.0 6.30E+06 4.42E-02 15.2 1.48 0.39 

35.0 4.83E+06 4.14E-02 17.4 1.48 0.34 

2000 64.0 1.66E+07 4.94E-02 9.5 1.64 0.64 

57.2 1.34E+07 5.00E-02 10.7 1.64 0.57 

50.0 1.04E+07 4.88E-02 12.2 1.64 0.51 

45.0 8.40E+06 4.67E-02 13.5 1.64 0.46 

40.0 6.60E+06 4.36E-02 15.2 1.64 0.40 

35.0 5.04E+06 4.04E-02 17.4 1.64 0.35 

 

 
Figure 114: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1219.2 
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Table 28: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1400 

d0 [mm] bm [mm] t0 [mm] N1,4% [N] εmax γ = d0/2t0 η = bm/d0 N1,4%/fyd0t0 

1219.2 1100 64.0 1.14E+07 4.77E-02 10.9 0.79 0.38 

57.2 9.15E+06 4.68E-02 12.2 0.79 0.34 

50.0 7.20E+06 4.84E-02 14.0 0.79 0.31 

45.0 5.90E+06 4.76E-02 15.6 0.79 0.28 

40.0 4.72E+06 4.64E-02 17.5 0.79 0.25 

35.0 3.66E+06 4.41E-02 20.0 0.79 0.22 

1300 64.0 1.22E+07 4.74E-02 10.9 0.93 0.41 

57.2 9.90E+06 4.80E-02 12.2 0.93 0.37 

50.0 7.80E+06 4.99E-02 14.0 0.93 0.33 

45.0 6.30E+06 4.72E-02 15.6 0.93 0.30 

40.0 5.04E+06 4.57E-02 17.5 0.93 0.27 

35.0 3.90E+06 4.33E-02 20.0 0.93 0.24 

1600 64.0 1.36E+07 4.99E-02 10.9 1.14 0.45 

57.2 1.10E+07 4.95E-02 12.2 1.14 0.41 

50.0 8.55E+06 5.02E-02 14.0 1.14 0.36 

45.0 6.90E+06 4.71E-02 15.6 1.14 0.33 

40.0 5.44E+06 4.39E-02 17.5 1.14 0.29 

35.0 4.20E+06 4.16E-02 20.0 1.14 0.26 

1800 64.0 1.44E+07 5.05E-02 10.9 1.29 0.48 

57.2 1.16E+07 4.95E-02 12.2 1.29 0.43 

50.0 9.00E+06 4.97E-02 14.0 1.29 0.38 

45.0 7.30E+06 4.74E-02 15.6 1.29 0.35 

40.0 5.68E+06 4.28E-02 17.5 1.29 0.30 

35.0 4.38E+06 4.04E-02 20.0 1.29 0.27 

2000 64.0 1.52E+07 5.11E-02 10.9 1.43 0.51 

57.2 1.22E+07 4.96E-02 12.2 1.43 0.45 

50.0 9.30E+06 4.72E-02 14.0 1.43 0.40 

45.0 7.60E+06 4.61E-02 15.6 1.43 0.36 

40.0 5.92E+06 4.19E-02 17.5 1.43 0.32 

35.0 4.56E+06 3.94E-02 20.0 1.43 0.28 

 

 
Figure 115: Ultimate load from FEA analysis in the padeye load case with constant geometry, for d0 = 1400 
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E.2.2 Variable padeye geometry 
Table 29: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 800 

d0 

[mm] 
bm  
[mm] 

t0  
[mm] 

N1,4% 

[N] 
γ=d0/2t0 
[ - ] 

η=bm/d0 

[ - ] 
λ=bm/(Rm+h0) 
[ - ] 

N1,4%/fyd0t0 

[ - ] 

800 1100 64.0 1.38E+07 6.3 1.38 1.38 0.80 

57.2 1.10E+07 7.0 1.38 1.38 0.72 

50.0 8.40E+06 8.0 1.38 1.38 0.63 

45.0 7.00E+06 8.9 1.38 1.38 0.58 

40.0 5.60E+06 10.0 1.38 1.38 0.52 

35.0 4.40E+06 11.4 1.38 1.38 0.47 

1300 64.0 1.70E+07 6.3 1.63 1.63 0.99 

57.2 1.38E+07 7.0 1.63 1.63 0.90 

50.0 1.08E+07 8.0 1.63 1.63 0.81 

45.0 9.00E+06 8.9 1.63 1.63 0.75 

40.0 7.20E+06 10.0 1.63 1.63 0.67 

35.0 5.60E+06 11.4 1.63 1.63 0.60 

1600 64.0 1.66E+07 6.3 2.00 2.00 0.97 

57.2 1.34E+07 7.0 2.00 2.00 0.87 

50.0 1.04E+07 8.0 2.00 2.00 0.78 

45.0 8.40E+06 8.9 2.00 2.00 0.70 

40.0 6.80E+06 10.0 2.00 2.00 0.63 

35.0 5.20E+06 11.4 2.00 2.00 0.55 

 

 

Figure 116: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 800 
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Table 30: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 900 

d0 

[mm] 
bm  
[mm] 

t0  
[mm] 

N1,4% 

[N] 
γ=d0/2t0 
[ - ] 

η=bm/d0 

[ - ] 
λ=bm/(Rm+h0) 
[ - ] 

N1,4%/fyd0t0 

[ - ] 

900 1100 64.0 1.28E+07 7.0 1.22 1.38 0.66 

57.2 1.02E+07 7.9 1.22 1.38 0.59 

50.0 8.00E+06 9.0 1.22 1.38 0.53 

45.0 6.60E+06 10.0 1.22 1.38 0.49 

40.0 5.20E+06 11.3 1.22 1.38 0.43 

35.0 4.20E+06 12.9 1.22 1.38 0.40 

1300 64.0 1.60E+07 7.0 1.44 1.63 0.83 

57.2 1.28E+07 7.9 1.44 1.63 0.74 

50.0 1.00E+07 9.0 1.44 1.63 0.66 

45.0 8.20E+06 10.0 1.44 1.63 0.60 

40.0 6.60E+06 11.3 1.44 1.63 0.55 

35.0 5.20E+06 12.9 1.44 1.63 0.49 

1600 64.0 1.54E+07 7.0 1.78 2.00 0.80 

57.2 1.24E+07 7.9 1.78 2.00 0.72 

50.0 9.60E+06 9.0 1.78 2.00 0.64 

45.0 7.80E+06 10.0 1.78 2.00 0.57 

40.0 6.20E+06 11.3 1.78 2.00 0.51 

35.0 4.80E+06 12.9 1.78 2.00 0.45 

1800 64.0 1.50E+07 7.0 2.00 2.25 0.78 

57.2 1.20E+07 7.9 2.00 2.25 0.70 

50.0 9.40E+06 9.0 2.00 2.25 0.62 

45.0 7.60E+06 10.0 2.00 2.25 0.56 

40.0 6.00E+06 11.3 2.00 2.25 0.50 

35.0 4.60E+06 12.9 2.00 2.25 0.44 

2000 64.0 1.48E+07 7.0 2.22 2.50 0.77 

57.2 1.20E+07 7.9 2.22 2.50 0.70 

50.0 9.20E+06 9.0 2.22 2.50 0.61 

45.0 7.40E+06 10.0 2.22 2.50 0.55 

40.0 6.00E+06 11.3 2.22 2.50 0.50 

35.0 4.60E+06 12.9 2.22 2.50 0.44 

 

 

Figure 117: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 900 
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Table 31: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1100 

d0 

[mm] 
bm  
[mm] 

t0  
[mm] 

N1,4% 

[N] 
γ=d0/2t0 
[ - ] 

η=bm/d0 

[ - ] 
λ=bm/(Rm+h0) 
[ - ] 

N1,4%/fyd0t0 

[ - ] 

1100 1100 64.0 1.14E+07 8.6 1.00 1.38 0.48 

57.2 9.00E+06 9.6 1.00 1.38 0.43 

50.0 7.00E+06 11.0 1.00 1.38 0.38 

45.0 5.80E+06 12.2 1.00 1.38 0.35 

40.0 4.60E+06 13.8 1.00 1.38 0.31 

35.0 3.60E+06 15.7 1.00 1.38 0.28 

1300 64.0 1.42E+07 8.6 1.18 1.63 0.60 

57.2 1.14E+07 9.6 1.18 1.63 0.54 

50.0 9.00E+06 11.0 1.18 1.63 0.49 

45.0 7.40E+06 12.2 1.18 1.63 0.45 

40.0 6.00E+06 13.8 1.18 1.63 0.41 

35.0 4.60E+06 15.7 1.18 1.63 0.36 

1600 64.0 1.36E+07 8.6 1.45 2.00 0.58 

57.2 1.08E+07 9.6 1.45 2.00 0.51 

50.0 8.40E+06 11.0 1.45 2.00 0.46 

45.0 6.80E+06 12.2 1.45 2.00 0.41 

40.0 5.40E+06 13.8 1.45 2.00 0.37 

35.0 4.20E+06 15.7 1.45 2.00 0.33 

1800 64.0 1.32E+07 8.6 1.64 2.25 0.56 

57.2 1.06E+07 9.6 1.64 2.25 0.50 

50.0 8.20E+06 11.0 1.64 2.25 0.45 

45.0 6.60E+06 12.2 1.64 2.25 0.40 

40.0 5.20E+06 13.8 1.64 2.25 0.35 

35.0 4.00E+06 15.7 1.64 2.25 0.31 

2000 64.0 1.30E+07 8.6 1.82 2.50 0.55 

57.2 1.04E+07 9.6 1.82 2.50 0.49 

50.0 8.00E+06 11.0 1.82 2.50 0.43 

45.0 6.60E+06 12.2 1.82 2.50 0.40 

40.0 5.20E+06 13.8 1.82 2.50 0.35 

35.0 4.00E+06 15.7 1.82 2.50 0.31 

 

 

Figure 118: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1100 
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Table 32: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1219.2 

d0 

[mm] 
bm  
[mm] 

t0  
[mm] 

N1,4% 

[N] 
γ=d0/2t0 
[ - ] 

η=bm/d0 

[ - ] 
λ=bm/(Rm+h0) 
[ - ] 

N1,4%/fyd0t0 

[ - ] 

1219.2 1100 64.0 1.06E+07 9.5 0.90 1.38 0.41 

57.2 8.60E+06 10.7 0.90 1.38 0.37 

50.0 6.60E+06 12.2 0.90 1.38 0.32 

45.0 5.40E+06 13.5 0.90 1.38 0.29 

40.0 4.40E+06 15.2 0.90 1.38 0.27 

35.0 3.40E+06 17.4 0.90 1.38 0.24 

1300 64.0 1.34E+07 9.5 1.07 1.63 0.51 

57.2 1.08E+07 10.7 1.07 1.63 0.46 

50.0 8.40E+06 12.2 1.07 1.63 0.41 

45.0 7.00E+06 13.5 1.07 1.63 0.38 

40.0 5.60E+06 15.2 1.07 1.63 0.34 

35.0 4.40E+06 17.4 1.07 1.63 0.31 

1600 64.0 1.26E+07 9.5 1.31 2.00 0.48 

57.2 1.02E+07 10.7 1.31 2.00 0.44 

50.0 7.80E+06 12.2 1.31 2.00 0.38 

45.0 6.40E+06 13.5 1.31 2.00 0.35 

40.0 5.20E+06 15.2 1.31 2.00 0.32 

35.0 4.00E+06 17.4 1.31 2.00 0.28 

1800 64.0 1.22E+07 9.5 1.48 2.25 0.47 

57.2 1.00E+07 10.7 1.48 2.25 0.43 

50.0 7.60E+06 12.2 1.48 2.25 0.37 

45.0 6.20E+06 13.5 1.48 2.25 0.34 

40.0 5.00E+06 15.2 1.48 2.25 0.31 

35.0 3.80E+06 17.4 1.48 2.25 0.27 

2000 64.0 1.22E+07 9.5 1.64 2.50 0.47 

57.2 9.80E+06 10.7 1.64 2.50 0.42 

50.0 7.60E+06 12.2 1.64 2.50 0.37 

45.0 6.20E+06 13.5 1.64 2.50 0.34 

40.0 4.80E+06 15.2 1.64 2.50 0.29 

35.0 3.80E+06 17.4 1.64 2.50 0.27 

 

 

Figure 119: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1219.2 
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Table 33: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1400 

d0 

[mm] 
bm  
[mm] 

t0  
[mm] 

N1,4% 

[N] 
γ=d0/2t0 
[ - ] 

η=bm/d0 

[ - ] 
λ=bm/(Rm+h0) 
[ - ] 

N1,4%/fyd0t0 

[ - ] 

1400 1100 64.0 9.80E+06 10.9 0.79 1.38 0.33 

57.2 8.00E+06 12.2 0.79 1.38 0.30 

50.0 6.20E+06 14.0 0.79 1.38 0.26 

45.0 5.00E+06 15.6 0.79 1.38 0.24 

40.0 4.00E+06 17.5 0.79 1.38 0.21 

35.0 3.20E+06 20.0 0.79 1.38 0.19 

1300 64.0 1.22E+07 10.9 0.93 1.63 0.41 

57.2 1.00E+07 12.2 0.93 1.63 0.37 

50.0 7.80E+06 14.0 0.93 1.63 0.33 

45.0 6.40E+06 15.6 0.93 1.63 0.30 

40.0 5.20E+06 17.5 0.93 1.63 0.28 

35.0 4.00E+06 20.0 0.93 1.63 0.24 

1600 64.0 1.16E+07 10.9 1.14 2.00 0.39 

57.2 9.20E+06 12.2 1.14 2.00 0.34 

50.0 7.20E+06 14.0 1.14 2.00 0.31 

45.0 5.80E+06 15.6 1.14 2.00 0.27 

40.0 4.60E+06 17.5 1.14 2.00 0.25 

35.0 3.60E+06 20.0 1.14 2.00 0.22 

1800 64.0 1.12E+07 10.9 1.29 2.25 0.37 

57.2 9.00E+06 12.2 1.29 2.25 0.34 

50.0 7.00E+06 14.0 1.29 2.25 0.30 

45.0 5.80E+06 15.6 1.29 2.25 0.27 

40.0 4.60E+06 17.5 1.29 2.25 0.25 

35.0 3.60E+06 20.0 1.29 2.25 0.22 

2000 64.0 1.10E+07 10.9 1.43 2.50 0.37 

57.2 9.00E+06 12.2 1.43 2.50 0.34 

50.0 7.00E+06 14.0 1.43 2.50 0.30 

45.0 5.60E+06 15.6 1.43 2.50 0.27 

40.0 4.40E+06 17.5 1.43 2.50 0.23 

35.0 3.40E+06 20.0 1.43 2.50 0.21 

 

 
Figure 120: Ultimate load from FEA analysis in the padeye load case with variable geometry, for d0 = 1400 
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Appendix F Post-processing FEA results 
 

F.1  Matlab curve fitting tool 

In order to determine an equation that described the data, Matlab curve fitting uses the 
coefficient of determination. This coefficient, denoted as R2, is a number that indicates how 
well the statistical model fits the data. The value of R2 varies between 0 and 1, where 0 
indicates that the data is not fit at all and 1 indicates that the data is fit perfectly. The equation 
of R2 is given in (13.1). In this equation, yi is the observed data at point i and fi is the determined 
data at point i from the curve. The value ẏ is the mean value following the data.  
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The deviation of the curve with respect to the data is denoted as the Root Mean Squared Error 
(RMSE). This RMSE is given below: 
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Figure 121: Matlab script of the curve fitting tool 
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F.2  Plate load case  

F.2.1 Force angle αip = 90˚ 

Table 34: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 800 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

800 
 
 

1100 64.0 6.25 1.38 1.32E+07 1.30E+07 1.4 

57.2 6.99 1.38 1.08E+07 1.04E+07 3.5 

50.0 8.00 1.38 8.25E+06 7.98E+06 3.3 

45.0 8.89 1.38 6.82E+06 6.47E+06 5.1 

40.0 10.00 1.38 5.50E+06 5.12E+06 6.9 

35.0 11.43 1.38 4.30E+06 3.93E+06 8.7 

1300 64.0 6.25 1.63 1.46E+07 1.44E+07 1.4 

57.2 6.99 1.63 1.18E+07 1.15E+07 2.4 

50.0 8.00 1.63 9.12E+06 8.82E+06 3.3 

45.0 8.89 1.63 7.48E+06 7.15E+06 4.4 

40.0 10.00 1.63 6.00E+06 5.66E+06 5.6 

35.0 11.43 1.63 4.70E+06 4.34E+06 7.6 

1600 64.0 6.25 2.00 1.72E+07 1.64E+07 4.4 

57.2 6.99 2.00 1.40E+07 1.32E+07 6.0 

50.0 8.00 2.00 1.10E+07 1.01E+07 8.0 

45.0 8.89 2.00 9.02E+06 8.18E+06 9.4 

40.0 10.00 2.00 7.40E+06 6.47E+06 12.6 

35.0 11.43 2.00 5.90E+06 4.96E+06 15.9 

 

 

Figure 122: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 800 
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Table 35: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 900 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

900 1100 64.0 7.03 1.22 1.24E+07 1.22E+07 1.5 

57.2 7.87 1.22 1.01E+07 9.77E+06 2.8 

50.0 9.00 1.22 7.80E+06 7.48E+06 4.1 

45.0 10.00 1.22 6.40E+06 6.07E+06 5.2 

40.0 11.25 1.22 5.04E+06 4.80E+06 4.8 

35.0 12.86 1.22 3.96E+06 3.68E+06 7.1 

1300 64.0 7.03 1.44 1.36E+07 1.34E+07 1.3 

57.2 7.87 1.44 1.10E+07 1.07E+07 1.9 

50.0 9.00 1.44 8.55E+06 8.23E+06 3.8 

45.0 10.00 1.44 7.00E+06 6.67E+06 4.7 

40.0 11.25 1.44 5.52E+06 5.28E+06 4.4 

35.0 12.86 1.44 4.32E+06 4.05E+06 6.3 

1600 64.0 7.03 1.78 1.54E+07 1.53E+07 0.9 

57.2 7.87 1.78 1.25E+07 1.22E+07 1.9 

50.0 9.00 1.78 9.75E+06 9.35E+06 4.1 

45.0 10.00 1.78 7.90E+06 7.58E+06 4.0 

40.0 11.25 1.78 6.32E+06 6.00E+06 5.1 

35.0 12.86 1.78 4.86E+06 4.60E+06 5.4 

1800 64.0 7.03 2.00 1.66E+07 1.65E+07 0.7 

57.2 7.87 2.00 1.34E+07 1.32E+07 1.2 

50.0 9.00 2.00 1.04E+07 1.01E+07 2.5 

45.0 10.00 2.00 8.50E+06 8.19E+06 3.7 

40.0 11.25 2.00 6.72E+06 6.48E+06 3.6 

35.0 12.86 2.00 5.18E+06 4.97E+06 4.1 

2000 64.0 7.03 2.22 1.96E+07 1.77E+07 9.7 

57.2 7.87 2.22 1.49E+07 1.42E+07 4.6 

50.0 9.00 2.22 1.17E+07 1.08E+07 7.3 

45.0 10.00 2.22 9.72E+06 8.79E+06 9.5 

40.0 11.25 2.22 7.90E+06 6.96E+06 11.9 

35.0 12.86 2.22 6.24E+06 5.33E+06 14.5 

 

 

Figure 123: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 900 
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Table 36: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1100 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1100 1100 64.0 8.6 1.00 1.11E+07 1.10E+07 0.7 

57.2 9.6 1.00 8.85E+06 8.82E+06 0.4 

50.0 11.0 1.00 6.90E+06 6.75E+06 2.2 

45.0 12.2 1.00 5.70E+06 5.47E+06 4.0 

40.0 13.8 1.00 4.56E+06 4.33E+06 5.1 

35.0 15.7 1.00 3.55E+06 3.32E+06 6.6 

1300 64.0 8.6 1.18 1.20E+07 1.20E+07 -0.2 

57.2 9.6 1.18 9.75E+06 9.62E+06 1.4 

50.0 11.0 1.18 7.50E+06 7.36E+06 1.9 

45.0 12.2 1.18 6.20E+06 5.97E+06 3.7 

40.0 13.8 1.18 4.88E+06 4.72E+06 3.3 

35.0 15.7 1.18 3.80E+06 3.62E+06 4.8 

1600 64.0 8.6 1.45 1.37E+07 1.35E+07 0.9 

57.2 9.6 1.45 1.10E+07 1.08E+07 1.2 

50.0 11.0 1.45 8.47E+06 8.28E+06 2.2 

45.0 12.2 1.45 6.90E+06 6.71E+06 2.7 

40.0 13.8 1.45 5.52E+06 5.31E+06 3.8 

35.0 15.7 1.45 4.25E+06 4.07E+06 4.2 

1800 64.0 8.6 1.64 1.46E+07 1.45E+07 0.2 

57.2 9.6 1.64 1.17E+07 1.16E+07 0.7 

50.0 11.0 1.64 9.02E+06 8.89E+06 1.4 

45.0 12.2 1.64 7.40E+06 7.21E+06 2.6 

40.0 13.8 1.64 5.84E+06 5.70E+06 2.3 

35.0 15.7 1.64 4.44E+06 4.37E+06 1.5 

2000 64.0 8.6 1.82 1.55E+07 1.55E+07 -0.4 

57.2 9.6 1.82 1.25E+07 1.24E+07 0.2 

50.0 11.0 1.82 9.60E+06 9.51E+06 1.0 

45.0 12.2 1.82 7.80E+06 7.71E+06 1.2 

40.0 13.8 1.82 6.09E+06 6.10E+06 -0.1 

35.0 15.7 1.82 4.68E+06 4.67E+06 0.1 

 

 

Figure 124: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1100 

20

40

60

80

100

120

140

160

180

8.0 10.0 12.0 14.0 16.0 18.0

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

γ = d0/2t0

FEA data Analytical data

20

40

60

80

100

120

140

160

180

0.8 1.0 1.2 1.4 1.6 1.8 2.0

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

η = bm/d0

FEA data Analytical data



158 Appendix F Post-processing FEA results 
 

M. Oorebeek CIE5060-09 MSc Thesis 

Table 37: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1219.2 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1219.2 1100 64.0 9.53 0.90 1.04E+07 1.05E+07 -1.4 

57.2 10.66 0.90 8.40E+06 8.40E+06 0.1 

50.0 12.19 0.90 6.50E+06 6.42E+06 1.2 

45.0 13.55 0.90 5.36E+06 5.21E+06 2.8 

40.0 15.24 0.90 4.26E+06 4.12E+06 3.3 

35.0 17.42 0.90 3.35E+06 3.16E+06 5.8 

1300 64.0 9.53 1.07 1.13E+07 1.14E+07 -1.3 

57.2 10.66 1.07 9.12E+06 9.12E+06 0.0 

50.0 12.19 1.07 7.10E+06 6.98E+06 1.7 

45.0 13.55 1.07 5.76E+06 5.66E+06 1.8 

40.0 15.24 1.07 4.62E+06 4.47E+06 3.2 

35.0 17.42 1.07 3.60E+06 3.43E+06 4.8 

1600 64.0 9.53 1.31 1.28E+07 1.28E+07 -0.1 

57.2 10.66 1.31 1.03E+07 1.02E+07 1.1 

50.0 12.19 1.31 7.90E+06 7.81E+06 1.2 

45.0 13.55 1.31 6.48E+06 6.33E+06 2.3 

40.0 15.24 1.31 5.16E+06 5.01E+06 3.0 

35.0 17.42 1.31 3.95E+06 3.84E+06 2.9 

1800 64.0 9.53 1.48 1.35E+07 1.37E+07 -1.2 

57.2 10.66 1.48 1.10E+07 1.09E+07 0.2 

50.0 12.19 1.48 8.40E+06 8.36E+06 0.4 

45.0 13.55 1.48 6.86E+06 6.78E+06 1.2 

40.0 15.24 1.48 5.39E+06 5.36E+06 0.5 

35.0 17.42 1.48 4.14E+06 4.11E+06 0.7 

2000 64.0 9.53 1.64 1.43E+07 1.46E+07 -2.2 

57.2 10.66 1.64 1.16E+07 1.17E+07 -0.9 

50.0 12.19 1.64 8.91E+06 8.92E+06 -0.1 

45.0 13.55 1.64 7.20E+06 7.23E+06 -0.4 

40.0 15.24 1.64 5.67E+06 5.72E+06 -0.8 

35.0 17.42 1.64 4.32E+06 4.38E+06 -1.4 

 

 
Figure 125: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1219.2 

20

40

60

80

100

120

140

160

8.0 10.0 12.0 14.0 16.0 18.0

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

γ = d0/2t0

FEA data Analytical data

20

40

60

80

100

120

140

160

0.8 1.0 1.2 1.4 1.6 1.8

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

η = bm/d0

FEA data Analytical data



F.2. Plate load case 159 
 

CIE5060-09 MSc Thesis M. Oorebeek 

Table 38: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1400 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1400 1100 64.0 10.9 0.79 9.60E+06 9.87E+06 -2.8 

57.2 12.2 0.79 7.80E+06 7.89E+06 -1.2 

50.0 14.0 0.79 6.00E+06 6.04E+06 -0.6 

45.0 15.6 0.79 4.90E+06 4.89E+06 0.1 

40.0 17.5 0.79 3.90E+06 3.87E+06 0.8 

35.0 20.0 0.79 3.05E+06 2.97E+06 2.8 

1300 64.0 10.9 0.93 1.04E+07 1.07E+07 -3.0 

57.2 12.2 0.93 8.40E+06 8.52E+06 -1.5 

50.0 14.0 0.93 6.50E+06 6.52E+06 -0.3 

45.0 15.6 0.93 5.30E+06 5.29E+06 0.3 

40.0 17.5 0.93 4.26E+06 4.18E+06 1.9 

35.0 20.0 0.93 3.30E+06 3.20E+06 2.9 

1600 64.0 10.9 1.14 1.16E+07 1.18E+07 -2.5 

57.2 12.2 1.14 9.45E+06 9.47E+06 -0.2 

50.0 14.0 1.14 7.30E+06 7.25E+06 0.8 

45.0 15.6 1.14 5.95E+06 5.87E+06 1.3 

40.0 17.5 1.14 4.70E+06 4.64E+06 1.2 

35.0 20.0 1.14 3.60E+06 3.56E+06 1.1 

1800 64.0 10.9 1.29 1.23E+07 1.26E+07 -2.7 

57.2 12.2 1.29 9.90E+06 1.01E+07 -2.0 

50.0 14.0 1.29 7.70E+06 7.73E+06 -0.4 

45.0 15.6 1.29 6.23E+06 6.27E+06 -0.6 

40.0 17.5 1.29 4.92E+06 4.95E+06 -0.7 

35.0 20.0 1.29 3.77E+06 3.80E+06 -0.7 

2000 64.0 10.9 1.43 1.31E+07 1.34E+07 -2.8 

57.2 12.2 1.43 1.05E+07 1.07E+07 -2.7 

50.0 14.0 1.43 8.00E+06 8.21E+06 -2.6 

45.0 15.6 1.43 6.51E+06 6.66E+06 -2.3 

40.0 17.5 1.43 5.10E+06 5.26E+06 -3.2 

35.0 20.0 1.43 3.95E+06 4.03E+06 -2.1 

 

 
Figure 126: Comparison between FEA data and engineering tool in the plate load case (αip = 90˚) for d0 = 1400 
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Table 39: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 800 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

800 1100 64.0 6.3 1.38 1.10E+07 1.05E+07 4.2 

57.2 7.0 1.38 8.64E+06 8.40E+06 2.8 

50.0 8.0 1.38 6.70E+06 6.43E+06 4.0 

45.0 8.9 1.38 5.46E+06 5.22E+06 4.5 

40.0 10.0 1.38 4.38E+06 4.13E+06 5.8 

35.0 11.4 1.38 3.40E+06 3.16E+06 6.9 

1300 64.0 6.3 1.63 1.17E+07 1.16E+07 0.9 

57.2 7.0 1.63 9.36E+06 9.28E+06 0.8 

50.0 8.0 1.63 7.20E+06 7.11E+06 1.3 

45.0 8.9 1.63 5.92E+06 5.76E+06 2.6 

40.0 10.0 1.63 4.74E+06 4.56E+06 3.8 

35.0 11.4 1.63 3.70E+06 3.50E+06 5.5 

1600 64.0 6.3 2.00 1.32E+07 1.33E+07 -0.4 

57.2 7.0 2.00 1.07E+07 1.06E+07 0.5 

50.0 8.0 2.00 8.30E+06 8.12E+06 2.1 

45.0 8.9 2.00 6.93E+06 6.59E+06 4.9 

40.0 10.0 2.00 5.60E+06 5.21E+06 6.9 

35.0 11.4 2.00 4.44E+06 4.00E+06 10.0 

1800 64.0 6.3 2.25 1.39E+07 1.44E+07 -3.1 

57.2 7.0 2.25 1.12E+07 1.15E+07 -2.6 

50.0 8.0 2.25 8.91E+06 8.80E+06 1.2 

45.0 8.9 2.25 7.29E+06 7.14E+06 2.1 

40.0 10.0 2.25 5.92E+06 5.65E+06 4.6 

35.0 11.4 2.25 4.68E+06 4.33E+06 7.5 

2000 64.0 6.3 2.50 1.45E+07 1.55E+07 -7.0 

57.2 7.0 2.50 1.19E+07 1.24E+07 -4.0 

50.0 8.0 2.50 9.35E+06 9.48E+06 -1.3 

45.0 8.9 2.50 7.70E+06 7.69E+06 0.2 

40.0 10.0 2.50 6.24E+06 6.08E+06 2.5 

35.0 11.4 2.50 4.90E+06 4.66E+06 4.8 

 

 
Figure 127: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 800 
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Table 40: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 900 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

900 1100 64.0 7.0 1.22 1.02E+07 9.84E+06 3.6 

57.2 7.9 1.22 8.10E+06 7.87E+06 2.8 

50.0 9.0 1.22 6.20E+06 6.03E+06 2.8 

45.0 10.0 1.22 5.11E+06 4.89E+06 4.4 

40.0 11.3 1.22 4.08E+06 3.87E+06 5.2 

35.0 12.9 1.22 3.20E+06 2.96E+06 7.4 

1300 64.0 7.0 1.44 1.10E+07 1.08E+07 1.2 

57.2 7.9 1.44 8.76E+06 8.66E+06 1.2 

50.0 9.0 1.44 6.70E+06 6.63E+06 1.1 

45.0 10.0 1.44 5.53E+06 5.38E+06 2.8 

40.0 11.3 1.44 4.38E+06 4.25E+06 2.9 

35.0 12.9 1.44 3.45E+06 3.26E+06 5.5 

1600 64.0 7.0 1.78 1.22E+07 1.23E+07 -1.2 

57.2 7.9 1.78 9.72E+06 9.84E+06 -1.2 

50.0 9.0 1.78 7.60E+06 7.53E+06 0.9 

45.0 10.0 1.78 6.16E+06 6.11E+06 0.8 

40.0 11.3 1.78 4.92E+06 4.83E+06 1.8 

35.0 12.9 1.78 3.85E+06 3.71E+06 3.8 

1800 64.0 7.0 2.00 1.28E+07 1.33E+07 -4.2 

57.2 7.9 2.00 1.03E+07 1.06E+07 -3.0 

50.0 9.0 2.00 8.00E+06 8.14E+06 -1.7 

45.0 10.0 2.00 6.56E+06 6.60E+06 -0.6 

40.0 11.3 2.00 5.25E+06 5.22E+06 0.6 

35.0 12.9 2.00 4.02E+06 4.00E+06 0.5 

2000 64.0 7.0 2.22 1.37E+07 1.43E+07 -4.5 

57.2 7.9 2.22 1.11E+07 1.14E+07 -2.8 

50.0 9.0 2.22 8.80E+06 8.74E+06 0.7 

45.0 10.0 2.22 7.29E+06 7.09E+06 2.8 

40.0 11.3 2.22 5.92E+06 5.61E+06 5.3 

35.0 12.9 2.22 4.68E+06 4.30E+06 8.2 

 

 
Figure 128: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 900 

Table 41: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1100 
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d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1100 1100 64.0 8.6 1.00 9.15E+06 8.88E+06 2.9 

57.2 9.6 1.00 7.28E+06 7.10E+06 2.4 

50.0 11.0 1.00 5.60E+06 5.44E+06 2.9 

45.0 12.2 1.00 4.62E+06 4.41E+06 4.6 

40.0 13.8 1.00 3.65E+06 3.49E+06 4.5 

35.0 15.7 1.00 2.90E+06 2.67E+06 7.8 

1300 64.0 8.6 1.18 9.75E+06 9.69E+06 0.6 

57.2 9.6 1.18 7.80E+06 7.75E+06 0.6 

50.0 11.0 1.18 6.00E+06 5.93E+06 1.2 

45.0 12.2 1.18 4.92E+06 4.81E+06 2.3 

40.0 13.8 1.18 3.95E+06 3.80E+06 3.7 

35.0 15.7 1.18 3.10E+06 2.92E+06 6.0 

1600 64.0 8.6 1.45 1.07E+07 1.09E+07 -2.3 

57.2 9.6 1.45 8.70E+06 8.72E+06 -0.2 

50.0 11.0 1.45 6.70E+06 6.67E+06 0.4 

45.0 12.2 1.45 5.53E+06 5.41E+06 2.2 

40.0 13.8 1.45 4.38E+06 4.28E+06 2.3 

35.0 15.7 1.45 3.40E+06 3.28E+06 3.5 

1800 64.0 8.6 1.64 1.13E+07 1.17E+07 -4.1 

57.2 9.6 1.64 9.15E+06 9.36E+06 -2.3 

50.0 11.0 1.64 7.10E+06 7.17E+06 -0.9 

45.0 12.2 1.64 5.84E+06 5.81E+06 0.5 

40.0 13.8 1.64 4.62E+06 4.60E+06 0.5 

35.0 15.7 1.64 3.55E+06 3.52E+06 0.8 

2000 64.0 8.6 1.82 1.19E+07 1.25E+07 -5.6 

57.2 9.6 1.82 9.57E+06 1.00E+07 -4.6 

50.0 11.0 1.82 7.40E+06 7.66E+06 -3.5 

45.0 12.2 1.82 6.08E+06 6.21E+06 -2.2 

40.0 13.8 1.82 4.80E+06 4.91E+06 -2.4 

35.0 15.7 1.82 9.15E+06 3.77E+06 -1.8 

 

 
Figure 129: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1100 

Table 42: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1219.2 
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1219.2 1100 64.0 9.5 0.90 8.55E+06 8.46E+06 1.1 

57.2 10.7 0.90 6.90E+06 6.76E+06 2.0 

50.0 12.2 0.90 5.30E+06 5.18E+06 2.3 

45.0 13.5 0.90 4.38E+06 4.20E+06 4.2 

40.0 15.2 0.90 3.45E+06 3.32E+06 3.8 

35.0 17.4 0.90 2.75E+06 2.54E+06 7.5 

1300 64.0 9.5 1.07 9.15E+06 9.19E+06 -0.4 

57.2 10.7 1.07 7.30E+06 7.35E+06 -0.7 

50.0 12.2 1.07 5.70E+06 5.62E+06 1.4 

45.0 13.5 1.07 4.68E+06 4.56E+06 2.6 

40.0 15.2 1.07 3.75E+06 3.61E+06 3.9 

35.0 17.4 1.07 2.95E+06 2.76E+06 6.3 

1600 64.0 9.5 1.31 1.01E+07 1.03E+07 -2.3 

57.2 10.7 1.31 8.20E+06 8.22E+06 -0.3 

50.0 12.2 1.31 6.30E+06 6.29E+06 0.1 

45.0 13.5 1.31 5.16E+06 5.10E+06 1.1 

40.0 15.2 1.31 4.15E+06 4.03E+06 2.8 

35.0 17.4 1.31 3.20E+06 3.09E+06 3.4 

1800 64.0 9.5 1.48 1.07E+07 1.10E+07 -3.4 

57.2 10.7 1.48 8.60E+06 8.81E+06 -2.4 

50.0 12.2 1.48 6.70E+06 6.74E+06 -0.6 

45.0 13.5 1.48 5.46E+06 5.46E+06 -0.1 

40.0 15.2 1.48 4.32E+06 4.32E+06 0.0 

35.0 17.4 1.48 3.35E+06 3.31E+06 1.2 

2000 64.0 9.5 1.64 1.11E+07 1.17E+07 -5.8 

57.2 10.7 1.64 9.02E+06 9.39E+06 -4.1 

50.0 12.2 1.64 7.00E+06 7.18E+06 -2.6 

45.0 13.5 1.64 5.67E+06 5.83E+06 -2.7 

40.0 15.2 1.64 4.50E+06 4.61E+06 -2.4 

35.0 17.4 1.64 3.45E+06 3.53E+06 -2.3 

 

 
Figure 130: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1219.2 

Table 43: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1400 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1400 1100 64.0 10.9 0.79 7.95E+06 7.95E+06 0.0 
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57.2 12.2 0.79 6.40E+06 6.36E+06 0.6 

50.0 14.0 0.79 4.90E+06 4.87E+06 0.7 

45.0 15.6 0.79 4.08E+06 3.94E+06 3.3 

40.0 17.5 0.79 3.25E+06 3.12E+06 4.0 

35.0 20.0 0.79 2.55E+06 2.39E+06 6.3 

1300 64.0 10.9 0.93 8.40E+06 8.59E+06 -2.2 

57.2 12.2 0.93 6.80E+06 6.87E+06 -1.0 

50.0 14.0 0.93 5.32E+06 5.25E+06 1.2 

45.0 15.6 0.93 4.32E+06 4.26E+06 1.4 

40.0 17.5 0.93 3.50E+06 3.37E+06 3.8 

35.0 20.0 0.93 2.75E+06 2.58E+06 6.1 

1600 64.0 10.9 1.14 9.30E+06 9.54E+06 -2.6 

57.2 12.2 1.14 7.50E+06 7.63E+06 -1.7 

50.0 14.0 1.14 5.88E+06 5.84E+06 0.7 

45.0 15.6 1.14 4.80E+06 4.73E+06 1.4 

40.0 17.5 1.14 3.85E+06 3.74E+06 2.8 

35.0 20.0 1.14 2.95E+06 2.87E+06 2.8 

1800 64.0 10.9 1.29 9.75E+06 1.02E+07 -4.4 

57.2 12.2 1.29 7.90E+06 8.14E+06 -3.0 

50.0 14.0 1.29 6.16E+06 6.23E+06 -1.1 

45.0 15.6 1.29 5.04E+06 5.05E+06 -0.2 

40.0 17.5 1.29 4.00E+06 3.99E+06 0.2 

35.0 20.0 1.29 3.10E+06 3.06E+06 1.3 

2000 64.0 10.9 1.43 1.02E+07 1.08E+07 -6.0 

57.2 12.2 1.43 8.30E+06 8.65E+06 -4.2 

50.0 14.0 1.43 6.40E+06 6.62E+06 -3.4 

45.0 15.6 1.43 5.25E+06 5.36E+06 -2.2 

40.0 17.5 1.43 4.15E+06 4.24E+06 -2.2 

35.0 20.0 1.43 3.20E+06 3.25E+06 -1.6 

 

 
Figure 131: Comparison between FEA data and engineering tool in the plate load case (αip = 60˚) for d0 = 1400 
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Table 44: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 800 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

800 1100 64.0 6.3 1.38 1.56E+07 1.51E+07 3.0 

57.2 7.0 1.38 1.26E+07 1.21E+07 3.6 

50.0 8.0 1.38 9.75E+06 9.33E+06 4.3 

45.0 8.9 1.38 8.16E+06 7.58E+06 7.1 

40.0 10.0 1.38 6.50E+06 6.01E+06 7.5 

35.0 11.4 1.38 5.12E+06 4.62E+06 9.8 

1300 64.0 6.3 1.63 1.70E+07 1.67E+07 1.6 

57.2 7.0 1.63 1.38E+07 1.34E+07 2.7 

50.0 8.0 1.63 1.08E+07 1.03E+07 4.5 

45.0 8.9 1.63 8.88E+06 8.38E+06 5.6 

40.0 10.0 1.63 7.10E+06 6.64E+06 6.4 

35.0 11.4 1.63 5.60E+06 5.10E+06 8.8 

1600 64.0 6.3 2.00 1.92E+07 1.91E+07 0.4 

57.2 7.0 2.00 1.56E+07 1.53E+07 1.6 

50.0 8.0 2.00 1.22E+07 1.18E+07 3.0 

45.0 8.9 2.00 9.96E+06 9.58E+06 3.8 

40.0 10.0 2.00 8.00E+06 7.59E+06 5.1 

35.0 11.4 2.00 6.16E+06 5.83E+06 5.3 

 

 
Figure 132: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 800 
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Table 45: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 900 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

900 1100 64.0 7.0 1.22 1.46E+07 1.42E+07 2.2 

57.2 7.9 1.22 1.19E+07 1.14E+07 3.7 

50.0 9.0 1.22 9.15E+06 8.76E+06 4.2 

45.0 10.0 1.22 7.60E+06 7.12E+06 6.3 

40.0 11.3 1.22 6.10E+06 5.64E+06 7.5 

35.0 12.9 1.22 4.80E+06 4.33E+06 9.7 

1300 64.0 7.0 1.44 1.60E+07 1.57E+07 2.2 

57.2 7.9 1.44 1.28E+07 1.26E+07 1.9 

50.0 9.0 1.44 1.01E+07 9.64E+06 4.1 

45.0 10.0 1.44 8.20E+06 7.83E+06 4.5 

40.0 11.3 1.44 6.60E+06 6.21E+06 6.0 

35.0 12.9 1.44 5.12E+06 4.77E+06 6.9 

1600 64.0 7.0 1.78 1.78E+07 1.78E+07 0.1 

57.2 7.9 1.78 1.46E+07 1.43E+07 2.3 

50.0 9.0 1.78 1.13E+07 1.10E+07 2.6 

45.0 10.0 1.78 9.30E+06 8.90E+06 4.3 

40.0 11.3 1.78 7.30E+06 7.05E+06 3.4 

35.0 12.9 1.78 5.68E+06 5.42E+06 4.6 

1800 64.0 7.0 2.00 1.92E+07 1.92E+07 -0.1 

57.2 7.9 2.00 1.56E+07 1.54E+07 1.2 

50.0 9.0 2.00 1.21E+07 1.18E+07 2.0 

45.0 10.0 2.00 9.75E+06 9.61E+06 1.4 

40.0 11.3 2.00 7.80E+06 7.62E+06 2.3 

35.0 12.9 2.00 6.00E+06 5.85E+06 2.5 

2000 64.0 7.0 2.22 2.02E+07 2.06E+07 -2.0 

57.2 7.9 2.22 1.64E+07 1.66E+07 -0.9 

50.0 9.0 2.22 1.28E+07 1.27E+07 0.4 

45.0 10.0 2.22 1.04E+07 1.03E+07 0.3 

40.0 11.3 2.22 8.20E+06 8.18E+06 0.2 

35.0 12.9 2.22 6.32E+06 6.28E+06 0.6 

 

 
Figure 133: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 900 
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Table 46: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1100 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1100 1100 64.0 8.6 1.00 1.32E+07 1.29E+07 2.3 

57.2 9.6 1.00 1.06E+07 1.03E+07 2.5 

50.0 11.0 1.00 8.25E+06 7.93E+06 3.9 

45.0 12.2 1.00 6.80E+06 6.44E+06 5.3 

40.0 13.8 1.00 5.40E+06 5.10E+06 5.5 

35.0 15.7 1.00 4.27E+06 3.92E+06 8.3 

1300 64.0 8.6 1.18 1.42E+07 1.41E+07 0.9 

57.2 9.6 1.18 1.14E+07 1.13E+07 1.1 

50.0 11.0 1.18 9.00E+06 8.65E+06 3.9 

45.0 12.2 1.18 7.30E+06 7.02E+06 3.8 

40.0 13.8 1.18 5.90E+06 5.56E+06 5.7 

35.0 15.7 1.18 4.55E+06 4.27E+06 6.1 

1600 64.0 8.6 1.45 1.58E+07 1.58E+07 -0.2 

57.2 9.6 1.45 1.28E+07 1.27E+07 0.9 

50.0 11.0 1.45 9.90E+06 9.73E+06 1.7 

45.0 12.2 1.45 8.10E+06 7.90E+06 2.4 

40.0 13.8 1.45 6.40E+06 6.26E+06 2.2 

35.0 15.7 1.45 4.90E+06 4.81E+06 1.9 

1800 64.0 8.6 1.64 1.68E+07 1.70E+07 -1.2 

57.2 9.6 1.64 1.37E+07 1.36E+07 0.1 

50.0 11.0 1.64 1.05E+07 1.05E+07 0.4 

45.0 12.2 1.64 8.60E+06 8.49E+06 1.3 

40.0 13.8 1.64 6.80E+06 6.72E+06 1.1 

35.0 15.7 1.64 5.18E+06 5.16E+06 0.4 

2000 64.0 8.6 1.82 1.78E+07 1.82E+07 -2.1 

57.2 9.6 1.82 1.44E+07 1.46E+07 -1.2 

50.0 11.0 1.82 1.11E+07 1.12E+07 -0.7 

45.0 12.2 1.82 9.02E+06 9.07E+06 -0.6 

40.0 13.8 1.82 7.10E+06 7.19E+06 -1.2 

35.0 15.7 1.82 5.39E+06 5.52E+06 -2.4 

 

 
Figure 134: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1100 
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Table 47: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1219.2 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1219.2 1100 64.0 9.5 0.90 1.23E+07 1.23E+07 -0.1 

57.2 10.7 0.90 9.90E+06 9.86E+06 0.4 

50.0 12.2 0.90 7.80E+06 7.56E+06 3.1 

45.0 13.5 0.90 6.40E+06 6.14E+06 4.1 

40.0 15.2 0.90 5.10E+06 4.86E+06 4.7 

35.0 17.4 0.90 3.99E+06 3.73E+06 6.5 

1300 64.0 9.5 1.07 1.34E+07 1.34E+07 -0.2 

57.2 10.7 1.07 1.08E+07 1.07E+07 0.8 

50.0 12.2 1.07 8.40E+06 8.21E+06 2.2 

45.0 13.5 1.07 6.90E+06 6.67E+06 3.4 

40.0 15.2 1.07 5.50E+06 5.28E+06 4.0 

35.0 17.4 1.07 4.27E+06 4.05E+06 5.1 

1600 64.0 9.5 1.31 1.48E+07 1.50E+07 -1.1 

57.2 10.7 1.31 1.20E+07 1.20E+07 0.1 

50.0 12.2 1.31 9.36E+06 9.19E+06 1.8 

45.0 13.5 1.31 7.60E+06 7.46E+06 1.8 

40.0 15.2 1.31 6.00E+06 5.91E+06 1.5 

35.0 17.4 1.31 4.62E+06 4.53E+06 1.8 

1800 64.0 9.5 1.48 1.58E+07 1.60E+07 -1.4 

57.2 10.7 1.48 1.28E+07 1.28E+07 -0.7 

50.0 12.2 1.48 9.90E+06 9.84E+06 0.6 

45.0 13.5 1.48 8.00E+06 7.99E+06 0.1 

40.0 15.2 1.48 6.30E+06 6.33E+06 -0.5 

35.0 17.4 1.48 4.83E+06 4.86E+06 -0.5 

2000 64.0 9.5 1.64 1.66E+07 1.71E+07 -2.9 

57.2 10.7 1.64 1.34E+07 1.37E+07 -1.9 

50.0 12.2 1.64 1.04E+07 1.05E+07 -1.4 

45.0 13.5 1.64 8.40E+06 8.52E+06 -1.4 

40.0 15.2 1.64 6.60E+06 6.75E+06 -2.2 

35.0 17.4 1.64 5.04E+06 5.18E+06 -2.7 

 

 
Figure 135: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1219.2 
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Table 48: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1400 

d0  
[mm] 

bm  
[mm] 

t0 

 [mm] 
γ = d0/2t0 
[ - ] 

η = bm/d0 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference 
[%] 

1400 1100 64.0 10.9 0.79 1.14E+07 1.16E+07 -1.7 

57.2 12.2 0.79 9.15E+06 9.29E+06 -1.5 

50.0 14.0 0.79 7.20E+06 7.12E+06 1.1 

45.0 15.6 0.79 5.90E+06 5.78E+06 2.1 

40.0 17.5 0.79 4.72E+06 4.57E+06 3.1 

35.0 20.0 0.79 3.66E+06 3.51E+06 4.1 

1300 64.0 10.9 0.93 1.22E+07 1.25E+07 -2.7 

57.2 12.2 0.93 9.90E+06 1.00E+07 -1.3 

50.0 14.0 0.93 7.80E+06 7.69E+06 1.4 

45.0 15.6 0.93 6.30E+06 6.24E+06 1.0 

40.0 17.5 0.93 5.04E+06 4.94E+06 2.0 

35.0 20.0 0.93 3.90E+06 3.79E+06 2.8 

1600 64.0 10.9 1.14 1.36E+07 1.39E+07 -2.3 

57.2 12.2 1.14 1.10E+07 1.11E+07 -1.8 

50.0 14.0 1.14 8.55E+06 8.54E+06 0.1 

45.0 15.6 1.14 6.90E+06 6.93E+06 -0.5 

40.0 17.5 1.14 5.44E+06 5.49E+06 -0.9 

35.0 20.0 1.14 4.20E+06 4.21E+06 -0.3 

1800 64.0 10.9 1.29 1.44E+07 1.48E+07 -3.1 

57.2 12.2 1.29 1.16E+07 1.19E+07 -3.0 

50.0 14.0 1.29 9.00E+06 9.11E+06 -1.2 

45.0 15.6 1.29 7.30E+06 7.40E+06 -1.3 

40.0 17.5 1.29 5.68E+06 5.86E+06 -3.1 

35.0 20.0 1.29 4.38E+06 4.49E+06 -2.6 

2000 64.0 10.9 1.43 1.52E+07 1.58E+07 -3.8 

57.2 12.2 1.43 1.22E+07 1.26E+07 -4.0 

50.0 14.0 1.43 9.30E+06 9.68E+06 -4.1 

45.0 15.6 1.43 7.60E+06 7.86E+06 -3.4 

40.0 17.5 1.43 5.92E+06 6.22E+06 -5.1 

35.0 20.0 1.43 4.56E+06 4.77E+06 -4.7 

 

 
Figure 136: Comparison between FEA data and engineering tool in the padeye load case with constant geometry, d0 = 1400 

F.3.2  Variable padeye geometry 
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Table 49: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 800 

d0  
[mm] 

bm  
[mm] 

t0  
[mm] 

γ = d0/2t0 

[ - ] 
η = bm/d0 
[ - ] 

λ = bm/(Rm+h0) 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference  
[%] 

800 1100 64.0 6.3 1.38 1.38 1.38E+07 1.32E+07 4.6 

57.2 7.0 1.38 1.38 1.10E+07 1.06E+07 3.9 

50.0 8.0 1.38 1.38 8.40E+06 8.11E+06 3.4 

45.0 8.9 1.38 1.38 7.00E+06 6.60E+06 5.8 

40.0 10.0 1.38 1.38 5.60E+06 5.23E+06 6.6 

35.0 11.4 1.38 1.38 4.40E+06 4.02E+06 8.7 

1300 64.0 6.3 1.63 1.63 1.70E+07 1.68E+07 0.9 

57.2 7.0 1.63 1.63 1.38E+07 1.35E+07 2.1 

50.0 8.0 1.63 1.63 1.08E+07 1.04E+07 3.9 

45.0 8.9 1.63 1.63 9.00E+06 8.44E+06 6.3 

40.0 10.0 1.63 1.63 7.20E+06 6.69E+06 7.1 

35.0 11.4 1.63 1.63 5.60E+06 5.14E+06 8.2 

1600 64.0 6.3 2.00 2.00 1.66E+07 1.63E+07 1.8 

57.2 7.0 2.00 2.00 1.34E+07 1.31E+07 2.3 

50.0 8.0 2.00 2.00 1.04E+07 1.01E+07 3.4 

45.0 8.9 2.00 2.00 8.40E+06 8.17E+06 2.8 

40.0 10.0 2.00 2.00 6.80E+06 6.48E+06 4.8 

35.0 11.4 2.00 2.00 5.20E+06 4.98E+06 4.3 

 

 

Figure 137: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 800 

 

  

20

40

60

80

100

120

140

160

180

200

6.0 8.0 10.0 12.0

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

γ = d0/2t0

FEA data Analytical data

20

40

60

80

100

120

140

160

180

1.30 1.50 1.70 1.90 2.10

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

λ = bm/(Rm+h0)

FEA data Analytical data



F.3. Padeye load case 171 
 

CIE5060-09 MSc Thesis M. Oorebeek 

Table 50: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 900 

d0  
[mm] 

bm  
[mm] 

t0  
[mm] 

γ = d0/2t0 

[ - ] 
η = bm/d0 
[ - ] 

λ = bm/(Rm+h0) 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference  
[%] 

900 1100 64.0 7.0 1.22 1.38 1.28E+07 1.24E+07 3.3 

57.2 7.9 1.22 1.38 1.02E+07 9.93E+06 2.6 

50.0 9.0 1.22 1.38 8.00E+06 7.62E+06 4.7 

45.0 10.0 1.22 1.38 6.60E+06 6.19E+06 6.2 

40.0 11.3 1.22 1.38 5.20E+06 4.91E+06 5.6 

35.0 12.9 1.22 1.38 4.20E+06 3.77E+06 10.3 

1300 64.0 7.0 1.44 1.63 1.60E+07 1.58E+07 1.5 

57.2 7.9 1.44 1.63 1.28E+07 1.26E+07 1.2 

50.0 9.0 1.44 1.63 1.00E+07 9.70E+06 3.0 

45.0 10.0 1.44 1.63 8.20E+06 7.88E+06 3.9 

40.0 11.3 1.44 1.63 6.60E+06 6.25E+06 5.3 

35.0 12.9 1.44 1.63 5.20E+06 4.80E+06 7.7 

1600 64.0 7.0 1.78 2.00 1.54E+07 1.52E+07 1.5 

57.2 7.9 1.78 2.00 1.24E+07 1.22E+07 1.8 

50.0 9.0 1.78 2.00 9.60E+06 9.34E+06 2.7 

45.0 10.0 1.78 2.00 7.80E+06 7.59E+06 2.7 

40.0 11.3 1.78 2.00 6.20E+06 6.02E+06 3.0 

35.0 12.9 1.78 2.00 4.80E+06 4.62E+06 3.8 

1800 64.0 7.0 2.00 2.25 1.50E+07 1.48E+07 1.2 

57.2 7.9 2.00 2.25 1.20E+07 1.19E+07 0.9 

50.0 9.0 2.00 2.25 9.40E+06 9.12E+06 3.0 

45.0 10.0 2.00 2.25 7.60E+06 7.41E+06 2.5 

40.0 11.3 2.00 2.25 6.00E+06 5.87E+06 2.1 

35.0 12.9 2.00 2.25 4.60E+06 4.51E+06 1.9 

2000 64.0 7.0 2.22 2.50 1.48E+07 1.46E+07 1.6 

57.2 7.9 2.22 2.50 1.20E+07 1.17E+07 2.6 

50.0 9.0 2.22 2.50 9.20E+06 8.97E+06 2.5 

45.0 10.0 2.22 2.50 7.40E+06 7.29E+06 1.5 

40.0 11.3 2.22 2.50 6.00E+06 5.77E+06 3.8 

35.0 12.9 2.22 2.50 4.60E+06 4.44E+06 3.6 

 

 

Figure 138: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 900 
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Table 51: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1100 

d0  
[mm] 

bm  
[mm] 

t0  
[mm] 

γ = d0/2t0 

[ - ] 
η = bm/d0 
[ - ] 

λ = bm/(Rm+h0) 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference  
[%] 

1100 1100 64.0 8.6 1.00 1.38 1.14E+07 1.12E+07 1.6 

57.2 9.6 1.00 1.38 9.00E+06 8.99E+06 0.1 

50.0 11.0 1.00 1.38 7.00E+06 6.90E+06 1.5 

45.0 12.2 1.00 1.38 5.80E+06 5.60E+06 3.4 

40.0 13.8 1.00 1.38 4.60E+06 4.44E+06 3.5 

35.0 15.7 1.00 1.38 3.60E+06 3.41E+06 5.4 

1300 64.0 8.6 1.18 1.63 1.42E+07 1.42E+07 0.2 

57.2 9.6 1.18 1.63 1.14E+07 1.14E+07 0.4 

50.0 11.0 1.18 1.63 9.00E+06 8.71E+06 3.2 

45.0 12.2 1.18 1.63 7.40E+06 7.07E+06 4.4 

40.0 13.8 1.18 1.63 6.00E+06 5.60E+06 6.6 

35.0 15.7 1.18 1.63 4.60E+06 4.30E+06 6.5 

1600 64.0 8.6 1.27 1.75 1.42E+07 1.40E+07 1.1 

57.2 9.6 1.27 1.75 1.14E+07 1.13E+07 1.3 

50.0 11.0 1.27 1.75 8.80E+06 8.63E+06 1.9 

45.0 12.2 1.27 1.75 7.20E+06 7.01E+06 2.6 

40.0 13.8 1.27 1.75 5.80E+06 5.55E+06 4.3 

35.0 15.7 1.27 1.75 4.40E+06 4.26E+06 3.1 

1800 64.0 8.6 1.45 2.00 1.36E+07 1.35E+07 0.7 

57.2 9.6 1.45 2.00 1.08E+07 1.08E+07 -0.2 

50.0 11.0 1.45 2.00 8.40E+06 8.30E+06 1.2 

45.0 12.2 1.45 2.00 6.80E+06 6.74E+06 0.9 

40.0 13.8 1.45 2.00 5.40E+06 5.34E+06 1.1 

35.0 15.7 1.45 2.00 4.20E+06 4.10E+06 2.4 

2000 64.0 8.6 1.64 2.25 1.32E+07 1.31E+07 0.6 

57.2 9.6 1.64 2.25 1.06E+07 1.05E+07 0.8 

50.0 11.0 1.64 2.25 8.20E+06 8.06E+06 1.7 

45.0 12.2 1.64 2.25 6.60E+06 6.55E+06 0.8 

40.0 13.8 1.64 2.25 5.20E+06 5.19E+06 0.3 

35.0 15.7 1.64 2.25 4.00E+06 3.98E+06 0.5 

 

 

Figure 139: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1100 
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Table 52: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1219.2 

d0  
[mm] 

bm  
[mm] 

t0  
[mm] 

γ = d0/2t0 

[ - ] 
η = bm/d0 
[ - ] 

λ = bm/(Rm+h0) 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference  
[%] 

1219.2 1100 64.0 9.5 0.90 1.38 1.06E+07 1.07E+07 -1.0 

57.2 10.7 0.90 1.38 8.60E+06 8.58E+06 0.2 

50.0 12.2 0.90 1.38 6.60E+06 6.58E+06 0.4 

45.0 13.5 0.90 1.38 5.40E+06 5.34E+06 1.1 

40.0 15.2 0.90 1.38 4.40E+06 4.23E+06 3.9 

35.0 17.4 0.90 1.38 3.40E+06 3.24E+06 4.6 

1300 64.0 9.5 1.07 1.63 1.34E+07 1.35E+07 -0.4 

57.2 10.7 1.07 1.63 1.08E+07 1.08E+07 0.1 

50.0 12.2 1.07 1.63 8.40E+06 8.27E+06 1.6 

45.0 13.5 1.07 1.63 7.00E+06 6.71E+06 4.1 

40.0 15.2 1.07 1.63 5.60E+06 5.32E+06 5.1 

35.0 17.4 1.07 1.63 4.40E+06 4.08E+06 7.3 

1600 64.0 9.5 1.31 2.00 1.26E+07 1.28E+07 -1.3 

57.2 10.7 1.31 2.00 1.02E+07 1.02E+07 -0.3 

50.0 12.2 1.31 2.00 7.80E+06 7.84E+06 -0.5 

45.0 13.5 1.31 2.00 6.40E+06 6.36E+06 0.6 

40.0 15.2 1.31 2.00 5.20E+06 5.04E+06 3.1 

35.0 17.4 1.31 2.00 4.00E+06 3.87E+06 3.3 

1800 64.0 9.5 1.48 2.25 1.22E+07 1.24E+07 -1.3 

57.2 10.7 1.48 2.25 1.00E+07 9.90E+06 1.0 

50.0 12.2 1.48 2.25 7.60E+06 7.59E+06 0.1 

45.0 13.5 1.48 2.25 6.20E+06 6.16E+06 0.6 

40.0 15.2 1.48 2.25 5.00E+06 4.88E+06 2.4 

35.0 17.4 1.48 2.25 3.80E+06 3.75E+06 1.4 

2000 64.0 9.5 1.64 2.50 1.22E+07 1.21E+07 1.1 

57.2 10.7 1.64 2.50 9.80E+06 9.66E+06 1.4 

50.0 12.2 1.64 2.50 7.60E+06 7.41E+06 2.5 

45.0 13.5 1.64 2.50 6.20E+06 6.01E+06 3.0 

40.0 15.2 1.64 2.50 4.80E+06 4.76E+06 0.8 

35.0 17.4 1.64 2.50 3.80E+06 3.66E+06 3.8 

 

 

Figure 140: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1219.2 

20

40

60

80

100

120

140

160

8.0 10.0 12.0 14.0 16.0 18.0

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

γ = d0/2t0
FEA data Analytical data

20

40

60

80

100

120

140

160

1.10 1.50 1.90 2.30 2.70

N
1

,4
%

[N
]

x 
1

0
0

0
0

0

λ = bm/(Rm+h0)
FEA data Analytical data



174 Appendix F Post-processing FEA results 
 

M. Oorebeek CIE5060-09 MSc Thesis 

Table 53: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1400 

d0  
[mm] 

bm  
[mm] 

t0  
[mm] 

γ = d0/2t0 

[ - ] 
η = bm/d0 
[ - ] 

λ = bm/(Rm+h0) 
[ - ] 

N1,4% [N] 
FEM 

N1,4% [N] 
Eng. tool 

Difference  
[%] 

1400 1100 64.0 10.9 0.79 1.38 9.80E+06 1.01E+07 -2.9 

57.2 12.2 0.79 1.38 8.00E+06 8.08E+06 -1.0 

50.0 14.0 0.79 1.38 6.20E+06 6.19E+06 0.1 

45.0 15.6 0.79 1.38 5.00E+06 5.03E+06 -0.5 

40.0 17.5 0.79 1.38 4.00E+06 3.98E+06 0.5 

35.0 20.0 0.79 1.38 3.20E+06 3.05E+06 4.6 

1300 64.0 10.9 0.93 1.63 1.22E+07 1.26E+07 -3.4 

57.2 12.2 0.93 1.63 1.00E+07 1.01E+07 -1.0 

50.0 14.0 0.93 1.63 7.80E+06 7.74E+06 0.8 

45.0 15.6 0.93 1.63 6.40E+06 6.28E+06 1.9 

40.0 17.5 0.93 1.63 5.20E+06 4.97E+06 4.4 

35.0 20.0 0.93 1.63 4.00E+06 3.82E+06 4.6 

1600 64.0 10.9 1.14 2.00 1.16E+07 1.19E+07 -2.3 

57.2 12.2 1.14 2.00 9.20E+06 9.51E+06 -3.4 

50.0 14.0 1.14 2.00 7.20E+06 7.29E+06 -1.2 

45.0 15.6 1.14 2.00 5.80E+06 5.91E+06 -2.0 

40.0 17.5 1.14 2.00 4.60E+06 4.68E+06 -1.8 

35.0 20.0 1.14 2.00 3.60E+06 3.59E+06 0.2 

1800 64.0 10.9 1.29 2.25 1.12E+07 1.14E+07 -2.2 

57.2 12.2 1.29 2.25 9.00E+06 9.17E+06 -1.9 

50.0 14.0 1.29 2.25 7.00E+06 7.03E+06 -0.4 

45.0 15.6 1.29 2.25 5.80E+06 5.70E+06 1.7 

40.0 17.5 1.29 2.25 4.60E+06 4.52E+06 1.8 

35.0 20.0 1.29 2.25 3.60E+06 3.46E+06 3.8 

2000 64.0 10.9 1.43 2.50 1.10E+07 1.11E+07 -1.2 

57.2 12.2 1.43 2.50 9.00E+06 8.92E+06 0.9 

50.0 14.0 1.43 2.50 7.00E+06 6.83E+06 2.4 

45.0 15.6 1.43 2.50 5.60E+06 5.55E+06 1.0 

40.0 17.5 1.43 2.50 4.40E+06 4.39E+06 0.2 

35.0 20.0 1.43 2.50 3.40E+06 3.37E+06 0.9 

 

 

Figure 141: Comparison between FEA data and engineering tool in the padeye load case with variable geometry, d0 = 1400 
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