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Preface 

 

This is the final report of my Master’s thesis performed at the department of Structural and Building 

Engineering, part of the faculty  of Civil Engineering and Geosciences of Delft University of Technology. The 

subject of this thesis is “Analysis of Thin Concrete Shells Revisited: Opportunities due to Innovations in 

Materials and Analysis Methods”.  

 

The subject of the thesis associates with today’s renewed interest in free-form shells by the society. The 

construction of thin concrete shells ended abruptly at the end of the 1970s, mainly caused by the high costs 

in compare to other structural systems. However, uncertainties in the structural behaviour of shells did not 

help either. Contemporary progress in finite element software discards these uncertainties as it allows the 

engineer to closely approach the actual behaviour of thin concrete shells by  performing geometrically and 

physically nonlinear finite element analy ses. In addition, recent developments in concrete technology have 

led to ultra high performance fibre reinforced concrete with revolutionary performance in tension and 

compression. In fact, ultra high performance fibre reinforced concrete can be seen as a completely  new 

construction material and its possibilities are still to be revealed. The combination of advanced finite 

element analyses and ultra high performance fibre reinforced concrete may lead to shells with even greater 

spans and thinner thicknesses than achieved so far. In the following, this hypothesis is tested on a case 

study. The thesis’ report describes the activities undertaken and the results found, supplemented with 

historical, practical and theoretical background.  
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opportunity to develop my self both professionally and socially during my years in Delft. 
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Summary 

 

Shell structures have been constructed since ancient times. The Pantheon in Rome and the Hagia Sophia in 

Istanbul are well-known examples. After the Roman times the traditions of domes continued up to the 17 th 

century. Since then they seemed forgotten. Stimulated by the newly developed reinforced concrete and the 

demand to cov er long-spans economically and column free the shell made a comeback in the early 20th 

century. Franz Dischinger and Ulrich Finsterwalder designed in 1925 the first thin concrete shell of the 

modern era, the Zeiss planetarium in Germany. The modern era of shell construction is recognised by the 

trend towards greater spans and thinner shells. Guided by well-known engineers as Pier Luigi Nervi, 

Eduardo Torroja, Anton Tedesko, Nicolas Esquillan, Felix Candela and Heinz Isler a blooming period of 

widespread shell construction took place between 1950 and 1970. Shell construction suddenly vanished at 

the end of the 1970s, mainly caused by the high costs in compare to other structural systems. Moreover, 

inflexible usability  and uncertainties in the structural behaviour of shells and difficulty  of proper analy sis 

methods did not help neither did the stylistic identification with the 1950s and 1960s. Today the great era of 

thin shells is over, however, nowadays natural free-form shapes and blobs attract more and more attention. 

In addition, recent developments in concrete technology have led to ultra high performance fibre reinforced 

concrete with rev olutionary performance in tension and compression. Eventually this may lead to a revival of 

the thin concrete shell. 

 

Shells are constructed from concrete, profoundable due to the combination of filling and load carrying 

capacities. They are being built as ‘thin shells’, with a radius-to-thickness ratio starting at 200 reaching up to 

800 and higher. The low consumption of material follows from the profound that shells are very efficient in 

carrying loads acting perpendicular to their surface by in-plane membrane stresses. In fact, the preference 

for membrane action arises as a consequence of being thin. Bending moments eventually arise only to satisfy 

specific equilibrium or deformation requirements. They do not carry loads and have a local character.  

 

Concrete shells include single and double curved surfaces which are either synclastic, monoclastic or 

anticlastic. The surface can be generated by mathematical functions or by form-finding methods such as 

hanging membranes or pneumatic models. Contemporary computational advancement launched (real-time) 

computer based shell generation techniques such as the particle-spring sy stems. To calculate the membrane 

stresses of a given geometry  quantitative information can be obtained by constructing a polygon of forces 

(for simple geometries), by  using the Kirchhoffean based classical thin shell theory  or by computer software 

such as finite element programs. For qualitative information over the force flow the rainflow analysis or 

model tests can be performed. The geometry forms a structural effective shell if the shell is able to develop a 

prevalent membrane stress field up to the highest degree. Optimisation techniques, such as shape 

optimisation by minimising strain energy, may lead to a design which is much more efficient from a 
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structural point of view. Optimisation may be enhanced by computation optimisation algorithms such as 

ESO or ACO. In general the design will lead to a shell with a rise to span ratio between 1/10 and 1/6 with an 

opening angle between 60 and 90 degrees. The shell thickness is practically bounded by 60 to 80 mm for 

one- or two-layers of traditional steel reinforcing bars, respectively. Fibre reinforced structures may  be even 

thinner. The reinforcement percentages are rather low, approximately 0.15 to 0.4%. Possible prestressing 

may be applied in the edge (ring) beam or even in the shell surface itself. Finally, for a sound shell structure 

extra attention must be paid to the shell edge design in case of free edges. In general, forces flowing away 

from the edge prevent large edge beams which may cause problems such as shear off.  

 

Most shells are constructed in a conventional manner: pouring concrete on a formwork. Other possibilities 

are the use of airform moulds or stressed membranes combined with sprayed concrete. Although the 

number of repetition is often not very high, prefabricated elements may be used. After hydratation, the 

concrete is predominantly left blank, allowing the climate freely attack the concrete skin. 

 

In case of a failure, the shell may fail due to large deformations (buckling) or due to material nonlinearity 

(cracking and crushing) or by a combination of both (so-called inelastic or plastic buckling). The buckling 

behaviour of shells is a complicated phenomenon. Opposite to columns and plates, shells experience a 

sudden decrease in load carrying capacity after the bifurcation point (which can be obtained by a simple 

linear buckling analysis). The fall-back is caused by the phenomenon of compound buckling which refers to 

sev eral buckling modes associated with the same critical load. In the postbuckling range the modes, which 

were orthogonal in the linear prebuckling range, start to interact resulting in a significantly reduced load 

carrying capacity. As discovered by  Koiter, the major problem of the shell buckling behaviour is the 

accompanied imperfection sensitivity. Initial geometrical imperfections in the shell cause the bifurcation 

point never to be reached and lead to limit point buckling at a considerably lower load. The size of the 

imperfections determines the limit load at which the shell fails. In case of plastic buckling, the fall-back is 

further intensified by material nonlinearity. 

 

From the foregoing two primary research questions can be formulated: 

 

What is for a shell of hemispherical geometry, with given material properties, given support conditions, 

and subjected to a given load, the knock-down factor which indicates the difference between the linear 

critical buckling load and the actual critical buckling load taking into account imperfections and 

geometrical and physical nonlinearities? 

 

And 

 

Can high strength fibre reinforced concrete add to the trend towards greater spans and thinner shells with 

possibilities for even more slender structures? 

   

To obtain an answer to the research questions a series of analyses (linear elastic, stability, geometrically 

nonlinear and geometrically  and phy sically  nonlinear) is performed on a given hemispherical shell: the Zeiss 

planetarium shell. The shell has a radius of curvature of 12500 mm and a thickness of 60 mm. Thereby, the 
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R/t ratio is equal to 200. The shell is reinforced with one layer of low quality reinforcement FeB220 and 

assumed to be made from a C20/25 low quality  concrete mixture to ally with the early 20th century concrete 

technology. For this research the shell is modelled with an axisymmetric curved line model and a three-

dimensional model subjected to uniform spherical or vertical load. During analyses, the R/t ratio is ranged 

from 200 up to 1000 (stepsize 200). Additionally, the possibilities of even more slender structures by using 

high strength fibre reinforced concrete are investigated by comparing the original C20/25 shell to a 

C180/210 ultra high performance fibre reinforced concrete mixture. To investigate the influence of initial 

geometrical imperfections a local top imperfection is modelled with an imperfection amplitude ranging from 

w0/t = 0.0 to 1.0 (stepsize 0.2). Moreover, the influence of four boundary conditions is investigated, i.e. 

roller, inclined-roller, hinged and clamped support. 

 

The linear elastic analysis proved to be in fair agreement with the (benchmark) analytical results for the 

three-dimensional model. The axisymmetric model is found to be less accurate and reliable, in particular 

with respect to the bending moments caused by restrained deformation at the supports. In both models 

disturbances in the stress and bending moment distribution were caused by the numerical imperfections. 

They appeared to be negligible on the linear solution. The disturbances are more apparent in the stability 

analysis, as they cause premature buckling modes preceding the actual shell buckling shape. Membrane 

supported shells with spherical load show a global buckling pattern of small local waves. The critical 

buckling load is significantly lower for membrane incompatible support conditions and/or vertical load. 

Shells subjected to v ertical load, by  definition, buckle in the boundary layer. The three-dimensional buckling 

results reveal the occurrence of compound buckling as adjacent critical loads are very  close to each other. In 

general, thinner shells experience compound buckling up to a higher degree than thicker shells. The results 

of the axisymmetric shell model are poor, as compound buckling is not predicted correctly. Moreover, the 

axisymmetry causes the tendency to buckle at the top and the buckling loads are disturbed by the incorrect 

bending moments in case of a hinged and clamped support.  

 

The geometrically nonlinear results demonstrate the imperfection sensitivity  of shells as even small 

imperfection amplitudes already cause a significant decrease in load carrying capacity. The results appear to 

be in reasonable correlation to the Koiter half-power law and the relation as proposed by the IASS 

Recommendations, Kollar and Dulacska [54]. The inclined-roller supported shell subjected to spherical load 

provides an upper bound solution. The shell, by  definition, fails at the imperfection. Variations in boundary 

and load conditions may lead to a shell failure insensitive to the top imperfection until the imperfection 

progresses to a certain size. The introduction of material nonlinearity leads to a further decrease in load-

carrying capacity and the transformation to a strength failure rather than a buckling failure in case of shells 

subjected to uniform vertical load. Buckling eventually takes place after significant cracking, responsible for 

the major part of the knock-down factor, has occurred. In the considered hemispherical shells cracking, 

crushing and buckling strongly interact before and during failure. This is influenced by  loading, shell 

thickness, material properties and geometrical imperfections. For the considered C20/25 hemispherical 

shell the knock-down factor is much smaller than the knock-down factor as derived using the IASS 

recommendations, which apparently are very conservative. The use of high strength fibre reinforced concrete 

appeared to be advantageous, in particular the higher axial and flexural tensile strength give the engineer 

opportunities to design thinner shells. Furthermore, high strength concrete is advantageous in compression 
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as it excludes premature compressive crushing failure before the critical buckling load is reached. Opposed 

to fibre reinforced beams in bending, the significant ductility (postcracking plateau) of high strength fibre 

reinforced concrete does not influence the ultimate load carrying capacity of hemispherical shells. This 

might be caused by the buckling which occurs simultaneously with significant cracking. 

 

From the results it can be concluded that it is impossible to derive a general expression for the knock-down 

factor, unless high factors of uncertainty are taken into consideration. However, contemporary finite element 

software makes possible to determine the structural behaviour of an imperfect shell and to compute its fall-

back in load carrying capacity conveniently within a small amount of time by performing a geometrically and 

physically nonlinear analysis. In fact, it is this conclusion that is the most salient. 
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  Chapter 1.   Introduction and Aim of Thesis 

 1

1 Introduction and Aim of Thesis 

 

 

Appearing first in the early 20th century, thin concrete shell structures were frequently used for long-span 

roof structures throughout Europe and beyond during the period between 1920 and 1970. The development 

stemmed from the need to cover medium to large spans economically and from a fascination with a new 

material: reinforced concrete. Concrete shells include single curved shapes such as cylinders and cones and 

double curved geometries such as domes which are either synclastic (curves running in the same direction) 

or anticlastic (curves running in opposite directions). Most shells are constructed in a conventional matter: 

pouring concrete on a formwork. Concrete shells are built as ‘thin shells’. There is referred to a thin shell as 

the radius-to-thickness ratio of 200 puts the shell in the range of being ‘thin’. Thin shells provide in an 

advantageous low consumption of material.  

 

The low consumption of material in shell structures follows from the unique character of the shell: the 

curvature in spatial form. This unique character is responsible for the profound that shell structures are very 

efficient in carrying loads acting perpendicular to their surface by so-called membrane action, a general state 

of stress which consists of in-plane normal and shear stress resultants only, whereas other structural forms 

carry  the applied load mostly  by  bending action, the least efficient load carrying method. This membrane 

action results in (low) in-plane membrane stresses which can be absorbed by only a small thickness of the 

shell. As a consequence shell structures can be very thin and still span great distances. Radius-to-thickness 

ratios of 400 or 500 are not uncommon. Bending moments eventually arise to satisfy specific equilibrium or 

deformation requirements. Because bending moments are confined to a small region the rest of the shell is 

virtually free from bending actions and still behaves as a true membrane. It is this salient feature of shells 

that is responsible for the most profound and efficient structural performance! 

 

Historically, shell structures have been developed since ancient times. The Pantheon in Rome and the Hagia 

Sophia in Istanbul are two well-known examples, respectively constructed in the 2nd and 6 th century A.C. 

After the Roman times the tradition of domes continued up to the 17 th century, however, in the 18th/19th 

century, the art of designing concrete shell structures seemed forgotten. Guided by German designers Franz 

Dischinger and Ulrich Finsterwalder, the concrete shell made a come-back in the early 20th century. The first 

shell of the modern era is the Zeiss planetarium in Germany built in 1925.  

 

The Zeiss planetarium was the start of a new tradition of thin concrete shell structures. Besides Dischinger 

and Finsterwalder, Eduardo Torroja in Spain, Pier Luigi Nervi in Italy and Anton Tedesko in the United 

States were among the pioneer shell builders. The inception of the Second World War caused an interruption 
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in shell development. The post-war period, however, created exactly  those conditions needed for flourishing 

shell construction: low labour costs and construction material (in particular steel) being in short supply. 

That launched the blooming period of shell construction which spans approximately 20 years between the 

1950s and 1970s and can be characterised by wide spread shell construction throughout the entire world. 

The post-war thin shell tradition was carried forward by engineers such as Felix Candela, Mircea Mihailescu 

and Nicolas Esquillan. In particular the shells of Candela are spectacular and attracted the attention of 

architects like Saarinen which became inv olved in shell design.  

 

The blooming period ended abruptly in the 1970s. Already since the 1960s the emphasis of concrete shell 

building has moved to developing countries as shells in Europe became too expensive in compare to other 

structural systems, mainly due to labour and formwork costs. However, from the 1970s almost no shells were 

built, except for those of Swiss Heinz Isler who used inventive reusable formwork and standardised shell 

sizes. Isler is, however, most famous for his elegant free-form shells derived from form-finding methods 

which are the basis of much contemporary research. 

 

Today the great era of thin concrete shells is ov er. However, stimulated by the search towards new 

architectural boundaries and stemming from the fascination of contemporary computational design as well 

as the availability of high tech construction materials such as carbons and ultra high performance concrete, 

nowaday s more natural free-form shapes and blobs attract attention of architects (and engineers) and are 

accepted and liked by the society. So far these structures do not behave like shells but with more 

architectural and engineering interaction these structures may be turned into form active structural 

surfaces in time.  

 

 

1.1 Context of Thesis 

 

The modern era of shell construction is recognised by the trend towards greater spans and thinner shells. 

Modern shell structures span larger column-free areas (up to 200 m and more) and, more important, with 

thinner thicknesses than the traditional domes. The desire to reduce the thickness is understandable as the 

dead weight of the shell represents the major portion of the total load. Moreover, the preference for 

membrane action arises as a consequence of being thin. For engineers, the significance of the ever growing 

span in combination with a larger radius-to-thickness ratio lies in the realisation that the shell contains less 

strength reserve and, more important, buckling becomes dominant for failure.  

 

Similar to the stability theory of centrally compressed bars (Euler), the critical load for shells can be found 

by  looking for the load at which, besides the original, unbuckled state, another neighbouring shape, infinitely 

close to the first one, also becomes possible. This was successfully done for the first time by  Zoëlly  as he 

derived the equation for the linear critical buckling load of a sphere under radial pressure in 1915. However, 

opposite to bars (and plates) significant discrepancies were found between theory and experiment. The 

answer to the great discrepancy between theory and experiment laid in the geometrically nonlinear theories 

and the influence of initial geometric imperfections. The introduction of geometrical nonlinearities (large 

deformations) enabled investigation to the postbuckling behaviour of shells. It was found that after the 
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bifurcation point the shell experiences a significant decrease in load carrying capacity caused by the 

phenomenon of compound buckling. Compound buckling refers to the situation in which several buckling 

modes are associated with the same critical load. Within the linear range the modes are orthogonal; 

however, they  start to interact in the postbuckling regime causing the load to fall down. Moreov er, it was 

discovered that shells are very sensitive to initial geometric imperfections which cause the bifurcation point 

never to be reached and premature limit point failure is detected. Furthermore, the differences are not only 

the result of the nonlinear behaviour due to large deflections and imperfections in geometry, but also the 

result of material nonlinearities such as cracking and crushing.  

 

Extensive research to the shell buckling behaviour has resulted in a qualitative explanation of the 

phenomenon. It is clear that shells by no means can be designed on the basis of the linear critical buckling 

load. Engineers solved this by using (very) high safety factors for their shells. However, this is not very 

accurate and reliable. Hence, there is a need for usable design aids to determine the (quantitative) buckling 

response of thin concrete shell structures. 

 

 

1.2 Aim of Thesis 

 

1.2.1 Problem Description 

 

Modern era shell design is recognised by the trend toward greater spans and thinner shells. Recent 

development of high strength fibre reinforced concrete can add to this trend with possibilities for even more 

slender shell structures. However, in correlation with high slenderness, shells become very  sensitive for 

initial geometrical imperfections which may lead to a buckling failure at substantially lower load than follows 

from the linear theory. The need at this time is to extend the understanding in concrete shell buckling and to 

provide shell designers and analysts with reliable design aids to determine the fall-back in load carrying 

capacity, easily understood and used. 

 

1.2.2 Objective 

 

The objective of this master thesis is to verify the expectation of constructing shells with an even higher 

slenderness than is reached today using high strength fibre reinforced concrete. Furthermore, the research 

must contribute to a better understanding of the buckling phenomenon, in particular, a better 

understanding of the decrease in load carrying capacity caused by  initial geometrical imperfections and 

geometrical and material nonlinearities. As the structural engineer prefers general methods of calculation 

with a limited amount of computational work, a procedure is proposed for which the actual buckling load is 

determined by  multiplying the linear critical buckling load (which can easily  be obtained from a linear 

stability analysis) with a so-called knock-down factor.  Perhaps, a reliable design aid can be obtained to 

determine the knock-down factor using simple design formulae.  
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The objective leads to two research questions which can be formulated as; 

 

1. What is for a shell of hemispherical geometry, with given material properties, given support 

conditions, and subjected to a given load, the knock-down factor which indicates the difference 

between the linear critical buckling load and the actual critical buckling load taking into account 

imperfections and geometrical and physical nonlinearities? 

2. Can high strength fibre reinforced concrete add to the trend towards greater spans and thinner 

shells with possibilities for even more slender structures? 

 

1.2.3 Process 

 

To obtain an answer to the research questions, a shell with given geometry is introduced: the 1925 Zeiss 

planetarium in Jena, Germany. The Zeiss planetarium shell is analy sed with the finite element program 

DIANA. For the research the base shell is modelled by conventional and high strength fibre reinforced 

concrete. In order to gain insight in the structural behaviour first a linear elastic analysis is performed and 

compared to a benchmark hand calculation determined using the classical shell theory. Afterwards the 

linear critical buckling load and the actual critical buckling load taking into account for imperfections and 

geometrical and phy sical nonlinearities are computed in a stepwise approach. First the effect of initial 

geometrical imperfections and geometrical nonlinearities is considered while additional material 

nonlinearities are introduced in succession. By varying the load conditions, support conditions and the 

radius-to-thickness ratio the general response may be found. The results are compared to buckling theories. 

 

 

1.3 Approach of Thesis Aim 

 

The aim of the thesis is reached through four parts with, in total, 14 chapters;  

 

 

Part I – Background 

 

Chapter 2 History of Thin Concrete Shells 

Chapter 3 Shell Design 

Chapter 4 Shell Construction 

 

Part II – Theory 

 

Chapter 5 Theory of Shells 

Chapter 6 Structural Failure 

 

Part III – Case Study 

 

Chapter 7 Zeiss Planetarium 
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Chapter 8 Material 

Chapter 9 Loading 

Chapter 10 Hemispherical Example 

 

Part IV – Finite Element Analysis 

 

Chapter 11 Finite Element Method 

Chapter 12 Linear Elastic Finite Element Analy sis 

Chapter 13 Stability Finite Element Analy sis 

Chapter 14 Geometrically Nonlinear Finite Element Analysis 

Chapter 15 Fully Nonlinear Finite Element Analysis 

 

 

Part I discusses general background information. Chapter 2 covers the historical development in modern era 

shell construction from the Zeiss planetarium in Jena up to contemporary free-form designs. In Chapter 3 

the design process is studied by means of structural behaviour, surface generation and classification, 

optimisation techniques and important design considerations. Chapter 4 discusses the shell construction 

process.  

 

Part II represents the theoretical part. In Chapter 5, the classical shell theory as formulated by Love is 

derived using a stepwise approach starting with the theory of bars and plates. In Chapter 6 the structural 

failure, mainly gov erned by the phenomenon of buckling, is extensively reported. Similar to Chapter 5, the 

bar and plate are discussed first.  

 

Part III includes the elaboration of a case study  of a hemispherical shell; the Zeiss planetarium in Germany. 

The case study is prepared by setting the geometry in Chapter 7, the material properties in Chapter 8 and the 

load conditions using the Eurocode 2 in Chapter 9. In Chapter 10, the linear elastic behaviour of the 

hemispherical shell is determined and a buckling calculation is performed. 

 

Part IV discusses the finite element analy sis. Some theoretical background is provided in Chapter 11. In 

Chapter 12, 13, 14 and 15, the finite element analy sis is performed in the case study shell described in Part 

III. The results of the linear elastic finite element analy ses are presented in Chapter 12 while the buckling 

response is reported in Chapter 13. Chapter 14 covers limit point buckling caused by large deformations and 

initial geometrical imperfections and Chapter 15 approaches the actual behaviour with the inclusion of 

material nonlinearity such as cracking and crushing.  

 

 

The thesis concludes in Chapter 16 and 17 with the Conclusion and Recommendations. 



 

 



 

 

 
part I 
Background 
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2 History of Thin Concrete Shells 

 

 

The Roman Pantheon, as it stands today in the centre of the city  of Rome, really is a remarkable and 

imposing structure. The Pantheon is a masterpiece of ancient shell construction and has withstood for 

almost two-thousand years. Today, the span of 43 m still impresses the engineering profession. The 

Pantheon, built in the early 2nd century A.C., approximately 125, is the largest unreinforced dome in the 

history, Croci [26]. It can be seen in Figure 2.1. 

 

The Hagia Sophia is a second example of the structural capacity of the classical builders. It is built in the 6 th 

century, however, damages from earthquakes and fires have drastically altered the structure giving the 

building the appearance that it has today. The Hagia Sophia features some important differences with the 

Pantheon because of the fact that the dome is supported by four huge columns on the corners of a 32 by 32 

m square. The problems how to resists the circumferential tensile stresses of the lower part of the dome and 

how to transfer the vertical meridian forces to the pillars are solved by the introduction of hemidomes and 

abutments (to balance the thrust) and pendentives associated with arches (to transfer the vertical load). The 

dome, which rises up to 54 m, has a diameter of 32 m, Croci [26]. Cronogically it is the second biggest dome 

in the ancient times, after the Pantheon. It is also seen in Figure 2.1. 

 

Long before the Pantheon and the Hagia Sophia, classical builders constructed pseudo vaults in early aged 

beehive houses (2500 B.C.) and Egyptian and Assyrian cultures used barrel vaults for tombs and cov ered 

canals, Hanselaar [44]. The widespread arch construction for aqueducts and amphitheatres in the Roman 

Empire leaded to the domes of the Pantheon and Hagia Sophia. After the Roman times the tradition of vaults 

and domes continued in Byzantium, the Romanesque, the Gothic, the Renaissance and the Baroque. 

However, in the 18th and 19th century, the art of designing shell structures seemed forgotten, Popov  and 

Medwadowski [62].  

 

Guided by German designers Franz Dischinger and Ulrich Finsterwalder and the newly developed reinforced 

concrete, the shell made a come-back in the 1920s. The modern era of shell design, which started with the 

completion of the Zeiss planetarium in Germany, is recognised by the trend toward greater spans and 

thinner shells. Furthermore, theoretical progression and state-of-the-art computational features enabled 

more and more architectural freedom, leading to the contemporary free-form and blob structures.  
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The modern era of shell history is discussed in this chapter. Therefore, the era is divided into four periods. A 

period of precursors before the Second World War (1925-1940), the War years (1940-1945), the blooming 

period with widespread shell construction which ended suddenly  in the 70s (1945-1970) and the 

contemporary period with pioneering construction techniques, modern architecture and computational 

advancement. The historical perception is guided by the important shell structures and designers of the 20th 

century.  

 

    

Figure 2.1. Aerial  view of the Pantheon (125) in  Rome, http.nl .wikipedia.org, and the interior of the Hagia Sophia (537) in  Istanbul , 

http://folk.uio.no 

 

While reading, one must keep in mind that, however in reality different historical events coincide, it is not 

possible to write like that. Therefore, and because of the relationship between certain events, occasionally 

there are made small steps (forward and backward) in time. 

 

 

2.1 Precursors (1900-1925) 

 

The modern era of shell structures started in 1925 with the completion of the first thin reinforced concrete 

shell covering the Zeiss planetarium in Jena, Germany. It was, however, a few years earlier, in the beginning 

of the 20th century that throughout Europe several reinforced concrete shell structures arise, inspired by the 

new material reinforced concrete, patented and promoted by Joseph Monier, a French gardener, Billington 

[7]. These early ‘thick’ shells are mostly documented in national literature only, and, therefore, less 

accessible for historical research. An example is the dome of the 1914 Cenakel church by J.G. Wiebenga, 

constructed in Nijmegen in the east of the Netherlands. The church, presented in Figure 2 .2, was most 

probably the largest reinforced concrete dome in Europe at that time with a diameter of 14.5 m and a 
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thickness of 100 mm, Haas [42]. The thickness to span ratio is 1/73 (hence, the shell is referred to a thick 

shell as a thickness to span ratio of 1/200 puts the shell in the range of being ‘thin’).  

 

 

Figure 2.2. Cenakel  church  (1914) Nijmegen by  J.G. Wiebenga, h ttp.nl.wikipedia.org 

 

Nine years later French engineer Eugene Frey ssinet (1870-1947) did pioneering work and constructed two 

celebrated cylindrical vaults at the military airfield in Orly, presented in Figure 2.3. The corrugated airship 

hangars are a fine example of an early  folded slab, where Freyssinet used the folding to stiffen the hangar 

avoiding heavy material use. They span 86 m with a height of 50 m, Billington [7]. The structures were 

demolished at the end of the Second World War. In 1924 Freyssinet applied the same principle for the 

construction of two airplane hangars spanning 55 m at Velizy -Villacoublay airport. Unfortunately, also these 

hangers did not survive; however, there still is an international subsidiary of the modern civil engineering 

Freyssinet Company in the village near Paris. 

 

   

Figure 2.3. Freysinnet’s Airship hangar (1923) Orly , www.essential-architecture.com 

 

 

2.2 Start of Modern Era (1925-1940) 

 

The pioneering work of early 20th century engineers like Freyssinet raised the fascination of the new 

reinforced concrete of Germans Franz Dischinger (1887-1953) and Ulrich Finsterwalder (1897-1988), 

engineers at Dyckerhoff & Widmann AG. They recognised that the combination of concrete and steel would 

enable them to overcome the tension problems of ancient domes which forced large cross-sections and 

limited spans. Dischinger and Finsterwalder became inv olved in designing a reinforced concrete shell 

structure for the Carl Zeiss Optical Industries in Jena in the east of Germany. Walter Bauersfeld (1879-1959), 
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an engineer of the Carl Zeiss Company, wanted to build a planetarium and needed a large hemisphere for the 

projection of the starry sky. He had developed a triangular steel grid as stay -in-place framework and 

reinforcement (and with that he became the inventor of the so-called geodesic dome, later developed to its 

full potential by Buckminster Fuller). Before designing the planetarium Dischinger and Finsterwalder 

experienced with the steel framework and constructed several small-scale models which eventually leaded to 

a small, but very  thin, canopy with a span of 16 m and a thickness of only 30 mm on top of the Zeiss factory 

seen in Figure 2.4, Günschel [40]. 

 

 

Figure 2.4. The experimental  canopy on the Zeiss factory, http://ke.arch.rwth-aachen.de 

 

The success of the canopy  resulted in the construction of the shell for the planetarium in 1925, the first thin 

reinforced concrete shell structure in the world. The planetarium shell has a span of 25 m and a thickness of 

just 60 mm. The Zeiss planetarium shell has a height of 12.5 m and spans a circular room with 500 seats. 

The shell and the triangular steel framework can be seen on Figure 2.5. The reinforcement grid is encased 

with concrete using the so-called Torkret method in which concrete is sprayed with air pressure on a wooden 

formwork. Eventually  the concrete was covered by sheet metal. The planetarium is supported by a 

continuous tension ring capable of absorbing the circumferential tensile stresses rising in the lower part of 

the shell, Günschel [40]. The planetarium is still in use today and scheduled to become a historic monument.  

 

    

Figure 2.5. Zeiss Planetarium (1925) by  Dischinger, Finsterwalder and Bauersfeld, www.structurae.co.uk 

 

The realisation of the Zeiss planetarium shell became a huge success for Dyckerhoff & Widmann AG in shell 

construction. Dyckerhoff & Widmann AG and in particular Dischinger and Finsterwalder earned world wide 

recognition. Following their success of the planetarium construction and the successful cooperation with 

Walter Bauersfeld, the construction system with the stay -in-place steel network system encased by concrete 

was patented the Zeiss-Dywidag system, Billington [7]. 
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From 1925 to 1931, the year in which Dischinger became lecturer for reinforced concrete construction at the 

Berlin University of Technology, Dischinger and Finsterwalder engineered several impressive Zeiss-Dywidag 

shell structures, such as market halls in Hanover, Frankfurt, Leipzig and Basel. In particular, the structures 

in Frankfurt and Leipzig where milestones in early reinforced concrete shell construction, as both structures 

showed the enormous potential of shell structures cov ering large areas with less material, Billington [7]. 

Martin Elsässer’s design for the market hall in Frankfurt, Figure 2 .6, consists of 15 cylindrical shells of 14 m 

wide and 37 m long which lay side-by-side forming a column-free area of 11000 m2. The thickness of a shell 

is just 70 mm and it is reinforced by a double layer of the Zeiss-Dywidag triangular steel network. 

  

     

Figure 2.6. Frankfurter market hall  (1927) with  the Zeiss-Dywidag steel  reinforcement, Joedicke 1962 

 

The Leipzig hall, Figure 2.7, is designed by H. Ritter and is cov ered by two elliptical segmental shells with a 

thickness of 90 mm. The shell segments are stiffened at the corners by 8 arch-shaped beams and span 74 m. 

At the base of the shell structure, the tensile stresses are absorbed by a tension ring which is practically 

continuous supported by a system of columns and arches. The upper part of the shell is replaced by a glass 

façade through which natural light enters the building, Joedicke [52]. 

 

   

Figure 2.7. Leipzig market hall  (1929) by  Dischinger and Finsterwalder, www.structurae.co.uk 

 

The German construction firm Dyckerhoff & Widmann AG played a major role in early shell construction 

and distribution with their patented Zeiss-Dywidag sy stem. First in Germany and neighbouring countries as 

The Netherlands, Switzerland and Hungary and later further throughout Europe and in the United States of 

America, Billington [7]. The company had a remarkable group of structural engineers developing their new 

reinforced thin concrete shells in the early 1930s. Besides head engineer Franz Dischinger and his assistant 

(and later successor) Ulrich Finsterwalder, there were young promising engineers as Hubert Rüsch (1904-

1979), Wilhelm Flügge (1904-1990) and Anton Tedesko (1903-1994). 
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The name of Anton Tedesko is directly related to the history  of shells in the USA. In 1932 Dyckerhoff and 

Widmann AG decided to send young engineer Anton Tedesko and their patent to Roberts & Schaefer in 

Chicago to promote their Zeiss-Dywidag shell systems in the United States. Hence, not without success, the 

rise of thin concrete shell structures in the USA can completely be attributed to Tedesko. At the age of 33 he 

constructed the first shell of America in 1936, the Hersheypark Arena in Hershey, Pennsylvania. The 

Hersheypark shell is a cylindrical barrel vault shell, see Figure 2.8. As he did with most of his shell 

structures, Tedesko designed the Arena as a shell with stiffening ribs. The Hersheypark shell has a square 

plan of 70 by 110 m and a height of 30 m. The thickness of the shell is just 90 mm which slightly increases 

near the supports. The shell, which covers an ice-hockey rink and 7228 seats, was financed by the Hershey 

Chocolate Company, Weingardt [84]. 

 

 

Figure 2.8. Hersheypark Arena (1936) with  inside stiffening ribs by  Anton Tedesko, www.hersheyarchives.org 

 

Although Tedesko had made many designs before 1936, none of them where built. However, the publicity 

relating to the Hersheypark Arena opened doors and more shell structures followed. Also other engineers 

came involved in shell construction. Besides Anton Tedesko, the names of Richard Bradshaw, Norwegian 

Frederick Severud (also of the St. Louis Gateway Arch) and the Ammann & Whitney Company must be 

mentioned. Their contribution to the American shell history is, however, post-war and thus discussed later. 

 

Where the construction of the Zeiss planetarium first only served as cataly st for thin reinforced concrete 

shells in Germany and neighbouring countries, it did not last for long until the shell experiences distributed 

throughout entire Europe. Besides Franz Dischinger and Ulrich Finsterwalder in Germany, Eugene 

Freyssinet and Bernard Laffaille (1900-1955) in France, Pier Luigi Nervi (1891 -1979) and Giorgio Baroni in 

Italy and Eduardo Torroja (1899-1961) in Spain where among the first shell builders.  

 

Pier Luigi Nervi completed Italy’s first shell structure in 1932. The shell cov ered the grandstand of the new 

municipal stadium in Florence, a single curved shell structure which cantilevers 17 m and is supported every 

4.7 m by cantilever frames. The design was the winner of a competition, largely because of the relatively  low 

costs inv olved in realisation (!). The shell for the municipal stadium turned out to be a presage of Nervi’s 

imposing career involving shells. Immediately after Nervi finished the Florence project he won another 

competition written by the Italian Air Force. They needed housing for their air fleet at the military airports of 

Orvieto, Orbetello and Torre del Lago. Inspired by nature, Nervi constructed large ribbed cylindrical hangars 

of intense beautiness as can be seen in Figure 2.9. The structures are designed as a geodetic framework and 
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span 100 by  40 m. They  were built in 1935 using wooden formwork and reinforced concrete. The application 

of ribs to stiffen the shell would return in later shell designs, becoming his trademark. To Nervi, the 

problems that arise during construction provided an illustration of the disadvantages of wooden formwork 

wherever the concrete work goes beyond the simple shape. When Nervi got commission to build another 

series of airplane hangars in 1940, he made a second design to overcome the disadvantages, Desideri [28].  

 

He came with the pioneering idea of replacing the poured-in-place concrete beams with beams constructed 

of prefabricated parts. Nervi designed the ribs of the new hangar as lattice ribs making the construction 

lighter and suitable for prefabrication. Only at the points of greatest stress Nervi used poured-in-place 

concrete beams. The connections between the prefabricated parts where done by welding the steel and using 

high strength concrete in the space left at the junction. The difference between the first and second hangar 

designs can be seen on Figure 2 .9. The left imagine shows the original design and both righter imagines the 

new shell with the prefabricated lattice ribs. The precasting and erection was simple and fast and when the 

Germans dynamited his airplane hangars at the end of the war, the majority  of the joints stayed intact. Nervi 

had proved that the monolithic qualities of the construction were not disturbed by dividing the structure into 

precast elements, Desideri [28].  

 

     

Figure 2.9. The two Airplane Hangar designs at Orvieto, Orbetello and Torre del  Lago (1935, 1940), www.structurae.co.uk 

 

In Spain the first engineer to construct thin reinforced concrete shells was Eduardo Torroja, one of the 

greatest engineers of the 20th century and the founder of the International Association of Shell Structures 

(IASS) in 1959, a platform organisation for scientists, architects and engineers, IASS [93]. Torroja followed 

Antonio Gaudi in his search for expressing the structural idea of thinness. Torroja showed how the identity 

of form and architecture achieved by  Gaudi in masonry (e.g. a saddle-shaped roof for a school alongside the 

church of the Sagrada Familia) could be realised in concrete, Billington [7]. The shell structures of Torroja 

are a combination of structural efficiency and aesthetical assessment. The first shell he constructed was a 

market hall in Algeciras in the southern region Andalusia in 1933, by the time of completion the largest shell 

in the world. The shell, seen in Figure 2.10, is a lowered semi-spherical dome with an octagonal plan and a 

diameter span of 47.6 m. The radius of curvature is 44 m and the shell has a predominant thickness of 90 

mm. At the supports the thickness is increased to 500 mm. At each corner point the shell is supported by a 

column which only transfers vertical load. The horizontal tension stress is absorbed by  a hoop tension cord. 

When the shell was finished, the tension cord was used to bring compression into the shell causing an 

upward mov ement. This enabled a fast and easy removal of the formwork. Torroja was a smart engineer; he 

confined the shell to the compression zone and used curvature from cylindrical cantilevering vaults to obtain 

sufficient rigidity between the supporting columns. An inventive solution, which later would be used by 

sev eral other shell engineers like Nervi and Isler. Because the low rising shell is in complete compression, 
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there is no cladding needed to obtain water tightness. At the top of the shell there is an oculus of 9 m 

diameter that consists of a triangulated area to provide for daylight in the shell, Fernandez Ordonez and 

Navarro Vera [35] 

 

 

Figure 2.10. Algeciras market hall  (1933) by  Eduardo Torroja, www.structurae.co.uk 

 

Three years after finishing the market hall, Torroja constructed the Fronton Recoletos in Madrid in 1936. 

The Fronton Recoletos, seen Figure 2.11, consists of two large intersecting cylindrical vaults, only supported 

at the two end facades. The structure was built as a basketball stadium (in contrast to the often impute 

function of concert hall). The cylindrical shells have a radius of 6.4 and 12.2 m and together span an area of 

55 by 32.6 m. The thickness of the shell is only 85 mm, except in the region in which both cylindrical shells 

meet each other. For placement of extra reinforcement to absorb the large tension forces, the shell is 

thickened there. Daylight enters through large triangular sections in both cylinders. Unfortunately, the 

Fronton Recoletos was destroyed in 1936 in the Spanish Civil War (1936-1939), Fernandez Ordonez and 

Navarro Vera [35]. 

 

 

Figure 2.11. Fronton Recoletos (1936) by  Eduardo Torroja, Fernandez Ordonez and Navarro Vera 1999 

 

In the same year as Torroja completed the Fronton Recoletos he also completed the much celebrated 

grandstand of the hippodrome La Zarzuela in Madrid. The structure consists of neighbouring 12.8 m 

cantilevering hyperboloid umbrella shells. The shells are only 50 mm thick and. The shells are supported by 
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a mechanism of compression studs and tension rods to compensate the cantilever. Torroja used an 

ov erhanging base structure to raise tension forces needed for balancing the cantilevering shell, resulting in a 

cunning ensemble of compensating forces. Also the Zarzuela shell was under attack during the Spanish Civil 

War, but withstood several impacts, Fernandez Ordonez and Navarro Vera [35]. The structure is illustrated 

in Figure 2.12. 

 

 

Figure 2.12. Hippodrome La Zarzuela (1936) by  Eduardo Torroja, Fernandez Ordonez and Navarro Vera 1999 

 

Near the end of the 1930s the shell structures of Freyssinet, Dischinger, Finsterwalder, Tedesko, Torroja and 

Nervi attracted the attention of other great engineers of that time, like Robert Maillart (1872-1940). They 

where beginning to see that thin concrete shell structures can cover the roofs of various buildings efficiently 

and aesthetically. Swiss innovating engineer Robert Maillart, famous for his reinforced concrete arch bridges 

of high slenderness, designed his first shell structure in 1939. Maillart constructed an exposition hall in 

Zurich, a hyperbolic curved shell of 16 m height, 12 m span and a thickness of 60 mm, seen in Figure 2.13. 

Remarkable, the main vertical load is carried only by four tapered columns, Billington [7]. His positive 

experiences would probably have leaded to more shell structures if he had not suddenly died shortly after 

completion in 1940 at the age of 68.  

 

     

Figure 2.13. Zurich  Exposition Hall  (1939) by  Robert Maillart, Giovannardi  2007 
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The history of concrete shells in the UK, closely related to influential engineer Ove Arup (1895-1988), shows 

a slower initial progress than the rest of Europe, with the first reinforced concrete shells appearing in the late 

1930s, just before the inception of the Second World War. Also the shell construction in The Netherlands 

and Belgium is largely a post-war event. 

 

 

2.3 World War II (1939-1945) 

 

The inception of the Second World War caused an interruption in shell development. Throughout entire 

Europe the construction of new shell structures vanished as proposals for new shells were rejected. For 

example in Germany where two designs of Finsterwalder, a large dome of 280 m span for a stadium in 

Munich in 1939 and a 250 m span shell for a congress hall in Berlin, were not realised as the German leader 

Hitler rejected concrete shell architecture, Dicleli [30]. Furthermore, during the war several existing shell 

structures, such as the airplane hangars of Nervi, were demolished.  

 

Although shell construction in Europe was disturbed during the war, the construction of shell structures in 

the USA continued and started in South America. Brazilian Architect Oscar Niemeyer (1907 -) may be seen as 

the founder of the Brazilian thin shell structures, Underwood [75]. Oscar Niemeyer is considered to be one of 

the most important architects in international modern architecture and was a pioneer in constructing with 

reinforced concrete. Making use of the favourable reinforced concrete characteristics he constructed several 

thin shell structures. The 1943 Pampulha Church of Sao Francisco de Assis near the village of Belo Horizonte 

was the first shell of Niemeyer as it was of Brazil and South America. The Church is seen in Figure 2.14. It 

immediately  caused controversy as the conservative church authorities refused to inaugurate the building 

due to the unorthodox shape and external paintings of Candido Portinari, Underwood [75]. 

 

 

Figure 2.14. Pampulha Church  of Sao Francisco de Assis (1943) by  Oscar Niemeyer, h ttp://pt.trekearth.com 

 

Following the Pampulha project Niemeyer would design several shells receiving orders from Juscelino 

Kubitschek, first major of the city of Belo Horizonte and later president of Brazil. Niemeyer is most famous 

for his architectural contribution to the new capital Brasilia, founded by Kubitschek in 1960, in which he 

constructed all buildings of importance as the Nation Congress and the Cathedral of Brasilia, Figure 2 .15, 
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Underwood [75]. Although, Oscar Niemeyer introduced thin shells in Brazil, he did not have much following. 

It would last until 1951  before Felix Candela promoted shell construction throughout the entire continent 

and bey ond. 

 

    

Figure 2.15. The 1960 shell  structures of Oscar Niemeyer in  Brasilia, the national  congress (left) and the national  museum (right), 

http://en.wikipedia.org 

 

 

2.4 Blooming Period, Sudden Death (1945-1970) 

 

However, the Second World War had a catastrophic and destructive effect throughout entire Europe; the 

consequences of the war for shells were two sided. Besides disturbed shell construction and shell 

demolishing, the post-war reconstruction period created exactly those conditions that are needed for 

flourishing shell construction. Low labour costs and the need for many new buildings and (as a consequence) 

the construction material, and in particular steel, being in short supply. Hence, the need for structures which 

offer economical material use: shells. The post-war reconstruction consequently served as main catalyst for 

the start of a blooming period of shell construction. The labour intensive construction of the complex shape 

could be economically justified through the significant savings in materials. Thus, the economy in 

construction was the key to the popularity of thin concrete shells at that time. 

 

 

Figure 2.16. Cruise Terminal  (1949) Rotterdam, www.locaties.nl  

 

Throughout entire Europe, shell construction gained high interest. Many industrial shells were built in Italy. 

In France, new engineers as Rene Sarger and Nicolas Esquillan contributed to the revival by building market 

halls, while in Germany Dyckerhoff & Widmann AG constructed many shells with their Zeiss-Dywidag 
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sy stem. The Zeiss-Dywidag sy stem was also used a number of times in the Netherlands for cylindrical shells, 

such as storehouses in Hilversum and Amsterdam and the 1949 Cruise Terminal in Rotterdam, seen in 

Figure 2.16, Garcia [37]. Although it is often assumed that shell structures are quite unknown in the 

Netherlands, a report carried out by the Dutch magazine Cement [43] in the year 1961, recorded 131 shell 

structures by then, mainly domes (14), cylindrical shells (35) and shed frames (41). Most of them are for 

industrial purposes, which might be the reason of unknowingness. A major contribution to the Dutch shell 

history was delivered by Prof. A.M. Haas, the successor of Eduardo Torroja as the second President of the 

IASS. Haas contributed as researcher (buckling research on cylindrical shells together with Van Koten 

during the 1960s), designer (e.g. ANWB Building, The Hague) and Professor (Delft University of 

Technology). Furthermore, he wrote a series of books on shells (e.g. Design of Thin Concrete Shells [42]). 

 

Also in Belgium, shell construction commenced in the early post-war years. The key Figure in design, 

construction and popularisation was English born André Paduart (1914-1985), Espion et al. [32]. In 

particular the 1948 shells at the Antwerp harbour attained international attention, as specialist designers 

noticed the originality of the construction as the cylindrical shells were constructed one after another by 

reusing the same formwork and balancing the outward thrust with temporary ties. A total of 50000 m2 was 

cov ered by large cylindrical shells with spans of 15 m and a thickness of 80 to 120 mm. Paduart worked as 

engineer for the SETRA Company and did pioneering work for the Comité Européen du Béton (CEB) and in 

1971 he was elected as the third president of the IASS, after Torroja and Haas. Paduart remained president 

until 1980. 

 

Besides continental Europe, the post-war scarcity gave an enormous boost to the use of shell roofing in 

Britain. The shells were designed by known UK specialist designers like Ove Arup and Felix Samuely. 

Moreov er the construction of thin reinforced shells extended to the Eastern part of Europe and Russia. The 

names of Czech Konrad Hruben, Romanian Mircea Mihailescu and later Bulgarian Ilia Doganoff must be 

mentioned as important shell builders.  

 

The sudden surge of popularity of shells was further stimulated in the mid 1950s by the work of Felix 

Candela (1910-1997) in Mexico. Felix Candela, a Spanish-Mexican engineer, is most famous for his hypar 

shaped shell structures. He can claim on constructing an impressive series of exciting and beautiful hypar 

shells, inspiring many new (shell) engineers and architects.  

 

Candela decided to practice shell engineer as he was inspired by Eduardo Torroja’s Fronton Recoletos, but 

an attempt to go to Germany and benefit from German engineers Dischinger and Finsterwalder failed 

because of the sudden inception of the Spanish civil war in 1936. Candela stayed in Spain and fight, sided 

with the republic, against Franco. After imprisoned in France, liberation came by a ship to Mexico chartered 

by fellow republicans and there Candela would design his renowned hypar shells, Colin [23]. The first 

attempts on hypar shells were done by French engineers Bernard Laffaille and Fernand Aimond who 

committed theoretical investigations in 1933-36. Moreover, Italian engineer Giorgio Baroni constructed a 

few hypar shells at the end of the 1940s in Milan and Ferrara, Popov  and Medwadowski [62]. The hypar 

shape remained unknown until Candela started experimenting with hypar shells in Mexico in 1951 and, 

however Felix Candela did not invent the hypar shell shape, he is solely responsible for the wide 
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popularisation of the form in the early  1950s. The success of the form rests for the architect in its appealing 

aspect, for the structural engineer in its simple structural analysis (under the oversimplifying assumptions of 

membrane behaviour) and for the contractor in its economical formwork consisting in a sy stem of straight 

planks supported by another system of straight lines, Bradshaw et al. [18].   

 

Candela constructed his first hypar shell for a laboratory building for the University of Mexico. The 

University needed a laboratory for measuring neutrons and the roof had to be thin enough to admit cosmic 

rays. Candela designed and constructed a double curvature shell, his first hyperbolic paraboloid, seen in 

Figure 2.17. The very thin hypar shell, local as thin as 15 mm, spans an almost square area of 132 m2. Despite 

the double curvature of the shell Candela did not fully  trusted the stability, given the fact that he assumed a 

safety factor of 9 against buckling, Colin [23]. 

 

      

Figure 2.17. Cosmic Rays Pavilion (1951), http://bloggers.ja.bz, and umbrella shell  experiment by  Candela, Colin  1963 

 

In 1952 Candela started experimenting with hypar umbrella prototypes, a shell geometry which Candela 

would widely used for factories, warehouses and statues. During experimenting he found the proper rise of 

the slab to decrease the deflections at the edges and learned about the tendency of flutter in the wind. 

Candela developed an appropriate and economical footing solution, to ov ercome the problem of the low 

bearing capacity of the Mexican subsoil. The footing has the same, but inverted, shape as the umbrella shell. 

The umbrella shell was as a Candela trademark for low-cost industrial construction, building about 30 

umbrellas per week at that time. Mostly designed in groups, the formwork could be used several times and 

the final structure could be built in a very short period, Colin [23].  

 

      

Figure 2.18. Church  of San Jose Obrero (1959) near Monterrey  and the church  of San Felipe de Jesus y  la  Ascencion del  Senor 

(1959) in  Morelos, Mexico, Colin  1963 
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Candela constructed all (over 300) his shells in just two decades. He constructed his most celebrated shells 

at the end of the 1950s. From 1956 the edge beams disappeared out of the shells designs and the curvy free 

edges of the structures showed great slenderness and elegance. Candela realised his best known structures 

which include the 1959 Church San Jose Obrero near Monterrey, seen in Figure 2.18, and the famous 1957 

Los Manantiales restaurant in Xochimilco in this period.  

 

If one shell has to be chosen as being the inspiration for a complete generation of new shell engineers, it 

must be the Los Manantiales Restaurant in Xochimilco, Mexico. Felix Candela completed the shell in 1957 

and the design was that much of a success that, at the present day, it has been copied several times. Jorg 

Schlaich designed a Xochimilco-like shell in 1977 in Stuttgart, Ulrich Muther constructed the Seerose in 1983 

in Potsdam and in just recently  in 2002 in Valencia another look-a-like has been constructed by Santiago 

Calatrava: the new l’Oceanografic. Furthermore, famous shell builder Heinz Isler was inspired by the 

slenderness of the Manantiales restaurant. The original Xochimilco shell, seen on Figure 2.19, is an 

octagonal groined vault composed of four intersecting hypars. 

 

     

Figure 2.19. Los Manantiales Restaurant (1957) in  Xochimilco, Mexico by  Felix Candela, www.structurae.co.uk 

 

The efficient structural system and the upward direction of the edges results in a very  slender shell structure 

with a thickness of just 40 mm and an internal span of 30 m. In the middle part the shell has a height of 5.8 

m and the edges rise up to 9.9 m. The supports are connected to each other by a tension rod beneath the 

floor construction of the shell, capable of compensating the horizontal stress resultants at the supports. The 

Xochimilco shell is a light, simple and graceful shell and Candela himself considers the shell to be his most 

significant work, Colin [23].  

 

The shells of Felix Candela are spectacular both for engineering as for appearance. It was an article in 

Progressive Architecture in 1955 on the shells of Candela that launched the modern shell era by attracting 

the attention of architects, Bradshaw et al. [18]. Until then, the shell industry mainly had build vaults and 

domes for industrial or military services of little architectural value. Candela showed architects the 

possibilities of extravagant and fancy shell geometries which they started to use for concert halls, sport 

buildings, auditoria and even houses. The architectural profession got interested in the apparent ‘free forms’ 

of shell constructions and famous architects like Eero Saarinen, Jørn Utzon and Bernard Zehrfuss started to 

design spatial structures with more luxury shapes and less emphasis on the force flow. The involvement of 

architects in shell construction was, however, not only beneficial as architects tended to forget that not all 
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curved surfaces are appropriate for thin-shell construction, resulting in shell-like structures in which the 

curvature is not of any structural use. Therefore, many of the most prominent thin shell constructions 

designed during the 1950s by architects were not thin, far overran cost estimates and often performed badly, 

Billington [7]. Famous examples are the Berlin Congress Hall, the Sydney Opera House, the Kresge 

Auditorium and the TWA Terminal, seen in Figure 2.20.  

 

 

Figure 2.20. Interior of the TWA Terminal  (1962) at JFK International  Airport by  Eero Saarinen, www.mfa.fi  

 

Probably the best example of a bad conditioned shell structure is the Kresge Auditorium on the campus of 

the Massachusetts Institute of Technology, Figure 2.21. The shell covering the Kresge Auditorium is designed 

by  Finnish architect Eero Saarinen and completed in 1955. The shape of the Auditorium is diverted from the 

top one-eight part of a hemisphere sliced to a triangular base shape. The shell spans 49 m at each side and 

rises up to 15 m. The thickness of the shell is 650 mm and the radius of curvature of the hemisphere is 34 m. 

The total weight is only 1200 ton. The Auditorium houses a concert hall with 1226 seats, a theatre with 204 

seats and several rehearsal rooms and offices.  

 

The reason for the bad condition of the shell is found in the misunderstanding of the importance of edge 

effects in shell structures. The shape of the shell implied the use of (large) edge beams to transfer the forces 

which reach the edge of the shell to the supports. After removal of the scaffolding the edge beam had 

considerable larger settlement in compare to the thin, flexible shell. Hence, the shell surface was pulled 

down and the large deformation caused bending and cracking, Ramm and Wall [65]. Due to the cracks the 
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shell lost it water tightness and the problem was not solved until a copper cladding was put on top of the 

concrete surface. The problems did not end with the structural problems, it was difficult and unusual to 

construct and significant difficulties were encountered in concrete placement and protection of the 

reinforcing steel. The repair of the problems was annoying, costly and forced the closure for a few months.  

 

    

Figure 2.21. Kresge Auditorium (1955) by  Eero Saarinen, www.structurae.co.uk 

 

A second example of a bad conditioned shell is the hyper shell of the Berlin Congress Hall constructed in 

1957 and designed by American architect Hugh Stubbins, Figure 2.22. The shell was the American 

contribution to the International Building Exhibition in Berlin. In 1980 the shell partly collapsed after a 

portion of the prestressing ties failed by corrosion, Ramm and Wall [65]. However, actually, the poor design 

was responsible for the collapse. Although it looked like a real surface oriented shell, the structure did not 

allow the shell to exhibit its two dimensional membrane behaviour as the main reinforcement by the already 

mentioned ties was only unidirectional. After the collapse the shell was rebuilt by a membrane design. 

 

     

Figure 2.22. Berlin  Congress Hall  (1957) by  Hugh Stubbins, www.archrecord.construction.com 

 

Besides architectural attention, the post-war shell period can be characterised by the search toward greater 

spans and thinner thicknesses. The short supply of construction materials urged to material economic 

construction which forced shell engineers to utilise larger spans with the same or even less amount of 

material. Furthermore, during the cold war, military  purposes required long-span shell structures. Where 

the largest span before the war was 74 m, in the late 1940s the spans of shells where already slightly 

exceeding 100 m. The search for greater spans led to radically different solutions in the USA and Europe, 
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Espion et al. [32]. The record span at that time in the USA, 103 m, was achieved by two hangars of the 

Roberts & Schaefer Company of Anton Tedesko and completed in 1949, see Figure 2.23. The hangars were 

based at a major military base in Limestone, Maine, and Rapid City, South Dakota. The span was reached by 

a 130 mm thick cylindrical shell stiffened with external ribs. The thickness is only slightly increased to 180 

mm at the base. In Europe the record span of 101.5 m was held by the Marignane hangar which consists of 6 

neighbouring double curved 60 mm thick shells, see Figure 2.23 (the Figure is rather misleading, in reality 

the span is larger than the supporting wall). The shell is equilibrated by prestressing ties resulting in a much 

more delicate and appealing structure. It was designed by  French engineer Nicolas Esquillan in 1942 but not 

built before 1952, Espion et al. [32]. 

 

    

Figure 2.23. Airplane hangar (1949) Limestone, Weingardt 2007, and the Marignane hangar (1952), www.structurae.co.uk 

 

Besides the ever growing spans the radii of curvature to thickness ratio increased rapidly. Though, before the 

war already  amazing large ratios where up to 500 obtained, the post-war development advanced to ratios of 

800 and even more. The record ratio is hold by the abov e Marignane hall with a ratio of 1470, however, 

achieved by  placing a series of stiffening ribs in each individual shell lane. The record ratio for single surface 

shells is kept by the 1957 shopping centre in Kaneohe, Hawaii, with a ratio of 1000, Popov and 

Medwadowski [62]. The shell is designed by Richard Bradshaw and illustrated in Figure 2.24.  

 

 

Figure 2.24. Kaneohe Shopping Centre (1957), Joedicke 1962 

 

French engineer Nicolas Esquillan can be seen as the record span builder. Besides the aforementioned 

Marignane hangar he constructed many long-span shells in the 1950s and 1960s, along them the CNIT shell 

in Paris (1958), the Exposition Palace in Turin (1961) and the Olympic Ice Stadium in Grenoble (1967). At 

the present day, the Centre des Nouvelles Industries et Technologies (CNIT) in Paris holds the record span 
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for shell structures with a span of 219 m. The largest shell structure of the world, seen in Figure 2.25, is 

designed by Bernard Zehrfuss. Zehrfuss designed a triangular ground plan, covered by a large curved 

surface. The first designs for the cover came from renowned engineers as Nervi and Freyssinet. Their ideas, 

however, appear to be impracticable due to various reasons. Finally, Esquillan, head engineer of the 

constructor Entreprises Boussiron, came with the design as it is built today, Caquot [21]. 

 

       

Figure 2.25. CNIT shell  (1958) Paris by  Nicolas Esquillan, www.insecula.com 

 

The shell of the CNIT is a groined vault, formed from the intersection of three parabolic cylinder segments 

rising up to 50 m. The shell has a radius of curvature changing from 90 m to 420 m and covers an area of 

900000 m2. Buckling considerations forced Esquillan to construct the skin of the shell out of two thin 

surface layers, connected by cellular shear transferring diaphragms, see Figure 2.26. The thickness of both 

surface layers is only 170 to 240 mm and the total thickness of the cross-section develops from 1910 mm at 

the top to 2740 mm at the support, Caquot [21]. Therefore, the thickness to radii ratio of the shell is rather 

large, 1:47 to 1:153, but misleading. During construction a movable framework was used and many parts 

were prefabricated to save costs. 

 

 

Figure 2.26. The double skin  of the CNIT shell  in  Paris with  prefabricated shear transferring diaphragms, Joedicke 1962 

 

A remarkable part of the shell structure forms the tensile cord which is applied beneath the ground surface 

to counteract the pointing outward thrust forces at each support. Due to underground entrance and service 

shafts, the cord needed to be lowered in the middle part forming a trapezoidal shape with two bending 

points. To ensure the cable stays in place, the bending points are fixed in place with 8 vertical and 8 

horizontal tensile cords each, anchored in the ground, Caquot [21]. 
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Esquillan’s other long span shells, the Turin Exposition Palace and the Grenoble Stadium, may not be the 

largest in the world, they still are special as they served as Olympic Stadium. However shells are par 

excellence suitable for covering sport halls, shells have played only a minor role for the most important sport 

ev ent in the world; the Olympic Games. The only two shell engineers having a special connection with the 

Olympic Games are Nicolas Esquillan and Pier Luigi Nervi. In fact, Nervi is probably most famous for his 

contribution to the 1960 Olympic Games sport facilities in Rome, the Olympic Games which gave Rome the 

possibility to show the world its re-birth from the ruins of the Second World War, Desideri [28]. 

 

     

Figure 2.27. Palazzetto dello Sport (1960) Rome, www.structurae.co.uk 

 

For the 1960 Olympic Games, Nervi designed the Olympic Stadium, which is nowadays in use as a football 

stadium (Lazio and AS Roma), and two domed sport arenas, the Palazzetto dello Sport (small sport palace), 

Figure 2.27, and the larger Palazzo dello Sport. Both arenas have a double curved shell roof construction 

which is built using prefabricated aced shaped ferrocement elements filled with poured-in-place concrete. 

Ferrocement, a material composed of several layers of steel mesh sprayed with cement mortar requiring no 

formwork, was developed by Nervi a view years earlier for moulds of clean surface to save time and costs in 

the construction of the Turin exhibition hall, Desideri [28]. The dome with webbed ceiling of the Palazzetto 

dello Sport covers a basketball field and a stand of 5000 seats, which Nervi also designed in reinforced 

concrete. At the top, daylight enters via a compression ring and a cupola. The base of the shell is supported 

by  exterior Y-shaped buttresses which rest on a pre-stressed reinforced concrete ring. The Palazzo dello 

Sport seats 16000 people under the webbed ceiling which is stabilised by  a tension ring, Desideri [28]. 

Unfortunately, the impressive construction is not seen on the outside, due to the peripheral gallery 

surrounding the structure. 

 

     

Figure 2.28. Turin  Exhibition hall  (1949) after construction and during the 2006 Olympic Games, www.structurae.co.uk 

 

The 1960 Olympics where not the only Olympic Games at which Nervi contributed. However, the second 

time was without his consciousness. When to Olympic committee needed housing for the Ice-hockey 
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tournament of the 2006 Olympic Games in Turin they found the Turin exhibition hall which Nervi 

constructed in 1949. The shell is illustrated in Figure 2.28. The 2006 Olympic Games did not only reuse 

Nervi’s Exhibition hall in Turin. The committee also decided to give the Turin Exposition Palace of Nicolas 

Esquillan an Olympic rebirth as being the home of the Ice-dancing event. The Turin Exposition Palace, one 

of the long-span shells that French engineer Nicolas Esquillan constructed, is a large groined vault shell with 

a span of 130 m between the supports and has a rise of 29 m. The shell has a hexagonal plan which is created 

by  the ov erhang of the free edges of three intersecting cylinders. As with the CNIT shell, buckling 

considerations forced Esquillan to design a double skin cellular shell surface, Scordelis [69]. The shell cross-

section consists of two layers of 60 mm which are coupled by  a 1300 mm diaphragm. Esquillan finished the 

structure in 1961, and just before the Games in 2006, a complete Ice-hall was built under the shell, 

indicating its immense proportions. The shell is seen in Figure 2.29. 

 

 
 

 

Figure 2.29. The new Olympic facility  beneath  the Turin  Exposition Palace (1961) of Nicolas Esquillan, Salardi  2006 

 

It was not the first time a shell of Esquillan was used as sport facility for the Olympic Games. For the 

Olympic Games in 1968 in Grenoble, Esquillan designed a long-span groined vault which was based on the 

same principles as the double-skinned CNIT and Turin shells. The Grenoble shell consists of two intersecting 

cylindrical vaults with approximate spans of 91 and 61 m. The shell has a double skin with two layers of 60 

mm and a diaphragm of 1300 mm and raises up to 18.9 and 13.7 m.  

 

The emphasis of shell construction lay in the years between 1950 and 1970. Under the leading of the great 

engineers, many shells were built throughout Europe and the United States. Along them Dyckerhoff & 

Widmann and Fred Severud in Germany, Freyssinet, Sarger, Hereng and Esquillan in France, Ammann & 
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Whitney, Anton Tedesko, Richard Bradshaw in the USA, Felix Candela in Mexico, Giorgio Baroni and Pier 

Luigi Nervi in Italy and later the USA, Torroja in Spain, Arup and Samuely  in the UK, and Mircea 

Mihailescu, Konrad Hruben and Ilja Doganoff in East Europe.  

 

     

Figure 2.30. St. Louis Airport by  Tedesko, www.ketchum.org, and the Auditorium in  Hamburg by  Dyckerhoff & Widmann, 

http://en.wikipedia.org 

 

During this period many famous shell structures were constructed, such as the aforementioned Kresge 

Auditorium, the Palazzetto dello Sport, the shells of Candela including the Xochimilco restaurant, the 

Hamburg University Auditorium, the Kaneohe Shopping centre, the TWA Terminal, the St. Louis airport 

shell, the long span shells of Esquillan, etc.  Some shells of this period are seen in Figure 2.30 and 2.31. 

 

     

Figure 2.31. The Royan Market hall  (1956) by  Sarger, www.structurae.co.uk, and the Smithfield Poultry  Market (1963) in  London 

by  Arup, www.viewimages.com 

 

In the blooming period also a few shells have been constructed in Africa, for example Torroja’s Fedala 

reservoir in Mohamedia near the west coast of Morocco in 1957, the 1968 University of Constantine in 

Algeria by Niemeyer, both seen in Figure 2.32, and a sports hall in Pretoria, South Africa. However, bad 

economical, constructural and climatological circumstances have prevented shell success.  

 

By the late 1960s, a curious paradox became evident. Although more and more articles appeared on thin 

shell analy sis and construction, fewer and fewer shells were being built, Billington [7]. The costs of labour 

increased and shell engineers were forced to start their search for, simpler, faster and more economical, 

construction techniques. The conventional construction method of spatial curved wooden formwork 

supported on steel framework became too expensive and time consuming for shells to compete with other 
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structural sy stems. The first attempts to new construction techniques were already done by Pier Luigi Nervi, 

first with prefabricated lattice beams and later with the ferrocement moulds (as well stay  behind as re-

usable) in combination with poured-in-place concrete. These small prefabricated parts eventually evolved to 

the large prefabricated shell elements seen today, e.g. the 1977 Stuttgart Federal Garden Fair shell of Jörg 

Schlaich, fabricated from 8 parts, and the 2003 Shawnessy LRT Station in Calgary. Aforementioned, 

alongside with Nervi, Nicolas Esquillan used prefabricated elements for the construction of his long-span 

shells in which he also saved costs by using a movable framework; the skin was poured in place on a 

moveable frame which each time moved outwards for realisation of neighbouring segments.  

 

     

Figure 2.32. Universi ty  of Constantine (1968) by  Niemeyer, www.arcspace.com, and the Fedala Reservoir (1957) of Torroja, 

www.structurae.co.uk  

 

An engineer that contributed major to new construction techniques is Heinz Isler (1926-). The innovation in 

construction of Heinz Isler provide in large scale re-use of formwork. Isler reused special formwork for 

standard sized bubble shells, developed in collaboration with the Bösiger Construction Company. The 

economical, fast and simple construction method enabled Isler to build several shells until the 1990s, despite 

the ever increasing labour costs. Isler showed that shells where still wanted and still economically viable.  

 

Heinz Isler can be considered as the most important shell engineer at the present day and the founder of 

modern free-form design and shape optimisation. However, Isler started designing shell structures at the 

end of the 1950s, at a time in which increasing labour costs in Europe became a growing threat for shells, he 

was still able to make career by developing an economical construction method based on standardised 

bubble shells, Chilton [22]. He developed in the early 1950s the bubble shell from his observations of a 

pumped-up pillow. The bubble shell appeared to be the answer to the growing labour costs as it was suitable 

for a standardised construction method. Because of the rigid strong curved corner ribs bubble shells transfer 

about 90% of their total load directly to the corner supports. This enabled Isler to make a standard type of 

bubble shell on four supports mainly used for small industrial units, garages and warehouses. By 

prestressing the edge beams the supporting columns only had to transfer vertical load. Heinz Isler developed 

in combination with the Bösiger Construction Company standard sizes and re-usable formwork and 

falsework to economise the construction. Most of them were 80 to 100 mm with spans of ranging in size 

from 14 ×  20 m to 25 ×  25 m. For daylight and ventilation, they are executed with domed roof lights. The 

standard shell can be seen in Figure 2.33.  
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The bubble shell is the most commonly constructed shell of Heinz Isler. Between 1956 and 1985 a total of 

749 shells of this type, generally arranged in groups, were constructed. The largest bubble shell of Heinz Isler 

was constructed in 1960 as a distribution facility for railway wagons. The shell spans 54.6 ×  58.8 m with a 

centre rise of 9 m and contained 17 circular roof lights. The edge of the shell is supported by six intermediate 

supports resulting in a column free area of ov er 3200 m2. Isler was concerned about the buckling behaviour 

due to the fact that parts of the shell were close to cylindrical in form, a shape with a much lower buckling 

resistance. He thickened the shell to 150 mm in critical areas. Concreting took three consecutive days and 

night, using around 1000 m3 of concrete, Chilton [22]. 

 

 

Figure 2.33. The 1950 standard Bubble shell  from the Bösiger Construction Company, www.boesiger-ag.ch 

 

While the bubble shell is Isler’s most commonly constructed shell, Isler obtained world-wide fame with his 

pioneering experimental free-form shells. When Isler recognised a plumped-up pillow on his bed as the 

continuously curved shape he searched for a roof of a concert hall at the hotel Kreuz in Langental, he realised 

that a phy sical model was the solution for designing free-formed shells, Chilton [22]. Isler started to 

construct numerous shells by  finding the most efficient form and then perform small-scale model tests to 

verify their performance. The shells can be classified on the way their efficient form is determined, the 

aforementioned ‘Bubble’ shells, free form expansion shells and free-form shells from hanging membranes. 

 

     

Figure 2.34. The Wyss Garden Centre (1962) and the Bellinzona Supermarket (1964) by  Heinz Isler, Chilton 2000 
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Isler’s first free-expansion form shell was realised in 1962, the Wyss Garden Centre in Solothurn, and ended 

in 1973  with the Bürgi Garden Centre in Camorino. However these shells are free form in the sense that they 

are not consisting of a regular geometry, they are based on combinations of circular curves, Chilton [22]. 

This was the reason for the lack of efficiency  in shape, which resulted in problems like tensile stresses in the 

shell surface (Wyss Garden Centre) or the need for vertical prestressing to pull-down the free edge near the 

supported corners (Bellinzona shell). In Figure 2.34 the painted Wyss Garden Centre and the rather forced 

shape of the Bellinzona shell can be seen. 

 

    

Figure 2.35. Deitingen Service Station (1968) and the Sicli  shell  (1969) in  Geneva by  Heinz Isler, Chilton 2000 

 

Free-form shells from hanging membranes solved the problems encountered by the expansion formed shells. 

Furthermore, the inverted hanging membranes helped Isler to fulfil his wish to show the slender character of 

the thin concrete shell as he had seen by  Felix Candela’s Manantiales restaurant in Xochimilco. According to 

Isler, the shell shapes derived with hanging models give the best performance, due to the fact that they are 

almost pure compression structures, Chilton [22]. Form follows force. The first shell of Isler being built 

following the hanging membrane technique is the shell over a service station near Deitingen, built in 1968. 

Two shells are symmetrically situated on each side of an amenity building, which houses the facilities of the 

service station, see Figure 2.35. The 31.6 m long and 26.0 m wide shells rise up to 11.5 m abov e the ground 

and have a thickness of 90 mm. Prestressed ties in the subsoil connect the outer supports with the base of 

the amenity  building, so that the outward thrust is balanced. The slab of the amenity building transmits the 

inward horizontal thrust. During construction the shells where balanced with temporary ties. This made it 

possible to construct both shells separately and, more important, to make use of the formwork twice. To 

introduce compressive stresses into the shell surface, the two outer supports were moved 12 mm towards the 

central building, Chilton [22]. The concrete of both shells has a white external protection and is still, after 39 

years, in perfect condition. However, Isler’s most impressive job is that he realised the shell without the need 

for edge beams. 

 

Isler’s most complex prestressed concrete shell distracted from a hanging membrane is probably the shell 

being built for a factory of Sicli in Geneva in 1969, also seen in Figure 2.35. The seven-point supported 

irregular surface has spans of 35 m and a general thickness of 100 mm. There are no edge beams required as 

the forces flow away of the slightly curved up edges. Due to its complexity, Isler has measured the behaviour 

of the shell over almost 20 years.  
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Isler presented his innovative method of form-finding of shells for the first time to the engineering and 

architectural establishment in 1959 in Madrid at the First Congress of the International Association for Shell 

Structures, founded and at that time also presided by Eduardo Torroja. He discussed three methods of form-

finding, ‘the freely shaped hill, the membrane under pressure and the hanging cloth reversed’. The 

presentation had an enormous impact and eminent engineers, like Ove Arup, Eduardo Torroja and Nicolas 

Esquillan, where somewhat sceptical of the ideas proposed by Isler. Today Heinz Isler has designed nearly 

1000 thin concrete shell structures, most of them in Switzerland. He returned to the 20th Anniversary 

Congress of IASS in 1979 as a keynote speaker and is now member of the IASS Executive Council, Chilton 

[22]. As Felix Candela was the undisputed shell master builder, is difficult to believe that his shells could be 

surpassed in elegance. But Isler’s shells are even better. His wish to intervene gently in nature leaves us some 

exceptional light and extreme thin shell structures, see Figure 2.36. 

 

 

Figure 2.36. Aichtal  Outdoor Theatre (1977) by  Heinz Isler, Flury  2002 

 

After the immense success of shell construction in the 1950s and 1960s there was a sudden death in shell 

construction in the early 1970s. The sudden death can be clarified by  the changes in the society. 

Aforementioned, where, at first, the labour intensive construction of the complex shape was economically 

justified through significant savings in materials, the high rise of European and American labour costs made 

that shells became very expensive in compare to other structural systems. This was already the reason that 

during the 1960s the emphasis of shell construction moved to dev eloping countries in South America, where 

labour is often cheap and material still costly. Moreover, inflexible usability  and uncertainties in the 

behaviour of shells and difficulty of proper analysis methods did not help and neither did the stylistic 

identification with the 50s and 60s. All these circumstances urged the end of large-scale shell construction in 

Europe and the USA. The only shells constructed were possible through inventive solutions to reduce costs, 

as the bubble-shell of Isler, or shells for industrial purposes, as cooling towers. 

 

 

2.5 Contemporary Shells (1970-2008) 

 

During the golden years the first shell builders where succeed by a new generation of spatial engineers. It 

was Isler in Switzerland, Ulrich Müther (1934-), Jörg Schlaich (1934-) and Frei Otto (1925-) in Germany, 

sev eral engineers such as Jack Christiansen in the USA and Eladio Dieste (1917 -2000) in Uruguay. The new 

generation of spatial designers continued the concrete shell v oyage as it was developed by the first shell 
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engineers, however, obliged by increasing labour costs (among other things), they also searched for new 

types of spatial structures. Engineers like Müther remained active in conventional concrete shell structures. 

Müther constructed many shell structures in Germany from 1965. He can be considered the most important 

shell builder in Germany after Dischinger and Finsterwalder, Dechau [27]. Several Americans engineers 

constructed concrete shells for churches and large sport arenas, a typical American tradition. Jack 

Christiansen is one of them and known from his contribution to the Seattle Kingdome, a large sport arena 

which was built in 1975. The Seattle Kingdome was the world’s largest thin shell concrete dome with a span 

of 202 m until demolished in March 2000. 

 

     

Figure 2.37. Teepott restaurant (1968) by  Ulrich  Müther, www.structurae.co.uk and the Seattle Kingdome (1976) by  Jack 

Christiansen, http://www.arche.psu.edu  

 

The search for new spatial structures resulted in widespread pioneering with new types of shells. Jörg 

Schlaich constructed a few concrete shells before he started experimenting with glass reinforced concrete 

shells and later with grid shells, a shell where the continuous surface is replaced by linear or curvilinear 

interconnected members. By constructing the grid shells from triangular elements or quadrilaterals with 

internal tie rods the spatial grid acts like a real shell structure, if the curvature allows for membrane stresses 

to dev elop. The grid shell was originally developed by  Frei Otto in the late 60s and is mostly  built with steel 

or timber (but sometimes even concrete, see Figure 2.38). In that period Otto also developed the tensioned 

membranes as spatial structure, e.g. the 1957  Dance Pavilion at the Federal Garden Exhibition. From the 

same period is the geodesic dome for the Montreal Expo in 1967 by Richard Buckminster Fuller, Holgate 

[46]. Besides the new grid shells, Eladio Dieste in Uruguay became famous with his reinforced brick shells 

which show large similarities with reinforced concrete shells, see Figure 2.38.  

 

     

Figure 2.38. Unknown concrete honeycomb grid shell  and a reinforced brick shell  of Eladio Dieste, h ttp.nl.wikipedia.org 
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An important development for fast and more economical shell construction was the concept of the air 

inflated membranes as formwork for concrete shells. The concept, that came from the search of new, more 

economical, construction techniques, was already developed by Wallace Neff in the 1940s (he received a 

patent in the system in 1942). However, it did not find much application until the late 1970s. Wallace Neff’s 

patent inv olved an inflated membrane to the shape of a shell structure and subsequently placing 

reinforcement and shotcrete on the exterior to form the final shell. Later, Dante Bini developed and patented 

(BINI 1986) the BINI Shell, which is also based on an inflated airform, however, the reinforcement and 

concrete are placed in the exterior before inflation. Dante Bini constructed the first shell houses in 1954 in 

Florida. Alternatively, Lloyd Turner inverted the principle and applied a foam structural layer on the internal 

airform. He achieved a patent in 1972. A breakthrough to long-span airform shell was the development of the 

Monolithic Dome by  the South brothers, Figure 2.39. The monolithic dome concept inv olves, besides a 

polyurethane foam layer, reinforcement and shotcrete to construct a thin concrete shell. The practicality and 

workability of the process was first proven in 1975 for the construction of a potato storage facility of a height 

of 9 m and a diameter of 26 m. For that project the patent was earned in 1979, Monolithic Dome [94]. 

 

    

Figure 2.39. The Monolithic Dome concept, www.monolithic.com 

 

Since 1976 the Monolithic Dome concept is used for the construction of houses, schools, churches, sport and 

commercial facilities in 45 states and many countries ov er the world. At the present day, the innovative 

construction method is still gaining popularity for as well long-span shells up to 300 m as for small houses in 

developing countries (Solid House Foundation). However their aesthetical appearance is questioned, the 

domes are wanted due to the advantages of low costs, energy efficiency, low maintenance requirements, their 

strength and stiffness and their relative simple construction, Monolithic Dome [94].  

 

Despite the new construction techniques, today, reinforced concrete shells find only minor application and 

are mostly built using conventional formwork. The shells which are constructed, however, can be of high 

architectural and structural value. Due to the computational advancement, architects are more and more 

able to construct highly esthetical free-form shapes and so-called blobs. Blobs refer to organic, amoeba, 

multi curved shaped buildings which first appeared in the mid 1990s and completely redefined the look of 

buildings, Bechthold [5]. A designer much involved in contemporary concrete shell designs is Santiago 

Calatrava. Two of his latest shells, the l’Oceanografic in Valencia and the Tenerife Opera House are 

illustrated in Figure 2.43. The aforementioned similarity of the l’Oceanografic with the Xochimilco 
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restaurant of Felix Candela is clearly seen. The l’Oceanografic shell and the shell for the Tenerife Opera 

House are fine examples of the sculpterous capabilities of modern concrete structures.  

 

    

Figure 2.40. l ’Oceanografic (2002) Valencia, www.fundacioncac.es, and the Tenerife Opera House (2003) by  Calatrava, 

http://www.arch .mcgill .ca 

 

In this historical reflection, shells in Asia (in particular Japan and China), Australia and the Middle East are 

not mentioned. Almost no information on their shell history was found, although several shells are known to 

be constructed in these continents. Nowadays, thin concrete shells encounter increasing interest in Asia and 

the Middle East. Examples of recent shell structures are seen in Figure 2.41. 

 

    

Figure 2.41. The Baha’l  House of Worship (1986) in  Delhi  by  architect Fariburz Sahba, www.melburns.com, and Abu  Dhabi  

Conference Centre, www.academie-des-beaux-arts.fr 

 

2.6 Future History (2008-) 

 

Future architecture seems to continue the recent revival of double curved shapes with undefined free-form 

shapes (Deconstructivism), as mentioned, in particular in the Middle East and Asia. Besides their ambition 

to built sky high, they have increasing interest to curvy shaped landmark buildings. However, also in Europe 

there seem to be interest to develop special shapes counteracting the rectangular environments which have 

realised over the last few decades. Two contemporary designs using concrete as base material are illustrated 

in Figure 2.42. The design of Tadao Ando foresees in a large concrete shell covering a boat housing basin 



  Chapter 2.   History of Thin Concrete Shells 

 34

under and above which the museum is situated. The architects of SANAA designed a very shallow thin 

concrete shell-like landscape for the EPFL Learning Centre in Lausanne, currently in engineering stage. 

 

      

Figure 2.42. Design for the Abu  Dhabi  Maritime Museum by Tadao Ando, www.tdic.ae, and the design for the EPFL Learning 

Centre in  Lausanne by  SANAA, www.normale .net 

 

The curiosity to free-form curved shapes is also seen in the popularity of the designs of architect Zaha Hadid, 

who won the Pritzker-Price in 2004. In Figure 2.43  her designs for the Sardinia museum in Cagliari and the 

Opera House in Dubai are seen. Although her designs are not based on concrete as primary construction 

material, it is not unthinkable they end up (in slightly adapted shapes) as thin concrete shells.  

 

    

Figure 2.43. Zaha Hadid’s designs for the Sardinia Museum in  Cagliari  and the Dubai  Opera House, www.zaha-hadid.com 

 

 

2.7 National Schools 

 

With the great shell engineers coming from Germany, Italy  and Spain, Billington [7] describes three 

prominent ‘national schools ’ of thin shell construction. According to Billington distinction can be made in 

the German school, the I talian school and the Spanish school. Each school has their own traditions 

encompassing sev eral decades and, more important, their own skilled designers. The German school is 

pioneered by Dischinger and Finsterwalder and carried forward by Anton Tedesko in the USA. The school, 

mathematical and scientific, characterise itself by  the reliance on basic geometrical forms amenable for 

mathematical treatment, e.g. cylindrical shells or shells of revolution. The Italian school, historic and artistic, 
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is propagated by  Nervi and characterised by  a more intuitive than mathematical structural design. The shell 

shapes are derived from ancient arches, vaults and domes and re-designed in reinforced concrete and 

ferrocement, i.e. the ribbed Nervi shells are in fact based on the Italian tradition of coffering domes like the 

Pantheon. These shell structures are much less constrained than those of the German school. The Spanish 

school, rooted in an artisan building traditions such as the designs of Gaudi, stands for shell shapes 

primarily motivated by aesthetics. Carried forward by Torroja and Candela, the Spanish school tends to use 

double curved shapes, as hyperbolic paraboloids, instead of stiffening ribs. Since the late 1950s, it may be 

fair to add a fourth school, the Swiss school of free-form shells, founded by Heinz Isler.  

 

 

2.8 Shell Dimensions 

 

Shell dimensions and thickness to span ratios have increased significantly since the 1925 Zeiss planetarium, 

first shell of the modern era. Some of the shells constructed since then are shown in the table below, together 

with the ancient Pantheon and Hagia Sophia. Moreov er, the enormous structural capacity of human 

engineers can be seen by comparing thickness-to-span ratios of modern concrete shells with a hen’s egg. 

 

Year Shell  Geometry  Dimensions Radius R Thickness  t/R 

- Hen’s Egg Surface of revolution  20 mm 0.2 to  

0.4 mm 

1:100 to 1:50 

100 Pantheon Hemisphere 43.3 m (dia) 21.6 m 1.2 m at top 1:24 

537 Hagia Sophia Hemisphere 31 m 15.5 m 0.6 m at top 

 

1:26 

1926 Jena 

Planetarium 

Hemisphere 25 m (dia) 12.5 m 60 mm 1:200 

1928 Leipzig  

Market Hall 

Segmented shell  of 

revolution 

74 m 46 m 90 mm 1:500 

1934 Algeciras 

Market Hall 

Spherical  cap 47.6 m (dia) 44.1 m 90 mm 1:490 

1936 Fronton 

Recoletos 

Cylindrical  

combination 

32.5 m 12.2 m (largest) 85 mm 1: 150 

1936 Hershey Arena Cylindrical  vault 70 m span 35 m 90 mm 1:390 

1955 Auditorium MIT Segment of a sphere 48.0 m between 

supports 

34.0 m 65 mm 1:520 

1955 Royan 

Market Hall 

Axisymmetric hypars 52,4 m (dia) 6 m, single hypar 

65 m span 

80 mm 1:75 

1:812 

1957 Kaneohe 

Shopping 

Groined 

Vault 

39 x 39 between 

supports 

78 m 76 mm 1:1000 

1957 Palazzetto 

dello Sport 

Spherical  cap 58.5 m (dia) 30.9 m 335 m (rib) 1:92 

 

1959 Hamburg 

Auditorium 

Segment of a sphere 50 m between 

 supports 

65 m 130 mm 1:500 
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3 Shell Design 

 

 

Structural design refers to the iterative process of designing an efficient structural system which transfers 

loads on a structure to the supports. For most building structures the structural design differs from the 

geometrical design, hence, the distinction between architect and engineer. For shell structures, however, the 

structural design and the geometrical form converge in the three-dimensional curved shell surface. The shell 

needs the spatial curvature to develop the profound membrane behaviour and the geometrical shape has 

major influence on how the shell behaves and how the shell fails. Obviously, the expression ‘form active 

structural surface’ finds its origin here. To design an efficient shell structure, it is thus important to provide 

in an extensive study of the geometrical and structural interaction. There is often referred to the term 

‘structural morphology’. An optimal shell design provides in an advantageous geometrical and structural 

interaction which results in a prevalent membrane stress field. 

 

A prevalent membrane stress field forms an efficient load-carrying system without the need for bending 

moments. Bending moments normally arise when the line of thrust, determined by the loading and 

supporting conditions, does not coincide with the sy stem line of the structure. In shells, however, 

circumferential stresses are able to ‘correct’ the deviating line of thrust back into the sy stem line. By this 

principle, the surface of a properly designed shell can give rise to quite large shape deviations form the line 

of thrust while staying in a membrane stress state. Provided that there is sufficient curvature in the other 

direction, even back curvature is possible. Hence, the geometry and structural behaviour can benefit from 

each other, giving the designer more architectural freedom. 

 

The important geometrical and structural interaction was already concerning classical master builders. 

Ancient engineers were well aware of the force flow in shell structures as can be seen in the construction of 

old domes and churches, for example the famous Pantheon in Rome. The Pantheon in Rome can practically 

be seen as a combination between an arch and a shell. The upper part of the Pantheon is in compression and 

acts like a real shell structure. In the lower part, however, tensile stresses arise in circumferential direction. 

Because their low quality concrete was unable to absorb these tension forces, the lower part of the pantheon 

acts like an arch. The ancient engineers must have been aware of the tension forces and even must have 

known the location where the circumferential stresses transform from compression into tension, providing 

the increase in cross-sectional thickness at the turning point. The larger cross-section makes sure the line of 

thrust stays inside the sy stem line. In other ancient structures tension is absorbed by the wooded ties placed 

along the parallel circles of the dome or prevented by constructing domes confined to the compression zone, 

Farshad [34]. 
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It is presumed that the classical engineers used graphical methods and physical models, like the hanging 

chain, to construct their arch and shell structures. Although these principles made them conscious about the 

relation between force and form, they  were restricted by their limited constructional possibilities. Therefore, 

modern shells achieve longer spans with a thickness which is much smaller than the thickness of traditional 

domes. Not only the higher quality contemporary construction materials capable of resisting tension forces 

contributed to this development, but also the theoretical knowledge gained from the late 19th century up to 

the present day. The first basic shell equations which describe the behaviour of thin elastic shell structures 

were derived in 1888 by Love. The elastic theory he proposed was based on the Kirchhoffean thin plate 

assumptions. The theory can be described as an extension of the plate theory to structures with surface-like 

geometries. In 1912 Reissner discovered that the membrane and bending solution can be obtained separately 

and that superposition of both yields the total solution. This relative simple but effective calculation method 

handed the early shell builders of the modern era quantitative information about the stresses in shells.  

 

The early shell builders employed only simple geometrical shapes for their shells as stresses in an irregular 

shape where impossible to determine by hand calculation. Intrigued by the hanging models of the early shell 

builders, it was Swiss engineer Heinz Isler who developed a new concept for designing shells in the 1950s. 

He derived the shell shape from experiments with phy sical models such as inflatable rubber membranes or 

hanging fabric. These Isler shells are equilibrium shapes, their shape balances loads through membrane 

stresses. At the same time, researches at the Frei Otto’s Institute of Lightweight Construction at Stuttgart 

University experimented with form-finding methods for tensile sy stems by studying minimal surfaces using 

soap bubbles and other methods.  

 

Up to the present day the theory of shells and the physical models of Isler and Otto are extended by 

computational design and analysis methods. Numerical analyses facilitate engineers in determining stresses 

and techniques as form-finding and shape optimisation are automised. These new techniques offer 

innovative design possibilities to determine membrane supporting shapes, for example for the contemporary 

free-form blob architecture. Hereby, it must be mentioned that, however often assumed, not all curved 

surfaces are useful as primary structural elements. Referring back to the first lines of this introduction, 

surface curvature forms a structural effective shell only if the shell is able to develop membrane stresses. The 

curvature present in the flowing shapes of the blob architecture seldom allows membrane stresses to 

develop. The shape algorithms are optimised for visualisation purposes and not for structural membrane 

behaviour. In practice the free-form of the blob structure is therefore often achieved by conventional 

structural systems which carry a non-structural building skin or they rely on a hybride structural system in 

which there is a supporting frame and a supporting skin (like a car). These sy stems, however, often rely 

heavily on bending, the least efficient basic load carrying system, while in a sound shell the shell surface 

itself is the primary structural element and carries the load with the more efficient in-plane membrane 

stresses. Thus, although, the blob architecture reminds us of thin concrete shells, the structural elegance of 

the shell often contrasts with the relative clumsiness of the supporting systems of the irregular shapes. 

Hence, the transformation of the form-active designed blobs to surface-active structures is an area of 

ongoing research. 
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3.1 Preliminaries of Shell Design and Analysis 

 

Before determining the structural design of a shell one has to know about the structural behaviour that is 

observed in shell structures. Especially with shell structures, the structural design is of great importance in 

developing the advantageous membrane stress field and to prevent uninvited deformations and failure. The 

most important aspects of the structural behaviour are discussed below. 

 

3.1.1 Membrane Behaviour 

 

The membrane behaviour of shell structures refers to the general state of stress in a shell element that 

consists of in-plane normal and shear stress resultants which transfer loads to the supports, illustrated in 

Figure 3.1. In thin shells, the component of stress normal to the shell surface is negligible in comparison to 

the other internal stress components and therefore neglected in the classical thin shell theories. The initial 

curvature of the shell surface enables the shell to carry  even load perpendicular to the surface by in-plane 

stresses only.  

 

The carrying of load only by in-plane extensional stresses is closely related to the way in which membranes 

carry their load. Because the flexural rigidity is much smaller than the extensional rigidity, a membrane 

under external load mainly produces in-plane stresses. In case of shells, the external load also causes 

stretching or contraction of the shell as a membrane, without producing significant bending or local 

curvature changes. Hence, there is referred to the membrane behaviour of shells, described by the 

membrane theory.  

 
 

Figure 3.1. Membrane stress field of a shell  element, Hoefakker and Blaauwendraad 2003 

 

Carrying the load by in-plane membranes stresses is far more efficient than the mechanism of bending which 

is often seen by other structural elements such as beams. Consequently, it is possible to construct very thin 

shell structures. Thin shell structures are unable to resist significant bending moments and, therefore, their 

design must allow and aim for a predominant membrane state. Bending stresses eventually arise when the 

membrane stress field is insufficient to satisfy specific equilibrium or deformation requirements. 

 

3.1.2 Bending Behaviour 

 

In regions where the membrane solution is not sufficient for describing the equilibrium and/or deformations 

requirements, bending moments arise to compensate for the shortcoming of the membrane behaviour. For 
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example at the supports, by local concentrated load (thin shell structures are exceptionally suited to carrying 

distributed loads, however, they are unsuited to carrying concentrated loads) or a sudden change in 

geometry the membrane state is disturbed causing bending action, see Figure 3.2. Bending moments only 

compensate the membrane solution and do not carry loads. Hence, there is often referred to compatibility 

moments. Due to their compensating character, bending moments are confined to a small region; the major 

part of the shell still behaves as a true membrane. It is this salient feature of shells that is responsible for the 

most profound and efficient structural performance! 

 

  
 

Figure 3.2. Bending moments to compensate the shortcomings of the membrane behaviour, Hoefakker and Blaauwendraad 2003 

 

The preference for membrane action arises as a consequence of being thin. In thicker shells the preference is 

not so notorious and eventually it may reverse. According to Farshad [34], shells can be categorisation into 

membrane-dominated, bending dominated and mixed shell problems. The category  can be made more 

specific by considering the asymptotic behaviour of shells.  

 

3.1.3 Material Effects on Shell Behaviour 

 

Reinforced concrete shells have complicated nonlinear material behaviour with strong influence on the 

structural behaviour. Significant tensile stresses in the shell will cause cracking and with that weakening of 

the shell cross-section. Micro-cracking at the surface is caused by the evaporation of water. Due to the high 

amount of surface exposed the micro-cracking in the shell surface may exceed the allowable value. 

Furthermore, creep of concrete will cause flattening of the shell surface, resulting in less curvature and 

possible bending stresses to occur. Additionally, shrinkage may  lead to unwanted residual stresses. The 

material behaviour is discussed in detail in Chapter 8. 

 

3.1.4 In-extensional Deformation 

 

An in-extensional deformation is a deformation of a shell surface in which only bending moments arise, 

without producing membrane extension and contraction. Thus, the strains of the middle surface are equal to 

zero. This special deformation mode is highly undesirable as the shell is unable to produce significant 

resistance against such deformations. A thin shell has very high in-plane stiffness but the perpendicular 

direction has very low flexural stiffness. Hence, a shell will have a strong preference for such deformations. 

Figure 3.3 shows an in-extensional deformation of a circular cylindrical shell due to settlement of the 

foundation. Consequently, the ovalisation of the upper part of the shell produces no strains. A remarkable 

property of an in-extensional deformation is that the product of the minimal and maximal curvature 

(Gaussian curvature) is equal to the undeformed state.  
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Figure 3.3. In-extensional  deformation of a circular cylindrical  shell , Hoefakker and Blaauwendraad 2003 

 

A shell is only a shell when it remains it shape when it is loaded. Otherwise in-extensional deformation 

occurs. Shells sometimes are referred to as form resistant structures.  

 

3.1.5 Structural Failure 

 

Shell structures are remarkable thin structures with the radius to thickness ratio varying between 200 up to 

800 and more. Such high slenderness immediately concerns the engineer of the possible occurrence of the 

premature failure of the structure due to buckling instability. In case of thin concrete shells, the shell may 

also fail because of material degradation such as cracking and crushing. Furthermore, professor E. Ramm 

[66] of the University of Stuttgart argues that the highly nonlinear behaviour of reinforced concrete, e.g. 

cracking, creep, shrinkage, yielding of reinforcement, may have a severe influence on the structural failure of 

shells, referring to so-called inelastic or plastic buckling. According to professor Ramm a failure can be 

addressed as a buckling failure when finite deformations cause the collapse of the shell and a strength failure 

when the nonlinear material behaviour is responsible. The classification can be seen in Figure 3.4. 

 

Figure 3.4. Structural  failure due to buckling or strength, Ramm 1987 

 

Unfortunately the type of failure cannot be determined in advance. In Chapter 6 the structural failure of 

shells will be discussed in more detail. 

 

 

3.2 Classification of Shell Surfaces 

 

The spatially curved surfaces of shell structures can be classified in several ways. For shell structures it is 

convenient to make a classification according the Gaussian curvature. The Gaussian curvature of a three-

dimensional surface is the product of the principal curvatures, which are defined as the maximum and 

minimum curvature of a certain surface. The principal curvatures can be found by  intersecting a shell by an 
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infinite number of planes normal to the shell surface at an arbitrary point and determining the two planes 

for which the secant with the surface has a maximum curvature and a minimum curvature. The principal 

curvatures are, by definition, orthogonal to each other. The product of the principal curvatures is either 

positive, zero or negative. Classification in Gaussian curvature therefore means a classification in surfaces 

with positive Gaussian curvature (synclastic), zero Gaussian curvature (monoclastic) or negative Gaussian 

curvature (anticlastic), visualised in Figure 3.5. 

 

 

Figure 3.5 a. positive Gaussian curvature, b. zero Gaussian curvature and c. negative Gaussian curvature, Hoefakker and 

Blaauwendraad 2003 

 

3.2.1 Synclastic 

 

The Gaussian curvature of synclastic shells is positive; both principal curvatures have the same sign. A 

synclastic surface is non-developable. A shell surface is either developable or non-developable. If it is 

possible to develop a surface it can, in contrast with non-developable surfaces, be changed into a plane form 

without cutting and/or stretching the middle surface. Therefore, surfaces which are non-developable are 

stronger. An example of a synclastic structure is the dome. Synclastic surfaces carry  their load by meridional 

and circumferential in-plane stresses. Except for the elpar (hemisphere sliced to a square base shape) which 

carries forces with in-plane shear 

 

3.2.2 Monoclastic 

 

An example of a developable surface is a monoclastic surface. The Gaussian curvature of monoclastic 

surfaces equals zero. Zero Gaussian curvature refers also to structures with zero curvature in both directions, 

as plates; however, these structures are named zeroclastic. Monoclastic shells do have curvature in one 

direction but zero in the orthogonal direction. An example of monoclastic surfaces are cylindrical shells such 

as barrel vaults. Cylindrical shells, probably the most used form of concrete shells, are widely used to cover 

e.g. airplane hangars or train stations. The membrane behaviour of cylindrical shells loaded perpendicular to 

their surface consists of an interaction of two behavioural components: beam action and arch action. 

Whether the cylindrical shell has mostly the beam action or the arch action depends on the shell geometry 

and the edge conditions. Long cylindrical shells resting on end supports act like simply supported beams.  

 

3.2.3 Anticlastic 

 

A surface with negative Gaussian curvature is called anticlastic and is, like synclastic surfaces, non-

developable. The two principal curvatures have opposite signs, which make the product negative. The 

characteristic feature of having a positive curvature in one direction and a negative curvature in the 

perpendicular direction makes the shell act as a combination of a compression and tension arch when loaded 
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perpendicular to its surface. Examples of anticlastic shell are the hyperbolic paraboloid (hypar) shells of 

Felix Candela. The hypar carries forces with in-plane shear like elpar shells. 

 

 

3.3 Geometrical Surface Generation 

 

The generation of three-dimensional surfaces like shells, with either positive, zero or negative Gaussian 

curvature, can be done by geometrical or non-geometrical methods. Geometrical generation is based on 

defining surfaces by mathematical functions. It can be recognised that most of the early twentieth century 

shells consist of analytically defined regular shapes. Typical design practice was to experiment with standard 

geometries, like sphere, cones and cylinders, and adjust the final shape to the prescribed plan by cutting out 

segments or different shell types are put together. In this way the shape stayed in range of the classical shell 

theory. Generated surfaces can be divided into surfaces of revolution, translational surfaces, ruled surfaces 

and free-form surfaces which are defined by a series of NURBS. Non-geometrical generation refers to 

methods which define shapes by a more natural process as form-finding, discussed in the next section. 

 

3.3.1 Surfaces of Revolution 

 

Surfaces of revolution (Figure 3.6.a) are created by rotating a plane, two-dimensional, curve (meridional 

curve) around an axis (axis of revolution). The surface that is created using the rev olution method is a 

synclastic surface.  

           

Figure 3.6 a. Surface of revolu tion, b. translational  surface and c. ruled surface, Hoefakker and Blaauwendraad 2003 

 

3.3.2 Translational Surfaces 

 

Translational surfaces (Figure 3.6.b) are formed by sliding a plane curve (generator) along another plane 

curve (directrix). During this process the orientation of the sliding curve remains constant. Surfaces 

generated can be either synclastic, anticlastic or monoclastic, depending on the curvatures of the generator 

and the directrix. 

 

3.3.3 Ruled Surfaces 

 

Ruled surfaces (Figure 3.6.c) are generated by sliding the two ends of a straight line on their own curve, 

while remaining parallel to a prescribed direction or plane. Ruled surfaces are generated by  straight lines 
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only.  Hence, from a practical point of view, ruled surfaces can be more easily and economically  made for 

concrete shells. A ruled surface is anticlastic. 

 

3.3.4 Free-Form Surfaces 

 

The shape used, however, need not be restricted to those easily described in mathematical terms. Free-form 

shapes may provide a viable solution to many  structural problems. A special group of geometrical generated 

surfaces are free-form surfaces generated by NURBS. NURBS stands for Non-Uniform Rational B-Spline 

and makes possible to present almost all imaginable shapes or free-forms by a combination of mathematical 

objects, formulas and procedures. The NURBS technique forms a curve of a certain degree between control 

points. Usually, the first and last control points coincide with the start and end of the curve. The points in 

between have certain weights which determines how the curve is influenced by that particular point, 

Vambersky et al. [76]. Thus, unlike other geometrical generated surfaces, the free-forms are not described by 

fixed equations. Generating free-form surfaces with NURBS-techniques is particularly  suitable for computer 

implementation (CAD software). Architects make use of the free-form NURBS surfaces when designing the 

blob structures mentioned in the introduction. A famous example of a free-form shell is the TWA Terminal 

at the New York JFK Airport designed by Eero Saarinen, Figure 2.20. 

 

 

3.4 Non-Geometrical Surface Generation 

 

It can be stated that, ideally, the type of load determines the shape of a shell. A technique that is based on 

this hypothesis is form-finding, a non-geometrical surface generation technique. Form-finding refers to a 

technique that determines the shape of a structure by equilibrium with the applied load, form follows force.  

 

      

Figure 3.7. The inverted hanging model  phrase from Robert Hooke and the principle applied by  Poleni  for finding the thrust-line 

of the St. Peter in  Rome, Ramm and Wall  2002 

 

In the year 1675 the basis of the form finding principle was established by Robert Hooke (1635-1703), 

famous for his elastic law which relates strains to stresses. Robert Hooke asked his contemporaries about the 

optimum shape of a masonry arch. Their explanation poses that how the flexible chain hangs, the inverted 

arch stays, Ramm and Wall [65]. Later, in 1691, Johann Bernoulli generated the exact equation for the 

catenary. The hanging model concept of Robert Hooke has been of great importance as it has been the basic 

ingredient for designing spatial structures up to the present time. A famous example of application is the 

hanging model of the Sagrada Familia Church of Antonio Gaudi, under construction since 1882.  
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Form-finding techniques in structural design were re-introduced by Heinz Isler and Frei Otto. The shapes 

derived from standard geometries did not lead to optimal membrane oriented designs (as less bending as 

possible). In fact, the cutting out of segments or put together of regular shapes often leads to high bending 

regions and large displacements which were usually av oided by additional stiffening elements. For shells, the 

principle of inverting hanging models reduced the form-finding of a shell to a natural process, leading to 

bending free shapes in pure compression.  

 

Form-finding surfaces can be achieved by physical modelling and/or computation modelling. 

 

3.4.1 Physical Modelling 

 

Form-finding for shells by physical modelling became famous due to the pioneering work of Antonio Gaudi 

and, for shells, Heinz Isler. Isler’s experimental work with hanging membranes resulted in the advantageous 

stress flow for shells, no tensile stresses and bending free. The hanging models can for example be made 

from a chain net or a textile fabric. The materials cannot absorb bending moments and therefore are in 

complete tension due to the gravity load. The structure that is achieved by inverting the hanging model, thus, 

contains only compression. The hanging membrane is an example of an equilibrium shape; the basis of the 

hanging model experiment is that one characteristic load case is used to generate the final shape by large 

deflections of a given membrane.  

 

    

Figure 3.8. A  hanging model  from Heinz Isler and a pneumatic model  of a  shell  structure, Chil ton 2000 

 

The procedure has the drawback that when different load cases are dominant, it is not possible to find a 

compromise. Furthermore, it is not possible to consider criteria for the genesis of shapes not based on elastic 

deformations. Before Isler used hanging models, he derived the shape of his shells from pneumatic models 

where a membrane is deformed under influence of air pressure.  

 

Form-finding with a pneumatic model is based on the homogeneous stress state; everywhere in the surface 

yields the same stress. The pneumatic shapes therefore fit extremely well with ‘pressure like’ loading (water), 

but develop a less favourable stress field when applied in other circumstances with different load (dead 

weight or wind). Therefore, their application is less desirable for concrete shell structures. 

 

For the determination of minimal surfaces between predefined boundaries, use can be made of soap film 

modelling. A minimal surface can be described as the smallest possible surface area between given 

boundaries. The minimal surface has zero mean curvature and a constant surface stress. Soap bubbles 
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automatically find the minimal surface for membrane structures and shells and by applying internal 

pressure the minimal surface is found for pneumatic structures. The minimal surface can be captured by 

photographing. 

 

    

Figure 3.9. A  minimal  surface (left) and a pneumatic soap film model  (right), Vambersky, Wagemans and Coenders 2006 

 

The form-finding methods described before refer to human models. However, structural shapes can also be 

obtained by  close investigation of nature. The theory of Charles Darwin, survival of the fittest, and gravity 

forces nature to develop and optimise its own structures like trees, spider webs, leafs and honey combs.  

Considering a simple example of a tree, it can be observed that its trunk is optimised to resist wind load. The 

thickness of the trunk increases with the magnitude of internal bending moment. Furthermore, everything in 

nature, whatever y ou find is organic shape, is double curvature, nothing plane. Shell engineers and architects 

may take profit by using the structural intelligence of nature to construct their own spatial curved surfaces as 

sev eral shapes appearing in nature show similarities with thin concrete shells, e.g. the shell of an egg, shells 

of fruits, etc. A variety  of information on this subject can be found in the books of Gibson and Ashby (1997) 

and D’Arcy Thompson (1942) in which several of nature’s structures are described and analysed.  

 

    

Figure 3.10. Structure inspired by  nature designed by  Gaudi  for the Sagrada Familia (left) and leafs on water (right), 

 

The form-finding methods give designers a powerful tool in designing structures. However, it must be 

mentioned that it is impossible to design efficient structures by  simple scaling of the form-finding shapes to 

real dimensions.  

 

3.4.2 Computational Modelling 

 

Modern computer software enables designers to define an efficient structural shape by means of 

mathematical form-finding without using physical models. Computational modelling can be seen as the 

numerical equivalent of physical modelling. They provide in an additional form-finding method, thus not 
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replacing the physical one. The underlying mathematical theory in computational modelling defines shapes 

on the basis of minimal surface by solving the weak form of the equation of virtual work for a prescribed 

stress. In other words, they aim for finding the equilibrium position of a structural network with a desired 

level of internal force. Two conventional computational methods are the Dynamic Relaxation Method and 

the Force Density Method. Dynamic relaxation is based on a step-by -step small time increment traced 

motion of the nodes in the structure. The nodes are set for motion by an imposed stress or force and their 

behaviour is determined by equating the geometrical nonlinear problem to a dynamic problem. To ensure 

convergence the structures damping properties must be specified. The Force Density Method differs from 

the Dynamic Relaxation Method as it is specially developed for tension structures. The Force Density 

Method finds the minimal surface by levelling the force densities for each node. Force densities ratios, the 

force in a cable divided by the cable length, defined for each element in the net, linearise the form-finding 

equation. The method is independent of the material properties of the structure and, thus, can be used for 

membrane structures if they are discretised in cable-net elements. 

 

    

Figure 3.11. Square shell  formed by  a particle-spring network supported near the corners, Kilian and Ochsendorf 2005, and the 

Wyss Garden Centre that Isler constructed using a hanging model , Chilton 2000 

 

A novel approach for the exploration of funicular involves Particle-spring systems. Particle-spring sy stems 

are based on lumped masses, particles, which are connected by linear elastic springs used for finding 

structural forms composing only axial forces. Each spring is assigned a constant axial stiffness, an initial 

length, and a damping coefficient. External forces such as gravitational acceleration can be applied to the 

particles and subsequently equilibrium is found using an implicit iterative Runge-Kutta solver, Kilian and 

Ochsendorf [53]. Allowing large deformations and real-time discovery of structural form they provide in a 

powerful tool for form finding. In Figure 3.11  an example of a square shell formed by a three-dimensional 

particle-spring network supported near the corners is illustrated, together with a shell designed by Isler 

using phy sical (hanging) models.  

 

 

3.5 Mechanical Behaviour 

 

To determine the mechanical behaviour of the shell surfaces, generated with techniques as described in the 

previous section, there are several methods, each of them having their own favours and restrictions. The 

mechanical behaviour of shell structures refers to the stresses, strains and displacements which arise in the 

shell due to the applied load. This section discusses several techniques which are often used in shell analy sis.  
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3.5.1 Balance Calculation 

 

A very practical method is to determine stresses by a simple balance calculation. Tests from Isler show that 

for shells with a square base plan only 10% of the weight of the shell goes to the walls. 90% of the weight 

arrives directly at the four corners. A simple calculation of the stresses in a shell can be carried out. Every 

corner carries about 25% of the total vertical load on the shell. The horizontal forces are in the middle across 

surface of the shell the same as at the support. This means that when the total of load is known and the angle 

by  which the shell enters the support is known, the horizontal load can be calculated. Dividing the horizontal 

load through the stressed area (across distance times the thickness) gives the horizontal stress in the shell.  

 

3.5.2 Polygon of Forces 

 

The polygon of forces is a graphical method to determine the forces in a structure, Bogart [13]. It is 

presumed that the ancient engineers used the graphical method as it is a simple and useful method to obtain 

and understand the membrane forces in shells. The application of the method is most likely a result of the 

discovery that the line of a hanging chain can be described by  constructing a polygon of forces for each point 

in a discretized chain line. As they  used the inverted hanging chain principle for form-finding, they used the 

polygon method for determining the forces. 

 

 

Figure 3.12. Determining the resultant force R for a point by  considering the forces a, b and c in  cyclic order 

 

The polygon of forces method is based on the first law of Newton which states that a body is in equilibrium 

and can remain stationary if there is no force acting on the body or, alternatively, if there are several forces 

which balance each other. When forces acting through a single point are in equilibrium the magnitudes and 

directions of these forces can be represented on a vector diagram which forms the sides of a polygon. All the 

forces must lie in one plane and must be considered in cyclic order.  

 

For an arch, the polygon of forces can be used to construct the line of thrust. In case of an arch with irregular 

shaped blocks, the line of thrust can be constructed by assuming the weights of the blocks as a lumped mass 

applied at their centre of gravity, given that the magnitude of the forces must be proportional to the weights 

of the blocks. The constructed polygon of forces shows the relation of the horizontal resultant with the line of 

thrust and the summed weights. In practice, the weights of the blocks and maximum supporting horizontal 

force are predefined and by assuming the supports on the same horizontal level the polygon of forces and, 

thus, the line of thrust is fixed. If the line of thrust does not coincide within the middle third of the arch 

cross-section, tensile stresses occur and bending moments are needed to compensate.  
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For shells, as mentioned in the introduction, bending is prevented by the circumferential stresses which 

correct the line of thrust back into the system line of the shell. These circumferential stresses can be found 

using the polygon of forces. This is shown in Figure 3.13 below.  

 

Figure 3.13. Graphical  solution of a shell  of revolution, Haas 1962 

 

The graphical method is a useful method to understand the behaviour of shell geometries. It is however 

restricted to simple shell geometries and linear behaviour. 

 

3.5.3 Classical Shell Theory 

 

Founded by Augustus Edward Hough Love in 1888, the classical shell theory was the first shell theory and is 

often referred to as Lov e’s first approximation. The theory was an extension of the plate theory  to structures 

with surface-like geometries using the same assumptions as the Kirchhoffean theory of plates.  Hence, the 

approximation of Lov e essentially is a thin shell theory. The most important part of the approximation of 

Love is the reduction of the three-dimensional problem to a two-dimensional surface problem, i.e. stresses 

or strains in normal direction are of no significance to the solution. Furthermore, Love identified that the 

shell behaviour can be approached by a membrane field in combination with plate bending that compensates 

for the shortcomings of the membrane solution. The classical shell theory is further discussed in Chapter 5.  

 

Although the approximation of Lov e is restricted to thin shells, it must be mentioned that the approximation 

still appeared to be sufficient for conceptualising the behaviour of older three-dimensional shapes as 

masonry  domes, which are considerably thicker relative to their span and cannot be exactly  characterised as 

carrying loads by in-plane axial or shear stresses (more bending exits and final stresses are not uniform). 

 

The emphasis of pre-war shell investigations laid on theoretical description of the linear elastic behaviour. 

By  exception Zoëlly, Von Karman and Tsien did investigations to the buckling phenomenon of shells. After 

the war the research on buckling failure predominated. The trend towards greater spans and thinner shells 

leaded to buckling sensitive structures with less strength reserve. However, modern designers where aware 
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of these disadvantages and fully realised the need to protect shells for buckling failure, they could not predict 

the buckling load due to their limited understanding of the phenomenon. At first, mathematicians tried to 

capture the buckling problem in the same linear manner as Euler did with the buckling of a column. The 

shell buckling problem is, however, far more complicated and those attempts failed as they resulted in large 

deviations with the experimental obtained critical loads.  

 

    

Figure 3.14. The collapse of the Ferrybridge cooling towers on the 1st November 1965 

 

From the year 1965 the research on shell buckling was further stimulated by  a collapse of three large cooling 

towers of 115 m height at Ferrybridge, UK. The collapse is subscribed to insufficient study on wind loading as 

mistakes in assumptions of wind speeds as well as the non-investigated effect of turbulence due to grouping 

of the towers caused unforeseen dynamic wind loads. The single layered reinforced concrete towers could 

not resist these loads and failed. Luckily, no one got injured. The collapse is seen in Figure 3.14. 

 

It was found that the lack of correlation between theory and practice finds its origin in the initial geometrical 

imperfections of the small-scale models which caused deviation from the linear path of equilibrium to the 

nonlinear post-buckling path. It appeared that the linear bifurcation point is never reached as the shell fails 

due to the reduced post-buckling load carrying capacity. A significant step in the direction of providing this 

answer was made by Dutch professor Koiter who investigated the post-buckling behaviour of shells in the 

vicinity of the bifurcation point: the Koiter initial post-buckling theory. Koiter permits in a study of the slope 

and curvature of the secondary  path of equilibrium in the immediate vicinity of the bifurcation point on the 

basis of linearised formulation. The conclusions of Koiter are discussed in Chapter 6. 

 

3.5.4 Model Tests 

 

Until recent progress of computational numerical analysis, experimental tests on small-scale models did 

provide in a very  practical and convenient method to determine stresses in a shell which goes beyond the 

simple shape. The shells of Heinz Isler are a famous example of shells designed using small-scale models. 

Besides his form-finding models Heinz Isler used small-scale models to determine stresses and to observe 

the possible full-scale performance. He used the experimental results to optimise his shell designs.  
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Before performing experimental tests the intention must be discussed, whether it is to confirm a 

mathematical theory, to verify a specific design or for observation of full-scale performance. For using small-

scale model tests in determining the full-scale mechanical behaviour it is important to approach the reality 

as close as possible. For example, small-scale models made of metals or plastics are not representative for 

concrete shells in the situation where pre-buckling cracking is known to be present. The high tensile strength 

of metals and plastics in relation to concrete will give misleading results. Because of the importance of 

cracking in structural behaviour of shells, time effects as creep and shrinkage and local effects such as bond 

slip and aggregate interlock, small-scale models should in be made from micro-concrete or other 

cementitious model material. The loading which can be expected in reality can be modelled by hanging 

weights, hydrostatic pressure, air pressure or partial vacuum.  

 

Figure 3.15. Experiments on buckling of spherical  caps under uniform pressure 

 

Because of the long-time absent of mathematical answers, much research on different types of shell 

phenomena has been done by  experimental tests on small-scale models. Scientists as Csonka, Klöppel and 

Jungbluth, Von Karman and Tsien and Vandenpitte have done numerous small-scale experiments on as well 

concrete as metal or plastic shells. At the TU Delft during the 1960s experiments on several concrete 

cylindrical shells have been performed by Van Koten and Haas.  

 

A lot of these experiments where done to obtain information about the buckling behaviour of thin shells, the 

field of the aforementioned Koiter initial post-buckling theory. In particular the tests performed at the 

University of Ghent of Vandenpitte provide in an extensive experimental studies on concrete dome buckling. 

The research on the buckling phenomenon resulted in an enormous scatter in experimental results as can be 

seen in Figure 3.15. This scatter is ascribed to the effects of initial imperfections in the shell surface.  

 

3.5.5 Computational Numerical Analysis 

 

Late shell designs are largely influenced by the advent of the computer. The importance of nonlinear features 

(large deformations) in shell design raised a huge barrier for designers to find an analytical solution. The 

advent of the computer made it possible to solve the nonlinear shell equations by numerical approximation 

methods. A classical method is the numerical integration of the shell equations with methods such as Runge-

Kutta or predictor-corrector techniques. The method is only applicable to shell problems which can be 

reduced to a system of ordinary differential equations, primarily the problems of shells of rev olution.  
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A powerful method for numerical computer analysis is the finite element method, essentially an 

approximation method for calculating the real behaviour of a structure by performing a solution of a set of 

equations describing an idealised situation. The finite element method discretises the structural domain into 

elements bounded by nodes. The methods work like a spider web. The movement of a point forces other 

surrounding points also to make a movement. The movement of the nodal points is connected to the rise of 

strains and stresses in the elements. By energy formulation and boundary conditions the response of the 

structure to certain loads is determined.  

 

The finite element method (FEM) has rev olutionised the analysis of structures and is widely available in 

computer software programs as ADINA, DIANA and ANSYS. It is difficult to quote a date of invention, but 

the roots of the finite element method is both mathematicians, phy sicists and engineers. The name ‘finite 

element’ first appeared in the paper of R.W. Clough (1960). Important early contributions are linked to the 

names of Argyris, Zienkiewicz and Cheung. Since the 1960s a large amount of research and publications was 

dev oted to the technique, Bathe [3]. Commercial software producers embraced the method and have 

developed it into very advanced analysis programs. The finite element method is discussed in Chapter 11.  

 

It must be mentioned that the computer software based on numerical analy sis must not be confused with the 

frame analysis programs as MATRIX FRAME and ESA PT. Frame analysis programs are based on the exact 

solution of a linear elastic formulation. Finite element programs are able to give a far better approximation 

of the nonlinear reality. However, the producers of frame analysis programs are trying to close the gap (ESA 

PT includes the possibility of a plate analysis with finite elements) they are by no means applicable for the 

more advance structural problems with large influences of nonlinear behaviour.  

 

3.5.6 Rainflow Analysis 

 

A relative new method is the rainflow analysis which is based on the way how rainwater runs off the surface. 

Like the rain flow loads will flow. The problem of modern computational numerical analysis, as the finite 

element method, is that only quantitative information is obtained. The designer does not know how the 

applied load is transferred from the loading point to the supports. In particular for designing irregular 

surfaces and/or supporting conditions, the undefined force flow gives raise to questions whether the shell 

has a sufficient structural surface. In order to obtain qualitative information about the force flow the 

rainflow analysis is developed, Bogart [14]. 

 

The rainflow analysis is derived from the study to the way in which plates carry their load. A plate carries 

load perpendicular to their surface by bending and out-of-plane shear. From the equations for plates 

engineers know that, when there is no torsional load, the second equilibrium equation yields that the shear 

force is equal to the derivative of the sum of the bending moments (see Chapter 5). The maximum shear 

force in a plate is a vector equal to the value of the applied load and points in the direction of the shear flow 

to the support. Hence, the maximum shear vector can be found by making a gradient plot of the deflection 

curvature. The deflection curved surface also represents an air inflated membrane and, analogous to this 

hypothesis, the flow of shear forces represents the way in which the rainwater flows from the inflated 

membrane, with the largest run-off at the curves with the steepest ascent and thus the largest shear. 
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In the case of shell structures, the deflection curvature is replaced by the initial curvature of the shell surface. 

In this case the rainflow represents the force flow and qualitative information can be obtained. Drain curves 

indicate the membrane force flow. Slow flow means little slope causing a distortion of the membrane 

behaviour by  out-of-plane shear and bending. Fast flow, thus, represent a sound structural surface. Bending 

can also be expected at regions with water accumulation or when loads are acting perpendicular to the drain 

curves (for example at the edges). Furthermore, a rapid change in the slope of a drain curve is sign of large 

circumferential stresses (and even can lead to bending as well), Bogart [14]. 

 

 

3.6 Structural Optimisation 

 

Structural optimisation can be regarded as the search for a better solution to a structural problem by 

generating additional sensitivities with respect to non-considered parameters. The optimised structure is 

thus better and more efficient than the initial structure. However this seems to be a very simple principle, 

the question how to define the optimisation problem and to which extend it is executed is not.  

 

 

Figure 3.16. The most efficient Michell  structure for carrying a point load 

 

The preliminary stage of structural optimisation were the structures of A.G.M. Michell which he developed at 

the beginning of the 20th century, see Figure 3.16. Michell structures carry the load with the least possible 

weight. The structural system follows the force trajectories and each member is either in compression or 

tension. Despite their efficiency, Michell structures are of little practical use due to their specific structural 

scheme. 

 

Structural optimisation is a synthesis of various individual disciplines, design modelling, structural analysis, 

behaviour-sensitivity analysis and mathematical programming with special emphasis on the modelling 

stage. It is one of the most significant processes obtained from nature. An example is the aforementioned 

tapered trunk of a tree and the constant stress distribution in the stem and branches of a tree. This principle 

of constant surface stress, also seen in the minimal surface of a soap-film, may be applied to the optimisation 

of engineering components.  

 

Structural optimisation deals with maximising the performance of a structure for certain objectives and 

constraints. The choice of the objectives and constraints can lead to a large diversion of solutions to the 

optimisation question. Think of the differences in optimisation results when optimised with respect to 

construction costs, weight, or natural frequencies. In a so-called multi criterion optimisation these 
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(conflicting) objectives can be considered simultaneously to obtain an optimal compromise of structural 

design. Moreover, limitations of the optimisation process give rise to questions whether a local or global 

optimum is obtained.  

 

The basic idea of the optimisation process is much related to the engineer approach. At first a shape is 

chosen for which the structural behaviour according to the given load cases and support conditions is 

evaluated. After the stresses, displacements, buckling loads and other safety requirements are checked a new 

and better design can be proposed by  means of a sensitivity analysis. The process is repeated until the 

desired optimum is obtained.  

 

Shape-sensitive structures like shells require high quality design to obtain an optimal membrane design. 

Since in many situations this optimal shape is not obvious, the need for optimisation techniques is evident. 

To fulfil the basic membrane oriented design rules, a modification of the original design could substantially 

improve the structural behaviour reaching the ideal of a pure membrane stress in compression for all loading 

conditions. Optimisation for shells results in a highly nonlinear optimisation problem. This means that, in 

order to generate a reliable design by structural optimisation, the nonlinear structural response, e.g. 

buckling or plasticity must be considered. 

 

With respect to optimisation shells are known to be extremely parameter sensitive because they are already 

optimised structures. This means that the danger of over-optimisation is very close. In fact, shells often show 

typical characteristics of ‘over-optimised’ specialisations with high sensitivity with respect to small changes 

of certain parameters such as the reduction of the buckling load due to only small initial imperfections. On 

the other hand an optimisation may contribute to a better design with more safety. 

 

The difference between optimisation objectives has resulted in various classifications over the years, none of 

them having reached global usage. In this thesis the categorisation which can be made according to Ramm 

and Wall [65] is used. Ramm and Wall argue that distinction can be made between size optimisation, 

material optimisation, topology optimisation and shape optimisation, even though these optimisation 

techniques may have a lot of overlapping. 

 

3.6.1 Size Optimisation 

 

Size optimisation refers to the optimisation of the size of structural elements in a structure. The initial 

geometry is not changed. Size optimisation leads to an optimal structure with respect to the weight and 

ov erall stiffness or strength satisfying the equilibrium condition and the boundary constraints. It results in 

structures with modified cross-sections of structural elements. 

 

3.6.2 Material Optimisation 

 

Material optimisation is everyday practice for engineers. Material optimisation is namely  related to the 

optimal use of material in the structure, e.g. reinforcement dimensions. The goal is to achieve an optimum in 
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material usage and stress distribution. In fact, the shell itself is already a material optimisation by covering a 

long-span with minimum of material use.  

 

3.6.3 Topology Optimisation 

 

The topology  of a structure is defined as a spatial arrangement of structural members and joints. 

Consequently, topology optimisation means varying the connectivity between structural members of discrete 

structures or between domains of continuum structures. For discrete structures, such as trusses, the 

variation of connectivity  means to generate or to eliminate structural members between existing joints. 

Analogously, for continuum structures the variation of connectivity means to separate or to join together 

structural domains and to generate or to reduce structural domains. In other words, in case of continuum 

structures, topology  optimisation transforms the design space in an optimal stressed space by removal or 

addition of elements. Low stressed elements are removed and areas of high stress are facilitated by the 

addition of elements. At first, the support conditions and applied loads are the only determined parameters 

as is a block of structural material. By defining the stresses in each element, the low stress and high stress 

elements are found and subsequently elements can be removed or added. Consecutive execution finally leads 

to a more optimal distribution of material in the design space, Veenendaal [77]. In Figure 3 .17 a topology 

optimisation applied as maximum stiffness problem to a four point supported spherical shell under a 

concentrated load is visualised. 

 

 

Figure 3.17. Topology optimisation of a spherical  shell  

 

The application fits extremely  well to computer implementation. Nowadays, topology  optimisation can be 

used to identify a potential good design and as starting point and improved by further design tools, such as 

shape optimisation techniques, discussed later. This is called adaptive topology optimisation. 

 

In the case of continuum structures it is not sufficient to only indicate where cuts must be made to change 

the structural topology. In addition, the shapes of the cuts must be determined to define the new structural 

lay out. Therefore, optimising the topology of continuum structures is sometimes called generalised shape 

optimisation, Maute and Ramm [58]. 

 

3.6.4 Shape Optimisation 

 

Shape optimisation refers to a technique in which the shape and thickness of a structure are optimised. The 

shape optimisation method leads by the aim of minimum of the total strain energy (sum of bending strain 

energy and membrane strain energy) during form modification to a membrane oriented design. By shape 

optimisation the original design can be adapted in order to lower tension and bending stresses and progress 
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to a more advantageous membrane state. An example of shape optimisation by  minimising the strain energy 

is seen in Figure 3.18 where the optimised shell provides in significant lower bending moments, Bletzinger 

and Ramm [12]. In Figure 3.19, the tennis hall shells of Isler are presented. Obviously, they show great 

similarity with the optimal shell of Figure 3.18.b. 

 

 

Figure 3.18. Shape optimisation of a shell  with , a, the initial  shell  and b. the optimised shell  

 

Shape optimisation reminds us of the form-finding technique as presented in section 3.4. Indeed, form-

finding may be addressed as a surface generation tool and optimisation technique in one. Shape 

optimisation, however, is more than that. Shape optimisation is more general and differs from the form-

finding principle where the generating rule itself is already  the criterion for optimality. E.g. in shape 

optimisation, the non-considered load other than dead weight changes the initial design. Moreover, shape 

optimisation can also refer to optimisation with respect to deflection, buckling, stress levelling, flexibility etc.  

 

 

Figure 3.19. The shell  as built by  Isler for a tennis hall  in  Düdingen (1978) 

 

3.6.5 Computational Optimisation Algorithms 

 

As the optimisation of structures becomes dependent of an increasing amount of criteria, finding the best 

solution becomes a very complicated mission. Hence, multi-criteria optimisation fits well to computer 

implementation. The development of optimisation computational algorithms has advanced spectacular over 

the last decades. This final section deals with optimisation algorithms. 

 

Computational algorithms are developed since 1988, as the Homogenization method by Bendsøe & Kikuchi 

was the first structural optimisation method developed for computer implementation, Veenendaal [77]. 

Since then scientists have searched for various optimisation algorithms with all kinds of application fields 

which results today in a wide variety of algorithms. Computational optimisation algorithms are not restricted 
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to the classification as presented abov e, but often use a combination between different types of optimisation, 

for example an integrated shape and topology optimisation. Roughly, they can be categorised in specific or 

tailored algorithms and general algorithms, Veenendaal [77].  

 

The most popular specific algorithm for structural optimisation is, by far, Evolutionary Structural 

Optimisation (ESO). ESO is a topology optimisation method and thus involves consecutive removal of low 

stresses material until the maximum stress in the remaining material part is reached. Computational 

software based on ESO is, for example, OPTFRAME or EVOLVE97. The software makes use of finite element 

techniques to determine stresses. The algorithm of ESO is further refined to Additive ESO (AESO), Bi-

directional ESO (BESO) and Extended ESO (XESO) which are equipped with more extensive and efficient 

optimisation techniques, for example the possibility of as well removal as adding of material and faster 

removal methods.  

 

Other specific algorithms are the aforementioned Homogenization method and the Metamorphic 

Dev elopment (MD) method. 

 

Genetic algorithms are the most used general algorithms. The Darwinian based method (survival of the 

fittest) generates every iteration new solutions by selection and crossover of previous obtained solutions in 

order to end up with a higher fitness generation. Random mutation of the new generation increases the 

change of reaching a global optimum. The process is repeated several times, keeping the size of the 

population constant. One can imagine that the large amount of work that has to be done results in a long 

optimisation time.  

 

Other general algorithms are the Differential Ev olution (DE) method, the Simulated Annealing (SA) method 

and the rather eccentric named Ant Colony Optimisation (ACO) method. The latter optimisation is based on 

the fact that ants, by leaving behind the chemical pheromone on their followed path, find the most optimum 

(the shortest) way from their nest to a food source. Think of two paths, short and long, from their nest to a 

food source. Ants at the short path reach the food earlier and go back in the way with the most pheromone. 

Ev entually all ants use the way with the most pheromone which is the shortest way. ACO uses this to find an 

optimum solution for a given problem. A disadvantage of ACO is its sensitivity to local optima. Therefore, 

the optimalisation algorithm must be programmed not to converge to one solution immediately, but to allow 

for more solutions for a longer period of time.  

 

Optimisation software, however, must still be further developed as the bulk of investigations are devoted 

towards cross-sectional optimisation, 2D shape optimisation and the, for shell important, nonlinear 

behaviour is usually not taken into account as it greatly increases the complexity of the problem. Hence, the 

application of computation optimisation algorithms seems to be far away from designing a sound shell 

structure. Ongoing progression may foresee in sufficient optimising shell software in the future.  
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3.7 Design Codes 

 

Two design codes that contain recommendations for the analysis of concrete shells are the codes of the 

American Concrete Institute (ACI) and the International Association for Shell and Spatial Structures 

(IASS). According to Farshad [34] the German Norm (DIN), the British Standards (BS) and the Indian 

Standards (IS) also offer general design guidelines for shells. The guidelines mainly focus on buckling. 

 

The ACI Committee 334 on concrete shells was formed in 1959 under the chairmanship of Anton Tedesko. 

The committee published two reports on shell design in 1964. The first report ‘Criteria’ cov ered general 

design considerations and the second report ‘Commentary’ discussed data of general interest to shell 

designers. The discussion of stability is mainly gov erned by the second report. In the ‘Commentary’ the 

relative importance of post-buckling behaviour and the significant reduction in the buckling load when both 

principal in-plane stresses are compressive is mentioned. The report states that for anticlastic shells it is 

possible to use the linear buckling theory. For synclastic shells the ACI report assumes that information on 

buckling of ideal shells for cylinders and spheres may  be used as starting point of the analysis for the 

considered shell. The report recommends that the combined apparent safety factor F based on the apparent 

safety factors calculated for an ideal shell in the direction of the principal radii of curvature, using an 

analogous sphere of cylinder in each direction, however, not less than 5. The rather large value was intended 

to allow for uncertainties of the various effects not included in the calculation. The effect of creep was 

allowed for by assuming a reduced value of E or a tangent value divided by  a value not less than 2. Finally, it 

is mentioned that a shell with two layers of reinforcement has greater buckling load than a shell with only 

one layer. 

 

In general, the report reflects the concern and imperfect state of knowledge on buckling at its time of 

publication. When the report was implemented in the ACI Standard, the problem of stability of concrete 

shells was confined to the point where almost no information of the use to a shell designer survived.  

 

The IASS recommendations on shell design where developed by  a working group in 1969. The text intended 

to serve as recommended practice in the design, analy sis and construction of concrete shells. However, shells 

such as cooling towers where excluded. The recommendation was published in 1979. The discussion on 

stability of shells was largely based on Kollar and Dulacska [54]. After the qualitative discussion on buckling, 

including the mentioning of the importance of post-buckling behaviour, the report offers a five step 

approach to calculate the safety factor to be used. The IASS recommendations provides in a rational 

approach by covering all the effects which might influence the buckling in a shell. Throughout a conservative 

approach is taken. According to Popov  and Medwadowski [62] the critical load may  be as little as 1  or 2% of 

the linear buckling load, if all of the cumulative effects are taken into account. Since the safety factor is yet to 

be applied, the allowable load is even less.  

 

A more detailed discussion concerning the application of the IASS recommendations is found in Chapter 6. 
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3.8 Design Considerations 

 

The numerous of shell structures built up to the present day give an enormous amount of information for 

new shell designs. The information which has been achieved may provide the new shell engineer a guideline 

and a series of do’s and don’ts when designing a sound shell structure. This section tries to formulate the 

things learned in design considerations.  

 

3.8.1 Span/Rise/Radius of Curvature 

 

The span of the shell is determined by its final usage. Shells can span up to 200 m and more. The main 

concern of long span shells is the question of stability of the shell structure. Today, the largest span of a shell 

is the 218 m span of the CNIT in Paris, Figure 2.25  

 

When the span is known, the rise and radii of curvature must be set. According to ACI Committee 344 domes 

usually give rise to span ratios of 1/10 to 1/6 while Scordelis [69] reports on shells with rise to span ratios of 

1/7.46 to 1/4.82 and radius of curvature to span ratios of 1 to 0.707. The ideal rise-to-span ratio for arches, 

1/7, is considered to be reasonable for shells as well. Shells with lower ratios than 1/7  are considered to be 

flat shells. It is generally suggested that the rise should be larger than 1/10. The rise to span ratio also fixes 

the radius of curvature. The central angle of shells is usually selected between 60 to 90 degrees, Scordelis 

[69]. Higher central angles would result in shell geometries with steeper slopes. Placing of concrete on these 

slopes would then require double forming. 

 

Candela believes that every shell has an optimum span, keeping in mind structural, practical and economical 

parameters. Spans which exceed 30 m makes the shell rise greater giving it tremendous cubage, which 

requires costly formwork. Large span improper shells, like folded slabs or barrel vaults, need extra thickness 

which causes high dead weight and increasing reinforcement. At this point transverse bending ceases to be 

secondary and becomes critical. In short cylinders stiffening arches get so big with large spans that the 

advantages natural to the shell are nullified.  

 

3.8.2 Thickness 

 

The thickness of the shell is an important parameter in shell design. Because the dead weight of the shell 

often represents the major portion of the total load, there is a desire to reduce the thickness. Secondly, 

thinner shells approach more closely to the profoundable membrane state. However a reduced shell 

thickness is less fav ourable of resisting bending moments. Fortunately, the edge disturbances have only local 

character and can be compensated by local increase of thickness.  

 

The thickness of the shell surface is prescribed by either practical or structural purposes, depending on the 

span and the construction material of the shell. For long-span shells structural considerations as failure due 

to buckling or surpassing material strength demand a certain shell thickness. Usually dimensioning the shell 

thickness is based on buckling considerations rather than material strength criteria. However, for short span 

shells the thickness is determined by practical considerations as the concrete cover for preventing corrosion 
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of the reinforcement or concrete placement. The turning point whether the shell thickness is determined by 

practical or structural factors is not a fixed parameter.  

 

Determining the thickness with respect to practical considerations means providing enough space for the 

reinforcement (in combination with the concrete cover) and the maximum grain size. As a general rule it can 

be said that the thickness should at least equal three to four times the maximum aggregate dimensions, Haas 

[42]. By this it is possible to ov ercome imperfections as gravel pockets or separation of the concrete mixture. 

For the concrete cover climatological considerations play a large role. Because the surface of the shell often 

remains untreated the concrete cover must avoid water reaching the reinforcement to prevent corrosion. In 

general a concrete cover of 30 mm will be sufficient for maritime regions. The thickness is further influenced 

by the application of one or two layers of reinforcement. The practical thickness of a shell is also influenced 

by  the placing method of the concrete and placing difficulties. Using common placing methods the thickness 

of slabs can be controlled up to about 19 mm. With extreme care 6 mm can be obtained. The curvature of the 

shell will have a negative effect and the designer must take account for larger deviations. Special fabrication 

methods as prefabrication may reduce surface deviations. As a rule, the thinner the shell is as compared to 

its radius of curvature, the less accurately it can be built. A common practical thickness of conventional 

concrete shells varies between 60 to 80 mm. 

 

The practical thickness is the minimum thickness of the conventional concrete shell. Structural 

considerations may, however, force the designer to increase the thickness. Most shells have an increased 

thickness near the supports to prevent stress concentrations and to facilitate the force flow to the supports. 

Long-span shell structures may take this increase thickness to be necessary over the complete shell surface. 

Although, the shell thickness has no influence on the membrane stresses (the thickness parameter falls out 

of the equations) and only minor influence on the bending stress (double thickness increase the bending 

moment just 26%!) the thickness is important for buckling considerations. Aforementioned, as increasing 

spans become more and more vulnerable for buckling, long-span shells may need a thickness which is larger 

than the practical thickness. 

 

3.8.3 Ribbed Shells 

 

Instead of increasing the thickness of a shell, several shell designers such as Nervi and Tedesko used ribs to 

stiffen their shells in order to obtain a larger resistance against buckling. Ribs came in order to find a 

modification in the way the material is distributed throughout the surface of the shell. They are applied to 

increase the effective depth of the shell greater than if the material were evenly distributed. Though ribbed 

shells are not thoroughly discussed in this thesis, their principle and influence on the buckling behaviour is 

outlined here.  

 

The functioning of ribs can be simply explained. Due to the rib-stiffening the buckling is represented by the 

local buckling of the skin between the ribs, conditionally  that the ribs distances are chosen inferior to the 

buckling lengths of the unstiffened shell (if the distance between neighbouring ribs is larger than the 

buckling length of the unstiffened shell, they have, off course, no influence). When the rib design is known, 

the rib shell can be replaced by a continuous surface for the analy sis. The continuous surface must include 
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the effective width of the skin with respect to the bending of the ribs, possible eccentricity of the ribs and the 

role of Poisson’s ratio. After that, the rigidity characteristics of the equivalent orthotropic shell can be 

established and an overall buckling analysis can be performed. 

 

The latter explanation leads to some questions. First of all, the dimensions of the buckle must be known in 

order to determine the rib distances. A safe choice is the linear buckling lengths of the unstiffened shell as 

the imperfect buckling lengths are larger, see Chapter 6. For example, when assuming rectangular buckles, 

the half buckling wavelengths of a spherical shell subjected to radial pressure cannot be shorter than 1.72 

√(Rt). This means that if the rib distances are shorter than 1.72 √(Rt) they lead to an increased critical load. 

According to Kollar and Dulacska [54], in general, ribs can certainly be considered as practically effective if 

the distance of the ribs is not greater than 0.7  times the buckling length of the unstiffened shell. In that case 

the critical load of the shell panel between the ribs is approximately twice the value of the unstiffened shell. 

 

The second problem that may  arise is the question to what is the necessary stiffness of the ribs to allow us to 

consider the ribs as rigid supports of the skin during buckling. As this question is not generally been 

answered yet, Kollar and Dulacska introduced the following analogy. If we want to stiffen a weak simple 

frame, we can add a sufficient rigid structure according to Figure 3.20. 

 

 

Figure 3.20. The basic principle of the necessary  rib rigidity , Kollar and Dulacska 1984 

 

The rigidity of the added part can be taken as sufficient if its critical load, computed assuming infinitely 

elastic material, is not less than the sum of all loads on the stiffened frame. When this is projected to our 

shell, we have to demand that the ribs be capable of carrying all the load acting on the shell surface and on 

the ribs, assuming infinitely  elastic behaviour. In this computation an effective width of the skin, as valid 

before skin buckling can be assumed as part of the rib.  

 

The shell surface can be stiffened in two ways: the ribs can be arranged on both sides of the skin, 

symmetrically to its middle surface, or eccentric stiffening on one side only. For symmetrical positioned ribs, 

the rigidity can be smeared out and the orthotropic shell equations can be applied. This is, however, much 

more difficult to construct and is less economical to eccentric ribs which foresee in a considerable higher 

bending rigidity with the same amount cross-sectional area. However, eccentric ribs can be described by the 

orthotropic shell equations much more difficult. Like symmetrical rib-stiffeners, eccentrically ribbed shells 

cause increase in rigidity. However, as discov ered by Van der Neut in 1947, it does make a difference 

whether the ribs are positioned on the outer (e.g. the St. Louis airport shell, Figure 2.30) or on the inner 

(Palazzetto dello Sport, Figure 2.27) side of the shell surface. This is caused by  so-called primary 
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(phenomenon of twist due to varying amplitude of outward and inward buckles which cause shearing 

deformation in the shell surface) and secondary (outward buckling waves in longitudinal direction cause 

tension in ring direction due to Poisson’s ratio) effects which act in opposite sense. Unfortunately, it cannot 

be decided without a detailed analy sis which effect, and thus which eccentric arrangement, prevails.  

 

To draw a conclusion, the following comments must be made. The difference in primary behaviour of outer 

and inner stiffeners only appears if the buckling deformation contains some twist. The secondary effect is 

present, however, ceases when the Poisson’s ratio is chosen equal to zero which also benefits the safety. 

Furthermore, as concluded by Hutchinson and Amazigo (1967), the fav ourable effect of outside stiffeners is 

greatly reduced as it is partially counterbalanced by its sensitivity to initial imperfections. Therefore, Kollar 

and Dulacska propose to neglect the ‘warping rigidity’ and the primary and secondary effects caused by the 

eccentricity of the stiffening ribs. Hence, the analysis of ribbed stiffened shells can be reduced to that of 

simple orthotropic shells with a higher stiffness. 

 

3.8.4 Reinforcement 

 

Modern shell structures are reinforced concrete structural surfaces. Reinforcement in shells is applied for 

four requirements. At first, reinforcement is the reason that modern shell structures are capable of 

transferring tensile stresses resulting from the membrane and bending action as well as the tensile stresses 

due to transverse and membrane shear. Secondly, reinforcement provides in a distribution net for local 

concentrated loads and, thirdly, the application of a reinforcement grid enables the shell to control shrinkage 

and temperature effects. The final reason for applying reinforcement is the reduction of deformations due to 

local bending and thereby decreasing the likelihood of instability due to buckling of the shell. Thus, the 

reinforcement has an important role in preventing buckling.  

 

 

Figure 3.21. Welded wire mesh  reinforcement for the Jena Planetarium, Joedicke 1962 

 

Ordinary reinforcement in a concrete shell consists of conventional steel rebars or a welded wire mesh, 

Figure 3 .21. Wire mesh is recommended where possible. It is v ery  suitable for developable surfaces as it can 

be obtained in flat sheets and easily bended in the right shape. For doubly curved shells wire mesh is less 

useful as it is difficult to obtain the double curved shape. Mild steel reinforcement is commonly applied for 

such surfaces. A small amount of shells has been built using high-tech reinforcement. An example is the shell 
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of Jorg Schlaich which was built for the Federal Garden Fair in Stuttgart in 1977 using glass reinforced 

concrete. However, this is not common practice due to the higher costs. The research within this thesis on 

the applicability of fibre reinforcement may open new ways. 

 

Using conventional rebars or welded mesh reinforcement, usually a percentage between 0.15 and 0.4% is 

applied for single layer reinforced shells, although, due to their extreme thinness, the shells of Candela may 

reach higher percentages. The reinforcement of a series of concrete shells is illustrated in Table 3.1. To 

compare, beam reinforcement is approximately between 0.8 and 1.2 %. The shell can be executed with one or 

two layers of reinforcement. Generally, engineers as Heinz Isler prefer two layers of reinforcement, mostly to 

give more resistant against buckling. However, two layers also provide more resistant to the previously 

described negative effects as shrinkage, temperature gradients and local concentrated loads. The application 

of single layer reinforcement is therefore restricted to shells with small dimensions or sometimes when 

prestressing is applied. 

 

Shell  Thickness (mm) Ø (mm) Spacing (mm) % 

Shopping Centre Hawaii , Bradshaw 76 9.5 300 (max)* 0.37 (min) 

Market hall  Algeciras, Torroja 85 12 300 (max)* 0.40 (min) 

Church  Monterrey, Candela 40 9.5 150  1.24 

Restaurant Xochimilco, Candela 40 8 100 1.25 

Factory  Tacuba, Candela 40 9.5 200 0.89 

Swimming pool  Norwich, Isler 80 6 100 0.57** 

* Reinforcement is placed in  circumferential  direction; ** Two layers of reinforcement 

 

Table 3.1. Reinforcement in  concrete shell  structures 

 

Shells with combined reinforcement, one layer in the compression zone and two layers near its base, are 

often seen in practice. Candela makes his shell surface such thin (40 mm) that there is only space for one 

layer. While in the majority of the shell surface only one layer is applied, the reinforcement ratio is increased 

by  supports. The table below shows the reinforcement ratios of different shells. The values are surface values 

which hold for the majority of the shell surface without taken into account extra reinforcement near the edge 

or at supports.  

 

 

Figure 3.22. Rebars aligned with  the stress trajectories, Joedicke 1962 

 

The reinforcement can be placed in different patterns. Initially, shells where reinforced with the bars parallel 

to the stress trajectories, Figure 3.22. However technical and academic, this consumes much labour and is 
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thus of little practical value. Nowadays a straight perpendicular reinforcement is applied, sufficient to 

withstand effects of shrinkage and temperature and able of proper distribution of local concentrated loads. 

For areas of larger diagonal tensile stresses supplementary diagonal reinforcement is applied, see Figure 

3.23. At the edges of the shell, stirrups are placed for absorbing out-of-plane shear forces (which e.g. can be 

determined with the so-called Kirchhoff boundary condition, see Chapter 5). 

 

Figure 3.23. Supplementary  diagonal  reinforcement, Haas 1962 

 

The diameter of conventional reinforcement should be kept small. However small bars have the 

disadvantage of high flexibility  and are easy bent out of place by the shell builders, they are easier to handle. 

A fine net is preferred above a coarse net as it better distributes disturbances. According to the standard of 

the American Concrete Institute (ACI) the spacing between deformed rebars should be limited up to five 

times the shell thickness but not exceed 450 mm. For a welded mesh the spacing should not exceed 300 mm. 

European codes limit the spacing to not more than twice the slab thickness for plates. For shells it can be 

said that the spacing in most cases should be between two and three times the thickness. 

 

 

Figure 3.24. Possible reinforcement of a Monoli thic Dome spherical  shell  

 

If fibre reinforced concrete is used, fibres can reduce the amount of reinforcement or even totally  substitute 

the reinforcement. An example is the reinforcement in the l’Oceanografic shell in Valencia. The shell 

contains combined reinforcement for which 50 kg/m3 DRAMIX fibres are combined with a reinforcement 

mesh of Ø8-150 mm. The shell has a thickness of only 60-120 mm and is seen in Figure 3.25. 
 

 

Figure 3.25. Shell  l ’Oceanografic in  Valencia constructed from as well  fibres as a reinforcement mesh, www. structurae.co.uk 



  Chapter 3.   Shell Design 

 64

3.8.5 Prestressing 

 

Prestressing in concrete shells is, as with other structures, applied for the aim of reduction or even 

prevention of tensile stresses by  introduction of compressive stresses. For example to ensure that long-span 

shells are in compression prestressing may be applied. A practical rule states that shells up to 30 m can be 

made of non-prestressed reinforced concrete. For longer spans prestressing must be applied. However, 

prestressing can also be included in short-span shells as it may cause the edge beams to be superfluous.  

 

 

Figure 3.26. Prestressing canals in  the edge beams of an Isler shell , Chilton 2000 

 

Prestressing was first applied in shells to balance the outward thrust of a dome by bringing into compression 

a tension ring, or to contain the compression state in the shell surface under all possible loading conditions. 

Initially, the prestressing ties where accommodated into the edge beams of shells as is seen in Figure 3.26. 

Isler used prestressing to control the size of the edge beams. He applies prestressing if the span exceeds 30 

m. Later, shell designers also placed the prestressing ties inside the shell surface or outside the basic 

structure, as tension cord within the foundation or across the diagonals (hypars). An example of a 

prestressed shell with prestressing in the shell surface is the 1982 Olympic Swimming Pool in Kirchberg, 

Luxembourg City, designed by French architect Roger Taillibert, seen in Figure 3.27. 

 

 

Figure 3.27. The 1982 Kirchberg Olympic Pool  in  Luxembourg City  by  architect Roger Taillibert, www.academie-des-beaux-arts.fr 
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The shell of Isler at the Deitingen Service Station is an example of prestressing outside the basic structure as 

the prestressing cords are placed beneath the ground surface and connects the outer support of the shell with 

an embankment structure which supports the two inner supports. By pulling the support points slightly 

inwards using the pre-tensioning cables the shell is brought into compression.  

 

The use of prestressing in shells also has the advantage of improving crack control. Furthermore, with 

prestressing the influences of shrinkage and temperature is kept in check and the bending moments can be 

better controlled. The prestressing ties are also used for simple removal of the formwork. The tensioning of 

the ties after hardening not only brings the shell in compression, but also causes an up-lift of the shell 

surface. The shell moves free from the formwork which easily can be removed.  

 

3.8.6 Material 

 

The shells discussed here are constructed from (fibre) reinforced concrete. Stresses in concrete shells are 

often a small proportion of those permitted by  the strength of the material. From experience, in a shell of 20 

or 30 m span the stresses vary from 1.5 to 3.0 N/mm2, including the effect of pre-stressing, Chilton [22]. The 

foot of the shell is the only  point where the stresses go abov e 50% of the allowable concrete strength. 

Therefore, durability of the concrete is probably more important than strength.  

 

After placement, attention must be paid to the surface treatment of the concrete, as the majority of shells do 

not have cladding or painting. A smooth surface improves the appearance and reflection of light. 

Furthermore, a smooth surface shows higher resistance against degeneration due to climate attacks. 

Measurements of Heinz Isler at some of his shell structures have shown that the shells lose 1 or 2 mm of 

their surface in the first ten years. Over 35 years the erosion does usually not exceed 2 to 4 mm. During a 

similar period of about 35 years the concrete will suffer carbonation to a depth of less than 10 mm, Chilton 

[22]. However, the durability largely depends on the climatological circumstances. For example, in South 

Africa, which is largely sub-tropical, the temperature differential can vary 30 degrees and thin concrete 

shells suffer large expansion variations. For increased durability, or visual reasons, the concrete cover may 

be coated, painted or cladded.  

 

 

3.8.7  Supports 

 

With respect to the supports, it is most important that they are fixed in place. Possible movement of the 

supports may lead to a disturbed membrane stress field, significantly increased deflections and/or in-

extensional deformations such as seen in Figure 3 .3. For self balancing shells (e.g. hemispherical shells) the 

supports only have to carry the dead weight of the shell. However, in case of more shallow shells, the 

supports sometimes also must absorb the outward thrust of the shell. In these situations the supports may 

be connected to each other by tensile cords or they are balanced by piles and/or (grouted) anchors.   

 

The shell support design is closely related to the shell design as the membrane stress field is locally disturbed 

by  suppressed deformations. A choice for a particular support condition, thus, influences the shell edge 
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design, discussed hereafter. Commonly, shells are clamped supported, e.g. encased in concrete beams, or 

membrane compatible supported, e.g. ball-and-socket hinges. An example of a (rare) hinged support is seen 

in Figure 3.28 in which the hinge is approximated by a series of pendulums, with the horizontal thrust 

absorbed by a prestressed edge ring, Haas [42]. 

 

 

Figure 3.28. Support detail  of a  hinged support for a dome in  Zürich , Haas 1962 

 

3.8.8 Edge Design/Free Edges 

 

The first shells of the early twentieth century were fully supported along their boundaries. However, when 

the architectural profession got interested, they wanted to show the spectacular thin cross-sections of shells 

by  building shells with unsupported boundaries. If shells are unsupported at their edges, there is referred to 

shells with free edges. Obviously, shells with free edges are more appealing as they  appear to be more 

graceful.  

 

Discontinuously supported shells, e.g. Nervi’s Palazzetto dello Sport in Rome, experience a significant 

change in the principal stress directions, simply  as a consequence of transferring the weight of the shell to a 

small portion of the edge, illustrated in Figure 3.29. Moreover, in case of structures such as the Palazzetto 

dello Sport with columns tangential to the meridian, also the outward thrust contributes to the change of the 

stress trajectories. 

 

Figure 3.29. Stress distribution in  a hemispherical  dome on six supports, Haas 1962 

 

In Figure 3 .29 it can be seen that the meridional and circumferential stresses must vanish at the 

unsupported edge part while at the supports the stresses show high peaks. Furthermore, it can be seen that 

the edge disturbance caused by the discontinuous support stretches up to about halfway the shell surface. To 

counteract the change of stress trajectories a possible solution is to introduce a stiff ring girder. The ring 

girder is also beneficial as it simplifies the calculation, i.e. the shell abov e the ring girder can be analysed as a 

uniformly supported shell. A more aesthetical solution is the aforementioned feathered shell in which the 

unbalanced forces are fluently transferred to the (tangential) columns by arch action, Haas [42]. Basically, 

the feathered shell is an example of a shell with a free edge. 
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Although the possible thrust from the dome is usually taken by an edge ring beam or tension cord which is 

commonly prestressed, in some cases the edge ring beam is replaced by  a thickening of the shell near its 

supports or by a feathered upturned shell, in case of a discontinuous support, Scordelis [69]. 

 

The membrane stress state of shells, however, seldom allows for totally free edges. In general, longitudinal 

edge beams must be applied to carry the applied loads, which have been transferred to them by the 

mechanism of internal shear force, and transfer them in turn to the supports of the shell structure. 

Furthermore, due to their free edges, these shells generally do not buckle locally, but the combined shell-

edge system buckles as a whole. In other words, the shell-like buckling merges to arch-like buckling of the 

complete structure. This phenomenon is seen in Figure 3.30. The Figure shows a buckling analysis of an 

elpar shaped shell in DIANA with increasing edge beam stiffness. The most left picture (no edge beam) 

shows typical arch-like buckling while the most right picture (fully  supported) has shell buckling with 5% 

accuracy with respect to the theoretical value of a radially pressed sphere (see Chapter 6). The problem is 

that the arch-like buckling load is considerably lower than the load necessary to cause shell buckling. Thus, 

besides carrying load, the edge beams must also provide additional stiffness for buckling instability.  

 

Figure 3.30. A  series of shell  buckling analyses with  increasing edge stiffness 

 

Edge members are found in various sizes and shapes. Distinction is made between edge beams and curved 

edges. Curved edges are essentially curved edge beams with open cross sections, while edge beams have 

rectangular closed cross-sections. The size of the edge members is determined by the magnitude of the load 

which they must transfer or buckling considerations. A possible height of an edge beam to shell length is 

somewhere between 1/25 and 1/20, Farshad [34]. 

 

     

Figure 3.31. A  shell  of Heinz Isler in  Switzerland and the shell  at the Deitingen Service Station by  Isler 

 

The main problem of shell designers is the fact that the cross section of an edge beam, under influence of 

load transfer or buckling, becomes so large that they cause deformation problems. Large edge beams tend to 

shear-off easily from the shell or prescribe the shell deformation due to their own deformation. 
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Aforementioned in Chapter 2, the Kresge Auditorium on the MIT campus had major problems with 

watertighness due to the shear-off of the edge beam from the shell. 

 

The problem can be solved by designing a more sound shell structure in which the membrane stress 

resultants do not run out of the edge. Think of the rainflow analysis mentioned before. If the rainwater flows 

ov er the edge, the shell often needs (large) edge beams. To prevent large edge beams the shell can be 

provided with curved-up edges, which obviously leads to forces running away from the edge. An example is 

shown in Figure 3.31. The graceful curved edge solution is used many  times by great designers such as 

Candela and Isler. In particular, Isler was the master of edge design, as he was able to construct the famous 

shell at the Deitingen service station without edge members, Figure 3.31. 

 

Concluding, a good shell design has a proper designed edge. Most important is that forces flow away from 

the edge in order not to have large discrepancies at the edge. Curved edges work like edge beams, but better, 

and may lead to the elegant and stylish shells as desired by architects. 

 

3.8.9 Loading 

 

Loads on the shell can be classified by their variation in time into permanent variable accidental and time 

dependent loads.  For shell roofs, as dealt with here, the predominant loading is often the dead weight of the 

shell structure. Hence, in case of shell walls, cooling towers, the primary wall loading is wind and the 

distribution of the load is of major significance. The climatological conditions determine the variable loads 

such as wind and snow. Wind and snow load may cause the meridional curves and parallel circles do no 

longer present the principal directions of the internal stresses as there is a nonzero membrane shear force 

field, as well as normal membrane forces. Thus, the so-called stress trajectories transform under the 

influence of wind or snow load. 

 

Time depended loading refers to effects such as creep, shrinkage and temperature gradients. Creep and 

shrinkage cause flattening of the shell, which in turn has major influence on the load carrying capacity, 

especially  in case of a shallow shell. An example of a shell for which creep and shrinkage are dominant is the 

new EPFL Learning Centre shell in Lausanne, illustrated in Figure 2 .42. Furthermore, due to the large 

exposed area with respect to the concrete volume, high temperature gradients can be critical. 

Aforementioned, in South Africa, temperature differences of 30 degrees cause large expansion variations. A 

parabolic shell structure for a sports hall in Pretoria was constructed in the 1960s using a 250 mm higher 

thickness than structurally needed to provide sufficient mass to resists the climate attacks. Still it was 

plagued with maintenance problems. Furthermore, a recent example of cracks due to temperature gradients, 

are the cracks in the dome houses of the solid house foundation in El Alto, Bolivia, constructed in 2004. 

 

In Chapter 9 the loading will be further discussed. 
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3.8.10 Economics 

 

The economics of shells is not of interest for this thesis. However, in general it can be said that if the ultimate 

ov erall object is economics, do not build a shell structure. As shell construction techniques traditionally rely 

heavily on labour, their construction is hampered by today’s high labour costs. According to Martin 

Bechthold [5], Professor at Harvard University Graduate School of Design, labour costs increased with the 

factor eight to eleven (unskilled labour and manufacturing labour) between the golden years of shell 

construction around 1960 and 2002 whereas the costs of construction materials increased only 4.8 in the 

same period. Less labour-intensive construction techniques need to be found as the formwork and falsework 

accounts for the major part of the costs, about 50%. Cheaper alternatives may lead to a shell revival. Until 

then, the construction of new shells is dependent on the feeling for fine engineering art and structural 

honesty of the client. 

 

 

3.9 Conclusions 

 

From this Chapter it can be concluded that to design a sound shell structure, the designer must ensure firm 

support, allow for membrane stresses to develop, add sufficient curvature everywhere, and take care of edge 

effects by designing proper curved edges. Subsequently, the designer should optimise the shape and 

thickness of the shell for buckling and membrane dominant behaviour (minimising strain energy). 

Furthermore, a shell is only a shell when it remains it shape when it is loaded (shells sometimes are referred 

to as form resistant structures). Thus, in-extensional deformation must be prevented. 



  Chapter 4.   Shell Construction 

 70

4 Shell Construction 

 

 

After the historical reflection of the modern shell era in Chapter 2  and the discussion concerning the 

structural design of shell structures in Chapter 3, one may wonder how the three-dimensional curved surface 

of the thin concrete shell can be realised in practice. In this chapter the theoretical and practical 

considerations affecting the construction of shells are discussed.  

 

Historically, shells are constructed using conventional timber formwork and supporting framework. 

However, as mentioned in Chapter 3, the conventional formwork had traditionally relied heavily on labour 

as forming the spatial curvature of the shell by timber formwork consisting of curved boards and beams is 

labour intensive. With increasing labour costs came the search to new construction techniques. A few of 

those new construction methods and applications were already mentioned in Chapter 2, such as the 

prefabricated elements of Nervi and the airform shells.  

 

Besides developments in less labour intensive and inexpensive formwork there is the search for high quality 

materials and improved placement methods. At first, progress was searched in the position and quantity of 

rebar or mesh reinforcement, depending on the size and shape of the shell and the application of 

prestressing. Today, research extends towards the application of high strength mixtures and the possible 

addition of fibres which may reduce or even totally  replace the conventional reinforcement. Furthermore, 

common concrete placement evolves to faster and better controlled processes and, in addition, new 

techniques as the vacuum method are introduced. 

 

After the concrete is hardened and the possible prestressing activated, the formwork can be removed. What 

results is the free standing, bare shell, Figure 4.1.  

 

 

Figure 4.1. Bürgi  Garden Centre (1973), Camorino, Switzerland by  Heinz Isler, Flury  2002 
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4.1 Formwork 

 

The formwork of the shell, in combination with the framework, is a dominant factor in shell construction. 

The formwork gives the shell its final shape, is of main importance for the costs of the shell and the choice 

for a certain type of formwork may influence the design. Hence, the relevance of careful selecting and 

manufacturing of formwork.  

 

The main purpose of the formwork is to support the reinforcement and to provide in a mould for the wet 

concrete until it has reached sufficient strength. As mentioned, the formwork gives the shell its final shape 

and because of the structural importance of correctness in shape, possible shape deviations such as dents or 

local loss of curvature may lead to a significant decrease in load bearing capacity (Chapter 3), the formwork, 

and the workman, must meet high standards. I.e. forming the three-dimensional curved shell requires 

craftsmanship as the spatial curvature must be applied over a large amount of surface with a minimum of 

shape deviations. Moreover, it is pointed out by Haas [42], that a shell usually attracts attention and every 

blemish of unevenness, for example a displaced board or mould, will immediately become apparent.  

 

A well-proportioned formwork is, however, of no use if the supporting framework fails at its job. A 

framework must provide in a continuous supporting frame in which by no means (local) settlements may 

occur. This irrevocably will lead to the much unwanted imperfections in the shell surface. In order to prevent 

possible settlements, conventional shell construction may start with the realisation of a concrete slab, 

providing in a sound foundation for the framework and the shell structure in a later stage. 

 

Besides the technological requirements, the formwork must meet economical demands. The cost of 

formwork and framework is perhaps the major constraint on widespread shell construction. Already for 

simple geometries, intensive labour is needed to obtain a well lined formwork with a smooth surface. The 

restriction in costs becomes even more pertinent where free-form shells are inv olved. Because there is 

neither a considerable element of repetition or symmetry nor a simple geometrical shape, forming the spatial 

curvature is time consuming and, thus, expensive. Furthermore, costs are negatively influenced by the 

possible need for double formwork. The need for double forms is primarily governed by the aperture of the 

shell. At maximum, the inclination of the shell surface cannot exceed 30 to 45 degrees, depending on the 

consistency of the concrete mixture. Besides the economical drawback, a double formwork also has a 

negative influence on the quality of the concrete due to the higher water content required for the placement 

within the double form. Hence, when designing a shell, double forms should be av oided, Haas [42]. 

 

To reduce formwork costs several shell engineers have tried (and still do) to overcome the disadvantages of 

the conventional construction method in roughly three ways. At first, there is the search for improvement of 

the conventional timber formwork, secondly, the introduction of standardised shell dimensions for re-use of 

moulds. Thirdly, up to the present day, widespread pioneering with new construction techniques is done. In 

this paragraph three techniques most used for shell construction are discussed in combination with a rather 

new technique showing large potential. The sequence of discussion may in short be named as conventional 

formwork, prefabricated moulds, airform techniques and stressed membranes. In practice, when 

constructing a shell structure, there are also combinations possible.  
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4.1.1 Conventional Formwork 

 

Conventional formwork can be divided into the mould itself and a supporting framework. The supporting 

framework builds up the skeleton of the shell. In general, the relative thin layer of concrete of a shell does 

not need scaffolding designed to carry heavy load. The major question forming the double curvature of the 

shell formwork is to fill or to shape. The double-curved shape predominantly is achieved using lines of 

curved glued-laminated timber beams (shape) supported by adjustable height metal trestles or metal frames, 

like the Brügg shell (1981) seen in Figure 4.2. If necessary, the number of supporting metal frames can be 

reduced using curved trusses of timber, e.g. for the Wyss Garden Centre (1962). Another option to construct 

a double curved shape is to add a form layer (fill) between straight beams and the timber board mould.  

 

 

Figure 4.2. Framework of the Swimming Pool  shell  in  Brügg (1981) by  Isler, Flury  2002 

 

The centres between the beams are such that thin timber boards placed across them take up the appropriate 

spatial curvature. Regular timber boards of sizes of 2.4 ×  1.2 m with a thickness of 18 mm may be used. Steel 

boards are rarely used. Possibly, the timber boards are used to support a layer of insulation used as 

permanent shuttering, such as wood-wool slabs with a final topping of sprayed polyurethane. On top of the 

insulation layer (or the timber boards) the steel reinforcement is placed. To guarantee detachment of the 

insulation to the concrete, plastic fixings connect the insulation to the reinforcement with the least amount 

of cold bridging. For seamless clean concrete surfaces a hybrid plastic coating may be used, Haas [42]. 

 

     

Figure 4.3. Formwork of the Fronton Recoletos (1936) in  Madrid by  Torroja, Fernandez Ordonez and Navarro Vera 1999 

 

Regardless of the fact that there may be some symmetry  in the shell design, each beam in the framework 

slightly differs from its neighbour. For doubly curved shells, the timber boards and insulation must be cut 

exactly to measure and placed well lined. Additionally, shells may have daylight openings or points of 

intersecting curvatures which are extremely labour intensive, see Figure 4.3. The shape of the shell may be 
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that complex that prefabrication of the timber formwork in a factory using more advanced construction 

techniques is required. Hence, forming (and designing) the conventional formwork is extremely time 

consuming and, thus, expensive (an exception form the hypar shaped shells, because the formwork can be 

made mainly from straight beams and boards). Despite the disadvantages, the great advantage of the 

conventional formwork is that every possible shape of a shell can be constructed. This is the reason that 

Swiss engineer Heinz Isler used conventional formwork for his shells. Isler solved the economical problem 

by cooperation with the Bösiger Construction Company. He designed his shells using standard sizes and 

shapes. This made possible the development of re-usable formwork and framework. Because of that, Heinz 

Isler was able to construct shells even after the sudden death in the early 1970s, Chilton [22]. 

 

The first shells of the modern era are constructed using plates and boards. However, at highly double curved 

areas seams are visible indicating small deviations from the pure shape and highly curved sections were 

impossible to achieve with sufficient accuracy. Therefore, new techniques were developed and used to 

construct the contemporary, highly curved, free-form shells and blobs with amorphous shapes. Foamed 

plastic (poly styrene) formwork fabricated with a computer numerical controlled (CNC) milling cutter is a 

popular but expensive type of formwork. It can be combined with conventional timber boards for less curved 

areas. To prevent seams both surfaces are treated afterwards with a hybrid plastic coating, Dingsté [31].  

 

4.1.2 Prefabricated Moulds 

 

The first attempts to save costs and time in shell construction were made by Italian Pier Luigi Nervi. He was 

the first to use prefabricated elements in shell construction (discussed later in Section 4.5) and the first to 

use prefabricated Ferrocement moulds of clean surface. Prefabricated moulds are used in shell construction 

as permanent formwork. Commonly, the units are small, while combined they form a structural element or 

complete shell. Placed on conventional scaffolding (or self supporting) and topped with a layer of 

reinforcement they can be filled with concrete. The final shell consists of a composite structure of in-situ 

placed concrete and permanent (Ferrocement) formwork. 

 

 

Figure 4.4. Prefabricated floor elements in  Nervi ’s Palazzo dello Sport (1960) in  Rome, www.uniroma1.it 

 

Using prefabricated moulds, it is important that the permanent mould interacts with the poured-in-place 

concrete. Therefore, it is desirable that the material chosen for mould fabrication matches the concrete 

and/or additional facilities (e.g. reinforcement) fixed to the mould make connection. Nervi used the material 

Ferrocement, a material which consists of several layers of steel mesh sprayed with a cement mortar easily 

fabricated in several shapes, for the fabrication of the moulds. He first used Ferrocement for the construction 
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of the Turin exposition hall (1949), saving time and costs successfully, see Figure 2.28. This leaded to several 

other applications in shells and floors, for example the floor elements used for the Palazzo dello Sport (1960) 

in Rome, Figure 4.4. A modern type of a prefabricated mould is the Comshell roof sy stem for monoclastic 

shells, a steel-concrete composite shell roof formed by pouring concrete on a thin stiffened steel base shell 

which serves as both the permanent formwork and the tensile steel reinforcement. The steel base shell is 

constructed by  bolting together modular steel units in the form of an open-topped box consisting of a flat or 

slightly curved base plate surrounded by edge plates. The edge plates serves as barriers to prevent concrete 

from flowing, shear connectors, stiffeners and spacers for positioning additional reinforcing bars. They may 

have lip stiffeners for enhanced local buckling resistance. 

 

The prefabricated moulds are beneficial mainly due to the reduced construction time as is the easiness with 

which complex geometry can be made and the small units can be handled. The elimination of much of the 

labour intensive temporary formwork, and sometimes framework, results in a further reduction of costs. 

Prefabricated moulds allow for long-span structures of great sophistication to be built relatively 

economically.  

 

4.1.3 Airform Shells 

 

From the pioneering work of Wallace Neff in 1942 to widespread inflated dome construction today, airform 

shells have made their mark in shell construction. Aforementioned in Chapter 2, the airform immediately 

became popular in the USA and several successive developments have resulted in a wide offer of commercial 

sy stems at the present day. Well-known are the BINI shell and the Monolithic Dome techniques.  

 

The airform construction technique uses air inflated membranes as formwork. The fabric for airforms must 

be selected to meet requirements of strength, elongation, ruggedness, durability and desired surface 

characteristics. Strength requirements are dictated by inflation pressures and the shape and size of the 

structure. In general, the limitation of the shell diameter is the pressure withstanding of the allowable 

stresses in the fabric and the welds. Durability for withstanding degradation from ultraviolet and weather 

exposure is only important when the fabric serves as permanent cladding, like the Monolithic Dome concept. 

A common choice for the fabric is PVC coated nylon or polyester fabrics with thicknesses of 0.7 to 0.8 mm. 

The shape of the shell is created by welding pieces of fabric together at high temperature (>500°C). By using 

cable net patterns it is possible to form ribs. In this way a ribbed shell can be realised, Monolithic Dome [94].  

 

Before the airform can be inflated, the foundation of the shell must be realised. Subsequently, the membrane 

is connected to the foundation by requirement of airtightness. Inflating the membrane using blower fans 

usually takes 1 to 1.3 hour for a hemispherical dome with a diameter of 50 m (approximately  200 m3 per 

minute). Since the airform is most vulnerable when partially inflated, inflation must stop at strong winds (no 

more than 16-24 km/h). When inflated, it is recommended to let the membrane stand for at least 12 hours, 

providing time to stretch (at normal air pressures the fabrics may stretch 10%). After sufficient air pressure 

is present, the structural surface can be formed against the inflated membrane. During this process the 

pressure must be accurately controlled; a change in air pressure will affect the stress and the geometry of the 
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final shell. For the placement of an internal structural surface the airform is provided with an airlock 

entrance whereas a small opening in the fabric allows for healthy airflow, Monolithic Dome [94].   

 

For the placement of the reinforcement and concrete, distinction can be made in three different techniques: 

(1) the reinforcement and concrete are placed on the exterior of the membrane, (2) the reinforcement and 

concrete are put in between two layers of membrane or (3) the reinforcement and concrete are placed on the 

interior of an inflated membrane. With respect to alternative 1 and 2, distinction can be made between 

techniques in which the reinforcement and concrete are placed before inflation of the membrane and 

techniques in which this is done after inflation. They will be denoted (a) and (b), respectively. 

 

     

Figure 4.5. The MINI Shell  concept, www.binisystems.com 

 

The different types of sy stems each have their own benefits and restrictions. System 1.a is commercially 

available as the MINI shell concept, developed as addition to the BINI shell. Reinforcement and wet concrete 

are placed on top of the membrane which subsequently is inflated to form the shell. The shell can be erected 

in just 30 to 40 minutes but is restricted to small dimensions. When the shell dimensions become too large 

(diameter exceeds 10 m), correct placement of reinforcement and appropriate thickness of concrete cannot 

be guaranteed, BINI Shell [90]. The MINI sy stem can be seen in Figure 4.5. 

 

     

Figure 4.6. The BINI Shell  system inflating and making a gap, www.binisystems.com 

 

Sy stem 1.b is closely related to the patent of Wallace Neff and the Solid House Foundation which constructs 

small houses in developing countries. After inflation of the membrane the reinforcement and concrete are 

placed. Prefabrication of the reinforcement may shorten construction time. An appropriate dry concrete 

mixture must be applied to prevent it from sliding down. For larger dimensioned shells, system 2.a is 

available as the BINI shell, see Figure 4.6. The construction process is very much similar to the MINI shell 

concept. However, before inflation the concrete is covered by a second layer of fabric. By this, the correctness 
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of the concrete thickness and placement of the reinforcement is secured, even for diameters up to 40 m. The 

BINI shell can be erected in just 60 to 120 minutes, BINI Shell [90]. 

 

Sy stem 2.b is relative new as the concrete is by vacuum leaded into an inflated, double layered membrane. It 

is rarely used as it is difficult to assure proper concrete distribution and not discussed further. The largest 

shells are constructed with technique 3, e.g. the Monolithic Dome system. The Monolithic Dome starts as a 

concrete ring foundation reinforced with steel rebar. Vertical steel bars are embedded in the ring to attach 

the steel reinforcing of the dome itself later. For small domes an integrated floor/ring foundation is often 

applied whereas the floor is poured after completion of the dome in case of larger sizes. Then, an airform is 

placed on the ring base which is inflated. After the membrane is inflated, the shape is fixed by a layer of 80 

mm of polyurethane foam on the interior. The foaming takes place at roughly 500 Pa air pressure, 

significant lower than needed for a direct placement of concrete. Hence, because of the limitation of shell 

diameter by the strength of the fabric, this concept enables much larger shell dimensions. The polyurethane 

foam serves as permanent insulation as well as formwork and temporary base for the reinforcement. After 

placement of reinforcement the structural concrete is sprayed onto the foam in layers of 20 mm. Depending 

on the type of commercial sy stem, the membrane is removed or serves as permanent outer surface. 

Therefore, the fabric is available in several styles, colours, and finishes, Monolithic Dome [94]. 

 

 

 

Figure 4.7. Combination of inflated membranes, Pronk et al. 2003 

 

The airform technique offers fast, simple and efficient shell construction. The fabric saves the need for 

expensive and labour intensive formwork. It forms a proper mould of high correctness and, when damaged, 

the fabric can usually be repaired on the construction site. The biggest disadvantage of the airform shell is 

the lack of variety in shape. Because the flexible membrane buckles when the skin stress is equal or less than 

zero, the use of air pressure only allows for construction of synclastic spherical shapes. The only  variation 

possible is to slice down part of the sphere, or to construct a membrane which consists out of a combination 

of sev eral spherical shapes (of different sizes). However, the architectural freedom for free-form shell 

structures remains limited.  

 

4.1.4 Stressed Membranes 

 

A new technique showing large potential is the use of stressed membranes for shell construction. Similar to 

the airform shells, a fabric is used as formwork for the reinforced concrete. However, instead of air pressure, 

prestressing is used to stress the membrane into a desired shape. The most advantageous property lies in the 

fact that stressed membranes enable anticlastic shapes, Figure 4.8, and, combined with airform shapes, even 

free-forms, Figure 4.9, Pronk et al. [63]. The construction technique is recently tested at the University of 

Eindhov en in The Netherlands. A fabric was stressed between three points into an anticlastic shape. 

Subsequently, the shape was transformed into a structural surface by spraying it with 20 mm layers of fibre 
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reinforced concrete. Because of the large self-weight of the concrete, the fibre mixture was enhanced with 

plasticizers and accelerators to speed up the hardening of the concrete, preventing hydrostatical pressure to 

develop, Pronk [64]. The test model is seen in Figure 4.8. 

 

 

Figure 4.8. Stressed membrane with  concrete, Cement 2006 

 

From the tests, it can be concluded that it is possible to construct structural surfaces by the use of stressed 

membranes. The deformations of the membrane sprayed with concrete are within reasonable limits. 

However, during construction, one must take into account the larger deformations of the middle surface in 

compare to the corner points in order to arrive at the correct shape. Furthermore, the tests also included a 

successful application of conventional reinforcement. The method allows for prefabrication, as parts of the 

shell can be constructed independently before combined at the construction site, Pronk [64]. 

 

 

Figure 4.9. Free form shells out of several  inflatable membranes, Pronk et al. 2003 

 

The application may provide in a good alternative for conventional formwork in the construction of all types 

of shell shapes. However, there are no applications of this method on large dimensioned shells yet, so their 

use and effectiveness needs further research. 

 

 

4.2 Reinforcement 

 

In Chapter 3 the dimensioning of reinforcement in the design stage is discussed. This paragraph gives a 

reflection of the placement of reinforcement in practice. Due to the fact that shells are mainly constructed 

using conventional formwork or by airform technique, the placement of reinforcement at both will be 

considered. 

 

Typical shell reinforcement consists of one or two layers of steel rebar or wire mesh. Usually, the 

reinforcement consists of relatively small diameters, which is beneficial for placement. A small bar is easy  to 

carry and bent in the correct curvature. For conventional formwork the reinforcement is put in place by 

crane and workman. A single layer of reinforcement consists of bars in perpendicular directions wired 
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attached or by welding. To ensure the concrete cover, distance controllers are used between the mould and 

the reinforcement. If a second layer is applied, supporting frames are placed on top of the first layer. Finally, 

distance controllers are placed for the outer concrete cov er. When placed correctly, they provide in a helpful 

visual tool for ‘measuring’ the thickness of the shell during concreting. Using wire mesh reinforcement for a 

double-curved shell may require bending before placement to prevent residual stresses. As pointed out in 

Chapter 3, the reinforcement is placed in the most straight perpendicular manner possible. The points of 

greatest interest (and care) are the corner points of the shell near the supports. These points of high stress 

need large amounts of reinforcement and may  include anchorages of prestressing cables. The curvature of 

the shell is not necessarily  a problem for placement of reinforcement. Practically  disadvantageous roll-off of 

rebars or easily bended out of place bars by workman are only of minor importance, Haas [42]. It may 

happen that the shape of a shell is that steep and complex that difficulties for the placement of reinforcement 

between double formwork are introduced. A possible solution is to prefabricate a steel or concrete frame to 

which the reinforcement can be attached before the formwork is placed. In case of a steel frame the frame 

itself already  serves as part of the reinforcement. A steel frame technique is, for example, used for the 

construction of the University Music Theatre in Graz, Austria, Dingsté [31]. 

 

    

Figure 4.10. Steel  spring reinforcement for a BINI Shell  structure just before inflation, www.binisystems.com 

 

The placement of reinforcement in airform shells varies for different types of construction method. Using the 

MINI shell or BINI shell system, great care is needed to ensure the reinforcement is at the right position 

after inflation. As can be seen in Figure 4.10, the before inflation arrangement is chaotic. The reinforcement 

may consist of a square mesh or steel springs capable of stretching so as to become automatically positioned 

on the curved surface when the membrane is inflated. Analogously, a wire mesh, which lays bunched on the 

membrane, is autopositioned because of the articulations at the joints of the mesh. The wire mesh reaches a 

particular shape while the spring mesh adapts itself to a variety of shapes, BINI Shell [90]. 

 

    

Figure 4.11. The placement of reinforcement on the foam of a Monolithic Dome, www.monolithic.com 
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Different placement techniques are inv olved when the reinforcement is added after the inflation of the 

membrane. An exterior concreted shell makes possible to just lay over a (prefabricated) wire mesh or rebar 

network. For internal shell construction, such as the Monolithic Dome, the rebars are fixed to the foam by 

hangers. Rebar hangers are 50 mm square thin steel base plates with a wire welded perpendicular in the 

center and barbs protruding the opposite side. The barbs are pressed into the initial 40 mm of foam, before 

the additional layers of foam are applied. After that, steel reinforcing rebars can be attached to the hangers 

using a specially engineered lay out of hoop (horizontal) and vertical steel rebar. Small domes need small 

diameter bars with wide spacing. Large domes require larger bars with closer spacing. Placing the 

reinforcement into the hangers takes effort, see Figure 4.11. A continual tugging of workman pulling hoop 

reinforcement inside when attaching vertical reinforcement uninvitingly move the bars outward of the foam. 

Hence, careful treatment is needed. Furthermore, one must think of possibilities to transport the 

reinforcement and scaffolding, or other supporting material, through the airlock into the internal airform, 

Monolithic Dome [94].  

 

 

4.3 Placement of Concrete 

 

The placement of concrete of shells is a rigorous job. The large surface has to be of the correct thickness and 

needs to be properly compacted with an accurately smooth finish. Added to that, the placement introduces 

difficulties as the shell often has double curvature and quite steeply inclined locations. Therefore, it takes 

time and care to form the correct concrete profile, Haas [42]. 

 

Concreting starts when formwork is finished and reinforcement put into position. In general, shells are 

constructed using sprayed concrete or placed from a skip using a tower crane with a jib. The latter will be 

referred to as conventional placement, even though the first modern shell was constructed using the spray 

technique. Other techniques, as the vacuum method, only find minor application and are not considered. 

The placement technique to choose is mainly governed by the type of formwork. In general, the choice 

between sprayed and skipped concrete may said to be as follows: inflated airform moulds and stressed 

membranes require sprayed concrete whereas economical considerations imply  for the use of skipped 

concrete in all other situations.  

 

The choice for the type of concrete mixture is gov erned by strength and durability demands. As mentioned, 

the durability of the concrete is probably more important than strength, except for the possible high stressed 

regions near the supports. It is, thus, of great importance that the hardened concrete reaches sufficient 

quality. To reach high quality concrete, the mixture composition differs for each placement method. Sprayed 

concrete needs self-compacting properties and fast hardening. Conversely, concrete placed by skip needs 

heavy retardation to remain the concrete workable for periods longer than normal as forming of the shell by 

skipped concrete is a time-consuming process. Sometimes the mixture composition even varies for different 

locations in the shell, Chilton [22]. For example, a drier mix needed to prevent flow down from steep slopes. 

In this paragraph, the placement, compacting and finishing techniques are discussed as well as the required 

accompanying concrete mixture characteristics. 
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4.3.1 Conventional Placement 

 

The conventional placement technique refers (in this thesis) to placement from a skip using a tower crane 

with a jib long enough to cover the whole plan area of the shell. For placement a special designed skip for 

easy placing of concrete with low water content is used. Usually, concrete takes place starting at one corner, 

filling the thickest part of the shell containing heavy reinforcement (and prestressing anchorages). Once the 

anchor block is full, concrete is placed on the sloping shuttering. When reaching about one third of the way 

to the top, first the other three corners are filled. The remainder of the shell is finished later, which is the 

reason for the heavy retardation of the concrete setting time at the joint, Chilton [22]. Besides heavy 

retardation, the concrete mixture composition must contain enough plasticizers to permit a drier mix which 

does not flow down steep slopes. Furthermore, plasticizers must assist in compaction around the network of 

reinforcement and prestressing ducts. A tricky part of the operation occurs at the end as the concreting 

progresses towards the middle of the shell. All workers and equipment ends up at the top and have to be 

removed by  crane. The final area of concrete has to be placed and finished from a platform suspended from 

the jib of the crane. 

 

   

Figure 4.12. The placement of concrete at the Kresge Auditorium (1955), www.arche.psu .edu  

 

During placement and spreading, see Figure 4.12, the thickness of the concrete is assessed by gauging 

whether the correct cover is being provided to the top reinforcement. Careful concrete compaction of the 

thickest part is done by poker (or needle) vibrators. The steeply corner slopes of the shell are compacted 

using a flat vibrating plate and a rotating vibrating plate which looks like an electric floor polishing machine. 

For the remainder of the surface, fast compaction by flat vibrating plates only, is sufficient to obtain an 

acceptable surface finish. For the largest part of the shell surface, the common used poker vibrators are not 

suitable because of the small thickness of the shell. Besides the vibrating plate, compaction may be reached 

by vibration of the reinforcement or supporting framework. Vibrating the reinforcement is only satisfactory 

with rigid reinforcement grids. When vibrating the framework, the vibrators are attached directly to the 

supporting steel beams as to set the entire formwork in vibration. Usually  the damping of the formwork will 

be sufficient to provide only a low energy level for compaction. No matter which compaction method is 

chosen, for satisfactory results the equipment used should be designed to operate on the principle of small 

energy dissipation with normal vibration amplitude; the danger of segregation is ever present, Haas [42]. 

 

Aforementioned, the final surface may be finished by vibrating plate or, for small shells, by screeding of the 

surface using suitable curved guides. If the finishing leaves a smooth surface, little surface-treatment is 

required and maintenance can be limited to occasional whitewashing or treatment with cement paint. 
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Sometimes even plasterers are used, e.g. to mould a rim along the edges. Because of the form of the shell is 

such that the rainwater run-off converges on the corners and water cascade off the edge looks careless, a rim 

is needed to channel the rainwater into the drainage system. Over the years it has been found that forming 

these channels is more easily carried out by hand by skilled craftsmen, Chilton [22]. 

 

4.3.2 Sprayed Concrete 

 

Sprayed concrete or pneumatic concrete, also known as the Torkret method in Germany or the Gunite 

method (only for dry -mix process) in the UK, consists of spraying a mortar or concrete mixture with air 

pressure on a mall or an existing structure. The process is seen in Figure 4.13. The method finds its origin in 

the USA and is invented by American Carl Akeley. Akeley developed a system to strengthen plaster models. 

He used a dry plaster which he transported through a tube by air pressure before mixing it with water and 

spraying it onto the models. The technique for spraying concrete used today is actually quite similar to the 

one from Akeley; however, sometimes the water is added before transportation by tube, Speelman [71]. 

 

 

Figure 4.13. Spraying the concrete inside the airform of a Monolithic Dome, www.monolithic.com 

 

In 1919 the method was first introduced in Europe by Carl Weber and the Torkret Company in Germany to 

repair damaged concrete. Obviously, the term Torkretieren finds its origin here. The success leaded to 

widespread usage in repairing operations for damaged concrete structures during and after the war. For the 

Zeiss planetarium in Jena in 1925, designers Dischinger and Finsterwalder came up with the idea to use the 

Torkret method for the construction, spraying the concrete against timber formwork. Spraying concrete 

means transporting a dry mixture of structural concrete by tube to the desired place where it is mixed with 

water, deposited and compacted. The dry  mixture, consisting of sand, gravel and cement, is mixed at a 

special designed nozzle with water, just before it is sprayed. Advantageous of the dry mixture is the possible 

transportation ov er large distances and heights with relatively little energy. Spraying is done by workman or 

robot arms (less scaffolding, higher capacity). The chemical reaction starts when the mix is deposited. Using 

pneumatic sprayed concrete limits the grain size and modification by plasticizers and accelerators to achieve 

a low water-cement ratio and fast hardening. Today, to control shrinkage and thermical cracking and enlarge 

the tension capacity, fibre reinforcement is often applied. The mixture is sprayed in layers of 20 mm 

thickness, and as the layers builds up, the coarser pieces can embed themselves and are firmly  compacted 

therein. During initial application the coarser particles bounce back until the surface is covered with a thin 

coating of cement paste in which at first only the finer aggregate is retained. The amount of bounced back 

particles can be influenced by adapting the air pressure while keeping in mind the decrease of compaction. 

Sprayed concrete with dry mixture has a capacity of 4 to 10 m3 per hour, Speelman [71]. 
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From the middle 1940s, also wet mixtures were transported through tubes before spraying. The technique is 

based on premature water mixing with only little air addition at the nozzle. Wet mixtures had been rarely 

used, as the large water amount needed badly influenced the concrete quality. However, after World War II, 

new developments made it possible to reduce the water cement ratio while increasing the quality of the 

concrete. Today, the method is used ever more for its higher capacity of 7  to 12 m3 each hour, Speelman [71]. 

 

Using sprayed concrete, the final reached mixture has good density and bonding character with relatively 

high standard compression strength of 30 to 50 N/mm2. The concrete shows high water tightness and little 

shrinkage, as a result of the low water cement ratio. The disadvantage is the higher costs inv olved in 

compare to conventional placement and the dust formation when using the dry method, Speelman [71]. 

 

 

4.4 Finishing 

 

After hydration of the concrete, the shell construction can be finished. The formwork and framework can be 

removed and possible surface treatment applied. The finishing may also include bringing into compression 

of the shell by pulling inward its supports (so-called precompressing) or activating the prestressing ties.  

 

4.4.1 Prestressing 

 

The procedure of bringing the shell into compression differs for each shell design. Therefore, as an example, 

the stressing procedure of the Aquapark shell of Heinz Isler in Norwich (1991), as described by Chilton [22], 

is listed here. The Aquapark shell has a thickness of 100 mm and a square ground plan with sides of 35 m. 

The reinforcement consists of two layers of 6 mm diameter steel bars at 100 mm centres on a square grid. In 

the foundation beams prestressing ties are positioned. The first stage of prestressing initiated once the pour 

was completed and the concrete had developed strength for approximately three days. The initial prestress 

applied was more or less 25% of the final force. This was achieved by stressing the foundation beams along 

each side, which had the effect of pulling the corners slightly towards each other and the precompressed 

shell lifted up from the formwork. The supporting trestles curved beams and light boards were then 

dismantled and stored for future reuse. After 21 days the remaining part of the prestress was applied using 

the same method. 

 

4.4.2 Surface Treatment 

 

Uncracked, well compacted concrete with appropriate cement content often is durable and impermeable 

enough to apply no surface protection, allowing the climate freely attack the concrete skin. This is generally 

the case, as the majority of the shell surfaces remain untreated. Maintenance can be limited to occasional 

whitewashing if, however, the skin is smooth enough, Chilton [22]. If not, for visual reasons or in case of 

tensile cracking, a surface treatment is applied. Several surface treatments are available, from simple cement 

paint to complete copper claddings similar to the skin of the Kresge Auditorium. In case of the Monolithic 

Dome concept shells, the fabric serves as surface protection. Surface protection or periodical surface 

treatment is a straight ahead operation which can be carried out on the hardened concrete surface. 
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4.5 Prefabrication 

 

An increasing number of shell structures are constructed using prefabricated elements. Prefabricated 

elements in conventional structures have the advantage of faster erection time and save costs on formwork. 

For shells, the relative cost of formwork and staging are even greater than for more conventional concrete 

structures. Besides that, the use of prefabricated elements also offers advantages as reduced independency of 

the weather conditions, greater flexibility in construction methods and schedules and the possibility to 

standardisation and automation. 

 

The use of prefabricated elements in shell construction goes back to 1940, when Pier Luigi Nervi used 

prefabricated lattice ribs for his airplane hangars in Italy. Later, in 1958, Nicolas Esquillan used 

prefabricated internal shear walls for his long span shells in Paris, Grenoble and Turin. Just before, in 1957, 

Ilia Doganoff constructed a fully prefab shell in Bulgaria. The shell of Doganoff consisted of a series of conoid 

shells, each of them formed out of four prefab elements which rest on prefabricated beams. The elements 

had a thickness varying from 30 to 60 mm. A second example is the shell of Heinz Hossdorft in Switzerland, 

a storage hall built in 1961. The shell consisted of small (1.39 m) neighbouring curved panels which were 

prestressed afterwards, Joedicke [52]. Recently prefabricated shells appeared in Duxford and Millau.  

 

     

Figure 4.14. A  concept of a prefabricated shell  out of many small  elements by  the BINI shell  company, www.binisystems.com 

 

With respect to shell construction, the question is how to apply prefabrication and which are the problems 

that arise. A shell can be prefabricated as a whole, in large parts, or in very small parts. In general, the choice 

is determined by the aim of prefabrication, namely, to obtain a maximum of repetition with a minimum of 

joints and work on site. Furthermore, prefabrication introduces three basic problems: transportation and 

erection, question of tolerances and the joints to be used. Obviously, they have a close relationship with each 

other. To obtain a proper prefabricated shell, the geometrical (subdivision) and practical (joints, placement) 

based problem must be solved to an optimum with a minimum of costs. 

 

The transportation and erection of prefab elements limits the weight and dimensions of the shell elements. 

Ev en though they can be very thin (thicknesses of only  30 mm) due to the low compressive stresses in shells 

and the accurate construction possible, the hoisting of complete shells is only possible for small shells and 

therefore finds minor application. The assembly of a large number of small shell elements is also possible, 

similar to the Duxford Imperial War Museum (1997) by Ove Arup and Partners and the prefabricated shell 

concept seen in Figure 4.14. This offers the possibility of standardisation and re-useable formwork, 
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simplification of concreting and transportation and handling as desired in prefabrication. The advantages of 

small components are, however, offset by the problem of supporting the many individual parts during 

erection and the problem of joining the pieces into a monolithic shell. This can be solv ed by using smart 

framework, e.g. an inflatable membrane, see Figure 4.14. This is, however, only applicable for small spans. 

 

     

Figure 4.15. A  prefabricated segment of the Stuttgart Federal  Garden Fair shell  (1977) by  Jorg Schlaich , Holgate 1997 

 

Besides the problem of framework, there are many joints. Joints are labour consuming and therefore 

expensive to apply. The more there are, the less the advantage is of prefabrication. Furthermore, the guiding 

principle should be that the joints are in areas where compression and/or shear will prevail, which forms a 

limitation to the structural design. There is a difference in wet and dry joints, referring to the use of filler 

material at the site. For example, cast in place concrete. Other possibilities are for bolded welded or glued 

connections. Joints may be unreinforced, simply reinforced or prestressed. The joints in Figure 4.14 are to be 

filled with poured-in-place concrete. 

 

     

Figure 4.16. Placement of the prefabricated elements on temporary  scaffolding of the Millau  shell  (2005), Servant 2006 

 

A compromise solution is to construct the shell out of middle large prefab elements. They still can be 

transported and they have fewer joints to be constructed. An example of very thin large precast shell 

elements are the elements used for the Stuttgart Federal Garden Fair shell (1977) by German engineer Jörg 

Schlaich. The sections consisted out of Glass Reinforced Concrete with a thickness of only  12 mm and 

combined they spanned a circular area with a diameter of 26 m. The segments are seen in Figure 4.15. 

 

The Millau shell, seen in Figure 4.16, is a special example of a prefabricated shell. The shell near Millau 

consists of several prefabricated curved elements of self-compacting high strength fibre reinforced concrete 

with a length of 28 m and a maximum height of 850 mm, however with a hollow core. The skin is only 100 

mm thick. The elements are put side-by-side on temporary framework and, subsequently, the elements are 
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pressed together by longitudinal prestressing ties. The positioning of the elements is executed using 

temporary scaffolding. The special part is the fact that the elements are prefabricated on site, avoiding 

maximum transportation sizes (except for the crane capacity).  

 

 

4.6 Conclusions 

 

Shells are predominantly constructed using conventional timber formwork as mould. In conventional timber 

formwork the spatial curvature is achieved by  curved glued-laminated beams supported by trestles or metal 

frames and timber boards. The timber formwork allows for almost every possible shell shape to be 

constructed. For highly double curved sections, the timber formwork can be replaced by foamed plastic 

(polystyrene) formwork fit into shape with a CNC milling cutter. The main disadvantages of conventional 

formwork are the high costs involved, in particular, labour costs. Therefore, prefabricated moulds, airform 

techniques and by spraying concrete on stressed membranes have been developed. Furthermore, shells 

assembled from prefabricated elements are developed to save on costs. However, for sev eral reasons (e.g. 

lack of repetition for prefabrication or lack of architectural freedom when airforms are inv olved), only minor 

success has been reached on replacing the timber moulds.  

 

The choice for a particular formwork may not only influence the design of the shell, but also puts restrictions 

on the placement and design of the reinforcement and the concrete mixture. The placement of reinforcement 

on double curved surfaces follows ordinary principles, however, for airform construction methods the 

reinforcement may  be asked to autoposition itself. The placement of concrete is either by  skip of sprayed. 

Conventional timber moulds are mainly  filled using a skip and compacted by  flat vibrating plates and poker 

vibrators for the thicker parts. Unusual techniques involve the vibration of the reinforcement mesh or the 

framework. Concrete placed by  skip needs heavy  retardation and plasticizers to permit a drier mix which 

does not flow down the slope. When the concrete is sprayed onto the formwork, accelerators are 

indispensable for fast hardening when the mix is deposited. Spraying bounds the grain size and fibres may 

be required to control shrinkage and thermal cracking. During placement the bounce back of particles must 

be closely examined and modified by adapting the air pressure.  

 

After hydratation of the concrete possible prestressing ties can be activated and the concrete surface may  be 

finished by, e.g. cement paint or complete claddings. However, generally, the concrete can be left untreated 

and maintenance can be limited to occasionally whitewashing.  



 

 

 
part II 
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5 Theory of Shells 

 

 

 

The introduction to the ‘classical shell theory’ in Chapter 3 remained restricted to a short historical 

perception. Following Chapter 3, this Chapter will give a concise description of the theory of elasticity, an 

explanation of the linear equations concerning the relation between loads, stresses, strains and deformations 

of (shell) structures. The sequence of explanation may in short be named as bar, plate, shell. Hence, it is 

logical and comprehensive to develop the theoretical considerations in stages, each time stepping up one 

dimension.  

 

The theory of elasticity is an idealisation of the nonlinear reality and uses linear elastic laws to describe the 

structural behaviour. Similar to any  other theory  in continuum mechanics, the classical shell theory  is based 

on three sets of basic equations; the kinematic equations, the constitutive equations and the equilibrium 

equations. The three basic equations are based on observed intensities of infinitesimal elements. They 

connect the deformations to the external applied load (external work) by relating them to the stresses and 

strains of the deformed structure (internal work). Boundary conditions conclude the mathematical 

description of the problem.  

 

To be able to use the theory in hand calculation, the relations are simplified by restricting them to small 

deformations and slender cross-sections. It is, thus, impossible to analy se large deformation (nonlinear) 

problems. Regarding slender cross-sections, it is assumed that stress or strain in normal direction is of no 

significance to the solution. Aforementioned in Chapter 3, this so-called thin shell assumption is the most 

important hypothesis of the classical shell theory  of Lov e and reduced the original three-dimensional 

problem to a surface deformation problem.  

 

To perform a solution, use can be made of direct and indirect methods. Directs methods are closely related 

to the formulation of the basic relations. They solve the problem in a so-called direct manner, by the use of 

relationships based on observed intensities. Indirect methods are energy based methods and solve the 

problem by stating that the energy has to be stationary. The application of energy principles are the basis of 

computational numerical software such as the finite element method as they offer the possibility  to generate 

approximated solutions and are also valid in the plastic range. This is discussed in Chapter 11. 

 

In this Chapter, the application of the theory of elasticity on the bar, plate and shell is limited to types of 

loads that lead to both membrane straining and flexural deformation. 
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5.1 General 

 

5.1.1 History 

 

Most of the twentieth century shell structures rely  on the progress made in the theory of elasticity from the 

late 19th century by mathematicians as Cauchy, Kirchhoff and Lov e. Elasticity always attracted the attention 

of the greatest minds in mathematical science. From the study of Galileo, the physical investigations of 

Hooke and Young, the theories by Euler and Bernoulli, the research of Navier and Saint Venant and the 

researches of Poisson, Cauchy, Kirchhoff, Lamé, the generalisations of Green, the papers of Stokes and Lord 

Rayleigh. The great merit of the theory of elasticity is that via an analytical approach ‘exact’ solutions could 

be obtained for problems of mechanics, long before numerical methods were developed, Milne [61]. 

 

Founded by Augustus Edward Hough Love in 1888, the classical shell theory was the first theory which 

enabled engineers to calculate the stresses in shells assuming linear elastic behaviour. The theory  was an 

extension of the plate theory to structures with surface-like geometries using the same assumptions as the 

Kirchhoffean theory of plates. Thus, the theory is a low order theory and does not include shear deformation. 

The classical shell theory from Lov e is often referred to as Lov e’s first approximation, Milne [61]. 

 

Love identified that the load carrying behaviour of shells consisted of a membrane effect in combination with 

bending action. The most important of his theory was, however, the reduction of the three-dimensional 

problem to two dimensions, the description of a surface deformation. His classical shell theory, therefore, is 

a ‘thin shell’ theory. The assumption that the thickness of the shell is much smaller than the radius of 

curvature yields that the flexural rigidity is much smaller than the extensional rigidity. Hence, the shell 

produces mainly in-plane membrane forces, resultants of the in-plane normal and shear stresses. The 

bending solution will arise in regions were the membrane solution is insufficient, for example at the supports 

where the membrane displacements are suppressed. The bending moments are often referred to as 

compatibility moments as they do not carry any load but only compensate the shortcomings of the 

membrane behaviour. The bending moments can be calculated separately and superimposed on the 

membrane solution as discovered in 1912 by H. Reissner, Hoogenboom [49]. 

 

The years following Lov e’s formulation of linear elastic shell behaviour, scientist as Geckeler, Flügge and 

Byrne questioned Lov e’s theory and formulated their own expressions. In particular the equations that 

Flügge derived in 1934 often serve as theoretical background in literature. The main reason it that the theory 

as presented by Flügge is based on the exact formulation and, thus, is valid for non-shallow shells as well. 

Independently from each other, Sanders and Koiter removed the inconsistencies of the different theories and 

concluded that there was only little difference between their accuracies. Therefore, sometimes is referred to 

the Sanders-Koiter equations, Hoogenboom [49]. 

 

 

 

 

 



  Chapter 5.   Theory of Elasticity 

 88

5.1.2 Basic Relations 

 

The behaviour of structures can be determined by three sets of basic relations; the kinematic relation, the 

constitutive relation and the equilibrium relation. The connection between the relations is seen in Figure 

5.1. To complete the mathematical description, the boundary conditions of the particular problem must be 

introduced. 

 

Figure 5.1. Relations of continuum mechanics, Hoefakker and Blaauwendraad 2003 

 

The three basic relations between the degrees of freedom, deformations, stress resultants and external loads 

for an arbitrary structure can, in short, be described as 

 

e = Bu  kinematic relation 

s = De   constitutive relation               (5.1) 

p = BTs  equilibrium relation 

 

In the relations, u and p represent respectively the deformation and load vector, and e and s the strain and 

stress resultant tensor, see Chapter 11.1. A three-dimensional body can be completely described by: 

 

u   
T

x y z= u  u  u  

e ε ε ε γ γ γ κ κ κ ρ ρ ρ  
T

xx yy zz xy yz zx xx yy zz xy yz zx=             

s   
T

n n nxx yy zz xy yz zx xx yy zz xy yz zx=    n  n  n  m  m  m  m  m  m             (5.2) 

p   
T

x y z= p  p  p  

 

Furthermore, in the three basic relations, B is the kinematic matrix, D the stiffness matrix and BT the 

equilibrium matrix. One presumably will notice the remarkable similarity in notation between the 

equilibrium matrix and the kinematic matrix. The equilibrium matrix BT is the adjoint matrix of the 

kinematic matrix B, in which the adjoint matrix is, in this context, defined as the transpose of a matrix where 

the uneven derivatives do change sign and the even or zero-order derivatives do not, Hoefakker and 

Blaauwendraad [45]. The similarity  between the kinematic and equilibrium matrices can be simply 

explained with the virtual work equation as is done later in Paragraph 5.5.  
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5.1.3 Assumptions 

 

By  determining the matrices relating the displacements to the strains, the strains to the stress resultants and 

the stress resultants to the external loads a few assumptions are done to obtain simplified equations usable 

for hand calculation. They  are valid for as well the bar and plate as the shell equations, being all slender 

structures with small deformations. 

 

a. All points lying on a normal of the middle surface before deformation remain on that normal, which 

remains a normal of the deformed middle surface. 

b. For all kinematic relations it is assumed that the distance z of a point from the middle surface remains 

unaltered by the deformation. 

c. The stress component σzz normal to the middle surface is considered to be very small in comparison to 

the other stress components and is therefore neglected. 

d. All displacements are so small that they are negligible in comparison to the radii of curvature of the 

middle surface. Consequently, their higher powers can be neglected and the first derivatives of the lateral 

displacement uz, the slopes, are negligible compared to unity. 

 

Assumption a is in the beam theory known as the Bernoulli hypothesis, deformations due to transverse 

shearing stresses are neglected. Assumptions b and c are the so-called thin shell assumptions. Stresses or 

strains in normal direction are of no significance to the solution, reducing the three-dimensional problem to 

a two dimensional surface deformation problem. The last assumption d is done to keep the equations linear, 

discarding possible nonlinear behaviour, Hoefakker and Blaauwendraad [45]. 

 

Applying the assumptions to the general vectors of (5.2) yields a reduced vector scheme: 

u   
T

x y z= u  u  u  

e ε ε γ κ κ ρ  
T

xx yy xy xx yy xy=       

s   
T

n nxx yy xy xx yy xy=   n  m  m  m                (5.3) 

p   
T

x y z= p  p  p  

 

Or, represented in a relation scheme it reads: 

 

Figure 5.2. The vector scheme used for thin  shells, Hoefakker and Blaauwendraad 2003 
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Note that the longitudinal shear terms are represented by only one parameter (nxy) as the moment 

equilibrium with respect to the z-axis implies that the in-plane terms must be equal.  

 

 

5.2 Theory of Bars 

 

Because of its relative simplicity, the straight slender bar will serve as starting point for a simple application 

of formulating the basic relations. The three basic relations are derived for a one-dimensional bar in 

extension and, separately, a bar in bending. This means that the vectors of (5.3) further reduce, leaving only 

terms in x- and z-direction. 

 

u [ ]Tx z= u  u   s [ ]T= N  M    

e [ ]ε κ T
=    p [ ]Tx z= p  p             (5.4) 

 

Because of the fact that the quantities of n and m have the dimension of force and moment, respectively, they 

are indicated by a capital.  

 

5.2.1. Extension 

 

Equilibrium Relations 

 

For the one-dimensional problem of a bar loaded in extension, for example a column, the quantities that 

play a role are the displacement ux(x), the strain ε(x), the stress resultant N(x) and the external applied force 

px(x), see Figure 5.3.  

 

Figure 5.3. The bar subjected to extension with  relevant quantities, Blaauwendraad 2004 

 

The relations between the quantities can be determined by  examining an infinitesimal element of the bar 

with length dx. For the equilibrium relations, the sum of the applied external force px(x) and the normal 

force N(x) must hold equilibrium. On an infinitesimal element the applied external force is px(x)dx and the 

change in normal force is − dN dN
N dx dx

dx dx
 + N +  = , as can be seen in Figure 5.3. This yields the equilibrium 

relation between the stress resultant gradient and the applied external force: 

 

dN
 + p = 0

dx
     BTs + p  = 0           (5.5) 
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Constitutive Relations 

 

The internal normal force N(x) causes straining of the bar. The strain  ε(x) is calculated using Hooke’s law for 

the stress-strain relation of linear elastic structures. By dividing the normal force through a stiffness term 

EA, the axial stiffness of the bar, the strain is found. The stiffness term is the product of Young’s modulus E, 

representing the linear stress-strain relation of Hooke, and the cross-sectional area A over which the force 

acts. Thus, the constitutive relation is:  

 

ε N

EA
 =    (flexibility formulation)    e = Cs         

 

or   εN = EA   (stiffness formulation)  s = De                              (5.6) 

 

Kinematic Relations 

 

The strain ε(x) of the bar gives rise to extensional deformation. The strain can be determined by dividing an 

infinitesimal extension dux through the original length dx, see Figure 5.3. Therefore, the kinematic relation 

can be described as: 

 

ε xdu

dx
 =        e = Bu                          (5.7) 

 

The kinematic, constitutive and equilibrium relations (respectively 5.5, 5.6 and 5.7), in combination with the 

particular boundary conditions of a certain problem, can be solved with direct or indirect methods, 

discussed in Paragraph 5.5. 

 

The one-dimensional bar in extension is a very simple, statically  determined problem. However, the same 

analogy holds for less trivial, statically indetermined problems, where there are more quantities that play a 

role. Various examples can be found in literature. 

 

5.2.2 Bending 

 

When the one-dimensional bar of section 5.2.1 is loaded eccentrically, or perpendicular to the bar axis, for 

example by a distributed load in z-direction, bending occurs. Bending in a bar causes curvature. Thus, when 

considering a bar loaded by a distributed load in z-direction, the quantities that play  a role are the 

displacement uz(x) (or w(x)) in z-direction, the curvature κ(x), a moment M(x) and the distributed load 

pz(x).  

 

It must be said that, because of the slender beam assumption, the quantities concerning shear rotation, 

shear deformation, shear force and torsion are not included in the vector scheme of (5.4). However, in the 

following they will be mentioned to obtain an understandable derivation of the equations. 
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Equilibrium Relations 

 

The distributed load p(x) perpendicular to the bar axis generates a shear force V(x) in the same direction. To 

ensure equilibrium of an infinitesimal element of the bar, bending moments arise. The equilibrium 

behaviour, thus, can be divided into two parts, seen in Figure 5.4. 

 

 
 

Figure 5.4. Equilibrium of a bar loaded in  z-direction, Blaauwendraad 2004 

 

In Figure 5.4 the equilibrium of the external load with the internal shear force V and the internal moment M 

can be seen. Aforementioned in the introduction of the chapter, the torsion load q is set equal to zero.  

 

The equilibrium relations become: 

 

dV
 + p = 0

dx
 in z-direction 

 

−dM
  V = 0

dx
 in x-direction               (5.8) 

 

By substitution of the second equilibrium relation into the first relation the shear force V is eliminated and 

the basic equation for equilibrium is obtained: 

 

2

2

d M
 + p = 0

dx
     BTs + p  = 0           (5.9) 

 

Note that, by setting the torsion load equal to zero, the shear force is the derivative of the bending moment, 

which is well-known to engineers. 

 

Constitutive Relations 

 

The constitutive relation between the curvature κ and the bending moment M can be determined by dividing 

the bending moment through the bending stiffness of the bar EI, the product of the Young’s modulus and the 

moment of inertia I. The equation shows similarities with equation (5.6). 

 

κ M

EI
 =    (flexibility formulation)     s = De 
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or    

 

κM = EI    (stiffness formulation)  e = Cs             (5.10) 

 

Kinematic Relations 

 

The kinematic relation couples the curvature κ to a displacement uz (or w(x)). If an infinitesimal element of 

length dx deforms duz, then the rotation φ of the element can be described as: 

 

ϕ = − zdu

dx
                (5.11) 

 

The minus sign enters the equation due to the fact that a positive displacement uz  is related to a negative 

rotation of the cross-section, see Figure 5.5. This can be explained by examining a shear deformation γ. 

Figure 5.5 also shows the definition of shear deformation. The deformation can be calculated with the 

equation γ ϕ zdu
 =  + 

dx
. 

 

   

 

Figure 5.5. The definition of shear deformation (left) and curvature (right), Blaauwendraad 2004 

 

Due to the fact that the shear deformation is set equal to zero, the rotation φ can be determined with 

equation (5.11). 

 

It can also be seen in the Figure 5.5, that the curvature of the same element is the described by  the increase 

of the rotation φ over the element length dx. 

 

The situation in Figure 5.5 can be formulated as: 

 

ϕκ = −
2

z
2

d ud
 = 

dx dx
     e = Bu                 (5.12) 

 

The latter is the kinematic relation of a bar in bending and completes the description of a bar in bending. 

 

Looking at equation (5.9) and (5.12) it can be concluded that the quantities concerning shear are eliminated 

and neglected. However, it must be pointed out that, this is only possible because the calculation remains 

restricted to slender bars. This assumption is applicable when the slenderness ratio of the depth of the bar to 
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the span is smaller than 1/5. Then, the shear contribution is smaller than 10%. There is referred to the Euler-

Bernoulli or Navier beam solution. When the beam cannot be regarded as slender, shear deformation must 

be included in the calculation. Engineers will recognise this as the Timoshenko beam solution.  

 

5.2.3 Combined Extension and Bending 

 

Finally, the extensional and bending relations can be combined in the slender beam equations: 

 

Kinematic Relations 

 

ε
κ

 
    
    
    −  

d
ud

ud

d

2

x

z

2

0
x

= 

0
x

 

 

Constitutive Relations 

 

ε
κ

     
     
     

N EA

M EI

0
= 
0

               (5.13) 

 

Equilibrium Relations 

 

 −    
    
     −  

d
pNd
pMd

d

2

x

z

2

0
x

 = 

0
x

 

 

From the relations it can be seen that, in case of a linear beam, extension and bending are not coupled and, 

thus, can take place independently  from each other (theoretically). Furthermore, it can be seen that the 

kinematic matrix B indeed is the adjoint of the equilibrium matrix BT.  

 

The beam equations, complemented with the boundary conditions, can be solved with direct- or indirect 

methods as discussed in Paragraph 5.5. 

 

 

5.3 Theory of Plates 

 

Following the preceding discussion of the theory of bars, this paragraph contains the derivation of the plate 

theory. Plates are two-dimensional structures which can be loaded in-plane (plates) or perpendicular of their 

plane (slabs). They can be divided into thick and thin plates. For flat plates loaded in their plane, there is a 

plane stress situation. A plate can be seen as a generalisation of bars and therefore, equations derived in 

Paragraph 5.2  are valuable for the derivation of the theory  of plates as well. Stepping up one dimension from 
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the bar to the plate, the vector scheme of (5.4) expands with terms of the y-direction. By that, the general 

vector scheme of (5.3) is reached. Recapitulate from Paragraph 5.1.2: 

 

u   
T

x y z= u  u  u  

e ε ε γ κ κ ρ  
T

xx yy xy xx yy xy=       

s   
T

n nxx yy xy xx yy xy=   n  m  m  m                (5.3) 

p   
T

x y z= p  p  p  

 

Because the forces and moments are now expressed per unit of length, the quantities are written down 

without a capital. 

 

5.3.1 Extension 

 

Kinematic Relations 

 

Like the derivation of the arch bending equations, for plates (and later also for shells) at first the kinematic 

equations are deduced. For the kinematic relations of a two-dimensional plate loaded in-plane an 

infinitesimal small part of a plate is considered of dimensions dx dy. The plate part can deform in x-direction 

and y-direction, therefore equation (5.7) must be extended to a two-dimensional situation. The strains in 

both directions become: 

 

ε ∂
∂

x
xx

u

x
 =      and      ε

∂
∂

y

yy

u

y
 =                (5.14) 

 

Note that d is substituted a curved ∂ , indicating the equation is a partial differential equation. 

 

Moreov er, the plate can also experience a shear deformation γxy, which changes the shape of the plate. This 

possible shear deformation γxy, is graphically shown in Figure 5.6. 

 

 

Figure 5.6. Deformations of a plate part, Blaauwendraad 2004 
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The shear deformation can be determined by adding the rotations α  ∂
 ∂ 

xu = 
y
 and β

∂ 
 ∂ 

yu = 
x
: 

γ
∂∂

∂ ∂
yx

xy

uu

y x
 =  +                 (5.15) 

 

The kinematic relations are, thus, described as: 

 

ε
ε
γ

 ∂
 ∂   

    ∂
    ∂     
    ∂ ∂

 ∂ ∂ 

xy

u

uy

y

xx
x

yy
y

0
x

 = 0

x

    e = Bu                (5.16) 

 

Constitutive Relations 

 

The constitutive relations provide the relation between the stresses and the strains according Hooke’s law. 

For a two-dimensional stress state the three strains need to be related to the three internal forces; nxx, nyy 

and nxy for the shear stress belonging to the shear deformation γxy. The three internal forces are also called 

extensional forces or membrane forces and are determined by  multiplying the three strains εxx, εyy en γxy by 

the stiffness parameter. For thin plates the stiffness parameter is determined by multiplication of the 

Young’s modulus E with the thickness of the plate t (yields the stiffness per square unit plate). 

 

        

 

Figure 5.7. Plate without (left) and with  (right) lateral  contraction, Blaauwendraad 2004 

 

In addition to the relations found for a one-dimensional bar (equation 5.6) a two-dimensional plate part 

under extension in one direction experiences lateral contraction in the perpendicular direction, see Figure 

5.7. Lateral contraction is the phenomenon of decreasing width in one direction while pulling in another 

direction, e.g. seen when stressing an elastic band. In the relation the lateral contraction coefficient or 

Poisson’s ratio ν  appears.  

 

The constitutive relation of a plate part in flexibility formulation then becomes: 

 

( )

ε ν
ε ν

νγ

    −
    −    
    

       

xx xx

yy yy

xy xy

1 0 n
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E t

0 0 2 1 + n
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By  inverting the stiffness formulation is found: 

 

( )

ν ε
ν ε

ν
ν γ

 
    
    
    

−     −       
  

xx xx

yy yy

xy xy

n 1 0
E t

n  = 1 0
1  

1  n
0 0

2

2    s = D e           (5.17) 

 

For a more general formulation the terms in the rigidity matrix may be replaced by stiffness terms such as 

Dxx, Dνy and Dxy. 

 

Equilibrium Relations 

 

The final relation completing the basic equations for a plate in extension is the equilibrium relation between 

the membrane forces and the external applied loads. In the figure below a plate part dx dy is projected with 

the equilibrium quantities.  

 

 

Figure 5.8. Equilibrium of a 2D plate part, Blaauwendraad 2004 

 

As is seen in Figure 5.8, both the x-directional and y-directional part of load p must be in equilibrium with 

the membrane forces. The total equation in x-direction becomes: 

 

∂ ∂∂ ∂
∂ ∂ ∂ ∂

d d d d d d d d d d
y y
yx yxxx xx

xx xx yx yx x x

n nn n
-n y + n y + x y - n x + n x + y x + p x y =  +  + p  = 0

x x
 

 

and in y-direction: 

 

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

d d d d d d d d d d
x y x

yy xy yy xy

yy yy x y xy y y

n n n n
-n x + n x + y x - n y + n y + x y + p x y =  +  + p  = 0

y
            (5.18) 

 

Due to the moment equilibrium with respect to the out-of-plane z-axis, the two longitudinal shearing stress 

resultants must be equal: nxy =  nyx. The equilibrium relation in matrix notation is then  
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∂ ∂   − −     ∂ ∂
     
 ∂ ∂   − −    ∂ ∂  xy

n
py

n
p

ny

xx
x

yy
y

0
x

 = 

0
x

   BTs = p               (5.19) 

 

The basic equations for a plate in extension are now determined. 

 

5.3.2 Bending 

 

Plates loaded perpendicular to their plane (slabs) experience bending behaviour. Again, the plate or slab can 

be seen as a generalisation of bars which span in two directions. By  loading the slab, bending moments and 

shear deformation can be expected. As with the bar, the slenderness of the slab is decisive for possible 

neglecting the shear deformation. For thin plates it also holds that if the thickness to span ratio is smaller 

than 1/5, Blaauwendraad [8]. 

 

Kinematic Relations 

 

The kinematic relation between the displacement uz  perpendicular to the plate surface and the curvature κ of 

a plate part dx dy shows equalities with the bar in bending. From Chapter 5.2.2 it can be read that the 

curvature (in x-direction) is equal to minus the second derivative of the displacement uz: 

 

ϕκ = −
2

z
2

d ud
 = 

dx dx
                     (5.12) 

 

For thin plates, the same expression holds for curvature in x-direction. Additional, in a 2D plate part, there is 

also a curvature in y-direction. Both curvatures are: 

 

ϕκ ∂ ∂
= −

∂ ∂

2
x z

xx 2

u
 = 

x x
 

κ ∂
= −

∂

2
z

yy 2

u

y
               (5.20) 

 

The third curvature in a 2D plate part is the curvature due to possible torsional moments mxy and myx: 

 

ϕϕρ
∂∂ ∂

= + = −
∂ ∂ ∂ ∂

2
yx z

xy

u
2

y x x y
               (5.21) 

 

The three curvatures can be seen in Figure 5.9. 
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Figure 5.9. Stress resultants and curvatures of a plate in  bending with  lateral  contraction, Blaauwendraad 2004 

 

Subsequently, the kinematic relations for a plate in bending can be described as: 

 

[ ]

 ∂
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∂  
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     ∂ −
∂ ∂  

2
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yy z2
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    e = Bu           (5.22) 

 

Constitutive Relations 

 

The quantities that play a role in the constitutive relations can also be seen in Figure 5.9. Again, the bending 

moment can be determined by multiplying the curvature with the bending stiffness. For the plate relation 

the general bending stiffness Db is used. Like the plate in extension, the lateral contraction ν enters the 

constitutive relation. 

 

ν κ
ν κ

ν ρ

 
    
    
    
    −            

xx b b xx

yy b b yy

xy xy
b

m D D 0

m  = D D 0

1  m
0 0 D

2

   s = D e                (5.23) 

For a thin plate, the expression for the bending stiffness can be described as  
ν

3

b 2

Et
D  = 

12(1 - )
. 

 

Equilibrium Relations 

 

The equilibrium relation for a thin plate can easily be obtained by extending the equilibrium relations for a 

bar in bending with the y-direction. Hence, the equilibrium in z-direction becomes: 

 

∂∂
∂ ∂

yx
z

vv
 +  + p  = 0

x y
              (5.24) 
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Analogous to the bar equations, the out-of-plane shear is eliminated by setting-up the equilibrium of 

moments with respect to the x-direction and y-direction and therefore, the first two terms of the equilibrium 

relation can be replaced by terms which contain bending moments: 

 

∂∂
∂ ∂

yxxx
x

mm
 +  - v  = 0

x y
 

∂ ∂
∂ ∂

yy xy
y

m m
 +  - v  = 0

y x
              (5.25) 

 

The equilibrium relation, thus, becomes: 

 

[ ]
 
  ∂ ∂ ∂− − −   ∂ ∂ ∂ ∂   
  

xx

yy2 2

xy

m

2 m  = p
x y x y

m

2 2 2

   BTs = p                (5.26) 

 

Note that, when the kinematic relation is substituted into the constitutive relation and the equilibrium 

relation, a partial differential equation in uz  is derived: 

 

 ∂ ∂ ∂+ + 
∂ ∂ ∂ ∂ 

b z4 2 2 4
D   2   u  = p

x x y y

4 4 4

                 (5.27) 

 

By replacing the term 
∂ ∂

+
∂ ∂

2 2

2 2  
x y

 by the Laplace operator ∇2  (or ∆) the well known biharmonic plate 

equation is found, derived for the first time by Lagrange in 1811:  

 

∇ ∇2 2
bD w = p                (5.28) 

 

To perform a solution to the biharmonic equation at the free edge, the Kirchhoff or ‘modified shear’ 

boundary condition is introduced along with the prescribed (zero) stress resultants and moments. Kirchhoff 

stated that the transverse shearing stress summed up with the derivative of the torsional moment is equal to 

zero (this also leads to the well-known corner forces of plates). There is referred to the Kirchhoff thin plate 

theory. As denoted by  Zienkiewicz and Taylor [87], Kirchhoff formulated his thin plate theory in 1850, 

though, an early version was presented by Sophie Germain in 1811. A modification of the thin plate theory 

was made by Reissner in 1945 and, slightly different, by Mindlin in 1951 (they are similar for a Poisson’s ratio 

equal to zero). These modified theories, including shear deformation like the Timoshenko beam, extend the 

field of application of the theory to thick plates. 
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5.3.3 Combined Extension and Bending 

 

Finally, the extensional and bending relations can be combined in the thin plate equations: 

 

Kinematic Relations   Constitutive Relations 
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Equilibrium Relations 
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               (5.29) 

 

From the relations it can be seen that, similar to the straight bar, for the plate extension and bending are not 

coupled.  

 

All basic relations, for a plate in extension as well for a plate in bending are known. To solv e the relations the 

use of direct- or indirect methods is necessary  together with the boundary conditions of the particular 

problem. 

 

 

5.4 Theory of Shells 

 

Last, but not least, formulas for extensional shells and shells with bending are provided in this paragraph. A 

shell is a three-dimensional curved surface. They are essentially curved plates, a combination of a plate in 

extension and a plate in bending. The theory that deals with the extension of shells is called the membrane 

theory. The membrane theory describes the shell in an idealised pure membrane action: there are only 

normal and longitudinal shearing stresses produced, uniformly distributed through the thickness. Thus, in 

the case of extension the middle surface of the thin shell remains free of bending and twisting moments as 

well as transverse shear forces. This is possible due to correcting circumferential stresses, as described in 

Chapter 3. The membrane force field, therefore, causes the stretching or contraction of the shell, as a 

membrane, without producing any bending and/or local curvature changes. However, in many shell 
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problems the presence of moments and shear forces is necessary  to accept the type of loading and to satisfy 

the shell boundary conditions. For example, bending eventually  occurs due to (restricted) deformations of 

the shell causing curvature and thus bending. Aforementioned bending moments do not carry load and, 

therefore, they are referred to as compatibility moments. The need for a shell theory which combines 

membrane behaviour with bending has led to, a more comprehensive shell theory including bending. The 

describing relations will be derived here. 

 

The vector scheme of (5.3) is used. Recapitulate from Paragraph 5.1.2: 

 

u   
T

x y z= u  u  u  

e ε ε γ κ κ ρ  
T

xx yy xy xx yy xy=       

s   
T

n nxx yy xy xx yy xy=   n  m  m  m                (5.3) 

p   
T

x y z= p  p  p  

 

5.4.1 Extension 

 

Aforementioned, the structural behaviour of a thin shell in extension is described by the membrane theory 

dealing with membrane forces. Membrane forces are actually  resultants of the normal stresses and the in-

plane shear stresses that are uniformly  distributed ov er the thickness. A shell is in pure membrane action 

when bending stress actions are not developed. Thus, the membrane theory  is based on the assumption that 

bending stress resultants can be neglected and that the transverse shearing stress resultants are 

correspondingly equal to zero. Therefore, all bending actions and transverse shearing stress resultants are 

not of interest in this Chapter. They will be deal with in Paragraph 5.4.2. 

 

Kinematic relations 

 

Due to the assumptions made in Paragraph 5.1.2 the deformation is the shell surface is only dependent of 

translations of the middle surface. Because there is no bending, rotations of the surface are of no interest. 

 

For a shell, the kinematic relation between the strain ε and the displacement u can be found by describing 

the displacement of the middle surface. For simplicity, a polar coordinate system is used in which the 

curvature and length of a ring segment are expressed in terms of radius r and angle dθ. Hence, the terms can 

be converted back to a global coordinate system with the relation θ dx  = rd . 

 

Considering an infinitesimal ring segment of length dsθ =  rdθ as is shown in the left of Figure 5.10, the strain 

corresponding to the elongation of the ring segment by ∆dsθ is defined by εθθ =  
∆d
d

θ

θ

s

s
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Figure 5.10. Ring segment before and after deformation, Hoefakker and Blaauwendraad 2003 

 

Further in Figure 5.10, the elongation of the segment without a radial displacement ur is equal to θdu
 dθ
dθ

. 

The radial displacement ur results in additional elongation. The radius r increases to r + ur and therefore the 

length of the segment increases proportionally to
 
 
 

θ r
θ

du r + u
 ds  + dθ

dθ r
.  The elongation of a segment is 

defined by
  − 
 

θ θr r
θ θ θ θ

du dur + u u
 ∆ds = ds  + dθ   ds  = dθ + ds

dθ r dθ r
. Hereby, the strain for all fibres in the ring 

segment becomes: 

 

θ
 
 
 

θ
r

du1
ε  =  + u

r dθ
                    (5.30) 

 

Herein the initial curvature k of the arch is represented by the term 1/r.  

 

However, for a shell of arbitrary curvature it is convenient to stay within the general coordinate sy stem. 

When the relation is converted back to the global coordinate sy stem, the kinematic equation reads: 

 

∂
∂

x
xx z

x

u 1
ε  = + u

x r
                       (5.31) 

 

And in the y-direction: 

 

∂
∂

y
yy z

y

u 1
ε  = + u

y r
                  (5.32) 

 

The curvatures are x xk  = 1/r  and 
y y
k  = 1/r . Hence, the curvature for shells is positive when the centre of 

curvature lies on the positive part of the normal of the middle surface. 

 

Similar to the bar-to-plate transformation, additional shear rotation is necessary  for a correct description of 

the surface deformation. 
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When placing the general coordinate system parallel to the principal curvatures, the formula describing the 

shell shear deformation is equal to the plate shear deformation. Recapitulate from Paragraph 5.3.1: 

 

γ
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y x
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Substitution of the three kinematic equations yields the kinematic relation for a coordinate sy stem placed in 

principal direction: 
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For an arbitrary placed coordinate system the relation changes into: 
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The similarity with the kinematic relation for the plate part is evident; it is the curvature that makes the 

difference.  

 

 

Constitutive relations 

 

For the constitutive relations the shell is assumed to behave according to Hooke’s law. The stresses and 

strains are uniformly distributed over the thickness due to the assumption that the shell is in pure 

membrane behaviour with no bending actions. As mentioned, the moment equilibrium around the z-axis 

implies equal longitudinal shearing stresses and, therefore, the deformation of the middle surface is 

described by the normal strains εxx, εyy, and shear strain γxy. 

 

Hooke’s law for the stress-strain relation for the linear elastic shell is described by 
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The stress resultants can be determined from the strains by multiplication with the thickness t. 
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Hence, the constitutive relation of the shell is equal to the constitutive relation of the plate part derived in 

section 5.3.1. 

 

Equilibrium relations 

 

The stress resultants on a shell element, with thickness t, are shown in Figure 5.11. The coordinate sy stem is 

placed in the direction of the principal curvatures.  

 

 

Figure 5.11. Stress resultants and load components on a shell  element, Hoefakker and Blaauwendraad 2003 

 

Considering an infinitesimal element of the shell with length dx and dy, the equilibrium in x- and y-direction 

can be described as: 
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yy xy yy xy

yy yy xy xy y y

n n n n
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y
                  (5.35) 

 

Hereby, as mentioned, the two longitudinal shearing stress resultants must nxy and nyx are equal.  

 

Equation (5.35) is equal to the equilibrium relations found for the 2D plate part in extension in Section 5.3.1. 

 

Because of the curvature of the shell element, there is also equilibrium in z-direction. For the equilibrium in 

z-direction the principal curvatures x xk  = 1/r  and y yk  = 1/r  must be determined.  
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Figure 5.12 shows a ring segment of the shell surface in the x-direction with the normal load component pz  in 

the z-direction and the stress resultant nxx. The segment has a (negative) curvature kx. 

 

 

Figure 5.12. Normal  load pz and stress resultant nxx, , Hoefakker and Blaauwendraad 2003 

 

A simple equilibrium for the x-direction segment can be described as 

 

− ⋅xx z x x xx zn dθ + p   r dθ = k n  + p  = 0              (5.36) 

 

(Note that the equation is independent of the sign of the curvature) 

 

When the y-direction is also included in the equation, the final equation for the equilibrium of pz  can be 

described as 

 

x xx y yy zk n  + k n  + p  = 0               (5.37) 

 

Substitution of equations (5.35) and (5.37) yields the equilibrium relation for a coordinate system placed in 

principal direction: 
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For an arbitrary placed coordinate sy stem the shear stress resultants also takes part in the equilibrium in z-

direction and the relation changes into: 
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It can be seen that the equilibrium relation is equal to the equilibrium relation of a 2D plate part with the 

addition of the initial shell curvatures.  

 

5.4.2 Bending 

 

Aforementioned in the introduction of the paragraph, the classical shell theory consists of a membrane field 

and a moment field. Because of the high extensional rigidity in compare to the flexural rigidity, the shell 

mainly produces membrane stresses, described by the membrane theory. The membrane theory is, however, 

only sufficient if the membrane stress field is not disturbed. If not, for example in the case of deformation 

constrains, compatibility  moments are required to compensate the shortcomings of the membrane theory 

(and, thus, not for carrying load). The compatibility or bending force field consists of bending moments, 

twisting couples and transverse shear forces. The theory for calculating the shell bending moments is derived 

in this paragraph. For that, the hypothesis which states that the shell in bending can be described with the 

shell membrane theory in combination with the plate bending theory is used. 

 

Recapitulate from Chapter 3, it can be stated that bending moments arise at: 

 

1. Deformation constrains and some boundary conditions which are incompatible with the requirements of 

a pure membrane field 

2. Application of concentrated forces, and change in the shell geometry and/or sudden change of curvature 

 

Kinematic relations 

 

The kinematic relation for the bending of shells can be derived using the thin shell assumptions as for a shell 

the cross-sectional thickness is small in compare to the radius of curvature. For the derivation of kinematic 

relations of a shell, first a ring segment is considered. For the kinematic relation for the ring segment in 

bending, the extension of the middle surface is extended with a description for the strain at an arbitrary 

point in the cross-section, seen in the right picture of Figure 5.10. By  using the relation r = a + z  for a certain 

point A at distance z from the middle surface and an additional rotation of the gradient rdu

adθ
 that produces a 

displacement -z rdu

adθ
, the displacement of point A is described by: 

 

 ϕ − − 
 

r r
θ,A θ θ θ θ θ

du dua + z z z
u  = u    = u  + u    = u  + z 

a a dθ a dθ
  where  ϕ  = − 

 
r

θ θ

du1
 u   
a dθ

. 

 

The strain distribution at an arbitrary point related to the displacement and the rotation of the middle 

surface is hereby: 

 

ϕ 
 
 

θ θ
θ r

du d1
ε (z) =  + u  + z

a + z dθ dθ
 

 

Or, after substitution of the rotation: 



  Chapter 5.   Theory of Elasticity 

 108

( )−
2

θ r r
θ 2

du u d u1 z
ε (z) =  +   

a dθ a + z a a+z dθ
                  (5.39) 

 

Equation (5.39) represents the exact strain distribution across the thickness expressed by the displacement 

of the middle surface. Setting the distance z is equal to zero (middle surface), an identical expression as 

equation (5.30) in Paragraph 5.4.1 is obtained.  

 

An important step is the introduction of the assumptions b and c of Paragraph 5.1.2, the thin shell 

assumptions. For a thin shell, it holds that z « a, and therefore the approximation a + z ≈ a is used. 

Consequently, equation (5.39) changes into: 

 

θκ−
2

θ r r
θ θ2 2

du u d u1 z
ε (z) =  +    = ε  + z

a dθ a a dθ
            (5.40) 

 

Hence, the thin shell assumption leads to the approximated expression for the deformation curvature: 

 

θκ −
2

r
2 2

d u1
 = 

a dθ
               (5.41) 

 

The latter is the kinematic relation for a ring segment in bending and shows similarity with the kinematic 

relation for the bar in bending. Actually, when the result is converted to a global coordinate sy stem using the 

relation  dx = rdθ , the exact same relation is found: 

 

κ = −
2

z
x 2

d u

dx
     e = Bu           (5.42) 

 

It can be concluded that the strain distribution at an arbitrary point in the cross-section of a ring segment in 

extension and bending can be described by  the strain of the middle surface added with the curvature due to 

bending of a straight bar.  

 

By  simply combining the ring segment equations with additional y-direction and twisting curvature ρxy 

(similar to the bar-to-plate extension of section 5.5.2) the kinematic relation for a shell in bending is found: 

 

[ ]

 ∂
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∂  
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     ∂ −
∂ ∂  

2

xx
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y

ρ
2

x y

2

2

2

     e = Bu          (5.43) 

 

This is exact the same relation as (5.22). 
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Constitutive relations 

 

Similar to the plate in bending, the constitutive relation between the curvatures and bending moments is 

described by the bending stiffness and a term for the lateral contraction. As the shell is a two-dimensional 

surface structure the constitutive law is equal to the plate bending constitutive law, even though the shell is 

in a three-dimensional space. The constitutive relations are: 

 

ν
ν

ν

 
    
    
    
    

            

xx b b xx

yy b b yy

xy xy
b

m D D 0 κ

m = D D 0 κ

1 - m ρ
0 0 D

2

    s = D e          (5.44) 

with 
ν

3

b 2

Et
D  = 

12(1 - )
 as the bending stiffness. 

 

Equilibrium relations 

 

The equilibrium relations involve the equilibrium between the moments, out-of-plane shear stresses and the 

external applied load. The out-of-plane shear, neglected for the extensional behaviour, is generated by the 

applied load, analogous to the beam and plate in bending. Therefore, the equilibrium is satisfied if: 

 

∂∂
∂ ∂

yx
z

vv
 +  +  p  = 0

x y
              (5.45) 

 

As with the plate equations, the out-of-plane shear is eliminated by setting-up the equilibrium of moments 

with respect to the x-direction and y-direction: 

 

∂∂
∂ ∂

yxxx
x

mm
 +  - v  = 0

x y
 

 

∂ ∂
∂ ∂

yy xy
y

m m
 +  - v  = 0

y x
              (5.46) 

 

The first to terms of the equilibrium relation (5.45), the out-of-plane shears, can be replaced by the moment 

equilibrium relations (5.46). The total equilibrium relation of a shell in membrane and bending action can 

thus be described as: 

 

[ ]
xx

yy z2 2

xy

m

2 m  = p
x y x y

m

 
  ∂ ∂ ∂− − −   ∂ ∂ ∂ ∂   
  

2 2 2

    BTs = p             (5.47) 

 

Thus, it can be concluded that the bending equations of a shell are similar to the plate in bending.  
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5.4.3 Combined Extension and Bending 

 

Finally, the extensional and bending relations can be combined in the thin shell equations: 

 

Equilibrium Relations 
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Constitutive Relations 
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with 
νm 2

Et
D  = 

(1 - )
  and 

ν

3

b 2

Et
D  = 

12(1 - )
 

 

 

Kinematic Relations    
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The classical shell theory is now derived. In the deduced basic relations, the similarity with the plate 

equations (5.29) is clear. Only the kinematic and equilibrium membrane relations have additional 

parameters due to the initial geometric curvatures of the shell. Two important conclusions that can be drawn 

following the equalities and differences between the basic relations of a plate and a shell is that (1) the initial 
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curvature of the shell indicates that, unlike plates, the in-plane and the flexural problem are coupled, even 

for the linear case, and (2) the combined stretching and bending behaviour of a shell can be described by the 

extension behaviour of the shell (including the initial curvature) in combination with the bending behaviour 

of a plate. Thus, the shell behaviour can be approximated by superposition of shell membrane stresses and 

the plate bending moments. This hypothesis, first discov ered by H. Reissner in 1912, enabled simple hand 

calculation of stresses in shells. 

 

To solve the classical shell relations the use of direct- or indirect methods is necessary together with the 

boundary conditions of the particular problem. This will be discussed in the next paragraph.  

 

 

5.5 Solve Methods 

 

5.5.1 Direct Methods 

 

The three relations including additional boundary conditions can be solved by direct methods or by  indirect 

methods. Direct Methods solve the problem by the use of relationships based on observed intensities. They 

can be divided into the force method and the displacement or stiffness method. The indirect methods are 

discussed in the next paragraph. 

 

Force Method 

 

The force method evaluates the three basic equations in opposite order. First, the equilibrium relations, than 

the constitutive relations (flexibility formulation) and finally the kinematic relations. When the equations 

contain only one unknown, direct solution by integration and substitution of the boundary conditions is 

allowed. If not, the equilibrium equations are used to express the stresses in one or more redundants which 

guarantees an equilibrium system of stresses. Subsequently, the deformations are expressed in the 

redundants after substitution of the equilibrium sy stem into the constitutive equations. Finally, the 

kinematic relations are evaluated by eliminating the degrees of freedom which results in one or more 

relations between the deformations and the compatibility conditions. Combining the steps leads to a 

differential equation with respect to the redundants. While following the force method, attention must be 

paid to the construction of a stress field, with redundants, which satisfies the equilibrium equations and the 

derivation of suitable compatibility equations by elimination of the displacements. The equations of the force 

method have similarities with classical graphical methods. The associated equilibrium equation is actually 

the mathematical description of the graphical method involving the drawing of the Cremona diagrams and 

the kinematic relation corresponds with the mathematical formulation of the graphical displacement 

diagram or Williot diagram (1877), Blaauwendraad [10]. The force method is extensively used in historical 

mathematics. 
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Displacement Method 

 

In the displacement method the kinematic and constitutive relations are substituted into the equilibrium 

relations without any modifications. The constitutive relations are used in stiffness formulation. The result of 

the displacement method is a set of one or more differential equations with respect to the degrees of 

freedom. Increasing use of the displacement method came with the invention of the computer. The method 

appeared to be the more suitable for computer analysis as the computer is unable to choose proper 

redundants. 

 

5.5.2 Indirect Methods 

 

The principle of minimum potential energy  and the principle of minimum complementary energy  are 

indirect methods. Indirect or variational methods are energy  based methods. They solve the problem by the 

use of a differential equation which is determined by minimising the potential or complementary energy 

with respect to variations in displacements or stresses respectively. For both methods the equation of virtual 

work serves as base. The main reason for discussing variational methods is that the computer has only minor 

application of classical calculation procedures but more and more on energy based principles, such as the 

solution procedures of the finite element method, Blaauwendraad [11]. 

 

Principle of Minimum Potential Energy 

 

Potential energy can be described as the energy which is accumulated in a material; it represents the area 

under the σ-ε diagram. The potential energy can be determined by adding the amount of energy  which is 

needed for a small deformation of a certain v olume, the deformation (or strain) energy, and the energy from 

the position of the external loads. When implemented in the virtual work equation it results in a differential 

equation for unknown displacements; the equation of virtual work for potential energy. By  minimising the 

potential energy a stationary value with respect to variations of displacements is determined, which provides 

the equilibrium relation between the external and internal forces. Therefore, the principle of minimum 

potential energy is related to the direct displacement method. 

 

Principle of Minimum Complementary Energy 

 

The principle of minimum complementary  energy is related to the direct force method, it provides in a 

differential equation for unknown stresses; the equation of virtual work for complementary energy. 

Complementary  energy  represents the area above the σ-ε diagram and relates, for elastic materials, to 

potential energy by the equation σε ε−c s E'  =   E' ( ) . It is hard to give a physical interpretation. By minimising 

the complementary  energy  a stationary value with respect to variations of stresses is found. The equation 

which follows describes the relation between the strains and displacements. 
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Virtual Work Equation 

 

The equation of virtual work relates the internal energy to the external energy. The internal energy is formed 

by  the stresses and strains. They are related according to the constitutive relations. The external energy deals 

with as well the v olume loads and displacements as the ones on the edge. The equation can be obtained by 

setting-up the energy equilibrium for any admissible displacement field. Such a field is admissible if it 

corresponds with prescribed displacements and satisfies the kinematic relations in the v olume of the body. 

Without any further derivation (done in Chapter 11), the equation of virtual work is given below: 

 

σδε δ δ− − =∫∫∫ ∫∫ ∫∫ 0
V V S

dV P udV p udS                  (5.49) 

 

As mentioned in Paragraph 5.1.2 the equation of virtual work can be used to explain the similarity between 

the two matrices of the kinematic and equilibrium relation. As reported by Hoefakker and Blaauwendraad 

[45], the equation of virtual work (5.49) can be rewritten, leaving out possible load applied in the v olume. 

 

σδε δ∫∫∫ ∫∫
V S

dV  = p udS               (5.50) 

 

By  integration ov er the thickness t the stresses are transformed to the stress resultant and the v olume 

integral changes to a surface integral. This is, however, only valid for slender cross-sections. Furthermore, 

rewriting the equation by using the vector notation of Paragraph 5.1, the virtual work equation changes to: 

 

δ δ∫∫ ∫∫T T

S S

dS dSe s  = u p               (5.51) 

 

To obtain equilibrium between the stress resultant vector and the load vector, the variations of the strains 

are expressed in variations of the displacements using the kinematic relation (5.1): 

 

( )δ δ∫∫ ∫∫
T T

S

dS dS
S

Bu s  = u p                    (5.52) 

 

According the rules of matrix calculation ( ) =T TT Bu   u B   equation (5.50) can be rewritten: 

 

δ δ=∫∫ ∫∫T T T

S

dS dS
S

u B s   u p                      (5.53) 

 

Which means that =TB s  p . 

 

Hence, the differential operator matrix BT of the equilibrium relation must be the transpose matrix B of the 

kinematic relation. Furthermore, by the fact that the matrix transformation ( ) =T TT Bu   u B  is performed 

within the area integrals  dS  = dx dy , the integration by parts rule must be used. The rule reads: 
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[ ]   = ⋅ −   
   ∫ ∫

2

1

x

x

df dg
g dx  f   g   f dx

dx dx
 

 

As the constant term [ ]⋅ 2

1

x

x
 f   g  is used for the boundary conditions, it is not of interest for the equilibrium 

equation. Leaving out the constant term, yields: 

 

   = −   
   ∫ ∫
df dg

g dx  f dx
dx dx

                  (5.54) 

 

Or by integration twice: 

 

   
=   

   
∫∫ ∫∫

2 2

2 2

d f d g
g dxdx  f dxdx

dx dx
             (5.65) 

 

Equations (5.52) and (5.53) give answer to the question why the even terms do not change sign and the 

uneven do. Therefore, in Section 5.1.1 the similarity  between the matrices is not regarded as being the 

transpose of each other, but is referred to as being their adjoint matrices. 
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6 Structural Failure 

 

 

In Chapter 5 the classical shell theory of elasticity is discussed. Equally important is to know how the shell 

fails. In this Chapter the structural failure of shells is discussed. Aforementioned in Chapter 3, shells may fail 

either due to large deformations or because of material degradation or by a combination of both. The first 

failure mechanism is referred to as buckling instability and the second is a so-called strength failure, Ramm 

[66]. The distinction between both failure mechanisms can be seen in Figure 6.1.  

 

For thin shells, the stresses are normally so low that the strength criteria are satisfied and the safety against 

buckling is dominant, although intensified by inelastic material behaviour (inelastic buckling). For sure in 

case of shells made of high strength materials, the stability behaviour often dictates the structural 

dimensions. As a buckling failure can be sudden and catastrophic, sufficient factors of safety must ensure 

that it will not occur. The buckling phenomenon is extensively discussed in Section 6.2  to 6.9. 

 

Figure 6.1. Structural  failure due to buckling or strength, Ramm 1987 

 

When significant compressive stresses or tensile stresses arise (e.g. in the lower part of hemispherical caps) 

the material degradation may become critical. In particular, the highly nonlinear behaviour of concrete in 

tension causing cracking and rebar yielding considerably lowers the load carrying capacity. Strength failure 

is discussed first in Section 6.1.  
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6.1 Strength Failure 

 

A strength failure is a failure for which the load causing plastic flow of the material is lower than the critical 

(buckling) load causing large deformations. Thus, a strength failure is caused by tensile cracking or 

compressive crushing of concrete while the deformations of the shell are small. In case of reinforced 

concrete, a third failure mechanism is yielding of rebars or continuous frictional pull-out of fibres.  

 

A strength failure is purely material orientated. Therefore the behaviour of material surpassing the elastic 

branch up to plastic failure is captured in Chapter 8. Subsequently, a simple example is outlined in Chapter 

10 and the modelling of the material properties in a so-called material model which enables finite element 

programs to determine whether a material failure or buckling failure will occur, follows in Chapter 15.  

 

 

6.2 Buckling Failure 

 

Under certain conditions structures may fail not on account of high stresses surpassing the strength of 

material, but due to insufficient stability. A special mode of instability of equilibrium is buckling. All 

structures that are subjected to loads which cause in-plane compressive forces are subject to buckling. 

Buckling instability can be characterised as a premature failure mechanism caused by eccentricity  of 

compression forces, initiated by deformations or initial geometric imperfections. Consequently, the critical 

buckling load causing the structure to be in an unstable state of equilibrium can be found by  introducing an 

eccentricity of normal forces in the equation of equilibrium that produces a moment. The form of the 

equation for buckling of structural elements is linear and homogeneous. The study of the solutions of such 

equations is in the branch of mathematics known as the eigenvalue theory. 

 

The phenomenon of buckling is closely related to the name of 18 th  century mathematician Leonhard Euler. 

Euler derived a formula which gives the maximum axial load that a long, slender ideal column can carry 

without buckling in 1744 (even before Navier formulated the general theory of elasticity in 1821). He 

presented his solution in the first paper on structural stability in which he described the behaviour of a bar 

under axial load before and after the buckling load was exceeded. This so-called postbuckling behaviour was 

captured in a nonlinear formulation and solved by Lagrange in 1867. It took about one century  and a half 

before an extension into the domain of plates was formulated by Bryan in 1891, and only in the 20th  century 

the investigation of the stability of shells took place. Earliest solutions for buckling of axially compressed 

cylinders were obtained by Lorenz in 1908, Timoshenko in 1910 and Southwell in 1914, Popov  and 

Medwadowski [62]. On the basis of the linear theory Zoëlly developed in 1915 his buckling formula for a 

spherical dome under radial pressure. 

 

For some 200 y ears after the basic paper of Euler, the underlying theory of buckling was thought to be 

completed. The critical load of a structure was found by assuming an infinitesimal deviation from the 

prebuckling position and subsequently determine the load at which the structure remained in equilibrium in 

the perturbed position. For as far as columns and plates are considered the analytical results are in fair 
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agreement with experiments. In 1928, however, Robertson indicated a significant discrepancy between 

theory and experiment while axial compressed thin cylindrical shells, Seide [70]. 

 

The question to which caused the great discrepancy  was not answered until Von Karman and Tsien 

discovered the answer to lie within the nonlinear behaviour in 1941. Von Karman and Tsien discovered that 

for shells, contrary to columns and plates, the equilibrium path after the bifurcation point falls-down, 

showing decreasing load carrying capacity. Strangely  enough, they  did not recognise the role of the initial 

imperfections causing the bifurcation point never to be reached as demonstrated in experiments, Kollar and 

Dulacska [54]. The paper that can be said to have the most influence on the understanding of the buckling 

process and indicating that the postbuckling behaviour determines the sensitivity to initial imperfections is 

the basic paper of Koiter published in 1945. Since the first version was in Dutch, it did not gain international 

attention before the English translation in 1963, Seide [70]. The Koiter initial postbuckling theory, later 

improved by the so-called special theory of Koiter which was more accurate (Kollar and Dulacska [54]), 

handed a simple linearised formulation for finding the postbuckling path in the vicinity  of the bifurcation 

point and prov ed that even small imperfections lead to significant decrease in buckling capacity. According 

to Popov and Medwadowski [62] it seems fair to say that the Koiter initial post-buckling theory represents 

one of the most important contributions in the field of stability of elastic systems since the initial 

investigations of Euler and Lagrange. 

 

Throughout the twentieth century, the buckling was expanded to inelastic behaviour where loss of stability 

and material failure are intertwined due to plastic behaviour and creep. Furthermore, the negative effects of 

fracture propagation and finite strain effects on stability gained attention. Contemporary advancement is 

mostly by nonlinear finite element analysis, allowing the calculation of bifurcation loads of perfect shells and 

collapse loads of imperfect shells. 

 

In the following, the previously mentioned buckling phenomena are explained. As the curvature, which is an 

obv ious distinguishing feature of the shell, introduces mathematical complexities, the relative simple bar is 

considered first. Similar to Chapter 5 the sequence can in short be named as bar-plate-shell. For each 

structural element the linear critical load is determined. These values are important to ally with the first 

research question as to find the so-called knock-down factor which indicates the difference between the 

linear and actual critical load taking into account geometrical and physical nonlinearity. Furthermore, the 

nonlinear behaviour (caused by large deformations) is described and subsequently the influence of initial 

geometric imperfections. In the end, the influence of inelastic material behaviour on buckling is discussed. 

But first the basic terms are explained.  

 

In the subsequent buckling survey the literature is not completely processed, nor is the theory discussed in 

ev ery detail. But the most important phenomena are to make known and clearly described serving the reader 

with sufficient knowledge for the analyses in the following Chapters.  
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6.2.1 Stability and Instability 

 

An effective starting point in the buckling investigation is to explain the terms of stability and instability. 

Therefore, there is referred to the state of a system, which is the collection of values of the sy stem parameters 

at any instant of time. The state of a sy stem is stable if relatively  small changes in sy stem parameter (for 

shells e.g. geometrical and material properties) and/or environmental conditions (e.g. applied forces and 

thermal conditions) would bring relatively small changes in the existing state of the system, at any instant 

time. Analogously, the state of a system in unstable if relatively small changes in system parameter and/or 

environmental conditions cause major changes in the existing state, at any instant time. 

 

In case of buckling there is referred to the stability and instability of the equilibrium state of a sy stem. 

Buckling is a mode of instability of equilibrium. The equilibrium state of a system is stable if small 

perturbations, caused by effects such as load changes, would confine to vicinity of the existing equilibrium 

state whereas slight changes in an unstable equilibrium state of a system force the system away from that 

equilibrium configuration. The unstable sy stem finds other equilibrium states which may be close to the 

initial state or far away, Farshad [34]. In terms of energy, the state of equilibrium can said to be stable if the 

potential energy is a minimum. For any  small displacement from the equilibrium position the potential 

energy increases. Hence, for unstable equilibrium the potential energy is a maximum.  

 

Buckling occurs in deformable bodies subjected to compressive loadings. Hereby, the loading causing 

instability of equilibrium can be classified as conservative or non-conservative loading. Conservative loads, 

such as the dead weight of a shell, are time independent loads whereas non-conservative loads are generally 

time dependent or depend on the state of the sy stem. Bodies subjected to conservative loading may suffer 

buckling type loss of equilibrium stability and find other equilibrated configurations. Bodies subjected to 

non-conservative loading may become dynamically unstable which cause oscillations with increasing 

amplitude, Farshad [34]. This instability mode is known as flutter. Buckling in structural problems, as 

considered, alters the initial state of equilibrium due to loss of stability and finds a new equilibrium state 

(which also may be a total collapse) under the influence of conservative load. Hence, buckling is also referred 

to as static instability. 

 

6.2.2 Forms of Buckling 

 

According to Popov  and Medwadowski [62], it can be said that there are five types of loss of stability  due to 

buckling; (1) bifurcation buckling and (2) limitation buckling in the elastic branch expanded with (3) 

inelastic buckling, (4) creep buckling and (5) dynamic buckling. They will be discussed in the following. 

 

Bifurcation Buckling 

 

The process of buckling can be divided into a prebuckling, buckling and postbuckling stage. The path up to 

the critical buckling load is often named the primary path, while the secondary path represents the 

postbuckling portion. Bifurcation of equilibrium refers to a situation in which a body  subjected to increased 

loading will have, at the point of buckling, two possible paths of equilibrium: the primary path which 
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becomes unstable after buckling (a small perturbation leads to large deflection) and the (adjacent) stable 

secondary path, represented in Figure 6.2. In reality the structure chooses the path that yields the minimum 

energy of the system. Both paths intersect at the buckling point, or so-called bifurcation point as in that 

point two states of equilibrium can exists for the same load, Farshad [34]. 

 

 

Figure 6.2. Bifurcation buckling of an axially  compressed column, Farshad 1992 

 

The existence of two equilibrium paths and the fact that the structure chooses its own buckled shape beyond 

the bifurcation point is characteristic for the bifurcation of equilibrium. Bifurcation buckling is often referred 

to as classical buckling: in a classical linear (Euler) stability analy sis the existence of a bifurcation point and 

an adjacent equilibrium state are assumed, Farshad [34]. 

 

Limitation Buckling 

 

Structures that carry transverse load mainly by axial compressive forces, such as shallow shells, typically 

may suffer loss of stability by limitation of equilibrium. Instability due to limitation of equilibrium is 

characterised by a continuous load-deformation curve without a bifurcation point. The curve has stationary 

maximum and minimum points in which one of them represents the critical load or limit point. The limit 

point is the intersection of the prebuckling and postbuckling path. In limitation buckling the structure may 

show a smooth transition from prebuckling to postbuckling or may show a sudden snap-through towards a 

non-adjacent equilibrium point caused by  an unstable region after the limit point. Snap-through buckling is 

visualised in Figure 6.3. 

 

Figure 6.3. Snap-through  buckling, Farshad 1992 
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Unfortunately, whether a structure experiences bifurcation buckling or limitation buckling cannot be 

determined in advance. The buckling mode of spherical shells under external pressure may be as well 

bifurcation as snap-through buckling, depending on the geometry of the shell.  

 

Inelastic Buckling 

 

Previous modes of buckling failure may also be addressed as elastic instability failures. However, shells are 

mostly built of materials for which the assumption of elastic behaviour does not apply.  Thus, in addition to 

the elastic buckling, inelasticity must be considered, Popov  and Medwadowski [62], Reinforced concrete 

shells experience nonlinear material behaviour almost from the beginning of the loading process. If the 

material behaviour becomes plastic the critical load will be less than given by the elastic theory. The amount 

of decrease due to inelasticity it is not known and has to be determined by computational analy sis or 

experimental tests. Inelastic buckling is discussed later in Section 6.6. 

 

Creep Buckling 

 

So far, in the discussion, no time effect is assumed. However, most materials develop deformations that not 

only depend on stresses but also on time. In other words, the initial elastic deformation increases in time, 

ev en with constant stress. This so-called creep effect may become important for buckling as creep causes 

flattening and therefore loss of curvature. In case of a sound reinforced concrete structure, the process tends 

to an asymptote as the compressive reinforcement enables the composite to reach equilibrium. However, 

ev en sound designed structure can show load-carrying capacities depending on the length of time a load is 

sustained. Thus, the longer the structure is subjected to load, the lower the collapse load. 

 

For an analytical calculation it appears that a sufficiently accurate approach consists of the introduction of a 

creep modulus of elasticity into the critical load formulae, together with a somewhat larger factor of safety to 

ov ercome its uncertainties. The creep modulus is approximately one-third the value of the Young’s modulus. 

For reasons of simplicity, the effect is often taken into consideration with a critical time, although not correct 

(critical load is normative). More accurate is to idealise creep based on the concepts of linear visco-elasticity 

using a (chain spring-dashpot) Maxwell model, a (parallel spring-dashpot) Kelvin model or a Burger model 

(combination of both). The solutions based on linear visco-elasticity appear to be satisfactory for reinforced 

concrete, Popov  and Medwadowski [62]. 

 

Although creep may lead to a significant lower critical load, approximately  one third of the short time test as 

found in experiments, Billington and Harris [6], it is not treated in this thesis. 

 

Dynamic Buckling 

 

Dynamic buckling refers to a situation in which buckling is caused by rapidly varying or transient loads. In 

rare circumstances that such loading occurs, the mechanical properties of materials are significantly 

increased and, due to the inertia effect, the same holds for the critical buckling load. The dynamic critical 
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load may be up to 3 times as high as the normal critical load, as shown by Volmir (1967). Hence, it appears 

that dynamic buckling is only of minor importance and therefore not taken into account here. 

 

6.2.3 Koiter Initial Postbuckling Theory 

 

The main question of the buckling phenomena is the shape of the postbuckling path of equilibrium. The 

axially  compressed column, seen in Figure 6.2, shows increasing load carrying capacity  after the bifurcation 

point, independent on the chosen path of equilibrium. The question is, however, if this is true for all 

columns, or even in general, for all structures. As mentioned, the importance of postbuckling research was 

stressed when it was examined that shells may experience a significant reduction in load carrying capacity.  

 

To determine the shape of the secondary path it is not possible to use the linear theory, which was sufficient 

to calculate the critical buckling load. As the postbuckling stage inv olves large deformations, in general, it 

demands a nonlinear formulation and solution. Such solutions are very complex and have been obtained for 

just a few simple shell geometries, Popov  and Medwadowski [62]. 

 

A significant step to determine the postbuckling behaviour of a structure in the vicinity of its bifurcation 

point is taken by  Koiter; the Koiter initial postbuckling theory. In his dissertation Koiter provides in a study 

to the slope and curvature of the secondary path in the immediate vicinity of the bifurcation point. Instead of 

using a nonlinear formulation he approached the secondary path on the basis of linearised formulation in 

such a way that the buckling shape(s) are expanded into power series of displacements measured from the 

prebuckling state. Consequently, it is only exact at the point of bifurcation, Popov  and Medwadowski [62]. 

By  adding as many terms as the computing possibilities allow, the actual postbuckling behaviour is 

approached, Kollar and Dulacska [54]. 

 

Koiter concluded that the shape of the secondary  path can be divided into three possible types of bifurcation 

of equilibrium: (I) stable symmetrical bifurcation, (II) labile symmetrical bifurcation and (III) labile 

unsymmetrical bifurcation, represented in Figure 6.4. Labile unsymmetrical bifurcation is characteristic for 

structures in which the postbuckling behaviour can only occur in a preferred direction. In case of an 

imperfect structure, also seen in Figure 6.4, the primary and secondary paths of equilibrium often show a 

fluent transition. More important, imperfect structures do not show a clear bifurcation point and they may 

fail before the linear critical buckling load is reached (limit point buckling). Such imperfection buckling is 

discussed later. 

 

 

Figure 6.4. Possible paths of equilibrium according to the Koiter theory, Hoogenboom 2006 
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Using the theory of Koiter, for different type of buckling behaviour the paths of equilibrium can be defined. 

As the equilibrium of a perfect sy stem can be described by: 

 

( )λ λ − − 2

1 2 = 1    cr c w c w  

 

Herein, the load factor λ  depends on the imperfection amplitude w  and the characteristic constants c 

dependent on the structural shape. 

 

For type II and type III behaviour, Koiter developed the so-called power laws: 

 

Two-third Power Law:    ( )λ λ ρ − 
 

0

2
31

max cr 22 = 1  3 w c              (6.1) 

 

Half Power Law:    ( )( )λ λ ρ− 0

1
2

max cr 1 = 1  2 w c              (6.2) 

 

Using the power laws and a correct description of the constants which depends on the type of structure (c) 

and the imperfection shape (ρ) and magnitude (w0) the structural behaviour of an imperfect structure can be 

computed. 

 

6.2.4 Paths of Equilibrium 

 

The buckling behaviour of various structures is extensively investigated. According to Kollar and Dulacska 

[54], these investigations show that way in which most structures find a new equilibrium state is according 

to one of the diagrams presented below in Figure 6.5. Figure 6.5 shows the load P plotted against the 

buckling deformation w for different types of buckling behaviour. Kollar and Dulacska [54], describe the 

following situations: 

 

When the equilibrium of a certain structure becomes indifferent after buckling, the path of equilibrium is 

similar to the one presented in Figure 6.5.a. The load bearing capacity of this type of structures remains 

constant and initial imperfections increase the deformations, but finally approach the linear critical load. 

Structures which behave according to this diagram are, thus, insensitive to imperfections. For shells, the 

behaviour seldom occurs, however, the graph reasonably accurately describes the behaviour of bar 

structures.  

 

The diagram of Figure 6.5.b shows increasing load carrying capacity in the postbuckling range. 

Consequently, structures that fit into this type of behaviour are insensitive to imperfections. Without initial 

imperfections these structures demonstrate bifurcation buckling, but with eccentricity of compression 

forces, the buckling behaviour shows a smooth transition between prebuckling and postbuckling 

equilibrium. Furthermore, the diagram is symmetrical, in other words, it makes no difference whether the 

imperfection is in positive of negative direction. Examples of such structures are plates and shells with 

negative Gaussian curvature. Hence, the latter are not of interest for the investigation to shell buckling. 
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Figure 6.5.c also shows symmetrical buckling behaviour as imperfections in both direction cause decrease in 

load carrying capacity. If disturbances are present, either geometrical imperfections or initial bending 

moments (e.g. at boundary  conditions or point loads), the maximum load is a limit point after which the 

structure transforms to a new (non-adjacent) equilibrium shape. Obviously, these structures cannot be 

designed on the basis of the linear critical buckling load as they are very sensitive to imperfections.  

 

Figure 6.5. Characteristic cases of postbuckling load bearing behaviour plotted against the buckling deformation, Kollar and 

Dulacska 1984 

 

Figure 6.5.d represents structures which have asymmetrical buckling behaviour with respect to the direction 

of the initial imperfection. The physical explanation of this asymmetric behaviour is that the structure 

stiffens during buckling deformation in one direction, while in the other it unstiffens. An example is an 

axially compressed circular cylindrical shell, in which outward buckles increase the curvature and thus 

stiffen the shell while inward buckles unstiffen, see Figure 6.6. In practice only  the declining branch is of 

interest as it shows decreasing load behaviour similar to diagram c. However, this time, the decrease in load 

is more sudden. 

 

 
 

Figure 6.6. Asymmetric post-cri tical  behaviour (left) and different types of arch  buckling, Kollar and Dulacska 1984 
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Figure 6.5.e is a special type of buckling behaviour. The structure deforms according to the shape of a certain 

imperfection, however, before snap-through, a bifurcation occurs as the structure finds a new adjacent 

equilibrium shape. This kind of behaviour is referred to as a composite behaviour. A simple example of such 

composite behaviour is the flat arch of Figure 6.6. After the arch is brought into compression the arch may 

snap-through downwards or can buckle by bifurcation into an antisymmetric shape with in-extensional 

deformation, depending on the geometrical proportions.  

 

Finally, multimode (or compound) buckling must be mentioned, a mode in which several buckling modes 

are associated with the same critical buckling load. Within the frame of the linear theory, these buckling 

modes are orthogonal to each other. However, in the nonlinear frame, the modes interact resulting in a 

dramatic fall-back in postbuckling load carrying capacity. Hence, this kind of buckling is highly uninvited. 

Unfortunately, as will become clear in the following, the spherical shell under external pressure experiences 

this kind of behaviour. Furthermore, compound buckling may also be associated with initial imperfections 

causing further decrease in load bearing behaviour. 

 

Hence, aforementioned in the introduction of this chapter, it can be concluded that the postbuckling 

behaviour of a shell determines the sensitivity to initial imperfections. 

 

 

6.3 Elastic Column Buckling 

 

Analogous to the previous Chapter, the buckling phenomenon is discussed considering a sequence which in 

short may be named bar, plate and shell. The bar serves as starting point while the plate and shell are 

discussed in the following paragraphs.  

 

6.3.1 Ideal Linear Elastic Column 

 

The buckling phenomenon can be introduced by an example of a simple column subjected to a concentric 

compressive load. By gradually increase of the compressive load, at first, the column remains straight and 

experiences only  a small shortening. However, at a certain load, the column may also experience a lateral 

displacement, which increases significant without a corresponding change in the compression load. By then, 

the column is said to be buckled and the value of the load at which the buckling occurred is the so-called the 

critical buckling load, Popov  and Medwadowski [62]. 

 

To determine the critical buckling load of a column, an ideal elastic column under increasing axial 

compression force P is considered. The column is assumed to be simply supported (pinned) at both ends. 

Recapitulate from Chapter 5.2  the kinematic and constitutive relations for a bar in compression: 

 

ε xdu
 = 

dx
                           (5.7) 

εN = EA                   (5.6) 
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κ −
2

2

d w

dx
 =                 (5.12) 

κIM = E                      (5.10) 

 

By  assuming small deflections and negligible shear force in z-direction, the equilibrium relations of the 

deformed column can be described as: 

 





dN
 = 0

dx
 in-plane equilibrium      

And 

− = 


4 2

4 2

d w d w
EI   N   0

dx dx
 out-of-plane equilibrium             (6.3) 

 

Here, w  is the lateral displacement as seen in Figure 6.7. 

 

The sy stem of differential equations (6.3) is nonlinear as there are two unknowns which appear as a product 

in the second equation. Fortunately, equation one can be solved and the solution can be substituted into the 

second equation. For the second equation, it holds that the internal axial compression N equals minus the 

external compression force P. This is based on reasoning that at the bifurcation point the pre-buckling load 

and internal forces are in equilibrium. The second equation evolves to a general solution:  

 

+ =
4 2

4 2

d w d w
EI   P   0

dx dx
                (6.4) 

 

The equilibrium relation is valid for any value of P in case of zero lateral displacement. From a physical point 

of view, the trivial solution corresponds to the pre-buckled configuration. However, at a certain point, the 

bifurcation point, there is another equilibrium state in which w  is nontrivial. Thus, the force P must be 

determined in such a way that it allows the solution for w  to be nontrivial. 

 

 

Figure 6.7. Buckling of an ideal  elastic column, Popov and Medwadowski  1981 

 

This stability problem, described by this general equation, is mathematically an eigenvalue problem. An 

eigenvalue problem is a problem which has only trivial solution unless the existing free parameter acquires 

certain values. With those values, the homogeneous problem has a nontrivial solution. The special parameter 

values are called the eigenvalues or synonymously the characteristic values; the corresponding nonzero 
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solutions are called the eigenfunctions or characteristic functions. The eigenvalues are the values of critical 

buckling loads and the buckling modes are the eigenfunctions of the problem.  

 

As can be seen in Figure 6.7, the bending moment M can be described as the compression force times the 

lateral displacement. By using the relations (5.12) and (5.10), the general equation of (6.4) can be 

transformed to the well-known differential equation for a column with static boundary conditions: 

 

∂ =
∂

2
2 2

2

w P
 + k w  0    where   k  = 

x EI
                    (6.5) 

 

The general solution to this differential equation is: 

 

w = A sin kx  + B cos kx                      (6.6) 

 

To satisfy the boundary conditions at the bottom support of Figure 1 (x = 0) the value of B in relation (6.6) is 

equal to zero, which means that the shape of the lateral displacement over the length of the column equals a 

sinus-wave. Obviously, the lowest critical load is obtained with the least amount of sinus-waves; for the 

column in Figure 6.7 a one-sinus-wave is normative. The boundary conditions at the lower support (x = 0) 

are satisfied for any value of k. The top support (x = l) boundary conditions are fulfilled if
π= k  
l
. 

 

Hence, equation (6.5) is satisfied and the critical load is equal to: 

 

π 2

2cr

EI
P  =  

l
                 (6.7) 

 

Engineers will recognise expression (6.7) as the Euler buckling equation of a column in axial compression. 

 

The solution to equation (6.4) can be plotted in load-displacement graphs as is done in Figure 6.7. Clearly, 

the column is an example of bifurcation buckling as at the buckling point the path of equilibrium splits into 

two. Note that the magnitude of the lateral displacement remains indefinite. 

 

6.3.2 Ideal Nonlinear Elastic Column 

 

The weakness of equation (6.4) lies in the fact that it is linearly derived and, therefore, unable to predict the 

magnitude of the lateral displacement ∆ or provide in information about the slope and shape of the 

secondary path after the bifurcation point. Evidently, the solution to this problem lies in a nonlinear 

formulation of the column equations.  

 

The nonlinear formulation and solution was first obtained by Lagrange in 1867, based on the exact 

expressions of the strain and curvature, Popov  and Medwadowski [62]. The solution predicted a critical load 

equally to the one as found with the linear Euler theory. In contrast with the linear solution, the nonlinear 
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postbuckling path of the column, Figure 6.8 showed an increase in load carrying capacity, while being in a 

bent position. This is visualised in Figure 6.8. Referring back to Section 6.2.3, the column is, thus, an 

example of stable symmetrical bifurcation. However, so far as the structural problem is concerned, it must 

be mentioned that the lateral deflection may  become so large that the column is unacceptable to serve as 

proper structural element.  

 

Figure 6.8. Buckling behaviour of ideal  elastic column according to the nonlinear theory, Popov and Medwadowski  1981 

 

The observation that the nonlinear critical load is equal to the linear critical load raised the thought that the 

nonlinearity  has only  minor influence on the postbuckling behaviour in the vicinity of the bifurcation point, 

Popov  and Medwadowski [62]. This turns out to be true and the simplest nonlinear strain formulation 

including fairly large rotations leads to: 

 

ε  = +  
 

2
du 1 dw

     
dx 2 dx

                (6.8) 

 

For columns, this relation may be of little practical use as the exact solution is already offered by Lagrange. 

However, relation (6.8) will proof worthy later in the equivalent discussion of plates and shells. 

 

When equation (6.8) is implemented into the equilibrium relation, this leads to a factor between the linear 

critical buckling load and a nonlinear critical buckling load equal to: 

 

λ π  = +  
 

2

2 A
  1  0.125

l
 

 

From the above relation, the increase in load carrying capacity becomes clear. The increase is, however, 

rather small. For a substantial deflection of w = 0.2· l the carrying capacity is only 3% higher, Vrouwenvelder 

[81]. 

 

6.3.3 Imperfect Elastic Column 

 

Since ideal straight columns are almost unachievable in practice, it is important to investigate the effect of an 

initial lateral displacement w0, a so-called initial geometrical imperfection, on the path of equilibrium. The 

effect is illustrated in Figure 6.9. The influence of the initial imperfection according to the linear theory as 

described in equation (6.4) is plotted in the left graph. In the graph it is seen that initial lateral 
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displacements cause a departure from the linear path of equilibrium to a nonlinear equilibrium path. As the 

initial imperfection increases the deviation of the ideal line becomes larger and larger.  

 

Figure 6.9. Linear and nonlinear buckling behaviour of ini tial  imperfect elastic column, Popov and Medwadowski  1981 

 

However, regardless the magnitude of the imperfection, the critical load as obtained by Euler serves as an 

asymptote. When the initial lateral deflection becomes so large that the linear theory is not suitable 

anymore, the nonlinear solution provides in a more accurate approximation. The nonlinear result is plotted 

in the right graph of Figure 6.9. 

 

Aforementioned in the previous paragraph, it must be emphasised that the solutions as illustrated in Figure 

6.9 are bounded by  practical considerations. The nonlinear path of equilibrium suggests the possibility of 

very large lateral displacements to a value of 0.4 times the original length of the column. For a pin-ended 

column this means that the column is almost a complete circle, which obviously is unacceptable for a 

structural element.  

 

Finally, it must be mentioned that the buckling of a column is by no means restricted to the phenomenon 

described above. Dependent of the character of the applied load, buckling also appears in other ways such as 

torsional buckling or lateral buckling.  

 

6.3.4 Imperfections (I) 

 

The previous example of an imperfect column shows that initial imperfections cause the buckling path of 

equilibrium to be nonlinear from the beginning. This nonlinearity implies large lateral displacements to 

reach up for the asymptotic linear critical load. Concerning structural elements, this may result in a lower 

allowable load than follows from the linear theory as the lateral displacement is often bounded by practical 

considerations. Hence, the magnitude of the imperfection that must be taken into account is often prescribed 

in national building codes.  

 

The column is an example of a structural element that shows stable symmetrical bifurcation of equilibrium 

according to Koiter, seen in the outer left graph of Figure 6.5.b. I.e. the influence of imperfections does not 

result in a decrease in load carrying capacity.  
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6.4 Elastic Plate Buckling 

 

6.4.1 Ideal Linear Elastic Plate 

 

The elastic theory of a thin plate is outlined in Chapter 5.3. It was found that the thin plate can be idealised 

as a two-dimensional structure which can be described by three in-plane forces, three bending moments and 

two transverse shear terms which vanish in case of zero torsional moment. Recapitulate from Chapter 5, the 

kinematic relations (replacing ux, uy and uz  by u, v and w): 

 

ε ∂
∂xx

u

x
 =      and      ε ∂

∂yy

v

y
 =                (5.14) 

γ ∂ ∂
∂ ∂xy

u v

y x
 =  +                 (5.15) 

κ ∂= −
∂

2

xx 2

w
 

x
   and    κ ∂= −

∂

2

yy 2

w

y
                (5.20) 

ρ ∂= −
∂ ∂

2

xy

w
2

x y
                   (5.21) 

 

And the constitutive relations: 
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Where 
νm 2

Et
D  = 

1 - 
 and

ν

3

b 2

Et
 D  = 

12(1 - )
. 

 

Analogous to the ideal elastic column, the equilibrium equations for a slightly deformed plate are: 

 

∂ ∂
+ = ∂ ∂ 


∂ ∂ + = ∂ ∂ 
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y x

yxxx
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 in-plane equilibrium 

 

 ∂ ∂ ∂ ∇ ∇ − + + =  ∂ ∂ ∂ ∂   
b xx xy yy2 2
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x x y y

2 2 2
2 2  out-of-plane equilibrium                    (6.9) 
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In which the biharmonic plate equation as derived by Lagrange (5.28) is rewritten, replacing the load pz  by 

the in-plane stresses that arise due to the initial displacement w  perpendicular to the plate surface. Note that 

the third equation becomes equal to the column equation (6.4) if the plate becomes a column and the terms 

in y-direction vanish. 

 

 

Figure 6.10. Rectangular edge loaded plate, Popov and Medwadowski  1981 

 

When an edge loaded plate as seen in Figure 6.10 is assumed, for small deformations the in-plane forces are 

constant throughout the plate. Assuming compression forces in only one-direction, the third relation of (6.9) 

changes to a differential equation in w of the fourth order which can be solved easily using simply (pinned) 

supported plate edges similar to those of the column. For one-directional compression, equation (6.9) 

changes to: 

 

∂∇ ∇ =
∂

xx

2
b

n w
w  

D x

2
2 2                       (6.10) 

 

For a rectangular plate of length a and width b the trail solution to this equation is: 

 

π π   
   
   

n  x m  y
w = W sin sin

a b
              (6.11) 

 

Where n and m are the number of half-waves in the x- and y-direction respectively 

 

Equation (6.11) satisfies the boundary conditions if: 
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Substituting the general solution (6.11) in equation (6.10) gives the expression: 
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π  
= + 
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The smallest value of nxx, and therefore the critical load, is found when m is taken equal to one. The plate 

buckles in such a way that there can be several half-waves in the direction of compression but only one half-

wave in the perpendicular direction. By introducing parameter k and the expression for Db equation (6.12) 

simplifies to: 

 

( )
π

ν
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−

2

xx,cr 2

Et
n   k

12 1  b

3

2
                (6.13) 

 

Where
 = + 
 

2
a nb

 k    
nb a

 and n the number of half-waves buckles in the compression direction 

 

Finally, the general expression for the buckling stress of an ideal elastic rectangular plate of length a and 

width b can be obtained; 

 

( )
πσ

ν
 =  −  

2

cr 2

E t
  k

b12 1  

2

              (6.14) 

 

This solution was first obtained by  Bryan in 1891. Therefore, there is sometimes referred to the Bryan critical 

buckling load, Popov  and Medwadowski [62]. Note that when k is equal to one and the stress is equal to the 

critical load divided by the area, equation (6.14) is similar to the Euler critical buckling load.  

 

If the number of half-waves in the compression direction is equal to one, k in equation (6.14) reaches its 

minimum for a square plate (k = 4). Similarly, if the plate buckles in two half-waves, k acquires its minimum 

when the plate length is twice the plate width. The relationship between k and the plate dimensions is 

represented in Figure 6.11. 

 
 

Figure 6.11. Buckling coefficient k for axially  compressed simply  supported plates, Popov and Medwadowski  1981 
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As an example, the half-wave buckling pattern of a plate in which the length is three times the width which is 

only simply supported along the loaded boundaries is seen in Figure 6.12. 

 

 
 

Figure 6.12. Buckling shape of a simply  supported plate panel, Popov and Medwadowski  1981 

 

The plate as seen in Figure 6.12  can also buckle in several other shapes. In fact plates exhibit many  buckling 

modes, similar to shells as will be seen later. However, unlike shells, the corresponding critical loads are far 

apart, so that compound buckling (see Section 6.2.4) will not occur. 

 

Finally, it must be said that, in general, the critical buckling load is very sensitive to the way  in which the 

plate is supported. 

 

6.4.2 Ideal Nonlinear Elastic Plate 

 

As with the column, the linear theory  is insufficient to predict the slope and shape of the postbuckling path. 

To find the postbuckling behaviour in the immediate vicinity of the bifurcation point, again, the simplest 

nonlinear formulation is assumed to be sufficient. I.e. considering the squares of the greatest displacement 

component w, perpendicular to the surface, is good enough to describe the behaviour of the buckled shape 

up to displacements several times the thickness of the plate. Equivalent to equation (6.8), the strains 

become: 
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y x x y
              (6.15) 

 

Hence, the effect of transverse deflections on in-plane strains is approximated.  

 

From these expressions and the linear elastic constitutive relations found earlier, the resulting gov erning 

sy stem of differential equations can be derived. For reasons of simplicity, the stress function of Airy Φ is 

introduced defined by: 
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With simple equating the system of differential equation describing equilibrium (6.9) changes to: 

 

  ∂ ∂ ∂  ∇ ∇ Φ − − =   ∂ ∂ ∂ ∂    

22 2 2
2 2

2 2

w w w
   E h     0

x y x y
 in-plane equilibrium 

 

 ∂ Φ ∂ ∂ Φ ∂ ∂ Φ ∂ ∇ ∇ − + + =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
b 2 2 2 2

w w w
D w     2     0

y x x y x y x y

2 2 2 2 2 2
2 2  out-of-plane equilibrium                  (6.17) 

 

The nonlinear theory as described above was first proposed by Von Karman in 1910. It is by no means simple 

to find a solution which satisfies the equilibrium. Therefore, the solution is only examined with respect to the 

distribution of in-plane forces and the corresponding path of equilibrium, as described in the paper of Popov 

and Medwadowski [62].  

 

The nonlinear postbuckling stress distribution of a simply supported buckled plate is illustrated in Figure 

6.13. Obviously, the difference with the linear stress distribution is the fact that the unloaded y-directional 

sides are not free of stress anymore. The buckling pattern develops lateral compressive stresses at both of the 

loaded edges and pulling stresses in the midheight part. Furthermore, the buckled plate has lower vertical 

stresses in the middle of the plate, which might be expected by engineers intuitively. The corresponding path 

of equilibrium that belongs to the nonlinear stress distribution is shown in the Figure 6.14.a. 

 

 
 

Figure 6.13. Postbuckling in-plane stresses in  a pinned plate with  uniform end shortening, Popov and Medwadowski  1981 

 

In Figure 6.14.a point A is the bifurcation point as derived by the linear theory  in the previous paragraph. It 

can be seen that after the bifurcation point the load carrying capacity  continuous to increase along the stable 

path of equilibrium.  
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Figure 6.14. Postbuckling behaviour of perfect and imperfect elastic plates, Popov and Medwadowski  1981 

 

6.4.3 Imperfect Elastic Plate 

 

Similar to the column buckling, it seldom occurs that an ideal straight plate is formed. Therefore, the 

influence of initial geometrical imperfections to the buckling behaviour is investigated. They are plotted in 

Figure 6.14. It is seen that for each initial imperfection, a separate path of equilibrium is found similar to the 

column example. With increasing imperfection, the deviation from the linear path and ideal nonlinear path 

also increases. The plate is, like the column, an example of stable symmetrical bifurcation of equilibrium. In 

general, the buckling behaviour of unrestrained (only supported along the loaded edges) plates, tends toward 

columns. Restrained plates however show significant increase in load carrying capacity after the bifurcation 

point, which in turn means that the factor of safety can be lower. The same holds for biaxial loaded plates 

with one load tension and the perpendicular load compression. Logically, the tension load stiffens the plate. 

 

6.4.4 Imperfections (II) 

 

As the plate shows stable symmetrical bifurcation of equilibrium, the imperfections show no decrease in 

critical load after a certain amount of deflection. Hereby  it is important to mention that the horizontal scale 

of Figure 6.14.b is smaller by a factor of approximately ten than the scale of Figure 6.9. In other words, the 

influence of initial imperfections on the plate buckling behaviour is confined to the vicinity of the bifurcation 

point.  Plates are a good example of structures insensitive to imperfections as the postbuckling load intensity 

increases. Also note the symmetrical behaviour as the direction of the imperfection makes no difference. 

 

 

6.5 Elastic Shell Buckling 

 

Shell buckling shows some major differences with the cases described before. As it is probably accurate to 

say that the origin of the current understanding of the problem lies in the widespread studies towards as well 

spheres as circular cylindrical shells, in this section two basic cases are discussed: an axially compressed 

circular cylindrical shell and a spherical shell under external pressure. In this way the main characteristics of 

shell buckling behaviour will come out.  
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The text below is based on Popov  and Medwadowski [62], Kollar and Dulacska [54] and Hoefakker and 

Blaauwendraad [45]. 

 

6.5.1 General Buckling Equation 

 

In Chapter 5.4 the linear theory of shells with arbitrary curvature is discussed. It was illustrated the 

structural behaviour of shells is described by  three in-plane forces, three bending moments and two 

transverse shear terms that, analogous to the plate example, vanish in case of zero torsional moment. 

Recapitulate from Chapter 5.4 the kinematic, constitutive and equilibrium relations (replacing ux, uy and uz 

by  u, v and w): 

 

Kinematic relations: 

 

∂= +
∂xx x

u
ε    k w

x
     and      
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Constitutive relations: 
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Where 
νm 2

Et
D  = 

1 - 
 and

ν

3

b 2

Et
 D  = 

12(1 - )
. 

 

The equilibrium relations derived in Chapter 5.4 are: 
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From these equations the differential equation for a lateral displacement w  perpendicular to the shell surface 

can be derived. Therefore, the stress functions of Airy Φ (with additional load terms) are introduced, 

replacing the membrane stress resultants: 

 

∂ Φ
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∂ Φ
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                  (6.18) 

∂ Φ −
∂ ∂

2

xy = n
x y

 

 

The Airy stress function satisfies the in-plane equilibrium (first two equilibrium relations) and the out-of-

plane equilibrium can be described with: 

 

 ∂ ∂∂∂ Φ ∂ Φ ∂ Φ− − − − −  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
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             (6.19) 

 

By  substituting the kinematic relations for a shell in bending in the constitutive relations and subsequently 

in the out-of-plane equilibrium relation (6.19) the relation changes into: 
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The notation is simplified by introducing the shell differential operator Γ (or Pucher operator) and the 

Laplace operator ∇2
 defined as: 
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The out-of-plane equilibrium equation is then: 

 

−ΓΦ ∇ ∇ − −∫ ∫
2 2

b z x x y y + D w = p  k p dx  k p dy                  (6.22) 
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Note that the latter equation shows similarity with the biharmonic plate equation (5.28), however extended 

with a term covering the membrane stress field, the reason why shells have such a preferable stress 

distribution in compare to plates. 

 

To solv e equation (6.22) for the unknown w  another differential equation for the displacement w  is derived 

from the kinematic relations of a shell in bending. Therefore, first, the in-plane displacements u and v are 

eliminated by differentiate the normal strains and shear strain of the middle surface.  

 

Differentiated normal strain equilibrium: 
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Differentiated shear strain equilibrium: 
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The difference of the two equations results in the compatibility requirement for thin shells. The compatibility 

requirement thus relates the change of curvature to the deformation of the middle surface by: 
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xy yyxx
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By introducing the constitutive relations into the latter equation and replacing the membrane stress 

resultants by the stress function of Airy, the differential equation reads: 

 

ν ν ν
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Which can be simplified to the equation for the in-plane equilibrium of a shell: 

 

ν ν ν
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                  (6.27) 

 

If the shell differential operator has constant coefficients, the relation between the shell differential operator 

and the Laplace operator becomes: 

 

∇ Γ Γ∇2 2(  ) = (  )                 (6.28) 

 

The differential equation for a lateral displacement w  is achieved by multiplying equation (6.22) by ∇ ∇2 2
 

and equation (6.27) by Γ and subsequently eliminating the stress function of Airy: 
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The latter equation is an eight order differential equation for one displacement. The equation is sometimes 

referred to as the Sanders-Koiter equation and is of general validity, Hoogenboom [49]. 

 

For the case in which only the load component perpendicular to the shell surface is present, equation (6.29) 

simplifies to: 

 

ν∇ ∇ ∇ ∇ − Γ ∇ ∇2 2 2 2 2 2 2
b m zD w + D (1  ) w = p2             (6.30) 

 

As buckling instability is caused by eccentricity of compressive forces, the general buckling equation for the 

linear critical buckling load of a shell is derived by introducing an incremental radial load zp  whereas the 

pre-buckling load and the internal forces (being in equilibrium) are omitted. The increment radial load is the 

product of the eccentric compressive forces nxx, nyy, and nxy and the change of curvature due to the buckling 

deformation w  perpendicular to the shell surface. Indeed, this was previously done without mentioning in 

the bar and plate examples. The general buckling equation becomes: 

 

ν∇ ∇ ∇ ∇ − Γ ∇ ∇2 2 2 2 2 2 2
b m zD w + D (1  ) w = p2             (6.31) 

 

Where 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

2 2 2

z xx xy yy2 2

w w w
p  = n  + n + n

x x y y
           

 

Similar to the bar and plate examples, the attained equation (6.31) actually represents an eigenvalue 

problem: the stresses nxx, nyy and nxy must be determined in such a way that they allow the solution for w  to 

be nontrivial. 

 

Note that the general buckling equation is only valid if the buckle takes place in the shell surface, as is 

assumed. In other cases the stability of the combined shell-edge member sy stem must be considered.  

 

6.5.2 Axially Compressed Circular Cylindrical Shells 

 

Perfect Linear Shell 

 

The general buckling equation can be transformed to an expression for circular cylindrical shells in axial 

compression. Then, the smallest characteristic value represents the critical buckling load for an axially 

compressed cylindrical shell. Previously, the critical buckling load of a plate was found using the following 

general solution: 
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π π   
   
   

n  x m  y
w = W sin sin

a b
              (6.11) 

 

Here, n and m represented the number of half-waves and a and b the plate dimensions. In case of shells, 

however, the type of buckling expected is different: according to experiments local buckling occurs rather 

than global buckling. For developing the critical buckling load, the fact that one buckle extends ov er a small 

area only, as observed in the experiments, in which the shell can be regarded as shallow, is used. This means 

that the dimension terms a and b for shells represent the area of a single buckle. When assuming a buckled 

area of πa, πb and initial deformation W, which logically has a one half-wave in each direction, equation 

(6.11) changes to: 
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Subsequently the shell differential operator Γ and the Laplace operator ∇2
 change to: 
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When the coordinate system is placed in the direction of the principal stresses, the shear terms vanish: 
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Equation (6.31) furnishes the general expression for the calculation of the linear critical buckling load: 

 

( )ν
      −             

yy2 xx
b m2 2 2 2 2 2 2 2

y x
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              (6.35) 

 

Note that equation (6.35) for the linear critical buckling load is of general validity  and, thus, can be used for 

sev eral structural elements. For example, by  putting both radii and the variable b to infinity, the well-known 

expression of the Euler buckling load for a bar in compression is reached if the buckle dimension is chosen 

equal to the length of the beam divided by π, which obviously makes sense. Furthermore, the equation for 

plate buckling can be determined by putting both radii to infinity and then finding the minimum value for 

the first buckling load. 

 

To find the buckling load of the cylindrical shell due to axial compression, the stress nyy and the terms 

containing Rx vanish. By that, the load increment is given by the prebuckling internal force nxx multiplied by 

the change in curvature during buckling which is equal to 1/a2 as was prov en in equation (6.33). 

Subsequently, relation (6.35) changes to: 
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This can simply be rewritten to: 
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It can be shown that the expression 
 
 
 

1
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K
 has a minimum of 2 and because of the fact that buckling 

occurs at the lowest possible value the equation changes into: 
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Simplified: 

( )ν
=

−

2
lin

cr,xx 2

y

Et
n  
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              (6.40) 

 

The latter equation is the linear critical buckling load which is similar to the one that Donnell, Mushtari and 

Vlasov  found for the critical load that belongs to their simple shell theory: the so-called DMV theory. 

Remarkable: the buckled shape does not take part in the buckling equation (6.40). This means that, despite 

the fact that it is known the buckle is local; the shape of the buckling mode is not defined. As indicated by 

Popov  and Medwadowski [62], subsequent investigations show that the equation holds for as well 

axisymmetric as asymmetric buckling modes. 

 

 
 

Figure 6.15. A  ring and square buckling pattern and a Y oshimura pattern of an axially  compressed cylindrical  shell, Bažant and 

Cedolin  1991 
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As denoted by  Farshad [34], from experiments follows that the buckled shape that belongs to equation 

(6.40) is either a local ring buckling mode or a local square (chess-board) buckling mode, illustrated by the 

two left pictures in Figure 6.15 (the right Yoshimura pattern is discussed later). Whether the cylindrical shell 

buckles in the ring mode or square mode depends on the shell proportions.  

 

Despite the fact that equation (6.40) is derived from the general buckling equation, there are some 

restrictions to its usage. First shown by Batdorf (1947), the assumed shallowness of the shell surface cause 

the expression to be valid only  for cylindrical shells larger than L > 1.72 Rt (this is actually  quite obvious as 

it is the length of the longitudinal buckle). Shorter shells need a modification due to the influence of edge 

effects (membrane disturbance by bending moments). They  buckle as wide flat plates. Furthermore, when 

the length becomes v ery large, the total shell may experience global buckling, like a column with circular 

tube-like cross-Section, instead of local buckling as assumed in the above derivation, Farshad [34]. Clearly, 

global buckling behaviour is not predicted correctly as equation (6.40) is derived for small deformations. 

Buckling equations based on the non-shallow shell theory of Flügge (1932) do predict column-like buckling 

correct. Kollar and Dulacska [54], denote that the three buckling phenomena as mentioned above can be 

found in the diagram of Flügge (1962), seen in Figure 6.16.  

 

 

Figure 6.16. Exact diagram for the axial  linear critical  stress of the cylinder for short shells (a) and long shells (b), Kollar and 

Dulacska 1984 

 

Herein, the geometric parameters ω1 and ω2 are: 
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In the left diagram of Figure 6.16 the ascending part represents plate-like buckling while the descending 

branch of the right Figure is column-like buckling. The more or less horizontal branch is the actual shell 

buckling with local buckling pattern described in equation (6.40), Kollar and Dulacska [54]. 
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Unfortunately, test results of axially compressed circular cylindrical shells yielded only about 15 to 60% of 

the linear critical stress derived before, seen in Figure 6.17. Note that the fall-back in load bearing capacity 

increases with increasing R/t ratio, a phenomenon prescribed to the decreasing bending stiffness of the 

relatively thinner shells as they are more vulnerable to imperfections during construction. Furthermore, one 

may notice the Figure represents R/t ratios much larger than possible for concrete shell structures (which 

are currently limited to R/t ratios of about 1000).  

 
 

Figure 6.17. Experimental  results on axially  compressed cylindrical  shells, Kollar and Dulacska 1984 

 

The explanation of the great discrepancy between the theoretical and experimental results led to extensive 

studies to the effects of boundary conditions and prebuckling rotations and the effects of nonlinearity and 

initial imperfections, Kollar and Dulacska [54]. Hoff and Soong (1965) solved the buckling equations for 

axially compressed cylinders for several boundary conditions. Their results, later confirmed by Thielemann 

and Esslinger (1964), showed that the boundary conditions indeed may lead to lower critical stresses. For 

example, for a cylinder with the edges free to move circumferentially, the critical load is half the value of 

equation (6.38) and for simply supported edges (not constrained in circumferential direction) the value is 

ev en lower. Furthermore, for shells, as a rule, pre-buckling rotations will occur due to restraint supports and 

are relative big. The inclusion of the prebuckling deformations, caused by radial expansion (nonzero 

Poisson’s ratio) which cannot be followed by the supports, is actually an inclusion of initial deformations. 

This so-called consistent theory (it applies similar boundary conditions to both the buckled and unbuckled 

shell) also yielded a value 8 to 15% lower than equation (6.38), Kollar and Dulacska [54].   

 

However, the most important step towards the experimental obtained buckling values is the introduction of 

large deformations (the nonlinear theory discussed below) and initial geometrical imperfections (discussed 

thereafter). 

 

Perfect Nonlinear Shell 

 

As the linear solution gives no information about the postbuckling behaviour, a nonlinear solution is 

required. Analogous to the column and plate a simple approximation is done by adding the first nonlinear 

terms. Equation (5.43) changes to: 

 



  Chapter 6.   Structural Failure 

 144

∂ ∂ = +  ∂ ∂ 
xx

u 1 w
ε    

x 2 x

2

     and      
 ∂ ∂= + +  ∂ ∂ 

yy y

v 1 w
ε    k w  

y 2 y

2

 

γ  ∂ ∂ ∂ ∂= + +  ∂ ∂ ∂ ∂ 
xy

u v w w
      

y x x y
                (6.43) 

 

Note the fact that the curvature is left out of the strain in x-direction as the cylinder only has curvature in y-

direction. The nonlinear formulation of (6.43) was first set-up by Donnell (1934). 

 

As the curvature terms and constitutive law remains, the in-plane and out-of-plane equilibrium equations, 

respectively (6.29) and (6.24), transform to: 
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Solving the latter sy stem of differential equations truly is a formidable task. A suitable method to solv e the 

equations is the energy method. By writing down the total potential energy of the system and subsequently 

minimise it, it can replace the equilibrium relation. The more terms of buckling deformation w  taken into 

account, the more exact the obtained solution, Popov  and Medwadowski [62]. Von Karman and Tsien (1941) 

were the first to obtain a confident solution, taken into account two coefficients. The results of Von Karman 

and Tsien are shown in Figure 6.18.a. Von Karman and Tsien found that, contrary to plates, there are several 

buckling modes associated with the same critical load. Therefore, the shell experiences the phenomenon of 

multimode or compound buckling. Within the linear range, the buckling modes are orthogonal to each other, 

but in the case of nonlinear post-buckling deformations, they interact resulting in a significant decrease in 

post-buckling load-bearing capacity. 

 

     

Figure 6.18.a. Postbuckling path  of equilibrium for an Ideal  Axially  Compressed Cylinder, Popov and Medwadowski  1981 and b. 

Increasingly  accurate postbuckling curves for axially  compressed cylinders, Seide 1981 
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Later, the solution of Von Karman and Tsien was improved by mathematicians such as Kempner (1954) and 

Almroth (1963) taken into account more and more free parameters, Figure 6.18.b. However, it did not 

change the shape of the postbuckling branch, its lowest point further dropped. The buckling pattern that 

belongs to the lowest point is the so-called Yoshimura pattern, shown previously in Figure 6.15.c. The 

Yoshimura pattern is the limit buckling pattern and clearly shows the tendency of axially compressed shells 

to ‘snapping’. The Yoshimura pattern is an in-extensional mapping of the cylindrical surface. However, for 

practical geometrical reasons, the shell first has to deform extensional. This explains the ‘snapping’ 

phenomenon: the Yoshimura pattern represents a smaller resistance than the preceding stage leading to it, 

Kollar and Dulacska [54]. The diamond shape of the Yoshimura pattern may be described as a combination 

of the axisymmetric and reticulated (chess-board) shape and yields the same linear critical buckling load. 

 

Remarkable, Hoff, Madsen and Mayers (1965) found that, when increasing the number of terms considered, 

the lowest point in the end tends to zero, see Figure 6.18.b. The explanation for this can be found in the fact 

that several simplifications in the formulation lead to demands which are practically nonsense. An example 

is the fact that the method also requires the minimisation of the potential energy with respect to the number 

of waves in circumferential direction, resulting in less than two waves, which is obviously impossible for 

geometric reasons, Kollar and Dulacska [54]. Eventually, these observations leaded to the energy criterion as 

proposed by Tsien (1941) to be put aside, in fav our of the Koiter initial postbuckling theory. 

 

Imperfect Shell 

 

The solution of the nonlinear buckling equations for axially  compressed cylindrical shells by Von Karman 

and Tsien (1941), served as basis for further research to the discrepancies between the critical buckling loads 

as obtained by  experimental tests and the theoretical ones. The answer was found in the extreme sensitivity 

of buckling behaviour to geometrical imperfections. As described in the paper of Popov  and Medwadowski 

[62], Donnell and Wan (1950) investigated the influence of geometrical imperfections by assuming a shape 

similar to the deflected surface with an increasing unevenness factor U, taking into account five free 

parameters. Although this buckling configuration assumption is theoretically wrong (the buckle varies in 

during the buckling process) it was assumed to be the worst one, Popov  and Medwadowski [62]. The 

influence of the non-dimensional factor UR/h, which is the unevenness factor times the radius divided by 

the shell thickness, is shown in Figure 6.19.  

 

Figure 6.19. The effect of imperfections according to Donnell  and Wan, Popov and Medwadowski  1981 
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In Figure 6.19 the pre-buckling path and the postbuckling path of equilibrium as determined by Von Karman 

and Tsien are seen. Furthermore, the results as obtained by  Donnell and Wan show the effect of initial 

geometrical imperfections. It can be seen that the imperfections drastically decrease the load carrying 

capacity introducing limitation of equilibrium buckling. Even small imperfections already have a significant 

influence on the critical buckling load, up to less than 50% of the ideal shell. Moreov er, imperfections cause 

the stability problem to be nonlinear from the beginning as the primary  path smoothly approaches the 

secondary path of the perfect shell. The investigations of Donnell and Wan also introduce the phenomenon 

of snap-through. In Figure 6.19 it is seen that for the case of UR/h = 0.05, the shell experiences a snap-

through, a sudden jump from the prebuckled shape to a non-adjacent equilibrium configuration (not seen in 

the figure). Clearly, whether the structure experiences snap-through or a smooth transition to the secondary 

path depends on geometrical parameters, such as the size of the imperfection. Unfortunately, it cannot be 

determined in advance which structural behaviour will appear.  

 

Due the complexity of the approach of Donnell and Wan, only solutions of an approximate nature were 

obtained. The initial postbuckling theory of Koiter (1945) provided in a simpler and faster approach and, 

with this method, Budiansky (1969), Hutchinson (1968) and others performed many studies on the critical 

load degradation due to imperfections for a variety of shell structures. As denoted by Kollar and Dulacska 

[54], using the general theory of Koiter (1945) makes possible a qualitative investigation to the influence of 

sev eral imperfections (axisymmetric, asymmetric, reticulated or combined) and buckling modes on the 

critical load. Koiter selects the linear modes which in the nonlinear frame interact and thereby yield the 

minimum value of the critical load. Kollar and Dulacska [54] argue that the investigations of Koiter show 

that, as far as shells are considered, it is not necessarily true that the imperfections shaped similar to the 

buckling modes prove to be the most onerous ones. They referred to Figure 6.5.e where the shell begins to 

deform according to an initial imperfection but bifurcates before the limit point. According to Kollar and 

Dulacska [54] the latter approach yields that axisymmetric imperfections provide in the lowest critical load 

as the structure jumps over into another buckling mode similar to the diagram presented in Figure 6.5.e. It 

must be noted, however, that others find the reasoning of the hypothesis of Kollar and Dulacska far-fetched 

and doubt whether this is true. They presume the imperfection shaped similar to the buckling mode to be the 

most onerous.  

 

Figure 6.20. Approximate dependence of the buckling load of an axially  compressed cylinder to ini tial  imperfections (left) and the 

path  of equilibrium of an imperfect and ideal  cylindrical  shell , Popov and Medwadowski  1981 

 

The analytical results described above show great similarity with the experimental obtained values. The fall-

back in load carrying capacity can be, in case of buckling, almost totally ascribed to the sensitivity to 



  Chapter 6.   Structural Failure 

 147

geometrical imperfections of axially compressed cylinders. The amount of sensitivity is illustrated in Figure 

6.20, which can be constructed from a graph such as illustrated in Figure 6.19. It can be seen that the largest 

fall-back in load carrying capacity occurs for small imperfections. Besides the dependence to imperfections 

Figure 6.20 also shows the path of equilibrium of an imperfect and perfect cylindrical shell.  

 

An attempt to bring into account the initial imperfections and nonlinear behaviour in a so-called knock-

down factor C which bridges the cap between the linear critical load and the experiments (Figure 6.17) can be 

found in the paper of Seide [70]. The experimentally obtained relation is a lower bound solution: 
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Valid for cylinder dimensions equal to: 
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Finally, the predominant effect of initial imperfections can be clarified by observing experimental test on 

nearly -perfect circular cylindrical shells in axial compression. The models are constructed using highly 

accurate fabrication methods (such as electroforming) and testing equipment. The results are seen in Figure 

6.21 and clearly show that the critical values approach the linear critical buckling load. With that, the circle is 

completed. 

 

Figure 6.21. Near-perfect models of axially  compressed cylindrical  shells, Kollar and Dulacska 1984 

 

A final remark on cylindrical shells may be that, besides axial compression, the circular cylindrical shell 

under circumferential compression and torsion are also extensively investigated. As illustrated by Popov  and 

Medwadowski [62] and Seide [70], these investigations show much less decrease in the load carrying 

capacity in the postbuckling range than for axially compressed cylinders. According to Kollar and Dulacska 

[54], it can be concluded that a cylinder is most sensitive to initial imperfections if subjected to axial 



  Chapter 6.   Structural Failure 

 148

compression. Less sensitive in case of circumferential compression and, in case of torsion, the influence of 

initial imperfections is very small.  

 

6.5.3 Spherical Shells under External Pressure 

 

Perfect Linear Shell 

 

The general buckling equation can also be transformed to an expression for spherical shells under external 

pressure. Similar to the cylindrical shell, the spherical dome is simply to treat mathematically due to the fact 

that the geometry can be described by a single curvature.  Again, the derivation is facilitated by assuming the 

shell shallow in the buckled region, known from the exact derivation using Legendre functions, Kollar and 

Dulacska [54], and from experiments that have demonstrated that the buckled shape for a spherical dome 

under uniform pressure is a circular area extending over only a comparatively small portion of the area of 

the shell, Billington and Harris [6]. 

 

Similar to the circular cylindrical shell a buckling pattern with a buckled area of πa, πb and initial 

deformation W is assumed, described by equation (6.32): 
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              (6.32) 

 

And, with the coordinate system parallel to the meridian and circumferential stresses (the principal stresses 

of the spherical dome), once more equation (6.35) appears: 
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Now, the geometric expressions corresponding to the sphere can be substituted into equation (6.35). For a 

sphere it holds that the curvature in both directions can be described by:   
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By neglecting the in-plane shear stress and the load component in x- and y-direction, the internal forces 

from equation (5.38) of the pre-buckling state can be described as: 
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Substituting the internal forces and the geometric expressions into equation (6.35) the differential equation 

for a spherical shell is derived: 
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By  introduction of 
 =  
 

b

2 2
m

D 1 1
K  R  + 

D a b
 the latter equation becomes: 
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Using the previously statement that 
1

K  + 
K
 has a minimum of 2, equation (6.51) changes into: 
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Filling in the terms for the bending stiffness and membrane stiffness, the latter yields the classical linear 

critical buckling load for a perfect elastic sphere under uniform radial pressure load: 
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Note that, similar to equation (6.40), the buckling pattern has disappeared, the critical load being 

independent of the buckling shape. Therefore, again, several buckling modes are associated with the same 

critical load and the shell experiences the phenomenon of multimode or compound buckling.  

 

The equation for the classical linear critical buckling load for a perfect elastic sphere under uniform radial 

pressure was derived first by Zoëlly (1915). However, Zoëlly derived the critical pressure assuming an 

axisymmetric buckling pattern (disregarding experimental results) and using exact equations (non-shallow 

equations), solving them with Legendre polynomials. Later it was proved by Van der Neut (1932) that the 

same critical pressure also yields for an asymmetric buckling pattern, Popov  and Medwadowski [62]. 

 

According to Simitses and Cole (1968), the type of uniform loading (spherical, uniform load over the 

horizontal projection or uniform load over the shell) does not appear to change the linear critical buckling 

load drastically. As contrasted with the cylindrical shell under external pressure. The reason for this may  be 

due to the fact that spherical shells always buckle in small, local, shallow waves, Kollar and Dulacska [54]. 

However, this is only valid if buckling occurs in the upper part of the shell. Furthermore, as denoted by 

Scordelis [69], Klöppel and Roos (1956) have shown that the critical pressure load for a partially loaded 

sphere is close to that for a load over the total shell surface. 

 

Unfortunately, similar to the cylindrical shell (Figure 6.17), the experimental buckling values are significant 

lower than the linear critical buckling load. Again, the most important step towards the explanation of the 
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lack of correlation between theoretical and experimental obtained results was the introduction of large 

deformations. 

 

Perfect Nonlinear Shell 

 

Von Karman and Tsien (1939) were the first to formulate a nonlinear theory, based on similar additions as 

proposed for cylindrical shells (equation (6.43)), that is, taken into account for the second powers of the first 

derivatives. Although the derivation contained some errors of principle, as denoted by Friedrichs (1941) and 

Mushtari and Surkin (1955): in Kollar and Dulacska [54], their result was convincing and it was found that in 

as well the nonlinear behaviour as the sensitivity to initial imperfections the spherical shell acts qualitatively 

identical to axially compressed cylindrical shells. Their result is shown in Figure 6.22. In Figure 6.22 the load 

ratio is plotted against the ratio of the average postbuckling displacement f ov er the linear buckling 

displacement fcrlin which is similar to the ratio of the change in postbuckling volume to the change in linear 

buckling volume.  

 

Figure 6.22. Postcritical  behaviour of the perfect spherical  shell, Kollar and Dulacska 1984 

 

Similar to the previous shell examples, the decrease in load carrying capacity indicates that the shell 

experiences multimode or compound buckling and the interacting linear buckling modes in the postbuckling 

can said to be responsible.  

 

As seen in Figure 6.22, Von Karman and Tsien determined the lowest point of the postbuckling path of 

equilibrium being equal to (zero Poisson’s ratio): 

 

 
 
 

2

cr

t
P E

R
 = 0.365                     (6.54) 

 

The latter being optimised (improving the accuracy of the calculation) by Tsien in 1942: 
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The expressions of Von Karman and Tsien and Tsien were later improved by other investigators such as 

Mushtari (1950) and Feodosjew (1954), arriving at respectively: 
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The results obtained by Thompson (1962) must be mentioned. Thompson was able to show that the shape 

and size of the buckle vary during snapping-through, as he assumed four free parameters, see Figure 6.23.  

 

 

Figure 6.23. Variation of the buckling shape during the buckling process as found by  Thompson, Kollar and Dulacska 1984 

 

According to Thompson, the lowest point of Figure 6.23 is determined by: 
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Supplementary  investigations on a similar basis show an even further decrease of the lowest nonlinear 

buckling point. Dostanowa and Raiser (1973) found: 
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And Del Pozo and Del Pozo (1979) arrived at: 

 

 
 
 

2

cr

t
P E

R
 = 0.228                   (6.59) 

 

Further research on spherical buckling was based on Koiter’s method. Using the Koiter initial postbuckling 

theory and Koiter’s special theory Hutchinson (1967) found an even steeper postbuckling branch than 

Thompson, although he did not determine the corresponding lower point. 
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Imperfect Shell 

 

Similar to axially compressed circular cylindrical shells, spherical shells are extremely sensitive to initial 

geometrical imperfections. A rapid reduction in the maximum critical load and a transition from bifurcation 

buckling to limit point buckling is observed with increasing imperfection amplitude. The phenomenon is 

sketched in Figure 6.24. 

 

Figure 6.24. Influence of increasing imperfection amplitude on the load carrying capacity, Scordelis 1981 

 

In his research on imperfect shells, Hutchinson discovered that the sphere behaves according to Figure 6.5.e, 

if initial imperfections are present. Hutchinson plotted the lower bifurcation load against the amplitude of 

the initial imperfection, as seen in Figure 6.25. 

 

Figure 6.25. Influence of the initial  imperfection ampli tude on the upper critical  load of spherical  shells, Kollar and Dulacska 1984 

 

In Figure 6.25 it can be seen that Hutchinson investigation integrated the most onerous combination of 

axisymmetric and asymmetric buckling modes caused by both axisymmetric and asymmetric initial 

imperfections, with the latter producing the lowest curve. Furthermore, Hutchinson used the special theory 

of Koiter to produce a more accurate solution for larger imperfection amplitudes, yielding the upper bound 

curve, Kollar and Dulacska [54]. 
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From the results of Hutchinson as illustrated in Figure 6.25, it can be concluded that the critical load of a 

spherical shell loaded in external pressure, in contrast to the cylindrical shell, is practically the same whether 

symmetric imperfection and buckling deformation or asymmetric imperfection and deformation are taken 

into account. Subsequent research on axisymmetric imperfections and buckling shapes by Bushnell (1967) 

and Koga and Hoff (1969), based on an exact formulation, underlines this hypothesis, Kollar and Dulacska 

[54]. The results of Koga and Hoff are also plotted in Figure 6.25, and consist of two graphs, referring to two 

types of imperfection shapes. Both shapes (a) and (b) are seen in Figure 6.26 below.  

 

 

Figure 6.26. Assumed initial  imperfections by  Koga and Hoff (1969), Kollar and Dulacska 1984 

 

As both graphs of Koga and Hoff lie close to each other, it can be concluded that, for practical purposes, the 

initial imperfections can be characterised by their amplitude only. 

 

Similar to the axially compressed cylindrical shell, extensive research has been done to the influence of 

boundary conditions and prebuckling rotations. To investigation to the effects of boundary conditions, 

different types of supports are introduced, see Figure 6.27.  

 

 

Figure 6.27. Roller supported, clamped supported, and hinged supported spherical  caps, Kollar and Dulacska 1984 

 

The roller supported spherical cap undergoes compression without bending when subjected to external 

pressure. Hence, there is referred to a ‘membrane’ support. In as well the clamped as hinged supported 

situation bending moments arise, even in the perfect shell, causing prebuckling rotations. This means that 

the shell behaves according to the imperfect equilibrium path illustrated in Figure 6.5.d. It was found that 

the bending deformation caused by the bending moments can be either of the same character as the buckling 

deformations or of opposite character, depending on a geometrical parameter. This geometrical parameter is 

a characteristic of a spherical cap, and is defined as:  
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( )λ = − 24
H
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t
              (6.60) 

 

Using the latter geometrical parameter, the change of slope of the bending and buckling deformation can be 

plotted side by side as is done in Figure 6.28. 

 

 

Figure 6.28. Change in  slope of the bending (left) and buckling deformations (right) , Kollar and Dulacska 1984 

 

Clearly, depending on the geometrical parameter, the prebuckling rotations caused by restrained 

deformation at the supports amplify  or reduce the buckling deformations. By varying the geometrical 

parameter, a graph can be found which indicates the influence of the geometrical parameter on the buckling 

load, see Figure 6.29. 

 

 

Figure 6.29. Snapping load of the perfect spherical  cap assuming axisymmetric buckling shape, Kollar and Dulacska 1984 

 

In Figure 6.29 it can be seen that the upper critical load of the clamped shell oscillates about the line of the 

upper critical load being similar to the linear critical load. This can be explained by comparing the values of λ 

in Figure 6.29 to Figure 6.28. For example, when the bending deformation counteracts the buckling 

deformation, the buckling load is greater than the linear critical load. That this phenomenon does not occur 

in reality, as demonstrated by many experiments, can be contributed to initial imperfections in the shell 

surface. Hence, Figure 6.29 is only valid for a perfect shell. When, next to the bending deformations, 

axisymmetric initial imperfections are introduced in the shell surface, Figure 6.29 changes to the graphs as 

illustrated in Figure 6.30 (with n the number of circumferential full-waves of the asymmetric mode). 
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Figure 6.30. Critical  load pertaining to the asymmetric buckling which  bifurcates from the axisymmetric deformation of the (left) 

clamped perfect spherical  cap and (right) hinged spherical  cap, Kollar and Dulacska 1984 

 

The graphs in Figure 6.30 are proposed by  Weinitschke (1965). Weinitschke, and independently Huang 

(1964), solved the performance of the spherical cap with initial imperfections and different types of supports 

according to the behaviour which corresponds to Figure 6.5.e. Assuming an initial axisymmetric initial 

imperfection, Huang and Weinitschke determined the point in Figure 6.5.e at which the axisymmetric 

deformation (described by the nonlinear theory) bifurcates into an asymmetric mode, a phenomenon 

discovered by careful observation of high-speed motion-picture recordings of the buckling process. They 

solv ed the lower bifurcation problem by the linear theory, combining a linear eigenvalue problem with a 

nonlinear axisymmetric deformation. Based on the graphs of Figure 6.30 it can be concluded that deep caps 

(λ >> 10) bifurcate before limitation of equilibrium.  

 

As reported by Kollar and Dulacska [54], a further improvement of Weinitschke and Huang is the 

incorporation of asymmetric initial imperfections as is done by Kao and Perrone (1971) and Kao (1972). They 

found that, taking into account an asymmetrical initial imperfection extending over a quarter of the shell 

(see Figure 6.31) the critical load further decreases, as shown in Figure 6.32. Furthermore, Kao and Perrone 

found that, when the asymmetric initial imperfection is extended over one-eight of the shell, this does not 

change the snapping load significantly.  

 

 

Figure 6.31. Ground plan of the assumed asymmetric initial  imperfection, Kollar and Dulacska 1984 

 

With the imperfection of Figure 6.31, Kao obtained the greatest reduction so far. However, the extremely 

onerous imperfection is rather unlikely to occur in practice. Therefore, the results of Kao are often only 

partly taken into account, for example in the IASS Recommendations, discussed later in Section 6.9.  
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Figure 6.32. Influence of the asymmetric imperfection on the snapping load of the clamped spherical  cap, Kollar and Dulacska 

1984 

 

A final remark on the influence of boundary conditions on the buckling behaviour of spherical shells may  be 

that if, contrary to what is assumed here, the boundary conditions are not stiff enough (or weaker than that 

provided by an imaginary adjacent part of the shell as being a complete sphere), the shell buckles prior to the 

critical load of a complete sphere. Shells with a ground plan sliced to a rectangle and supported by 

diaphragms belong to this group, Kollar and Dulacska [54]. Here, the investigations of Van Koten and Haas 

[41] must be mentioned as they formulated to problem on the basis of a comparison between the rigidities of 

the boundary  with the missing part of the shell. Although, according to Scordelis [69], the relations as 

proposed by  Van Koten and Haas give rather low buckling load as compared to the experimental results. 

Later, Bushnell (1967) improved the relations of Van Koten and Haas by  incorporating the extensional 

rigidity (which was neglected by Van Koten and Haas). The results of Bushnell showed more resemblance 

with the experiments and consequently showed that the edge rotational rigidity is, with respect to buckling, 

highly inferior to its extensional rigidity, effective against displacement. 

 

6.5.4 Imperfections (III) 

 

Contrary  to the previously discussed columns and plates, it is found that shells are extremely sensitive to 

initial imperfections. Only small initial imperfections may already cause the load carrying capacity of the 

shell to decrease drastically. Furthermore, in the foregoing it was found that, not only geometric 

imperfections lower the critical load, but also the restrained boundary conditions introduced uninvited 

bending moments, acting like imperfections. Most sensitive to initial imperfections is the spherical shell 

subjected to radial pressure load as it contains areas of compression in both principal directions. Hence, it is 

logic to investigate the spherical buckling behaviour more closely as done in Chapter 13, 14 and 15. For a 

further discussion on imperfections, there is referred to Chapter 6.7. 
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6.6 Inelastic Shell Buckling 

 

In the previous paragraph, the buckling description is restricted to elastic structures. However, as far as 

reinforced concrete shells are considered, material inelasticity  (plasticity) must be taken into account as the 

shell contains inelastic properties. Unfortunately, the inclusion of inelasticity gives a further reduction of the 

buckling load found for an elastic homogeneous shell. 

 

The most trivial solution is to introduce inelasticity  in the calculation by  the tangent (Engesser (1899)) or 

reduced modulus theories (Jasiński (1894) and Considère (1899)), Popov  and Medwadowski [62].The 

tangent modulus is defined as the slope of a line tangent to the stress-strain curve at a point of interest. The 

tangent modulus is alway s equal (in the elastic path) or less (in the plastic path) than the Young’s modulus. 

The reduced modulus theory is based on the observation that in a buckling mode a purely elastic strain 

reversal will occur, while in the remaining part, plastic loading will continue. The reduced modulus theory 

recognises this elastic unloading branch and it defines a reduced Young’s modulus to compensate for the 

underestimation given by the tangent modulus. Hence, the reduced modulus theory is sometimes referred to 

as the double modulus theory, Popov  and Medwadowski [62].  

 

By  simply replacing the original Young’s modulus by the tangent modulus, the critical buckling load of ideal 

inelastic columns can be found with reasonable correlation to experimental results. The reduced modulus 

theory approximately yields the same result. For imperfect columns, as proposed by  Von Karman (1910), the 

entire path of equilibrium belonging to an initial imperfection can be found by carrying out a series of 

equilibrium solutions for different bend configurations which corresponds to a given force, hereby, taking 

into account for (idealised) elasto-plastic behaviour, Popov  and Medwadowski [62].  

 

Also for plates and shells it appears that good correlation with experimental values is achieved by  assuming 

isotropic behaviour based on the tangent modulus in both directions. However, for plates and shells with 

initial imperfections the problem is vastly more complicated. Kollar and Dulacska [54] developed, on the 

basis ideal elasto-plastic behaviour, a method for determining the inelastic buckling load while assuming 

that during buckling plastic flow develops simultaneously in both directions. Their resulting graph is seen in 

Figure 6.33. Without any further introduction, the value of the abbreviations γ  is given by: 

 

γ = yield

0lin
cr

n
   < H

n
               (6.61) 

 

In which nyield  is the central compressive stress causing yield stress in an entire cross-Section and ncrlin  the 

linear elastic buckling stress resultant. The value of H0 is approximately equal to 4 in case of axially 

compressed isotropic cylinders and 2 for radially compressed spheres.  

 

The graph of Figure 6.33 shows decreasing influence of inelasticity as the buckling approaches to elastic 

buckling (γ > H0). Obviously, this makes sense. Furthermore, it can be seen that initial imperfections reduce 

the difference between the elastic and inelastic critical stress.  
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Figure 6.33. The plastic critical  loads of axially  compressed cylindrical  and of radially  compressed spherical  shells, Kollar and 

Dulacska 1984 

 

Since the finite element era, much progress in the analysis of inelastic imperfect shells has been obtained. 

The actual structural behaviour can be approached more accurately by replacing the idealised elasto-plastic 

behaviour by  more exact material models. In Chapter 15, the influence of inelastic material effects is further 

investigated using a finite element approach. 

 

 

6.7 Initial Geometrical Imperfections 

 

To investigate the effect of initial geometrical imperfections on a spherical shell, the question is what 

reasonable dimensions of imperfections are. As imperfection dimensions do not appear in the critical 

buckling load equations, this question has not been answered yet. In general, it can be said that 

imperfections in concrete shells arise due to imperfections of the formwork, due to removal of the formwork 

after concrete hardening or by external effects such as concentrated loads. The size of the imperfections 

depends on practical considerations such as the shape and proportions of the shell, the type of construction 

material, the construction technique, etc.  

 

 

 

Figure 6.34. Space distribution of imperfections, Godoy 1996 

 

According to Godoy  [38], initial imperfections can be classified by several criteria. Godoy  gives three 

possible classifications, based on (1) the relation between an imperfection and the loading process, (2) the 

space distribution of imperfections and (3) whether the source of the imperfections is found in intrinsic 

(constitutive) or geometric parameters. As far as initial geometric imperfections are considered, the second 
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category is most useful as in Section 6.5.3 it is shown by Kao and Perrone (1971) and Kao (1972) that the 

position of the imperfection does influence the decrease in load carrying capacity. Godoy suggests a 

subdivision in axisymmetric imperfections, imperfections with a repeated pattern, a localised imperfection 

and a global imperfection, see Figure 6.34. For a logic and comprehensive investigation, the influences of 

each imperfection pattern must be determined.  

 

As yet the shape, size and amplitude of the local imperfection are left to be determined. For the shape of the 

imperfection, Godoy  suggests cosine or polynomial curves. Aforementioned, as concluded by Koga and Hoff 

(1969), initial imperfections can be characterised by their amplitude only.  

 

The shape of the imperfection depends on practical considerations and, hence, cannot be given a geometric 

description in advance. Therefore, several investigators searched for a shape which produces the most 

uninvited situation. A proper choice may be to shape the imperfection according to the linear buckling 

shape, although, aforementioned in Section 6.5.3, others argue that it is not alway s an initial imperfection 

similar to the buckling shape that is most detrimental. According to Scordelis [69] many experiments 

demonstrated that the buckled shape for a spherical dome under uniform external pressure usually consists 

of a circular area over a portion of the dome snapping through. The theoretical diameter of the buckled area 

can be defined as: 

 

φ =imp   2.5 Rt                (6.62) 

 

According to Scordelis, the buckled area for other double curvature shells is found to be much similar: a 

roughly circular portion. Though, as denoted by Godoy [38], Ballesteros (1978) found an elliptical shape 

when investigating the collapse of a concrete elliptical paraboloidal shell (elpar). Nevertheless the choice for 

a circular area can be considered appropriate as in the extensive experimental tests of Vandepitte in 1967 

and 1976 all ninety spherical shells failed due to snapping of a nearly  circular disc with a diameter 

corresponding to equation (6.62), Billington and Harris [6]. 

 

The magnitude of the amplitude of the imperfection, as found in literature (Farshad [34], Popov  and 

Medwadowski [62], Scordelis [69], Seide [79]), varies from 0 to 1.0 times the shell thickness for average 

thicknesses (concrete shells) and up to 1.5 and higher for very thin thicknesses (steel, plastics). Godoy [38] 

reports that Ballesteros (1978) found the amplitude of deviation from the mid-surface between 1 and 1.5 

times the thickness, however, these values may be considered as extremely high as concrete shells normally 

are as thick as 60 to 80 mm (Chapter 3). 

 

The influence of initial geometrical imperfections is investigated in Chapter 14 and 15. Here, the 

imperfection is limited to a local imperfection, as it is most likely to occur, located at the top of the shell. The 

size is chosen equal to the theoretical buckled area of Scordelis and the imperfection amplitude ranges from 

0.0 to 1.0 times the shell thickness. 
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6.8 Knock-Down Factor Approach 

 

In the previous Chapters it is seen that there is a large discrepancy between the linear critical buckling load 

and the experimental obtained one. Although the difference can be explained, from a design standpoint, the 

basic question to be answered for a given reinforced concrete shell is what is the factor of safety against 

structural failure. As the structural engineer prefers general methods of calculation with a limited amount of 

computational work, there is searched for simple design formulae to determine the failure load. Hereby, it is 

assumed that the effects causing the fall-back in load bearing behaviour can be incorporated into the 

designing process by  applying an empirical factor, the so-called knock-down factor, to the linearly 

established buckling values. Hence, the linear buckling theory needs not to be totally discounted.  

 

Aforementioned in Chapter 1, finding the knock-down factor by making a comparison between the linear 

critical buckling load and the actual critical buckling load, is one of the main purposes of this thesis. Ideally, 

the knock-down factor handles the engineer a simple tool to determine the actual buckling load of a typical 

shell structure by multiplication of the knock-down factor with the linear critical buckling load, which in turn 

can be found by hand calculation or simple analysis. 

 

 
 

Figure 6.35. The fall-back in  load carrying capacity  due to several  negative effects, Samuelson and Eggwertz 1992 

 

In the foregoing, it is explained that the load bearing capacity  of synclastic shells decreases when taking into 

account for geometrical nonlinearity, initial imperfections and inelastic effects. Consequently, the total 

knock-down factor can be seen as a summation of the individual knock-down factors that belong to these 

effects. This is illustrated in Figure 6.35 for a simply supported shallow spherical dome. 

 

To find the actual buckling load, the influence of each of the individual effects must be determined. Referring 

back to the introduction of this chapter, these individual effects also clarify if the shell fails due to buckling 

(the geometrical nonlinearity knock-down factor is much larger than the one belonging to physical 

nonlinearity) or due to surpassing the material strength (vice versa). To determine each of the individual 

effects can hardly be done without computational software such as finite element programs. This is further 

discussed in Chapter 14 and 15. 
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6.9 Buckling Recommendations 

 

Aforementioned in Chapter 3, there are two design codes that contain recommendations for the analysis of 

buckling of concrete shells. However, the ACI Standard is known to be of little practical use as it gives almost 

no information of use to a shell designer, Popov  and Medwadowski [62]. Therefore, only the IASS 

recommendation is discussed here. The IASS recommendation includes a buckling paragraph largely based 

on Kollar and Dulacska [54] (and in particular on Chapter 9) which gives a practical application of the 

stability theory  with respect to shells fabricated from reinforced concrete, timber, synthetics and metal. The 

method as proposed by Kollar and Dulacska is a practical semi-empirical (analytical formulas adapted to test 

results), but rational, approach. The method tries to ov ercome the differences in linear critical buckling load 

and the actual buckling load by considering influences of initial imperfections and nonlinear geometrical and 

physical behaviour. The procedure followed in the IASS recommendations is discussed below in five steps 

(Paragraph 6.9.1  to 6.9.5). In paragraph 6.9.6 the total reduction factor and safety  factor are derived. In the 

final paragraph some conclusions are drawn.  

 

6.9.1 Linear Buckling Load 

 

The first step is to determine the linear critical buckling load for an ideal shell. For simple shell geometries 

with external normal pressure, the formulas derived by Zoëlly, van der Neut and Flügge may be applied to 

calculate the linear buckling load. This is already extensively described in the previous chapter. The linear 

buckling load of more advanced shell geometries may  be determined using computational software, for 

example DIANA. An example and some critical comments are given in Chapter 13. 

 

6.9.2 Postbuckling Category 

 

As explained in the previous chapter, different types of shells experience different types of post-buckling 

behaviour. For shells which experience increasing capacity in the post-buckling range, such as some 

anticlastic shells (hypars), no reduction is necessary and simply applying the safety factor ov er the linear 

critical buckling load is sufficient for a safe shell structure. For shells with decreasing capacity in the post-

buckling regime, however, the load bearing capacity decreases significantly. An important step is therefore to 

ascertain in which category the shell problem falls with respect to its post-buckling behaviour.  

 

Depending on the shell geometry this may be more or less apparent. In case of uncertainty, the 

categorisation can be done on the basis of established analytical or experimental results which conclusively 

show whether the shell experiences a reduction in the buckling load or not. If the shell problem does not fall 

in the category of increasing load bearing capacity  in the post-buckling range, the initial linear buckling load 

is presumed to decrease after the buckling point. To determine the allowable load the IASS 

recommendations lower the linear critical buckling load with several reduction parameters. The reduction 

parameters are related to effects which have significant influence on the buckling behaviour. 

Aforementioned in this Chapter, there is referred to large deflections, geometrical imperfections, and 

material parameters as creep, cracking and inelastic behaviour. They will be dealt with in the following 

paragraphs. 



  Chapter 6.   Structural Failure 

 162

6.9.3 Modification for Large Deflections and Geometric Imperfections 

 

The first modification is for large deflections. The reduction factor can be obtained from the graph of Figure 

6.36 after computing the linear deflection w0’ and the deflection to thickness ratio w0’/h. The curves shown 

are calculated analytically using a large deformation theory. For other geometries similar graphs can be 

found in literature. In case that there is no solution available, the lowest possible value of Figure 6.36 must 

be used.  

 

 
 

Figure 6.36. Reduction in  critical  load due to postbuckling behaviour and initial  imperfections, Popov and Medwadowski  1981 

 

A second modification concerns geometric imperfections. As explained in the previous Chapter, geometric 

imperfections cause a significant decrease in load bearing capacity  even before the linear buckling load is 

reached. The IASS recommendations suggest to calculate or assume an additional deflection w0”  as shape 

imperfection. The calculation of the additional deflection is based on Chapter 9.2.2  of Kollar and Dulacska 

[54]. The proposed equations are listed below. 

 

The additional deflection w0” is in Kollar and Dulacska [54] denoted as the accidental imperfection due to 

inaccuracies of erection. By analytical equating the following expression is found: 

 

=0 ,accid

R
w  

3500
               (6.63) 

 

The latter expression showed acceptable results in compare to measurements on carefully fabricated 

cylinders. However, a shortcoming is that it disregards the fact that the imperfection also depends on the 

thickness as denoted in Chapter 3  and that it cannot become infinitely large. Furthermore, when the erection 

method results in greater imperfections such as reinforced concrete shells erected with a sliding formwork, it 

may be reasonable to assume larger imperfections. Therefore, by evaluating measurements on cooling tower 

shells, Kollar and Dulacska propose the empirical formula: 
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= +
+

,accid

R a
w  0.05h  

R/h 10002000   
R/h

0

1000

            (6.64) 

 

Where a stands for the influence of the accuracy of the erection method. For reinforced concrete shells with 

conventional (rigid) formwork the value of a can be set equal to 1, while for sliding formwork the value can 

be taken equal to 6. 

 

Independent of the chosen equation, the total deflection according to the IASS recommendations becomes: 

 

= +0 0 0
' "w  w   w                (6.65) 

 

Again, the (total) deflection to thickness ratio must be determined in order to obtain the reduction factor 

from the graph of Figure 6.36 as previously explained in Section 6.9.3. 

 

Kollar and Dulacska [54] state that it is rather improbable that the maximum values of both imperfections 

coincide. Therefore, by the rules of probability theory, they take the largest value of: 

 

 +≥ 
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"
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w
              (6.66) 

 

However, this hypothesis is not borrowed by the IASS recommendations. 

 

6.9.4 Modification for Material Properties 

 

The final step is to include material modification factors for creep, reinforcement and cracking and the effect 

of inelastic behaviour of reinforced concrete.  

 

Effect of Creep 

 

To allow for creep influences a reduced value of the modulus of elasticity is introduced according to the 

equation: 

 

= −
+

c
cr u c

u

E
E =          where     C   4  2log f

1  C
               (6.67) 

 

In which Ec is the modulus of elasticity of concrete and fc is the strength of concrete in MPa. Furthermore Cu 

represents the ultimate creep coefficient for the concrete.  

 

The previously found critical load pu
cr must be reduced in the same proportion as the reduction of the value 

of Ec. 
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Effect of Reinforcement and Cracking 

 

In accordance with an empirical approach as proposed by  Kollar and Dulacska [54], the effect of 

reinforcement and concrete cracking on the modulus of elasticity  is related to the product of the modular 

ratio and the steel ratio: 

 

⋅s s

cr c

E A
  

E A
              (6.68) 

The quantity of equation (6.78) is used to determine the value of coefficient ψ  in Figure 6.37.a. 

 

 
 

Figure 6.37.(a) Modification of critical  load due to reinforcement and cracking and (b) Reduction of buckling capacity , Popov and 

Medwadowski  1981 

 

Consequently, the coefficient ψ  and the deflection to thickness ratio w0/h are used in Figure 6.37.b. to 

determine the ratio between the upper critical buckling load and the value of pu
cr,reinf. 

 

Effect of Inelasticity of Concrete 

 

Due to the nonlinear behaviour of concrete the critical buckling load further reduces. The critical load due to 

inelasticity of concrete can be determined according to the semi-quadratic interaction formula: 

 

   
+ =      

   

2
plast plast
cr cr

u
plast cr ,re inf

p p
   1

p p
              (6.69) 

 

Where pp la st is the load bearing capacity of a shell as governed by the ultimate strength of the reinforced 

concrete shell cross-Section, independent of any buckling consideration.  

 

The IASS recommendations suggest reducing the thickness of shells thinner than 80 mm with 10 mm to 

allow for possible inaccuracies of construction resulting in a thinner shell than designed. This is based on 
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extensive measurements on a series of erected reinforced concrete slabs, conducted by the Institute of 

Quality Control of the Building Industry in Budapest. 

 

6.9.5 Total Reduction Factor and Safety Factor 

 

Summarising the steps taken in the paragraphs 6.9.3  and 6.9.4 a reduced buckling load can be found in 

terms of the linear critical buckling load with the following equation: 

 

α α α α α= =reduced lin lin
cr 1 2 3 4 cr crp      p    p             (6.70) 

 

In which α1 to α4  are the reduction factors from paragraph 6.9.3 to 6.9.5 and α is the single product of the 

individual reduction factors. 

 

α1 =  Large deformation and imperfection factor 

α2 =  Creep factor 

α3 =  Crack factor 

α4  =  Material nonlinearity factor  

 

Finally, the allowable load on the shell is determined by dividing the reduced critical load through a factor of 

safety γ: 

 

γ
=

red
cr

allow

p
p                 (6.71) 

 

The IASS recommends value of 1.75 for shells which experience an increase in load bearing capacity of the 

point of linear buckling and a value of 3.5 for shells with decreasing capacities in the post-buckling range. 

 

6.9.6 Conclusion IASS Recommendations 

 

Basically, the IASS recommendations provide in a reduced factor approach which shows similarities with the 

searched knock-down factor which determines the fallback in load bearing capacity between the linear 

critical buckling load and the actual buckling load. Hence, the thesis research can be extended with the 

question whether the reducing factor as proposed by the IASS fits with the observations made in this thesis 

or not. Furthermore, it must be mentioned that the design approach as proposed in the recommendations 

assumes that the boundaries of the shell are well supported so that the buckling instability occurs within the 

shell surface. In a different situation additional analytical and/or experimental studies are necessary. 
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6.10 Conclusions 

 

The aforementioned survey on the buckling of circular cylindrical shells and spherical shells have revealed 

that close agreement between theoretical and experimental results may exist when the effect of 

imperfections, geometrical and physical nonlinearity and the boundary conditions are taken into 

consideration. The strengths are in particular sensitive to the amplitude of the initial imperfections in the 

shell surface. To bring into account for these negative effects on the critical load, a design procedure is 

proposed using a knock-down factor which represents the discrepancy  between the idealised linear elastic 

theory and the actual nonlinear inelastic reality. However, it is difficult to give a general expression for the 

knock-down factor since it is very dependent on the shell geometry and boundary conditions, the shape of 

imperfection, the shell theory used, and the approximations made. In Chapter 15 it is tried to give a complete 

description of the knock-down factor for spherical shells. 

 

The buckling discussion is by far not complete. For a more comprehensive review on shell buckling one 

could read the following books and papers. A general review of the buckling phenomenon is found in the 

books of Bažant and Cedolin (1991), Brush and Almroth (1975), Timoshenko and Gere (1961) [72], Kollar 

and Dulacska (1984) [54] and Hutchinson and Koiter (1970). Additionally, for thin concrete shells, one may 

read the review of existing knowledge paper of Bradshaw (1963) and the books of Ramaswamy (1968), 

Budiansky and Hutchinson (1979) and Popov  and Medwadowski (1981) [62] and the paper of Haas and Van 

Koten (1970) [41]. 
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7 Zeiss Planetarium 

 

 

The lack of theoretical knowledge on postbuckling behaviour and decreasing load carrying capacity caused 

by  imperfection sensitivity and concrete cracking, as discussed in the previous chapter, is one of the main 

objectives of this thesis. In order to obtain qualitative and quantitative information about the structural 

response up to structural failure a base shell is introduced. The shell used is the first thin concrete shell of 

the modern era, the Zeiss planetarium in the city of Jena. The shell is seen in Figure 7.1.  

 

 

Figure 7.1. The 1925 Zeiss planetarium in  Jena, Germany, www.structurae.co.uk 

 

The choice for the Zeiss planetarium can be explained by the fact that the shell has a simple geometrical 

hemispherical shape, easily  described by a radius of curvature and an angle. Due to its relative simplicity the 

linear elastic behaviour is widely discussed in literature. Furthermore, the buckling and postbuckling 

behaviour of a (hemi) sphere is extensively  investigated, which results in several theoretical formulae and 

benchmark tests to validate the thesis’ results. 
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7.1 Geometry 

 

The Zeiss planetarium is a hemispherical cap situated on a circular base. Part of the shell is concealed behind 

an entrance building. On top of the hemisphere, an extension is built. Later, both the entrance building and 

the top extension are disregarded in the shell modelling phase. The hemispherical geometry dimensions of 

the Zeiss planetarium are tabulated below in table 7.1.  

 

Geometry  Dimension 

Total  height of building 17000 mm 

Span 25000 mm 

Radius of Curvature 12500 mm 

Thickness 60 mm 

Shell  surface area 981.75 m2 

R/t 200 

 

Table 7.1. Geometrical  dimensions of the Zeiss planetarium 

 

7.2 Material 

 

The Zeiss planetarium is a thin reinforced concrete shell. There is no information about the concrete quality 

or the reinforcement in the shell. Therefore, the material proportions of the shell must be guessed. As the 

shell is completed in the early 20th  century, a relative low quality of concrete is chosen for the analysis. 

Chosen is for a C20/25 mixture. Furthermore, the quality of the reinforcement is chosen rather low selecting 

FeB220. The reinforcement of the shell is a single layer geodesic Zeiss-Dywidag triangular mesh, seen in 

Figure 2 .5. The reinforcement is located in the middle of the shell cross-section. In general, shells are low 

reinforced structures, thus, the percentage of reinforcement is chosen to be between 0.15 and 0.40 volume % 

(Chapter 3). The material properties and characteristics are further discussed in Chapter 8. 

 

7.3 Support 

 

However not seen in Figure 7.1, the base of the Zeiss planetarium is stiffened by  a tension ring with a depth 

of 800 mm, which rest on the circular base building, Fernandez Ordonez and Navarro Vera [35]. The ring 

ensures a continuous clamped support at the base of the shell.  

 

7.4 Loading 

 

The loading on the shell consists out of the dead weight and variable loads such as wind and snow. As is seen 

in Figure 7.1, today the shell surface is cladded by sheet metal. However, the cladding is assumed to be 

negligible when determining the dead weight of the structure. For the variable loading it is important to 

know the environmental conditions. The Zeiss planetarium is built in the city of Jena, in the east of Germany 

on the river Saale. Jena lies at a height of 155 m above sea level in a slightly hilly country. The surrounding 

area of the shell shows regular cover of v egetation and buildings. The loading is determined in Chapter 9.
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8 Material Properties 

 

 

To obtain an answer to the question whether high strength concrete can contribute to more slender shells or 

not, the thesis’ shells are analysed using two different types of concrete mixtures. A reference conventional 

concrete mixture and a high strength fibre reinforced concrete mixture are selected for analyses. Both 

mixtures and their characteristics are discussed in this chapter. 

 

The shell analysed in Chapter 10 and 12 to 15 is the Zeiss planetarium in Jena in the east of Germany, 

discussed in the previous chapter. The shell is completed in 1925. Therefore, the conventional concrete 

employed is a low quality mixture to ally  with the early 20th  century  concrete technology. Chosen is for a 

C20/25 mixture according to the Eurocode 2. The high strength mixture originates from late developments 

in concrete technology. They find extensional application by the engineering profession at the present day. 

Recently, the first high strength concrete shell structures are realised in Canada and France. The shell in 

Calgary is a station cap for a light rail concept constructed in 2003. The double curved individual cast shell 

elements are only 20 mm thick and span an area of 5.5 × 6.1 m. The shell is constructed using a Ductal 

mixture with compression strength of 151 MPa and a flexural strength of 25 MPa. Typically, there is no 

conventional reinforcement in the shell. This also holds for the 2005 tollgates in front of the Millau viaduct 

in France. Architect Michel Herbert designed a 98 ×  28 m twisted shell with spans of 28-26-28 m. 

Longitudinal prestressing ties bring the shell into compression. The shell is 850 mm thick; however, it 

includes a hollow core as can be seen in Figure 4.16. The skin is only 100 mm thick. It is constructed using a 

BSI-Céracem self-compacting mixture with average compression strength of 200 MPa. The mixture contains 

3.5 volume % synthetic fibres, Walraven [83]. Both structures are seen in Figure 8.1. 

 

     

Figure 8.1. Shawnessy  LRT Station in  Calgary  and the Tollgates near Millau , structurae.co.uk 
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It must be mentioned that all material properties used in this thesis are mean values. Hence, the real 

structural response can be approximated as closely as possible. In practice, design values must be used.  

 

8.1 Conventional Concrete 

 

Conventional (reinforced) concrete does not need much of introduction. The compressive and tensile 

behaviour of conventional reinforced concrete according to the Eurocode 2 is outlined in the following. The 

constitutive behaviour of concrete is characterised by compressive crushing and tensile cracking. For 

reinforced concrete, a third failure mechanism is the yielding of rebars. Time-dependent material behaviour 

such as creep, shrinkage and ambient influences like temperature are not considered, although they might 

be of significant influence on the shell structural behaviour (Chapter 3).  

 

8.1.1 Compressive Behaviour 

 

The nonlinear compressive behaviour of conventional concrete is characterised by a linear branch followed 

by  nonlinear branch with strain hardening and strain softening up to compressive crushing. The presence 

and propagation of micro cracks in the cement matrix cause the stress-strain curve to be ‘rounded’ near the 

point of maximum compression strength. The height of the diagram depends on the concrete quality, the 

loading time and the amount of confinement. Confinement results in a modification of the stress-strain law, 

higher strength and higher critical strains are achieved. The uniaxial stress-strain relation can be modelled 

in several ways. For relatively low compression strengths (< 40 MPa) a parabola is applicable and the 

approximation of Thorenfeldt et al. Furthermore, the Eurocode provides in a relation for short term uniaxial 

loading for nonlinear structural analysis.  

 

The mean value of the cylinder compression strength fcm, used in the analyses, can be determined from the 

5% characteristic value of the cylinder compression strength fck obtained according to EN 206-1 by: 

 

( )= +cm ckf f   8 MPa                  (8.1) 

 

Furthermore, according to Table 3.1 of Eurocode EN 1992-1 -1 [33], the strain at the peak stress is: 

 

( )ε = ⋅ <.
c cm 0.7  f   2.80 31
1 ‰                     (8.2) 

 

Subsequently, the stress-strain diagram can be defined using the mean value of the compression strength 

and the expression for the strain at peak stress. 

 

The parabola is described by: 
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The Thorenfeldt curve, a modification to the Popovics compression curve as the slope of the descending 

curve is increased by a factor k, is described by: 

 

εσ
ε ε

ε

 
 
 

= −  
  − +   
  

c
c cm nk

c c

c

n
f

n 1
1

1

                     (8.4) 

 

where   = + cmfn 0.80
17
 

ε ε

ε ε

≤
= 

+ < <

c c

cm
c c

1    if

k f
0.67 if 0

62

1

1

 

 

The Eurocode 2 (art. 3.1.5) relation for short term uniaxial loading is described by: 

 

( )
σ η η
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−
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                (8.5) 

 

where  
εη
ε
c

c

 = 
1

 with εc1 the strain at peak stress and 
ε c1

cm
cm

k  = 1.05 E
f
 which is only valid for ε εc1 cu10 <  <  with 

εcu1 the nominal ultimate strain 

 

Relation (8.5) is schematically presented in Figure 8.2 below: 

 

 

Figure 8.2. Schematic representation of stress-strain  curve for structural  analyses, Eurocode 2 EN  1992-1-1 2001 

 

(The value of 0,4 fcm for the definition of the secant modulus of elasticity Ecm in Figure 8.2 is approximate, 

depending on the moduli of elasticity of the mixture components.) 

 

The compressive behaviour of concrete is often simplified to a parabolic or a bi-linear diagram, both with 

yield plateau.  

 

 

 



  Chapter 8.   Material Properties 

 172

8.1.2 Tensile Behaviour 

 

Typically, conventional concrete shows relatively  high compressive strength while it cannot resist much of 

tensile stress. Therefore, the shells that are commonly  built are reinforced by one or two layers of steel 

reinforcement to absorb tension forces in the post-cracking stage. Hence, the tensile behaviour of 

conventional concrete is largely influenced by the amount of reinforcement in the structure. The tensile 

behaviour is characterised by concrete cracking and rebar yielding. Prior to cracking the tensile behaviour is 

assumed to be linear up to the tensile strength of the concrete mixture. Characteristically, the tensile 

behaviour can be divided into axial tensile behaviour and flexural tensile behaviour.  

 

The axial tensile strength of the plain concrete, thus, without reinforcement, can be found in Table 3.1  of the 

Eurocode 2 EN 1992-1 -1. The axial tensile strength is, for strength classes below C50/60, determined 

according to the relation: 

 

( )= ⋅ 2 /3
ctm ckf 0.3  f                  (8.6) 

 

Where, fck is the characteristic (5%) value of the cylinder compression strength according to EN 206-1. 

 

The mean value of the flexural tensile strength can be determined from the axial tensile strength by the 

relation (3.23) in Eurocode EN 1992-1 -1 [33], which is defined as: 

 

( ){ }= −ctm, fl ctm ctmf max 1.6  h / 1000 f ; f                 (8.7) 

 

With h the height of the cross-section in mm and fctm is the mean value of the axial tensile strength in MPa. 

 

For the steel reinforcement the strength is chosen equal to the characteristic yield strength or 0.2% strain 

value. The steel will deform according to the typical stress-strain diagrams for steel as seen in Figure 8.3. In 

practice they are often approximated by  a simplified bi-linear law in which the horizontal branch is 

maximised by the yield strength. 

 

 
 

Figure 8.3. Typical  stress-strain  diagrams for hot rolled steel  (left) and cold worked steel  (right), Eurocode 2 EN  1992-1-1 2001 

 

When the tensile strength of the plain concrete is surpassed, cracks initiate and the reinforcement is 

activated. The tensile behaviour after cracking is a complex phenomenon. Two post-cracking phenomena 

can be distinguished. First, the tensile stresses in the concrete are zero at a crack; however, they are 
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introduced into the concrete between cracks by bonded reinforcement. Secondly, the stresses in the 

reinforcement fully  absorb the tensile stresses at the crack but decrease in the concrete in between which 

causes the total strain being smaller when compared to single steel rebars in tension, Walraven [82]. Crack 

development and redistribution of tensile stresses from concrete to reinforcement due to bond between the 

rebars and the concrete is called tension stiffening. The largest problem of the post-cracking behaviour is the 

occurrence of a few wide cracks. This non-isotropic behaviour makes it impossible to capture the structural 

behaviour of reinforced concrete into a constitutive law. The exact post-cracking behaviour of the combined 

phenomena depends on the concrete and reinforcement proportions in a cross-section. Assuming that the 

reinforcement satisfies the minimum and maximum percentages to prevent sudden failure and has good 

bonding strength, the composite structure in tension will, in the end, fail due to y ielding of rebars; however, 

at that stage the serviceability of the shell is often far in violation. 

 

8.1.3 C20/25 Mixture Design 

 

Aforementioned in the introduction, there is chosen for a relative low quality C20/25 concrete mixture 

according to the Eurocode to associate with the early 20th  century Zeiss planetarium shell. Using the 

equations (8.1), (8.2), (8.6) and (8.7), the properties of the C20/25 mixture are tabulated in Table 8.1. 

 

C20/25    

Mean value of cylinder compressive strength  fcm -28 MPa 

Yield compressive strain  εc1 -2.0 ‰ 

Ultimate compressive strain  εcu -3.5 ‰ 

Mean value of axial  tensile strength  fctm +2,2 MPa 

Mean value of flexural  tensile strength  (h=60 mm) fctm,fl +3,4 MPa 

Y oung’s modulus Ec 30 GPa 

Specific weight ρc 2500 kg/m 3 

 

Table 8.1. Material  properties of a  C20/25 concrete mixture 

 

The quantities of Table 8.1  can be combined with the expressions for the compression stress-strain law of 

Section 8.1.1. The two approximation methods are presented in the graph of Figure 8.4 for C20/25 concrete. 

0

5

10

15

20

25

30

0 0,0005 0,001 0,0015 0,002 0,0025 0,003 0,0035
Compressive strain

C
o

m
p

re
s

s
iv

e
 s

tr
e

s
s 

(M
P

a)

Thorenfeldt

Parabola

Eurocode

 
 

Figure 8.4. Uniaxial  compressive stress-strain  curves for C20/25 concrete 
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In addition to the C20/25 mixture, the choice is made to apply a relative low quality of steel reinforcement 

FeB220. For the chosen reinforcement there is referred to FeB220 HWL in which the latter stands for 

weldable hot rolled steel (cold worked steel is addressed by the addition of HK). The constitutive law is 

depicted in the left of Figure 8.3. For FeB220 HWL the following values are prescribed in the Dutch codes: 

 

FeB220 HWL Steel  Reinforcement    

Yield strength  fyk 220 MPa 

Strain  at maximum load εuk 5 % 

Y oung’s modulus Es 200 GPa 

Specific weight ρs 7850 kg/m 3 

 

Table 8.2. Properties of FeB220 steel  reinforcement according to the Dutch  code 

 

The data of Table 8.1, 8.2 and 7.1 can be used to determine the behaviour in axial tension and flexural 

bending of a flat plate with similar cross-sectional dimensions as the Zeiss shell. The characteristic stress-

strain relations for the flat plate (or shell) in axial tension and flexural bending can be seen in Figure 8.5. 
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Figure 8.5. Typical  stress-strain  relationship in  axial  tension (left) and flexural  bending (right) for a low reinforced beam with  one 

layer of reinforcement located in  the middle of the cross-section  

 

Both relationships seen in Figure 8.5 are typical stress-strain diagrams for low reinforced concrete structures 

as shells with a low quality of steel located in the middle of the cross-section. In the left Figure, this can be 

seen by the relative long horizontal stage, which represents crack propagation. The low peak stress of rebar 

yielding is caused by the low quality of steel. In the right Figure as well as the low quality, as the low 

percentage of reinforcement, is responsible for a minimal increase of bending moment by  increasing 

curvature. Furthermore, in the right Figure the reinforcement is assumed to be located in the middle of the 

concrete cross-section, which results in a relative long path of increasing moment during the cracking 

process (curvature causes the cross-section to open). This can be explained simply as the cross-section needs 

to develop large curvature before the reinforcement in the middle is activated. Hence, shells with a double 

layer of reinforcement will experience less cracking and reduced crack opening. Both graphs in Figure 8.5 

end rather abruptly, which is caused by the brittle failure of the steel reinforcement. However, not at this 

stage already as both graphs are cut-off for clarity.  
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8.2 High Strength Fibre Reinforced Concrete 

 

8.2.1 High Compression Strength 

 

Recent developments in concrete technology have lead to concrete mixtures with high compressive strength. 

During the 1980s research was done to concrete mixtures with a higher early strength, requested by 

contractors to speed up the building process. When the new developed concrete mixture hardened, it showed 

higher compression strength than usual. The newly achieved knowledge in concrete technology, fillers and 

additives contributed to a substantial advancement in the concrete industry and the development of high 

strength concrete. The new material was captured in regulations for the first time in France in 2002. Today, 

these codes are still the main codes of practice. 

 

According to Den Hollander [47] high strength concrete can be classified as concrete with a characteristic 

cube compressive strength above 95 MPa. Within the high strength range further classification is made in 

normal high strength concrete ranging from 95 to 155 MPa, ultra high strength concrete from 155 to 250 

MPa and super high strength concrete with compression strengths ov er 250 MPa. However, various other 

classifications may be found in literature. 

 

The higher compressive strength of concrete is reached by optimising the mixture composition. The mixture 

composition can be subdivided into aggregate, cement and the interface between the aggregate and cement. 

Optimisation of the three components to a more homogeneous mixture with higher internal bond lowers 

tensile stresses perpendicular to the compression direction, see Figure 8.6.a. By reducing the largest particle 

size to a prescribed maximum value the homogeneity of the concrete becomes more favourable and the 

stress variation decreases. Additionally, an optimal (or higher) packing density  yields higher compression 

strength as more particles contribute to the bearing capacity and weak v oids are reduced, see Figure 8.7.b.  

    

Figure 8.6.a. The force transmission in  the concrete and b. an increased packing density, Den Hollander 2006 

 

To optimise the interface between the aggregate and the cement silica fume is added to the mixture. Silica 

fume, which is highly reactive, contributes to a better bond between the aggregate and cement particles by 

the forming of secondary  calcium-silicate cry stals which grow through the primary  crystals formed at the 

surface of the cement particles, see Figure 8.7. Furthermore, silica fume reduces the voids filled with water 

and air, Den Hollander [47].  

 

Contrasting with the conventional concrete reflection that there must be enough water to react all cement 

particles, for high strength concrete the amount of water is not sufficient. Cement particles that do not react 

are assumed to strengthen the cement matrix as fillers. Superplasticizers enable the lowering of the 
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water/cement ratio without reducing the workability. Possible hardening at higher temperature and/or at 

higher atmospheric pressure improves the microstructure, however, is of less practical use. 

 

 

Figure 8.7. The hydration of concrete with  and without silica fume, Den Hollander 2006 

 

An optimal mixture can give compression strength of 200 MPa and higher, theoretically up to about 800 

MPa. Not only the compression strength enhances, the mixture can also be classified as more durable with 

low permeability  and favourable creep and shrinkage characteristics, Den Hollander [47]. Also the fatigue 

behaviour, however experiments show high scatter, is profoundable in compare to conventional concrete, 

Lappa [56]. Additionally, designing with high strength concrete has ecological advantages such as low 

material consumption. 

 

For some differences between normal C45 concrete and C200 ultra high performance concrete the mixture 

components are shown in Table 8.3  from Den Hollander [47].  

 

Component [kg/m 3] C45 C200 

Cement 360 1075 

Silica fume - 165 

Sand 790 1030 

Gravel  1110 - 

Steel  fibres - 235 

Superplasticizers 0.5 39 

Water 145 200 

Specific mass 2405 2810 

Water/cement ratio 0.40 0.19 

 

Table 8.3. Mixture components plain  concrete and UHPFRC, Den Hollander 2006 

 

8.2.2 Fibre Reinforcement 

 

The properties of high strength concrete before cracking are similar to the properties of plain concrete. 

However, experiments show that when the cracking process initiates, the high strength concrete fails almost 

instantly, being a highly  brittle material. In general: the higher the concrete strength the more brittle the 

concrete behaviour, Den Hollander [47]. To counteract the brittleness, fibres are added during the mixing 

process, which can be seen in Table 8.3. 

 

The addition of fibres can be explained by examining the cracking behaviour of (high strength) concrete. 

Cracking appears on micro level and macro level, see Figure 8.8. Micro cracks appear in the interface layer 

due to the imposed deformation of the cement matrix by stiff aggregates during hydratation. In a loading 
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situation micro cracks grow until they become visual as macro cracks. Fibres added to the mixture act as well 

on micro level, as reinforcement of the cement matrix, as on macro level, as reinforcement of the structure. 

The reduction of micro cracking by fibres is achieved by the takeover of the tension stresses around a crack 

and thereby reducing the tension stresses in the cement matrix. On macro level the fibre tends to span the 

crack and prevent enlarging. By local pull-out behaviour the post-cracking ductility is significantly improved 

as fibres provide in the most advantageous low-level post cracking plateau, Markovic [57]. 

 

 
 

Figure 8.8 Micro-cracking and macro-cracking, Markovic 2006 

 

Fibres do not necessarily lead to an increase in tensile strength; however, it is possible to increase the tensile 

strength through the addition of fibres with different dimensions (fibre mixture). The micro cracking can be 

decreased with the smaller fibres and with that the elastic behaviour extended while in case of macro 

cracking the longer fibres become active, Markovic [57]. Though, fibres are added to improve ductility, they 

can reduce the amount of reinforcement or even totally substitute the reinforcement. 

 

 

Different shape for steel fibers

Different transverse section
Glued steel fibers

 

Figure 8.9. Different types of (a) shapes, (b) transverse sections and (c) glued steel  fibres, Burgers 2006 

 

Fibres are needle shaped elements manufactured from different materials such as steel or plastics. Fibres are 

available in all shorts of shapes and lengths, see Figure 8.9. Fibre lengths vary from 7  to 75 mm with a 

diameter ranging from 0.15 to 2 mm. In general they are in between 25 to 60 mm with a diameter of 0.4 to 

0.8 mm. Fibre geometry is classified according their aspect ratio, which is qualified as the fibre length 

divided by the fibre diameter (Lf/df). Hence, the general aspect ratio is in between 40 to 80. In structures, 

the amount of fibres starts at 35 kg/m3, or 0.45 volume %. Hereby the fibres are additional to conventional 
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steel bar reinforcement. In traditional fibre reinforced concrete the v olume amount is smaller than 2 %, 

though, fibre v olumes ov er 2 % are becoming more and more accepted. Hereby the fibres totally substitute 

the original reinforcement which is referred to as high performance material, recognised by an increasing 

plastic strain (strain hardening) and multiple cracking. They may be applied up to an amount of 15 volume 

%, e.g. the SIFCON (slurry infiltrated fibre concrete) mixtures, Kooiman [55]. Fibres have a ductile plastic 

stress strain relation and show only minor shrinkage. The strength of steel fibres ranges from 900 to 3000 

MPa. Plastic fibres have even higher strengths up to 4000 MPa and more. Plastic fibres are more expensive 

and therefore find less application, Bouquet and Braam [17]. 

 

Fibres added to the concrete mixture can be considered as coarse aggregates. Fibres cannot just be added, 

they must be able to take position without disturbing the mixture composition, Figure 8.10. For an optimal 

mixture the addition thus leads to adjustment of the original components. An increase of the cement weight 

of approximately  10 % compensates the larger amount of internal surface. Hence, to ensure workability, the 

amount of water must be increased or replaced by superplasticizers. The aggregates must be properly chosen 

for a sufficient fibre distribution in the mixture, Grünewald [39]. 

 

 
 

Figure 8.10. Effect of maximum grain  size on fibre distribution and orientation, Kooiman 2000 

 

Limiting the maximum grain size to half the fibre length is recommended for satisfying fibre distribution and 

favourable for workability and preventing so-called fibre balling. As fibres are needle shaped elements in a 

mixture of spherical elements, they tend to decrease the workability considerable. Furthermore, refining the 

ratio of fine particles to total volume of the aggregate contributes to a higher packing density which is 

negatively influenced by the addition of fibres, as is illustrated in Figure 8.11. According the American 

Concrete Institute (ACI) Committee 544, 1993, depending on the fibre v olume, an optimal packing density  is 

reached by a ratio of fine particles to total volume between 40 and 60 %, Den Hollander [47]. 

 
 

Figure 8.11. Effect fibres on packing density , Kooiman 2000 
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The influence of the type of fibres in the mixture is often presented referring to the aforementioned fibre 

aspect ratio. For example, in Table 8.4, the limitations to the fibre v olume in relation to the maximum grain 

size are shown with respect to the fibre aspect ratio. The values are obtained by Kooiman [55] for hooked-

end fibres in dry mixtures. 

 

dmax  (mm) Lf/df = 60 Lf/df = 75 Lf/df = 100 

4 2.0 % 1.6 % 1.2 % 

8 1.5 % 1.3 % 0.9 %  

16 1.0 % 0.9 % 0.7 % 

32 0.6 % 0.5 % 0.4 % 

 

Table 8.4. Maximum fibre volume for di fferent maximum grain  size and di fferent aspect ratio, Kooiman [55] 

 

Some restrictions to the mixture components due to application of fibres are determined by  the ACI 

Committee 544, 1993. Table 8.5 provides ranges for mixture components for different fibre aspect ratios. 

Though, effects of additives as superplasticizers are not mentioned. 

 

Component Lf/df = 60 Lf/df = 75 Lf/df = 100  

Water/cement ratio 0.35 – 0.45 0.35 – 0.50 0.35 – 0.55 - 

Cement 360 – 600 300 – 540 280 – 420 kg/m 3 

Fine/total  aggregates 45 – 60 45 – 55 40 – 55 % 

Air volume 4- 8 4 – 6 4 – 5 % 

V f straight fibres 0.8 – 2.0 0.6 – 1.6 0.4 – 1.4 % 

V f deformed fibres 0.4 – 1.0 0.3 – 0.8 0.2 – 0.7 % 

 

Table 8.5. ACI guideline for SFRC mixtures, Den Hollander [47] 

 

When the fibres are added to the mixture, the tensile behaviour, and in particular the post-cracking tensile 

behaviour, of the composite mixture must be determined. To provide information about the expected post-

cracking behaviour, pullout test on a simple fibre out of a block of matrix material is widely accepted as one 

of the basic tests. The pullout behaviour is dependent of the fibre characteristics, the quality of the cement 

matrix and the fibre orientation. Figure 8.12 shows a close-up of the pullout behaviour of a straight fibre as 

determined by Naaman 1999, as reported by Kooiman [55]. 

 

 
 

Figure 8.12. Close-up of a typical  pullout versus end-slip relationship for a straight fibre, Kooiman 2000 
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The fully bonded stage OA is of significance influence to stabilise micro cracks in the early stage of loading. 

The graph path AB indicates the debonding stage until full debonding occurs in BC. The frictional stage is 

decaying out due to the increasing slip of the progressing pulled out fibre. The debonding stage and frictional 

pullout stage are of importance for the total amount of cracking energy consummated by the fibre, the so-

called fracture energy. The area under the curve denotes a value for the ductility, Kooiman [55]. The 

complete pullout versus end-slip relationship is seen in Figure 8.13 for straight and hooked-end fibres. The 

influence of a higher bonding of the fibre on the pullout load can be seen.  

 

 
 

Figure 8.13. Typical  pullout versus end-slip relationship for a straight and hooked-ended fibre, Kooiman 2000 

 

Due to the random distribution of the fibres in the cross-section, the results of the pullout test of a single 

fibre can not be directly translated to the behaviour of a fibre reinforced concrete structure. Because of the 

efficiency of a single fibre is related to the orientation of the fibre with respect to the pullout load, the so-

called inclination angle, there is a difference in efficiency between a single fibre and a group of fibres, which 

must be taken into account. The orientation of the fibres is included in the structural design method by the 

orientation factor 1/K that deals with randomly distributed fibres and the so-called wall-effect (fibres align 

with the wall). Furthermore, the orientation factor depends on the dimensions of the structural element and 

on the placement technique, Den Hollander [47]. For plates and shells the orientation of fibres is not 

negatively influenced by the wall effect and, thus, the factor can be set equal to the minimum value of one.  

 

Variations in fibre material, shape, size and quantity cause differences in the mechanical behaviour as found 

for single fibre pullout tests. The stiffness of the fibre is a measure for the resistance to micro cracking, with 

the higher stiffnesses causing lesser micro cracks. On the other hand the fibre contributes to enlargement of 

the tension stiffness of the cement matrix as soon as the fibre goes through the micro crack. Hereby the 

bonding and aspect ratio of the fibre are essential. This can be explained by the observation that fibres, 

although they  stiffen the cement matrix, still need a certain amount of cracking before they are activated, 

Bouquet and Braam [17]. 

 

In case of macro cracking, the fibre must ensure a ductile post-cracking behaviour. When the cracking stage 

initiates, there are three mechanisms which can occur. At first, the composite can have brittle failure when 

the fibres are unable to resist the tensile force in the composite after cracking. Secondly, the composite can 

fail due to consecutively pulled out fibres and, at last, the composite can have increasing tension strength 
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due to a large amount of fibres in combination with high bonding capacity before it fails due to fibre pullout. 

In such cases, attention must be paid to prevent the possibility of brittle failure of the compression zone. 

Hence, when appropriately applied, the use of fibres to reinforce the concrete changes the third mechanism 

of plain concrete, being the yielding of rebars, to pull-out failure of fibres. As the first mechanism is highly 

uninvited, the pull-out failure mechanisms are to be obtained. Therefore the fibre must contain enough 

tensile and bonding strength. By increasing the fibre tensile and bonding strength, the fracture energy, and 

thus the toughness of the concrete can be enlarged. Furthermore, a larger amount of fibres, increased aspect 

ratio and a better orientation of the fibres (higher effectiveness of the fibre) also increase the ductility. 

However, attention must be paid to the possible occurrence of brittle failure. To high bonding strength leads 

to brittle failure of fibres or the compression zone, Bouquet and Braam [17]. 

 

The problem is, however, the contrary fibre demands in case of micro or macro cracking. At micro level a 

high bonding is profound while at macro level a to large bonding strength results in uninvited brittle 

behaviour of the fibres or the compression zone. It can be concluded, that there is an optimal relation 

between the fibre tension strength and the bonding capacity, the critical fibre length, Burgers [20]. 

 

Avoiding fibre rupture, the fibre bridging stress must be smaller than the fibre tensile stress which, in turn, 

is a function of the embedded fibre length, the maximum bond stress at the fibre to the matrix interface and 

the fibre diameter. If the length is smaller, the fibre is not loaded to its full capacity. The fibre will be pulled 

out of the matrix. When larger, there is brittle failure. If the length of the fibre is critical, theoretically, the 

fibre and cement matrix fail at the same time. In practice the fibre must be pulled out, but as close to the 

critical value as possible for higher toughness. Therefore, the fibre length is sub critical, Kooiman [55]. 

Hence, the basic idea of fibre reinforcement is fundamentally different to the application of conventional 

steel bar reinforcement that must fit tight in the concrete and start yielding before brittle cracking of the 

compression zone occurs.  

 
 

Figure 8.14. Typical  stress-strain  opening displacement relations for FRC and plain  concrete, Kooiman 2000 

 

In the final UHPFRC mixture design, the total amount of cracking energy consummated by the fibres by 

continuous frictional pullout is the cause for the most advantageous property  of fibre reinforced concrete in 

contrast to plain concrete, namely the low level post-cracking plateau, seen in Figure 8.14. Figure 8.14 shows 

a typical stress-crack opening displacement relation for plain concrete and fibre reinforced concrete in case 

of uni-axial tensile stress. The low level post-cracking plateau due to the addition of fibres leads to a higher 
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toughness and more ductile failure behaviour. Besides the advantageous low level post-cracking plateau, also 

a slightly higher tensile peak stress is seen. 

 

8.2.3 UHPFRC in Practice 

 

Different types of mixtures of high strength concrete are available on the market. However, basically there 

are only three which are commonly used. The Ductal mixture, patented by French cooperation Lafarge, 

Bouygues and Rhodia, the BSI / Céracem product by French company Eiffage and the CRC (Compact 

Reinforced Composite) mixture developed by Aalborg Portland A/S and marketed by CRC Technology. Both 

the Ductal and BSI mixture contain only  (steel) fibres, the CRC mixture combines fibres with closely spaced 

reinforcement bars. A shell constructed with such a mixture is the l’Oceanografic shell in Valencia, seen in 

Figure 3 .25. The material properties of the three mixtures are captured in Table 8.6. More information 

concerning the latter mixtures is available on the internet, e.g. BSI Eiffage [92]. 

 

Property  Ductal  BSI CRC  

Specific weight 2500 2800 3200 Kg/m3 

Characteristic compressive strength  200 (HT)* 180 140 MPa 

Tensile strength  8.0 10.0 7.0 MPa 

Flexural  bending strength 42.0 45.0 25.0 MPa 

Y oung’s modulus 58000 65000 46000 MPa 

Poisson’s ratio 0.2 0.2 ? - 

* HT = Heat treatment 

 

Table 8.6. Material  properties of Ductal , BSI and CRC 

 

8.2.4 Compressive Behaviour 

 

Like conventional concrete, the compressive behaviour of UHPFRC is characterised by a nonlinear stress-

strain curve. After the linear branch the aforementioned micro cracks that occur in the cement matrix at 

relatively low stress levels cause a ‘rounded’ compression curve with strain hardening and strain softening 

up to compressive crushing. Though, fibres act as reinforcement of the cement matrix and reduce the micro 

cracking, several researchers such as Maidl, König & Kützing, Sato found that the contribution of fibres to 

the compression strength is negligible, Den Hollander [47]. Furthermore, the contribution of the steel fibres 

to the modulus of elasticity is rather small and therefore neglected. Hence, the compression curve is only 

determined by the concrete properties.  

 

To describe the uniaxial stress-strain relation of high strength concrete in compression, the approximation 

of Thorenfeldt et al. is used, described by  relation (8.4). For higher compressive strength the Thorenfeldt 

curve gives a better approximation than the parabola expressed in relation (8.3), Burgers [20]. The relation 

as presented by the Eurocode 2  (equation (8.5)) is not applicable for such high strengths.  

 

According to the French codes, the compressive behaviour of high strength concrete can be approximated 

with a bi-linear constitutive law defined by  the concrete strength and the Young’s modulus. The strain 
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hardening/softening is neglected as there is a yield plateau up to failure due to crushing, illustrated in Figure 

8.15. In general, the higher the concrete compression strength, the more linear the stress-strain relation is 

up to the peak load. Hence, for UHPFRC the bi-linear law makes sense.  

 
 

Figure 8.15. The compressive behaviour of high  strength  concrete according to the French  codes, Den Hollander 2006 

 

The characteristic points of the bi-linear law are defined in the French codes. The yield plateau initiates at 

60% of the characteristic compression strength fck at a strain of -1.75 ‰. Crushing is assumed to occur at a 

strain of -3.0 ‰.  

 

8.2.5 Tensile Behaviour 

 

The tensile behaviour of UHPFRC depends on the proportions of conventional reinforcement, fibres and 

concrete and on the concrete quality. Here, the tensile behaviour of a UHPFRC mixture in which fibres 

totally substitute the conventional reinforcement is examined. The tensile behaviour is characterised by a 

linear stage, limited by the tensile strength of the cement matrix, and a nonlinear post-cracking stage with 

low-level post-cracking plateau.  

 

A big advantage of fibre reinforced concrete in tension is the occurrence of a large amount of small cracks 

instead of a few wide cracks which were seen in conventional reinforced structures. Due to the addition of 

fibres, the composite mixture loaded in tension will behave more like an isotropic material, which means 

that the structural behaviour can be observed with a constitutive law instead of a stress-crack relation. Thus, 

especially the mathematical part simplifies.  

 

 

Figure 8.16. The tensile behaviour of UHPFRC, Den Hollander 2006 

 

According to the French codes, the tensile stress-strain relation of UHPFRC may be modelled with a multi-

linear stress-strain diagram with either strain softening (reduction in load bearing capacity accompanied by 

increasing deformation) or strain hardening (increasing deformation and increasing load bearing capacity) 

in the plastic stage. Strain hardening is visualised in Figure 8.16 as, in general, UHPFRC mixtures allow for 
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further load increase after the first cracking load. The characteristic point of the tensile strengths of Figure 

8.16 must be determined by experimental tests. The French codes provide in the following relations for the 

multi-linear strain hardening/softening tension curve: 
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Where the material factor γc is set equal to 1. 
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With w3 the crackwidth at point t3  
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Where lc is the characteristic length and lf the fibre length.  

 

The characteristic length is a quantity to change the stress-crackwidth relation resulting from the pull-out 

tests to a constitutive stress-strain law needed in the analyses. For a rectangular shaped cross-section the 

value equals 2/3 times the height, Den Hollander [47]. 

 

8.2.6 C180/210 Mixture Design 

 

For the thesis’ shell analyses a high strength concrete mixture BSI C180/210 according to Redaelli and 

Muttoni [67] is chosen with 2.4 volume % steel fibres and no conventional reinforcement. The fibres are 20 

mm long and have a diameter of 0.16 mm. The mixture has a characteristic value of the cylinder compressive 

strength of 180 MPa and a Young’s modulus of 60 GPa. The compressive behaviour is captured in Table 8.7. 

 

BSI C180/210    

Mean value of cylinder compressive strength  fcm -190 MPa 

Yield compressive strain  εc1 -1.75 ‰ 

Ultimate compressive strain  εc1 -3 ‰ 

Y oung’s modulus Ec 60 GPa 

Specific weight ρc 2800 kg/m 3 

 

Table 8.7. Material  properties of the applied high  strength  concrete mixture from Redaelli  and Muttoni  [67] 
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The compressive stress-strain curve of C180/210 UHPFRC is approximated by the Thorenfeldt rule (relation 

(8.4)) and the parabola (relation (8.3)). In addition the compression curve according to Popovics is 

determined. The approximation methods are presented in the graph of Figure 8.17. In particular the 

Thorenfeldt curve shows high brittleness after the point of peak stress/strain.  
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Figure 8.17. Compressive stress-strain  curves for C180/210 UHPFRC 

 

The tensile behaviour is based on the values as found by Redaelli and Muttoni [67]. They are represented in 

the Figure 8.20. In the figure it can be seen that the strain hardening branch is introduced by adding a linear 

branch bey ond the elastic branch in the stress-strain relation. After hardening phase, the strain softening 

initiates and the relation changes to a stress-crackwidth relation.  

 

 
 

Figure 8.18. Axial  tensile behaviour of a BSI C180/210 mixture, Redaelli  and Muttoni  2007 

 

The material behaviour as seen in Figures 8.17 and 8.18 is simplified in accordance with the French codes to 

a multi-linear stress-strain relation, a combination of Figure 8.15 and 8.16. The characteristic points of the 

compressive branch are tabulated in Table 8.7. For the tensile regime the values as seen in Figure 8.20 are 

used. The strain softening branch seen in Figure 8.18, caused by continuous pullout of fibres, is 

approximated with a bi-linear law. The value of the tensile strength at the point of 2 mm crackwidth is 

determined using the fracture energy as denoted in Figure 8.18. 

 



  Chapter 8.   Material Properties 

 186

The values obtained from Figure 8.18 are captured in Table 8.8. 

 

Component    

Characteristic tensile strength  at point t1 fct1 +8.9 MPa 

Characteristic tensile strength  at point t2 fct2 +9.7 MPa 

Characteristic tensile strength  at point t3 fct3 +2.0 MPa 

Tensile strain  at point t1 εct1 0.148 ‰ 

Tensile strain  at point t2 εct2 2.5 ‰ 

Crack opening at point t3 w0 2 mm 

Ultimate crack opening wmax  10 mm 

 

Table 8.8. Characteristic axial  tensile strengths from Redaelli  and Muttoni  [67] 

 

For the flexural tensile strength of UHPFRC, the values of Table 8.8 may also be converted using relation 

(8.7). However, doing so, the obtained values are significant lower than the values found at the material 

properties of Ductal and BSI on the internet. The main reason is that the flexural strengths obtained by both 

French companies are misleading. They assumed that the advantageous low-level post-cracking plateau, 

which allows for much larger cross-sectional rotations, can be introduced in the calculation by increasing the 

pre-cracking material flexural tensile strength. In other words, they propose to add cracked properties to 

uncracked properties. The graphical explanation of their method is seen in Figure 8.19. 

 

 

Figure 8.19. Section modulus in  cracked and uncracked state, Kooiman 2000 

 

In Figure 8.19 it is seen that the translation from plastic to elastic deformation is based on the assumption 

that the depth of the compression zone is approximately 1/10 of the beam depth or structural thickness. 

Thus, the equivalent linear-elastic flexural tensile stress can be determined by  multiplying the plastic 

flexural tensile stress with 1/0.37 = 2.7 .  

 

Though, they reached reasonable agreement with their experimental tests as they have chosen their 

specimen dimensions such that the factor which results from equation (8.7) is almost at maximum. 

Obviously, such low cross-sectional heights are not representative for structures that appear in practice. 

Hence, the extremely high flexural tensile strengths can be questioned and are of little practical value.  

 

 



  Chapter 8.   Material Properties 

 187

8.3 Conclusions 

 

To obtain an answer to the question whether high strength fibre reinforced concrete can contribute to more 

slender shells in this chapter two mixtures are designed. A reference conventional concrete mixture with a 

relatively low quality is selected to ally with concrete technology available at the time the Zeiss planetarium 

was constructed and an ultra high performance fibre reinforced mixture. The conventional concrete mixture 

selected is a C20/25 mixture (cylindrical compression strength/cube compression strength) which is 

characterised by  a rounded compression curve with, after a linear branch, strain hardening, strain softening 

and finally compressive crushing, respectively. The behaviour in compression can, for example, be described 

by a Thorenfeldt, parabola or Eurocode 2 curve. The tensile behaviour is characterised by concrete cracking 

and rebar yielding and determined by the axial concrete tensile strength and the amount of reinforcement in 

the cross-section. The interaction between the cracked concrete and bonded reinforcement is complicated 

and non-isotropic and impossible to capture within a single constitutive law. The material properties of the 

C20/25 mixture and FeB220 HWL steel reinforcement can be found in table 8.1 and 8.2. 

 

High strength fibre reinforced concrete is a relative new development in concrete technology and still subject 

to many researches. An optimised mixture composition allows for much higher strengths than conventional 

concrete compositions. The selected high strength mixture is a C180/210 mixture for which the compression 

curve can, for example, be described by a Thorenfeldt curve or a bi-linear law according to the French codes. 

Opposite to the profoundable high compression strength, the material is highly  brittle in tension. To 

counteract the brittleness, fibres are added, needle shaped elements manufactured from materials such as 

steel or plastics. Fibres work both on micro-level, as reinforcement of the cement matrix, as on macro-level 

as reinforcement of the structure providing in an advantageous low-level post-cracking plateau. Therefore, 

fibres can reduce the amount of reinforcement or even totally substitute the reinforcement as in the selected 

C180/210 mixture. Opposite to conventional steel rebars, fibre addition allows for the modelling of the 

tensile behaviour within one constitutive law, e.g. the multi-linear law as defined in the French codes, as a 

fibre reinforced concrete behaves more like an isotropic material with a large amount of small cracks. The 

fibres have only  minor influence on the compressive behaviour and, hence, the compression curve is only 

determined by the concrete properties. The material properties of the C180/210 mixture can be found in 

table 8.7 and 8.8. 
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9 Loading 

 

 

Before going into analysis, the loads on the shell must be determined. As it is not known on forehand which 

load, or combination of loads, will challenge the shell to the limit, several loads are defined here. Loads can 

be classified by their variation in time into permanent, variable, accidental and time dependent loads. 

Aforementioned in Chapter 3, time dependent effects such as creep, shrinkage and temperature gradients 

are not considered, although they might have severe influence on the structural failure of a shell. The loads 

that are discussed are referred to as static loads as they do not change in time. 

 

 

Figure 9.1. The Zeiss planetarium in  Jena, Germany 

 

When determining (static) loads on a structure, the basic parameters include the magnitude of the load, the 

direction of the load and the location of the load. These parameters are determined according to the 

Eurocode 2. To provide in a proper explanation the loads are determined for the Zeiss planetarium in Jena, 

described in Chapter 7. Similar to Chapter 8, no safety factors are applied in order to approach the real 

behaviour of the structure as closely as possible.  
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9.1 Permanent Loads 

 

The permanent load is assumed to act vertically over the shell surface. In general, the load consists out of the 

dead weight of the shell and possible finishing such as insulation or cladding. However, it is assumed that 

the shell does not contain any finishing, thus, the permanent load only consists out of the dead weight. The 

dead weight is determined by multiplying the shell area times the thickness times the specific weight. The 

values for the specific weight are obtained from the previous chapter. The conventional concrete has a 

specific weight of 2500 kg/m3 and the UHPC has a specific weight of 2800 kg/m3. The values include the 

additional weight of reinforcement.  

 

Zeiss Planetarium Specific weight (kN/m 2) 

C20/25 1.50 

UHPC 1.68 

 

Table 9.1. Speci fic weight of concrete 

 

The shell cov ering the Zeiss planetarium has a thickness of 60 mm, as can be seen in Table 7.1. Depending on 

the type of concrete, the dead weight of the shell can be seen in Table 9.1. 

 

 

9.2 Variable Loads 

 

The variable loading on the shell is covered by wind load and snow load. They are discussed in the following. 

 

9.2.1 Wind Load 

 

Wind action is represented by a simplified set of pressures whose effects are equivalent to the extreme effects 

of the turbulent wind. Wind load is an example of a non-axisymmetric load. In shell structures subjected to 

loading which is not axisymmetric, the meridional curves and parallel circles do no longer present the 

principal directions of the internal stresses as there is a nonzero membrane shear force field, as well as 

normal membrane forces. Thus, the so-called stress trajectories transform under the influence of wind load. 

Other examples of non-axisymmetric loadings are earthquake effects and temperature gradients. 

 

The wind load is determined according to the Eurocode 2 EN 1991-1.4. Wind loads act, by definition, 

perpendicular to the shell surface. Depending on the wind direction, some areas of the shell structure are 

subjected to wind pressure or wind suction. The basis for calculation is a basic wind velocity depending on 

the wind climate. The basic values are characteristic values having annual probabilities of exceedence of 

0.02, which is equivalent to a mean return period of 50 years. To determine the effect of wind on a structure, 

the basic wind velocity is transformed to a wind pressure acting on the external surfaces while taking into 

account for size, shape and dynamic properties as well as landscape effects like terrain roughness and 

orography.  
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Peak Velocity Pressure 

 

As is recommended by the Eurocode 2  EN 1991 -1.4, Chapter 4.2, the basic wind velocity vb depends on the 

fundamental value of the basic wind velocity vb,0. The fundamental value is, however, unknown for the city of 

Jena in the east of Germany. There is chosen for a wind speed of 27 m/s which corresponds to a wind speed 

of a 10 Beaufort storm. This value is similar to the value as proposed by the Dutch codes for wind region 2 

(e.g. coastal areas near Delft) with a return period of 50 years. Hence, the wind speed is considered to be a 

save choice. According to the Eurocode basic wind velocity is: 

 

= ⋅ ⋅b dir season b,0v  c   c   v                  (9.1) 

 

To determine the peak velocity pressure, Eurocode 2  EN 1991-4.5 suggests the relation: 

 

= ⋅ ⋅ ⋅ 21
p e b2q (z)  c     ρ   v                    (9.2) 

 

In which ρ represents the air density, recommended equal to 1.25 kg/m3, and ce is the exposure factor 

depending on the height and terrain roughness, determined according to Figure 9.2. 

 

 
 

Figure 9.2. The exposure factor ce according to figure 4.2 of Eurocode 2 EN  1991-1.4 

 

For the city of Jena, in the east of Germany, there is chosen for terrain category III, which refers to areas 

with regular cover of vegetation or building. With a height of 17 m the exposure factor is approximately equal 

to 2.2. When implemented in equation (9.2) the peak velocity pressure becomes: 

 

= ⋅ ⋅ ⋅ = =2 2 21
p 2q (z)  2.2     1.25   27   1002 kg/ms  1 kN/m  
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Wind Pressure on Surfaces 

 

The final step is to determine the wind pressures on the structure. Wind actions are determined taking into 

account of both external and internal actions. However, as the inside of the Zeiss planetarium shell is not 

accessible to wind, the internal part is neglected. Chapter 5 of the Eurocode 2  EN 1991-1.4 suggest the 

following relation for the external wind pressure: 

 

= ⋅e p e pew   q (z )  c                       (9.3) 

 

Here, qp(ze) is the peak velocity pressure at reference height ze and cpe is the pressure coefficient for the 

external pressure. The reference height is set equal to the maximum height of the shell. 

 

For the external pressure coefficient, the Eurocode provides in various values depending on the geometrical 

shape of the structure. For domes with circular base the values of cpe can be determined using Figure 9.3. In 

the figure the coefficient is denoted as cpe,10  which refers to the fact that the pressure coefficient depends on 

the size of the loaded area A, which is the area of the structure, that produces the wind action in the section 

to be calculated. The external pressure coefficient is given for loaded areas A of 1 m2 (local, denoted by cpe,1) 

and 10 m2 (global, denoted by cpe,10).  

 

 
 

Figure 9.3. The external  pressure coefficient cpe,10 according to figure 7.12 of Eurocode 2 EN  1991-1.4 

 

For the shell over the Zeiss planetarium, the value of f/d is equal to 0.5. Depending on the location on the 

shell surface, the external pressure coefficient becomes: 

 

Region Cpe,10 we (kN/m 2) 

A  +0.8 +0.8 

B -1.2 -1.2 

C 0.0 0.0 

 

Table 9.2. External  pressure coefficient 
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The regions A, B and C on the shell surface are still to be located. As the Eurocode does not give any 

recommendations for domes, the distribution as suggested for vaulted roofs is used, see Figure 9.4.a, 

however, projected on a hemispherical cap. This means that turning point of wind pressure to wind suction 

is located at one fourth of the dome at 45 degrees, Figure 9.4.b. Note that the wind load of Figure 9.4.b. 

shows a stepwise transition between region A and B. 

 

         
 

Figure 9.4.a. The distribution suggested for vaulted roofs and b. the distribution on the Zeiss planetarium 

 

For the circumferential distribution of the wind load, there is chosen for an opening angle of 30 degrees on 

each side, thus, a total angle of 60 degrees, see Figure 9.5. The transition between wind pressure and wind 

suction is smooth, however, a stepwise transition is assumed for simplicity. 

 

Figure 9.5. Wind distribution in  circumferential  direction 

 

The wind load on the Zeiss planetarium shell is defined. 

 

9.2.2 Snow load 

 

Snow load is assumed to act vertically and refers to a horizontal projection of the roof area. Whether the 

snow is distributed over the total surface of the shell or not, depends on the curvature of the shell and 

possible drift of the snow. The load situation after the snow has been moved from one location to another 

(drift), e.g. by the action of the wind, can be highly onerous. The magnitude of the snow load largely depends 

on the location of the shell. The Eurocode recognises 8 climatic regions throughout entire Europe. The 

largest snow loads are found in the Alpine region. Furthermore, the magnitude of the load depends on the 

bulk weight density of the snow as it varies with the duration of the snow cov er and possible rainfalls with 

consecutive melting and freezing. The snow load is determined according to the Eurocode 2  EN 1991 -1.3. 

 

Characteristic Value 

 

To determine the snow load on a structure, first the characteristic snow load on the ground must be 

determined. The characteristic value of snow on the ground at the relevant site follows from Annex C in the 
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Eurocode EN 1991-1.3. The value is the result of scientific work carried out by a specially formed research 

group. The characteristic values of ground snow loads given are referred to mean recurrence interval (MRI) 

equal to 50 years (also based on annual probability of exceedence of 0.02).  

 

In Annex C a relation for the characteristic value of snow on the ground is recommended for each of the 8 

climatic regions. The city  of Jena falls under the climate region ‘Central East’ and subsequently, the 

characteristic value is described by: 

 

( )
  

= − +  
   

k

A
s   0.264 Z  0.002 1  

256

2

                    (9.4) 

 

Here, Z is a zone number from Figure C.3 of Annex C and A stands for the attitude above sea level. The city 

of Jena lies in zone number 2 on 155 m above sea level. The characteristic value becomes:  

 

( )
  

= ⋅ − + =  
   

2
k

155
s   0.264  2  0.002 1    0.72 kN/m

256

2

 

 

According to the table in Annex E of the Eurocode EN 1991 -1.3, the bulk weight density increases with the 

duration of the snow cov er, represented in Table 9.3. When the characteristic value is compared to the bulk 

weight density, there may be a snow layer of 720 mm fresh snow on top of the shell. 

 

Type of snow Bulk weight density  [kN/m3] 

Fresh  1,0 

Settled (several  hours or days after its fall) 2,0 

Old (several  weeks or months after its fall ) 2,5 – 3,5 

Wet 4,0 

 

Table 9.3. Mean bulk weight density  of snow according to Annex E of the Eurocode EN  1991-1.3 

 

Snow Loads on Surfaces 

 

The snow load on the shell depends, besides the characteristic value, on the arrangement of the snow over 

the surface. Snow load can be deposited on a roof in many different patterns. Hereby, there is referred to 

undrifted snow load (Case I) and drifted snow load (Case II), both represented in Figure 9.6. In particular 

situations this can lead to a combination of exceptional snow falls and drifts which consequently lead to 

areas with exceptional snow load. For the hemispherical cap the latter is, however, not of interest. 

 

The snow load on a surface can be determined by: 

 

µ= ⋅ ⋅ ⋅k i e t ks     C   C   s                 (9.5) 
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Where, µi is the roof shape coefficient, Ce the exposure coefficient, Ct the thermal coefficient and sk the 

previously defined characteristic value of the snow load on the ground. 

 

 
 

Figure 9.6. Snow load shape coefficients for cylindrical  roof, figure 5.6 of Eurocode 2 EN  1991-1.3.  

As a reference, according to the Dutch  codes, the snow must be applied at regions up to 30 degrees.  

From 30 to 60 degrees, the snow load may decrease linearly  to zero.  

 

The recommended value for the exposure coefficient Ce following from table 5.1 EN 1991-1.3 for normal 

topography equals 1.0. Moreover, the value of the thermal coefficient Ct also equals to 1.0 as the thermal 

transmittance of concrete is lower than 1 W/m2K. Thus, relation (9.5) simplifies to: 

 

µ= ⋅k i ks    s                       (9.6)  

 

The roof shape coefficient is defined for different shapes. For cylindrical shaped roofs, the value of µ is equal 

to 0.8 for the undrifted case (Case I), while for the drifted case the value is equal to: 

 

For β > 60°,  µ3 =  0 

For β ≤ 60°,  µ3 =  0.2 + 20 h/b 

 

An upper value of µ3 = 2 is recommended for rise to span ratios larger than 0.18 (see Figure 9.7). 

 

 
 

Figure 9.7. Snow load shape coefficient for cylindrical  roofs (for β ≤ 60°) of figure 5.5 of Eurocode 2 EN  1991-1.3 
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For the Zeiss hemisphere, with a rise to span ratio of 0.5, µ3 is equal to 2. In Table 9.4 the resulting snow 

loads on the shell are tabulated. 

 

Load case Magnitude [kN/m2] 

Case I (Undri fted) 0.58 

Case II (Drifted) 1.44 (max) 

 0.72 (min) 

 

Table 9.4. Snow loads on the Zeiss planetarium shell 

 

 

9.3 Accidental Loads 

 

Accidental loads may cause highly uninvited stresses and bending moments in the shell. Though, they  are 

not considered here. The effect of accidental loading, in particular accidental loading that appears like a 

point load on the shell surface, is, however, included in the analysis by the introduction of initial geometrical 

imperfections. They are discussed in Chapter 10 and 12. 

 

9.4 Load Cases 

 

The loading scheme of the shell covering the Zeiss planetarium is illustrated in Table 9.5 in which the loads 

as defined in this chapter are combined in several load combinations. The load combinations follow from 

reasonable thinking, e.g. because there is little chance that wind and snow load have their maximum at the 

same time, they are divided into different load cases. The loads are not multiplied with a safety factor to 

approximate the structural behaviour as close as possible. 

 

LC Dead weight Wind Undri fted Snow Drifted Snow 

1 x    

2 x x   

3 x  x   

4 x   x  

 

Table 9.5. Load cases for the analysis of the Zeiss planetarium shell 

 

9.5 Conclusions 

 

In the foregoing the permanent dead weight load and variable wind and snow load are determined for the 

Zeiss planetarium in Jena constructed out of conventional and UHPFRC (see Chapter 8). Furthermore, the 

loads are combined into four basic load combinations. Comparing the load intensities, it can already be 

concluded that the dead weight of the shell is the main load, pointing in vertical direction.  
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10 Hemispherical Example 

 

 

The Zeiss planetarium shell as discussed in Chapter 7 is used to apply the linear elastic theory as described in 

Chapter 5 and the buckling theory as discussed in Chapter 6 in this chapter in a numeric example. Therefore, 

in this chapter several computations are performed on the Zeiss’ hemispherical shell shape. The results serve 

as benchmark for the finite element results discussed in Chapter 12. 

 

Aforementioned, the Zeiss planetarium is a hemispherical shell and the hemispherical shape is extensively 

discussed in literature. The fact that the hemisphere is widely discussed can simply be explained. Usually  10 

stress resultants are considered to act on the shell element. Membrane stress resultants remain as shown in 

Figure 5.11, while non-membrane stress resultants are the out-of-plane shear stresses and bending 

moments, similar to the plate bending problem. Because there are only  6 equilibrium equations, the shell in 

bending is statically indeterminate. However, if the loads are axisymmetric, the twisting moments, in-plane 

shear forces, and the transverse shear forces on the meridional planes are zero. The shell turns into a 

statically determined problem. 

 

For the numeric example the original design of the Zeiss planetarium is modelled in different ways. The 

linear elastic theory is applied on a shell subjected to a uniformly distributed vertical load with varying 

support conditions to investigate the effect of the so-called edge disturbances. The sequence of supports may 

in short be named as roller supports, inclined-roller supports and a hinged and clamped supports. The 

different models are numbered Zeiss 1 to 4, respectively, and the same numbering will return in Chapter 12 

to 1 5. Opposite to the v ertical ‘civil engineering’ load, e.g. the dead weight of the shell, a uniformly 

distributed spherical load is used for the calculation of the linear critical buckling load. The spherical load is 

applied in combination with an inclined-roller support, as if the shell is a complete sphere, as almost all of 

the buckling investigations are directed towards spheres and radial pressure loads (originating from the 

aeroplane industry) 

 

Thus, in this chapter the linear stresses, strains and displacements are determined for a vertically loaded 

shell with varying support conditions and the linear critical buckling is determined for a shell under radial 

pressure load, restricted to an inclined-roller support condition. Moreover, the spherically loaded inclined-

roller supported shell also serves as basis for a nonlinear buckling discussion.  
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10.1 Shell Parameters 

 

10.1.1 Geometry 

 

Recapitulate from Chapter 7; the shell covering the Zeiss planetarium in Jena has a radius of 12500 mm, a 

thickness of 60 mm. 

 

10.1.2 Material 

 

The numeric example is elastic based. Hence, the material is modelled as infinite elastic and the only 

material parameters that have to be defined are the Young’s modulus of elasticity, the Poisson’s ratio and the 

specific weight. Recapitulate from Chapter 8, for the conventional C20/25 mixture the Young’s modulus is 

30 GPa whereas the C180/210 mixture has a Young’s modulus of 60 GPa. The specific weights are 2500 

kg/m3 and 2800 kg/m3, respectively. For simplicity, the Poisson’s ratio is equal to zero. 

 

10.1.3 Support 

 

The shell of the Zeiss planetarium is, aforementioned in Chapter 7, assumed to be based on a continuous 

clamped support. To illustrate characteristic shell behaviour, or in case of the buckling analysis, to ally with 

the experiments, the shell behaviour will be determined with different types of supports also, namely, a 

roller support, inclined-roller support, a pinned support and a clamped support. 

 

10.1.4 Loading 

 

The loading is previously derived in Chapter 9. For the hand calculation, the load on the structure is 

simplified to an equally distributed vertical load over the total shell surface with the magnitude of the dead 

weight of the shell and the undrifted snow load. Except for the buckling analysis, where the load is an equally 

distributed spherical load with a dummy magnitude equal to 1.0 MPa. 

 

Load Magnitude (kN/m2) 

Specific weight C20/25 1.5 

Undri fted snow load 0.58 

Total  2.08 

 

Table 10.1. Load on the shell  as used in  hand calculation 

 

 

10.2 Analysis Scheme 

 

The various linear analyses done are described in Table 10.2. The Zeiss 2  shells appears twice as it is first 

considered subjected to vertical load for the stresses, strains and displacements, while later is loaded by a 

spherical compression load to determine the linear critical buckling load. 
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Name Loading Conditions Supporting Conditions Type of Analysis 

Zeiss 1 Vertical  load Roller Linear Elastic 

Zeiss 2 Vertical  load Inclined-roller Linear Elastic 

Zeiss 3 Vertical  load Hinged Linear Elastic 

Zeiss 4 Vertical  load Clamped Linear Elastic 

Zeiss 2 Spherical  load Inclined-roller Linear Buckling 

 

Table 10.2. Analysis scheme 

 

 

10.3 Linear Analysis 

 

The theoretical solution is based on the relations found in Chapter 5. The relations are for shells with 

arbitrary  curvature which are described using a global coordinate sy stem. A spherical shell can be described 

as non-shallow and is a thin shell of rev olution; it is generated by  rotating a curve (meridian) over a vertical 

axis of revolution. For simplification the general coordinate sy stem is changed to a local polar coordinate 

sy stem when the membrane stress field is to be determined. In the local polar coordinate system the z-axis 

points outward of the shell surface, the x-axis is the meridian direction and the y-axis the circumferential 

direction. In the description the x and y terms are replaced by φ and θ respectively, see Figure 10.1. As 
mentioned in Chapter 5, the total solution to the behaviour of the shell consists out of the membrane 

solution and the bending solution. For performing a solution to the shell in bending the global coordinate 

sy stem is more convenient. As only  in the bending solution the influence of different support conditions will 

be seen, the membrane solution is valid for all Zeiss shell types.  

 

Figure 10.1. Geometry  and coordinate system of a spherical  shell  of revolution, Hoefakker and Blaauwendraad 2003 

 

10.3.1 Membrane Behaviour 

 

For the membrane behaviour, first the general relations for a thin shell of arbitrary curvature are 

recapitulated from Chapter 5. As explained, the general relations with global coordinate sy stem are rewritten 

for a shell of rev olution with local polar coordinate system. Comparing the new coordinate system with the 

conventional system, it is observed that 1dx = rdφ and dy = rdθ . Since the edges of the shell of rev olution are 

often in the θr-plane, an extra displacement ur is introduced, perpendicular to the axis of revolution (Figure 

10.2). Because of axisymmetry, displacement and rotational terms in the θ-direction become zero and, 
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therefore, are left out of the relation. For the same reason, the load component pθ, the derivative θ∂ ∂/  and 

the longitudinal shearing stress resultant nφθ are set equal to zero. 

 

 

Figure 10.2. Geometry  of the meridian and positive directions of the displacements, Hoefakker and Blaauwendraad 2003 

 

The meridional strain of a small part of a shell of revolution is dependent on the elongation of an element 

due to the tangential displacement uφ and the normal displacement uz. The elongation of the element due to 

the difference in the normal displacement uz  at each end of the element is of second order and, therefore, 

negligible. The meridional strain becomes: 

 

z

u1
=  + u
r

φ
φφε

φ
∂ 
 

∂ 1

                  (10.1) 

 

Which is equal to the strain relation (5.30) found in Chapter 5 for a shell in extension. 

 

The strain in θ-direction is, due to the axisymmetry, also determined by the tangential and normal 

displacement only. The tangential displacement causes an elongation of the horizontal radius r in 

circumferential direction. The strain contribution can thus be calculated by  dividing the elongation 

dr = u cosφ φ  by the original radiusr = a sinφ . The circumferential strain becomes: 

 

( )θθ φε φ z
1

= u  cot  + u
r2

              (10.2) 

 

Combining equation (10.1) and (10.2) and setting r3 = r2 tanφ yields the kinematic relation for a shell of 
revolution in polar coordinates: 

 

φφ φ

θθ

φε
ε

∂ 
 ∂           
 
 

z

1 1

r r u
=  

u1 1

r r

1 1

3 2

              (10.3) 

 

The constitutive relations are equal to the relations derived in Chapter 5 omitting the shear terms, thus: 
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φφ φφ

θθ θθ

εν
εν ν

    
    

    
2

n 1Et
=  

n 1 - 1
                 (10.4) 

 

And 

 

φφ φφ

θθ θ θ

ε ν
ε ν

−    
    −    

n11
=  

nEt 1
                   (10.5) 

 

Finally, the equilibrium relations can be obtained from Figure 10.3. The load component pz  and pφ must be 

in equilibrium with the constant circumferential stress resultants nθθ and the meridional stress resultants 

nφφ. Additional, the meridional load component pφ must be in equilibrium with the increase of the meridional 

stress resultant φφ φ
φ

dn
d

d
. Because the load component in circumferential direction is equal to zero and the 

equilibrium of forces in the circumferential direction needs not to be investigated due to the constant stress 

resultant nθθ, the equilibrium relations simplify to a statically determinate sy stem with two unknown stress 

resultants and two load components. 

 

Figure 10.3 Load components and stress resultants on an infinitesimal  element, Hoefakker and Blaauwendraad 2003 

 

The equations of equilibrium for an infinitesimal shell element become: 

 

( )φφ
θθ φφ

φ
− 1 1

d n r
  n r cos  + p rr  = 0

d
      and 

z

n n
    + p r = 0
r r

φφ θθ− −
1 2

               (10.6) 

 

The equations can also be written in matrix notation: 

 

φφ φ

θθ

φ
 − 

    
       

 
 

1 3

z

1 2

1 d 1

r d r n r p r
=

n r p r1 1

r r

                   (10.7) 
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Relation (10.7) could also have been obtained directly  by  determining the adjoint matrix from the kinematic 

relation (10.3). 

 

10.3.2 Membrane Stress Resultants 

 

Because of the statically determinate system, the stress resultants can be derived directly from the 

equilibrium equations. By  eliminating the circumferential stress resultant in the equation (10.6) after 

multiplying the first equation by sinφ and the second with cosφ , the vertical equilibrium for a shell part 

limited by two adjacent parallel circles with radius r at distance dφ from each other is found. 
 

( ) ( ) ( )φφ φφ
φφ φ

φ
φ φ φ φ

φ φ
− 1z

d n r d n r sin
sin  + n r cos  =  = p cos   p sin rr

d d
          (10.8) 

 

The meridional stress resultant is found by integration of equation (10.8). 

 

( )φφ φφ φ φ
φ

−∫ 1z

1
n  = p cos   p sin rr  d

r sin
                (10.9) 

 

Consequently, the circumferential stress resultant can be obtained by  substitution of expression for nφφ in 

equation (10.6). 

 

( )θθ φφ φ φ
φ

− −∫2 1z z2
1

1
n  = p  r p cos   p sin rr  d

r sin
          (10.10) 

 

The membrane solution is hereby obtained. 

 

For a spherical shell of revolution under uniform vertical load over the shell surface the exact values of the 

stress resultants can be obtained. The geometry of a spherical shell can be described with only one radius: 

 

r1 = r2 = a 

r = a sinφ 

 

Furthermore, the load components of the vertical load read: 

 

φ−zp = pcos  

φ φp = psin  

 

Hence, the expressions for the internal forces, (10.9) and (10.10) can be rewritten and integrated to: 

 

φφ
φ

φ φ
 −
 
 

2 2

cos   1 C
n  = pa  + 

sin asin
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θθ
φφ

φ φ
 −− − − 
 

2 2

cos   1 C
n  = pa cos   pa   

sin asin
 

 

Using the relation φ φ−2 2sin  = 1  cos  this can be rewritten to: 

 

φφ φ φ
− 2

1 C
n  = pa  + 

1 +  cos asin
 

θθ φ
φ φ

 
− − 

 
2

1 C
n  = pa   cos   

1 +  cos asin
 

 

The constant term C must be equal to zero, considering that the term becomes infinite for φ = 0. Thus, the 
equations simplify to: 

 

φφ φ
−

1
n  = pa  

1 +  cos
             (10.11) 

θθ φ
φ

 
− 

 

1
n  = pa   cos

1 +  cos
            (10.12) 

 

The stress resultants for a spherical shell subjected to uniform vertical load are now derived. The meridional 

stress resultants are always compression stresses. The circumferential stresses, however, change from 

compression to tension, as is visualised in Figure 10.4. 

 

 

Figure 10.4. Distribution of the stress resultants for a spherical  shell  under vertical  load, Hoefakker and Blaauwendraad 2003 

 

Figure 10.4 shows the meridional stress resultants and the circumferential stress resultants for a spherical 

shell under vertical load that can move freely at its base, i.e. roller supported (Zeiss 1 ). At the top and base of 

the shell, both stress resultants give the same value, however, at the base the circumferential stress 

resultants are of opposite sign. It can be calculated, using equation (10.12) that the stresses change sign at 

52° from the top of the shell. Thus, when the shell is constructed, reinforcement must be placed in the lower 

part of the shell structure. It can be concluded, that when the shell stops at 52° the shell is completely  in 

compression. Then, theoretically, no reinforcement is necessary.  
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The membrane stress resultants of the Zeiss planetarium shell, caused by the load of section 10.1.4, become: 

 

Stress resultants φ = 0 (top) φ = 90 (base)  

n φφ -13 -26 N/mm’ 

nθθ -13 +26 N/mm’ 

 

Table 10.3. Membrane stress resultants for spherical  shell  with  vertical  load 

 

Assuming an equally distributed stress ov er the thickness of the shell, the stresses become: 

 

Stresses φ = 0 (top) φ = 90 (base)  

σ φφ -0.217 -0.433 N/mm 2 

σ θθ -0.217 +0.433 N/mm 2 

 

Table 10.4. Membrane stresses for spherical  shell  with  vertical  load 

 

As can be seen, the membrane stresses with conventional load are extremely low. The stresses even do not 

violate the tensile strength of the plain concrete; hence, there is no structural need for reinforcement at all. 

 

10.3.3 Membrane Strains 

 

Using relation (10.5), the expressions for the membrane strains become: 

 

( )φφ φφ θθε ν−
1

= n n
Et

              (10.13) 

 

( )θθ θθ φφε ν−
1

= n n
Et

             (10.14) 

 

The strains can easily be obtained with the values of the stress resultants from Table 10.4. 

 

Strains φ = 0 (top) φ = 90 (base)  

εφφ -0.00722 -0.0144 ‰ 

εθθ -0.00722 +0.0144 ‰ 

 

Table 10.5. Membrane meridional- and circumferential  strains for spherical  shell  with  vertical  load 

 

These strains are also extremely low values and the shell will almost experience no extension or contraction.  

 

10.3.4 Membrane Displacements 

 

The linear translational and rotational displacements of the shell of revolution are seen in Figure 10.2. The 

quantities of highest interest are the displacements at the top and the displacement and rotation at the base 

radius of the shell. 
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From equation (10.1) and (10.2) can be derived that the equation for the displacement u z  at the top of the 

shell reads: 

 

z,topu = r rφφ θθε ε+1 2               (10.15) 

 

It can be shown that after filling in the expressions for the radii of curvature and the integrated strain energy 

in both directions, and subsequently setting Poisson’s ratio equal to zero, the equation becomes: 

 

z,top

pa
u = 2

Et

2

              (10.16) 

 

The translation ur can be calculated multiplying the strain in circumferential direction with the radius r. 

Because r = r3 cosφ =  r2 sinφ the translation ur can be described by: 

 

θθ φε φ φr zu  = r = u  cos  + u sin               (10.17) 

 

For axisymmetric loading only the rotation φφ in the φr-plane needs to be derived. The rotation is dependent 

of the meridional displacement uφ and the normal displacement uz. The rotation due to the meridional 

displacement is a positive rotation of the tangent, being uφ/r1. The uniform normal displacement does not 

contribute to the rotation, however, the additional normal displacement does. The additional displacement 

φ
φ
zdu
d

d
 divided by the length of a surface element r1dφ yields a negative rotation. Thus rotation φφ, becomes: 

 

φ φϕ
φ

 
− 

 

z

1

du1
 = u   

r d
            (10.18) 

 

Equation (10.18) describes the displacement of the spherical shell. However, it provides in a relation where 

the meridional and normal displacement must be known. A more useful expression for the rotation can be 

obtained by direct derivation from the strains. Therefore, the displacement uz  is eliminated from the 

equations (10.1) and (10.2) and, subsequently, the relations are multiplied by cotφ which results in the 
expression:  

 

( )φ
φ φφ θθφ φ φ ε ε

φ
− −1 2

2du
cot   u cot  = cot r   r

d
          (10.19) 

 

Differentiating (10.19) for ( )φ φ zu cot  + u , eliminating the term φ φ
φ

du
cot

d
 by adding the differentiated result to 

(10.19) and subsequently dividing by the radius of curvature r1 yields: 
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The rotation φφ, (10.18) can easily be recognised in this expression, thus 

 

( )θθ
φ φφ

ε
ϕ ε φ

φ φ
−

1

d r1
 = cot   

r sin d
              (10.20) 

 

To calculate the membrane rotation at the base the strain equations (10.13), (10.14) are introduced and the 

Poisson’s ratio is equal to zero. Equation (10.20) changes into 

 

( ) ( )φ
φ φϕ φ

φ φ φ

 
 − +
 
 

2

pa cot pa sin
 =   sin

Et 1 + cos Etsin 1 + cos
         (10.21) 

 

The membrane displacements of the Zeiss planetarium shell under vertical load can now be calculated using 

equation (10.16), (10.17) and (10.21) and the values of Table 10.6. The rotations are tabulated in Table 10.7. 

 

Displacements φ = 0 (top) φ = 90 (base)  

u z -0.181 0 mm 

u r 0 0.181 mm 

φφ 0 -0.0000288 mm/mm 

 

Table 10.7 Membrane displacements for a spherical  shell  with  vertical  load 

 

10.3.5 Bending Behaviour 

 

The total solution for the shell behaviour is obtained by adding the bending solution to the membrane 

solution which is thus taken as the inhomogeneous solution. With the bending solution the influence of the 

different support conditions will be defined; the bending solution makes sure the final solution satisfies the 

boundary conditions. For the description of the bending behaviour of shell of revolution, use is made of a 

local coordinate sy stem, in which the x and y terms remain and the z-axis is always perpendicular to the 

shell surface. Identical to the membrane behaviour it is observed that 1dx = rdφ and dy = rdθ and due to 

axisymmetry, displacement and rotational terms in the θ-direction, the load component py and the 

derivative 
θ

∂ ∂
∂ ∂
(  ) (  )

 = 
r y

 are zero. Also the longitudinal shearing stress resultants are equal to zero.  

 

Recapitulating from Chapter 5.4 the general relations for a shell of arbitrary curvature are rewritten to the 

new local coordinate system, leaving out the zero parts. The kinematic relation thus becomes 

 

 − 
  
   −    

   
   

   − 
 
  

x
xx

yy x
y

zxx

yy 2

d 1

dx r
ε

1
ε 0 u

r = 
uκ

d
κ 0

dx

0 0

2

            (10.20) 
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Hence, due to the zero derivate 
θ

∂ ∂
∂ ∂
(  ) (  )

 = 
r y

 the change of curvature in circumferential κyy is zero.  

 

The constitutive relation remains unchanged, apart from the zero terms, thus 

 

εν
εν

ν κ
ν κ

    
    
    =    
    
         

xx xxm m

yy yym m

b bxx xx

b byy yy

n D D 0 0

n D D 0 0
  

0 0 D Dm

0 0 D Dm

          (10.21) 

 

Where, the extensional and bending rigidity are already defined in Chapter 5.4. 

 

νm 2

Et
D  = 

(1 - )
 

ν

3

b 2

Et
D  = 

12(1 - )
 

 

To complete the description for the bending behaviour of a shell of rev olution, the equilibrium relations 

must be derived. Rewriting the equilibrium equations for a shell of rev olution yields:  

 

xx
x

dn
 + p  = 0

dx
 

yyx xx
z

x y

ndv n
 +  +  + p  = 0

dx r r
 

 

From the bending action of a flat plate, described in Chapter 5.3, is known that the derivative of the moment 

stress resultant is equal to the transverse shearing stress resultant. Thus, eliminating vx out of the latter 

equation, yields 

 

xx
x

dn
 + p  = 0

dx
                (10.22) 

2

2
yyxx xx

z
x y

nd m n
 +  +  + p  = 0

dx r r
             (10.23) 

 

And, written down in matrix notation, reads 

 

  −             − − −   
    

xx

yy x

zxx
2

x y yy

nd
0 0 0

ndx p
 = 

1 1 d pm
0

r r dx m

2             (10.24) 

 

Conform the earlier examples; the equation that is derived is equal to the adjoint matrix of equation (10.20).  
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10.3.6 Bending Solution 

 

From the bending relations, the single differential equation for the displacement uz  can be obtained, similar 

to the procedure followed in Chapter 5.3. However, because the stress resultant nxx can directly  derived from 

the first equilibrium condition, the differential equation can be found in a simpler way. 

 

The stress resultant can be determined by integrating equation (10.22) 

 

− ∫xx xn  = p dx              (10.25) 

 

Substituting the stress resultant in equation (10.23) yields 

 

− − − ∫
2

yy xx
z x

y x

n d m 1
   = p p dx 

r dx r2            (10.26) 

 

Using the constitutive relations (10.21) and kinematic relations (10.20) in combination with equation (10.26) 

the normal stress resultant nyy can be completely expressed by the displacement uz  

 

( )ν ν− − − ∫
2

yy m y z xn  = D 1  k u   p dx            (10.27) 

 

Again, using the constitutive relations (10.21) and kinematic relations (10.20), the bending stress resultants 

can be expressed in the displacement uz. 

 

− 2

2
z

xx b

d u
m  = D

dx
 

ν ν− 2

2
z

yy b xx

d u
m  = D  = m

dx
            (10.28) 

 

Substituting the equations (10.25), (10.27) and (10.28) in (10.24) yields the differential equation for the 

displacement uz  

 

( ) ( )ν ν− − ∫
2z

b m y z z x y x

d u
D  + D 1  k u  = p   k  + k p dx

dx

4
2

4          (10.29) 

 

By setting the curvature ky equal to zero, the radius ry is constant and the bending behaviour of the shell of 

revolution is equal to the bending behaviour of a circular cylinder under axisymmetric loading. 

 

The inhomogeneous solution to the differential equation corresponds with the membrane solution. 

Therefore, to obtain the bending solution, the homogeneous solution to the differential equation (10.29) 

must be determined: 
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( )ν− 2z
b m y z

d u
D  + D 1  k u  = 0

dx

4
2

4  

 

To simplify the equation, a parameter µ is introduced: 
( ) ( )

( )
ν ν

µ
− −2 2

m y

b y

D 1  k 3 1  
 =  = 

4D r t

2

4
2  

 

The differential equation then simplifies to 

 

µ
4

4
4z

z

d u
 + 4 u  = 0

dx
             (10.30) 

 

Obviously, the similarity with a differential equation for a beam on an elastic foundation is clear. The general 

solution to the fourth order differential equation with constant coefficients consist of four terms of the form 

 

rx
zu (x) = Ce  

 

When the solution is substituted into the equation (10.30) the differential equation reads 

 

µ4 4r  + 4  = 0  

 

The four solutions to the differential equation are: 

 

( ) µ± ±r = 1 i  

 

The solution describes two pairs of conjugate complex functions. Because the sum and the difference of the 

functions of each pair are purely real or purely imaginary and constitute another set of four independent 

homogeneous solutions, the solution can be written as 

 

[ ] [ ]µ µµ µ µ µ1 2 3 4
- x x

zu (x) = e C cos x  + C sin x  + e C cos x + C sin x         (10.31) 

 

The terms which are multiplied with e±µx have an influence length of: 

 

ππ
µ υ−4

y

i 2

r t
l  =  =

3(1  )
            (10.32) 

 

Neglecting the effect of Poisson’s ratio, the influence length of the bending behaviour on the shell of 

revolution can be determined: 

 

i yl  = 2.4 r t              (10.33) 
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The influence length is illustrated in Figure 10.5.  

 

 

Figure 10.5. Influence length  of a spherical  shell  under external  pressure, Hoogenboom 2006 

 

From equation (10.33) it can be concluded that the influence of an edge disturbance becomes smaller with 

decreasing thickness. Thus, thinner shells have increasing preference for membrane-dominant behaviour. 

 

For determining the constants the equation (10.31) must be transformed. The term of equation (10.31) 

multiplied with the constants C3 and C4, damped oscillations which decrease exponentially for decreasing x, 

is rewritten using an ordinate x’ which is positive in the negative x-direction. 

 

[ ] [ ]µ µµ µ µ µ− −
1 2 1 2

x x'
zu (x) = e A cos x  + A sin x  + e B cos x'  + B sin x'  

 

By  introduction of free constants C1 and C2 and phase angles ψ 1 and ψ 2 the equation transforms to: 

 

( ) ( )µ µµ ψ µ ψ− −x x'
z 1 1 2 2u (x,x') = C e sin x +  + C e sin x' +          (10.33) 

 

Where: 

 

2 2 2
1 1 2C  = A  + A  ;        ψ 1

1
2

A
tan  = 

A
 

2 2 2
2 1 2C  = B  + B  ;        ψ 1

2
2

B
tan  = 

B
 

 

By  substitution of equation (10.33) in the relations (10.20), (10.25), (10.26), (10.27) and (10.28), the 

quantities of interest become: 

 

( ) ( )µ µµ ψ µ ψ− −x x'
z 1 1 2 2u  = C e sin x +  + C e sin x' +  

( ) µ µν π πµ ψ µ ψ
µ

− −    − −    
    

x y x x'
x 1 1 2 2

k  + k
u  = C e sin x +  +   C e sin x' +  + 

4 42
 

µ µπ πϕ µ µ ψ µ ψ− −    − − −    
    

x x'
x 1 1 2 2 = 2 C e sin x +     C e sin x' +   

4 4
 

( ) ( ) ( )( )µ µν µ ψ µ ψ− −− − 2 x x'
yy m y 1 1 2 2n  = D 1  k C e sin x +  + C e sin x' +  



  Chapter 10.   Hemispherical Example 

 211

µ µπ πµ µ ψ µ ψ− −    − − −    
    

x x'
xx b 1 1 2 2m  = 2D C e sin x +    + C e sin x' +   

2 2

2  

µ µπ πµ µ ψ µ ψ− −    − − −    
    

x x'
x b 1 1 2 2

3 3
v  = 2 2D C e sin x +     C e sin x' +   

4 4

3         (10.34) 

 

From equation (10.32) it can be seen that the influence length of an edge disturbance, as a result of the 

exponential damping of the wave, for a thin shell is small (t « r) in comparison to the distance between two 

edges. In that case, the term which determines the bending behaviour at one edge, is negligible at the other 

edge. Therefore, the constants in the equations (10.33) can be derived independently from each other with 

the aid of the boundary conditions at x = 0 and x’ =  0. 

 

To determine the free constants C1 and C2 and phase angles ψ 1 and ψ 2 the boundary conditions of the shell 

are divided into two elementary cases: a first case in which the shell undergoes a displacement ur due to an 

edge load fr and a second case in which the shell undergoes an rotation φx due to an edge torque tx.  

 

φ φ
ϕ ϕ

  
 
  

0 0r z z r

x x x x

u  = u sin f  = f sin
 

 = t  = t
 

 

The homogeneous boundary condition for the edge load is 

 

=0x ( x' ) zv  = f  ; =0xx (x ' ) xm  = t  = 0  

 

From these boundary conditions and the equations (10.34), the phase angle ψ 2 and the constant C2 can be 

derived directly 

 

πψ 2 = 2
  ; 

µ2 3
r

b

f
C  = 

2D
 

 

For the second case, the edge torque, the same procedure can be followed, however, this time the shear 

component is equal to zero and the moment is equal to the torque. The phase angle and constant can be 

described as 

 

πψ 3
 = 

42   ; 
µ

−
2 2

x

b

t
C  = 

2D
 

 

Combining the two elementary cases yields the relation 
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 −     
     
     − 
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Or written in r-direction 

 

ϕ
r r

x xb

sin φ sinφ
f uµ µ

 = 
tD

sinφ
µ µ

 
 −

    
    
    
    −

 
 

2

0 03 2

02

1 1

2 21

1 1

2

        (10.35) 

 

The inverse relation is 

 

µ µ
φ φ

ϕµ µ
φ

 
 

    
        

  

r r
b

x x

4

sin sinf u
 = D

t
2

sin

3 2

2

0 0

2

0

2

2
         (10.36) 

 

Obviously, for the spherical shell of revolution, at the base, the z-direction equals the r-direction.  

 

The solutions to the bending behaviour of the shell can now be determined in combination with the results of 

the membrane behaviour and the boundary conditions of each of the shells as denoted in Table 10.3. 

 

10.3.7 Total Solution 

 

The total solution is the bending solution added to the membrane solution. As mentioned the membrane 

solution will yield ov er the majority of the shell. The bending solution occurs only locally  near the supports. 

Therefore, for the total solution, only the displacement, rotation and moment distribution of the lower part 

of the shell (near the supports) are determined. Recapitulating the membrane results at the base radius of 

each Zeiss shell, obtained with the equations (10.11), (10.12), (10.13), (10.14), (10.17), (10.21) yields: 

 

Displacements φ = 0 (top) φ = 90 (base)  

u r 0 0.181 mm 

φφ 0 -0.0000288 mm/mm 

 

Table 10.8 Membrane displacements for a spherical  shell  with  vertical  load 

 

Zeiss 1 

 

The Zeiss 1  shell is roller supported and, thus, neither displacements nor rotations are restrained. 

Consequently no edge disturbance occurs. Therefore, the membrane solution is the total solution. 

 

Zeiss 2 

 

The shell has inclined-roller supports which mean that the shell is not allowed to rotate near the supports 

but is free to move outward. The boundary conditions thus yields a zero rotation φx,tota l and zero edge force 

fr, thus:  
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ϕ ϕ ϕx,total x,m x ,b =  +  = 0   and  =x x 0( ' ) rv  = f  = 0  

 

Using the boundary conditions and equation (10.36) yields the quantities of the edge loads: 

 

Edge loads φ = 90 (base)  

fr 0 N/mm’ 

tx  23.707 Nmm/mm’ 

 

Table 10.9 Bending solution at the base radius for a spherical  shell  with  vertical  load and inclined-roller support 

 

On the principle of superposition, the membrane and bending behaviour can be added to achieve the total 

displacements of the shell. As a check, they must satisfy the boundary conditions. 

 

Displacements Membrane Bending Total  

u r 0.181 -0.00951 0.171 mm 

φφ -0.0000288 0.0000288 0 mm/mm 

 

Table 10.10 Total  solution for a spherical  shell  with  vertical  load and inclined-roller support 

 

Zeiss 3 

 

For the Zeiss 3  shell, the base radius is supported with hinged supports which suppresses the circumferential 

displacement ur ,tota l and cannot develop a torsion edge load tx, thus:  

 

r ,total r,m r,bu  = u  + u  = 0  and  xx xm  = t  = 0 .  

 

The bending solution becomes: 

 

Edge loads φ = 90 (base)  

fr -0.684 N/mm’ 

tx  0 Nmm/mm’ 

 

Table 10.11 Bending solution at the base radius for a spherical  shell  with  vertical  load and pinned support 

 

The total displacements of the shell at the base radius become: 

 

Displacements Membrane Bending Total   

u r 0.181 -0.181 0 mm 

φφ -0.0000288 0.000274 0.000245 mm/mm 

 

Table 10.12 Total  soluti on for  a spherical  shell  with v ertical  l oad and pi nned support  
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Zeiss 4 

 

Finally, the bending solution for the clamped Zeiss 4 shell, the most realistic model of the actual shell, must 

be determined. The boundary conditions at the base circle of the shell are: 

 

r ,total r,m r,bu  = u  + u  = 0  and ϕ ϕ ϕx ,total x,m x,b =  +  = 0  

 

Using equation (10.36) this results in the following expressions for the edge loads: 

 

Edge loads φ = 90 (base)  

fr -1.297 N/mm’ 

tx  402,92 Nmm/mm’ 

 

Table 10.13 Bending solution at the base radius for a spherical  shell  with  vertical  load and clamped support 

 

The total displacement solution must satisfy the boundary conditions: 

 

Displacements Membrane Bending Total   

u r 0.181 -0.181 0 mm 

φφ -0.0000288 0.0000288 0 mm/mm 

 

Table 10.14 Total  solu tion for a spherical  shell  with  vertical  load and clamped support 

 

From the above results it can be observed that the calculated values of maximal stresses and displacements 

are remarkably low for such a structure. In particular, the maximum tensile hoop stress is very small and can 

be carried by weak materials such as various masonry products. This is generally true for most shell 

structures and the many historical masonry shells which still remain after many centuries demonstrates this 

unique feature of shells. 

 

 

10.4 Geometrical and Material Influences 

 

10.4.1 Geometrical Influences 

 

As the hemispherical shell is the basic shape of this thesis, the shell thickness is the only parameter to vary. 

In the membrane situation, if additional snow load is left out of scope, a smaller thickness lowers the shell 

dead weight and the stress resultants while it increases the stresses, strains and displacements with the same 

amount. The gov erning effect is, thus, zero. For the bending solution, a twice as thin shell reduces the 

bending moments 26%. Aforementioned, the influence of an edge disturbance becomes smaller with 

decreasing thickness. Thus, thinner shells have increasing preference for membrane-dominant behaviour. 
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10.4.2 Material Influences 

 

In linear elastic analysis, the material is characterised by the Young’s modulus and Poisson’s ratio only. 

Moreov er, fibre additions and higher packing density increases the specific weight of the UHPFRC concrete 

and the dead weight of the shell increases. Therefore, when the UHPFRC mixture is applied, the stress 

resultants increase and the strains decrease according to the equations described above. A non-zero 

Poisson’s ratio means that the membrane displacements slightly increase at the supports 

(compression/tension) while the top displacement decreases (biaxial compression). Still, the resulting effect 

may be that of an increasing top displacement (see Chapter 12). 

 

 

10.5 Linear (Euler) Buckling Analysis 

 

The next step is to calculate the linear critical buckling load for the Zeiss planetarium shell. Buckling causes 

premature instability failure caused by eccentricity of compressive forces. The phenomenon is discussed in 

Chapter 6. Here, the general equation of Zoëlly for shells as obtained in Chapter 6 is used to determine the 

critical load of the Zeiss planetarium. 

 

In Chapter 6 the expression for the linear critical buckling load of a sphere under external pressure load 

(equation (6.53)) is derived. When Poisson’s ratio is set equal to zero the equation changes to: 

 

 
 
 

lin
cr

t
P  = 1.16E

R

2

              (10.46) 

 

For the given parameters the critical load for the Zeiss shell under radial pressure load becomes: 

 

lin
crP   1.16 30000   0.802 MPa  802 kN/m

 = ⋅ = = 
 

2

260

12500
 

 

This is an extremely large load in compare to the load as determined in Chapter 9. Moreover, the linear 

critical buckling load is so high that the shell fails on surpassing the concrete compression strength 

( plast cm
cr

f t 28 60
P   2  2 0.268 MPa

R 12500

⋅ ⋅
= = = ) rather than failure due to buckling instability (crushing load is 33.4% 

of buckling load). The critical crushing load can simply be calculated from the uniaxial compression stresses 

(the shell is in complete compression). For the C180/210 UHPFRC mixture with mean cylinder compression 

strength of 190 MPa, however, it can be computed that buckling occurs before concrete crushing is reached. 

 

The above paragraph is interesting as the question arises if, for a shell constructed with conventional 

C20/25, the buckling load will prevail ov er the crushing load when the shell thickness decreases. Therefore, 

in Figure 10.6 the maximum spherical load corresponding to the linear critical buckling load and the 

concrete crushing load is plotted against an increasing radius to thickness ratio. In Figure 10.6 it can be seen 

that with increasing R/t ratio, the critical buckling load eventually will be lower than the crushing load. In 
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other words, when the R/t ratio becomes larger than approximately 600, buckling will occur before 

crushing. For UHPFRC the linear critical buckling load is lower for all R/t ratios. 
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Figure 10.6. Decisive failure mechanism at increasing thickness to radius ratio for C20/25 

 

The fact that the shell fabricated from conventional C20/25 concrete does not fail by  buckling for all R/t 

ratios means that in the search to the knock-down factor the shell behaves different for various thicknesses. 

For lower R/t ratios the shell fails by surpassing the material strength whereas for higher R/t ratios the shell 

fails by  buckling instability. Later, in Chapter 14 and 15, imperfections and material nonlinearities move the 

buckling curve downwards and the turning point moves towards the left, i.e. buckling may also prevail for 

lower R/t ratios than 600. 

 

 

10.6 Postbuckling Analysis 

 

The next step in this numeric example is to determine the lowest postbuckling load. As explained in Chapter 

6 the shell experiences a significant decrease in load-carrying capacity after the bifurcation point. The 

maximum decrease in load carrying capacity in the postbuckling range, as illustrated in Figure 6.22, can be 

computed using the analytical relations as obtained by  Von Karman and Tsien, Tsien, Thompson and Del 

Pozo and Del Pozo. Their research has resulted in various analytical relations for obtained the lowest point 

for a spherical shell subjected to radial pressure load (from Chapter 6): 

 

Classical theory by Zoëlly:  
  = 
 

lin
cr

t
P  = . E   0.802 MPa

R

2

1 16  

 

Von Karman and Tsien:  
  = 
 

cr

t
P  = 0. E   0.252 MPa

R

2

365  

 

Thompson:   
  = 
 

cr

t
P  = 0. E   0.196 MPa

R

2

283   
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Del Pozo and Del Pozo:  
  = 
 

cr

t
P  = 0. E   0.158 MPa

R

2

228  

 

Dostanowa and Raiser:  
  = 
 

cr

t
P  = 0. E   0.087 MPa

R

2

126  

 

The values of the lowest postbuckling load range from 0.252 to 0.087 MPa. The lowest value as proposed by 

Del Pozo and Del Pozo shows a decrease in load carrying capacity of almost 90%. Although, the lowest 

postbuckling load is far greater than the external applied load as determined according to the Eurocode in 

Chapter 9 (=  0.0021 MPa), the load is lower than the load needed for compressive crushing of the concrete. 

This means that the original Zeiss shell (with R/t ratio 200 and conventional concrete) with imperfections 

may fail due to buckling rather than to compressive crushing after all, if, however, the imperfection is large 

enough. 

 

 

10.7 Inelastic Buckling Analysis on Imperfect Shells 

 

To determine the load-carrying capacity  of an inelastic imperfect shell, the relations as proposed by the IASS 

recommendations have been introduced in Chapter 6. Basically, the IASS recommendations determine a 

reduced load by multiplying the linear critical buckling load by  a factor which takes into account for 

imperfections and material nonlinearities. The relation proposed in Chapter 6 is: 

 

α α α α α= =reduced lin lin
cr 1 2 3 4 cr crp      p    p             (6.70) 

 

Herein: 

α1 =  Large deformation and imperfection factor 

α2 =  Creep factor 

α3 =  Crack factor 

α4  =  Material nonlinearity factor  

 

If the maximum imperfection is taken equal to the shell thickness, α1 is equal to 0.2 (see Figure 6.36).  

 

For the creep factor the mean value of cylinder compression strength and the Young’s modulus of Table 8.1 

are used into equation (6.67): 

 

α
= − 



+ 

u

2
cr

C   4  2 log 28  = 1.11
14247

   =   = 0.47530000
30000E =   =  14247

1  1.11

 

 

For the crack factor a reinforcement percentage of 0.4% is assumed (see Chapter 3) and the properties of 

reinforcement are taken from Table 8.2. Using equation (6.68) and Figure 6.37 the crack factor becomes: 
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ρ
α

ψ

= ⋅ = ⋅ 

= 

s s

cr c 3

E A 200 GPa
n         0.004  = 0.06

E A 14247 MPa    = 0.2

  0.21

 

 

Finally, the material nonlinearity factor is determined using equation (6.69): 

 

α
α α α

= ≈ ≈
⋅ ⋅ ⋅

plast
cr

4 lin
cr

p 0.015
     1.0

p 0.0151 2 3

 

 

The reduced critical load, thus, becomes: 

 

α α α α= = ⋅ ⋅ ⋅ ⋅ =reduced lin
cr 1 2 3 4 crp      p   0.2 0.475 0.2 1 0.7981  0.015  

 

Applying the safety factor of 3.5, described in Section 6.9.5, the allowable load is equal to: 

 

= =
reduced

2cr
allow

p 0.015
p  =   0.00433 MPa = 4.33 kN/m

3.5 3.5
 

 

Hereby, the total reducing factor is approximately 184.3. However, aforementioned, creep is not taken into 

account in the finite element analysis. Hence, the allowable load is assumed to be equal to: 

 

⋅ ⋅ ⋅
= = 2

allow

0.2 0.2 1 0.7981
p   0.00912 MPa = 9.12 kN/m

3.5
      (Total reducing factor is equal to 87.5) 

 

The allowable loads are close to the external applied loads as determined in Chapter 9 and used in the 

numeric example described above. However, it must be mentioned that the IASS procedure followed is 

rather unclear and the author’s confidence in the correctness of this procedure is not very high.  

 

 

10.8 Conclusions 

 

In this chapter a linear solution to the Zeiss planetarium is performed for different types of support 

conditions. The stresses, strains and deformations of a shell in membrane action are determined in 

combination with the influence of edge disturbances caused by restrained deformation at the supports. For 

the chosen dimensions and material and loading parameters the stresses, strains, and displacements appear 

to be v ery low, i.e. in reality  they may not be noticed at all. When the thickness of the shell is decreased, the 

dead weight and membrane stress resultants lower, however, the stresses, strains and displacements 

increase with the same amount. The governing effect is, thus, zero. For the bending solution, a twice as thin 

shell reduces the bending moments 26%. Moreover, the influence of an edge disturbance becomes smaller 

with decreasing thickness. Thus, thinner shells have increasing preference for membrane-dominant 

behaviour. The linear solution changes linearly with changes in material parameters, if variations in specific 

weight are not taken into account.  
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Besides the linear solution, the linear (Euler) buckling load, the (lowest) postbuckling load and the inelastic 

imperfect buckling load are determined. The linear buckling load yields extreme high values in compare to 

the expected external loads and concrete crushing may prevail over buckling instability for low qualities of 

concrete. This may change when the radius to thickness ratio or the quality of the concrete is increased. After 

the bifurcation point the maximum decrease in load carrying capacity in the postbuckling branch is 

determined with the various equations as proposed by mathematicians such as Von Karman and Tsien, Del 

Pozo and Del Pozo and Dostanowa and Raiser. The maximum load carrying capacity decreases up to more 

than 80%. Finally, inelastic buckling of imperfect shells is considered using an approach suggested by the 

IASS Recommendations. The procedure, however, is rather unclear and the author’s confidence in the 

correctness of the procedure is not very high. 



 

 



 

 

 
part IV 
Finite Element Analysis 
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11 Finite Element Method 

 

 

From the preceding discussion on shells and their sensitivity to initial imperfections it is clear that the 

behaviour of a shell structure must be closely investigated. However, analytic solutions to the structural 

behaviour of many shell structures are almost unattainable due to the importance of nonlinear features such 

as large deformations and material nonlinearities.  

 

As denoted by Schnobrich [68], the arrival of the computer made possible a rational approach to the analy sis 

of structures by the use of numerical methods. In particular the finite element method, basically a numerical 

approximation method, has revolutionised numerical computer analysis and is widely  available in advanced 

software. The finite element method that is the most convenient for the majority of the problems is the 

displacement approach which uses displacements as basic variables. The general procedure inv olves the 

construction and solution of a matrix sy stem from partial differential equations describing the equilibrium of 

an idealised structure by transferring it to an equivalent weak form, a reduced order problem, which has a 

relaxing effect. Instead of finding an exact solution everywhere, there is searched for a solution that satisfies 

the equilibrium ‘on average’ over the domain allowing an approximated displacement field for which the 

structure is discretised into finite elements. In the elements a displacement field is described by nodal 

parameters, and stretched over the element by shape functions. The discrete set of unknown displacement 

coefficients are related by a stiffness matrix to the external applied load. The problem is solved by evaluating 

the stiffness matrix by numerical integration over the elements and subsequently performing a solution to 

the unknown displacements. The strains and stresses can successively be computed from there. 

 

To analy se a structure using the finite element method, the analyst must make a model which correctly 

describes the structural behaviour. Basically, the finite element model consists out of the discretized 

geometry of the structure by a mesh, the phy sical properties and the loading and boundary conditions such 

as supports. The implementation of the model in computational software is often aided by  pre-processors 

offered in combination with the finite element program which e.g. offer design tools and mesh generation 

algorithms. A postprocessor can be used to present the analysis result by graphical methods such as a 

contour plots. For analysis the program DIANA is used equipped with iDIANA as pre- and postprocessor.  

 

The aim of this chapter is to introduce the reader into finite element procedures and to familiar the reader 

with the most important aspects so that more advanced literature such as Bathe [3], Crisfield [25], Hughes 

[51] or Zienkiewicz and Taylor [87], [88] can be understood. 
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11.1 Mathematical Fundamentals 

 

Throughout Chapter 5 reference was made to matrices and vectors, e.g. in the notation of the basic 

quantities, related to each other by the kinematic, constitutive and equilibrium matrices.  In this chapter 

vectors, matrices and tensors are used to express the finite element procedure in a compact manner, similar 

to the relations in Chapter 5. For the benefit of the reader the fundamentals of v ectors, tensors and matrices 

will be presented. Obviously, the discussed is rather limited considering only those aspects which are 

important in finite element analysis. Straight formulations of the definitions can e.g. be found in Bathe [3]. 

 

11.1.1 Matrices and Vectors 

 

Basically, a matrix is a two-dimensional array of scalars (physical quantities that have the same value, 

irrespective of the choice of reference frame, Wells [85]. A matrix is said to have m rows and n columns, 

which do not have to be equal, and denoted by capital bold characters. In general, a matrix represents the 

relation between a set of variables and often it has a phy sical meaning, such as a system stiffness matrix. An 

example from Zienkiewicz and Taylor [88] shows the definition of a matrix: 

 

A linear relationship between a set of variables x and b, e.g.: 

 

+ + + =

+ + + =
+ + + =

1

2

3

a x   a x   a x   a x   b

a x   a x   a x   a x   b

a x   a x   a x   a x   b

11 1 12 2 13 3 14 4

21 1 22 2 23 3 24 4

31 1 32 2 33 3 34 4

 

 

Can be written shortly as [ ][ ] [ ]=A x   b  or =Ax  b . Where the matrix A  is defined as: 

 

[ ]
 
 ≡ =  
 
 

A  

a a a a

A a a a a

a a a a

11 12 13 14

21 22 23 24

31 32 33 34

 and the variables are presented by [ ]
 
 
 ≡ =
 
 
  

x  

x

x
x

x

x

1

2

3

4

 and [ ]
 
 ≡ =  
 
 

b  

b

b b

b

1

2

3

 

 

The particular column matrix presentation of the variables is often referred to as a vector. A vector is a one-

dimensional array of scalars which is said to have m entities (in an m-dimensional space) and denoted by 

normal bold characters. As seen in Chapter 5, in structural mechanics quantities such as forces and 

displacements can be listed as a vector.  

 

Besides the definition of a matrix and a vector, the example shows the multiplication process of two 

matrices. In general, multiplication is not commutative like ordinary algebra, i.e. ≠AX  XA . Addition and 

subtraction of matrices is based on the addition and subtraction of individual terms of the array and follows 

the ordinary rules. Addition and subtraction is only possible if the matrices are of identical size.  

 

Two important matrix operations are the calculation of the transpose and inverse of a matrix. The transpose 

of a matrix is a definition for simple reordering of the terms in an array in the following manner: 
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   =   
  

 

Ta a
a a a

a a
a a a

a a

11 21

11 12 13

12 22

21 22 23

13 23

 

 

The transpose vector is indicated by the addition of a capital T. In case of a vector, the transpose vector 

simply  means that the scalars are written down as a row. An operation that often occurs is to take the 

transpose of a matrix product, which follows by the rule ( ) =T T TAB  B A . Furthermore, the transpose becomes 

useful as, by the rule of matrix multiplication, the product of two vectors is written as =f a  a fT T . 

Previously, these multiplications were done in Chapter 5, e.g. the virtual work equation.  

 

Taking the inverse of a matrix may be required to solve a system of equations. The inverse of a matrix is a 

matrix A-1  such that = =A A  I  AA- -1 1 , where I represents the identity matrix with only unity  terms on the 

diagonal and zero terms in off-diagonal positions. The inverse of a matrix is only possible for square matrices 

with the additional requirement of a non-zero determinant. A matrix possessing an inverse is called 

nonsingular or invertible. Nonsingular matrices are sometimes also called regular matrices. If the matrix in 

the example of Zienkiewicz and Taylor is square, it is possible to solve for the unknowns in terms of the 

known coefficients b. The solution can be written as =x  A b-1  which can be obtained by multiplying each 

side with the inverse matrix A-1 . Taking the inverse of a matrix is previously executed in Chapter 5, e.g. 

rewriting the flexibility formulation of the constitutive relation to the stiffness formulation.  

 

Special properties of matrices appearing in structural problems are symmetry and sparseness. Symmetry 

simply  means that for all terms in the array it holds =  ij jia a or =A  AT . A symmetric matrix, thus, always is a 

square matrix. Furthermore, in case of symmetry, it can be shown that ( )= ≡A   A  A
T- - -T1 1 . Matrices with a 

high percentage of zero entries are called sparse. 

 

Finally, a very important matrix operation inv olves the determination of the eigenvalues of a matrix. 

Eigenvalues are a special set of scalars which arises in common applications such as stability analysis. An 

eigenvalue of a symmetric matrix A  is a scalar λ i which allows the solution of ( )λ− =A  I φ   i i 0 and 

λ− =A  I  idet 0 , Zienkiewicz and Taylor [88]. Herein, φi is called the eigenvector which is paired with a 

corresponding eigenvalue. For a symmetric matrix A  of size n x n there are n such eigenpairs. The 

eigenvectors can be shown to be orthogonal; ( )δ= = = ≠T

i j ij for i j and for i jφ φ            1 0  where δ ij  is known as 

the Kronecker delta. For symmetric matrices all eigenvalues are real. The matrix is said to be positive-

definite if all eigenvalues are not only real, but also positive and, as a consequence, the inverse of the matrix 

exists and has a unique solution. Furthermore, the condition of a matrix is defined as the largest eigenvalue 

divided ov er the smallest eigenvalue. If this operation results in a large value, the matrix is said to be ill-

conditioned. For a singular matrix the smallest eigenvalue is zero, and thus, it is ill-conditioned. 

Unfortunately, ill-conditioning is often the case for beam, plate and shell elements, Bathe [3]. Ill-

conditioning of the stiffness matrix may also be caused by improper or few boundary conditions. 
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11.1.2 Tensors 

 

A more general way to express scalars, vectors and matrices is the tensor. In fact, all calculations described 

above are based on tensor calculus. A tensor is said to have an n-th rank in an m-dimensional space. Tensors 

are generalisations of scalars (ero-order tensor), v ectors (first-order tensor) and matrices (second-order 

tensor) to an arbitrary number of indices. A tensor is a multi-dimensional array relative to a choice of basis 

of the particular space on which it is defined. A tensor is independent of any chosen frame of reference, and 

hence, provides in a natural and concise mathematical framework. In structural problems stresses and 

strains are referred to as tensors, although they are actually tensor fields, a tensor valued function defined on 

a geometric or topological space. In this context the tensor field is a generalisation of the idea of a vector 

field which can be thought of as a 'vector that varies from point to point', Bathe [3]. 

 

 

11.2 Generalised Finite Element Procedure 

 

Aforementioned in Chapter 5, any problem in continuum mechanics is based on three basic relations; the 

kinematic relation, the constitutive relation and the equilibrium relation. The three basic relations serve as 

starting point for the derivation of the finite element formulation. Recapitulate from Chapter 5, the three 

basic relations between the displacements u, the strains e, the stresses s and the external loads p: 

 

=e  Bu  

=s  De                       (5.1) 

= Tp  B s  

 

By  stating that the system stiffness matrix is defined as = T K  B DB , the basic relations can be combined to:  

 

=Ku  p                    (11.1) 

 

Equation (11.1) is the governing equilibrium relation that has to be solved. In general, the problem is 

identified by known external applied forces and unknown displacements. Basically, the finite element 

method involves performing a solution to the sy stem of equations by the composition of the sy stem stiffness 

matrix and successive solution of the unknown displacement vector. 

 

11.2.1 Global Formulation 

 

An arbitrary three-dimensional body  is subjected to external applied loads and experiences unknown 

displacements u. The arbitrary  three-dimensional body  is denoted V and seen in Figure 11.1. The body  is 

subjected to known body  forces per unit v olume g. Furthermore, external forces such as concentrated forces 

and known tractions t are applied on the boundary part St and the displacements are specified as known 

values u  on the boundary  part Su. The known tractions t on St are called the natural or Neumann boundary 

conditions whereas the prescribed displacements u  on Su  are referred to as essential or Dirichlet boundary 
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conditions, Wells [85]. In Figure 11.1 a vector n is visualised as being a component of the unit outward 

pointing normal to the surface. To find the unknown displacements u, a finite element procedure is used. 

 

 

Figure 11.1. Continuous body with  forces and boundary  conditions, Wells 2004 

 

Aforementioned in the introduction, using the finite element method means looking for an approximate 

solution of the displacement field u that satisfies the partial differential equations describing the equilibrium 

of the body  V and the boundary conditions. In that process, the discretisation procedure in which the body V 

is divided into a finite number of elements connected at a finite number of nodes plays a major part.  

 

11.2.2 Displacements 

 

Spatial Discretisation by Finite Elements 

 

The discretisation procedure leads to an approximation of the body V as an assemblage of finite elements 

connected by nodes. The geometric arrangement of elements and nodes is called a mesh and the elements 

and nodes of the mesh are used in describing the unknown displacement field.  

 

Shape Functions 

 

The finite element method describes the displacement field in the nodes, as the nodes represent points at 

which displacements and rotations occur. For that, each node has 6 degrees of freedom, 3 translational and 3 

rotational (and each degree of freedom is associated with a corresponding load vector).To generate a 

solution for the approximated displacement field of a structure it is assumed that the nodal displacements 

are somehow known. To determine the value of a displacement at an arbitrary point so-called trail or shape 

functions are introduced which describe a reasonable displacement path between the nodes.  

 

      
 

Figure 11.2. Linear (left) and quadratic shape functions, Wells 2004 
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Generally, shape functions are associated with a single node and they are presented by typical piecewise 

continuous polynomial functions with compact support, i.e. they equal unity at their node and they are only 

non-zero close to their node and zero at all others. Typically, the finite element method uses linear or 

quadratic polynomial shape functions for C0 continuity between elements, Wells [85]. Shape functions must 

ensure continuity up to a certain degree in order to let the solution converge to the exact solution if the mesh 

is refined. Continuity is, as a consequence, a common topic in finite element analysis and refers to whether 

or not the derivatives of a function are continuous. Most common are C0 functions, Wells [85], which means 

that the functions are continuous but their first derivatives are not and second (and higher) derivatives do 

not exists. Two types of shape functions for a two and three noded line element are illustrated in Figure 11.2.  

 

Compatibility and Isoparametric Mapping 

 

The shape functions between neighbouring elements must satisfy the compatibility demands, see Figure 11.3. 

Compatibility demands refer to the continuity of corresponding element boundaries without openings of 

ov erlap, both in the undistorted as the deformed state, Wells [85]. By adaptation of the finite element 

method, the shape of the element is fixed in the original coordinates of the nodes of the elements in the 

undistorted state.  If the nodal displacements are known, the deformed shape of the element is known. Like 

the undistorted element boundaries, the deformed boundaries also must meet the compatibility requirement 

that they have coinciding boundary lines. The shape of the undistorted and deformed element boundaries, 

therefore, must be determined by the original coordinates to be sure that they are compatible.  

 

 

Figure 11.3. Non-compatible (left) and compatible elements, Wells 2004 

 

To simplify the compatibility problems between neighbouring elements with interpolation functions of 

higher order, isoparametric mapping is introduced. Elements with higher order interpolation functions can 

have deformed boundaries with unknown curvature and, hence, it becomes impossible to achieve 

compatibility. The problem is solved by the introduction of a base element of unit length, convenient origin 

and sides aligned with the coordinate system. Both, the undistorted and the deformed element, are seen as a 

transformed base element and the transformation is called isoparametric mapping, see Figure 11.3. 

 

 

Figure 11.3. The basic element (left) and the real  (undistorted or distorted) element, Wells 2004 
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When isoparametric mapping is used, the independent parameters are the base element ξ- and η-

coordinates instead of the x- and y-coordinates. The mapping of the isoparametric element to the real 

element is done by a matrix with transfer functions. For both mapping operations the same transfer 

functions can be used. Hence, there is referred to ‘isoparametric’. An important finding is that the shape 

functions used earlier, can be used for the mapping as well, significantly reduce coding, Wells [85]. In 

addition, isoparametric mapping is numerical advantageous. Because the shape functions are formed for 

simple elements it requires the programming of only one shape function to evaluate the shape functions of a 

type of element, irrespective of the exact shape of the element. It also allows for simple application of 

numerical integration (discussed later). 

 

Discretised Displacement Equations 

 

In order to solv e the problem of equation (11.1) the displacements u are, thus, approximated by  nodal point 

variables (such as components of displacements and rotations) and shape functions, clustered in an 

interpolation matrix N. The displacements of a particular point (x,y,z) are assumed to be continuous 

functions expressed in terms of discretised variables at the nodal points and are approximated as:  

 

( ) ( ) ( )≈ =ɶx y z x y z x y z, , , , , ,cu   u   N u                   (11.2) 

 

Obviously, the approximated displacement field must satisfy the essential boundary conditions: 

 

= uon Su  u                      (11.3) 

 

Within each element the displacement of an arbitrary point (x,y,z) can be defined in a convenient local 

Cartesian coordinate sy stem and approximated by  the shape functions and the element nodal displacement  

(degrees of freedom ) vector ue. The displacements of an arbitrary point are then described as: 

 

( ) =c ex y z, ,u   Nu                           (11.4) 

 

Using the element transformation matrix Te the element displacement vector can be composed from the 

nodal variables of the sy stem degrees of freedom vector by: 

=e eu   T u                           (11.5) 

 

11.2.3 Strains and Stresses 

 

The strains at any point in the discretised structure can be determined from the element displacements ue. 

In combination with the approximated displacement field, the strain field can be written as the derivative of 

the vector ue by: 

 

= =ε  LNu   Bue e                                 (11.6) 
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In which L is a differential operator matrix and B the kinematic relation for a particular point and is called 

the differential matrix. Hence, the displacements ue has to satisfy differentiability to a necessary degree. 

 

The relationship between the strains and stresses is either linear or nonlinear. For now, there is no 

constitutive relation ascribed and the relation is simply formulated using the stress-strain constitutive 

relation matrix D. In this way, the procedure will be valid for as well linear as nonlinear material behaviour.  

 

=σ  Dε                                  (11.7) 

 

11.2.4 Equilibrium Relations 

 

The third basic relation of (5.1) can be rewritten to the equilibrium between the stress vector σ and the 

vector of the known body forces g which hold for every point in the structural domain: 

 

+ =TL σ  g        0 in V                (11.8) 

 

(Note that, in the case of a dynamical problem, the right hand side vector of equation (11.8) is not equal to 

zero but contains a term which describes the acceleration.) 

 

Furthermore, the stress vector needs to satisfy the natural boundary conditions on St: 

 

=T
n ton SL σ  t                           (11.9) 

 

Equation (11.8) and (11.9) represent the gov erning equilibrium equations of the structural body V in which 

equation (11.8) is identified as the strong form of the equilibrium. The strong form serves, in combination 

with the finite element discretisation of the previous paragraph, as basis for the derivation of a column of 

nodal displacements of a 3D continuum. However, to find a displacement field u that satisfies the partial 

differential equilibrium condition and the boundary conditions is (almost) impossible. This certainly is true 

for shells, as the equilibrium relation results in an 8 th  order partial differential equation. An important step 

in finite element analy sis is, therefore, to transform the strong form to its equivalent weak form. 

 

11.2.5 Strong form – Weak form 

 

Constructing the governing equilibrium equation or strong form and transferring it to the corresponding 

weak form is an essential step in the finite element method, Wells [85]. The strong form represents the 

original partial differential equation with the particular boundary conditions of the problem which appeared 

to be (almost) impossible to solv e. Fortunately, the original governing equation is proven to be equivalent to 

an integral weak form statement of the problem, an equation of reduced order, suitable for numerical 

solution. The weak form has a relaxing effect on the problem, as it allows for solutions which hold ‘in 

average’. Though, it may be surprising that the weak form often is more realistic physically than the original 

differential equation which implied an excessive ‘smoothness’ of the true solution, Zienkiewicz and Taylor 
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[87]. In general, the transformation of the strong form to the weak form is either based on the method of 

weighted residuals, on global physical statements such as virtual work or on variational principles.  

 

Weighted Residual Method (Galerkin Procedure) 

 

The transformation of the strong form to the weak form by the method of weighted residuals is done by 

multiplication with continuous weight functions and consecutive integration by parts. A weight function 

can be defined as an arbitrary chosen function which comes from a predefined space ν  and must satisfy the 

essential boundary conditions. If the structural domain is assumed to be divided into finite elements, the 

strong form (equation (11.8)) can be transferred to the weak form by multiplication with a column of 

arbitrary weight functions w: 

 

( ) ν+ = ∀ ∈∫w L σ  g      w

e

T T

V

dV 0             (11.10) 

 

It can be noted that the term between the brackets represents the residual or error obtained by the 

substitution of the approximated displacement field Nu into the differential equation. Thus, equation (11.10) 

is a weighted integral of such residuals. Applying Gauss’ theorem to transfer the v olume integral to a surface 

integral by partial integration in more dimensions, the weighted equilibrium can be rewritten to a part that 

holds inside the volume which needs to be equal to a part that holds on the surface. Equation (11.10) 

transforms to: 

 

( ) ( )( ) ( )+ =∫ ∫
Tw L σ   Lw σ   w L σ

e t

TT T T

n

V S

dV dS              (11.11) 

 

When applied into equation (11.10) the weak form of the gov erning equilibrium relations is found: 

 

( ) ν= + ∀ ∈∫ ∫ ∫Lw σ   w g   w L σ    w
e e t

T T T T

n

V V S

dV dV dS           (11.12) 

 

Note that, equation (11.12) is equivalent to equation (11.8) as the weight function is any arbitrary function.  

Subsequently, after introduction of the Neumann boundary condition ( )=L σ  t   T

n ton S this changes to: 

 

( ) ν= + ∀ ∈∫ ∫ ∫Lw σ   w g   w t    w
e e t

T T T

V V S

dV dV dS             (11.13) 

 

The latter equation is the weak form of the governing equilibrium relation.  

 

Aforementioned, miscellaneous weight functions are to be chosen to complete the weak form formulation. 

However, one weight function may give better results than another. Hence, to find the best possible solution 

to the weak form inv olves the selection of proper weight functions. Common choices are called point 

collocation (impulse functions selected as weight functions, Burden and Faires [19]), subdomain collocation 
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(each weight function equal unity over a specific region, Burden and Faires [19]) and, in particular, the 

Galerkin method. Basically, the (Bubnov-)Galerkin method chooses the shape functions as weight 

functions: = w   Nj j . The Galerkin method is beneficial as it provides some numerical advantages. I.e. the 

weight functions are already  there, the stiffness matrix often ends up symmetric and the method gives good 

approximations (Galerkin orthogonality). It can be prov en that the Galerkin method is optimal in strain 

energy terms, Bathe [3]. 

 

Virtual Work  

 

When applied for structures in the continuum mechanics, the finite element procedure is closely related to 

the concepts of energy  and virtual work. In fact, the principle of v irtual work is a simpler way of introducing 

the equilibrium relations (11.8) and (11.9). The exact solution of the equations (11.8) and (11.9) is found if for 

ev ery variation δ of the virtual displacement u the following relation is satisfied: 

 

( ) ( )δ δ+ + − =∫ ∫
TL σ  g u    u L σ  t   

t

T T T

n

V S

dV dS 0            (11.14) 

 

Applying Gauss’ theorem for partial integration in more dimensions to transform the internal equilibrium of 

equation (11.14) to a v olume integral and a surface integral, yields after some equating: 

 

( )δ δ δ= +∫ ∫ ∫ε σ    u g   u t
t

T T T

V V S

dV dV dS             (11.15) 

 

The latter equation is the well-known equation of virtual work. Note that, when the weight functions of the 

weighted residual method are considered to be a variation of the virtual displacement (w =  δu) and the 

virtual strains are described by δ δ=ε  L u  equation (11.13) is equivalent to the virtual work equation. Thus, 

the virtual work equation represents the weak form of the governing equilibrium relations (11.8) and (11.9). 

In general, it can be stated that, there is a close relation between weak forms and virtual work for a wide 

range of problems.  

 

Variational Principles 

 

The variational approach of establishing the governing equilibrium equations is based on the calculation of 

the total potential ∏  of the system and to inv oke stationarity, i.e. δ ∏ = 0 . The total potential can be defined 

by  an integral form (which e.g. represents the equilibrium of a continuum problem): 

 

∂ ∂   ∏ = +   ∂ ∂   
∫ ∫

u u
F u    E u

e tV S

, , ... dV , ,... dS
x x

           (11.16) 

 

Herein, u is the unknown displacement function and F and E are specified differential operators.  
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The solution to equation (11.16) is a function u which makes ∏  stationary with respect to small changes δu. 

Substituting the approximate displacement field defined by equation (11.4) into equation (11.16) yields: 

1 2
1 2

δ δ δ δ∂ ∏ ∂ ∏ ∂ ∏
∏ = + + + =

∂ ∂ ∂
 u   u     u   
u u u

n

n

..... 0            (11.17) 

 

This being true for any variations δu yields a set of equations: 

 

1

∂ ∏ 
 ∂ ∂ ∏  = =

∂  ∂ ∏ 
 ∂ 

u

   
u

un

.... 0               (11.18) 

 

From equation (11.18) the parameters ui are found. The process of finding stationarity with respect to the 

trial functions u is called the Rayleigh-Ritz method, Burden and Faires [19]. 

 

The equations listed above need to be of an integral form necessary for the finite element approximation as 

∏  is given in terms of v olume and boundary integrals. Hence, if ∏  is a quadratic form (a scalar, quadratic 

function of a vector), equation (11.18) reduces to a linear form similar to equation (11.1), thus: 

 

∂ ∏
≡ + =

∂
  Ku  p  

u
0             (11.19) 

 

Generally, two types of variational principles can be distinguished; natural and contrived variational 

principles. Natural variational principles refer to situations in which the physical aspects of the problem, 

such as minimisation of total potential energy to achieve equilibrium, can be stated directly in a variational 

principle form. In the latter case natural variational principles are closely related to the Galerkin method and 

the method of virtual work. Hence, the weak form can also be addressed as a variational form. 

Unfortunately, natural variations do not exist for all continuum problems. Contrived variational principles 

refer to situations in which natural variations do not exist. A variational principle can, however, still be 

constructed for any  differentially specified problem either by extending the number of unknown functions u 

by  additional variables known as Lagrange multipliers or, alternatively, by procedures such as using Penalty 

functions (force a function to stay inside a region determined by a constrained equation, while minimising 

the total potential, Bathe [3]) or the Least Square method (minimises a new error term defined as the 

volume integral of the squared residual, Burden and Faires [19]) which, opposite to Lagrange multipliers, do 

not posses the drawback of increasing the total number of unknowns, Zienkiewicz and Taylor [88]. Least 

Square approximations can also be used to minimise an error term based on the residual of the weighted 

residual approach. 
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The finite element procedure, discussed so far, is summarised in Figure 11.4, by Zienkiewicz and Taylor [87]. 

 

 

Figure 11.4. Finite element approximation, Zienkiewicz and Taylor 2000 

 

In the Figure the dotted lines indicate a close relationship between the methods. The result at the end of each 

procedure is the weak form of equilibrium ready to solv e.  

 

11.2.6 Numerical Integration 

 

To solv e the weak form of equilibrium still inv olves the construction of the right hand side vector (discussed 

later) and the stiffness matrix by applying numerical integration ov er the elements. Basically, numerical 

integration is the approximate computation of a definite integral, e.g. an area under a graph or a v olume 

under a surface. In the case of structural finite element analy sis, the graph or volume represents the material 

properties of an element and integration leads to the element stiffness matrix.  

 

Within the elements the stiffness integrand is determined with respect to a number of specific integration 

points, part of an integration scheme, and then weighted and summed to obtain the v olume total value. The 

weight function is dependent on the chosen integration scheme as each integration point represents a certain 

ascribed, weighted, v olume part of the total element volume. Depending on the number of integration 

points, the position of the integration points and the appropriate corresponding v olumes, the integration is 

more or less accurate. Obviously, it is a trivial demand that the integration points are equally scattered over 

the element. Two schemes which frequently arise in finite element analysis are Newton-Cotes and Gauss 

integration. The system stiffness matrix is computed by  looping over each element and within each element 

looping over the individual integration points. 
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With respect to the chosen integration scheme, the concept of reduced integration is introduced. Until now, 

there was referred to full integration as the stiffness matrix was assumed to be integrated exactly. However, 

the displacement formulation of finite element analy sis produces a strain energy lower than the exact strain 

energy of the model considered, which means that the system stiffness is overestimated. Countering the 

ov erly stiff behaviour (caused by the finite element discretisation) the idea is to not evaluate the stiffness 

matrix exactly  in the numerical integration but to use less integration points than needed to soften the 

element, Zienkiewicz and Taylor [88]. This so-called reduced integration causes higher order polynomial 

terms to vanish at the low-order Gaussian points so that they  do not make any contribution to the strain 

energy. The application of reduced integration also has the advantageous property of lowering 

computational time and is effective in overcoming numerical difficulties such as locking (discussed later). 

 

 

Figure 11.5. Deformation modes of an element 

 

Disadvantageous of reduced integration is the danger that spurious modes or hourglass modes may  arise, 

Bathe [3]. A spurious mode is an instability mode of an element, referring to a nodal displacement vector 

that is not a rigid-body  motion but nevertheless produces zero strain energy. Hence, there is also referred to 

zero-energy modes. Using reduced 1-point Gauss integration, mode 1, 2 and 3 of Figure 11.5 are rigid body 

motions, 4, 5 and 6 are non-zero energy modes, but 7  and 8 are zero-energy modes as the single Gaussian 

point does not notice the deformation modes (normal strains and the shear strain are zero in the centre of 

the element). Using full 4-point Gauss integration, the zero-energy modes disappear. Spurious modes 

indicate that the solution of the problem is not unique, and the global stiffness is singular or nearly singular. 

A test for the spurious modes is to calculate the eigenvalues of the stiffness matrix. The number of zero 

eigenvalues indicates the number of rigid body modes, modes which do not contribute to the energy. If there 

are more zero eigenvalues than there should be on the basis of the number of translations and rotations, 

there are spurious modes. A more practical test is to observe the mesh of the deformed structure.  

 

11.2.7  System Stiffness Matrix 

 

The stiffness matrix which results from the finite element approximation has a rank equal to the total 

number of unknown nodal degrees of freedom. The matrix is in general a sparse banded matrix with, caused 

by the spatial connectivity of the elements and the compact support of the shape functions, an irregular 

cluster of non-zero elements near the diagonal. A graphical representation is illustrated in Figure 11.6. As 

rigid body motions of the structural domain are assumed to be suppressed, the matrix is stated to be regular.  
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Figure 11.6. Graphical  representation of a sti ffness matrix, Wells 2004 

 

The special properties of the stiffness matrix of a linear elastic problem offer a number of advantages in the 

solution process. Because the matrix is a sparse banded matrix, computational time (and storage 

requirements) can be saved by storing only the diagonal non-zero elements. Furthermore, as the matrix is 

symmetric, storing only the terms at the diagonal and above the diagonal is sufficient.  

 

11.2.8 Right Hand Side Vector 

 

Besides the stiffness matrix, the external force column, or right hand side (RHS) vector, consisting of 

element loads and external nodal forces, must be determined. Element loads refer to the contribution of the 

element body forces, the element surface tractions, and element initial stress and strain contributions, 

DIANA User’s Manual [29]. In general, all the element loads are transferred to equivalent nodal forces and 

subsequently assembled and added to the nodal force column. Therefore, the body  forces are determined by 

numerical integration ov er the elements. The surface tractions result from external boundary loading, known 

at the places where the natural boundary conditions are prescribed. The surface tractions received from 

neighbouring elements are eliminated because of the third law of Newton. 

 

 

11.3 Linear Finite Element Procedure 

 

Linear analysis is the most elementary finite element procedure. In linear analysis the relation between a 

force vector and a displacement vector is linear, an idealisation of the nonlinear reality. Using the finite 

element method, the displacement vector is discretised and represented by nodal variables and shape 

functions. The linear analysis inv olves the calculation of the discretised displacement vector that equilibrates 

the internal and external forces.  

 

11.3.1 Virtual Work Formulation 

 

The linear finite element procedure can be formulated using the principle of virtual work, which represents 

the weak form of the equilibrium relations. Aforementioned, the principle of virtual work states that an 
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elastic structure is in equilibrium if for any virtual displacement δu the virtual work is equal to the virtual 

strain energy: 

 

( )δ δ δ= +∫ ∫ ∫ε σ    u g   u t
t

T T T

V V S

dV dV dS            (11.20) 

 

Or, written as a summation over ne elements: 

 

1 1 1

δ
= = =

= +∑ ∑ ∑∫ ∫ ∫ε σ   u g   u t
e e e

e e t

n n n
T T T

e e
e e eV V S

dV dV dS            (11.21) 

 

Opposite to equation (11.20), the discretised equation (11.21) imposes some restrictions on the displacement 

functions. This can be explained by examining element equilibrium of the equations (11.8) and (11.9) for 

ev ery variation δ of the virtual displacement u: 

 

( ) ( )δ + − − =∫ ∫u L σ  g    L σ  t    
e e

T T T

e n e

V S

dV dS 0            (11.22) 

 

Equation (11.22) is only valid if all derivatives of u and σ are finite through V. In general, the stresses do not 

achieve continuity across element interfaces, however, if the shape functions are such that they provide in 

matching nodal displacements at the interface of neighbouring elements, then continuity of stresses in the 

mean is met, DIANA User’s Manual [29]: 

 

( )δ
+

− − =∫ u L σ   L σ  t   
ei j

T T T
en i n j

S

dS 0             (11.23) 

 

Herein, te is the contribution of the external applied loads. Equation (11.23) is another approximate 

expression of satisfying equilibrium, and therefore, equation (11.21) is valid only within a single element up 

to its boundaries. If the displacements satisfy equation (11.21) the integrations can be performed over the 

element v olumes and surfaces safely. Introducing relation (11.4) and (11.6) into (11.22) yields for an 

individual element: 

 

δ δ δ= +∫ ∫ ∫u B σ    u N g    u N t  
e e e

T T T T T T

e e e e e

V V S

dV dV dS           (11.24) 

 

If the integral of the element boundary  tractions is replaced by  a kinematically  equivalent nodal force vector 

re which corresponds to ue, reordering of (11.24) leads to: 

 

δ δ
 
 − =
 
 
∫ ∫u B σ   N g    u r
e e

T T T T

e e e e

V V

dV dV            (11.25) 

 

As equation (11.25) must be valid for all virtual displacements, the equilibrium can be rewritten to: 
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− =∫ ∫B σ   N g    r
e e

T T

e e

V V

dV dV             (11.26) 

 

Note that, equation (11.26) is valid for any stress-strain relation (linear and nonlinear). 

 

11.3.2 Stiffness Matrix Formulation 

 

If the stress-strain relation is linear, i.e. ( )= − +σ  D ε  ε   σ0 0  equation (11.26) is equal to: 

 

+ =K u   p   re e e e               (11.27) 

 

Herein, the element stiffness is defined as = ∫ K   B DB 
e

T

e

V

dV and the element contribution to the force vector 

is equal to = − +∫ ∫ ∫ p   N g    B Dε    B σ  
e e e

T T T

e e 0 0

V V V

dV dV dV . 

 

If the displacement approximate relation (11.4) and the discrete strain-displacement relation (11.6) are 

substituted into equation (11.21) a similar expression can be found as summation over the elements, thus: 

 

1 1 1 1

δ δ δ δ
= = = =

   
   = + + −
   
   

∑ ∑ ∑ ∑∫ ∫ ∫ ∫ ∫u B DB  u  u N g   u N t   u B Dε  B σ   
e e e e

e e t e e

n n n n
T T T T T T T T T

e e e e e e e 0 0
e e e eV V S V V

dV dV dS dV dV      (11.28) 

 

Then, the sy stem stiffness matrix can be defined as: 

 

1=

= ∑K  T K T
en

T

e e e
e

              (11.29) 

 

Herein, the element stiffness matrix is defined as = ∫ K   B DB 
e

T

e

V

dV  and the matrix T transforms the element 

stiffness from local (element) to global coordinates. 

 

11.3.3 Assembling RHS Vector 

 

The right hand side vector is composed out of element loads and the contribution of the external nodal 

forces pc . The element loads are added to the external nodal force vector after integration over the elements. 

In the DIANA User’s Manual [29], they are defined as: 

 

1=

= ∑ ∫p   T N g  
e

e

n
T T

g e e
e V

dV  Contribution of the element body forces 

1=

= ∑ ∫p   T N t  
e

e

n
T T

t e e
e S

dS  Contribution of the element surface tractions 
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1
ε

=

= ∑ ∫p   T B Dε  
e

0

e

n
T T

e e
e V

dV  Contribution of the element initial strains  

1
σ

=

= ∑ ∫p   T B σ  
e

0

e

n
T T

e e
e V

dV  Contribution of the element initial stresses  

 

The right hand side vector can, thus, be expressed as: 

 

ε σ= + + − +
0 0g t cp  p  p  p  p  p            (11.30) 

 

11.3.4 Equilibrium 

 

After applying the theorem of v irtual displacement the weak equilibrium equations of the element 

assemblage are: 

 

=Ku  p                (11.31) 

 

Herein, p is described by equation (11.30) and the stiffness matrix K by equation (11.29). Finite element 

programs approximate the displacements u either direct of iteratively. This is discussed in section 11.4. 

 

 

11.4 Nonlinear Finite Element Procedure 

 

In practice, the range of linear structural response is rather limited and the physical (e.g. plasticity, creep, 

viscoelasticity) and geometrical (large deformations, large strains) behaviour may become nonlinear. 

Moreov er, boundary nonlinearity (contact, nonlinear supports or opening/closing of gaps) may occur 

(however, not further discussed here). For a realistic assessment of the structural behaviour these nonlinear 

effects must be incorporated. In particular in situations such as research, the assessing of existing structures 

or to establish the cause of a structural failure. Hence, there is a need for finite element procedures which are 

able to bring into account for nonlinearities.  

 

In nonlinear finite element analy sis the relation become nonlinear and the displacements often depend on 

the displacement at earlier stages. Similar to the linear analysis, in nonlinear analysis a displacement vector 

is to be found that equilibrates the internal and external forces. However, in nonlinear analysis the solution 

vector cannot be calculated right away. To determine the state of equilibrium the problem is not only made 

discrete in place (with finite elements) but also in time (with increments). Hence, the nonlinear problem can 

be formulated as to find a displacement increment (step) such that there is equilibrium of external and 

internal forces in the increment.  

 

Thus, the objective is to calculate a displacement vector which satisfies equilibrium between the internal and 

external force vectors, satisfying the essential boundary conditions: 
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=p   pint ext               (11.32) 

( )0=u   u       i i i prescribed                   (11.33) 

 

In nonlinear analysis the internal force vector depends nonlinearly on the displacements (nonlinear 

elasticity) or on the displacements in the history (plasticity). The external force vector can also be dependent 

of the displacements, e.g. in case of the magnitude or direction of loading being depending on the 

displacements, DIANA User’s Manual [29]. Therefore, relation (11.32) must be rewritten to: 

 

( ) ( )=p u   p uint ext,history              (11.34) 

 

To solv e the above relation, the system must be discretised in space (the finite elements) and in time. 

Starting at time t with a corresponding approximated solution tu, a solution t+∆tu is searched that complies 

with equation (11.34). For each time increment, only the displacements at the beginning and at the end are 

known. The internal force vector of equation (11.34) is calculated from the situation at time t, the time 

increment ∆t and the displacement increment ∆u. The external forces are determined by the current 

geometry. For one time step, equilibrium only depends on the displacement increment ∆u. Thus, the 

nonlinear problem involves the search for ∆u such that: 

 

+∆ = + ∆tu  u  ut t               (11.35) 

 

Thus, equation (11.32) transforms to: 

 

( ) ( ) ( )∆ = ∆ − ∆ =g u   p u   p u   0ext int             (11.36) 

 

Herein g(∆u) stand for the residual force vector or out-of-balance force vector which has to be zero for the 

exact solution. Starting at time t we can increment the time with a number of increment until the desired end 

value t is reached. 

 

To achieve equilibrium at the end of the increment, we can use an iterative solution algorithm; the 

combination is called an incremental-iterative solution procedure. This is discussed in Section 11.5. 

 

11.4.1 Physical Nonlinearity 

 

Physical nonlinearity  refers to nonlinear material behaviour, i.e. the constitutive relationship between the 

stresses and strains is nonlinear. Physical nonlinear behaviour can be categorised by its variation in time. 

Time independent physical behaviour refers to effects such as cracking, plasticity and nonlinear elasticity 

whereas time dependent behaviour deals with creep, shrinkage, viscoelasticity and viscoplasticity. In finite 

element programs the physical nonlinear behaviour is modelled in so-called material models. They are 

discussed later in Section 11.11. 
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11.4.2 Geometrical Nonlinearity 

 

In a geometrical nonlinear analy sis large deformations and rotations are accounted for. Two convenient 

types of geometrical nonlinear descriptions are a Total Lagrange and an Updated Lagrange description. 

Basically, both descriptions are conceptually identical but they use different type of reference geometry for 

their stress and strain measures. In a Total Lagrange description the stress and strain measures are defined 

with reference to the undeformed geometry. According to Crisfield [25], a Total Lagrange description is 

useful if rotations and displacements are large and strains are small, and is even obligatory for large strain 

hyper-elastic (rubber) material behaviour. Opposed to the Total Lagrange description, an Updated Lagrange 

description uses an updated reference geometry (e.g. last known equilibrium state). An Updated Lagrange 

description can be used advantageously in case of large plastic deformations, Crisfield [25].  

 

It must be pointed out that, the choice of geometrical nonlinear description determines the stress and strain 

measures that will be used. In order to correctly describe large deformations and rotations in a Total 

Lagrange description, the small strain formulation used in Chapter 5 is insufficient and the strains must be 

determined according to the Green-Lagrange formulation. The Green-Lagrange strain tensor (or short, 

Green strain tensor) gives deformations exact for any size deformation independent of rigid body  motions. 

The Green strain tensor E is defined as: 

 

( )= ⋅ −t t T tE  F   F  I1
0 0 02

             (11.37) 

 

Herein F represents the deformation-gradient matrix and I the identity matrix.  

 

Just as new strains are needed, new stress measures are needed; the small-stress definition ‘force over area’ 

is not unique in geometrical nonlinear analy sis as the area may change in magnitude and/or direction. The 

stress measure that is energy conjugate to the Green strain tensor is the second Piola-Kirchhoff stress tensor. 

In very simple terms it can be said that the second Piola-Kirchhoff stress is force of original area and is 

related to the original configuration. Hence, a Total Lagrange description requires second Piola-Kirchhoff 

stress representation. Contrary, Updated Lagrangian formulations strictly require Cauchy stress 

formulation, which can be defined as force ov er final area and is related to the deformed configuration. The 

energy conjugate of the Cauchy  stress is the linearised strain. With respect to the Updated Lagrange 

description, it must be mentioned that, although large displacements, rotations and strain are described 

correctly, still a constitutive relation appropriate for large strain behaviour has to be used, DIANA User’s 

Manual [29]. 

 

As denoted by Bathe [3], second Piola-Kirchhoff stresses have little phy sical meaning and, in practice, 

Cauchy stresses must be calculated. The second Piola-Kirchhoff stress tensor S is related to the Cauchy 

stresses σ by: 

 

= ⋅ ⋅ ⋅t t t - t t -
tdetS  F  F   σ  F1 1

0 0 0 0
            (11.38) 
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Generally, the finite element program will execute the transformation and the user may ask for Cauchy 

stresses independent from the chosen formulation. 

 

 

11.5 Solution Procedures for Static Linear Analysis 

 

To obtain the approximated displacements, stresses and strains a solution to the linear system of equations 

needs to be performed. The solution of this sy stem of equations is usually the most computation intensive 

part in the finite element analysis and the overall effectiveness largely depends on the numerical procedures 

used. Basically, there are two different classes of methods for the solution. In a direct solution method the 

equations are solved using a number of steps and operations that are predetermined in an exact manner, 

whereas iteration is used when an iterative solution method is employed. At present, direct techniques are 

employed in most cases, but for very large systems iterative methods can be more effective, Bathe [3]. 

 

11.5.1 Direct Procedures 

 

Direct solvers obtain the exact solution of the displacement vector in a known number of steps (floating 

point operations), subject only to roundoff error. The most effective direct solution methods currently used 

are essentially applications of Gauss elimination, Bathe [3]. The basic procedure of Gauss elimination is to 

reduce the equations to an upper triangular coefficient matrix from which the unknowns can be calculated 

by  back-substitution. A commonly used Gaussian’ method, however, under the guise of a matrix 

factorisation, is LDU-decomposition. The LDU-decomposition divides the stiffness matrix into three 

matrices, the lower triangular matrix L, the upper triangular matrix U and the diagonal matrix D, from 

which the product is equal to the original matrix. The advantage of LDU-decomposition (or LDLT in case of 

a positive-definite symmetric matrix) is that the triangular matrices can be solved apart from each other by 

simple and fast successive forward and backward-substitution. For specific (e.g. sparse, symmetric and 

positive-definite such as for linear elastic problems) systems the direct solver algorithm can be modified. 

Examples are the Generalised Element method, based on a combined wavefront (active rows during the 

elimination of the i-th equation)-super-element technique, and the (Sparse) Cholesky decomposition 

method. The Cholesky method (DIANA default) is optimised for cache based memory  access and is superior 

to all other methods; however, it needs more primary memory, DIANA User’s Manual [29].  

 

The efficiency of solving large systems of equations with direct methods is governed by the pattern of 

nonzero elements in the matrix. Therefore, ordering techniques have been developed to reorder the 

equations so as to increase the effectiveness of the numerical solution process. Ordering techniques refer to 

row-column interchanging in the matrix (pivoting) in order to limit the bandwidth and minimise fill-in 

elements (elements that originally  are zero but become nonzero, Bathe [3]). Especially when a sparse solver 

(not operating on elements that remain zero throughout the solution) is involved, ordering algorithms play a 

major role to decrease the number of fill-ins. Ordering is also used to minimise effects of roundoff error 

between large and small terms on the diagonal. When dealing with symmetric positive-definite matrices, 

Gauss elimination can be done without row interchanges. Moreover, the computations are stable with 

respect to the growth of roundoff errors. 
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11.5.2 Iterative Procedures 

 

Disadvantageous of the ‘robust’ direct solvers are the long computational time needed for solving very large 

problems and the amount of storage required. Therefore, alternatively, iterative solvers can be used which 

require less storage as only the nonzero matrix elements are stored and operated on, Bathe [3]. The basic 

idea behind iterative solvers is to create a sequence of initial approximations to the displacement vector and, 

from there, approach to the exact solution by successive iteration: 

 

( )1 γ+ = + −u   u   p  Kui i i i              (11.39) 

 

Herein, − =p  Ku   ri i  represents the residual which must converge to zero (or the desired accuracy). 

 

Historically, iterative solvers have been employ ed during initial developments of the finite element method, 

though abandoned in the 60s and 70s as the number of steps to achieve convergence is impossible to 

calculate in advance, Bathe [3]. Besides that, ill-conditioned matrices, which often occur in structural 

mechanics, show slow convergence. 

 

Examples of iterative solvers are the Gauss-Seidel method (not offered by DIANA), the Conjugate Gradient 

method and Generalised Minimal Residual algorithm. The iterative methods differ in the way the iteration 

parameters γ i are computed, DIANA User’s Manual [29].  

 

The Conjugate Gradient (CG) method is the most popular method used today. It is the best method involving 

sy stems with a symmetric positive-definite matrix, significantly reducing the number of iterations in 

compare to the other methods, DIANA User’s Manual [29]. The CG method is based on the variational 

principle idea that the solution of Ku  = p minimises the total potential. Recapitulate, the linear total 

potential is a quadratic form defined as ∏ = −1
2

   u Ku  u pT T .  If K is symmetric and positive-definite, ∏ is 

described by  a paraboloid bowl and is minimal at the solution of Ku =  p. Hence, when the gradient of ∏  is 

zero, the solution is found.  The CG algorithm iterates to the zero gradient by selecting a set of K-conjugate 

(or K-orthogonal) search directions di ( =d Kd   T

i j 0 ) for which each search direction is orthogonal to all 

previous ones (in the n x n dimensional space of the matrix). If each step is orthogonal to all previous ones, 

the next step represents the orthogonal residual of all previous ( 1+ =d r   T
i i 0 ). In fact, if the residual is 

orthogonal to all previous search directions, it is also orthogonal to all previous residuals ( =r r   T

i j 0 ). Storing 

all previous residuals is, however, costly. By making clever use of the symmetry of K the CG algorithm uses 

only the residuals of the two previous iterations obtaining the same result. The new displacement can be 

defined as 1+ = + u   u   α d  i i i i wherein = α   r r d KdT T
i i i i i/ . For optimal use, preconditioners must be used to 

improve the condition number of the stiffness matrix. If the stiffness matrix is not positive-definite (e.g. non-

symmetry) the Conjugate Gradient method need not converge, DIANA User’s Manual [29]. 

 

For non-symmetric systems other iterative schemes like the more generally applicable Generalised Minimal 

Residual (GMRES) method have been developed. In the GMRES method the iteration parameters are 
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computer by orthogonalising the residual explicitly  against all previous residuals. Disadvantageous is the fact 

that all previous residuals must be stored and that the number of iterations increases per iteration, similar to 

the CG method. GMRES differs from the CG method in the way that the iteration is restarted after a fixed 

number of iterations is added to the basis instead of only the two previous ones, DIANA User’s Manual [29].  

 

The key to effective iterative solvers is to reach convergence within a reasonable number of iterations. Of 

major importance in the iterative scheme are precondition procedures to speed up the rate of convergence 

when slow convergence is observed. Basically, the rate of convergence depends on the matrix condition and 

preconditioners provide in a more favourable eigenvalue distribution. Various preconditioners have been 

proposed, but particularly effective is the use of some incomplete Cholesky factors of K (or the more general 

Incomplete LU-decomposition or ILU preconditioning) or Jacobi preconditioning. Incomplete LDU-

decomposition only factorises non-zero elements larger than a given threshold parameter and, thus, 

approximates K by  the product of incomplete upper and lower diagonal matrices. Jacobi preconditioning 

refers to a scale process of the stiffness matrix with its own diagonal matrix for problems with a diagonally 

dominant stiffness matrix. Hence, the resulting matrix is equal to the inverse of the diagonal of the original 

matrix and good-conditioned. In the preconditioning process it is not necessary to reorder the stiffness 

matrix as preconditioning does not depend on the ordering of the equations.  

 

11.5.3 General Remarks 

 

It is observed that ill-conditioned matrices show slow convergence in case of iterative solution procedures.  

Aforementioned, this is often the case for beam, plate and shell elements. An ill-conditioned linear sy stem is 

also susceptible to rounding errors which may ruin the solution. This is the case for as well iterative as direct 

solv ers, but more hidden for direct and therefore even more dangerous.  

 

 

11.6 Solution Procedures for Static Nonlinear Analysis 

 

Nonlinear problems are successfully solved using an incremental-iterative solution procedure as a purely 

incremental procedure (explicit process) only leads to accurate solutions with very small step sizes. The 

combination with an iterative procedure, which is implicit, allows for larger steps sizes as it effectively 

reduces errors. Basically, the incremental-iterative solution procedure for a nonlinear problem involves the 

solution of a linear set of equations at every iteration with a ‘reasonable’ stiffness matrix. Both the 

incremental and the iterative procedures can be discussed separately.  

 

11.6.1 Iterative Procedures 

 

Essentially, the general procedure for all iteration processes is the same as it involves the adaptation of the 

total displacement ∆u iteratively by iterative increments δu until convergence is reached up to the desired 
degree. Thus, the incremental displacement at iteration i +  1 is defined as: 
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1 1δ+ +∆ = ∆ +u   u   ui i i             (11.40) 

 

Each iteration procedure differs in the way the iterative increment is computed. The iterative increment is 

calculated from a stiffness matrix and the out-of-balance force vector gi at the start of the iteration i: 

 

1δ −=u   K gi i i               (11.41) 

 

The stiffness matrix represents a linearised form of the equilibrium relation between the internal and 

external force vector. The way in which the stiffness matrix is derived categorises the different schemes. 

Well-known iteration schemes are Constant and Linear Stiffness and Regular and Modified Newton-

Raphson.  

 

Iteration Schemes 

 

To illustrate the iteration procedure Regular Newton-Raphson and Modified Newton-Raphson are 

illustrated in Figure 11.7. The Regular Newton-Raphson iteration evaluates a tangential stiffness matrix at 

ev ery  iteration. Thus, the stiffness matrix in equation (11.41) is based on the last known situation which may 

be a non-equilibrium situation. Regular Newton-Raphson has the advantage of fast, quadratic, convergence, 

however, is less efficient as it repetitively needs to set-up and decompose (only when using a direct solver) 

the stiffness matrix at every iteration. Hence, the iterations becomes relatively time consuming. 

 

 

Figure 11.7. Regular (left) and Modified Newton-Raphson iteration, DIANA User’s Manual  2005 

 

Modified Newton Raphson only derives the tangent stiffness matrix every increment which consequently 

results in a larger number of iterations. Each iteration can be performed faster as it is not necessary to repeat 

the costly decomposition. Modified Newton-Raphson may still converge in situations where the Regular 

Newton-Raphson method does not, DIANA User’s Manual [29]. 

 

Some other schemes offered by DIANA may in short be characterised by the way they evaluate the stiffness 

matrix. Linear Stiffness uses the linear stiffness matrix at every iteration, resulting in a very robust but slow 

convergence scheme. Constant stiffness uses the same stiffness matrix as results from the previous 

increment, which may be one of the methods described above. Continuation schemes use the displacements 

of the previous increment as a first prediction for the current increment and Quasi-Newton (or Secant 

method) determines the stiffness from known positions at the equilibrium path. Note that, if the Quasi-

Newton scheme is used for a sy stem with more than one degree of freedom, the secant stiffness is not unique 
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and the stiffness matrix must be computed using methods such as Broyden, BFGS (Broy den, Fletcher, 

Goldfarb and Shanno) and Crisfield. These methods use the previous secant stiffness and so-called update 

vectors to determine the inverse of the new (unique) stiffness matrix (via the Sherman-Morrison formula 

which computes the sum of a regular matrix and a dyadic product of a column and row vector). In 

combination with the global selected iteration method, Line Search algorithms may be applied to stabilise 

the convergence (Line Search ensures a ‘reasonable’ prediction close to the equilibrium path) or increase the 

speed. Basically, the Line Search algorithm reads the out-of-balance force and checks whether a better 

solution can be found by a try solution of small interpolated displacement steps. 

 

Convergence Criteria 

 

Similar to linear iteration procedures, the number of iterations depends on the desired accuracy of the final 

solution. To stop the iteration there are several convergence criteria. The iteration is also stopped at a 

specified number of maximum iterations or when divergence occurs. The convergence criteria are force, 

displacement or energy based and illustrated in Figure 11.8. The force norm checks the out-of-balance force 

norm of the current iteration against the out-of-balance force norm of the previous iteration. The 

displacement norm compares the norm of the current displacement with the norm of the displacement 

increments in the first prediction of the increment. The energy norm checks the ratio between the current 

and previous energy norm, composed out of the internal forces and relative displacements. The force norm 

immediately knows whether divergence or convergence occurs, all other require one additional iteration. 

 

 

Figure 11.8. Norm items, DIANA User’s Manual  2005 

 

The question of which convergence criteria is the best option for a particular problem cannot be answered 

directly. In general, it is the best option to select a norm in which the reference value (ratio denominator) is 

not close to zero, DIANA User’s Manual [29]. It is important to put the convergence criteria strict enough, 

i.e. the discrepancy between the iterated and actual equilibrium point is passed on to the next increment. 

 

11.6.2 Incremental Procedures 

 

The iterative part is combined with an incremental procedure. Most typical incremental procedures are the 

Load and Displacement controlled methods, discussed first. A more powerful method is the Arc-length 

method, capable of handling heavy nonlinear material behaviour.  
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Load and Displacement Control 

 

The Load and Displacement Control are the most basic incremental procedures. The iteration processes 

discussed in Section 11.6.1 are an example of load controlled methods as at the start of an increment, the 

external load vector is directly increased. Besides load controlled incremental methods there are 

displacement controlled methods which were introduced to ov ercome difficulties with limit points. At the 

start of an increment, the displacement is prescribed. Both methods are illustrated in Figure 11.9. 

 

 
 

Figure 11.9. Load control  (left) and displacement control , DIANA User’s Manual  2005 

 

In load control the load is kept constant during a load step and in the displacement control the displacement 

is kept constant during increment. 

 

Arc-length Control 

 

For structural sy stems which experience limit point snap-through or snap-back behaviour, see Figure 11.10, 

both the load control and the displacement control lead to error. E.g. the tangent stiffness becomes singular 

in limit points. To ov ercome these problems the arc-length method, originally developed by Riks (1972; 

1979) and Wempner (1971) and later modified by others, can be used.  The arc-length method modifies the 

load-factor at each iteration so that the solution follows some specified path until convergence is achieved.  

All iteration schemes described above may be combined with the arc-length control method. 

 

 
 

Figure 11.10. Arc-length  control  on snap-through  (left) and snap-back, DIANA User’s Manual  2005 

 

In the arc-length method a variable load-factor is introduced in the equilibrium equation of a nonlinear 

sy stem. Then the method is aimed to find the intersection of the new equilibrium equation with constant ∆ l 

termed as the arc-length. Arc-length methods that have been developed differ in the way the iterations are 

banded and the way  the tangential stiffness matrix is used, i.e. the way  in which the tangent stiffness matrix 

is derived and whether or not the tangential stiffness matrix is updated each iteration.  
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DIANA offers updated normal plane and spherical path arc-length control. Originally, the work of Riks and 

Wempner include an iterative change orthogonal to the predictor solution. Each iteration is banded by this 

so-called normal plane which is updated every new step, Crisfield [25]. Hence, the method is referred to as 

the Updated Normal Plane arc-length method. The method is seen in Figure 11.11. Crisfield (1981, 1983; 

1984) developed a method in which a constraint equation is introduced which forms a circular constraint. 

The proposed technique is termed as cylindrical path arc-length method for one-dimensional problems and 

was later modified to the spherical path arc-length method for higher-dimensional problems. Hence, the 

spherical path arc-length is sometimes referred to as the Arc-length Crisfield method, Memon et al. [60]. 

The spherical constrained arc-length method is also seen in Figure 11.11. 

 

 

 

Figure 11.11. Updated normal  plane (left) and spherical  path  (right) arc-length  method 

 

The either spherical (quadratic terms included) or updated normal plane (only linear terms) constraint 

approximately yield the same result. More important is the choice for the value of the arc-length. Generally, 

for the first increment the trail load-factor is assumed to be 1/5 or 1/10 of the total load. Further increments 

determine the load-factor according to the rate of convergence of the solution process, Memon et al. [60]. 

The arc-length method shows faster convergence when combined with Line Searches as proven by  Foster 

(1992), Memon et al. [60]. Moreover, the arc-length method is particularly useful if combined with adaptive 

load incrementation (discussed later). The arc-length method fails if convergence is not obtained within the 

maximum number of iterations or by numerical instabilities.  

 

In case of a local collapse mechanism, De Borst and Rots (1987) introduced an indirect displacement control 

option. In the iterations of the standard arc-length method the load increment (or decrement) is scaled as a 

function of all nodal displacements. When localisation of deformation occurs, the standard method may fail 

and a selection of a limited number of displacements near the localisation in a reduced displacement 

increment vector to scale the load increment or decrement can yield better results. This is indirect 

displacement control. It differs from the standard method in that it involves a constraint equation based on a 

few dominant displacement parameters. Another option is CMOD (Crack Mouth Opening Displacement) 

control which uses a vector formed with new degrees of freedom that can e.g. simulate the difference in 

nodal displacements at a crack, DIANA User’s Manual [29].  
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Adaptive Loading 

 

Besides the choice for an incremental step control method, the incremental process also involves the choice 

for the initial step size. An optimal choice for the increment sizes is not known and cannot be fixed in 

advance. Therefore, adaptive loading is introduced which uses increment sizes dependent of previous 

results. In DIANA, adaptive loading can either be iteration based (all types of loading) or energy based (only 

for arc-length methods). Iteration based refers to a method which adapts the increment by a desired number 

of iterations, using the results of the previous increment for the increment prediction. The energy based 

method determines a load increment such that the vector product of the load increment and the 

displacement increment (the work increment) in the first prediction equals the final work increment of the 

previous step. Furthermore, adaptive loading also refers to the choice between load increments or 

decrements (loading-unloading). A simple way  is to choose based on the appearance of negative pivots in 

the global sy stem of equations as negative pivots often indicate unstable structural behaviour related with 

some type of snap-through, DIANA User’s Manual [29].  

 

11.6.3 General Remarks 

 

In nonlinear analysis it is observed that, generally, over stiff stiffness matrices lead to a slow convergence but 

are stable. Matrices which are too soft, however, will lead to divergence. Furthermore, exact tangent 

stiffnesses will lead to a fast (quadratic) convergence but might become unstable.  

 

For nonlinear analysis additional substructuring can be used. Substructuring is a standard technique in 

finite element analysis and refers to group treatment of elements as they  are a single substructure. For 

example when in non-linear analysis many  elements behave linearly, these elements can be put in a 

substructure. The internal degrees of freedom are then removed and the calculation goes faster.  

 

 

11.7 Stability Analysis 

 

Aforementioned, a property of matrices is the existence of a set of scalars which, when multiplied with the 

identity matrix, allow for the solution of ( )λ− =A  I φ   i i 0 and λ− = A  I  idet 0 . Here, φi is a corresponding 

mode shape vector. The set of scalars are called eigenvalues and the corresponding mode shape vectors are 

called the eigenvectors. The determination of eigenvalues and eigenvectors of a matrix is mathematically 

known as an eigenvalue problem.  

 

Eigenvalue problems arise in common applications such as stability analysis. In case of a stability analy sis 

the eigenvalues represent critical buckling loads and the buckling shapes are defined by the eigenvectors. In 

a stability  analysis a critical displacement (or stability point) ucrit is searched such that the internal force 

vector r(u) equilibrates the external force vector p(u) and that incremental variations δu to the solution 

exist such that the equilibrium remains satisfied, DIANA User’s Manual [29]. Thus: 
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( ) ( )=
crit cri t

r u   p u             (11.42) 

( ) ( )δ δ+ = +
crit crit

r u   u   p u   u             (11.43) 

 

Assuming δu close to ucrit equation (11.43) can be linearised as: 

 

( ) ( )δ δ∂ ∂   + ≈ +   ∂ ∂   
crit crit

crit crit

r p
r u   u  p u   u

u u
            (11.44) 

 

Subtracting equation (11.42) from equation (11.44), introducing a tangent stiffness matrix
∂ =  ∂ crit

r
 K  

u
 and 

assuming conservative loading (load not dependent of displacement) the equation can be simplified to: 

 

δ ≈K u  0               (11.45) 

 

The latter equation is the instability condition. 

 

11.7.1 Euler Stability (Linear Buckling) 

 

The Euler stability analysis verifies whether the solutions from linear elastic analysis are stable or whether 

small disturbances exist, requiring no extra external energy. An Euler stability analysis partly takes into 

account for geometrical nonlinear effects. Therefore, the tangent stiffness matrix is presented by a linear and 

a nonlinear part = +K  K   KL NLwhich can be described as: 

 

= ∫K   B DBT
L L L

V

dV  with       0 1= +B   B   BL L L   

= ∫K   B τBT
NL NL NL

V

dV              (11.46) 

 

The kinematic differential matrix B is subdivided into a zero displacement effect (BL0) and an initial 

displacement effect (BL1). Both the linear and the nonlinear matrix have up to second-order displacement 

contributions. The Euler stability analysis is, however, a linear buckling analy sis and, thus, only first order 

displacement terms are of interest. Suppose that ulin  is known from the linearised equilibrium between the 

internal force vector r(u) and the external force vector p(u): 

 

0 0 0

 
= =  

 
∫K   B DB u  pT

L L L lin

V

dV              (11.47) 

 

The question is then if there is a critical displacement satisfying equation (11.42) and (11.45) such that: 

 

λ=u   ucrit crit lin              (11.48) 
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Which results from a loading λ=p   pcrit crit , as can be shown by multiplying equation (11.47) with λcrit : 

 

0λ λ=K u   pcrit L lin crit              (11.49) 

 

Taking into account only first-order displacement terms, stored in ( )1 0 0 1= +∫
V

K   B DB   B DBT T
LL L L L L dV and 

linearising the second Piola-Kirchhoff stresses by λ≈τ  σcrit lin  leads to the approximation solution: 

 

( ) ( )( )( )0 λ δ+ + =K   K u   K u u  L crit LL lin G lin 0            (11.50) 

 

Where ( ) = ∫
V

K u   B σ BT
G lin NL lin NLdV  and 0 0 0= ∫

V

K   B DBT
L L L dV .       

 

Hence, equation (11.50) is satisfied for any incremental variation δu if: 

 

( ) ( )( )( )0 λ+ + =K   K u   K u   L crit LL lin G lindet 0             (11.51) 

 

In linear stability  analysis, the general stability  conditions of equation (11.42) and (11.43) are replaced by 

equation (11.49) and (11.51). Equation (11.51) can be written as: 

 

( ) ( )( )0 λ= − +
 

K φ   K u   K u φL i i crit LL lin G lin i            (11.52) 

 

Where 
i

φ is the i-th buckling mode and λ i is the corresponding buckling value. Note that the Euler stability 

analysis is a linearised stability  analysis and, thus, is an upper bound solution as it neglects displacement 

terms of a higher order than one. 

 

11.7.2 Generalised Eigenproblem 

 

Equation (11.52) is solv ed as a generalised eigenproblem. The generalised eigenproblem is defined by the 

equation: 

 

2ω=Kφ  Mφ               (11.53) 

 

Where, M is the mass matrix and ω is the circular natural frequency in radians per second. In stability 

analysis the generalised equation changes to the linearised problem described by: 

 

λ=Kφ  K φG               (11.54) 

 

Where, KG  is the geometric stress-stiffness matrix. Obviously, equation (11.54) is closely  related to equation 

(11.52). Solution procedures to the generalised eigenproblem are discussed in section 11.8. 
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11.7.3 Shifting 

 

An important operation involving the solution of a generalised eigenproblem is shifting. Shifting refers to a 

shift factor µ applied on the stiffness matrix which provides the eigenvalues and eigenmodes close to -µ first:  

 

� �
2

ω=Kφ  Mφ               (11.55) 

 

Where � µ= +K  K  M  and �
2

2ω ω µ= +     . Then, the actual eigenvalues are corrected by �( )2
λ ω µ= +     . Note 

that a negative shift factor is equivalent to a positive shift.   

 

Shifting may be applied to ov ercome difficulties with zero or negative eigenvalues, in case of softening 

material behaviour (when the tangent stiffness is obtained by a phy sical nonlinear analysis) where only the 

first negative eigenvalue is of interest. Furthermore, shifting may be effective in a perturbation analy sis 

where the nonlinear interaction of eigenmodes is considered (discussed hereafter) to improve the accuracy 

of the interacting eigenvalues and modes, DIANA User’s Manual [29].  

 

11.7.4 Postbuckling Analysis 

 

If the postbuckling behaviour needs to be investigated, the Euler stability analysis must be followed by a 

perturbation analysis and a continuation analysis, the finite element presentation of the Koiter initial 

postbuckling theory (see Chapter 6). The analyses describe the static initial postbuckling path in the vicinity 

of the bifurcation point by an asymptotic expansion of the displacement field around the bifurcation point. 

In fact, the analyses represent a nonlinear analysis; however, instead of a large set of nonlinear equations in 

full nonlinear analy sis, the calculation is done with a reduced number of equations. 

 

Perturbation Analysis 

 

In the perturbation, or reduced, analysis the nonlinear interaction of a (small) selection of buckling modes is 

considered which were orthogonal within the linear scheme. Basically, the perturbation analysis inv olves the 

calculation of a postbuckling displacement upb satisfying r(upb) =  p(upb) but different from the primary path 

described by u = λ ulin  with λ  the load parameter. Assuming M coinciding or nearly interacting buckling 

modes, denoted by φk  with k = 1, …, M, the (mode interacted) initial postbuckling displacement field is 

defined as: 

 

λ φ= + +
i

u   u     upb lin i i i j ja a a               (11.56) 

 

Where uij is the second-order displacement vector and ai the amplitude of the respective mode. It is shown 

by  Koiter that uij must be calculated by solving the sy stem: 

 

( )( )0 1λ λ+ =K   K u u   pL p G lin ij ij             (11.57) 
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Herein, λp ≠  1 is a user specified factor. Applying the orthogonality conditions 

 

0 =φ K u   T

k L ij  0  with k = 1, …, M            (11.58) 

 

Where, pij is defined as the mode interaction load vector: 

 

( ) ( )( )= + +∫
V

p   B σ   B φ σ   B φ σT T T
ij L0 ij NL i j NL j i dV             (11.59) 

 

Where σij is the stress related to interaction of modes i and j and σi is the stress related to mode i. Further, 

the potential can be written as a function of the load parameter λ  and the mode amplitudes ai: 

 

( ) 1
2

1

λλ
λ=

 = − + + 
 

∑         
M

i I I ijk i j k ijk l i j k l
I I

P a 1 a a A aa a A aa a a           (11.60) 

 

Wherein 1
2= ∫  σ εijk ij k

V

A dV  and 1 1
8 2= −∫  σ ε   u pijkl ij kl ij k l

V

A dV  are the third- and fourth-order potential terms. 

 

Hence, the perturbation analysis yields a potential energy function expressed in terms of amplitudes of 

modes determined by a linear stability analy sis, DIANA User’s Manual [29]. 

 

Continuation Analysis 

 

The potential function (11.60) is the basis for the calculation of the initial postbuckling nonlinear equilibrium 

equations in a stepwise approach, the continuation analy sis. The equilibrium points of the initial 

postbuckling path are indicated by terms of ai and λ.  The postbuckling displacement field upb can be derived 

using equation (11.56) using a stepwise generalised Newton-Raphson scheme.  

 

 

11.8 Solution Methods for Eigenproblems 

 

The solution of an eigenproblem inv olves the calculation of the eigenpairs (eigenvalues and eigenvectors) for 

a given matrix. For a symmetric matrix K of size n x n there are n eigenpairs. The solution for p eigenpairs 

(used specified number) can be written as = KΦ  ΦΛ  where ×  Φn p is the matrix with eigenvectors and ×  Λp p is 

a diagonal matrix with the corresponding eigenvalues.  

 

In general, all solution methods for eigenproblems are iterative. Basically, solving the eigenproblem 

λ=Kφ  Mφ  is equivalent to calculating the roots of the polynomial ( )λp , which has order equal to the order 

of K and M. Since there are for the general case no explicit formulas available for the calculation of the roots 

of ( )λp when the order of p is larger than 4, an iterative solution method has to be used, Bathe [3]. Once one 

member of the eigenpair is known the other member can be obtained without further iteration. Hence, a 
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basic question is whether first to solve the eigenvalue or the eigenvector. Another option is to solve them 

simultaneously. The best choice depends on the solution requirements and the properties of the matrices 

involved, i.e. number of eigenpairs requested, order of the matrices, bandwidth and bandedness. The 

effectiveness of a chosen solution procedure depends largely on the reliability of the procedure and the 

computational effort determined by the number of high-speed storage operations and an efficient use of 

backup storage devices. With respect to reliability one must be aware of the fact that numerical stability is by 

no means mechanical instability. 

 

The iterative solution methods can be divided into four basic procedures; Vector I teration Methods, 

Transformation Methods, Polynomial I terations and Sturm Sequence Techniques. In finite element 

programs, however, the solution procedures offered are often a combination these techniques. 

 

The basic relation of Vector Iteration algorithm can be described as λ= Kφ   Mφi i i . The aim of the method is 

to satisfy the basic relation by directly operating on it, Bathe [3]. Thus, introducing an arbitrary vector x1 for 

φi  and setting λ = 1 the basic relation changes to = R   Mx1 1  and = Kx   R2 1 . Assuming x2 an approximation 

more closely to the eigenvector than x1 it is possible to iterate to a better approximation. Some vector 

iteration methods are the Inverse I teration, Forward I teration and the Rayleigh Quotient I teration.  

 

Transformation Methods have basic properties described by =Φ KΦ  ΛT  and = Φ MΦ  IT . Where, 

[ ]=Φ  φ φ1 n, ...,  and ( )λ= =Λ   idiag , i 1, ...,n . Basically, the unique matrix Φ diagonalises K and M and is 

computed by multiplication of K and M by a matrix Pk which diagonals K and M more closely each 

iteration. Thus, + →
  

K   Λk 1  and 1+ →
  

M   Ik  as → ∞  k . At the last iteration l the eigenvector matrix is then 

[ ]=Φ  P P P1 2 l... . In practice K and M only need to converge to the diagonal form, thus, ( )+ →
  

K   Kk 1 rdiag  

and ( )1+ →
  

M   Mk rdiag . The most effective Transformation Methods are the Jacobi Method, Generalised 

Jacobi Method and the Householder QR Inverse I teration Method (HQRI), Bathe [3].  

 

Polynomial and Sturm Sequence Iteration methods have a close relationship as they both use the 

characteristic polynomials and can be employed in one solution scheme. The important property  of the 

eigenvalues of the generalised eigenproblem, i.e. that they are the roots of the characteristic polynomial, is 

the basic property of polynomial iteration. Thus, polynomial iteration methods operate on ( )λ =  ip 0 (either 

explicit or implicit) where ( ) ( )λ λ= −   K  Mp det . In combination with a polynomial iteration, it is natural 

and can be effective to use Sturm Sequence Techniques. Sturm Sequence (or chain) is a symbolic procedure 

to determine the number of unique roots of a polynomial. It finds all the eigenpairs in a given range. The 

basic property is described as ( ) ( )λ λ= −  K  Mp det  and  ( ) ( )( ) ( ) ( ) ( )( )λ λ= − = −  K   M         
r r r r r

p det ; r 1, ....,n 1  

where ( ) ( )( )λr r
p  is the characteristic polynomial of the r-th associated constraint problem corresponding 

to φ λ φ=K   M , Bathe [3].   

 

Aforementioned, finite element programs offer methods which are a combination of the basic properties. 

Well-known algorithms are the Lanczos Method, the Arnoldi Method and the Subspace I teration Method. 
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The Lanczos method transforms the generalised eigenproblem into a standard form with a tridiagonal 

(almost a diagonal) coefficient matrix which is real and symmetric. It is particular effective if only a few 

eigenpairs need to be calculated. The Arnoldi Method is analogous to the Lanczos Method, however, also 

applies to non-Hermitian matrices. Subspace Iteration is the most widely used due to its robustness and 

simplicity. It is particular effective for calculating a few eigenpairs of very large systems, Bathe [3].  

 

 

11.9 Finite Element Software 

 

The finite element procedure is widely available in computer software programs such as ABAQUS, ANSYS, 

ADINA and DIANA. Typically, finite element software architecture is based on the general finite element 

procedure, i.e. pre-process, analysis and post-process. Therefore, finite element software consists of a pre-

processor, an analysis frame and a post-processor which is often combined with the pre-processor. The pre-

process inv olves the description of the physical problem, which, in general, depends on the response to be 

predicted. It can be divided into three major parts; modelling the structure, i.e. the geometrical modelling, 

material modelling, boundary conditions, defining the nature of the problem to be solved, i.e. linear analysis, 

nonlinear analysis, stability analysis, and the modelling of external actions such as imposed displacements, 

environmental conditions and loading. The analysis part solves the physical problem and in the post-process 

the response of the structure can be viewed.  

 

Considerable concern may arise on the reliability  of the finite element programs. Therefore, important for 

finite element programs are the so-called Benchmark tests. Benchmark tests are developed to validate the 

solution and solution accuracy of finite element programs by comparing results to references, Hoogenboom 

[48]. Since 1983 the finite element benchmark tests are set and maintained by the National Agency for Finite 

Element Methods and Standards (NAFEMS), an independent non-profit organisation ‘to promote the safe 

and reliable use of finite element and related technology’, NAFEMS [95].  

 

The finite element program DIANA is used for the thesis’ analyses. DIANA is a software package for finite 

element analysis of structures and fluids, developed by TNO in Delft, the Netherlands since 1972. DIANA is 

FORTRAN coded, a code especially developed for technological programs, Burden and Faires [19]. The finite 

element code is based on the displacement approach using displacements as basic variables. Most appealing 

capabilities of DIANA are soil and concrete calculations. For the pre- and post-processing the iDIANA user’s 

interface is used which works with two databases called FemGV (Fem generation and Fem view) which both 

comprise an index file and a data file in binary format. FemG is the design environment and FemV the 

results environment. The geometrical and physical modelling and the mesh generator are included in the 

iDIANA design environment. DIANA offers a wide variety of almost 200 elements. Using FemG the structure 

can be modelled and stored in a Neutral file format in ASCII text format (the so-called dat-file). The 

contents of the results database can also represented in a Neutral file. If the results are viewed with iDIANA, 

the structural response can be visualised (contour plots, stress graphs, etc) by selecting a load case, attribute 

and component of analysis results for assessment. Results may be viewed as values at the nodes for averaged 

nodal results, element wise at the nodes of each element if discontinuities at the element boundaries are to 

be examined, or as values at integration points within the elements or as a single value per element. 
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11.10 Geometrical Modelling 

 

The implementation of a structural domain into a finite element program starts with the definition and 

discretization of the geometry in the design environment. The primary objective of a model is to realistically 

replicate the important parameters and features of the real model, thus, the geometrical modelling must 

approach the geometry of a designed (or realised) shape in the most optimal way. Mesh generation is part of 

geometrical modelling and the discretisation of the geometry must result in a correctly described structural 

response to external loads.  

 

To define the geometry the user must be familiar with computer aided design. For the discretization the user 

needs knowledge of applied mechanics and finite elements in particular. This section contains some of the 

knowledge needed to create an appropriate geometrical model. However, as geometrical modelling (or 

modelling in general) gives access to an extremely large amount of background information, there will only 

be referred to the modelling as needed for thin shell structures.  

 

11.10.1 Geometry 

 

The geometry of a structure can be drawn in a pre-processor or imported out of computer aided design 

programs such as AutoCAD or MAYA. Commonly, the computer aided design programs foresee in more 

advanced design aids than the pre-processors of finite element programs. However, problems may arise 

when converting the imported model as in general the programs are based on different codes. This may lead 

to a situation in which (a part of) the original drawn geometry becomes useless. Finite element programs 

may include repair and merge options, which repairs geometry and deletes duplicated points, lines, surfaces 

and bodies, respectively. However, the final result is different for each particular problem.  

 

The geometrical model is parametric as lines, surfaces and bodies can be defined from points and transforms 

(transformation of an original part to a new part). The nodal points of the geometry are stored in a data file 

in terms of a global coordinate sy stem. To create, basic shapes can be combined by complement (appends 

the complement of two sets to another set) and intersect (only the intersecting part of two sets remains) 

operations. It must be mentioned, however, that there is no such thin as a perfect numerical model. The 

model alway s contains numerical irregularities and, thus, is imperfect. 

 

11.10.2 Mesh Generation 

 

The geometrical shape of the structure is discretised by a finite element mesh. To generate a mesh that 

correctly describes the structural behaviour is as complicated as it is important. The mesh contains all the 

properties that are needed in order to let the finite element analyses determine how the structure will 

respond. Hence, errors in the mesh formulation or too coarse meshes will lead to an insufficient solution.  

 

Basically, the efficiency of the finite element solution depends on the mesh fineness, the elements (type and 

integration scheme, discussed later) and the mesh quality. The mesh fineness determines the exactness of 

the solution and must be fine enough the reach the desired solution accuracy. The mesh can be refined until 
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it reaches the limit imposed by the amount of RAM available plus the size of the virtual memory swap file. 

Unfortunately, the rank of the stiffness matrix is equal to the total number of unknown nodal degrees of 

freedom and the matrix (and computational time) can become extremely large when applying many 

elements. Hence, it is important to find a compromise between the exactness of the approximation and the 

calculation time needed.  

 

The mesh quality is important for the reliability of the solution as finite element programs tend to develop 

mesh sensitivity with respect to distortions. The elements of the mesh must be smooth as abrupt shape 

deviations between neighbouring elements are uninvited as they, for example, lead to irregular stress and 

strain representations. A major requirement is that the elements are not folded or degenerate any points or 

lines. Furthermore, the aspect ratio (the ratio of the length of the smallest side of the element to the length 

of the longest) of the elements must not be too large. A large aspect ratio leads to convergence problems and 

has a bad accuracy. To correctly and efficiently  describe the boundary, a sufficient number of nodes must be 

present at the edges. To evaluate the mesh quality, finite element programs often contain a mesh quality 

test. In general, the mesh quality test evaluates the shape of the element with respect to a theoretical ideal. 

The criteria involved, such as element angles, warping, aspect ratio, and midnode position, depends on the 

selected element type. Sometimes an ov erall quality value is offered which averages the contribution from all 

other tests, with an option to add a weight factor to a quality test of personal preference. 

 

The mesh can be generated by hand (for simple problems) or by a mesh generator. The mesh generator is 

often part of the pre-processor, although it is also possible to import. During the import operation, however, 

the same problems may occur as previously mentioned for the geometry. Once more, merging may  be the 

key. A computer mesh generator is based on an advanced discretisation formula, which are often very 

complicated to meet the high standards needed for an accurate finite element solution. As denoted by 

Vermeij [78], in general, a mesh can be divided into three classes, a structured mesh and an unstructured 

mesh or a combination of both. The difference between the classes lies in the way the connectivity is stored. 

A structured mesh is implicitly  taken into account as the nodes have a fixed relationship to each other. A 

structured mesh is often based on mapping as a regular flat grid is mapped to the irregular geometrical 

shape. The mesh is usually generated by a differential method which defines interior coordinate lines by 

performing a solution to partial differential equations which are constructed by describing the original 

geometry in terms of computational space coordinates. Another technique is the algebraic method which 

interpolates internal coordinates from their values on the boundaries. The differential method is more 

popular as it results in a smooth mesh without irregularities from discontinuous boundaries, Vermeij [78]. 

 

However, as a structured mesh has difficulties to handle complex geometries, often an unstructured (or free) 

mesh is applied as they provide in a flexible aid for the discretization. In an unstructured mesh, the 

connectivity must be explicitly  described by a data structure. The unstructured grid is often generated by an 

Octree approach, a Delaunay approach or an Advancing Front approach, Vermeij [78]. The Octree 

approach is a fast meshing technique as it simply overlays a triangular of quadrilateral mesh over the 

structural domain and crops off the protruding elements, replacing them by triangular boundary elements. 

However, the mesh quality at the boundary is poor. The Delaunay approach divides a surface into triangular 

elements by stating that, when a circle is drawn through the vertices of the triangular element, the circle does 
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not contain any other nodal points. The Advancing Front method generates the mesh by successive cell 

building, one at a time, and progress from the boundary into the volume. Independent of the chosen mesh 

algorithm, effective nodal point numbering is needed to cluster all nonzero terms around the diagonal of the 

stiffness matrix.  

 

DIANA offers both meshing generation techniques. A structured mesh can be generated by  the IJK-complex 

algorithm, which is based on the differential method or the mapped option, based on the conventional 

simple algebraic equations. To ov ercome the disadvantages of a non-smooth mesh, DIANA offers a 

smoothing algorithm which can be applied after the mapped mesh generation. For unstructured mesh 

generation, see Figure 11.12, DIANA offers the (default) Paving algorithm which generates a quadrilateral 

free mesh on any type of surface and the Delaunay approach for a triangular free mesh, both based on the 

Advancing Front method (like a pavior). Furthermore, a specific algorithm can be specified for a closed 

polygon surface which does not alter the algorithm assigned to any  existing surface by the Default Region 

option. A combination of different meshing techniques is possible by simply ascribe a technique to a surface.  

 

 
 

Figure 11.12. Delaunay (left) and a Paving mesh, DIANA User’s Manual  2005 

 

Before the mesh can be generated a generic element type must be chosen. A generic element only describes 

the shape of the element and the number of nodes. To achieve an actual finite element, the generic element 

types must be mapped onto elements for applied analysis program containing the mathematical description 

of the shape functions and integration points. Using generic elements, the density of the mesh is controlled 

by  division of lines, surfaces and bodies or by a specified length of an element.  

 

 
 

Figure 11.13. The mesh  of a hemisphere by  DIANA (left) or the hand regulated mesh  (right) 

 

Despite the fact that mesh generators have matured, meshing spatial curved structures may still lead to 

unwanted or irregular element arrangements. This can be seen below in Figure 11.13 for the case of a 

hemispherical shell used in the thesis’ next chapters. The left picture represents the mesh as generated by 
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DIANA and the right picture shows the mesh as is programmed partly by hand (meridional and 

circumferential ribs) and partly by the mesh generator (the surface in between the ribs). 

 

11.10.3 Element Types 

 

For structural analysis, the element types can be divided into line elements, surface elements, volume 

elements and the interface elements which are used for contact boundary problems. The choice for a 

particular element type largely depends on the nature of the structural problem. Theoretically, for the most 

optimal description of a shell structure (a v olume), volume elements are to be chosen. However, v olume 

elements are of little practical use for shells as they do not only have the tendency to produce very large 

sy stems of equations, leading to exceptional long computational time. In addition it may lead to serious 

numerical ill-conditioning problems, Zienkiewicz [87]. Their usage is, thus, restricted to relatively  small 

structural elements or parts of a larger structure. Fortunately, as seen in Chapter 5, the three-dimensional 

thin shell problem can be reduced to a two-dimensional surface problem by applying the thin shell 

assumptions. Hence, the shell can be modelled by using two-dimensional surface elements. Moreov er, for 

thin shells of revolution, the model can be even further simplified by using axisymmetric curved line 

elements. In linear analysis the circumferential displacement of shells of revolution is equal to zero and the 

belonging strains and stresses are constant. Hence, a line model is sufficient to describe the meridional and 

out-of-plane response. For buckling or nonlinear analysis, however, the axisymmetric elements may become 

useless as the circumferential behaviour is not by definition constant. When a finite element program does 

not offer special shell elements, a simple approximation is to design a (segmented) shell by a combination of 

flat plate elements. However, uninvited bending will undoubtedly arise at every segment connection.  

 

The two-dimensional surface elements offered by DIANA are based on isoparametric degenerated-solid 

approach which means that the stress component normal to the shell surface is equal to zero (plain stress 

assumption) and that a normal remains straight after deformation but not necessarily normals. The 

transverse shear deformation is included according to the Mindlin-Reissner hypothesis, discussed below. 

The elements are named after their usage. For example, the surface element QU8-CQ40S, where QU8 stands 

for an 8 noded Quadrilateral shaped element and CQ40 specifies the belonging to a Curved Quadrilateral 

with 40 degrees of freedom. The S at the end stands for a regular Shell element. The boundaries of the 

element are pointed out by nodes. The vertex nodes indicate the corners of the element and, depending on 

the type of element that is chosen, there are zero, one or more interior points at the element edge or even 

midnodes inside the element. Aforementioned, every node has 6 degrees of freedom, 3 translational and 3 

rotational, and just as many corresponding load vectors. However, in the case of surface elements, the out-

of-plane rotation is not included. Hence, there are (5 x 8 =) 40 degrees of freedom in a QU8 element. This is 

seen in Figure 11.14. 

 
 

Figure 11.14. QU8-CQ40S Curved shell  element and i ts degrees of freedom, DIANA User’s Manual  2005 
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The number of nodes determines the order of the shape functions. Normally, 6  noded triangular or 8 noded 

quadrilateral elements with quadratic shape functions are appropriate for shell analysis. The polynomial 

terms of the shape functions of higher-order elements can be taken from a Pascal triangle. The quadratic 

shape functions of triangular elements are complete, they contain all polynomial terms in the triangle. 

Triangular elements of higher order are complete if they have one or more midnote(s). Higher-order 

quadrilateral elements belong to the serendipity or Lagrange family, Wells [85]. Serendipity elements have 

only nodes on the element boundaries. When the Pascal triangle is drawn, Figure 11.15, it can be seen that 

serendipity elements of second order already miss polynomials terms. For higher-order than three they are 

therefore not recommended. The problem can be solved by using Lagrange elements which have nodes on 

the element interior as well and therefore remain complete. As a consequence, serendipity elements are 

suboptimal on quadrilateral elements. The 9-node Lagrange element is shown to be superior to the more 

commonly used 8-noded serendipity element. The main advantage of serendipity elements is that since the 

internal nodes of the higher-order Lagrange elements do not contribute to the inter-element connectivity, 

the elimination of internal nodes results in reductions in the size of the element matrices, still providing the 

same order of convergence. Therefore, Lagrange elements are not implemented since the 1970s, Arnold [1]. 

    

 
 

Figure 11.15. The Pascal  triangle for serendipity  (left) and Lagrange elements, Wells 2004 

 

The order of the shape functions, combined with the number of integration points, appear in the exactness of 

the derived variables (strains, stresses and the generalised moments and forces). In general, it can be said 

that linear interpolation and area integration yields a constant stress and strain distribution in the main 

direction and a linearly varying stress and strain in the perpendicular direction. Elements with quadratic 

interpolation and area integration, Figure 11.16, yields a linearly varying stress and strain in the main 

direction and a quadratically in the perpendicular direction. The same logic holds for higher-order elements. 

In the elements, the in-plane strains vary linearly in thickness direction. Furthermore, the transverse strain 

is forced to be constant, equivalent to the shear strain energy of the actual, parabolically varying, transverse 

shearing strain. Therefore a shear correction factor is applied. For shells, it is convenient to use elements 

with quadratic interpolation and area integration. 

 

 

Figure 11.16. Two-dimensional  shape functions of a six-noded triangular element, Wells 2004 
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Aforementioned in paragraph 11.2.2, typically, the finite element method uses C0 continuous shape 

functions, made possible by the fact that shell elements (and plate elements) include the transverse shear 

deformation according to the Mindlin-Reissner theory. However, essentially a thick shell theory, it can be 

used for thin shells as well. It is used as in the formulation of shell elements according to the classic bending 

theory, a problem stems from the need of C1 continuity in the shape functions. This can be explained by 

examining the classical thin shell equations, derived in Chapter 5. The shell equations are simplified for 

hand calculation by introducing the thin shell assumptions and the hypothesis that the in-plane shear 

deformations are negligible. Neglecting the in-plane shear deformation means that the rotation of the shell 

element can be calculated from the curvature (equation (5.12)), similar to the bending theory of thin plates 

(Kirchhoff thin plate theory). Consequently, the governing equilibrium equation of a shell in bending is 

similar to the biharmonic plate equation, a partial differential equation of the fourth order. The transfer of 

the fourth order strong form to the weak form yields a differential equation of the second order which needs 

C1 continuous shape functions (a second derivative unequal to zero). Unfortunately, in general unstructured 

meshes, it is not possible to ensure C1 continuity as it leads to inabilities to account for stress and strain 

discontinuities in case of properties varying discontinuously across element boundaries, and, the presence of 

spurious oscillations in the solution, Hughes [51]. Referring to the problems that arise, the few Kirchhoff 

elements that are available (DIANA offers plate bending Kirchhoff elements with prescribed moments) are 

non-conforming, which means that they do not meet C1 continuity and thus not meet the compatibility 

demands, either within or across the element boundaries. The elements, often based on a sort of mixed 

formulation (they are not tricked Mindlin neither C1 continuous), are tested by  a patch test in order to check 

whether it correctly describes rigid body motions and constant strain (constant curvature). In general they 

are not very reliable, e.g. common rectangular elements with four nodes are not able to pass the patch test as 

a quadrilateral. Despite the disadvantages they might give proper solutions in some situations.  

 

The problem of C1 continuity is, thus, solved by using the Mindlin-Reissner theory. The difference of the 

Mindlin-Reissner theory to the Kirchhoff theory lies in the kinematic and constitutive model as it includes 

shear deformation, analogous to the Timoshenko beam theory. In other words, the rotation of the plate 

cannot be calculated from the curvature and, as a result, the equilibrium cannot be described in a single 

equation. In contrast to the Kirchhoff theory, the Mindlin-Reissner theory is modelled by a sy stem of 

differential equations of second order and their corresponding weak forms contain derivatives no higher 

than order one. Thus, ironically, the simplest shell bending theory presents the most problems when using 

finite elements. 

 

The major concern of Mindlin-Reissner elements is shear-locking. When the thickness of the shell 

approaches to zero, the elements show an excessively stiff behaviour in compare to the exact thin shell 

solution which leads to inaccurate results. The reason is that the contribution of the transverse shear 

deformation to the energy does not vanish. The simplest solution to prevent shear locking is to use a reduced 

integration scheme as it excludes the contribution of the transverse shear deformation to the bending 

energy. However, one must be aware of spurious modes. For linear elements DIANA prevent shear locking 

by  automatically modifying the transverse shear strain fields, the so-called assumed strain concept. For 

quadratic and higher order elements DIANA uses a reduced integration scheme. 
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Note that, constant strains and stresses, which are calculated in the integration points, are discontinuing 

ov er the element boundaries. Graphical presentation in postprocessors may lead to misleading smoothened 

results, especially in areas with large gradients. 

 

For shell analysis DIANA offers the following elements: 

 

Triangular Curved Shell Elements 

 

The Triangular curved shell elements have 3, 6  or 9  nodes, see Figure 11.17. The 3-node element is based on 

linear interpolation and area integration. For more accurate results, the 6-node element is available, based 

on quadratic interpolation and area integration, and the 9-node element in combination with third-order 

interpolation and area integration. The shape of the element may be of flat, cylindrical, spherical, conical, 

hyperbolic or parabolic.  

       
 

Figure 11.17. Triangular curved shell  elements, DIANA User’s Manual  2005 

 

Each of the elements represented in Figure 11.17 is combined with an integration scheme. The integration 

schemes of triangular elements are outlined in paragraph 11.10.4. It can be stated that, triangular elements 

with more than 6 nodes rarely find practical application, DIANA User’s Manual [29]. 

 

 

Quadrilateral Curved Shell Elements 

 

The quadrilateral curved shell elements have 4, 8 or 12  nodes, distributed as in Figure 11.18. Analogously  to 

the triangular elements, the quadrilaterals are based on linear, quadratic or third-order interpolation and 

area integration, respectively. The shape of the element may be of flat, cylindrical, spherical, conical, 

hyperbolic or parabolic.  

 

     
 

Figure 11.18. Quadrilateral  curved shell  elements, DIANA User’s Manual  2005 

 

Each of the elements represented in Figure 11.8 is combined with an integration scheme. The integration 

schemes of quadrilateral elements are outlined in paragraph 11.10.4. It can be stated that, quadrilateral 

elements with more than 8 nodes rarely find practical application, DIANA User’s Manual [29]. 
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Axisymmetric Curved Line Elements 

 

The CL9AX element is an axisymmetric curved line element with similar properties as the surface elements. 

The element has three nodes and is based on quadratic interpolation and line integration and, thus, yields a 

strain and stress that varies linearly in length direction. The shape of the element may be of flat, spherical or 

parabolic. The element, seen in Figure 11.19, is combined with an integration scheme of in section 11.10.4. 

 

 
 

Figure 11.19. The CL9AX element and i ts degrees of freedom, DIANA User’s Manual  2005 

 

Note that, when ascribing a certain element to a mesh, one must be aware of the fact that the element has a 

default shape which may not be the same as the desired shape of the geometry. For example, the 

axisymmetric element has a default parabolic shape and, thus, is not compatible with a spherical line. In 

these situations, the shape of the elements must be mapped onto the geometrical shape manually. 

Furthermore, it must be mentioned that problems may be encountered with the tolerances of adjacent 

elements at the element assembly operation. If these problems cannot be solved by either mesh refinement 

or increasing the allowed tolerance, redefinition of the geometry is needed. 

 

11.10.4 Integration schemes  

 

The finite element is combined with an integration scheme which specifies the number and position of the 

integration points and the corresponding integration method. DIANA offers the Gauss, Simpson, Newton-

Cotes and Lobatto integration schemes. Usually, over the surface of a curved shell element a Gauss 

integration scheme is used as requires the least number of integration points, DIANA User’s Manual [29]. 

For elements with linear interpolation and area integration it is even the only possible integration method. 

In the thickness direction the Simpson method may be preferred over Gauss integration as it gives 

information about the surface strains and stresses. Standard is Simpson 3, with integration points at both 

outer surfaces and one in the middle. Higher order Simpson is recommended for phy sical nonlinear analy sis 

where the number of integration points depends on the expected nonlinearity, Hughes [51]. 

 

The integration scheme chosen is either a full integration scheme or a reduced integration scheme. Full 

integration schemes integrate the stiffness matrix exactly. For higher order elements than one, a reduced 

scheme is recommended to prevent membrane and shear locking. Aforementioned, when reduced 

integration is applied, the strain and stress solution is better while the accuracy of the displacement is not 

affected. Off course, this is only true when spurious modes do not arise. 

 

Questions may arise on the position of the integration points inside or at the boundary of the element. The 

integration points must give the most optimal approximation for the whole element. However, it is known 

that at certain places, the strains and stresses are obtained with a higher accuracy than at other places. 
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Research on this subject was done by  Barlow. The Barlow stress points (used in DIANA) are placed in such 

way that they provide for the best possible approximation. For reduced integration schemes, the Gauss 

integral points coincide with the Barlow stress points, Barlow [2]. 

 

For the elements as presented in the previous paragraph, DIANA offers the following integration schemes: 

 

Triangular Curved Shell Elements 

 

Several integration schemes for the integration of the triangular elements are presented in Figure 11.20. 

Depending on the problem, the triangular elements may be integrated in-plane only  (for two-dimensional 

problems, like plate bending) or combined with a Gauss or Simpson thickness integration scheme.  

 

 

Figure 11.20. Several  integration schemes for triangles, DIANA User’s Manual  2005 

 

In combination with the in-plane integration scheme is the scheme for thickness integration. The Gauss 

integration is 2-point integration. For more than 2-points the Simpson rule is applied, see Figure 11.21.   

 

 

Figure 11.21. Thickness integration schemes for triangles, DIANA User’s Manual  2005 

 

Quadrilateral Curved Shell Elements 

 

Some integration schemes for the integration of the quadrilateral elements are presented in Figure 11.22. 

Depending on the problem, the quadrilateral elements may be integrated in-plane only (for two-dimensional 

problems, like plate bending) or combined with a Gauss or Simpson thickness integration scheme.  

 

 

Figure 11.22. Several  Gauss integration schemes for quadrilateral  elements, DIANA User’s Manual  2005 
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In combination with the in-plane integration scheme is the scheme for thickness integration. The Gauss 

integration is 2-point integration. For more than 2-points the Simpson rule is applied, Figure 11.23. 

 

Figure 11.23. Thickness integration schemes for quadrilaterals, DIANA User’s Manual  2005 

 

Axisymmetric Curved Line Elements 

 

For axisymmetric shell elements, DIANA offers Gauss and Simpson integration schemes, Figure 11.24. The 

default integration scheme is Gauss integration in the length and thickness direction. Higher order schemes 

in the direction of the length of the element are not recommended as the element will become extremely 

sensitive the shear locking, DIANA User’s Manual. Possible higher order integration in thickness, Simpson 

integration, is only useful for surface stress-strain evaluation and nonlinear analysis.  

 

 
 

Figure 11.24. Some integration schemes for axisymmetric curved line elements, DIANA User’s Manual  2005 

 

Aforementioned, the structural behaviour is determined in the integration points and the values as 

determined there are the best approximated values. This means that the nodal strains and stresses are 

interpolated (and averaged) values. One must take into account that the interpolation operation sometimes 

yields largely deviating results. This is certainly true in case of irregular meshes. 

 

 

11.11 Material Modelling 

 

The response of a structure under load is evaluated within the elements using the material properties. 

Therefore, the actual elastic and plastic (permanent or irreversible deformations) material behaviour as 

determined in Chapter 8 must be implemented into a numerical material model. The aim of the material 

model is to approach the actual material behaviour in the most optimal way.  

 

The material model for this thesis must correctly describe the properties and characteristics of the (fibre) 

reinforced concrete mixtures. The elastic behaviour is easily described by a constant Young’s modulus and 

Poisson’s ratio. However, when the yield condition, which specifies the state of stress at which the material 
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starts to deform permanent, is violated, reinforced concrete experiences highly nonlinear plastic behaviour 

up to failure. For the modelling process, the user needs knowledge about the failure mechanisms which can 

occur in (fibre) reinforced concrete. Recapitulate from Chapter 8; the nonlinear behaviour of reinforced 

concrete is characterised by direct failure due to compressive crushing, tensile cracking and yielding of 

reinforcement and indirect failure due to long-term effects as shrinkage, creep and ambient influences like 

temperature and maturity. Fibre additions further contribute to the nonlinear behaviour through the 

continuous frictional pullout of fibres in the post-cracking stage.  

 

To model brittle or quasi-brittle materials such as reinforced concrete with their physical nonlinear 

behaviour, DIANA offers several material models. Commonly, in multi-axial stress states, a crack model for 

tension is combined with a plasticity  model which describes the crushing of the material. Regular yield 

models as Tresca, Von Mises, Drucker-Prager and Mohr-Coulomb are available combined with a (isotropic) 

plasticity formulation. Furthermore, DIANA offers the concept of Total Strain, that describes compression 

and tension within one constitutive relation, and the Modified Maekawa Concrete model which combines a 

multi-axial damage plasticity model for compression with a crack model based on Total Strain for tension. 

Damage plasticity models are similar to plasticity models with the difference that unloading does not take 

place elastically but that the degradation of the elastic stiffness is taken into account. The Maekawa model is 

in particular suitable to describe hysteresis in tensile and compression unloading/reloading loops (e.g. 

earthquake loading). For two-dimensional plane stress, plane strain or axisymmetric situations, the Rankine 

model, possibly combined with Von Mises or Drucker-Prager, foresees in a plasticity-based formulation for 

cracking. However, for three-dimensional analysis Rankine cannot be used. Finally, the modelling of so 

called long-term effects as relaxation and creep (not treated in this thesis) is done with viscoelastic models as 

the Power law, a Maxwell Chain and a Kelvin Chain. 

 

11.11.1 Tensile Cracking 

 

The tensile behaviour of reinforced concrete is characterised by  a linear elastic branch up to crack initiation, 

followed by a nonlinear post-cracking path with tension stiffening (redistribution of tensile stresses from 

concrete to reinforcement due to bond between the rebars) or tension softening (reduction in tensile load 

capacity accompanied by increasing deformation), see Chapter 8. The crack propagation in the post-cracking 

stage is numerically decomposed in crack opening (mode-I behaviour) and crack sliding (mode-II 

behaviour). The crack process can be modelled with a discrete or smeared cracking approach.  

 

Discrete Cracking Concept 

 

Discrete cracking models consist of predefined cracks modelled by interface elements. Interface elements 

have equal located dual nodes which move away from each other after the tensile strength is violated. Before 

crack initiation, they have an extremely high dummy stiffness as if they are not there. The discrete cracking 

approach is limited to trivial situations in which the location of one dominant crack is known on forehand, 

such as a notched beam. Discrete cracking models are, thus, not appropriate for distributed failure and large 

scale analy sis in which a wide variety of cracks can be expected at unknown locations such as shell analyses.  
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Smeared Cracking Concept 

 

In the smeared cracking concept cracks may appear at arbitrary locations with arbitrary orientation. 

Opposite to the discrete cracking approach, the smeared cracking concept describes cracking within the 

elements. For each element in the mesh holds that, when the maximum tensile stress is violated, a crack will 

appear. The tension cut-off criterion specifies the initiation of cracks. In DIANA it is possible to use a 

constant or a linear tension cut-off, represented in Figure 11.25. The constant stress cut-off criterion neglects 

the positive influence of a compression stress in the other direction whereas a linear tension cut-off does not. 

The actual behaviour of concrete is neither constant nor linear, but somewhere in between.  

 

 

Figure 11.25. Tension cut-off in  a two-dimensional  stress state, DIANA User’s Manual  2005 

 

The crack propagation in an element is described by a crack model. A crack model determines the stiffness 

around a crack in the constitutive law. To be able to correctly express different stiffnesses in different 

directions, the crack model must be orthogonal and the original isotropic constitutive law is changed to an 

orthogonal stress-strain law. The crack relation is described within a crack orientated coordinate sy stem n-t. 

A simplification is made by ignoring the coupling between mode-I and mode-II behaviour according to: 
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The secant stiffness terms can be determined by use of the constitutive relations of Chapter 5. When, for 

example, assuming a plane stress situation the linear elastic stiffness matrix reads: 
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Supposed, that, relation (5.34) is transformed to the crack coordinate system and both the normal crack 

stiffness as the shear crack stiffness are assumed to be zero, the relation can be rewritten to: 
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To achieve a closer estimation of the reality, the normal and shear crack stiffnesses are reintroduced, 

equipped with tension softening behaviour and shear reduction respectively. Therefore, the parameters µ 
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and β are introduced. Furthermore, the reimplementation of the Poisson coupling contributes to a better 

approximation. Substitution of the approximations in equation (11.62) yields the orthogonal relation: 
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In the latter, the parameters µ and β represent the coupling between the traditional and secant crack 

parameters. They are related to the secant stiffness by: 
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The parameter µ determines the stiffness of the material normal to the crack depending on the crack strain. 

Hence, the crack stress implicitly depends on the crack strain and can be written as a multiplicative relation: 
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Here y(….) represents a user specified softening function. The crack propagation in concrete is characterised 

by  tension softening, i.e. the concrete increasingly eases up to open a crack after initiation. The type of 

softening behaviour can be implemented after the typical material characteristics. In equation (11.65) the 

softening is represented by the (linear) function y(.…),. DIANA offers various softening models such as linear 

tension softening, multi-linear tension softening, nonlinear tension softening according to Hordijk et al., etc. 

They are seen in Figure 11.26. The softening models determine whether the construction is in elastic stage 

(positive tangent modulus), cracking stage (negative tangent modulus) or fully cracked (beyond diagram).  

 

 
 

Figure 11.26. Tension softening relations, DIANA User’s Manual  2005 

 

As can be seen in the Figure, Brittle cracking is a special form of tension softening as it is distinguished by 

full reduction immediately after cracking and, thus, does not contain a tension softening branch. The 

softening relation to be chosen depends on the mode-I fracture energy of the material, e.g. measurable by 

means of material tests.  
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With respect to the fracture energy, the so-called crack bandwidth is introduced. Figure 11.26 shows tension 

softening behaviour on the constitutive level, a relation between cracking stress and strain. Hence, for the 

smeared crack concept, the relation between stress and crack (used in the discrete crack model) must be 

transformed to a relation between stress and strain. However, releasing the mode-I fracture energy in an 

element after the tensile strength is violated, results in a crack-width dependent of the size of the element. 

More practical, a larger element consumes more energy to reach the ultimate crack strain than a smaller 

element and, thus, the fracture energy dissipation differs with respect to the size of the element.  

 

The simplest and general accepted solution to the problem is so-called fracture energy regularisation. 

Fracture energy regularisation is based on the assumption that each element can have only  one crack (in 

reality cracks occur at every integration point) related to an equivalent length or crack bandwidth. In this 

way the crack is ‘smeared’ over the element. Doing so, the result is that, upon mesh refinement, the thickness 

of the crack region decreases while the dissipated energy remains constant. The relation between the crack 

width w  and the crack bandwidth h can be written as: 
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A crucial point is the definition of the bandwidth. Irregularity in element shapes force the use of a so-called 

characteristic length hc that approximates the crack bandwidth with respect to the average element area A. 

For higher-order plane stress elements DIANA uses the relation =  ch A . Hence, the ideal element is a 

square. In the postprocessor the above relation can be reversed to calculate the crack width. 

 

Following the fracture energy regularisation, the mode-I fracture energy becomes related to the softening 

behaviour by crack bandwidth multiplication and, thus, related to the size of an element: 
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Aforementioned, y(….) represents the softening diagram. 

 

Unfortunately, the introduction of the crack bandwidth also has a disadvantage as it may lead to a snap-back 

in the constitutive model. One can probably imagine that overly large elements lead to a characteristic length 

so large that the integral of equation (11.67) leads to a decreasing crack strain while the crack further opens 

(decreasing crack stress). This so-called snap-back behaviour is highly  uninvited and therefore must be 

solv ed. The simplest solution is to refine the mesh such that the crack bandwidth is smaller. Alternatively, 

the tensile strength can be reduced, although this implies that the material becomes more ductile.  

 

Besides the parameter µ, the parameter β, which determines the shear behaviour, must be defined. The 

reducing shear stiffness during cracking is modelled with so-called shear retention. Shear retention deals 

with selecting a value for the parameter β between 0 and 1. DIANA offers full shear retention (β =  1) and 

constant shear retention (0 < β <  1).  



  Chapter 11.   Finite Element Method 

 267

Finally, as unloading and reloading situations may lead to closing and reopening of cracks, the behaviour 

during these conditions must be prescribed. The closing and reopening of cracks is done by the linear secant 

modulus in DIANA. This means that in the constitutive model the unloading and reloading branch goes 

linearly back to zero, although we might expect residual strain upon closing the crack in reality.  

 

Strain Decomposition Concept  

 

The principle of smeared cracking to model the tensile behaviour is offered by DIANA in two different 

concepts, Strain Decomposition and the later discussed Total Strain concept. Strain decomposition is based 

on decomposition of the total strain into an elastic and irreversible plastic (or crack) part, like a series 

connection of strains.  The crack stresses are solely determined by the corresponding crack strain. Strain 

decomposition is related to the decomposed Multi-direction fixed crack model, seen in Figure 11.27.  

 

 
 

Figure 11.27. Multi -directional  fixed crack model , DIANA User’s Manual  2005 

 

The Multi-direction fixed crack model determines crack stresses from the corresponding crack strains in the 

local n-t coordinate system. A fundamental feature is that the crack-strains are sub-decomposed in order to 

allow for several cracks occur simultaneously in one element. Therefore, in addition to the aforementioned 

tension cut-off, a threshold angle between two cracks is defined for consecutive crack initiation. The user 

must be aware of the possibility that the tensile stress temporarily becomes greater than three times the 

tensile strength while cracking does not start as the threshold is not violated yet, DIANA User’s Manual [29]. 

 

The decomposition of strains also allows for the combination of a crack model in tension with a plasticity 

model in compression. In DIANA, the Multi-directional fixed crack model may be combined with a Tresca, 

Von Mises, Drucker-Prager or Mohr-Coulomb plasticity model discussed later. 

 

Total Strain Concept  

 

The total strain concept also describes the stress as a function of the strain; however, opposite to strain 

decomposition, total strain models describe the elastic and plastic strain in one constitutive relation. This is 

also known as hypo-elasticity, however, the DIANA formulation includes secant unloading and reloading. In 

the total strain concept the principal directions are uncoupled (the linear elastic stress space is a cube), 

cracks occur whenever the tensile strength in one direction is violated, indicated by a negative tangent 

modulus. Consequently, the crack stress is evaluated in a direction given by the crack direction.  
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The total strain concept is related to the Total Strain Rotating Crack model and the Total Strain Fixed 

Crack model. Basically, the total strain rotating crack model is a coaxial stress-strain concept which ensures 

that the crack orientated coordinate system is orthogonal to the principal stresses by  rotating the crack. The 

model is only realistic if the crack rotation angle is small. Hence, the model is useless in case of consecutive 

loadcases with significant loads in different directions. The most advantageous property is its numerical 

uncomplicatedness as there is no shear stress which implicitly means that the shear retention factor, which 

often causes numerical stability problems, is not needed.  

 

The fixed crack model does not rotate the crack with the principal stresses. When the principal stresses 

change in direction, the aforementioned shear retention factor will enfold for the shear stresses which 

appear along the crack surface. The fixed crack concept is off course closer to the nature of concrete cracking. 

The advantage lies in the fact that it is numerical simpler than the multi-directional fixed crack model.  

 

11.11.2 Compressive Behaviour  

 

The compressive behaviour of concrete is discussed in Chapter 8. It was found that the nonlinear 

compressive behaviour of concrete can be characterised by compression hardening and softening up to 

compressive crushing. This resulted in the ‘rounded’ stress strain curve. Hereby, the influence of (fibre) 

reinforcement was neglected. The compressive behaviour as observed can be modelled with a plasticity 

model or a constitutive curve, depending on the chosen model in tension. Therefore, the compression 

models are treated separately under their corresponding tension concept. 

 

Strain Decomposition Concept 

 

The strain decomposition concept allows for the combination of a crack model in tension with a yield model 

and a plasticity  formulation in the compressive regime. Similar to the decomposed crack model, the 

compressive behaviour is decomposed in an elastic and irreversible plastic part. The yield condition specifies 

the state of stress at which the plastic part is initiated. The usual approach to describe the so-called 

elastoplastic behaviour is the flow theory of plasticity. The total stress σ at time t is then modelled as a 

function of the total strain ε at time t, but also as a function of the stress and strain history, Vrouwenvelder 

[80]. 

 

Typically, the stress and strain history is taken into account implicitly by an internal state parameter κ which 

is governed by a specific evolution law. The elastoplastic material behaviour can then by described by 

assuming and elastic stress-strain relation, a yield condition (specifying the state of stress at which the 

plastic flow is initiated), a flow rule (specifying the plastic strain rate vector as a function of the state of 

stress) and a hardening hypothesis (specifying the ev olution of the internal state parameter  κ). DIANA 

User’s Manual [29]. 

 

The yield function f is a function of the stress vector σ and the internal state parameter κ:  

 

( )κ =σf , 0            (11.68) 
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Note that, if the value of the yield function is smaller than zero, the material is in elastic state and if the state 

of stress forces the yield function equal to zero, plastic deformation can occur. A value larger than zero is not 

allowed for rate-independent plasticity, DIANA User’s Manual [29].  

 

The yield function describes the yield contour of a yield model, a hypersurface in the n-dimensional stress 

space. In DIANA, the Multi-directional fixed crack model can be combined with yield models such as Tresca, 

Von Mises, Drucker-Prager or Mohr-Coulomb. They are illustrated in Figure 11.28 and 11.29.  

 

Figure 11.28. Tresca and Von Mises yield condition, DIANA User’s Manual  2005 

 

A yield model determines whether the concrete is in elastic (inside the yield surface) or plastic range (on the 

yield surface) in a uniaxial stress state. The yield model to be chosen alongside the Multi-directional fixed 

crack model depends on the type of structure, material, analysis, etc. In general, it can be said that Tresca 

and Von Mises are typical yield models for steel. They are based on the notion that when a material fails it 

does so in shear. The model of Von Mises provides in a better approximation as it does not underestimates 

the yield shear stress like Tresca, which is more conservative (Tresca lies inside the Von Mises yield 

criterion). Although in particular suited to steel, they may give proper solutions in some concrete situations. 

 

 
 

Figure 11.29. Mohr-Coulomb and Drucker-Prager yield condition, DIANA User’s Manual  2005 

 

The Mohr-Coulomb and Drucker-Prager yield conditions are especially  applicable for quasi-brittle materials 

such as concrete. Both models better suits to the characteristic property of concrete as that there is an 

enormous difference in compression and tension. It is assumed that failure occurs if in an arbitrary plane the 

shear stress equals the maximum allowable shear stress. Hereby, the allowable shear stress depends linearly 

on the normal stress on the same plane. The Drucker-Prager yield model is a less conservative smooth 

approximation of the Mohr-Coulomb condition, as can be seen in Figure 11.29. 

 

The yield function determines whether plastic deformation can occur. However, plastic deformations only 

occur when the stress point remains on the yield contour for a ‘short’ period, De Borst and Sluys [15]. Thus, 

plastic straining will occur if and only if ( )κ =σf , 0 and ( )κ =ɺ σf , 0  (Prager’s consistency equation). 
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The plastic behaviour on the yield surface is described by the flow rule and the hardening hypothesis. 

Aforementioned, the flow rule defines the plastic strain rate vector as a function of the stress state vector. 

For elastoplastic materials undergoing an infinitesimal deformation, the total strain increment is therefore 

decomposed in an elastic and plastic part ε ε ε= +     
. ..
e p . By  definition, the elastic deformations occur in a 

zero network dissipation, i.e. ( ) ε− =∫ σ  σ   
.T e

0 dt 0  while in case of plastic deformations ( ) ε− ≥∫ σ  σ   
.T p

0 dt 0 . 

The plastic part, or so-called plastic strain rate vector, is described with the flow rule. The flow rule derives 

the plastic strain rate vector from the so-called plastic potential function gj. The plastic potential function 

describes the variation in equilibrium of the energy dissipation equation. By  definition the gradient of the 

plastic potential function is perpendicular to the yield contour (normality rule). The problem is however that 

the plastic potential is not uniquely defined and thus only the direction of the strain rate vector can be 

obtained. Therefore the flow rule involves a multiplication with a scale factor or plastic multiplier: 

 

( )
1

κ
ε λ

=

∂
=

∂∑
. n .

jp
j

j

g ,σ
 

σ
             (11.69) 

 

In which λ
.

j  is the plastic multiplier. 

 

The plastic multipliers are restricted depending on the yield function value. Considering that the plastic 

multiplier is nonzero only  when plastic deformations occur, the loading-unloading criterion can be 

established via the Kuhn-Tucker conditions λ λ≤ ≥ =             
. .

j jf 0 ; 0 ; f 0 . 

 

The final step is to use the yield function and the flow rule to define the plastic constitutive law, including the 

hardening hypothesis which specifies the evolution of the internal state parameter according to: 

 

κ ε =  
 

..
ph ,  σ               (11.70) 

 

Herein, h is the hardening function which in DIANA is either based on strain hardening or on work 

hardening for Tresca and Von Mises or, in case of Mohr-Coulomb or Drucker-Prager, only strain hardening. 

 

To determine the (tangent) material stiffness matrix, first the initial tangent stiffness matrix following from 

the elastic branch is calculated. The initial stress rate vector can be determined from the elastic part of the 

strain rate vector and the material stiffness matrix D by: 

 

ε ε ε λ  ∂ = − = −   ∂  

.. . . .
p g

σ   D     D   
σ
            (11.71) 

Subsequently, the necessary expression for the scale factor can be determined from Prager’s consistency 

condition, i.e. 0
κ λ

κ λ
∂ ∂ ∂= + =
∂ ∂ ∂

T. .f f
f

.

  σ     
σ

, which leads to the formulation: 
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1λ ∂=
∂

T.

p

f

E

.

  σ
σ

    with     
κ

κ λ
∂ ∂= −
∂ ∂p

f
E      the plastic hardening modulus       (11.72) 

 

Substitution of equation (11.72) in equation (11.71) after applying the Sherman-Morrison formula (described 

earlier) yields the continuum tangent material stiffness matrix: 

 

ε

 ∂ ∂
 ∂ ∂= − ∂ ∂ +
 ∂ ∂ 

T

. .

T

p

g f

f g
E

D D
σ σσ   D  

  D
σ σ

            (11.73) 

 

Note that the matrix is symmetric for f =  g, thus, as the plastic potential is equal to the yield function. 

 

To update the constitutive equations of elastoplastic materials in a consistent manner the Euler Backward 

algorithm (accurate and stable independent of the step size) can be used within an elastic predictor-plastic 

corrector algorithm. The updated stress at the end of iteration i+1 is used to derive the consistent tangent 

stiffness matrix. For increasing the performance and robustness of the iteration method used, the tangent 

stiffness matrix may  be obtained by consistent linearisation of the stress resulting from the return-mapping 

algorithm. Using the return-mapping algorithm leads to a modification of equation (11.73) by  substituting 

the elastic stiffness matrix D by H, in which H is defined as: 

 

12

2
λ ∂= + ∆ ∂ 

-
g

H  I  D D
σ

             (11.74) 

 

Total Strain Concept 

 

Aforementioned, the total strain concept describes the elastic and plastic strain in one constitutive relation. 

As the principal directions are uncoupled it is not possible to combine the total strain crack models with a 

yield model. Instead, the compression behaviour is modelled with predefined stress-strain curves. Some of 

the compression curves are presented in Figure 11.30, such as Thorenfeldt, parabolic curves and the multi-

linear stress-strain curve which may be used to approximate the Eurocode 2 behaviour. 

 

 
 

Figure 11.30. Predefined compression behaviour for Total  Strain  crack models, DIANA User’s Manual  2005 

 

The behaviour of compression is evaluated in a rotating coordinate sy stem when the material is not cracked, 

where in case of a fixed concept the compressive behaviour is evaluated in the fixed coordinate sy stem 

determined by the crack directions. 
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However, the cracking behaviour is based on a single stress-strain relation it may be refined to include 

influences of lateral confinement and lateral cracking to approach the pressure-dependent behaviour of 

concrete in compression more closely. Therefore, the parameters of the compressive stress-strain function, 

fcf and εp  are determined with a failure function which gives the failure compressive stress as a function of 

the confining stresses in the lateral direction, DIANA User’s Manual [29]. The confinement relation used in 

DIANA is graphically presented in Figure 11.31. Clearly, the beneficial effect of increasing lateral 

confinement is at maximum for full triaxial loading in which failure cannot be reached and the graph is 

linear.   

 
 

Figure 11.31. Influence of lateral  confinement on compressive stress-strain  curve, DIANA User’s Manual  2005 

 

For compressive behaviour with lateral cracking, the parameters of the compressive stress-strain function, fcf 

and εp  are determined with a failure function given by: 

 

σβ= ⋅    
crp cff f  

εα β ε= ⋅    
crp p   

 

In which α p represents the reduced strain at the reduced ultimate stress pf . The reduction factors ( )σ εβ β
cr cr
,  

are functions of the average lateral damage variable formulated as α α α= +    2 2
lat l,1 l,2  in which α 2

l,i represents 

the strain in perpendicular direction to the compression direction. DIANA models the reduction due to 

lateral cracking according to Vecchio and Collins. Vecchio and Collins suggested εβ =  
cr

1  and σβ = ≤
+

 
cr

c

1
1

1 K
 

with 
α
ε

 = − − 
 

   lat
c

0

K 0.27 0.37 . The relation is illustrated in Figure 11.32.  

 

Figure 11.32. Reduction factor due to lateral  cracking, DIANA User’s Manual  2005 

 

In the total strain formulation, the possible nonzero Poisson’s ratio is included by a numerical trick. 
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11.11.3 Modelling Conclusions 

 

From the foregoing it can be concluded that a concrete shell is best modelled using the smeared crack 

approach using either strain decomposition or total strain. The question of which material model is the best 

option for a particular problem cannot be answered in directly. Basically, the main differences refer to the 

way they evaluate crushing and cracking criteria for multi-axial stress states, the way in which stress 

rotations are treated and in the way loading and unloading is managed. Strain decomposition results in a 

multi-directional fixed crack model with secant unloading in tension combined with an elastoplastic yield 

model in compression. Total strain describes the elastic and plastic strain in tension and compression in one 

constitutive relation using secant unloading for both. Opposite to the strain decomposition concept the total 

strain cannot include creep, shrinkage, temperature and maturity effects. From a physical point of v iew, the 

strain decomposition concept is more attractive whereas total strain based models are, in general, numerical 

advantageous as they are much more stable.   

 

The multi directional fixed crack model (in combination with a Drucker-Prager yield model) and total strain 

based crack models are compared in the report of Burgers [20]. Burgers made a compare between the results 

of an actual test and the results of the DIANA crack models (and a damaged plasticity model of ABAQUS) for 

a four point bending test on a notched beam fabricated from fibre reinforced concrete. Burgers reports on 

satisfying results for the total strain rotating crack model while the accurateness of the approximations of the 

total strain fixed crack model and the multi directional fixed crack model depends on the magnitude of the 

shear retention factor. Satisfying results of these models is accompanied by numerical difficulties. 

 

 

11.12 Conclusions and Comments 

 

In the foregoing the general finite element procedure is discussed. The spatial discretisation into finite 

elements and the formulation of the approximated displacement field using shape functions. The 

construction of the weak form of equilibrium which allows for approximated solutions and the stiffness 

matrix which is computed using numerical integration in and ov er the elements. Successively, the sy stem of 

equations can be solved either linear, nonlinear or by performing a stability analysis using direct, iterative or 

incremental-iterative solution algorithms. More specific the geometrical and material modelling in DIANA is 

discussed, with extra attention for cracking and crushing of concrete. 

 

Despite of the great power of the finite element method, the disadvantages must be kept in mind. The 

method does not necessarily reveal how the stresses are influenced by important problem variables such as 

material properties and geometrical features and errors in input data may produce large incorrect results 

that can be ov erlooked by  the analyst. Furthermore, it should be mentioned that, for the displacement 

approach, the approximate solution alway s overestimates the total potential energy, which is the strain 

energy minus the work performed by the external loads. However, complied with the fact that the potential 

energy is negative near its minimum, the displacement based finite element method underestimates the 

strain or deformation energy and, therefore, the solution is often referred to as the lower bound solution. 

This means that the structural behaviour appears to be stiffer than the exact solution. 
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12 Linear Elastic FEA 

 

In this chapter, a linear elastic finite element analysis is discussed. The theory as described before in Chapter 

5 and the hemispherical example of Chapter 10, serve as background. Subsequently, in Chapter 13, the linear 

buckling and linearised postbuckling behaviour is discussed. Linear elastic analyses, however, may  not be 

representative for the actual shell behaviour. Therefore, in Chapter 14 and 15, the actual shell behaviour is 

approached more accurately  by  implementation of nonlinear behaviour, i.e. a geometrically  nonlinear 

analysis with initial imperfections in Chapter 14, and finally a geometrically and phy sically  nonlinear 

analysis in Chapter 15, also taking into account for material nonlinearities. 

 

For the linear analysis the Zeiss planetarium case study shell is used as geometry. The analyses are 

performed on an axisymmetric curved line model and a three-dimensional shell model consisting of two-

dimensional quadrilateral and triangular curved shell elements. The axisymmetric model is the most simple 

shell model possible in finite element analysis. The model is, however, unable to deal with variations in 

circumferential direction. If these variations may occur, a three-dimensional model is required. The 

calculations are based on an ideal shell without any imperfections assuming infinite linear elastic material 

behaviour. The material properties are previously described in Chapter 8. 

 

The results of the linear analyses are compared with the ‘benchmark’ results of Chapter 10. The stresses, 

strains and displacements are compared with the results of the classical shell theory. In addition to Chapter 

10, the influence of different load conditions on the shell structural response is investigated. Therefore, wind 

load as derived in Chapter 9, is projected on the three-dimensional shell model.  
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12.1 Shell Parameters 

 

12.1.1 Geometry  

 

For the shell geometry, the dimensions of the Zeiss planetarium as discussed in Chapter 7  are used, i.e. a 

hemispherical shell with a radius of 12500 mm and a thickness of 60 mm.  

 

12.1.2 Material Properties 

 

The finite element analysis of Chapter 12 is linear elastic based. Hence, the material is modelled as infinite 

elastic and the only material parameters that have to be defined are the Young’s modulus of elasticity  and 

Poisson’s ratio. Recapitulating from Chapter 8, for the conventional C20/25 mixture the Young’s modulus is 

30 GPa whereas the C180/210 mixture is assumed to be twice as stiff with a Young’s modulus of 60 GPa. For 

as well the conventional C20/25 mixture as the C180/210 mixture the Poisson’s ratio is set equal to zero. 

 

12.1.3 Boundary Conditions 

 

The shell is analysed using four types of support; a roller, inclined-roller, hinged and a clamped support. In 

this way the influences of boundary conditions on the structural behaviour can be investigated. The actual 

support of the Zeiss planetarium is a clamped support as the shell is rigidly connected (by steel 

reinforcement) to a tension ring which, in turn, rests on a circular base building, see Chapter 7. 

 

12.1.4 Loading 

 

The external applied load is equal to the (trivial) uniform vertical load consisting of the dead weight of the 

shell and snow load, described in Table 10.2.  That is, a load P = 0.0021 N/mm2 (2.1 kN/m2). Furthermore, a 

spherical load with the same magnitude is considered and in Section 12.6 the structural response to wind 

load as defined in Chapter 9 is investigated.  

 

12.1.5 Analysis Scheme 

 

The different types of analyses are presented in the scheme below. As wind load varies in circumferential 

direction, it is not possible to combine the wind load with an axisymmetrical model.  

 

Name Loading Conditions Supporting Conditions Type of Analysis Model  

Zeiss 1 Spherical  and Vertical Roller Linear Elastic Axisymmetric + 3D 

Zeiss 2 Spherical  and Vertical Inclined-roller Linear Elastic Axisymmetric + 3D 

Zeiss 3 Spherical  and Vertical Pinned Linear Elastic Axisymmetric + 3D 

Zeiss 4 Spherical  and Vertical Clamped Linear Elastic Axisymmetric + 3D 

Zeiss 5 Wind load Clamped Linear Elastic 3D 

 

Table 12.1. Analysis scheme 
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12.2 Axisymmetric Shell Model 

 

The axisymmetric shell model is analysed first. The model is far less complicated and allows for much faster 

analyses than a three-dimensional model. The axisymmetric model is checked on support reactions, stresses, 

strains and displacements, respectively.  

 

12.2.1 FE Model 

 

The axisymmetric shell model consists of a curved line, a quarter of a circle, which presents a complete 

hemisphere as DIANA considers the vertical axis as axis of rotational symmetry. The line model is composed 

out of 92 axisymmetric curved line elements CL9AX (see Chapter 11) with in total 185 nodes. Consequently, 

each element has a circumferential length of approximately 213 mm, which means that the requirement of at 

least 6 elements within the region of influence of a local bending moment (2078 mm, equation (10.32)) to 

ensure results of sufficient accuracy  is satisfied, Hoogenboom [50]. Each element has 2  point Gauss 

integration over the length of the element and 3  point Simpson integration in thickness direction, which is 

appropriate for linear elastic analysis, DIANA User’s Manual [29]. The three-point Simpson integration 

allows for inner, outer and middle surface stress and strain presentation. The integration polynomial of the 

axisymmetric elements, typically, produces stresses and strains which vary linearly over the length of the 

element (see Chapter 11). The shell top node is inclined-roller supported, as if it represents a complete 

sphere. The varying base supports are modelled by each time allowing or disallowing translation and/or 

rotation at the base node. The model is vertically or spherically loaded. Due to a modelling drawback of 

DIANA, i.e. for axisymmetrical elements it is not possible to construct a purely spherical load, the spherical 

load is modelled by modification of the direction of a line load; a line load is formed perpendicular to the 

element only at the middle node. 

 

12.2.2 Support Reactions 

 

The most elementary test is probably to check whether the support reactions correlate with the external 

applied load. For the axisymmetrical model, the support reactions resulting from the finite element analy sis 

are illustrated by simple vectors which represent a summation of all reaction forces ov er the base radius. The 

support reactions for a vertical loaded hemisphere are presented in Table 12.2.  

 

Vertical  support reaction (kN) Horizontal  support reaction (kN) Name 

FEA                      Theory  FEA                         Theory  

Zeiss 1 2060 2062 0 0 

Zeiss 2 2060 2062 0 0 

Zeiss 3 2060 2062 38.4 38.3 

Zeiss 4 2060 2062 73.8 73.8 

 

Table 12.2. FEA  Support reactions of a shell  under vertical  load for different types of supports 

 

For each shell model the total v ertical support reaction (summation over the base radius) as obtained by the 

finite element analysis is equal to 2060 kN. To validate the finite element result, the external applied load 
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must be multiplied with the total shell surface area (2.1 kN/m2 · 981.75 m2 ≈ 2062 kN). The horizontal 

reaction differs for each type of support. Again, the value represents a summation over the base radius of all 

horizontal supporting reactions. In Chapter 10, the horizontal support reactions are determined with the 

classical shell theory. Hence, to compare the results with the theoretical results, the values as found in 

Chapter 10 must be multiplied with the circumferential length.  

 

Vertical  support reaction (kN) Horizontal  support reaction (kN) Name 

FEA                       Theory  FEA                         Theory  

Zeiss 1 1030 1031 0 0 

Zeiss 2 1030 1031 0 0 

Zeiss 3 1030 1031 -19.2 -19.2 

Zeiss 4 1030 1031 -36.9 -36.9 

 

Table 12.3. FEA  Support reactions of a shell  under spherical  load for different types of supports 

 

The supporting reactions of the spherical loaded shell are shown in Table 12.3. They are quite simple to 

validate, i.e. by definition, the vertical support reactions are equal to half the values as shown in Table 12.2 

(which is, off course, also valid for the theoretical values). The same holds for the horizontal support 

reactions, however, they are of opposite sign. From Table 12.2 and Table 12.3 it can be concluded that the 

results of the finite element analy sis show good correlation with the theoretical obtained results, i.e. the 

maximum difference is within 0.3%. 

 

12.2.3 Stresses 

 

Zeiss 1 

 

First, the axisymmetric shell model is analy sed while being subjected to a uniform vertical load. The Zeiss 1 

under vertical load is in a state of pure membrane action. In other words, the shell is supported in such a way 

that it will not disturb the membrane stress field and, consequently, there will be no bending moments in the 

shell. The principal meridional and circumferential stresses are presented in Figure 12.1.  
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Figure 12.1. FEA  membrane meridional  and circumferential  stresses for a shell  under vertical  load 
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On the horizontal axis of Figure 12.1 the meridional direction of the shell surface is shown from the base 

radius to the top node at 19635 mm (quarter of a circle with radius 12500 mm). The vertical axis shows the 

stresses from the finite element analysis. Clearly, the membrane stresses show no surprises as they have a 

similar distribution as Figure 10.4. Qualitatively, the stresses coincide with the values of Chapter 10. 
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Figure 12.2. FEA  meridional  and circumferential  stresses for a roller shell  under spherical  load 

 

The roller supported Zeiss 1 shell subjected to a spherical load is a second example of a shell in a pure 

membrane state. The roller supports do not suppress any rotation which means that, theoretically, the shell 

is free from bending. Moreov er, the spherical load only cause uniformly distributed radial pressing of the 

shell and no rotation. As can be seen in the rather trivial graphs of Figure 12.2, the principal meridional and 

circumferential stresses are equal to -0.219 MPa. Again, on the horizontal axis of the figures the meridional 

direction of the shell surface is shown. The vertical axis shows the stresses from the FEA.  
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Figure 12.3. FEA  uninvited meridional  stress discrepancies and bending moments of a roller shell  under spherical  load 

 

A closer look at the membrane stresses, however, uncovers inaccuracies in the solution. Within a very  small 

bandwidth, between -0.218 and -0.219 MPa, adjacent nodal stresses show uninvited discrepancies which 

lead to uninvited bending moments, both illustrated in Figure 12.3. The three different lines in the stress 

graph of Figure 12.3 represent the stresses in the outer, middle and inner Simpson integration points, 

respectively. The inaccuracies are caused by the modelling drawback of DIANA, i.e. for the axisymmetrical 
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elements it is not possible to construct a purely spherical load. As a consequence of the aforementioned 

solution, small disturbances arise between adjacent nodes. These disturbances cause the stress discrepancies 

and bending moments. The disturbances are relatively small. 

 

In Figure 12.3 it is also seen that the bending moments do not completely vanish at the support. 

Theoretically, the shell is free to rotate and thus no bending moments can be absorbed at the support. The 

reason for the nonzero bending moments is found in the element formulation; they do not return to zero at 

the support due to the fact that the mapping operation from the ‘exact’ integration points (which are not 

situated at the end of an element) to the end nodes is linear. As the actual moments experience higher order 

degradation, the linear mapping operation is of insufficient degree. 

 

Zeiss 2 

 

The Zeiss 2  shell has inclined-roller support, which means that the base radius of the shell is restrained from 

rotating. When the inclined-roller shell is subjected to vertical load, the supports are not membrane 

compatible anymore. Hence, bending moments inevitable arise and there is referred to a so-called edge 

disturbance. The meridional stresses and bending moments are seen in Figure 12.4. The bending moments 

rising from the edge disturbance do not influence the circumferential stresses, which is evident as they are in 

perpendicular direction. Consequently, the circumferential stresses of the inclined-roller supported shell are 

similar to the pure membrane situation in Figure 12.1. Due to the fact that the bending moments have a local 

character and decay out, reaching up to approximately 2078 mm (equation (10.33)), both graphs of the 

figure are zoomed in upon the boundary layer of the shell, which is bending-dominated. 
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Figure 12.4. FEA  bending moments and meridional  stresses for a shell  under vertical  load with  inclined-roller support 

 

The bending moments plotted in Figure 12.4 correspond to the back curving of the shell surface for 

compatibility  requirements. In other words, the shell flattens under the vertical load and needs to be rotated 

reversely at the base radius to end up straight. This is also seen in the stress graph where the meridional 

stresses split into three paths near the support (-0.412, -0.434 and -0.456 MPa). As previously observed in 

the spherically loaded Zeiss 1 shell, these splitted lines represent the discrepancy between the both outer 

Simpson integration points. One line (the upper) represents the outer shell surface and experiences a release 

in compressive stress due to the bending moments. The other line (the lower) represents the inner shell 
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surface and experiences an increase in compressive stress. Clearly, the line in-between is the middle surface 

stress.  

 

In Figure 12.4 it can also be seen that the influence length as determined according to equation (10.33) 

almost coincides with the finite element result (2078 mm to 1700 mm, respectively). Furthermore, Figure 

12.4, shows that the maximum bending moment is only slightly lower (approximately 3%) than the one 

found using the theoretical formulae. The principal middle surface stresses have good correlation with the 

theory. This is also seen in Table 12.4. Finally, it can be concluded from Figure 12.4 that the edge disturbance 

influences the meridional stresses up to roughly  1000 mm, which means that the shell is in pure membrane 

action (only in-plane stresses and no bending moments) for 92%. Hence, according to the categorisation by 

Farshad [34] the shell can be qualified as membrane-dominated. 
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Figure 12.5. FEA  uninvited meridional  stresses and bending moments in  an inclined-roller shell  under spherical  load 

 

For a spherical load the Zeiss 2  shell remains in a pure membrane state and the principal membrane stresses 

are similar to the graphs of Figure 12.2. However, once more, small disturbances are present and bending 

moments arise. They are shown in Figure 12.5. In the figure it can be seen that the initial bending moments 

are smaller in compare to the previously found moments of the Zeiss 1  shell. Therefore, in the stress 

distribution, the inner and outer stresses reach each other more closely. Obviously, this is caused by the 

different compatibility  requirement of the inclined-roller; no rotation allowed.  Nonetheless, these 

disturbances should not been there at all in the first place.  

 

Zeiss 3 

 

The third type of support is a hinge, which means that the base radius of the shell is fixed at location while it 

is free to rotate. The hinge support is unable to transfer bending moments. As a consequence, the bending 

moments which undoubtedly will arise somewhat higher in the shell (the natural deformation is disturbed) 

must vanish.  The bending moments from the finite element analysis are shown in Figure 12.6. From Figure 

12.6 it can be observed that the results are inaccurate. Due to the fact that the integration points are not 

situated at the end of the elements, and the mapping operation to the end node is linear, the bending 

moments do not return to zero at all at the hinge support. To show the expected moment distribution, a 

dotted line is drawn in the same graph. Despite the inaccuracy at the end node, the influence length shows 
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good correlation with the theoretical value. The maximum bending moment is much higher than for the 

inclined-roller supported Zeiss 2  shell (145 Nmm/mm to 23.2  Nmm/mm). Obviously, this may  be expected; 

for compatibility requirements the shell must deform completely against its urge.  
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Figure 12.6. FEA  and expected (dotted line) bending moments for a shell  under vertical  load with  hinged supports 

 

The principal meridional and circumferential stresses are plotted in Figure 12.7. Due to the nonzero bending 

moments at the support, the resulting graphs show a discrepancy between correct and found results, 

indicated by  the difference in continuous and dotted lines.  The dotted lines represet the correct solution. 

The stresses end with values of -0.491 and -0.377 MPa. Also the circumferential stresses do not vanish at the 

support. From the figure it can be concluded that the hinged supported shell is in pure membrane action for 

more approximately 90%. 
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Figure 12.7. FEA  meridional  and circumferential  stresses for a shell  under vertical  load with  hinged supports 

 

Also for a spherical load, a hinge supported shell is not in a pure membrane state. In fact, the stresses and 

bending moments of a hinged shell subjected to spherical load show great similarity with the shell under 

vertical load. The finite element result is plotted in Figure 12.8.  Both graphs of Figure 12.8 are zoomed in 

upon the bending-dominated boundary layer of the shell. The bending moments are in contradiction to the 

theory  as they do not vanish. As can be expacted based on the deformation of the shell under spherical load, 
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the bending moments are of opposite signin compare to the bending moments of Figure 12.7. Hence, the 

non-vanishing meridional stresses are also of opposite sign. 
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Figure 12.8. FEA  meridional  stresses and bending moments in  a hinged supported shell  under spherical  load 

 

With respect to the uninvited stresses and bending moments seen in Figure 12.3 and 12.5, it can be 

concluded that they  become irrelevant as they  are negligible in compare to the much larger stress variations 

caused by the edge disturbance. 

 

Zeiss 4 

 

The final shell support is a clamped support, no rotation and displacement allowed. For a vertically loaded 

clamped shell, the bending moments determined in the finite element analy sis are plotted in Figure 12.9.  
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Figure 12.9. FEA  and theoretical  bending moments for a shell  under vertical  load with  clamped supports 

 

The value is significantly lower than the one found in Chapter 10 using the classical shell theory, indicated by 

the dotted line. The considerable disagreement is an extreme example of the factual error of the linear stress 

mapping within the axisymmetric elements. Counteracting the size disagreement, the influence length of the 

bending moment is correct and the shell behaves like a membrane for approximately 80%, regardless of the 

‘severe’ compatibility requirement. 
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Figure 12.10. FEA  meridional  and circumferential  stresses for a shell  under vertical  load with  clamped supports 

 

The resulting stresses of the vertically loaded clamped shell are illustrated in the graphs of Figure 12.10. It 

can be seen that, contrary to the Zeiss 3  shell, the circumferential stresses approach the actual zero stress at 

the base radius more closely. The meridional outer and inner surface stresses show a remarkable pattern 

which can be explained by curving and back curving of the shell surface near its support corresponding to 

the expected deformations, i.e. flattening at the top and bulging and back curving near the base. The large 

bending moments cause the outer surface stresses (-0.705 and -0.163 MPa) to be far away from each other. 

Hence, as a larger moment can be expected, Figure 12.9, the actual stress dissimilarity will be even greater.  
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Figure 12.11. FEA  meridional  stresses and bending moments in  a clamped supported shell  under spherical  load 

 

When the clamped shell is subjected to a spherical pressure load, the bending moments and stress variation 

in the shell may expected to be even higher than previously found for the Zeiss 3  shell. That is, the shell does 

not only must preserve its initial position at the base, but also is not allowed to rotate. The results of the 

finite element analysis are seen in Figure 12.11. The trend of the graphs is quite similar to the graphs of 

Figure 12.9 and 12.10. Like the vertically loaded clamped shell, the bending moment may be underrated. 

Similar to the Zeiss 3  shell, the uninvited stresses and moments caused by  the modelling drawback are 

negligible. 
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Meridional  stresses (MPa) Circumferential  stresses (MPa) 

Top                                                               Base         Top                                        Base 

Name 

FEA  Theory  FEA  Theory  FEA  Theory  FEA  Theory  

Zeiss 1 -0.219 -0.219 -0.434 -0.438 -0.219 -0.219 0.429 0.438 

Zeiss 2 -0.219 -0.219 -0.434 -0.438 -0.219 -0.219 0.429 0.438 

Zeiss 3 -0.219 -0.219 -0.434 -0.438 -0.219 -0.219 0.09 0 

Zeiss 4 -0.219 -0.219 -0.434 -0.438 -0.219 -0.219 0.03 0 

 

Table 12.4. Meridional  and circumferential  stresses for vertical  loaded shells 

 

To give a quantitative comparison between the theoretical results of Chapter 10 and the finite element 

results, the stresses found for vertical and spherical loaded shells are summarised in Table 12.4 and Table 

12.5. In case of varying stresses ov er the thickness of the shell, the middle surface stresses are tabulated.  

 

Meridional  stresses (MPa)            Circumferential  stresses (MPa)                                                 

Top                                             Base Top Base 

Name 

FEA  Theory  FEA  Theory  FEA  Theory  FEA  Theory  

Zeiss 1 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 

Zeiss 2 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 

Zeiss 3 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.049 0 

Zeiss 4 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.012 0 

 

Table 12.5. Meridional  and circumferential  stresses for spherical  loaded shells 

 

If the supports are not membrane compatible, bending moments arise. They are quantitatively represented 

in Table 12.6. In the spherical (right) table, the disturbances of the load-modelling can be seen. 

 

Bending moments (Nmm/mm) Bending moments (Nmm/mm) Name 

Base                                   Base                                   

 AXI FEA Theory  AXI FEA Theory  

Zeiss 1 0 0 -0.079 0 

Zeiss 2 -23.2 -23.93 -0.049 0 

Zeiss 3 -59.0 0 29.5 0 

Zeiss 4 281.0 406.79 

 

-161 - 

 

Table 12.6. Bending moments of the vertical  (left) and spherical  (right) loaded shell 

 

From Table 12.4, 12.5 and 12.6 it can be concluded that, generally, the finite element results are in 

reasonable agreement with the classical shell theory (within 1%). The circumferential stresses at the base and 

the bending moments due to edge constraint, however, uncovers the factual error of linear stress mapping. 

In particular for the hinged Zeiss 3  and clamped Zeiss 4 shells the linear mapping has a significant influence 

on the stress distribution and bending moments. The overcome the (large) discrepancy  between expected 

and computed results one may opt for choosing a higher order scheme in length direction with integration 

points at the element ends. However, aforementioned in Chapter 11, this is not recommended as the element 

becomes highly sensitive to shear locking. Hence, the engineer must keep in mind that these elements may 
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yield results of insufficient accuracy. Note that, by selecting a finer mesh, the engineer is able to obtain an 

impression of the size of the discrepancy which he can use in the design process. 

 

12.2.4 Strains 

 

In linear elastic analysis the strains can directly be derived from the stresses conform the constitutive law, 

which is even further simplified as the Poisson’s ratio is set equal to zero. Therefore, the strain graphs show a 

same trend as the previously plotted stresses. E.g. this is seen in Figure 12.12 for the Zeiss 1 shell.  
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Figure 12.12. FEA  meridional  and circumferential  strains for a shell  under vertical  load with  roller supports 

 

The graphs of Figure 12.12 represent the principal membrane strains for a hemispherical shell subjected to a 

uniform vertical load. If the boundary condition is not membrane compatible, the membrane strains will be 

disturbed locally (only in the boundary layer of the shell) such as the stress disturbances seen before. In 

those regions, the inner and outer surface strains will deviate from each other presenting the cross-sectional 

rotation of the shell surface. Clearly, as the strains are mapped linear ov er the element length, the strains 

violate the theory in the same manner as the stresses did. The strain results as obtained by the finite element 

analysis are summarised in Table 12.7. 

 

Meridional  strains (‰) Circumferential  strains (‰) 

Top                                                                        Base Top                                      Base 

Name 

FEA  Theory  FEA  Theory  FEA  Theory  FEA  Theory  

Zeiss 1 -0.0073 -0.0073 -0.0145 -0.0146 -0.0073 -0.0073 0.0143 0.0146 

Zeiss 2 -0.0073 -0.0073 -0.0145 -0.0146 -0.0073 -0.0073 0.0143 0.0146 

Zeiss 3 -0.0073 -0.0073 -0.0145 -0.0146 -0.0073 -0.0073 0.003 0 

Zeiss 4 -0.0073 -0.0073 -0.0145 -0.0146 -0.0073 -0.0073 0.0009 0 

 

Table 12.7. Meridional  and circumferential  middle surface strains for a shell  under vertical  load 

 

For the strains in the shells subjected to spherical pressure load, the same observations can be made. That is, 

their distribution is similar to the graphs seen in Figure 12.2. When the supports suppress the membrane 

deformation, the strains are disturbed locally and the inner and outer surface strains move away from each 

other. Like the stresses, the strains are not perfect and they show the same irregular pattern as seen in 
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Figure 12.3  and 12.5. Finally, also for the spherical strains, the linear mapping is the reason for the 

disagreement with the classical shell theory. The strains resulting from the finite element analysis are seen in 

Table 12.8.  

 

Meridional  strains (‰)                    Circumferential  strains (‰) 

 Top            Base Top Base 

Name 

FEA  Theory  FEA  Theory  FEA  Theory  FEA  Theory  

Zeiss 1 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 

Zeiss 2 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 

Zeiss 3 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 0 0 

Zeiss 4 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 -0.0073 0.0004 0 

 

Table 12.8. Meridional  and circumferential  middle surface strains for a shell  under spherical  load 

 

Analogous to the previous section, the conclusion can be drawn that the finite element results show 

reasonable agreement with the classical shell theory, except for the disturbed boundary regions where large 

bending moments are present.  

 

12.2.5 Displacements 

 

The shell subjected to v ertical or spherical load undergoes a displacement from its initial shape. Clearly, the 

deformation depends on the type and magnitude of the load, the shell proportions and the boundary 

conditions. The deformed and undeformed vertically loaded Zeiss shells are visualised in Figure 12.13. 

Quantitative information concerning the deformed shells can be found in Table 12.9.  
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Figure 12.13. Displacements of a shell  under vertical  load with  several  support conditions 

 

In Figure 12.13, the initial (zero line) and deformed Zeiss 1  to 4 shells are shown. The ‘membrane’ supported 

Zeiss 1  shell (dot line) can move freely, restricted by its circumferential stresses only. The largest 

displacement is seen at the top of the shell. At the base radius the shell moves outward and rotates slightly. 

Contrary to the Zeiss 1 shell, the Zeiss 2 shell (ace line) cannot rotate at the base. Hence, bending moments 

must bend back the shell against its membrane deformation. The support has no influence on the top 

displacement as it is similar to the membrane supported shell. The initial and deformed shapes of the Zeiss 3 



  Chapter 12.   Linear Elastic Analysis 

 287

and Zeiss 4 shell are also illustrated in Figure 12.13. The hinged support of the Zeiss 3  shell (triangular line) 

does not allow for any displacement at the base. Additionally, in case of the clamped supported Zeiss 4 shell 

(cross line), the rotation is also suppressed, causing adjacent curvatures in different directions. Both 

supports do not only influence the base displacement, but the top displacement as well. Due to the restraints, 

the top displacement is slightly less than the ones found for the Zeiss 1 and 2  shells.  

 

Displacements (mm) Rotations (mm/mm) 

Top                                       Base Top                                          Base 

Name 

FEA  Theory  FEA  Theory  FEA  Theory  FEA  Theory  

Zeiss 1 -0.308 -0.365 0.182 0.182 0 0 -2.92 E-5 -2.92 E-5 

Zeiss 2 -0.308 -0.365 0.170 0.173 0 0 0 0 

Zeiss 3 -0.304 -0.365 0 0 0 0 0.00025 0.00025 

Zeiss 4 -0.299 -0.365 0 0 0 0 0 0 

 

Table 12.9. Displacements and rotations of the FEA  and the classical  shell  theory  

 

Comparing the results from the finite element analysis with the theoretical values in Table 10.8, 10.10, 10.12 

and 10.14, it can be concluded that the base displacements and rotations are (nearly) similar. The top 

displacements, however, show considerable dissimilarities as the shell seems to act stiffer (up to 15% and 

more). This discrepancy is discussed further in Section 12.3.  
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Figure 12.14. Displacements of a shell  under spherical  load with  several  supporting conditions 

 

The deformations of the spherical loaded shell with respect to the initial (zero line) position are seen in 

Figure 12.14. The Zeiss 1  and Zeiss 2  shell deform very much similar and their deformation lines coincide 

(ace line). The corresponding deformation is presented quantitatively in Table 12.10. In Table 12.10 it is 

observed that the aforementioned stress and strain disturbances cause the top displacement of Zeiss 1  and 2 

being different from the base displacement. Moreover, the disturbances cause both shells experience top 

rotation and, additionally, the Zeiss 1 shell undergoes a rotation at the base. In Figure 12.14 the deformed 

shapes of Zeiss 3  (triangular line) and 4 (cross line) caused by a spherical load are shown as well. It can be 

observed that the hinged supported shell experiences one directional curving to meet the compatibility 

requirement. For the clamped shell the additional requirement of zero rotation means that the shell needs 

two consecutive curves of opposite direction. In Figure 12.14 it can be seen that this more severe boundary 
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condition leads to a larger disturbed region. From Figure 12.14 and Table 12.10 it can be concluded that the 

more severe support conditions lead to slightly higher top deformations, in contrast with the observation 

made for the vertical load. Aforementioned, the base displacement of Zeiss 1 and 2 and the base rotation of 

Zeiss 1  are misleading results caused by the stress and strain disturbances.  

 

Displacements (mm) Rotations (mm/mm) Name 

Top Base Top Base 

Zeiss 1 -0.0909 -0.0913 -0.478 E-7 -0.934 E-7 

Zeiss 2 -0.0909 -0.0913 -0.478 E-7 0 

Zeiss 3 -0.0933 0 -0.478 E-7 0.139 E-3 

Zeiss 4 -0.0957 0 -0.478 E-7 0 

 

Table 12.10. Displacements and rotations of the FEA  for shell  under spherical  load 

 

With respect to the differences between a shell subjected to a spherical load and a v ertical load, it can be 

concluded that, in general, the vertical load causes higher stresses and bending moments.  Consequently, the 

deformations caused by a spherical pressure load are far less than the deformations caused by a uniformly 

distributed vertical load with the same magnitude. This, however, may be expected from a simple 

equilibrium consideration; in the lower part of the hemisphere the vertical load does not contain a 

‘supporting’ transverse component and, thus, the shell behaves less stiff in that region. 

 

 

12.3 Three-Dimensional Model 

 

Aforementioned in the introduction, the axisymmetric shell model is unable to produce variations in 

circumferential direction. However, in case of non-axisymmetric loading (wind, drifted snow), buckling, or 

imperfect shells the hypothesis of constant circumferential behaviour is not applicable anymore. Therefore, a 

three-dimensional shell model is necessary. The three-dimensional shell model is checked on support 

reactions, stresses, strains and displacements for each of the given supports and load conditions given in 

Table 12.1. However, first the 3D finite element model is discussed in detail. 

 

12.3.1 FE Model 

 

The three-dimensional shell model is seen in Figure 12.15. The model consists of two-dimensional curved 

shell elements. The model is generated by constructing several meridional and circumferential ribs which 

enclose rectangular and triangular surface areas. These individual areas are meshed with two-dimensional 

quadrilateral QU8-CQ40S curved shell and triangular TR6-CT30S curved shell elements (both discussed in 

Chapter 11). To ensure a pure spherical shape, the base shape of the elements is mapped onto spherical 

shape. Typically, the elements produce x- and y-directional stresses and strains which vary linearly in their 

own direction and quadratically in their perpendicular direction. For both elements a reduced integration 

scheme is applied to av oid membrane and shear locking. In thickness direction a 3  point Simpson 

integration is sufficient for linear elastic analyses, DIANA User’s Manual [29]. The final model consists of 

7168 elements bounded by 20609 nodes, see Figure 12.15. The requirement of at least 6 elements within the 
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influence region of possible edge disturbance is satisfied. Similar to the axisymmetric model, the type of 

support is modelled by allowing or disallowing translation and/or rotation of the nodes on the base radius. 

The load is purely vertical or spherical. 

 

 

Figure 12.15. Three-dimensional  shell  model  

 

Within the scheme of shell mesh generation procedures, it is also possible to let DIANA construct a mesh or 

to import one. The DIANA mesh, containing only quadrilateral elements, was already shown in Figure 11.13. 

From the figure it can be concluded that the DIANA mesh is non-smooth, showing large size deviations 

between neighbouring elements. This is, in fact, inherent to the generation method. To model a 

hemispherical cap, DIANA constructs a complete sphere which can be sliced in at least four parts (and not 

two). Thus, to construct a hemisphere two quarter parts of a sphere must be combined, resulting in two 

adjacent surfaces separated by a line of symmetry. Due to this line of symmetry two different meshes are 

required. Moreover, DIANA meshes the spherical shape using a paving algorithm (see Chapter 11). For a 

double curved shape this inevitable means that, starting at one point, at certain moment the mesh 

generation operation becomes entangled causing several elements of various sizes appearing next to each 

other. Unfortunately, the non-smoothness produces highly irregular stress and strain graphs (although they 

are not wrong in general). Therefore, the DIANA mesh is disregarded in fav our of the manual generated 

mesh. Furthermore, some attempts were made to import a mesh from MAYA and RHINO. However, the 

import operation failed as several elements did not survive. 

 

12.3.2 Support Reactions 

 

The elementary support reaction test of the three-dimensional model provide in a simple and fast first check 

to validate the model. The finite element results for each individual support condition are summarised in 

Table 12.11 and 12.12. In order to be able to compare the results of the three-dimensional model with the 

ones previously found, the values of Table 12.2 and 12.3 are present. Similar to Table 12.2 and 12.3, the 

support reactions are the sum of all support reactions of the base radius.  
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Vertical  support reaction (kN) Horizontal  support reaction (kN) Name 

3D AXI Theory  3D AXI Theory  

Zeiss 1 2062.0 2060 2061 0 0 0 

Zeiss 2 2062.4 2060 2061 0 0 0 

Zeiss 3 2060.8 2060 2061 39.9 38.4 38.3 

Zeiss 4 2056.8 2060 2061 74.8 73.8 73.8 

 

Table 12.11. Support reactions for a shell  under vertical  load 

 

In Table 12.11 it can be observed that there are several small differences in displacements which can be 

contributed to the numerical process. The differences in displacements of the three-dimensional model and 

the axisymmetric model are within a few percent (4%).  

 

Vertical  support reaction (kN) Horizontal  support reaction (kN) Name 

3D AXI Theory  3D AXI Theory  

Zeiss 1 1030,8 1030 1031 0 0 0 

Zeiss 2 1030,7 1030 1031 0 0 0 

Zeiss 3 1030,9 1030 1031 -18,4 -19.2 -19.2 

Zeiss 4 1031,0 1030 1031 -37,8 -36.9 -36.9 

 

Table 12.12. Support reactions for a shell  under spherical  load 

 

The support reactions corresponding to the spherical loaded shell are seen in Table 12.12. It can be 

concluded that the results are sufficient as the discrepancies stay within a negligible 4.2%. 

 

12.3.3 Stresses 

 

Zeiss 1 

 

The roller supported Zeiss 1 shell under vertical load is in a pure membrane state. A graphical presentation 

of the principal stress distribution of the three-dimensional shell analy sis is plotted in Figure 12.16. In the 

figure, the horizontal axis represents the shell meridional direction from the base radius to the top node. The 

vertical axis gives the meridional (thick line) and circumferential (thin line) stresses. It can be seen that there 

are disturbances in the finite element solution indicated a difference in stress between the inner, middle and 

outer Simpson integration points near the top of the shell. As observed in the stress output, the dissimilarity 

between the inner, middle and outer stress varies in meridional direction, with a pattern repeating each 

2000 mm. Remarkable (or not) this is exactly  the distance between to adjacent model-ribs. The explanation 

is found in the mapping operation of the element onto a spherical base shape. The mapping operation failed 

and the meshed areas between the ribs slightly deviate from an ideal sphere. In other words, the mesh lies 

ov er the ribs of the model like an unstressed fabric. The imperfectness undoubtedly leads to bending 

moments as there are curvature variations ov er the shell surface. The right graph of Figure 12.16 shows the 

meridional (thick) and circumferential (thin) bending moments which, in theory, would not occur. 
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Figure 12.16. Meridional  (thick) and hoop stresses and uninvited bending moments of a roller supported shell  under vertical  load 

 

In Figure 12.16 it is observed that, especially in the triangular elements and in the transition zone between 

the quadrilateral and triangular elements, the curvature variation has large influence and the moments show 

‘high’ peaks (up to -18.8 Nmm/mm). The peaks can be explained by  the fact that the main shape deviations 

are located within the triangular zone and close to the transition zone. The average shape deviation equals 

0.43 mm with a largest value of 2.9 mm. This is extremely high in compare to the expected discrepancy 

based on the number of significant digits (7) stored in the data file (there is no such thing as a perfect 

numerical model). As the disturbances have minor influence on the stress distribution the model is assumed 

to be sufficient.  

 

A final remark on Figure 12.16 is that the bending moments do not vanish at the support. Similar to the 

axisymmetric shell model, this can be contributed to the stress mapping between the ‘exact’ integration point 

and the element nodes. 

 

For the Zeiss 1 shell subjected to spherical load, the meridional (thick) and circumferential (thin) stresses are 

visualised in Figure 12.17. The deviating inner and outer surface stresses indicate the presence of the same 

disturbances as described above. The corresponding bending moments are also shown in Figure 12.17.  
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Figure 12.17. Meridional  (thick) and hoop (thin) stresses and uninvited bending moments of a roller supported shell  under 

spherical  load 
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It can be seen that the stresses and bending moments show a repetitive pattern between the ribs. The 

bending moments are approximately of the same magnitude, though slightly  higher, as the moments 

appearing in the Zeiss 1 shell under vertical load (-20.9 Nmm/mm to -18.8 Nmm/mm).  

 

Zeiss 2 

 

As seen before in the axisymmetric analysis, the Zeiss 2  shell is not membrane compatible when subjected to 

vertical load and bending moments arise. The stress distribution and bending moments along the meridian 

are illustrated in Figure 12.18.  
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Figure 12.18. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of an inclined-roller supported shell  

under vertical  load 

 

Most interesting in Figure 12.18 is the right graph presenting the moment distribution. It is observed that the 

uninvited moments are somewhat lower than the bending moments caused by the edge restraint. 

 

When subjected to spherical load, the inclined-roller supported Zeiss 2  shell is still membrane compatible. 

Therefore, both graphs of Figure 12.19 are very much similar to the graphs of Figure 12.17. Only  small 

differences arise in the inner and outer surface stresses and the bending moments due to the restrained 

deformation of the nodes at the base radius.  
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Figure 12.19. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of an inclined-roller supported shell  

under spherical  load 
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Zeiss 3 

 

The stresses and bending moments in the hinged supported Zeiss 3  shell subjected to uniform vertical load 

are illustrated in Figure 12.20. It can be seen that, the influence of the bending moments caused by the 

numerical imperfectness is less in compare to the edge disturbance. If Figure 12.20 is compared to Figure 

12.6, it can be concluded that the bending moments are almost similar. Besides, the stresses are determined 

more accurately by the three-dimensional model as they are in better agreement with the theory.  
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Figure 12.20. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of a hinged supported shell  under 

vertical  load 

 

The results of the hinged supported shell subjected to spherical load are plotted in Figure 12.21. Similar to 

the vertical loaded shell, it can be concluded that the three-dimensional model leads to more accurately 

stress and bending moment distribution at the support. The magnitude of the bending moments of both 

models is approximately the same.  
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Figure 12.21. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of a hinged supported shell  under 

spherical  load 

 

Zeiss 4 

 

The stress and bending moment distribution along the meridian of the clamped Zeiss 4 shell are seen in 

Figure 12.22. The severe edge restraint, nor any translation or rotation is allowed, leads to large bending 
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moments and stress variations near the support. The results are in good correlation with the theory, see also 

Table 12.13 and 12.15, and much more accurate than the axisymmetric model, see Figure 12.9. 
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Figure 12.22. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of a clamped supported shell  under 

vertical  load 

 

In Figure 12.22 it can be seen that the bending moment caused by the edge disturbance is almost 400 

Nmm/mm. Due to the large bending moment, it is seen that the meridional inner surface stress even 

becomes positive, which means that there is not only tension in circumferential direction but also in 

meridional direction. Like the hinged supported Zeiss 3  shell, disturbances that result from the numerical 

imperfectness of the model become irrelevant as they are negligible in compare to the edge disturbance.  
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Figure 12.23. Meridional  (thick) and hoop (thin) stresses and (uninvited) bending moments of a clamped supported shell  under 

spherical  load 

 

The same observation is valid for the clamped supported shell subjected to spherical load. The results of the 

analysis are illustrated in Figure 12.23. Similar to the vertical loaded clamped shell, there is tension in 

meridional direction as the outer surface stress becomes positive under the large edge moments.  
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The stresses found in the three-dimensional finite element analysis are summarised in Table 12.13 and 12.14. 

The table shows the middle surface stresses.  

 

Meridional  stresses (MPa) Circumferential  stresses (MPa) 

Top                                                              Base   Top                                        Base 

Name 

3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  

Zeiss 1 -0.215 -0.219 -0.441 -0.438 -0.215 -0.219 0.447 0.438 

Zeiss 2 -0.215 -0.219 -0.440 -0.438 -0.215 -0.219 0.424 0.438 

Zeiss 3 -0.215 -0.219 -0.436 -0.438 -0.215 -0.219 0.004 0 

Zeiss 4 -0.215 -0.219 -0.437 -0.438 -0.215 -0.219 -0.011 0 

 

Table 12.13. Meridional  and circumferential  stress distribution for vertical  loaded shells 

 

Table 12.13 shows the stresses from the shells loaded vertically. The maximum difference is approximately 

3% whereas the average difference is about 1%. Hence, the conclusion can be drawn that the ‘average’ middle 

surface stresses from the three-dimensional analysis are in good correlation with the classical shell theory.  

 

In Table 12.14 the results in case of a spherical load are plotted. It can be seen that the stresses show less 

correlation in compare to the ones from Table 12.13. The average difference is somewhat higher and equal to 

1.5%. However, the greatest discrepancy, again found for the circumferential base stress of the roller 

supported shell, is less than for the vertical load.  

 

Meridional  stresses (MPa) Circumferential  stresses (MPa) 

Top                                                                         Base Top                                        Base 

Name 

3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  

Zeiss 1 -0.215 -0.219 -0.218 -0.219 -0.215 -0.219 -0.214 -0.219 

Zeiss 2 -0.215 -0.219 -0.218 -0.219 -0.215 -0.219 -0.217 -0.219 

Zeiss 3 -0.215 -0.219 -0.219 -0.219 -0.215 -0.219 0 0 

Zeiss 4 -0.215 -0.219 -0.218 -0.219 -0.215 -0.219 0 0 

 

Table 12.14. Meridional  and circumferential  stress distribution for spherical  loaded shells 

 

In Table 12.15 the bending moments are tabulated. Obviously, the bending moments arising at the roller 

support of the Zeiss 1  shell is the main reason for the discrepancies described abov e. In Table 12.15 it can be 

seen that the three-dimensional analysis approaches the classical shell theory bending moments more 

closely than the axisymmetric analysis.  

 

Bending moments (Nmm/mm) Bending moments (Nmm/mm) Name 

Base                                   Base                                   

 3D FEA  AXI FEA Theory  3D FEA  AXI FEA Theory  

Zeiss 1 -0.851 0 0 0.23 -0.079 0 

Zeiss 2 -31.0 -23.2 -23.93 1.23 -0.049 0 

Zeiss 3 -9.54 -59.0 0 -4.11 29.5 0 

Zeiss 4 390.0 281.0 406.79 

 

-222 -161.0 - 

 

Table 12.15. Bending moments of the vertical  (left) and spherical  (right) loaded shell 
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In fact, it can be concluded from Table 12.13, 12.14 and 12.15 that, in general, the three-dimensional shell 

model approaches the classical shell theory more closely than the axisymmetric shell model. However, in 

case of the given three-dimensional shell model, the stress distribution over the meridian is less smooth than 

the axisymmetric stress distribution.  

 

12.3.4 Strains 

 

For the linear elastic analy sis, three-dimensional strain graphs show the same trend as the stress graphs. 

Therefore, the strains as obtained by  the finite element analysis are not shown.  They are tabulated in Table 

12.16 and Table 12.17 for the vertical load and spherical load, respectively. The table shows the middle 

surface strains.  

 

Meridional  strains (‰) Circumferential  strains (‰) 

Top                                                             Base Top                              Base 

Name 

3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  

Zeiss 1 -0.0072 -0.0073 -0.0147 -0.0146 -0.0072 -0.0073 0.0149 0.0146 

Zeiss 2 -0.0072 -0.0073 -0.0147 -0.0146 -0.0072 -0.0073 0.0141 0.0146 

Zeiss 3 -0.0072 -0.0073 -0.0146 -0.0146 -0.0072 -0.0073 0 0 

Zeiss 4 -0.0072 -0.0073 -0.0146 -0.0146 -0.0072 -0.0073 0 0 

 

Table 12.16. Meridional  and circumferential  strain  distribution for vertical  loaded shells 

 

Meridional  strains (‰) Circumferential  strains (‰) 

Top                                                            Base Top                              Base 

Name 

3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  

Zeiss 1 -0.0072 -0.0073 -0.0073 -0.0073 -0.0072 -0.0073 -0.0072 -0.0073 

Zeiss 2 -0.0072 -0.0073 -0.0073 -0.0073 -0.0072 -0.0073 -0.0073 -0.0073 

Zeiss 3 -0.0072 -0.0073 -0.0073 -0.0073 -0.0072 -0.0073 0 0 

Zeiss 4 -0.0072 -0.0073 -0.0073 -0.0073 -0.0072 -0.0073 0 0 

 

Table 12.17. Meridional  and circumferential  strain  distribution for spherical  loaded shells 

 

12.3.5 Displacements 

 

The deformations of the three-dimensional shells subjected to vertical load are plotted in Figure 12.24 and 

Figure 12.25. In Figure 12.24, the initial undeformed and deformed shapes of the membrane supported Zeiss 

1  shell are plotted against each other. Clearly, the shell can move and rotate freely  at the base. Qualitatively, 

the deformed shape is similar to the one found before with the axisymmetric model.  

 

In Figure 12.25 the initial and deformed shapes of the inclined-roller, hinged and clamped supported shell 

are plotted, respectively. The Figures are zoomed in upon the boundary layer of the shell to visualise the 

differences in deformation due to allowed or disallowed translations and rotations at the support. 

Qualitatively the shapes are similar to the axisymmetric deformed shells.  
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Figure 12.24. Displacement of a roller supported shell  subjected to vertical  load 

 

         

Figure 12.25. Displacement of a inclined-roller, hinged and clamped supported shell  subjected to vertical  load 

 

 

A quantitative representation of the deformations and rotations of the top and base radius of the shell under 

vertical load is seen in Table 12.13. The displacements presented are the polar displacements while the 

rotations are examined in perpendicular direction of a node. The finite element results are compared with 

the values of as obtained in Chapter 10 using the classical shell theory. From Table 12.13 and Table 12.9 it 

can be concluded that the displacements (and the rotations) of the three-dimensional shell and the 

axisymmetrical shell are very much similar to each other. The top deformations of the three-dimensional 

model are somewhat lower whereas the base ring displacements are a little bit larger. These variations are 

not strange as small variations previously raised in the stresses and strains.  

 

Displacements (mm) Rotations (mm/mm) 

Top                             Base Top                             Base 

Name 

3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  3D FEA  Theory  

Zeiss 1 -0.305 -0.365 0.184 0.183 0 0 -0.352E-4 -2.92 E-5 

Zeiss 2 -0.305 -0.365 0.172 0.176 0 0 0 0 

Zeiss 3 -0.3 -0.365 0 0 0 0 0.00024 0.00025 

Zeiss 4 -0.296 -0.365 0 0 0 0 0 0 

 

Table 12.13. Displacements and rotations for vertical  loaded shells 

 

With respect to the top deformations, once more the conclusion can be drawn that the shell acts stiffer than 

predicted by the theoretical relation. Therefore, based on the finite element results, it is suggested to replace 

the factor of 2 in the energy based equation (10.16) by a factor of 1.7. This factor also finds reasonable 

accordance with other programs; using ESA PT a value of 1.73 was found. Thus, equation (10.16) changes to: 
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( )φz 0

pa
u = 1.7 

Et

2

                  (12.1) 

 

The factor also gives proper (safe-side) approximations in case of a varying R/t ratio. 

 

In Figure 12.26 and 12.27 a qualitative representation of the deformations of the hemispherical shell under 

external spherical pressure load is shown. In Figure 12.26 the complete deformed shell is seen inside the 

original geometry. It is observed that the shell experiences local variations within the global radial 

compaction, i.e. the maximum displacement is 0.094 mm and the minimum displacement is equal to 0.088 

mm. Therefore, the top and base displacements are quite different from the axisymmetric model, see Table 

12.10 and 12.14.  The average displacement is 0.091 mm which is equal to the one previously found in the 

axisymmetric analysis. The variations in the nodal displacements are caused by  the non-sphericalness of the 

three-dimensional shell surface. Hence, although not seen in Figure 12.24, the variations are present there as 

well. Furthermore, the numerical imperfectness causes rotations at the base radius of the shell which are in 

disagreement with the theory.  

 

 

Figure 12.26. Displacement of a roller supported shell  subjected to spherical  load 

 

In Figure 12.27, the inclined-roller, hinged and clamped supported shells are seen, zoomed in upon the 

boundary layer of the shell. The different boundary restraints are evident. 

 

         

 

Figure 12.27. Displacement of a inclined-roller, hinged and clamped supported shell  subjected to spherical  load 

 

A quantitative presentation of the deformed shell under spherical load is seen in Table 12.14. The 

displacements presented are the polar displacements while the rotations are the resulting values of the 

rotations in x-, y- and z-direction. It can be concluded from Table 12.14 and Table 12.10 that, due to the 
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numerical imperfectness, the displacements of the three-dimensional shell model subjected to spherical load 

leads to different results than for the axisymmetric model. 

 

Displacements (mm) Rotations (mm/mm) Name 

Top Base Top Base 

Zeiss 1 -0.0879 -0.0895 0 -0.262 E-5 

Zeiss 2 -0.0879 -0.0906 0 0 

Zeiss 3 -0.0903 0 0 -0.138 E-3 

Zeiss 4 -0.0927 0 0 0 

 

Table 12.14. Displacements and rotations of the FEA  for shell  under spherical  load 

 

 

12.4 Geometrical Influences  

 

The influence of geometrical parameters on the structural behaviour as described abov e must be 

investigated. As the hemisphere is the basic shape of this chapter, the thickness of the shell is the only 

parameter to investigate. The possibility of a varying shell thickness over the surface is not considered, 

although an increased thickness near the support is beneficial counteracting edge disturbances (Chapter 3).  

 

In particular in case of thin shells, the linear static behaviour might be very sensitive to changes in the shell 

thickness. There is referred to this so-called ‘highly sensitive’ behaviour if a change in shell thickness causes 

a significant change in spatial distribution of displacement and stress response. The problem of highly 

sensitive behaviour is described in the paper of Bathe, Chapelle and Lee [4] which is based on the analytical 

studies on the asymptotic behaviour of sensitive shells with small thickness as presented by Pitkäranta and 

Sanchez-Palencia (1997). In general, shells can be identified into one of the categories of membrane-

dominated, bending-dominated and mixed shells (Chapter 3) and their asymptotic behaviour (the R/t ratio 

reaching infinity) distinctly shows in which category the shell falls. The high sensitivity for changes in 

thickness, however, is characterised by the fact that the ratio of the bending energy to the total strain energy 

does not converge to a specific behaviour as the shell thickness decreases, but show an irregular pattern of 

oscillating energies. In other words, within the scheme of linear static analysis several structural responses 

appear for different shell thicknesses with no indication to which structural behaviour prevails.  

 

     

Figure 12.28. Deformed shapes as the shell  thickness decreases from R/t = 100 to R/t = 1000 
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As an example, Bathe, Chapelle and Lee investigated the behaviour of a clamped hemispherical cap with a 

sliced off top under a distributed pressure load ov er a small part of the shell surface. For their research they 

used the finite element program ADINA; however, the same results are obtained in this thesis with a DIANA 

linear analysis. The results are seen in Figure 12.28. In the Figure the deformed shapes of two shells are 

illustrated for R/t ratios equal to 100 and 1000. The local distributed load on both shells is placed 

approximately halfway the shell surface (clearly seen in the left Figure, though also present in the right).  

 

Regardless of the asymptotic behaviour; the phenomenon of high sensitivity is already observed for 

thicknesses reachable for thin concrete shells. Phy sically, the shell considered is an overly  sensitive structure 

in the sense that the spatial distribution of displacement and stress response changes significantly with 

changes in the shell thickness. For higher R/t ratios the tendency  seen in Figure 12.28 continuous, with the 

number of circumferential displacement waves increased each time the ratio R/t is multiplied with a factor 

of 1 0. However, such high ratios loose their practicability for thin concrete shells. 

 

The question is whether the same sensitivity is seen in the Zeiss hemisphere. Therefore the analy sis is done 

with several shell thicknesses with the R/t ratios varying from 200 up to 1000. From the analy sis it can be 

concluded that, qualitatively, the shells behaves similar. I.e. there is no change in spatial distribution of 

displacement and the stress distribution is equal. However, it is observed that for thinner shells, the 

meridional stress distribution changes slightly as it shows an increasing local peak in the region meshed by 

triangular elements. The peaks are the result of the failed element mapping caused by the modelling 

drawback of DIANA. Obviously, the thinner shell is more vulnerable to stiffness variations as the 

deformation is larger in compare to a thicker shell. From a quantitative examination of the results, the 

conclusion can be drawn that in thinner shells, the bending moments are smaller (as expected) whereas the 

stress variation between the integration points in thickness direction becomes larger. The stress variation 

becomes larger as the disturbances caused by the modelling drawback have less influence on thicker shells. 

The influence length of the bending moment is also smaller for thinner shells, which is in agreement with 

equation (10.32) and (10.33), and the statement that the preference for membrane behaviour arises by being 

thin (Chapter 3). In general, it can be concluded from the finite element results that the complete 

hemisphere is relatively insensitive to thickness variations.  

 

 

12.5 Material Influences  

 

The investigation to material influences on the stresses, strains and displacements is limited in linear elastic 

analysis. As the material in linear elastic analy ses is modelled by the Young’s modulus and the Poisson’s 

ratio only, these are the only parameters to vary. E.g. when the shell is fabricated using the high strength 

mixture as proposed in Chapter 8.6.2, with a Young’s modulus of 60 GPa (twice as stiff), the stresses do not 

change, but the strains and displacements lower by a factor of two. Thus, in a linear elastic analysis a stiffer 

material is beneficial to control the displacement of the shell. This advantageous effect is slightly distressed 

by  the increase in specific weight. The influence of a non-trivial Poisson’s ratio (ν) can easily be explained 

with the constitutive law as determined in Chapter 5. The stresses do not change whereas the strains and 

displacements change by a factor related to the Poisson’s ratio. For all concrete mixtures it is assumed that 
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the actual Poisson’s ratio is equal to 0.2 (Chapter 8). Thus, the new spherical displacements can be found by 

multiplication with a factor of 0.8 (=  1 – ν). For a vertical loaded shell it is observed that both the top 

displacement as the base displacement increase (in the initial direction). 

 

 

12.6 Load Influences  

 

In the analysis as presented above, the shell is loaded with a trivial uniform vertical or spherical load. 

Basically, the load represents the snow load summed up with the dead weight of the shell. Here, the 

influence of a non-axisymmetrical wind loading on the shell structural behaviour is considered. 

Aforementioned in Chapter 9, due to non-axisymmetrical loading the meridional curves and parallel circles 

do no longer present the principal directions of the internal stresses as there is a nonzero membrane shear 

force field, as well as normal membrane forces. Thus, the so-called stress trajectories transform under the 

influence of wind load. The load intensities as determined in Chapter 9 will serve as input for the analysis.  

 

The shell is loaded by  (non-axisymmetric) wind suction (1.2 kN/m2) and wind pressure (0.8 kN/m2) load, 

distributed according to Figure 9.4 and 9.5. Additionally, the dead weight of the shell is presented by a 

uniformly distributed vertical load (1.5 kN/m2). For reasons of simplicity, the wind load is modelled with an 

abrupt transition between wind suction and wind pressure. Moreover, the circumferential reduction in wind 

suction at the leeward side (Figure 9.5) is neglected.  

 

The deformations of a shell subjected to dead weight only  and a shell subjected to dead weight and 

additional wind load are illustrated in Figure 12.29. Obviously, in reality the wind load is more fluently 

distributed and the deformed shape is smoother. Although the shells deform significantly  different, the 

maximum deformations are almost similar, i.e. the shell loaded by dead weight deforms 0.212 mm at the top 

while the wind loaded shell deforms 0.202 mm in the boundary layer. Hence, the effect of wind load on the 

maximum displacement is negligible.  

 

     

Figure 12.29. Deformation of shell  loaded by  dead weight (left) and a shell  loaded by  wind and dead weight 

 

The stress distribution of wind load only and a combination of wind load and dead weight is shown in Figure 

12.30. In Figure 12.30 the meridional stresses are indicated by the thick lines and the circumferential 

stresses by  the thin lines. Both graphs show the stress distribution over the middle shell cross-section, 

parallel with the main wind direction. In the left figure it is clearly seen that the abrupt transition between 

wind pressure and wind suction causes large stress ‘jumps’, located nearby point 30 m in the graph. The 

same discontinuities can be seen in the moment distribution graphs, Figure 12.31. Hence, the moments 

nearby 30 m do not appear in reality.  
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Figure 12.30. ‘Wind parallel ’ stress distribution of a shell  loaded by  wind load only  (left) and a shell  loaded by  dead weight and 

wind load (right) 
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Figure 12.31. ‘Wind parallel ’ moment distribution of a shell  loaded by  wind load only  (left) and a shell  loaded by  dead weight and 

wind load 

 

The stress distribution in the other direction, perpendicular to the wind direction, differs at each location in 

the shell. In Figure 12.32 the meridional and circumferential stresses are plotted together with the shear 

stresses that appear halfway of the shell. It can be seen that, at the middle section of the hemisphere, the 

wind load is transferred to the supports partly by meridional stresses and partly by shear. 
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Figure 12.32. ‘Wind perpendicular’ stress distribution of a shell  loaded by  dead weight and wind load 

 



  Chapter 12.   Linear Elastic Analysis 

 303

From Figure 12.30, 12.31 and 12.32 it can be concluded that wind load significantly changes the stress and 

bending moment distribution over the shell. The circumferential tensile stresses, which e.g. appear in the 

vertical loaded shell of Figure 12.22, are compensated for at the leeward side. At the windward side, the 

meridional bending moment caused by the clamped support is completely compensated by the bending 

moments caused by the wind. Moreov er, shear stresses appear which change the direction of the stress 

trajectories.  

 

When the shell subjected to wind load and dead weight is compared to the shell previously examined in 

Section 12.3.3 (dead weight and snow load) it can be concluded that the stresses and bending moments 

caused by wind load do not prevail. At the leeward boundary the bending moments may be significantly 

higher; however, the modelling of the wind suction in that particular location is highly unrealistic, i.e. in 

reality the wind suction vanishes at the support, see Figure 9.3 and 9.5.  

 

 

12.7 Conclusions  

 

The linear elastic finite element analysis is performed using an axisymmetric and a three-dimensional shell 

model. Both models suffer numerical imperfections. In the axisymmetric line model, the spherical load could 

not be modelled directly, and, therefore, consists of segmented line load which introduces uninvited stress 

discrepancies and bending moments. The numerical imperfections in the three-dimensional model are 

caused by a failed mapping operation of the element base shape onto a sphere, i.e. the elements lay over a 

ribbed skeleton like an unstressed fabric introducing curvature variations. These curvature variations cause 

stress discrepancies and bending moments. However, although both models are not perfect, the general 

results show reasonable stress and strain distributions, bending moment localisations and displacements.  

 

The membrane supported hemisphere subjected to spherical load is in evenly distributed compression while 

the membrane supported hemisphere loaded by a uniform vertical load demonstrates compression at the top 

and compression-tension at the bottom, analogue to the classical shell theory. When the shell support is not 

membrane compatible anymore, edge disturbances arise and local bending moments are introduced in the 

boundary layer. A clamped support is most onerous, because it introduces the largest bending moments into 

the shell. The shell structural behaviour is not sensitive to variations in thickness or material, i.e. the 

response is no other than expected. However, this is only inspected for R/t ratios of 200 up to 1000. In case 

of a non-symmetrical wind load the axisymmetric shell model is not applicable anymore as it is unable to 

deal with variations in circumferential direction. From the three-dimensional finite element analysis it is 

observed that wind load changes the stress and bending moment distribution significantly and the 

meridional and circumferential directions do no longer present the principal directions of the internal 

stresses. Although the deformed shape is completely different, the maximum deformation caused by wind 

and dead weight is approximately similar to the deformation caused by dead weight only. Moreover, for the 

selected shell parameters, the combination of wind load and dead weight does not prevail ov er the 

combination of snow load and dead weight.  
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With respect to the solution accuracy, it can be concluded that the displacements, stress and strain results 

are almost similar to the results of Chapter 10 determined with the classical shell theory, i.e. within 3%. For 

the bending moments the results are less convincing as they are significantly lower caused by the low order 

stress mapping between the ‘exact’ integration points and the element nodes. In particular the axisymmetric 

model is insufficient with discrepancies reaching 30%. Hence, it can be concluded that, although the 

axisymmetric shell model provides in a (more) effective analysis, it is less accurate and reliable than the 

three-dimensional model.  
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13 Stability FEA 

 

 

The topic of this chapter is the investigation to the linear elastic stability  behaviour of a hemispherical shell.  

The theory of the stability behaviour of shells is discussed in Chapter 6. Here, the research is restricted to 

small deformations (linear) and elastic material behaviour. For these circumstances the validity of the 

stability relations and hypotheses of Chapter 6 are investigated.  

 

Aforementioned in Chapter 6, in the stability behaviour of shells distinction can be made between 

prebuckling and postbuckling behaviour. The path up to the critical buckling point is named the prebuckling 

path. This path and corresponding buckling point can be determined by a linear (Euler) buckling analy sis. In 

this type of analysis a bifurcation point is assumed and, as pointed out in Chapter 11, the finite element 

program solves the problem by a so-called eigenvalue analysis using an iterative solution scheme. The 

eigenvalues represent the critical buckling loads and the corresponding eigenfunctions determine the 

buckling modes.  

 

After the bifurcation point the nonlinear postbuckling path of equilibrium initiates. For synclastic shells 

loaded perpendicular to their plane, the postbuckling path shows a dramatic fall in load bearing capacity. 

The fall-back is caused by  postbuckling interaction of buckling modes, which where orthogonal within the 

linear scheme. Koiter found that the slope and curvature of the postbuckling path in the vicinity of the 

bifurcation point can be approximated closely by a linearised interaction of these buckling modes. In 

DIANA, the linear interaction of buckling modes is simulated by carrying out a so-called perturbation 

analysis. The corresponding postbuckling path of equilibrium can be found performing a continuation 

analysis. Hence, the successive execution of a perturbation and continuation analysis is the finite element 

presentation of the Koiter initial postbuckling theory.  

 

In the following a full linear elastic stability analysis, i.e. a linear buckling analysis and a perturbation and 

continuation analy sis, is reported. Similar to the previous chapter, the analyses concern as well the 

axisymmetric model as the three-dimensional model. In addition to Chapter 10, not only uniform pressure 

load is considered, but also the behaviour under uniform vertical load is investigated, as it shows much more 

resemblance with the type of load to which thin concrete shells are subjected in practice.  
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13.1 Shell Parameters 

 

13.1.1 Geometry 

 

See Chapter 12.1.1. 

 

13.1.2 Material 

 

See Chapter 12.1.2. 

 

13.1.3 Boundary Conditions 

 

See Chapter 12.1.3 

 

13.1.4 Loading 

 

The shell is loaded by uniform pressure or vertical load. Snow and wind load are not considered. 

 

13.1.5 Analysis Scheme 

 

The linear buckling calculations are presented in the analy sis scheme of Table 13.1.  

 

Name Loading Conditions Supporting Conditions Type of Analysis Model  

Zeiss 1 Spherical  and Vertical Roller Linear Stability  Axisymmetric + 3D 

Zeiss 2 Spherical  and Vertical Inclined-roller Linear Stability  Axisymmetric + 3D 

Zeiss 3 Spherical  and Vertical Hinged Linear Stability  Axisymmetric + 3D 

Zeiss 4 Spherical  and Vertical Clamped Linear Stability  Axisymmetric + 3D 

Zeiss 5 Partially  loaded Clamped Linear Stability  3D 

 

Table 13.1 . Analy sis scheme 

 

 

13.2 Linear Buckling Analysis 

 

The shell is modelled by axisymmetric shell elements (discussed first) and two-dimensional curved shell 

elements similar to the finite element models described in Chapter 12.  

 

13.2.1 Axisymmetric Shell Model 

 

The axisymmetrical shell model provides in a simple and fast model for buckling analysis. The spherical 

pressure load is analysed first. Then, the influence of a uniform vertical load is investigated. For each load 

the influence of several supporting conditions is considered.  
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Zeiss 1 

 

The shell roller supported Zeiss 1  shell subjected to spherical load is in pure membrane action, i.e. the shell is 

free to move without any boundary restraint (Chapter 12). For spherical load, the buckling modes from the 

finite element analysis are seen in Figure 13.1. The corresponding critical loads are presented in Table 13.2.  

 

 

Figure 13.1. Buckling modes 1, 2 and 3 for a roller supported axisymmetrical  shell  subjected to spherical  load 

 

In Figure 13.1 it can be seen that mode 1, 2  and 3  are quite different. First the shell buckles at the base radius 

with a corresponding buckling load which is extremely low, for sure when compared to adjacent modes (50% 

less than mode 2) or to the theoretical buckling load as derived by  Zoëlly, see Table 13.2.The buckling mode 

seems to stands alone, which gives rise to the thought that the mode may  be a premature buckling mode 

caused by numerical disturbances. On the other hand, the shell is considerably ‘weaker’ near the support as 

it is free to rotate. Confirmation for these thoughts will be searched later in the three-dimensional buckling 

analysis. From mode 2, the consecutive modes alternately  show top buckling (even modes) or a global wave 

pattern extending over the complete shell surface (odd modes). The top buckling modes must be addressed 

as premature buckling modes as, according to Kollar and Dulacska [54], the shell will alway s buckle in small 

local waves distributed evenly over the shell surface. The tendency to buckle at the top stems from the basic 

characteristic of the model, namely, axisymmetry.  The axis of axisymmetry is vertical, which means that 

buckling at the top corresponds to a local buckle whereas buckling in the shell surface is represented by a 

global buckling pattern extending in circumferential direction. The appearance of the global buckling modes 

can, therefore, be ascribed to the interaction of the top buckling mode with the edge mode 1. 

 

Buckling mode Critical  buckling load (MPa) 

1 0.3969 

2 0.7938 

3 0.8001 

4 0.8106 

5 0.8274 

10 0.9702 

Zoëlly  0.7981 

 

Table 13.2. Linear critical  buckling load for a roller axisymmetrical  shell  subjected to spherical  load 
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In Table 13.2, the critical buckling loads are presented. With the exception of mode 1, it can be seen that the 

critical buckling loads of the axisymmetrical shell model are very close to each other (each mode differs less 

than 2% and all modes between 2  and 10 are within 20%). Aforementioned in Chapter 6, this indicates the 

sensitivity of the shell to multimode or compound buckling, a characteristic feature of shells where several 

buckling modes are associated with the same critical load. Despite the premature top buckling modes, the 

critical loads find good correlation (within 1%) with the theoretical linear buckling load for a complete 

sphere as derived by Zoëlly (equation 6.53). 

 

 

Figure 13.2. Buckling modes 1, 4 and 7 for a roller supported axisymmetrical  shell  subjected to vertical  load 

 

The next step is to investigate the influence of a uniformly distributed vertical load on the shell stability 

behaviour. The results of the finite element analysis are seen in Figure 13.2. From Figure 13.2 it immediately 

can be concluded that, except for mode 1, the buckling pattern is significantly different in compared to 

buckling caused by  spherical load. Under the influence of v ertical load, the buckling first stays within the 

boundary layer. Later, the buckling pattern extends towards the total shell. Similar to the spherical case, the 

critical load of mode 1  is less than 50% of its successors. The lower based buckling is contributed to the fact 

that the vertical load, opposite to a spherical load, does not contain a ‘supporting’ transverse component in 

that boundary layer.  

 

A quantitative description of the buckling behaviour is represented in Table 13.3. It can be seen that the 

vertical critical buckling loads approach to the spherical critical load for higher buckling modes (from 60% at 

mode 2  to 20% at mode 10). Furthermore, it can be seen that adjacent critical loads lie further away from 

each other (up to more than 10%). With respect to the compound buckling, differences up to 2% are to be 

expected, Hoogenboom [50], which means that the phenomenon is disqualified here.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.2035 

2 0.5061 

3 0.5418 

4 0.6048 

7 0.7098 

10 0.7875 

Zoëlly  0.7981 

 

Table 13.3. Linear critical  buckling load for a roller axisymmetrical  shell  subjected to vertical  load 
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The observation that the critical loads approach the spherical critical load when the buckling modes 

approach towards a global wave pattern stresses that the statement of Simitses and Cole (1968), i.e. that the 

type of load, radial pressure or gravity, does not appear to change the critical load drastically, is valid if and 

only if global buckling takes place (thus, also in the compression zone). 

 

Zeiss 2 

 

The ‘membrane’ supported inclined-roller Zeiss 2  shell model subjected to spherical load experiences only 

radial displacements up to buckling instability  and no bending moments. Therefore, the hemispherical Zeiss 

2  shell behaves as if it is a complete sphere. The results of the buckling analysis are presented in Figure 13.3 

and Table 13.4.   

 

 

Figure 13.3. Buckling modes 1, 5 and 10 of an inclined-roller supported axisymmetrical  shell  subjected to spherical  load 

 

In Figure 13.3 the buckling modes 1, 5 and 10 are shown. The first mode of the roller supported Zeiss 1  shell 

has disappeared as the inclined-roller support gives sufficient resistance against rotation. Moreover, the 

rotational disallowing releases the shell from successive appearance of local top and global modes. The 

buckling modes of Figure 13.3 have a global character as the wave pattern extends over the total shell, 

however with maximum buckling amplitude at the top due to the axisymmetry of the model. The given 

modes appear to be more or less similar, with only small differences in the number of half-waves (14, 12 and 

20, respectively). The other computed (unplotted) buckling modes show the same tendency, i.e. the 

maximum buckling amplitude is unconditionally found at the top node.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.7917 

2 0.7959 

3 0.8043 

4 0.8169 

5 0.8421 

10 1.0017 

Zoëlly  0.7981 

 

Table 13.4. Linear cri tical  buckling load for an inclined-roller axisymmetrical  shell  subjected to spherical  load 
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It can be concluded from Table 13.4 that the critical buckling loads of the inclined-roller shell  are very close 

to each other (compound buckling) and find good correlation (within 1%) with the theoretical linear buckling 

load as derived by Zoëlly. Hence, this is encouraging as Zoëlly derived his buckling equation for a complete 

sphere and he already predicted the occurrence of compound buckling.  

 

The influence of a uniform vertical load on the stability  behaviour of an inclined-roller supported shell is 

visualised in Figure 13.4 and Table 13.5. Similar to the Zeiss 1 shell, the buckling starts at the base while it 

extends more and more towards the complete shell in following modes. The mode 1 which caused an 

extremely  low buckling load is vanished, however, this time lower based buckling is intensified by the so-

called edge disturbance; i.e. for a vertical load the supporting conditions are not membrane compatible 

anymore and bending moments undoubtedly will arise. 

 

 

Figure 13.4. Buckling modes 1, 3, 6 for an inclined-roller supported axisymmetrical  shell  subjected to vertical  load 

 

The critical buckling loads are represented in Table 13.5. When the values of Table 13.5 are compared with 

the surface bucking values in Table 13.3 (neglecting mode 1), it can be concluded that the bending moments 

caused by the boundary conditions intensify the buckling as the critical loads are somewhat lower. 

  

Buckling mode Critical  buckling load (MPa) 

1 0.4515 

2 0.5229 

3 0.5754 

6 0.6972 

10 0.8043 

Zoëlly  0.7981 

 

Table 13.5. Linear critical  buckling load for an inclined-roller supported axisymmetrical  shell  under vertical  load 

 

Iit can be concluded from Table 13.5 that the phenomenon of compound buckling is disqualified as adjacent 

critical loads vary up to 13%. Furthermore, similar to Zeiss 1, the statement of Simitses and Cole is valid if 

and only if global buckling occurs.  

 

Zeiss 3 

 

The Zeiss 3  shell is hinged supported. The results of the finite element analy sis for a hinged supported shell 

subjected to spherical load are illustrated in Figure 13.5. It can be observed that a hinged supported shell 
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buckles similar to the roller Zeiss 1 shell. The lowest critical buckling load produces a local buckle in the 

boundary layer (though, in opposite direction to Zeiss 1 due to the ‘hinged’ edge disturbance) whereas 

adjacent buckling modes buckle locally at the top or show a global wave pattern.   

 

 

Figure 13.5. Buckling modes 1, 2 and 3 for a hinged supported axisymmetrical  shell  subjected to spherical  load 

 

The repetitive sequence of local top buckling and global buckling in mode 2 to 10 is caused by a similar 

interaction or not of adjacent buckling modes as seen in Figure 13.1. Thus, the bending moments caused by 

the restrained support interact or not with the top buckling mode.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.6405 

2 0.7938 

3 0.8001 

10 0.9576 

Zoëlly  0.7981 

 

Table 13.6. Linear cri tical  buckling load for a hinged supported axisymmetrical  shell  under spherical  load 

 

The critical loads corresponding to the buckling modes are seen in Table 13.6. Due to the hinge support the 

shell buckles already at a value which is approximately  80% of the theoretical critical load for radially 

pressed spheres. Furthermore, a remarkable difference of approximately 20% between the first and second 

critical load is seen, whereas the critical loads from mode 2  to 10 are within 12%. This may  be caused by the 

fact that the buckling solution is disturbed by the non-vanishing bending moments in the linear solution (see 

Chapter 12.2.3). 

 

 

Figure 13.6. Buckling modes 1, 3 and 6 for a hinged supported axisymmetrical  shell  subjected to vertical  load 
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The Zeiss 3  shell with vertical load behaves similar to the v ertical loaded Zeiss 2  shell. The first buckling 

mode is locally, confined to the boundary layer of the shell, whereas following modes increasingly  stretch 

towards the total shell, illustrated in Figure 13.6. The buckling modes are quantitative represented in Table 

13.7. It can be concluded that the buckling load decreases to 44% of the theoretical buckling load for radially 

pressed spheres (the hinge supports cause a fall back in critical load of 13% in compare to the inclined-roller 

support). Moreover, there is a great discrepancy between the first and second critical load (almost 32%), 

whereas the other values differ more or less 7%. Again, this can be attributed to the nonzero bending 

moments that appeared in the linear solution (Chapter 12.2.3).  

 

Buckling mode Critical  buckling load (MPa) 

1 0.3507 

2 0.5103 

3 0.5481 

6 0.6825 

10 0.7896 

Zoëlly  0.7981 

 

Table 13.7. Linear critical  buckling load for a hinged supported axisymmetrical  shell  under vertical  load 

 

From the hinged supported shell it can, once more, be concluded that prebuckling rotations caused by edge 

disturbance bending moments amplify the buckling deformations or even may become dominant in buckling 

failure (e.g. Zeiss 3  spherical mode 1 in compare to Zeiss 2  spherical mode 1).  

 

Zeiss 4 

 

The Zeiss 4 axisymmetric shell model is clamped supported. The finite element results are plotted in Figure 

13.7. In Figure 13.7 it can be seen that the restrained rotation stimulates top node buckling. Hence, the 

corresponding critical load, seen in Table 13.8, is almost equal to the critical load for a radially pressed 

sphere. 

 

 

Figure 13.7. Buckling modes 1, 2 and 3 for a clamped supported axisymmetrical  shell  subjected to spherical  load 

 

The repetitive sequence of global and local top buckling indicates whether the critical load is spherical or 

based on the interaction of the spherical load with the bending moments that arise from the restraint 

deformation at the support.  Table 13.8 shows adjacent critical loads within 2% demonstrating the sensitivity 

to compound buckling.   
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Buckling mode Critical  buckling load (MPa) 

1 0.7938 

2 0.7980 

3 0.8106 

4 0.8211 

5 0.8421 

10 0.9870 

Zoëlly  0.7981 

 

Table 13.8. Linear cri tical  buckling load for a clamped supported axisymmetrical  shell  under spherical  load 

 

The buckling modes of the vertically loaded clamped shell, shown in Figure 13.8, show the same tendency as 

seen in all previous (vertical) cases. That is, a local first buckling mode confined to the boundary layer of the 

shell which ‘mode by mode’ extends towards the complete shell. The corresponding critical buckling loads 

are tabulated in Table 13.9. 

 

 

Figure 13.8. Buckling modes 1, 5 and 10 for a clamped supported axisymmetrical  shell  subjected to vertical  load 

 

When the values of Table 13.9 are compared to the previous cases in which vertical load is prescribed, it is 

observed that the clamped supported shell shows the highest critical loads. The lowest critical load at which 

buckling occurs is approximately 60% of the value found by Zoëlly, and is 8% and 28% higher than the 

inclined-roller and hinged supported shell, respectively.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.4977 

2 0.5229 

3 0.5964 

4 0.6174 

7 0.7371 

10 0.7938 

Zoëlly  0.7981 

 

Table 13.9. Linear cri tical  buckling load for a clamped supported axisymmetrical  shell  under vertical  load 

 

In particular, the fact that the clamped supported shell shows higher resistance against buckling than the 

inclined-supported shell is noticeable as one may expect that a more severe restraint, which introduces the 

highest bending moments, would be most onerous. Evidently, the resulting bending moment as obtained in 
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the linear solution has a positive stiffening effect on the boundary layer of the shell causing the shell to be 

less vulnerable to buckling. This effect is, however, restricted to the first critical buckling load as the mode 2 

yields a similar buckling load as the Zeiss 2 shell under vertical load.  

 

With respect to the effect of various supporting conditions, none of them produced a positive effect on the 

critical buckling load as suggested in Figure 6.28 and 6.29. Thus, it can be concluded that those observations 

are only valid for relative low values of λ  which represents shallow shells showing local snap-through 

behaviour.  

 

13.2.2 Three-Dimensional Shell Model 

 

The major deficiency of the axisymmetric model is the fact that it is unable to produce terms, and buckling 

modes, which vary in circumferential direction. Therefore, the stability research is extended with a three-

dimensional shell model. The analysis procedure for the three-dimensional shell is similar to the 

axisymmetric model. The shell is first subjected to spherical load and, subsequently, the behaviour of a shell 

under uniform vertical load is investigated. For each load condition, the influence of the four boundary 

conditions is discussed.  

 

It is observed that all three-dimensional shell models experience compound buckling up to a high level. 

Therefore, it is needed to compare a large number of modes and to select the ones which give good insight in 

the buckling behaviour. There are in total 150 modes examined for each shell. With such a high number of 

modes it is necessary to check whether the relative error approximately stays the same in order to ensure the 

correctness of the found modes. From the results in can be concluded that the relative error stays more or 

less equal, which means that all modes are of comparable exactness. 

 

Zeiss 1 

 

The first 3D buckling analysis is the roller supported shell under spherical load. The results of the analy sis 

are seen in Figure 13.9 and Table 13.10. It is observed that the shell first buckles in the boundary layer with 

an axisymmetric buckling pattern, similar to the axisymmetric shell. Contrary to the axisymmetric finite 

element model, a lot of associative (boundary layer) modes arise which demonstrate asymmetric buckling or 

buckles in a large number of local circumferential waves. From mode 50 the buckling is found at the top of 

the shell or the buckling modes extend over a large part of the shell middle surface. The first global mode, i.e. 

ev enly distributed buckling over the total shell surface, is mode 110.  

 

 

Figure 13.9. Buckling modes 1, 50 and 110 for a roller supported 3D shell  subjected to spherical  load 
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The associative critical buckling loads are presented in Table 13.10. Similar to the axisymmetric shell, mode 1 

is approximately  50% of the top buckling mode 50. Aforementioned, the shell experiences compound 

buckling as several buckling modes are associated with the same critical load. Furthermore, it can be seen 

that the global buckling mode 110 yields the same critical load as the equation found by Zoëlly  for a radially 

pressed sphere. Combining Figure 13.9 and Table 13.10, the buckling process can be explained by  the fact 

that the roller support is considerable ‘weaker’ than the shell itself. The shell is, thus, likely  to buckle first in 

that particular area. At mode 50 the shell suddenly steps-over towards top buckling. However, the top 

buckling can be addressed as a premature buckling mode, similar to the top buckling that appeared in the 

axisymmetric model. Opposite to the axisymmetric model, not axisymmetry causes the top buckling, but the 

uninvited circumferential bending moments which were previously found in the linear solution of Chapter 12 

(due to the numerical imperfectness of the model). The first global mode, mode 110, yields the same critical 

load as derived for the radially pressed sphere. In mode 110 the expected chessboard pattern is clearly seen 

(see Chapter 6). Hence, the shell can indeed be regarded as shallow in the region of a buckle, as previously 

assumed in the derivation of equation (6.53).  

 

Buckling mode Critical  buckling load (MPa) 

1 0.3969 

50 0.7812 

110 0.7980 

Zoëlly  0.7981 

 

Table 13.10. Linear critical  buckling load for a roller 3D shell  subjected to spherical  load 

 

When the three-dimensional buckling analy sis results are compared to the axisymmetric buckling results it 

can be concluded that the three-dimensional modes gives lower values for similar buckling patterns. In fact, 

this phenomenon is also seen in all other analy ses. 

 

For the vertical load, the shell is membrane supported and no bending moments arise. From the buckling 

output file it is observed that, within the first 150 modes, the critical load does not exceed 0.6654 MPa. This 

means that no global buckling patterns can be expected. The characteristic buckling modes of the analy sis 

are seen in Figure 13.10.  

 

Figure 13.10. Buckling modes 1, 38 and 146 for a roller supported 3D shell  subjected to vertical  load 

 

Similar to the spherical loaded Zeiss 1 shell, the first modes are restricted to the boundary layer. The 

buckling pattern of the vertical loaded shell stretches step-by -step towards the complete shell surface. It is 

observed that the buckling process evaluates each time with the same procedure, i.e. first an axisymmetrical 
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mode occurs, followed by several asymmetrical modes with an increasing number of circumferential waves 

and slightly higher critical loads. The modes visualised in Figure 13.10 are mode 1, 38 and 146. Up to mode 

37 the buckling is in the boundary layer. Mode 38 is the first mode in which the buckling is more stretched 

towards global shell buckling. Mode 146 is a mode in which the buckling pattern is maximal stretched within 

the 150 modes scheme.  I.e. sometimes lower based modes with an extremely high number of circumferential 

waves interchange with modes which are stretched higher upon the shell surface. 

 

The critical loads of Figure 13.10 are tabulated in Table 13.11. In the table it is seen that the critical loads 

approach the load of a radially pressed sphere more closely  with higher modes. Hence, eventually, global 

buckling will occur similar to the spherical load confirming that the statement of Simitses and Cole (1968) is 

valid if and only if global buckling takes place. Furthermore, it is observed that asymmetrical modes are 

associated with almost the same critical load as the adjacent axisymmetrical modes (e.g. differences of 

0.4%). Thus, the statement of Van der Neut (1932), i.e. that the critical pressure corresponding to an 

asymmetric buckling pattern is similar to an axisymmetrical buckling pattern may assumed to be valid, 

however, ‘within a few percent’.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.2022 

38 0.5028 

146 0.6543 

Zoëlly  0.7981 

 

Table 13.11. Linear critical  buckling load for a roller 3D shell  subjected to vertical  load 

 

A remarkable observation made during the examination of the finite element results refers to the existence 

of negative eigenmodes which seem to arise only  in case of vertical load. Negative buckling modes are 

numerically correct; however, phy sically they have no meaning for concrete shells. It simply means that the 

load is of opposite sign with respect to the input. These modes are, thus, numerical modes and as they are of 

no practical meaning they are neglected.  

 

Comparing the results with the axisymmetric results it is seen that the first critical loads are nearly similar, 

however, successive critical loads are significantly lower in case of the three-dimensional shell. Encouraging 

is the fact that the buckling process of a step-by -step stretching towards global buckling is similar.  

 

Zeiss 2 

 

The inclined-roller supported shell under spherical load behaves as a complete sphere.  The results of the 

analysis are seen in Figure 13.11. Similar to the Zeiss 1  shell (and the axisymmetric shell) premature buckling 

modes are observed before the expected global modes appear. Again, these modes are ascribed to the 

uninvited bending moments from the linear solution. It is observed that successive buckling patterns ev olve 

rapidly towards global buckling. Within the first 12 modes, top buckling, middle shell surface buckling and 

global buckling takes place. Furthermore, all the global buckling modes show sign of a chessboard pattern of 

local buckling waves.  
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Figure 13.11. Buckling modes 1, 5 and 12 for an inclined-roller supported 3D shell  subjected to spherical  load 

 

The corresponding critical loads in Table 13.12 show that all buckling values are very close (approximately 

2%) to the linear critical buckling load of a radially pressed sphere. This observation strengthens the 

conclusion that the finite element program delivers correct results. Furthermore, it can be concluded that the 

Zeiss 2  shell behaves much stiffer than the roller supported Zeiss 1  shell under spherical load, i.e. the first 

buckling mode is twice as high and correlates with mode 50 of the roller shell. 

 

Buckling mode Critical  buckling load (MPa) 

1 0.7811 

5 0.7861 

12 0.7884 

Zoëlly  0.7981 

 

Table 13.12. Linear cri tical  buckling load for an inclined-roller 3D shell  subjected to spherical  load 

 

The three-dimensional shell model shows faster global buckling with lower critical loads in compare to the 

axisymmetric model which seems entangled in its axisymmetry. 

 

The vertical loaded inclined-roller shell is not membrane supported anymore and, thus, significant bending 

moments are present in the boundary  layer. The results of the analysis are illustrated in Figure 13.12. The 

influence of bending moments is seen in the first buckling mode as the buckling amplitude is in opposite 

direction in compare to the Zeiss 1 shell. Furthermore, the bending moments cause the buckling pattern to 

be more stretched and it reaches global buckling faster. The procedure of reaching global buckling is 

analogue to the previous roller case, i.e. the buckling pattern slowly extends towards the total shell surface, 

hereby showing an increasing number of circumferential waves with nearly the same critical load before 

stepping through to a more global mode. Again, lower based modes with an extremely  high number of 

circumferential waves interchange with modes which are stretched higher up on the shell surface.  

 

Figure 13.12. Buckling modes 1, 20 and 150 for an inclined-roller supported shell  subjected to vertical  load 



  Chapter 13.   Stability Analysis 

 319

The corresponding critical buckling loads are seen in Table 13.13. Again, it can be concluded that the shell is 

much stiffer that the roller supported shell as the critical load of mode 1 is approximately equal to the critical 

load of mode 35 of the roller shell. Clearly, from the critical load output it could already be seen that there 

would be no global mode as the previous analyses have shown that the critical load must be within 2% of the 

buckling load for a radially pressed sphere to demonstrate global buckling. The result is practically equal to 

the axisymmetric case.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.4460 

20 0.5204 

150 0.7057 

Zoëlly  0.7981 

 

Table 13.13. Linear cri tical  buckling load for an inclined-roller shell  subjected to vertical  load 

 

Zeiss 3 

 

The hinged supported Zeiss 3 shell subjected to spherical load experiences high bending moments in the 

boundary layer. The analysis results are shown in Figure 13.13. Parallel to the axisymmetric model, the initial 

three-dimensional buckling process is restricted to the boundary layer (up to mode 67). At mode 68 the 

buckling process suddenly moves to the top of the shell (the premature mode) followed by a series of 

asymmetric middle surface buckling modes. Before global buckling at mode 117, a irregular series of shell 

buckling patterns extending over large parts of the shell surface. The expected chessboard pattern of local 

buckling waves is clearly seen in the global mode.  

 

 

 

Figure 13.13. Buckling modes 1, 68 and 117 for a hinged supported shell  subjected to spherical  load 

 

The critical loads are presented in Table 13.14. It can be seen that the hinged support condition provides in a 

stiffer support than the roller support, as one would expect from an engineering point of view. It can be seen 

that the shell experiences top buckling at approximately the same critical loads as previously  found at Zeiss 1 

and 2. Moreov er, the critical load that corresponds to the global mode 117  is within 1% of the theoretical 

solution for a radially pressed sphere. 
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Buckling mode Critical  buckling load (MPa) 

1 0.5732 

68 0.7812 

117 0.7949 

Zoëlly  0.7981 

 

Table 13.14. Linear cri tical  buckling load for a hinged shell  subjected to spherical  load 

 

The hinged shell subjected to v ertical load behaves similar to all previous vertically loaded shells. I.e. the 

buckling pattern initiates in the boundary layer and slowly extends towards a global buckling pattern. The 

results of the analysis are seen in Figure 13.14. Up to mode 31 the buckling remains in the boundary layer 

before its stretches further over the shell surface in mode 32. The closest mode to global buckling (within the 

research range) is mode 150 which is represented by four circumferential waves. The buckling modes are 

quite similar to the modes of the axisymmetric model. 

 

 

Figure 13.14. Buckling modes 1, 32 and 150 for a hinged supported shell  subjected to vertical  load 

 

The corresponding buckling modes are tabulated in Table 13.15. Despite the fact that the modes look very 

much similar to the axisymmetric ones, the critical loads are significantly  lower. In compare to the roller 

support, the hinged support is more severe and leads to higher critical loads.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.3285 

32 0.5031 

150 0.6419 

Zoëlly  0.7981 

 

Table 13.15. Linear critical  buckling load for a hinged shell  subjected to vertical  load 

 

Zeiss 4 

 

The result of the buckling analysis of a clamped supported Zeiss 4 shell subjected to spherical load is seen in 

Figure 13.15. It is observed that, opposite to the axisymmetric model, at first the bending moments caused by 

the clamped support cause the shell to buckle in the boundary layer. Most probably, this is caused by the 

much larger (but more correct) bending moments in the linear solution (Chapter 12). From mode 1, the 

successive modes, however, extend more and more towards the total shell surface. At mode 39, the shell 

jumps over towards premature top buckling. Adjacent modes of mode 39 buckle in the top region as well, 
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however, after mode 46, the buckling moves away from the top. The first global modes appear at mode 41; 

although large areas remain unaltered and no mode shows an equally distributed buckling pattern until 

mode 70.  

 

 

 

Figure 13.15. Buckling modes 1, 39 and 70 for a clamped supported shell  subjected to spherical  load 

 

The corresponding critical buckling loads are seen in Table 13.16. It is seen that the clamped support yields a 

mode 1 critical load as close as 11% to the critical load of a radially pressed sphere. Therefore, the clamped 

support is less fav ourable with respect to buckling than the inclined-roller support in which the shell 

immediately buckles inside the shell surface.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.7067 

39 0.7812 

70 0.7926 

Zoëlly  0.7981 

 

Table 13.16. Linear cri tical  buckling load for a clamped shell  subjected to spherical  load 

 

The buckling process of a clamped shell under vertical load is visualised in Figure 13.16. Similar to all 

previous vertical loaded shells, the buckling initiates in the boundary layer and stretches more and more 

towards the total shell surface. The closest mode to global buckling is mode 148. The chessboard pattern of 

local buckling waves is already visual. 

 

 

Figure 13.16. Buckling modes 1, 10 and 148 for a clamped supported shell  subjected to vertical  load 

 

The critical buckling loads of the clamped shell under vertical load are seen in Table 13.17. It is seen that the 

critical load of mode 1 is the highest critical load in compare to all previous support conditions. The load is 
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approximately 40% of the critical load for radially pressed spheres. Thus, in case of a uniform vertical 

distributed load, the clamped support is most fav ourable with respect to buckling.  

 

Buckling mode Critical  buckling load (MPa) 

1 0.4874 

10 0.5159 

148 0.7224 

Zoëlly  0.7981 

 

Table 13.17. Linear critical  buckling load for a clamped shell  subjected to vertical  load 

 

Nota that, the buckling process shows large similarity with the axisymmetric buckling process.  

 

Zeiss 5 

 

The Zeiss 5 shell stand on its own and is introduced to validate the findings of Klöppel and Roos (1956) i.e. 

that the critical pressure load for a partially loaded sphere is close to that for a load over the total shell 

surface (Chapter 6). To investigate the validity with DIANA, an inclined-roller supported hemispherical cap 

is subjected to a uniform pressure load, restricted to the upper part of the shell and with a smooth transition 

between the loaded and unloaded part.  The result of the analysis is seen in Figure 13.17. 

 

 

Figure 13.17. Buckling modes 1, 19 and 39 of a partially  loaded sphere with  inclined-roller supports 

 

Form Figure 13.17 it can be concluded that the higher buckling modes (>19) show reasonable buckling 

patterns in which the shell buckles globally in the loaded area, with small buckling waves organised in a 

chessboard pattern. The critical loads of the buckling modes are presented in Table 13.18. 

 

Buckling mode Critical  buckling load (MPa) 

1 0.7126 

19 0.7494 

39 0.7782 

Zoëlly  0.7981 

 

Table 13.18. Cri tical  buckling load for a partially  loaded inclined-roller supported shell  

 

In Table 13.18 it is seen that the first mode differs approximately 10% with the buckling load for a radially 

pressed sphere. Higher modes show critical loads with increasing correspondence with the critical load for a 



  Chapter 13.   Stability Analysis 

 323

radially pressed sphere, i.e. mode 19 differs 6%, mode 39 differs 2.4% and the difference of mode 48 is 

within 0.5%. However, the corresponding modes are less convincing as the shell buckles away from the 

loaded region. Hence, from the observations done on the partially loaded Zeiss 5 shell, no conclusions on the 

validity of the theory of Klöppel and Roos can be drawn.  

 

 

13.3 Geometrical Influences 

 

Similar to Chapter 12, the influence of the thickness parameter is investigated. Previously, it was found that 

the linear behaviour was not sensitive to variations in shell thickness. With respect to buckling a series of 

shells is investigated with varying R/t ratios. The analy ses are equally shifted to a percentage of the first 

buckling mode, counteracting the possible misleading influence of an accuracy interval. 

 

Based on equation (6.53) it can be expected that a thinner shell will lead to a critical load which is lower by 

the difference in thickness squared. However, besides the logical difference in critical load, it is observed that 

thinner shells experience compound buckling up to a higher degree. In other words, there are more buckling 

modes found for thinner shells than for thicker shells when the load is equally increased. It can, for example, 

be seen when comparing the modes in which top buckling occurs for the first time for a shell with R/t = 200 

and a shell with R/t = 400. For a roller, hinged and clamped support, the modes are 50-66, 68-90, 39-47, for 

a R/t = 200 and a R/t = 400 shell respectively. For an inclined-roller supported shell top buckling occurs 

already at mode 1, however, for successive modes the same phenomenon is seen. Besides the difference in 

critical loads, the buckling modes of thicker shells are more distributed than the same modes for thinner 

shells and the number of hoop waves may be different as well. 

 

The phenomenon described abov e is caused by the fact that thinner shells behave more like membranes than 

thicker shells. As a consequence of being thicker, bending effects have a larger influence length which means 

that the buckling pattern will be more stretched. Thus, more membrane dominant behaviour causes the shell 

to experience compound buckling up to a higher degree. 

 

13.4 Material Influences 

 

As is seen in Chapter 6, the modulus of elasticity appears as a constant in the buckling equation. Therefore, 

by  changing the material, the critical buckling load changes linear with the change in Young’s modulus. The 

critical load increases in correspondence with equation (6.53) while the relative discrepancy between the 

finite element result and the theory is similar. The influence of a non-trivial Poisson’s ratio in the analy sis is 

negligible. 
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13.5 Perturbation and Continuation Analysis 

 

Aforementioned in the introduction, after the bifurcation point the nonlinear postbuckling path of 

equilibrium initiates and may  demonstrate a dramatic fall-back in load carrying capacity. If the postbuckling 

behaviour needs to be investigated, the Euler stability analysis can be followed by  a perturbation (or 

reduced) and continuation analysis, the finite element presentation of the Koiter initial postbuckling theory. 

In the perturbation and continuation analysis the postbuckling path of equilibrium is approximated by a 

linearised interaction of the Euler buckling modes from which the nonlinear postbuckling path is 

constructed. The postbuckling analysis is performed on the three-dimensional shell model only as DIANA 

does not offer perturbation and continuation analyses for axisymmetric elements. 

 

For the perturbation analysis a series of buckling modes must be selected. In the foregoing, it is observed 

that, in particular, the inclined-roller supported shell under spherical load yielded critical loads which closely 

approached the theory. In order to control the computational effort, a small number of modes are used. 

Therefore, the first 5 modes of the inclined-roller shell subjected to radial pressure load are selected. To 

improve the accuracy of the interaction process, shifting is applied towards the first mode (see Chapter 11).  

 

Perturbation Result 

 

The result of the perturbation analy sis is illustrated in Figure 13.18. In Figure 13.18 the first three interacted 

modes are presented. It can be seen that the modes are a combination of the first buckling modes which 

demonstrated top buckling, seen in Figure 13.11. 

 

 
 

Figure 13.18. The first three perturbation modes combined from the linear buckling modes 

 

The selection of mode 1 to 4 may seem strange as the modes were falsified as they did not show the typical 

shell buckling, i.e. a global buckling pattern of small local waves, organised in a chessboard pattern. This, 

however, is caused by the highly numerical instability of the continuation analysis which appeared to be 

successful only for these modes. Hence, the validity of the postbuckling analysis can be questioned. 

 

Continuation Result 

 

The continuation analysis appeared to be a highly numerical unstable and time consuming process. Several 

shell settings (different R/t ratios, different modes, etc) and finite element settings were implemented, but 
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none of them proved to be successful. The results as presented below (for the 5 selected modes from the 

spherical loaded inclined-roller shell) took 2 day s (43 hours and 5 minutes) to complete on a 3.0 GHz 

Pentium 4 with 2.0 GB of RAM. Hence, this is far too long for an analy sis which is assumed to provide in a 

fast linearised approach to the nonlinear postbuckling path.  

 

The continuation analysis that provided the best result is shown in Figure 13.19, 13.20 and 13.21. In Figure 

13.19 the top node load-displacement curve is illustrated. It can be seen that the top node experiences a 

decrease in load carrying capacity and deformation after the bifurcation point. The trend is similar to the 

trend seen in Figure 6.22. The load-displacement curves of other selected nodes are seen in Figure 13.20. 

Figure 13.20 represents the pre- and postbuckling behaviour of node 5163, 9551 and 10307. These nodes are 

selected as they are located on strategic locations in the shell. Node 10307 is found at a maximum 

perturbation buckling amplitude, node 5163 is located in between to maximum buckling amplitudes and 

node 9551 is located at the transition between triangular and quadrilateral elements, which is close the 

boundary of the buckles seen in Figure 13.18. It can be observed that the modes show completely different 

load-displacement curves.  

 
 

Figure 13.19. Top node load-displacement curve from FE continuation analysis for an inclined-roller supported shell  under 

spherical  load 

 

 
 

Figure 13.20. Node 5163, 9551 and 10307 load-displacement curves from FE continuation analysis for an inclined-roller supported 

shell  under spherical  load 

 

To validate the obtained result, the load-displacement behaviour of all nodes must be determined. This is 

done similar to the graph of Figure 6.22, i.e. the ratio of the postbuckling load ov er the linear critical load is 
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plotted against the ratio of the change of postbuckling volume ov er the change in linear buckling volume. 

The solution is presented in Figure 13.21.  
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Figure 13.21. FEA  initial  postcri tical  behaviour of a perfect shell  under spherical  load 

 

In Figure 13.21 the continuous line represents the prebuckling path of equilibrium and the dotted line 

represents the postbuckling path of equilibrium. The right graph is zoomed in upon the initial path in the 

vicinity of the bifurcation point. It can be seen that the results are poor. Perhaps, the best conclusion is that, 

at least, the results are not in contradiction with the theory. 

 

 

13.6 Conclusions 

 

In this chapter the linear elastic stability  behaviour of a hemispherical shell is investigated. The prebuckling 

path and corresponding bifurcation point of a hemispherical shell are determined by a linear finite element 

(Euler) buckling analysis. The bifurcation point is computed for sev eral support conditions and two types of 

external applied load, i.e. a radial pressure load and a uniformly distributed vertical load. The analy ses are 

performed on an axisymmetric shell model and a three-dimensional shell model. Attempts were made to 

investigate the postbuckling behaviour by a perturbation and continuation analy sis, the finite element 

formulation of the Koiter initial postbuckling theory. However, although the results are not in contradiction 

with the theory, they are poor and therefre not discussed further.  

 

The results of the linear elastic stability analyses are summarised in Table 13.19 and 13.20.  

 

Axisymmetric shell  model  Three-dimensional  shell  model  

Spherical  load (MPa) Vertical  load (MPa) Spherical  load (MPa) Vertical  load (MPa) 

Roller 0.3969 0.2035 0.3969 0.2022 

Inclined-roller 0.7917 0.4515 0.7811 0.4460 

Hinged 0.6405 0.3507 0.5732 0.3285 

Clamped 0.7938 0.4977 0.7067 0.4874 

 

Table 13.19. Linear cri tical  buckling loads corresponding to mode 1 
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The linear critical buckling loads of Table 13.19 can be compared to the theoretical linear critical buckling 

load as found by Zoëlly for radially pressed spheres (note that, the inclined-roller shell subjected to spherical 

load must approach closely this theoretical buckling load). In Table 13.20, the buckling loads from the finite 

element analysis are expressed in percents of the theoretical load of a radially pressed sphere. 

 

Axisymmetric shell  model  Three-dimensional  shell  model  

Spherical  load (%) Vertical  load (%) Spherical  load (%) Vertical  load (%) 

Roller 49.7 25.5 49.7 25.3 

Inclined-roller 99.2 56.6 97.9 55.9 

Hinged 80.3 43.9 71.8 41.2 

Clamped 99.5 62.4 88.5 61.1 

 

Table 13.20. Linear cri tical  buckling loads in  compare to the theoretical  linear critical  buckling load for a radially  pressed sphere 

 

From Table 13.19 and 13.20 it can be seen that, when compared to the linear critical buckling load of a 

radially pressed sphere, the buckling loads obtained by DIANA are lower. Furthermore, it can be concluded 

that a uniform vertical load, which by definition buckles in the boundary layer, drastically decreases the 

linear critical buckling loads in compare to the spherical loaded hemispheres. The roller support, which is 

weaker than the shell itself, is the most onerous support condition with a maximum decrease of 74.7% of the 

linear critical buckling load for a radially pressed sphere. When the roller support is not considered, the 

hinged support is most onerous. With respect to the theory  as presented in Chapter 6, the hypotheses of Van 

der Neut and Simitses and Cole are validated for shells confined to their compression zone or if a global 

buckling pattern appears. 

 

With respect to the differences between the axisymmetric shell model and the three-dimensional shell 

model, it can be concluded that all buckling loads determined using the three-dimensional shell model are 

lower than the critical loads found using the axisymmetric model. In general the results are very much 

similar, however, not for the hinged and clamped supported shells subjected to spherical load. The 

discrepancies are 8.5% and 11%, respectively and is governed by the fact that for the axisymmetric shell 

model the bending moments in the linear solution of the hinged support do not vanish at the supports and, 

in case of a clamped support, the bending moments are much too low (Chapter 12). Evidently, this has a 

positive effect on the stability behaviour. Besides the difference in the first critical buckling load, it can be 

concluded that the axisymmetrical shell, as it is unable to deal with variations in circumferential direction, 

does not predict the effect of compound buckling correctly. Using the three-dimensional shell model it is 

found that compound buckling, by  definition, occurs. Hence, the three-dimensional model is superior to the 

axisymmetric model. 

 

Qualitatively, the conclusion can be drawn that several false buckling modes appeared in the finite element 

solution. The axisymmetric shell model yields false modes caused by the basic property of the model, 

namely, axisymmetry. The axisymmetry causes the tendency to buckle at the top of the shell as top buckling 

corresponds to a local buckle whereas buckling in the shell surface is accompanied by a global buckling 

pattern extending in circumferential direction. For the three-dimensional shell model, the uninvited bending 

moments which occurred in the linear solution due to the numerical imperfectness of the model (Chapter 12) 
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appeared to be the reason for several falsified top modes as a global buckling pattern of small local waves in 

a chessboard pattern is expected (Chapter 6).  

 

The buckling analyses appeared to be very sensitive to small (numerical) imperfections with several false 

modes arising between correct buckling modes. Therefore, the author strictly advices not only to examine 

the buckling loads, but also to examine the corresponding buckling shape. Only by viewing them together a 

good understanding of the buckling behaviour of the shell can be obtained. 
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14 Geometrically Nonlinear FEA 

 

 

In Chapter 13 the linear critical buckling loads of a hemispherical shell with various types of loading and 

boundary conditions were computed. Furthermore, several attempts were made to construct the initial 

postbuckling path of equilibrium, but the obtained results from the perturbation and continuation analy sis 

proved to be insufficient to confirm the theory  of Chapter 6 (and in particular Figure 6.22). In experiments, 

however, initial geometrical imperfections in models cause the bifurcation point never to be reached. 

Imperfect shells suffer premature failure with a limit point dependent on the size of the imperfection (Figure 

6.24). After the limit point the path of equilibrium bends downwards to the original postbuckling path of 

equilibrium. To bring into account for this nonlinear behaviour, geometrically nonlinear analyses need to be 

performed on imperfect shells.  

 

In this chapter, the influence of geometrical nonlinearities and the influence of an initial geometrical 

imperfection on the shell load carrying capacity is investigated. Therefore, the shell is analysed with a 

geometrically nonlinear finite element analy sis, thus, taking into account for large deformations, and 

modelled with an imperfection with increasing amplitude. The shape and implementation of the initial 

geometrical imperfection into the finite element model is described. Moreover, the chosen incremental-

iterative solution procedure of the geometrically nonlinear analy sis is explained.  

 

To v erify  the finite element results, a shell with imperfection amplitude equal to zero (perfect shell) is 

compared to the linear critical buckling load obtained in Chapter 13. The results must be (approximately) 

similar. Furthermore, the results are verified by  comparing the finite element output of the three-

dimensional shell model with the theory of Chapter 6 and with results from the same analysis with an 

axisymmetric shell model.  
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14.1 Shell Parameters 

 

14.1.1 Geometry  

 

See Chapter 12.1.1. 

 

14.1.2 Initial Geometrical Imperfections 

 

To determine the influence of initial geometrical imperfections, the imperfections must be modelled in the 

original geometry  of the shell. The main modelling questions refer to the amplitude of the imperfection, the 

size and shape of the imperfection and the location of the imperfection. Furthermore, the spatial distribution 

of possible several imperfections must be defined. 

 

In this thesis the investigation to the influence of initial geometrical imperfections is restricted to a local 

imperfection of varying amplitudes between 0.0 and 1.0 times the shell thickness, with a step size of 0.2. The 

maximum imperfection amplitude is located at the top (node) of the shell, which is assumed to be most 

onerous in case of buckling in the shell surface as it is in biaxial compression. At other locations, e.g. the 

middle of the shell meridian or near the supports, a vertical load produces one-directional compression 

stresses only or compression-tension stresses, respectively. Hereby, the possible interaction with an edge 

disturbance caused by restrained deformation at the supports is not taken into account. Thus, imperfections 

located near the supports may  lead to a more onerous situation if they interact with the edge disturbance. 

For a spherical loaded shell, the location of the imperfection is not important if the shell buckles inside its 

surface. However, similar to the vertical loaded shell, interaction of geometrical imperfections with edge 

disturbances may lead to a lower load carrying capacity of the shell. The imperfections included in the finite 

element model are tabulated in Table 14.1.  

 

 Location in  Shell Space distribution Amplitude (w0/t) FE Model  

1 Top Local  0 (Axisymmetric +)  3D 

2 Top Local  0.2 (Axisymmetric +)  3D 

3 Top Local  0.4 (Axisymmetric +)  3D 

4 Top Local  0.6 (Axisymmetric +)  3D 

5 Top Local  0.8 (Axisymmetric +)  3D 

6 Top Local  1.0 (Axisymmetric +)  3D 

 

Table 14.1. Imperfections in  the shell  

 

According to Koga and Hoff (1969) the imperfections can be characterised by their amplitude only. The local 

imperfection is modelled by  a geometrically nonlinear analysis of a shell subjected to a point load at the top 

node. By  each time increasing the point load, different imperfection amplitudes are obtained. Scordelis [69] 

denotes, however, that the shape of the imperfection is also important and that experiments show that the 

buckled shape for a spherical dome consists of a circular area of the shell snapping through (equation 

(6.62)), which is confirmed by the experiments of Vandepitte, as denoted by Billington and Harris [6] 

(Chapter 6). Although, there is discussion if the imperfection shaped according to the buckling shape is the 
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most onerous (see Chapter 6), it is assumed here. Thus, the dimensions of the imperfection are checked 

upon Scordelis’ theoretical buckling diameter equation (6.62). If the area is significantly different, the area is 

enlarged. For the investigation of the influence of an initial geometrical imperfection, the final deformed 

shell geometries are implemented as original imperfect geometry in the geometrically nonlinear analy sis. 

 

14.1.3 Material 

 

See Chapter 12.1.2. 

 

14.1.4 Boundary Conditions 

 

See Chapter 12.1.3. 

 

14.1.5 Loading 

 

The shell is loaded by  uniform pressure or vertical load. Hence, snow load and wind load are not considered, 

although asymmetrical loading in combination with asymmetrical initial geometrical imperfections may lead 

to situations more onerous than the one investigated here. 

 

14.1.6 Analysis Scheme 

 

The different types of analysis are presented in Table 14.2. Each analy sis is combined with the imperfections 

tabulated in Table 14.1.  

 

Name Loading Conditions Supporting Conditions Type of Analysis Model  

Zeiss 1 Spherical  and Vertical Roller Geometrically  Nonlinear (Axisymmetric +)  3D 

Zeiss 2 Spherical  and Vertical Inclined-roller Geometrically  Nonlinear (Axisymmetric +)  3D 

Zeiss 3 Spherical  and Vertical Hinged Geometrically  Nonlinear (Axisymmetric +)  3D 

Zeiss 4 Spherical  and Vertical Clamped Geometrically  Nonlinear (Axisymmetric +)  3D 

 

Table 14.2. Analy sis scheme 

 

14.1.7  FEA Settings 

 

The geometrically  nonlinear analysis is based on a Total Lagrange formulation, Green strains and Second 

Piola-Kirchhoff stresses (although transformed to ordinary Cauchy  stresses by  DIANA), see also Chapter 11. 

The selected incremental-iterative procedure is a Regular Newton-Raphson scheme combined with a 

spherical path arc-length control. The arc-length control is modified with an indirect displacement control 

on the top node in the negative vertical direction. The indirect displacement control ensures an increasing 

displacement of the top node in the vicinity and beyond the limit point. For convergence both the 

displacement and the force norm must be satisfied. During analy ses the user specified arc-length controlled 

step sizes are varied in order to pass the limit point and to find as many  points of the adjacent postbuckling 

equilibrium path as possible.  
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14.2 Perfect Shell 

 

Using the geometrical nonlinear analysis only limit points can be detected; bifurcations are not taken into 

account. However, if the initial imperfection amplitude is equal to zero (perfect shell), the bifurcation points 

as determined in Chapter 13 can be approximated closely and, hence, may serve as benchmark test for the 

geometrical nonlinear procedure. Therefore, the geometrically nonlinear analysis is compared to the results 

of Chapter 13, summarised in Table 13.19 and Table 13.20. 

 

14.2.1 Results and Findings 

 

The geometrically nonlinear analysis on perfect three-dimensional shell models is accompanied by 

numerical difficulties. Convergence on postbuckling equilibrium is reached in only a v ery  few situations and 

often yields non-smooth load-displacement curves. In spherical load situations, DIANA was able to construct 

only the linear path losing convergence just before the bifurcation point (which by definition is not found). 

Typical load-displacements curves of spherical shells subjected to spherical or vertical load are seen in the 

left graph of Figure 14.1. 

 

 

 

Figure 14.1. Typical  load-displacement curves of a perfect membrane supported shell  subjected to spherical  (left) and vertical  load 

 

In Figure 14.1 it can be seen that, for a membrane supported shell subjected to spherical load (inclined-roller 

support), a nonlinear branch initiates just before the bifurcation point is reached. It is expected that, if 

convergence would have been achieved, the nonlinear branch would be the starting point of the fall-back in 

load carrying capacity as indicated by Figure 6.22. For a membrane supported vertical loaded shell (roller 

support), the finite element analysis finds convergence for an (almost) horizontal postbuckling path of 

equilibrium. Thus, the shell does not experience a sudden decrease in load bearing capacity. This can be 

explained by  examining the buckling modes of Chapter 13 for vertically loaded shells. A shell subjected to 

vertical load, by definition, buckles in the boundary  layer. I.e. the buckling does not take place inside the 

shell surface and, therefore, does not show the typical shell-like behaviour of Figure 6.22. The question 

arises if an initial geometrical imperfection at the top of the shell transforms this type of buckling behaviour 
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to the shell-like buckling behaviour. In other words, will the imperfection become the dominant failure 

mechanism or not? The answer is discussed later in Section 14.3. 

 

Quantitative results of the geometrically nonlinear analy ses on perfect shells are presented in Table 14.3. The 

results are compared to the theoretical linear critical buckling load (equation (6.53)).  

 

Three-dimensional  shell  model 

Spherical  load Vertical  load 

 

Max. Load (MPa)  Max. Load (MPa)  

Zeiss 1 0.3965 49.7 % 0.2009 25.3 % 

Zeiss 2 0.7860 98.5 % 0.4447 55.7 % 

Zeiss 3 0.5680 71.2 % 0.3269 41.0 % 

Zeiss 4 0.6989 87.6 % 0.4840 60.6 % 

 

Table 14.3. Comparison between geometrically  nonlinear analysis on perfect shells and the theoretical  buckling load 

 

In Table 14.3 it can be seen that, however the bifurcation point by  definition is not reached, the result of the 

inclined-roller shell subjected to spherical load is close to the theoretical load as found for a radially  pressed 

sphere. The results from the geometrically nonlinear analysis can also be compared to the linear critical 

buckling loads for each support and load type, as obtained in Chapter 13. The results are expected to be 

approximately similar and may even be higher as the finite element linear stability analysis is solved for a 

discretised structure by iteration and, thus, do not yield the exact bifurcation point.  

 

Three-dimensional  shell  model  

Spherical  load Vertical  load 

Zeiss 1 99.9 % 99.4 % 

Zeiss 2 100.6 % 99,7 & 

Zeiss 3 99.1% 99,5 % 

Zeiss 4 98.9% 99.3 % 

 

Table 14.4. Comparison between geometrically  nonlinear analysis on perfect shell  and buckling loads of Chapter 13 

 

In Table 14.4 it can be seen that the expected results are obtained. The geometrically nonlinear analyses, in 

general, yield slightly lower results than the linear critical buckling loads as obtained in Chapter 13. Hence, it 

can be concluded that the graph of Figure 6.35, is misleading: the introduction of geometrical nonlinearities 

in the analysis only has minor influence on the maximum load that is found. With the obtained results the 

geometrically nonlinear analy sis has passed the (author’s) benchmark test.    

 

14.2.2 Axisymmetric Comparison  

 

The maximum loads of the axisymmetric shell model approximately  yield the same result as the three-

dimensional shell model. The results of the geometrical nonlnear axisymmetric model are compared to the 

buckling loads of the axisymmetric model as obtained in Chapter 13 in Table 14.5. 
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Axisymmetric shell  model   

Spherical  load Vertical  load 

Zeiss 1 99.8 % 99.9 % 

Zeiss 2 99.6 % 99.9 % 

Zeiss 3 99.8 % 99.6 % 

Zeiss 4 99.7 % 99.8 % 

 

Table 14.5. Compare between geometrically  nonlinear analysis on perfect axisymmetric shell  and buckling loads of Chapter 13 

 

 

14.3 Imperfect Shell 

 

Aforementioned, experiments on (e.g.) synclastic shells loaded by a load (almost) perpendicular to their 

surface do not reach the bifurcation point but show premature buckling failure caused by initial geometrical 

imperfections in the test models. This so-called imperfection sensitivity is extremely dangerous and, hence, 

extensive investigations are needed to determine to load-carrying capacity of such imperfect shells.  

 

For the investigation the initial geometrical imperfections are modelled according to Section 14.1.2, i.e. a 

local imperfection located at the top node with imperfection amplitude ranging from 0 to 1.0 times the shell 

thickness with a step size of 0.2. First a basic shell type, the Zeiss 2  shell under radial pressure, is treated as 

it is widely discussed in literature. The analyses are computer with an each time increasing imperfection 

amplitude. Afterwards the influence on the base solution caused by different types of support and load 

conditions, as described in Section 14.1.4 and 14.1.5, is treated.  

 

14.3.1 Results and Findings 

 

The Zeiss 2  shell under radial pressure load behaves similar to a complete shell. When the shell is subjected 

to a geometrical nonlinear finite element analysis with increasing imperfection amplitude, the shell shows 

limit point buckling. At the limit point, the buckling process may show a smooth transition between the 

nonlinear prebuckling and postbuckling path of equilibrium, or may experience a sudden snap-through to a 

non-adjacent equilibrium configuration. The simplest way to examine the nonlinear buckling response is to 

plot the deformations of an individual load-step and compare them to adjacent load-steps. In Figure 14.2 

typical adjacent deformations of the hemisphere under radial pressure with initial imperfection at the top 

are presented. It is observed that the shell experiences an initial smooth buckling process with adjacent 

modes showing ever growing buckling amplitudes at the location of the initial geometrical imperfection.  
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Figure 14.2. Typical  smooth  buckling deformation of a hemisphere under radial  pressure with  initial  geometrical  imperfection 

 

After the smoot initial buckling process, the finite element procedure fails at finding equilibrium in the 

vicinity of the current position while increasing the top node deformation (indirect displacement controlled 

analysis). DIANA steps back a few times (the load and deformation decreases) but then snaps-through as it 

jumps to a non-adjacent equilibrium state. The process is illustrated in Figure 14.3. 

 

    
 

Figure 14.3. Typical  snap-through  buckling of a hemisphere under radial  pressure with  initial  geometrical  imperfection 

 

The geometrically  nonlinear analy sis with infinite elastic material properties may  also snap towards an 

equilibrium state with positive displacement and, thus, a spherical tensile load. These equilibrium states are 

not considered as they have no practical value. 

 

A convenient way to plot the hemisphere buckling behaviour is to plot a load-displacement curve. Figure 

14.4 represents a typical load-displacement curve of a hemisphere under radial pressure with an initial 

geometrical top imperfection (equal to w0/t = 0.2 in the figure). The left curve of Figure 14.4 is the actual 

finite element results whereas the right curve is a ‘cleaned’ curve, leaving out the sudden jumps between 

equilibrium states. In the left curve the smooth limit point is seen, corresponding to the buckling 

propagation of Figure 14.2. The snap-through behaviour illustrated in Figure 14.3 is indicated by the straight 

lines after the limit point. The shell jumps to an equilibrium point far away  from the limit point 

(deformations ov er 120 mm). Thus, the buckling response seen in Figure 14.2 and 14.3  can occur in 

succession within the same shell. It is observed that, after the snap-through (arrow number 1), the finite 

element method finds a smoothly curved postbuckling path of equilibrium leading back to the limit point 

(indicated arrows number 2). Therefore, the question may arise whether the snap-through is only a 

numerical phenomenon related to the finite element process or actually takes place in reality. This question 

cannot be answered without further tests, e.g. different finite element solvers (programs) or model tests. If 

the left graph of Figure 14.4 is cleared from the sudden jumps (the linear lines) the right graph is obtained. 

The shape of the right graph is in close relationship with the graphs plotted in Chapter 6 for imperfect shells 
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(Figure 6.24) and only shows the prebuckling and postbuckling equilibrium paths (the linear lines in the left 

figure cannot be addressed as an equilibrium path).  
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Figure 14.4. Finite element (left) and cleared load-displacement curves of limit point buckling of a hemisphere under radial  

pressure with  an initial  geometrical  imperfection w0/t = 0.2 

 

The typical load-displacement curve seen in Figure 14.4, obtained by a geometrically nonlinear finite 

element analysis on an imperfect shell, yields a maximum load carrying capacity of approximately 64% of the 

linear critical buckling load. Thus, an imperfection of 12 mm amplitude (in case of a 60 mm shell) already 

causes a fall-back in load carrying capacity of 36%.  

 

If the imperfection amplitude is stepwise increased up to w0/t = 1.0, the load carrying capacity  further 

decreases and the load-displacement curve has increased prebuckling nonlinearity resulting in an even 

smoother approach to the secondary path. Hereby it must be mentioned that numerical difficulties 

frequently disturbed the analy sis preventing convergence on postbuckling points further away from the limit 

point. It is observed in the finite element results that the snapping phenomenon (physical and/or 

numerical?) does not disappears for larger imperfection amplitudes, although the discrepancy between the 

snapping branch and the equilibrium path becomes smaller. Hence, smooth buckling may be expected for a 

shell which includes large imperfections. If the (cleaned) load-displacement curves of a series of 

imperfections are plotted into one graph, the abov e described effects become visual. It can be seen in Figure 

14.5. In Figure 14.5 all imperfection amplitudes (w0/t = 0.2, 0.4, 0.6, 0.8 and 1.0) are plotted together with 

the reference linear buckling solution. Obviously, the highest imperfection amplitude causes the maximum 

decrease in load carrying capacity. The lines which end abruptly indicate shell settings for which the finite 

element analysis did not find convergence. 

 

1 

2 
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Figure 14.5. Load-displacement curves of a shell  with  various initial  geometrical  imperfection sizes 

 

In Figure 14.5 the decrease in load-carrying capacity with increasing imperfection amplitude is clearly seen. 

Furthermore, it is seen that the absolute minimum of the postbuckling path as predicted by mathematicians 

(Chapter 6). If the minimum postbuckling load is compared to the equations of Von Karman and Tsien, Del 

Pozo and Del Pozo and Dostanowa and Raiser (see Chapter 6 and Chapter 10.6) it can be concluded that the 

load-displacement curves already violate the values of Von Karman and Tsien and Del Pozo and Del Pozo but 

asymptotically still may converge to the minimum load as proposed by Dostanowa and Raiser (equation 

(6..58)) plotted with the straight lower line. However, no real conclusions can be drawn as the finite element 

results are of insufficient range.  

 

In Chapter 12 it is seen that an inclined-roller shell subjected to radial pressure load is in uniform 

compression, i.e. the meridional and circumferential stresses are compression stresses with the same 

magnitude at each location in the shell. Moreover, there are no bending moments. The geometrically 

imperfect shell, however, will experience stress variations and bending moments caused by the disturbed 

membrane field in the vicinity of the imperfection. Typical stress and bending moment distribution is 

plotted against the shell meridian in Figure 14.6. In the left graph the middle surface stresses and both outer 

surface stresses are plotted (obtained by the 3-point Simpson integration scheme). From the finite element 

results it is observed that the initial geometrical imperfections cause a local disturbance decaying out, e.g. 

similar to a point load. Furthermore, it can be seen that tensile stresses arise (which eventually may lead to 

concrete cracking, discussed in Chapter 15). The bending moments that appear show high peaks at the 

imperfection. The highest peak occurs at the eye of the imperfection which, off course, experiences the 

highest curvature. As the material is infinite elastic in compression and tension, the stresses and bending 

moments are inferior to the load-displacement curves, i.e. the maximum load is by  definition determined by 

large deformations. 
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Figure 14.6. Typical  stress and bending moment distribution plotted against the shell  meridian 

 

 

14.4 Effect of Imperfections 

 

The inclusion of large deformations and initial geometrical imperfections indicated the shell sensitivity for 

imperfections; the shell experiences a fall-back in load carrying capacity. In Figure 14.5 it can be seen that 

this decrease in load capacity is higher for larger imperfection amplitudes. Furthermore, it can be seen in 

Figure 14.5 that the decrease in load carrying capacity between to imperfect shells is not linear, but seems to 

become less for larger imperfection amplitudes. This is also seen in Figure 14.7, where the load carrying 

capacity is plotted against increasing imperfection amplitude for a hemisphere under radial pressure. 
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Figure 14.7. Effect of initial  geometrical  imperfections on load carrying capacity  for a hemisphere under radial  pressure 
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In Figure 14.7, which is valid for all R/t ratios investigated in this thesis, it is observed that even the smallest 

imperfections already have a considerable effect on the load bearing capacity. When the imperfection is 

equal to the shell thickness the load is as low as 32% of the linear critical buckling load (a fall-back of 68%). 

Although the graph seems to develop asymptotic behaviour, it is not likely to occur. An ever growing 

imperfection will lead to an ever decreasing load. 

 

The range of application of Figure 14.7 is restricted. The graph is constructed by putting a spherical load on a 

shell with a local imperfection at the top. However, an imperfection at another location in the shell surface 

would yield the same result, provided that the buckling does not interact with edge disturbances. Therefore, 

the graph is valid for all situations in which a spherical load causes buckling and the buckling takes place 

within the shell surface. The effect of other support conditions, loads or material properties is discussed in 

Section 14.5 to 14.7.  

 

14.4.1 Theoretical Comparison  

 

The validity of the graph presented in Figure 14.7 can be checked in two ways; by comparing the results with 

the theory of Chapter 6 and by comparing the results with an axisymmetric shell model similar to previous 

chapters (Section 14.4.2). 

 

The theory in Chapter 6 describes two methods for determined the effect of initial geometrical imperfections, 

i.e. the Koiter half-power law  and the special theory of Koiter. The Koiter half-power law is described in 

equation (6.2) and corresponds to type III buckling behaviour illustrated in Figure 6.4. Type III buckling 

behaviour is widely accepted as the structural response of imperfect spherical shells subjected to radial 

pressure, Kollar and Dulacska [54]. Recapitulate from Chapter 6: 

 

( )λ ρ= −
upper
cr

olin
cr

p
   = 1  2 w c

p

1
2

1                 (6.2) 

 

Herein, c1 represents type III behaviour and ρ is a coefficient depending on the imperfection shape. 

 

The parameter ρc1 is determined such that the Koiter half-power curve is optimal aligned with the finite 

element curve of Figure 14.7. Hence, the validity of the points with the largest discrepancy between the 

Koiter half-power curve and the curve of Figure 14.7 must be questioned. It is found that the curves coincide 

most optimal if the parameter ρc1 is equal to 0.16. The Koiter half-power curve is plotted against the finite 

element curve in Figure 14.8. 

 

Using the special theory of Koiter, Hutchinson found an upper bound curve for an imperfect shell (see Figure 

6.25). Kollar and Dulacska [54] used the results of Hutchinson for their graph in the IASS 

Recommendations, partially taking into account for the results of Kao (Figure 6.32). The IASS graph is 

previously presented in Figure 6.36. The graph defined by Kollar and Dulacska is also illustrated in Figure 

14.8.  
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Figure 14.8. Comparison between FEA, Koiter half-power law (red) and the curve of Hutchinson/Kollar and Dulacska (blue) 

 

From Figure 14.8 it can be concluded that the results of the finite element analysis, initially, shows good 

correlation with the curve of the Koiter half-power law. However, for imperfection amplitudes of w0/t > 0.6 

the similarity is less convincing. Hereby, it must be mentioned that the Koiter half-power law is the less exact 

the greater the buckling deformations are (which, in turn, are related to the size of the imperfection). For 

imperfections of 0.6 > w0/t = 1.0 the curve has approximately the same inclination as the curve of 

Hutchinson and Kollar and Dulacska (for which no mathematical formulation was found). Therefore, it can 

be concluded that reasonable correspondence is found. 

 

14.4.2 Axisymmetric Comparison  

 

A second check is related to the axisymmetric shell model. Due to the axisymmetry, the shell appeared to 

have a strong preference for local top buckling (see Chapter 13). However, in case of an inclined-roller shell 

with spherical load and a top imperfection, the drawback is not important anymore as the shell already fails 

at the top.  Therefore, the axisymmetric finite element results can be used to validate the three-dimensional 

results. It is observed from the axisymmetric finite element results that the curve almost completely 

coincides with the three-dimensional curve with a maximum difference of 3%.  

 

 

14.5 Support and Load Influences 

 

In Chapter 13 it is seen that different types of support conditions lead to lower linear critical buckling loads 

than a spherical shell subjected to radial pressure (or an inclined-roller hemisphere subjected to radial 

pressure). Moreover, if the shell was subjected to a uniform vertical load the shell, by definition, buckled first 

in the boundary layer. Or, as described before in Section 14.1, a vertical loaded shell does not show the shell-
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like buckling as defined in Figure 6.22. An imperfection in the shell may transform this type of buckling 

behaviour back to shell buckling if the imperfection causes the shell to buckle within the shell surface. 

 

Similar to Chapter 12 and 13, the shell support is either roller, inclined roller, hinged or clamped. Their 

introduction into the shell analy sis changes the stress and bending moment distribution of Figure 14.6, due 

to an edge disturbance (disturbed membrane stresses accompanied by  bending moments). This can be seen 

in the stress and bending moment distribution graphs of Chapter 12. An example of an adapted stress and 

bending moment distribution is illustrated in Figure 14.9 for a clamped supported shell subjected to 

spherical load. Hence, the question is if whether the edge disturbance will be decisive for buckling or the 

disturbance caused by the initial geometrical imperfection.  
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Figure 14.9. Typical  stress and bending moment distribution of a clamped shell  plotted against the shell  meridian 

 

From the finite element analysis it is observed that in case of a clamped shell subjected to radial pressure 

load the imperfection is dominant ov er the edge disturbance for imperfection amplitudes w0/t ≥ 0.2. It can 

be seen when the deformed shells of increasing load steps are plotted, see Figure 14.10. 

 

   

   

Figure 14.10. Typical  deformation of a clamped shell  subjected to radial  pressure load with  initial  top imperfection dominant over 

edge disturbance 
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In case of a roller support there is no edge disturbance which means that the stress and bending moment 

distribution do not change. However, as the support is weaker than the shell itself, the shell is very sensitive 

to buckling in the boundary layer. 

 

To investigate the influence of each of the four support conditions in combination with as well spherical load 

as vertical load for an imperfect shell with an each time increasing top imperfection amplitude a extensive 

series of analy ses are performed within the range of R/t ratios between 200 and 1000. From the finite 

element analyses it is observed that the graph of Figure 14.7 can be modified to include the aforementioned 

effects. The result is the graph of Figure 14.11. 
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Figure 14.11. Decrease in  load-carrying capacity  due to boundary  conditions, loads and initial  geometrical  imperfections at the top 

of the shell  for R/t ratios between 200 and 1000 

 

In the graph of Figure 14.11 the Zeiss 1 to 4 shells are plotted subjected to spherical or vertical load. At 

imperfection amplitude w0 =  0.0, the values are equal to the linear buckling loads obtained in Chapter 13. 

Hence, starting from the top, the lines correspond to the inclined-roller shell subjected to spherical load, the 

clamped shell subjected to spherical load, the hinged shell subjected to spherical load, the clamped shell 

subjected to v ertical load, the inclined-roller shell subjected to vertical load, the roller shell subjected to 

spherical load, the hinged shell subjected to v ertical load and the roller shell subjected to vertical load, 

respectively.  

 

From Figure 14.11 it can be concluded that, except for the roller shell subjected to vertical load, imperfection 

buckling becomes dominant ov er boundary  layer buckling at a certain size of imperfection amplitude. Thus, 

provided that the edge supports are not weaker than the shell itself, it can be seen that, for imperfection 

amplitudes w0/t ≥ 0.6 the critical load depends solely on the initial geometrical imperfections. For 

imperfection amplitudes w0/t < 0.6 the type of buckling failure depends on the support condition and type 

of load. Hereby, it must be mentioned that the graph is only  valid for an imperfection at the top of the shell 
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in case of vertical load. For spherical load the graph is valid for all possible imperfection locations, provided 

that the buckling does not interact with possible edge disturbances. The roller shell subjected to v ertical load 

is a special case. The shell critical load is not dependent a top imperfection, but by definition buckles in the 

boundary layer. However, hereby it must be mentioned that if the actual behaviour is like the graphs of 

Figure 14.8, eventually imperfection buckling becomes dominant, even for the roller shell under vertical 

load. 

 

 

14.6 Geometrical Influences 

 

The graphs as presented abov e are, at least, valid for all investigated R/t ratios between 200 up to 1000. 

 

 

14.7 Material Influences 

 

The influence of material properties can be named ‘as expected’ as the Young’s modulus is linearly present in 

the relations and analyses. The influence of a non-zero Poisson’s ratio is negligible.  

 

 

14.8 Knock-Down Factor Approach 

 

Aforementioned, a structural engineer prefers general methods of calculation with a limited amount of 

computational work. Therefore, a procedure is proposed for which the linear critical buckling load is 

multiplied (which can easily be obtained from a theoretical formula or a simple linear buckling finite 

element analysis) with a so-called knock-down factor which incorporates the effects causing a fall-back in 

load carrying capacity. The knock-down factor that incorporates effects of large deformations and initial 

geometrical imperfections can be determined from the results presented above. 

 

When determining the knock-down factor, the question is which imperfection amplitude must be taken into 

account. In Figure 14.10 it can be seen that for higher imperfection amplitudes there is little difference in 

maximum load carrying capacity. In the absence of imperfection measurements it seems a safe estimation to 

use an imperfection amplitude equal to the shell thickness. For concrete shells this leads to imperfections 

with a magnitude of approximately 60 to 80 mm. Moreover, for such imperfection amplitudes the critical 

load is independent of boundary conditions and type of loading if the roller support is neglected (which 

sounds reasonable as a roller support is unlikely to occur in practice (Chapter 3)).  

 

According to the finite element results, the knock-down factor is approximately equal to 68% (multiplication 

of linear critical buckling load with 0.32). If the knock-down factor is based on the Koiter half-power law or 

on the graph of Hutchinson and Kollar and Dulacska, the knock-down factor is equal to 0.2 (Figure 14.8). 

Obviously, the author opts for choosing 0.32. 
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14.9 Conclusions 

 

Before reading the following conclusions, one must keep in mind that they are based on shell analy sis 

involving shells with R/t ratios between 200 and 1000 and a local imperfection located at the top. 

Furthermore, the shell is loaded by uniform pressure or vertical load. Hence, snow load and wind load are 

not considered, although asymmetrical loading in combination with asymmetrical initial geometrical 

imperfections may lead to situations more onerous than the one investigated here. 

 

From the geometrically nonlinear analysis on imperfect shells it can be concluded that, for an imperfection 

equal to zero (perfect shell) the geometrically nonlinear analysis approaches the linear critical buckling load 

as obtained in Chapter 13 closely. In the geometrically  nonlinear analysis it was found that shells experience 

either shell-like buckling (with decrease of load-carrying capacity in postbuckling range) or buckling with a 

almost horizontal postbuckling path, determined by the type of external applied load on the shell, uniform 

spherical or vertical load, respectively.  

 

When imperfections are introduced the load carrying capacity falls down considerably. With increasing 

imperfection amplitude, the critical load becomes less and less, however, the larger the imperfection, the less 

difference in critical load in compare to adjacent critical loads. This can be seen in the graph of Figure 14.7. 

With respect to Figure 14.7 one must keep in mind that, although the graph implies asymptotic behaviour, 

this is not to be expected, i.e. an increasing imperfection will always lead to a lower critical load. For an 

inclined-roller shell subjected to spherical load, the largest decrease in load carrying capacity within the 

range of research (maximum imperfections equal to the shell thickness) is approximately equal to 70% (for 

as well the three-dimensional shell model as the axisymmetric shell model). When the maximum decrease in 

load carrying capacity is compared to the Koiter half-power law or to the graph of Hutchinson and Kollar 

and Dulacska [54] it is observed that there is a discrepancy of approximately 10% as they results lead to a 

maximum decrease of 80%. Hence, reasonable correspondence is found. 

 

When the influence of support conditions and load conditions are considered, it can be concluded that for 

imperfection amplitudes w0/t ≥ 0.6 the critical load depends solely on the initial geometrical imperfections, 

if the support is not weaker than the shell itself. I.e. a roller supported shell subjected to v ertical load yields 

critical loads independent of any  top imperfection within the range of the R/t ratios investigated. Hereby, it 

must be mentioned that with increasing R/t ratio ev entually imperfection buckling becomes dominant, even 

for the roller shell under vertical load. For imperfection amplitudes w0/t < 0.6 the type of buckling failure 

depends on the support condition and type of load.  

 

Qualitatively the geometrically  nonlinear analysis on imperfect shells shows a smooth transition from the 

prebuckling path of equilibrium to the postbuckling path of equilibrium, as e.g. is illustrated in Figure 14.5. 

However, also snap-through behaviour is observed. The question if the snap-through behaviour actually 

occurs in practice or only in the numerical approximation cannot be answered. Additional research may 

provide in the answer, e.g. using alternative finite element solution procedures or by testing small-scale 

models. Furthermore, with respect to the obtained postbuckling path it can be concluded that the graph 

seems to approach to a horizontal asymptote, the absolute minimum postbuckling point of equilibrium. If 
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the minimum postbuckling load is compared to the equations in Section 6.5.3, proposed by  mathematicians 

such as Von Karman and Tsien, Del Pozo and Del Pozo and Dostanowa and Raiser (see Chapter 6 and 

Chapter 10.6) it can be concluded that the postbuckling load-displacement curve already violates all values 

between Von Karman and Tsien and Del Pozo and Del Pozo, but asymptotically still may converge to the 

minimum load as proposed by Dostanowa and Raiser (equation (6.58)). However, no real conclusions can be 

drawn on the validity of the latter relation as the reach of the finite element results is insufficient.  
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15 Geometrically and Physically  

   Nonlinear FEA 
 

 

 

In Chapter 14, the influence of initial geometrical imperfections on the load-carrying capacity  of a 

hemispherical shell subjected to uniform spherical or vertical load is investigated by performing a 

geometrically nonlinear analy sis. However, in reality, the matter is further complicated by the highly 

nonlinear material characteristics of (fibre) reinforced concrete, i.e. compressive crushing, tensile cracking 

and yielding of reinforcement/continuous fibre pull-out. In this chapter material nonlinearity is also taken 

into consideration and, hence, there is referred to a geometrically  and physically nonlinear finite element 

analysis. 

 

Similar to Chapter 10, 12, 13 and 14, the Zeiss planetarium shell is the given hemispherical shape. To 

investigate the additional effect of material nonlinearity  on the structural behaviour as found in Chapter 14, 

the previously described finite element model is modified with a so-called material model, which contains 

the properties and characteristics of the mixture designs defined in Chapter 8. Material models were 

previously discussed in Chapter 11. Based on the observations done by Burgers [20] the material is modelled 

using the total strain concept with a rotating crack approach. The nonlinearity of concrete is confined to 

crushing and cracking and (fibre) reinforcement characteristics. Long term effects as shrinkage and creep 

and ambient influences as temperature, concentration or maturity are not taken into consideration. In fact, 

these effects cannot be included into the total strain modelling concept.  

 

The finite element analyses are restricted to the three-dimensional shell model as asymmetric behaviour 

may occur. To verify the finite element results, the results are compared to the theory and IASS 

Recommendations as described in Chapter 6.  
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15.1 Shell Parameters 

 

15.1.1 Geometry  

 

See Chapter 12.1.1. 

 

15.1.2 Initial Geometrical Imperfections 

 

See Chapter 14.1.2. 

 

15.1.3 Material Modelling 

 

Aforementioned, based on the observations done by  Burgers [20] the material is modelled using the total 

strain concept with a rotating crack approach. Thus, the material properties and characteristics are 

described within one constitutive law. The modelling of the conventional mix and the UHPFRC mix is 

discussed separately. 

 

UHPFRC C180/210 

 

The properties of C180/210 are discussed in Chapter 8.2  and summarised in Table 8.7 and 8.8. Due to the 

addition of fibres, the composite mixture loaded in tension will behave like an isotropic material, which 

means that the structural behaviour can be captured in a single constitutive law. The axial tensile behaviour 

is presented in Figure 8.18. According to the French codes, this behaviour can be approximated by a multi-

linear stress-strain law. To obtain a constitutive relation (stress-strain) from a stress-crack relation of Figure 

8.18, so-called fracture energy regularisation must be used to prevent crackwidths related to the element 

size, previously discussed in Chapter 11. Recapitulate from Chapter 11, equation (11.66): 

 

ε =cr
nn

c

w

h
                 (11.66) 

 

For higher-order plane stress elements (as used) DIANA suggests the relation =  ch A , with A the average 

element area which can simply be calculated by  dividing the total shell surface area ( 1
2 π⋅ =  2 2 4  R 981.7 m ) 

through the number of elements (7168). Doing so: 

 

⋅= ≈
6

c

981.7 10
h 370

7168

 
   

 

Thus, to obtain the crack strains from the crack width, the crack width must be divided through 370.  
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In the graph of Figure 8.18, the stress at crackwidth 2 mm is not defined, however, the fracture energy of the 

postcracking stage is equal to 20 N/mm. Hence, using a bilinear postcracking graph with strains determined 

according to fracture energy regularisation, the point can be calculated and yields 2 MPa.  
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Figure 15.1. Comparison between compressive crushing of UHPFRC with  a mean value cylinder strength  of 190 MPa and the linear 

critical  buckling load as obtained by  Zoëlly  

 

The compressive behaviour is illustrated in Figure 8.17. It can be seen that the Thorenfeldt curve behaves 

almost linear up to compressive crushing. Moreover, if the maximum applicable load is plotted against the 

linear critical buckling load, Figure 15.1, it can be seen that buckling prevails over crushing, at least within 

the range of 200 ≤  R/t ≥ 1000. Hence, the crushing strength is not reached and the concrete can be 

modelled as infinite elastic in compression, obtaining a much simpler constitutive law.  

 

In Figure 15.2, the complete stress-strain relationship for the UHPFRC mixture that is modelled in a total 

strain rotating crack model for the nonlinear finite element analysis is seen.  

 

Figure 15.2. Stress-strain  relationship for UHPFRC as used in  the nonlinear fini te element analysis 
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Conventional C20/25 

 

The conventional mix properties are discussed in Chapter 8.1 and summarised in Table 8.1 and 8.2. It was 

argued that the non-isotropic behaviour of plain reinforced concrete in tension, caused by crack 

development in a few wide cracks and redistribution of tensile stresses from concrete to bonded 

reinforcement, makes it impossible to capture the structural behaviour in a single constitutive law. However, 

as shells are low reinforced structures and the quality of the rebars is assumed to be low (Table 8.2), a 

serviceability approach is suggested by the author.  

 

In Figure 8.5 it can be seen that, for axial tension, the low quality and percentage of reinforcement results in 

only a small increase of axial tensile forces after crack initiation. Therefore, it is proposed to neglect the 

effect of reinforcement and to model the axial tensile behaviour with a bilinear law. The bilinear law is 

defined by a linear branch up to the axial tensile strength with an inclination determined by the Young’s 

modulus, followed by  a horizontal postcracking branch. The horizontal branch is implemented into the 

material model with a slightly  negative inclination as DIANA evaluates crack initiation when the E-modulus 

becomes negative (see Chapter 11). The (almost) horizontal branch extends to strains of 30‰, which is 

extremely large (according to the aforementioned fracture energy regularisation approach, 30‰ corresponds 

to cracks equal to 11 mm). In the finite element results the serviceability limit state bounds the solution as at 

a certain moment the crack size violates the maximum crack size as dictated by the codes, discussed later. 

 

In Chapter 7 it is defined that the reinforcement is located in the middle of the shell cross-section. In case of 

a flexural tensile stress situation, the reinforcement is not activated until a significant amount of cracking 

has occurred. Therefore, it is proposed to neglect the effect of reinforcement and to model the flexural tensile 

behaviour as brittle. Thus, the flexural tensile behaviour is modelled by a linear branch up to the axial tensile 

strength (with inclination equal to the Young’s modulus) and after the axial tensile strength is reached the 

graph instantly returns to zero. Again, in the finite element results the serviceability limit state bounds the 

solution as at a certain moment the crack size violates the maximum crack size as dictated by  the codes. The 

axial and flexural tensile models are seen in Figure 15.3. 

 

 
 

Figure 15.3. Axial  and flexural  tensile behaviour as implemented into the material  model 

 

Obviously, it is not possible to perform an analysis with two tensile relations implemented in the finite 

element model. Therefore, the decisive failure mechanism needs to be determined in advance.  
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The compression branch is modelled by a Thorenfeldt curve. To include effects of biaxial compression, 

lateral confinement is incorporated according to the relation of Selby and Vecchio (see Figure 11.31).  

 

15.1.4 Boundary Conditions 

 

See Chapter 12.1.3. 

 

15.1.5 Loading 

 

See Chapter 14.1.5. 

 

15.1.6 Analysis Scheme 

 

The different types of analy sis are presented in Table 15.1. Each analysis is combined with the imperfections 

tabulated in Table 14.1.  

 

Name Loading Conditions Supporting Conditions Type of Analysis Model  

Zeiss 1 Spherical  and Vertical Roller Geometrical  and physical  nonlinear 3D 

Zeiss 2 Spherical  and Vertical Inclined-roller Geometrical  and physical  nonlinear 3D 

Zeiss 3 Spherical  and Vertical Hinged Geometrical  and physical  nonlinear 3D 

Zeiss 4 Spherical  and Vertical Clamped Geometrical  and physical  nonlinear 3D 

 

Table 15.1. Analysis scheme 

 

15.1.7  FEA Settings 

 

Similar to Chapter 14, the geometrically nonlinear analysis is based on a Total Lagrange formulation, Green 

strains and Second Piola-Kirchhoff stresses. Physical nonlinearities are incorporated by the restrictions and 

constitutive formulation described in the material model. To obtain a more accurate stress distribution in 

thickness direction, the number of integration points in thickness direction is changed to a 7-point Simpson 

integration scheme. Similar to Chapter 14, the selected incremental-iterative procedure is a Regular Newton-

Raphson scheme combined with a spherical path arc-Length control which is, in turn, modified with an 

indirect displacement control on the top node in the negative vertical direction. For convergence both the 

displacement and the force norm must be satisfied. During analy ses the user specified arc-length controlled 

step sizes are varied in order to pass the limit point and to find as many  points of the adjacent postbuckling 

equilibrium path as possible.  

 

15.2 Results UHPFRC Shell under Spherical Load 

 

Similar to Chapter 14, first the basic (sphere under radial pressure) shell type is investigated, the Zeiss 2 

(inclined-roller) shell subjected to a spherical pressure load in combination with an each time increasing top 

imperfection amplitude. Afterwards the influence of different boundary conditions is discussed. In Section 

15.3, the UHPFRC shell under uniform vertical load is discussed.  
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15.2.1 Zeiss 2 

 

The C180/210 Zeiss 2  shell, subjected to spherical load with increasing top imperfection amplitude and 

increasing R/t ratio is considered first. The deformations of the shells are similar to the deformations seen in 

Chapter 14 (Figure 14.2 and 14.3). Hence, due to the introduction of material nonlinearities, the shell 

ev entually will fail by surpassing the flexural tensile strength. The fully nonlinear response of the Zeiss 2 

shell is illustrated by load-displacement curves, stresses and bending moments and, off course, crack plots.  

 

Load-displacement relation 

 

The top node load-displacement (MPa)-(mm) relation for a (cracked) inclined-roller supported C180/210 

shell with R/t ratio equal to 400 and increasing top imperfection amplitude is presented in Figure 15.4. In 

the graphs, the point of crack initiation is marked with a black spot. The final step of each of the load-

displacement curves is questionable as the analyses failed in finding convergence in the next step. 
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Figure 15.4. Typical  top node load-displacement curves for a (cracked) inclined-roller supported C180/210 shell  with  an R/t ratio 

of 400 and increasing top imperfection amplitude ranging from 0.2 to 1.0 subjected to spherical  load 

 

From Figure 15.4 several observations can be made. First of all, it can be seen that, similar to Chapter 14, 

increasing imperfection amplitudes cause a further decreasing critical load, which occurs approximately  at a 

deformation of 20 to 30 mm. It can be seen that cracking is not present for a small imperfection amplitude of 

w0/t = 0.2. This can be explained by the fact that the compression stresses in the shell do not allow for 

tensile stresses to develop (yet) and the buckling is dominant, similar to Chapter 14. Hence, the same critical 

load is found. When the imperfection amplitude is equal to w0/t =  0.4 cracking initiates after the limit point. 

However, the maximum critical load is lower than obtained for the same shell in Chapter 14, caused by the 

fact that the C180/210 losses linearity and experiences strain hardening after the linear branch, seen in 

Figure 8.18. Although the material is able to stay  uncracked (at least for macro cracking, see Chapter 8), the 

stiffness reduces significantly causing a reduced load-displacement curve. The strange forward-and-

backward-step behaviour of the graph just after the limit point may be explained as a numerical self-

correcting procedure caused by lack of convergence in successive steps of the first selected equilibrium 

direction. For imperfection amplitudes of w0/t = 0.6 and 0.8, the point of crack initiation is close to the 

critical load and, thus, the additional decrease in compare to Chapter 14 is caused by the loss of linearity in 

tension. At an imperfection equal to w0/t = 1.0, the cracking coincides with the maximum critical load and a 

combination of buckling, softening by loss of linearity and cracking may said to be decisive; plastic buckling. 

With respect to the postbuckling path, it can be seen that there are ‘bumps’ indicating stiffness variations. 

The bumps are related to the crack propagation process, i.e. weakening (and redistribution) due to local loss 

of linearity, initiation of new cracks, closing and re-opening of old cracks, change in principal crack direction 

and the transition towards the low level postcracking plateau, characteristic for fibre reinforced concrete.  

 

Effect of increasing imperfection amplitude 

 

The influence of loss of linearity and cracking in the tensile regime on the load carrying capacity can be 

plotted against an increasing imperfection amplitude as is done in Figure 15.5. As a reference the curve 

previously obtained in Chapter 14 (Figure 14.7) is plotted in the same graph. From Figure 15.5 it can be 
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concluded that with increasing imperfection amplitude the influence of material nonlinearity becomes 

larger. Obviously, this makes sense, as it was observed in Figure 15.4 that the effects of loss of linearity and 

cracking became more and more important with increasing top imperfection amplitude. It can also be seen 

that the ‘cracked’ shell experiences a maximum decrease in load carrying capacity  up to 23% of the linear 

critical buckling load. Hence, cracking leads to an additional decrease of approximately 9% which means a 

cracking factor equal to 0.72 and a total knock-down factor of 0.23.For imperfection amplitudes w0/t = 0.4, 

0.6 and 0.8 the differences are 2.2, 3.4 and 5.4%, respectively. 
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Figure 15.5. Effect of initial  geometrical  imperfections and cracking on the cri tical  load for hemispherical  C180/210 shell  with  top 

imperfection subjected to spherical  load for an R/t ratio equal  to 400 

 

Stresses and bending moments 

 

The stresses and bending moments of an imperfect shell subjected to radial pressure load are seen in Figure 

14.6. Opposite to the results of Chapter 14, this time the tensile and compressive stresses are bounded by 

crushing and cracking.  

 

Figure 15.6. Typical  nodal  stress and bending moment distributions in  a hemispherical  shell  subjected to radial  pressure at the 

point of crack initiation for a shell  with  R/t = 400 and w0/t =0.8 
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In Figure 15.6 typical stress and bending moment distributions at the point of crack initiation are shown for 

a C180/210 hemispherical shell with inclined-roller support subjected to radial pressure load. They  are 

much similar to the distribution graphs of Chapter 14, although the tensile stress peak is cut-off and the 

compressive stresses are approximately 8 times higher than the tensile stresses. Hence, a nonlinear stress 

distribution appears over the shell cross-section, similar to Figure 8.19. It can be seen that the compressive 

crushing strength of the C180/210 mixture for the given shell is not violated, as assumed before when 

modelling the structural behaviour of the UHPFRC mixture. Furthermore, it can be seen that crack initiation 

is accompanied by maximum nodal tensile stresses equal to 23.4 MPa. The averaged stress is 11.7 MPa and 

the maximum stress in the integration points is 9.7 MPa, which indicates the difference that is introduced by 

stress mapping from the integration points to the nodes.  Based on the tensile stresses, it can be concluded 

that the high flexural strengths claimed by the companies of Ductal and BSI are not reached (see Chapter 8).  

 

Cracking 

 

Typical crack initiation and crack propagation for a hemispherical shell under radial pressure load with a 

local top imperfection is seen in Figure 15.7 and 15.8. In Figure 15.7 the cracking development for the inner 

surface is illustrated by an arbitrary series of crack patterns. In Figure 15.8 the cracks that appear in the 

outer surface of the shell are shown.  

 

    
 

    
 

Figure 15.7. Typical  crack propagation in  the inner surface at the imperfection 
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In Figure 15.7 the crack pattern at steps 21, 28, 49 and 59 of a particular analysis are presented. More 

important are the corresponding sizes of the cracks that appear. The crackwidth can be determined by 

examination of the crack strain and transform them to crackwidths by reversing relation (11.66), thus using 

the average element size. The maximum crack strains (red discs) that correspond to the steps presented in 

Figure 15.7 are 0.00284, 0.0135, 0.0928 and 0.404, respectively. The corresponding maximum crackwidths 

are 1.1 mm, 5.0 mm, 34.3 mm and 149.5 mm. Obviously, these cracks far exceed the stress-strain diagram 

and serviceability limits.  

 

During buckling the shell does not only crack at the inner surface, but also on the outer surface. The outer 

surface cracks at step 28, 34 and 51 are presented in Figure 15.8. Thus, the left crack pattern of Figure 15.8 

corresponds to the upper right crack pattern of Figure 15.7. The correlating crackwidths are 0.97 mm, 1.57 

mm and 39.22 mm. The latter cracks are so large that the structure is disqualified on serviceability demands. 

 

    
 

Figure 15.8. Typical  crack propagation in  the outer surface in  the region of the imperfection 

 

After a close inspection of the crack patterns, one may notice that some cracks (discs) change direction in 

successive crack steps. Apparently, this is originated in the selected total strain rotating crack concept.  

 

Different R/t ratios 

 

The load-displacement curves as presented in Figure 15.4 and the effect of initial imperfections and cracking 

as illustrated in Figure 15.5 are valid for spherical loaded inclined-roller supported hemispherical shells with 

an R/t ratio equal to 400. For other R/t ratios the effect of cracking may be different as the point of crack 

initiation varies depending on the ratio of membrane over bending behaviour (i.e. is the shell closer to 

membrane dominant behaviour or bending dominant behaviour). Aforementioned in Chapter 3, the 

preference for membrane or bending behaviour is governed by the radius to thickness ratio of the shell. 

Thinner shells behave more like membranes than thicker shells. Consequently, for thicker shells than the 

one of Figure 15.4 (R/t = 400) the point of crack initiation moves to the prebuckling stage while for thinner 

shells the effect of cracking becomes less important for the maximum critical load as the point of cracking 

moves further away from the limit point. This phenomenon is illustrated in Figure 15.9, the load-

displacement curves of the top node. Due to the point of cracking (and the point of loss of linearity in the 

tension relation) the critical load varies. For an R/t ratio of 400, 600, 800 and 1000, the maximum critical 

load at maximum imperfection amplitude is as low as 23%, 24%, 25% and 33% of the linear critical buckling 

load, respectively. For the R/t ratio equal to 1000, the maximum critical load is similar to the one found in 

Chapter 14. Hence, the possible occurrence of cracking does not influence the maximum load carrying 
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capacity which is solely determined by buckling instability. This may also lead to the conclusion that the 

critical load of even thinner shells (R/t ratios > 1000) is not influenced by possible cracking. 

 
 

 

Figure 15.9. The effect of the R/t ratio on the maximum critical  load and cracking behaviour in  a typical  top node load-

displacement curve of a hemispherel  loaded by  radial  pressure with  a local  top imperfection equal  to 0.4 the shell  thickness (for 

R/t = 200) or equal  to the thickness of the shell  

 

For the shell with an R/t ratio of 200, no analyses could be made for imperfection amplitudes w0/t > 0.4 as 

modelling errors were encountered (out-of-tolerance radius errors between adjacent nodes). Therefore, in 

Figure 15.9, imperfection amplitude w0/t = 0.4 is plotted for the shell with an R/t ratio equal to 200. 

However, the phenomenon still can be seen if the graph is compared to the graph of Figure 15.4 for the same 

imperfection amplitude. In can be seen that, opposite to the R/t = 400 shell, in which the point of crack 

initiation was far from the limit point, the point of cracking in the R/t =  200 shell is before the limit point 

and, thus, has major influence on the maximum critical load. The cracking causes the graph of Figure 15.5 to 

lower approximately  2% at the imperfection amplitude w0/t = 0.4. When the graphs of R/t = 400 and R/t = 

800 (shell thickness is twice as thin) are compared an increase of 2% is observed. If the same difference 

occurs between the R/t = 400 and R/t = 200 shell, the maximum critical load may approach 19-21% of the 

linear critical buckling load.In Figure 15.10 the influence of a local initial geometrical imperfection at the top 

of the shell on the load carrying capacity  is illustrated for several R/t ratios. The order of the curves follows 

the order of the list right of the figure. Hereby, the curve for R/t = 1000 coincides with the uncracked curve 

as the shell does not experience an additional decrease due to material nonlinearity. It can be seen that the 

curves are very close to each other, indicating the small effect of cracking in compare to the effect of buckling 

in combination with an initial imperfection. The curve for R/t = 200 stops at w0/t = 0.4. Aforementioned, 

further results could not be obtained due to out-of-tolerance errors of the finite element model.  
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Figure 15.10. Influence of increasing imperfection amplitude on a cracked C180/210 hemispherical  shell  with  inclined-roller 

support and top imperfection subjected to spherical  load for several  R/t ratios 

 

15.2.2 Zeiss 1, 3 and 4 

 

Similar to Chapter 14, the influence of different types of support is investigated. Besides the inclined-roller 

support (Section 15.2.1) the shell is also modelled with a roller, hinged and clamped support. Because there 

is only referred to a spherical load on a hemispherical shell, the expected result can simply be obtained from 

Figure 14.11. In Figure 15.11 the influence of various support conditions for a hemisphere subjected to radial 

pressure load with increasing top imperfection amplitude is visualised.  
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Figure 15.11. Effect of ini tial  geometrical  imperfections and cracking on the critical  load for hemispherical  C180/210 shell  with  top 

imperfection subjected to spherical  load for several  R/t ratios and support conditions 

 

From Figure 15.11 it can be concluded that the boundary conditions only have influence on the critical load 

for imperfection amplitudes w0/t < 0.4. In that region the edge disturbances caused by  restrain deformation 

at the support are dominant ov er the effects of a local top imperfection. For imperfection amplitudes w0/t ≥ 

0.4 buckling takes place inside the shell surface independent of the boundary conditions. 
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15.3 Results UHPFRC Shell under Vertical Load 

 

In Chapter 14 it was discov ered that the UHPFRC shell under vertical load may experience shell-like 

postbuckling behaviour or a buckling behaviour without a sudden decrease in load carrying capacity after the 

bifurcation point, depending on the imperfection amplitude. It can be seen in Figure 14.11 that for w0/t ≥ 0.6 

the shell experiences shell-like buckling, except for the vertical loaded shell with roller support which 

appeared to be insensitive to any local top imperfection (at least within the range of the research). If cracking 

is introduced, the vertical loaded shell may fail due to surpassing the axial tensile strength or, in case of 

shell-like buckling in the shell surface, due to surpassing the flexural tensile strength. 

 

15.3.1 Zeiss 1, 2, 3 and 4 

 

Similar to Section 15.2, the fully nonlinear response of the vertical loaded shells is illustrated by load-

displacement curves, stresses and bending moments and crack plots. 

 

Load-displacement relation 

 

To determine whether the shell experiences shell-like buckling, the analyses involving vertical loaded shells 

are performed for all support conditions with maximum imperfection amplitude. From the analyses it can be 

concluded that the shell, by definition, fails due to surpassing the axial tensile stress of the C180/210 in the 

boundary layer (major part) after which buckling occurs, as can be seen in Figure 15.12. 

 

    

    

 

Figure 15.12. Typical  deformed shapes of cracked hemispherical  shells with  varying support condition subjected to vertical  load 

 

The resulting load-displacement (MPa)-(mm) relations of the top node for a cracked C180/210 shell with 

R/t ratio equal to 400 and varying supports are presented in Figure 15.13. Crack initiation is marked with a 

black spot. From the load-displacement curves in Figure 15.13  it can be seen that the finite element analy sis 

encounters difficulties in finding convergence when the shell starts to crack. By definition, the final step of 

each load-displacement curve is questionable as the analyses fails in finding convergence in the next step. 

The results of an analy sis on a roller supported shell show a load-displacement curve which experiences a 

fall-back after which cracks appear. The process is reversed for the inclined-roller shell. For the hinged and 



                                                                   Chapter 15.   Geometrically and Physically Nonlinear Analysis 

 361

clamped supported shell, the finite element procedure was unable to find any convergence after crack 

initiation. Obviously, the step size is rather large and better results may be obtained with smaller steps. 

Based on Figure 15.12 and 15.13, it can be concluded that the shell experiences the same type of buckling as 

illustrated in the right graph of Figure 14.1. Hence, the results of the roller graph are misleading. 

 

    

    

Figure 15.13. Typical  top node load-displacement curves for several  support conditions for a hemisphere subjected to uniform 

vertical  load with  an R/t ratio equal  to 400 and a local  top imperfection ampli tude equal  to the shell  thickness 

 

In Figure 15.13 it can be seen that the shells with different types of supports approximately fail at the same 

magnitude of external applied vertical load. The deformations at the point of maximum critical load are 

significantly different. The roller supported shell fails already at a deformation of 5.5 mm, the inclined-roller 

and hinged shell fail approximately at 8 mm and the clamped shell fails at 12 mm. 

 

The critical loads are tabulated in Table 15.2. As expected, based on the linear stress distribution of the 

circumferential stresses as seen in the figures of Chapter 12, the clamped support yields the maximum 

allowable load equal to 0.0309 MPa (= 30.9 kN/m2).  
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Name P crgpnl (MPa) 

Zeiss 1 0.0216 

Zeiss 2 0.0245 

Zeiss 3 0.0269 

Zeiss 4 0.0309 

 

Table 15.2. Cri tical  load for hemispherical  C180/210 shell  with  R/t = 400 subjected to uniform vertical  load 

 

The load-carrying capacity is compared to the linear critical buckling load of a spherical shell under radial 

pressure as defined in Chapter 6 in Table 15.3. Moreov er, in Table 15.3, the results are compared to the 

buckling loads found in Chapter 13 for the same shells (for which buckling did occur due to the assumption 

of linear elastic material behaviour). When compared to the results of Chapter 6 and Chapter 13, it can be 

said that the introduction of cracking lowers the critical load drastically.  

 

Name P crgpnl/P crlin, equa tion (6.63)    P crgpnl/P crlin, chapter 13 

Zeiss 1 5.4% 21.4% 

Zeiss 2 6.2% 11.0% 

Zeiss 3 6.8% 16.4% 

Zeiss 4 7.7% 12.7% 

 

Table 15.3. Cri tical  load for hemispherical  C180/210 shell  with  R/t = 400 subjected to uniform vertical  load 

 

From Table 15.3 it can be observed that for hemispherical shells subjected to uniform vertical load, the 

introduction of material nonlinearities, which cause strength failure rather than buckling failure, lead to 

critical loads which are as low as 11% of their linear critical buckling load and 5.4% of the linear critical 

buckling load for spherical shell under radial pressure load. 

 

Stresses and bending moments 

 

In the stress distribution, the effect of reaching the axial tensile stress can be seen. When the stresses reach 

the axial tensile strength, the stresses are bounded and a horizontal plateau develops due to redistribution. 

The phenomenon is seen in Figure 15.14.  
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Figure 15.14. Stress distribution at crack initiation of a hemisphere with  R/t = 400 under vertical  load for several  supports 

 

Figure 15.14 presents the stress distribution at the point of crack initiation of a hemisphere with R/t = 400 

subjected to uniform vertical load for all types of support conditions. In the figure it is observed that the axial 

tensile stresses slightly  violate the axial tensile strength of 9.7 MPa (Chapter 8). This is caused by the stress 

mapping. Furthermore, in Figure 15.14, the effect of the initial geometrical imperfection, which is equal to 

w0/t = 1.0, is clearly seen given by the disturbances at the top of the shell. As the stress distribution over the 

cross-section at the imperfection is practically linear (tensile and compressive stresses show peaks of the 

equal size), there is no plastic deformation (cracking).  

 

With respect to the bending moments, although not shown, it can be said that the distribution is (almost) 

similar to Figure 15.6. This is caused by the fact that the bending moments at the imperfection are far higher 

than the bending moments resulting from the so-called edge disturbance.  

 

Cracking 

 

For the vertical loaded shells, two types of crack patterns are observed, illustrated in Figure 15.15 and 15.16. 

In figure 15.15 two successive symmetrical crack scatters are shown, typical for the isotropic type of 

behaviour one would expect from fibre reinforced concrete. However, in the analysis of the Zeiss 2 shell 

another crack pattern appeared which demonstrates a few wide cracks (more like the behaviour of 

conventional reinforced structures), shown in Figure 15.16.  

 

 

Figure 15.15. Typical  crack scatter propagation in  hemispherical  shells subjected to vertical  load 
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Figure 15.16. Inexplicable cracking with  few wide cracks and corresponding deformed shell  in  hemispherical  shell  subjected to 

vertical  load 

 

In Figure 15.16 the occurrence of a few wide cracks is clear. Also the corresponding deformation of the shell 

is illustrated. The occurrence of a few wide cracks cannot be explained via the material model and, hence, 

must be originated in numerical disturbances.  

 

Different R/t ratios 

 

The observed structural behaviour appeared to be independent of R/t ratios between 200 and 1000. 

However, it is seen that for a shell with R/t = 1000, the shell also cracks at the location of maximum 

imperfection amplitude, although, the largest crack strains and deformations are still located near the 

supports. The expectation is that for a certain (higher) R/t ratio the shell may fail by buckling inside the shell 

surface instead of failure by  surpassing the axial tensile strength near the base radius. Based on the 

observation that the thickness appears linearly in the axial tensile strength equation but quadratically in the 

linear buckling equation the turning point may be more or less R/t = 2333 (for  the chosen material 

properties and the expectation that the critical load is approximately  32% of the linear critical buckling load 

for R/t ratios > 1000, thus ( )2

2
lin
cr ctR / t 0.32 p R / t / f= ⋅ ⋅ ) 

 

 

15.4 Results C20/25 Shell under Spherical Load 

 

Similar to Section 15.2, first the basic shell type is investigated, the Zeiss 2  shell subjected to a spherical 

pressure load in combination with an each time increasing imperfection amplitude. Afterwards the influence 

of different boundary conditions is discussed. In Section 15.5, the C20/25 shell under uniform vertical load is 

discussed. In Section 15.2 it is found that the shell under spherical load fails due to surpassing the flexural 

tensile strength in the region of the local top imperfection. Therefore, the conventional reinforced concrete is 

modelled according to the right brittle relation of Figure 15.3.  

 

15.4.1 Zeiss 2 

 

The C20/25 Zeiss 2  shell, subjected to spherical load with increasing local top imperfection amplitude and 

increasing R/t ratio is considered first. The deformations of the shells are similar to the deformations seen in 
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Chapter 14 (Figure 14.2  and 14.3). The fully nonlinear response of the Zeiss 2  shell is illustrated by  load-

displacement curves, stresses and bending moments and crack plots.  

 

Load-displacement relations 

 

In Figure 15.17 the typical load-displacement curves for an inclined-roller C20/25 hemispherical shell with 

R/t = 400 subjected to spherical load are plotted for imperfection amplitudes ranging from w0/t = 0.2 to 

w0/t = 1.0. Crack initiation is marked with a black spot and, additionally, the point of compressive crushing 

is marked with a black square. Due to the low quality of concrete, concrete compressive crushing may  be 

dominant for the maximum applicable load. The final step of the load-displacement curves is questionable as 

the analy ses failed in finding convergence in the next step. 
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Figure 15.17. Typical  top node load-displacement curves for a (cracked) inclined-roller supported C20/25 shell  with  an R/t ratio of 

400 and increasing top imperfection amplitude ranging from 0.2 to 1.0 subjected to spherical  load 

 

It is found that for the given shell (R/t = 400) the effect of compressive crushing dominates over tensile 

cracking for an imperfection amplitude w0/t = 0.2. This is seen in the upper left graph of Figure 15.17. 

Although the crushing initiates after the limit point, the maximum load is lower than the load of Chapter 14 

as the Thorenfeldt compression curve shows a rounded stress-strain curve near the point of maximum 

compression strength (see Figure 8.4) and thereby contributes to the (dominating) effect of large 

deformations. For the given shell with R/t = 400 and w0/t = 0.2, the maximum load carrying capacity  is 

approximately 46.6% of the linear critical buckling load for a sphere subjected to radial pressure. This is 

significantly (17.4%) lower than the load which follows from Figure 14.7. 

 

For an imperfection amplitude w0/t = 0.4 the effects of cracking and crushing are reversed, although 

crushing still contribute to the decrease in load carrying capacity due to the aforementioned rounded 

Thorenfeldt curve. For imperfection amplitudes w0/t > 0.4 the concrete crushing strength is not reached. 

With increasing imperfection amplitude, cracking initiates earlier in the load-displacement graph. Due to the 

phenomenon of redistribution the shell still experiences an increase in load carrying capacity after the first 

crack. Obviously the points of cracking and crushing are restricted for hemispherical shells with R/t = 400.  

 

Stresses and bending moments 

 

Typical nodal stress and bending moment distribution of an inclined-roller hemispherical C20/25 shell 

subjected to spherical load and a top imperfection w0/t = 0.2 at the point of crushing and the point of 

cracking are visualised in Figure 15.18. When compared to Figure 15.6, it immediately can be seen that the 

stresses and bending moments are significantly lower, caused by the tensile and compressive limitations of 

the low quality concrete. Both upper graphs indicate the point of crushing. It can be seen that the maximum 

nodal compressive stresses are approximately -36 MPa, while the tensile stresses slightly exceed 5 MPa. The 

averaged stresses are equal to -28.0 MPa and 4.1 MPa. Hence, the positive effect of lateral confinement 

(incorporated according to the relation of Selby  and Vecchio, Figure 11.31) seems negligible. Furthermore, it 
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is observed that the axial tensile stress is violated but no cracking occurs. This can be contributed to the 

stress mapping operation from the integration points towards the nodes. Obviously, the stresses in the 

integration points do not violate the axial tensile strength.  

  

  

Figure 15.18. Typical  nodal  stress and bending moment distributions in  a hemispherical  shell  subjected to radial  pressure at the 

point of crushing (upper) and crack initiation (lower) for a shell  with  R/t = 400 and w0/t =0.2 

 

The lower graphs of Figure 15.18 illustrate the point of crack initiation. It can be seen that the maximum 

nodal tensile stresses further increase to approximately 8.5 MPa whereas the nodal compressive stresses 

increase up to almost 40 MPa. The averaged stresses are, however, approximately 5.19 MPa and 28.5 MPa.  

 

Effect of increasing imperfection amplitude 

 

Similar to Section 15.2 the decrease in load carrying capacity can be plotted against the effect of increasing 

top imperfection amplitude. The result is seen in Figure 15.19. It can be seen that the effect of cracking leads 

to a significantly lower critical load which, additionally, is bounded by the crushing strength for imperfection 

amplitudes w0/t < 0.2. The initial crushing path is a dotted line, as lateral confinement may lead to a higher 

crushing strength and, thus, a higher allowable critical load. Quantitatively, the decrease in load carrying 

capacity for w0/t > 0.2 can in short be written as 46.6%, 35.5%, 27.1%, 21.6% and 17.8%. Hence, the 



                                                                   Chapter 15.   Geometrically and Physically Nonlinear Analysis 

 368

difference at the maximum imperfection amplitude is equal to 14.2% which means that the linear critical 

buckling load needs to be multiplied with a factor 0.556 to include the effects of tensile cracking. The total 

knock-down factor (large deformations, imperfections and cracking) for this particular shell with maximum 

imperfection amplitude, thus, becomes 0.556 × 0.32 = 0.178. 
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Figure 15.19. Effect of initial  geometrical  imperfections, cracking and crushing on the critical  load for hemispherical  C20/25 shell  

with  top imperfection subjected to spherical  load for an R/t ratio equal  to 400 

 

For the graph of Figure 15.19, it is assumed that the crushing strength limits the graph to a load which is 

equal to 66% of the linear critical buckling load. For the given shell (R/t = 400, E = 30 GPa and v = 0.2) this 

equals the compressive strength of the shell (-28 MPa). Strangely enough the effect of cracking for higher 

imperfection amplitudes, which occurs more earlier in the load-displacement graph every time the 

imperfection is increased, does not has significant influence on the decrease in load-carrying capacity (stays 

approximately 13-14%). Apparently, the effect of cracking, partly compensated for by  the increase of internal 

lever arm, takes ov er the combined effect of loss of linearity and crushing in compression, leading to a 

maximum critical load caused by a combination of cracking and buckling. 

 

Cracking 

 

The cracks that appear in the C20/25 hemisphere show similar scatter as the cracks presented in Figure 15.7 

and 15.8. Obviously, the crack strains are different. The crack strains are discussed later in Section 15.6.  

 

Different R/t ratios 

 

For thicker shells the point of cracking as well the point of crushing moves towards the prebuckling path and 

will become dominant for the load carrying capacity  at a certain point. Thinner shells (R/t > 600) do not 

experience crushing at all, as can be seen in Figure 10.6, and the effect of cracking is much smaller. However, 

all shells fail due to buckling and crushing or due to buckling and cracking, opposite to Section 15.2 for which 

the thinnest shell (R/t = 1000) did not experienced a further decrease in critical load due to cracking. The 

load carrying capacity of different R/t ratios is visualised in Figure 15.20.  
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Figure 15.20. Influence of increasing imperfection ampli tude on a cracked or crushed (for R/t = 400, w0/t = 0.0) C20/25 

hemispherical  shell  with  inclined-roller support and top imperfection subjected to spherical  load for several  R/t ratios 

 

In Figure 15.20 it can be seen that the critical loads at maximum imperfection amplitude are equal to 17.8% 

(R/t = 400), 24.8% (600), 27.0% (800) and 29.3% (1000). Aforementioned, the shell with R/t ratio equal to 

400 experiences crushing for small imperfection amplitudes (w0/t < 0.2) and, thus, does not reach the linear 

critical buckling load. 

 

15.4.2 Zeiss 1, 3 and 4 

 

The results above correspond to the inclined-roller supported Zeiss 2  shell. The influence of a roller, hinged 

or clamped support is illustrated in Figure 15.21.  
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Figure 15.21. Effect of initial  geometrical  imperfections and cracking on the critical  load for hemispherical  C20/25 shell  with  top 

imperfection subjected to spherical  load for several  R/t ratios and support conditions 
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In Figure 15.21 it can be seen that only the roller supported shell influences the curves as obtained for the 

Zeiss 2  shell without confinement. As the linear critical buckling load is lower, the roller shell under 

spherical pressure load fails due to buckling with axial tension in the boundary layer if the imperfection 

amplitude w0/t < 0.2. The lines of the clamped and hinged supported shells are not important for a shell 

with R/t < 400. Their linear critical buckling loads are so high that they show premature failure on 

compressive crushing. Hence, they follow the line of the inclined-roller shell. It can be concluded that for 

imperfection amplitudes w0/t ≥ 0.2 the shell fails independent of the type of support.  

 

With respect to other R/t ratios it is observed that, for an R/t ratio equal to 200, the roller support linear 

critical load coincides with the crushing load and boundary  conditions do not influence the load carrying 

capacity at all. Aforementioned, for R/t ratios equal to 600 (turning point, see Figure 10.6), 800 and 1000, 

the crushing load is not important anymore as the shell fails by a combination of large deformations and 

cracking. Hence, the curve of an inclined-roller shell starts, by definition, at 1.0 for w0/t = 0.0 and the 

influence of the supports can be plotted similar to Figure 15.10. Obviously, the curves are bounded by a 

different line for the cracked inclined-roller shell as there is referred to the C20/25 shell here.  

 

 

15.5 Results C20/25 Shell under Vertical Load 

 

In Section 15.3 it is discovered that the UHPFRC shell under vertical load, by definition, fails mainly due to 

surpassing the axial tensile stress of the C180/210 in the boundary layer after which buckling occurs, as can 

be seen in Figure 15.11. Hence, the shell constructed from the low quality concrete C20/25, with an even 

lower axial tensile strength, experiences a similar failure mode. As a consequence, an initial geometrical 

imperfection at the top of the shell can be neglected and, moreover, the conventional reinforced concrete 

must be modelled according to the left bilinear relation of Figure 15.3.  

 

15.5.1 Zeiss 1, 2, 3 and 4 

 

Similar to Section 15.3, the fully nonlinear response of the vertical loaded C20/25 shells is illustrated by 

load-displacement curves, stresses and bending moments and crack plots. 

 

Load-displacement relations 

 

The deformation of a vertical loaded C20/25 shell is similar the deformation of a C180/210 shell subjected to 

vertical load, seen in Figure 15.11. The load-displacement curves for a cracked C20/25 shell with R/t ratio 

equal to 400 and varying supports are presented in Figure 15.22. Crack initiation is marked with a black 

spot. The final step of each load-displacement curve is questionable as the analysis failed in finding 

convergence in the next step. 

 

From the load-displacement curves it can be seen that the shell fails by cracking as the tensile strength of the 

material is violated and buckling as the curves show similar trend as seen in the right graph of Figure 14.1. As 

the stress-strain relation is modelled as a bilinear diagram, the cracking suddenly appears in the linear load-
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displacement curve. In reality a more rounded curve may be expected. Furthermore, it is observed in the 

load-displacement curves that, after crack initiation, the point of maximum critical load is not significantly 

higher as ‘meridional based’ buckling immediately initiates after the circumferential crack process. Hence, 

safety with respect to the ultimate limit state may be dominant over the maximum allowable crackwidth, 

although it is argued in Section 15.1 that the finite element solution must be bounded by the maximum 

crackwidth as dictated by the serviceability limit state. This is discussed further in Section 15.6. 
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Figure 15.22. Typical  top node load-displacement curves for several  support conditions for a C20/25 hemispherical  shell  subjected 

to uniform vertical  load with  an R/t ratio equal  to 400 

 

The maximum load as obtained from the finite element analysis are summarised in Table 15.4. It can be seen 

that, similar to the results of Section 15.3, the shell fails approximately at the same magnitude of external 

applied load for each type of support. As one would expect, based on the linear stress distribution of the 

circumferential stresses as seen in the figures of Chapter 12, the clamped support yields the maximum 

allowable load, although it is only 0.00804 MPa (8.0 kN/m2). 
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Name P crgpnl (MPa) 

Zeiss 1 0.00554 

Zeiss 2 0.00612 

Zeiss 3 0.00708 

Zeiss 4 0.00804 

 

Table 15.4. Critical  load for hemispherical  C20/25 shell  with  R/t = 400 subjected to uniform vertical  load 

 

When the results of Table 15.4 are compared to the critical load of Table 15.2, it can be concluded that the 

critical loads are approximately 4 times lower. Remarkable (or not) this is more or less the difference in axial 

tensile strength between the UHPFRC and conventional concrete mixture. Hence, the given shell under 

vertical load can be approximately 4 times thinner if the shell is fabricated using C180/210. For the given 

hemispherical shell geometry  (R = 12500 mm, t =  60 mm), this means that the thickness (theoretically) can 

be reduced to just 15 mm. 

 

The results of the cracking and buckling failure can be compared to the linear critical buckling load of a 

spherical shell under radial pressure as defined in Chapter 6. Moreover, the results can be compared to the 

buckling loads found in Chapter 13 assuming linear elastic material behaviour. When compared to the 

results of Chapter 6 and Chapter 13, it can be said that the introduction of cracking lowers the critical load 

drastically. The decrease in load carrying capacity is seen in Table 15.5. 

 

Name P crgpnl/P crlin, equa tion (6.63)    P crgpnl/P crlin, chapter 13 

Zeiss 1 2.8 % 10.8 % 

Zeiss 2 3.1 % 5.5 % 

Zeiss 3 3.5 % 8.6 % 

Zeiss 4 3.9 % 6.3 % 

 

Table 15.5. Cri tical  load for hemispherical  C20/25 shell  with  R/t = 400 subjected to uniform vertical  load 

 

It can be observed that for hemispherical shells subjected to uniform vertical load, the introduction of 

material nonlinearities, which cause strength failure rather than buckling failure, lead to critical loads which 

are as low as 5.5% of their linear critical buckling load and 2.8% of the linear critical buckling load for 

spherical shell under radial pressure load. 

 

Stresses and bending moments 

 

In Figure 15.20 the stress distribution at the point of crack initiation of a C20/25 hemisphere with R/t = 400 

subjected to uniform vertical load is presented, for all considered support conditions. In the stress 

distribution, the effect of reaching the axial tensile stress of 2.2 MPa can be seen. Similar to Section 15.3, in 

case of an increasing external load, stress redistribution cause a horizontal plateau to develop, with a 

magnitude equal to the tensile strength. Clearly the effect of the initial geometrical imperfection, which is 

equal to w0/t = 1.0, causes the disturbances at the top of the shell, however does not influence the maximum 

critical load. When the graphs of Figure 15.20 are compared to the graphs of Figure 15.13, it can be seen that 

the tensile stresses are approximately 4 times lower.  
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Figure 15.23. Stress distribution at crack initiation of a C20/25 hemisphere with  R/t = 400 under vertical  load for several  supports 

 

The bending moment distribution is not shown as it has a similar to Figure 15.6. This is caused by the fact 

that the bending moments at the imperfection are far higher than the bending moments resulting from the 

so-called edge disturbance.  

 

Cracking 

 

The cracks that appear in the C20/25 hemisphere subjected to vertical load show similar scatter as the 

cracks presented in Figure 15.15. A crack scatter is shown in Figure 15.24.  
 

 
 

Figure 15.24. Typical  finite element crack scatter propagation in  hemispherical  shells subjected to vertical  load 
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Typically, cracked reinforced concrete demonstrates a few wide cracks rather than a large amount of small 

cracks. However, as the reinforced concrete is modelled with a bilinear law this does not occur (the cracks in 

the left shell are very small and immediately transform to a distributed crack pattern in the next load step). 

 

Different R/t ratios 

 

For the C20/25 low quality of concrete (with low quality and percentage of reinforcement), the structural 

failure due to surpassing the axial tensile strength is independent of R/t ratios between 200 and 1000.  

 

 

15.6 Practical Considerations 

 

In the previous sections the load-displacement curves are evaluated by their maximum load-carrying 

capacity. However, as cracking initiates before the maximum load is reached, the shell may be disqualified 

by  the maximum crackwidth as dictated by the serviceability limit state. Especially for the conventional 

concrete mixture the serviceability may be dominant, e.g. the axial tensile behaviour is modelled with a long 

horizontal branch in the bilinear stress-strain relation allowing cracks up to 11 mm. 

 

To obtain a quantitative boundary for the crackwidth, in Table 15.6 a series of crackwidths are summarised 

together with their corresponding crack strains (determined by reversing equation (11.66)). For an 

environmental class 5 (aggressive conditions), the maximum allowable crackwidth is equal to 0.2. 

 

Crack width  (mm) Crack strain  (‰) 

0.1 0.27 

0.2 0. 54 

0.3 0.81 

0.4 1.08 

 

Table 15.6. Crack width  – crack strain  relationship based on fracture energy  regularisation 

 

For a maximum allowable crackwidth equal to 0.2 mm and no safety factors applied, the following 

observations can be made. For C180/210 shells, the maximum load carrying capacity is determined by the 

ultimate limit state. Thus the maximum critical load can be derived from the load-displacement curves. The 

maxima are bounded by (a combination of) buckling and nonlinearity of concrete in tension (loss of linearity 

when the hardening branch initiates and cracking). Also for C20/25 shells subjected to vertical load the 

ultimate limit state is dominant. The maximum critical load, determined by significant cracking after which 

buckling occurs, is bounded by the ultimate limit state as the critical load does not significantly increases 

after crack initiation. The serviceability limit state only determines the maximum allowable displacement 

(when the crackwidth violates the norm). For C20/25 shells subjected to spherical load, the serviceability is 

decisive if cracking occurs far before the limit point. In all other situations the ultimate limit state prevails 

and the maximum critical load is bounded by (a combination of) buckling, nonlinearity of concrete in 

compression (loss of linearity and crushing) and nonlinearity of concrete in tension (cracking). E.g. applying 
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a maximum allowable crackwidth 0.2, the critical load of the last three graphs of Figure 15.16 decreases 

significantly to 0.0513 MPa, 0.0323 MPa and 0.0244 MPa, respectively.  

 

 

15.7 Material Comparison 

 

From the foregoing it can be seen that UHPFRC shells are able to carry  much higher loads than their 

conventional concrete equivalents. In case of vertical load, for a given shell (R/t = 400) the maximum critical 

load of the C20/25 shell is approximately 25% of the C180/210 shell. Remarkable (or not) the factor of 4 is 

approximately the difference between the axial tensile strength of both mixtures. Consequently, the 

C180/210 shell can be 4 times thinner than a shell constructed from C20/25 concrete. This happens to be 

true for all R/t ratios (200 – 1000) included in this research. Hence, for vertical loaded shells, the axial 

tensile strength of the UHPFRC in compare to conventional concrete governs the difference in maximum 

critical load. 

 

In case of a shell R/t = 400 subjected to spherical load, with inclined-r0ller support and initial geometrical 

top imperfection, the difference in maximum critical load between C180/210 and C20/25 is summarised in 

Table 15.6. The values denoted with * are values bounded by the maximum crackwidth of 0.2 mm (see 

Section 15.6). 

 

w0/t UHPFRC Load (MPa) C20/25 Load (MPa) Difference C/UHPFRC (%) 

0.2 0.262 0.0888 0.173 33.9 

0.4 0.189 0.0708 0.118 37.5 

0.6 0.144 0.0513* 0.093 35.6 

0.8 0.118 0.0323* 0.086 27.4 

1.0 0.100 0.0244* 0.076 24.4 

 

Table 15.6. Difference in  maximum allowable cri tical  load based on a maximum crackwidth  of 0.2 mm for an inclined-roller 

supported hemisphere with  R/t = 400 and an initial  geometrical  imperfection at the top subjected to spherical  load 

 

In Table 15.6 it can be seen that the maximum difference is 24.4% (7.6 kN/m2), in case of an imperfection 

w0/t = 1.0. This means that the shell made from the C20/25 is able to carry only one quarter of the load of 

the shell made from the C180/210 mixture. For larger imperfections, it may be expected that the difference 

will be even larger; however, this is counteracted by the fact that cracking of the C180/210 starts to influence 

the maximum point in the load-displacement curve (see Figure 15.4).  

 

The given shell with maximum imperfection, however, cannot be four times thinner when using the chosen 

C180/210 over C20/25. This is caused by  the fact that the thickness of the shell appears quadratically  in the 

buckling relation. Moreov er, the effect of loss on linearity and cracking is different for different R/t ratios. 

As an example, the given shell R/t = 400 with given material properties can be reduced to R/t = 700, based 

on the maximum critical load as found in by DIANA, while the shell can be reduced to R/t = 800 when the 

maximum allowable crackwidth (Table 15.6) is taken into account.  
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For small imperfections (w0/t < 0.2) in combination with a low quality of concrete and a relative thick shell 

(R/t ratio between  200 and 400), it is found that compressive crushing is decisive above buckling failure 

(strength failure). E.g., for a shell R/t = 400 crushing leads to a load which is 34% lower than the elastic 

theory while for a shell R/t = 200 the load is just 50% of the elastic theory. Using the given C180/210 the R/t 

ratios can be increased to 700 and 400, respectively. Hence, the use of UHPFRC is advantageous to prevent 

the negative effect of compressive crushing on the load carrying capacity 

 

 

15.8 Knock-Down Factor Approach 

 

In Chapter 14, the knock-down factor that incorporated effects of large deformations and initial geometrical 

imperfections was defined at a value of 68%, thus the decrease in load carrying capacity is determined by 

multiplication with 0.32. It is observed in the results described abov e that cracking and crushing lead to a 

further decrease in load carrying capacity, except for the thinnest C180/210 shell. In fact, for vertical loaded 

shells, cracking appeared to be dominant after which buckling occurs. Hence, for vertical loaded shells, the 

knock-down factor is superfluous as the failure load can be determined simply by computing the 

circumferential stresses. This is not the case for shells subjected to spherical load. However, opposite to the 

general influence of large deformations and initial geometrical imperfections, the general effects of crushing 

and cracking (both accompanied by loss of linearity) on spherical loaded shells cannot be reduced to a 

simple graph or equation. A different shell thickness, imperfection, boundary condition and material 

property leads to an enormous scatter of results. Therefore, it is not possible to formulate a general 

expression for the knock-down factor which determines the decrease in load-carrying capacity for a 

hemispherical shell under spherical load. However, as can be seen in the results reported abov e, it is possible 

to determine the fall-back in load carrying capacity for a specific case by introducing initial geometrical 

imperfections and material nonlinearities in a geometrically and physically nonlinear finite element analysis.  

 

Based on the observation that it is possible to find the knock-down factor of a specific case, valuable 

conclusions can be drawn by determining the knock-down factor for the most onerous situation. In Figure 

15.19 it can be seen that for a R/t 400 shell subjected to spherical load with an imperfection amplitude equal 

to the shell thickness leads to a knock-down factor of 82.2% (multiplication by 0.178), independent of the 

boundary conditions. Hence, for thinner shells, a higher quality of concrete or a higher percentage of 

reinforcement, the decrease in load carrying capacity will be less. If the additional cracking multiplication 

factor (0.556) is compared to the one found in Chapter 10, using the IASS Recommendations (0.2), it is 

observed that the latter leads to a load capacity which is significantly lower. Most likely, the large 

discrepancy may be explained by the conservative approach of the IASS Recommendations. The 

recommendations provide in a crack parameter based on reinforcement percentages and (reduced) material 

stiffness and does not take into account for geometrical influences such as the point of crack initiation in 

case of a varying R/t ratio. Furthermore, the crack parameter of the IASS Recommendations is based on the 

hypothesis of a so-called second state of reinforced concrete structures, i.e. assuming a cracked tensile zone 

but still linearly  elastic behaviour over the cross-section of the shell. The DIANA results yield a nonlinear 

stress distribution over the cross-section which, as can be seen in Figure 8.19, may lead to a large 

discrepancy between elastic and plastic behaviour. 
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15.9 Conclusions 

 

Before reading the following conclusions, one must keep in mind that they are based on shell analy sis 

involving shells with R/t ratios between 200 and 1000 and a local imperfection at the top of the shell. 

Furthermore, the shell is loaded by uniform pressure or v ertical load. The results are based on a 

geometrically and physically nonlinear finite element analysis. The material behaviour is implemented in a 

so-called total strain rotating crack model according to Section 15.1.3. I.e. a multi-linear tensile relation and 

an infinite linear elastic compressive relation for the UHPFRC and a compressive behaviour according to the 

Thorenfeldt curve for the conventional concrete combined with either a bilinear or brittle tensile relation, 

depending on the type of failure (axial tensile or flexural tensile failure, respectively). 

 

Hemispherical shells subjected to uniform spherical load (or shells confined to their compression zone such 

that the vertical load can be approximated by a spherical load): 

 

From the results obtained by a geometrically and physically nonlinear analysis on hemispherical shells 

subjected to uniform spherical load, it can be concluded that spherical load leads to flexural tensile failure or 

compressive crushing in the region of the initial geometrical imperfection. For a spherical load the results 

are independent of the location of the imperfection if and only if the imperfection does not interact with 

(possible) edge disturbances. Depending on the R/t ratio, the imperfection size and the properties of the 

concrete, the maximum critical load is determined by cracking, crushing, buckling or a combination. The 

effects of cracking and crushing are accompanied by reduced material stiffness due to loss of linearity; at the 

initiation of the hardening branch in the C180/210 tensile relation and due to the ‘rounded’ Thorenfeldt 

curve used to model the compressive behaviour of the C20/25 mixture (Chapter 8). Thus, besides the 

cracking and crushing, an additional decrease in load carrying capacity is caused by this loss of linearity.  

 

In general, for thicker shells cracking and loss of  linearity in tension are more prevalent than for thinner 

shells, governed by the fact that thicker shells experience bending up to a higher degree. Very thin shells of 

high quality concrete may not experience any negative influence of cracking at all. Then, the critical load is 

exclusively determined by buckling, as observed for the thinnest C180/210 shell (R/t = 1000). The 

increasing influence of cracking is clearly  seen in the load-displacement curves as the point of crack 

initiation moves further and further towards the origin of the graph as the shell becomes thicker (Figure 

15.9). The same phenomenon occurs in case of an increasing imperfection amplitude (Figure 15.4). As an 

increasing imperfection causes substantial higher bending moments and stresses, the point of crack initiates 

moves towards the origin of the load-displacement curve which, consequently, leads to an increased 

discrepancy between the theoretical critical load and the critical load as obtained by DIANA. An increasing 

imperfection also leads to a critical load independent of the boundary conditions if w0/t > 0.4. For smaller 

imperfections, w0/t < 0.4, boundary  conditions cannot be neglected and lead to considerable lower loads 

than found for the ‘membrane’ inclined-roller supported shell which provides in an upper bound solution. 

I.e. a roller support leads to a maximum critical load of approximately 50% of the critical load for an 

inclined-roller supported shell. Moreover, small imperfections in combination with a low quality of concrete 

may lead to a failure by compressive crushing, as observed for the C20/25 shell with a load 34% lower than 

the elastic shell.  
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In case of a spherical loaded hemispherical shell, the expectation that UHPFRC can contribute to more 

slender shells may said to be confirmed. In case of a failure due to surpassing the flexural tensile strength, 

the UHPFRC shell can carry  significant higher loads than the same shell fabricated from a low quality  of 

concrete, mainly due to the higher axial tensile strength and Young’s modulus. Therefore, UHPFRC may lead 

to a thinner shell; however, the possibilities are counteracted by the importance of the thickness parameter 

in the buckling process. Furthermore, the effect is less then expected due to the fact that the advantageous 

postcracking plateau of UHPFRC has no influence on the maximum critical load and is only related to the 

inclination of the postbuckling path. I.e. the inclination of the decreasing postbuckling path is much less in 

compare to conventional concrete without fibre addition and only one layer of reinforcement. This might be 

caused by the buckling which occurs simultaneously with significant cracking. Quantitatively, for the given 

concrete mixtures and a maximum imperfection amplitude w0/t = 1.0, cracking leads to a critical load as low 

as 23% (R/t = 400), 24% (600), 25% (800) and 33% (1000) in case of a C180/210 shell and 18% (400), 25% 

(600) and 29% (1000) in case of a C20/25 shell of the theoretical linear critical buckling load of a sphere 

under spherical load. Based on the critical load and cracking influence as found by DIANA, the C20/25 shell 

R/t = 400 can be reduced to R/t = 700 when using C180/210.  

 

Besides the high flexural tensile strength and Young’s modulus, the use of UHPFRC can be advantageous 

with respect to compressive crushing. Aforementioned, for small imperfections and a low quality of concrete, 

crushing may be decisive for failure. In case of a sufficient UHPFRC mixture crushing does not occur (and, 

hence, the material can be modelled as infinite elastic in compression). As an example: for a C20/25 shell 

R/t = 400 crushing leads to a load which is 34% lower than the elastic theory while for a C20/25 shell R/t = 

200 the load is just 50% of the elastic theory. Using C180/210 the R/t ratios can be increased to 700 and 

400, respectively.  

 

From the obtained results it is impossible to formulate a general expression which defines the knock-down 

factor for an arbitrary shell structure. However, it is observed that it is possible to determine (within the 

scheme of a master thesis) the fall-back in load carrying capacity  for a specific case by introduction of initial 

geometrical imperfections and material nonlinearities in a geometrically and physically nonlinear analysis. 

Thus, although the analysis involving shells may not be reduced to a simple expression (and may never be), 

contemporary finite element procedures allows the engineer to find answers to questions within days (based 

on current status of the author) were it took historical mathematicians years, decades or even centuries. 

Based on the observation that it is possible to find the knock-down factor of a specific case, valuable 

conclusions can be drawn by determining the knock-down factor for the most onerous situation. In this 

thesis, the most onerous situation (R/t 400, C20/25, w0/t = 1.0) a knock-down factor of 82.2% 

(multiplication by 0.178) is found, independent of the boundary conditions. Herein, the additional effect of 

cracking yields a multiplication factor of 0.556. Previously, in Chapter 10, a cracking factor equal to 0.2 was 

found using the IASS Recommendations. The large discrepancy may be explained by the conservative 

approach of the IASS Recommendations, i.e. neglecting the influence of the R/t ratio on the point of crack 

initiation and assuming a cracked tensile zone but still linearly elastic behaviour.  
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With respect to the numerical process it must be mentioned that the analyses were numerically  more stable 

in case of a multi-linear tensile diagram as used to model fibre reinforced C180/210, than when using the 

brittle behaviour describing the tension relation of C20/25 with one layer of reinforcement.  

 

Hemispherical shells subjected to uniform vertical load: 

 

From the results obtained by a geometrically and physically nonlinear analysis on hemispherical shells 

subjected to uniform vertical load, it can be concluded that the shell, by definition, fails due to surpassing the 

axial tensile strength in circumferential direction after which buckling occurs in meridional direction. As the 

material degradation is responsible for the major part of the fall-back in load carrying capacity, the failure 

load can approximated by determining the membrane stresses and calculate the failure load by simple 

equating using the axial tensile strength of the material. Thus, the knock-down factor is superfluous, 

however, based on the observation that the thickness appears quadratically in the buckling equation, it can 

be expected that for a given R/t ratio buckling becomes dominant. Due to the failure in the boundary  layer, 

the maximum critical load is not influenced by  a local top imperfection. Consequently, the cross-sectional 

stress distribution at the imperfection stays linear. With respect to the support conditions, it can be 

concluded that the type of support does not change the maximum critical load significantly. Within a small 

range the roller support provides in the lowest critical load, followed by  the inclined-roller, hinged and 

clamped support. This observation is in fair agreement with the magnitude of circumferential tensile stresses 

found in Chapter 12.  

 

With respect to the concrete quality, also for vertical loaded shells the expectation that UHPFRC can 

contribute to more slender shells may said to be confirmed. The difference in maximum allowable load is 

mainly governed by the difference in axial tensile strength of the given materials. Consequently, the 

UHPFRC shell can be thinner by the ratio of UHPFRC axial tensile strength over conventional concrete axial 

tensile strength. For the given concrete mixtures, this results in a shell which can be approximately 4 times 

thinner. Qualitatively, due to the multi-linear tensile relation of UHPFRC with strain hardening branch 

(Figure 15.2), the corresponding load-displacement curve show sudden appearing cracks and lead to 

solutions with bad convergence. The bilinear approach of the conventional mixture is much more 

numerically stable and cracking ends the linear branch of the load-displacement curve (which obviously 

makes sense).  



 

 



  Chapter 16.   Conclusions 

 381

16 Conclusions 

 

 

The conclusions reported in the following, summarise the most important conclusions of the individual 

chapters. A more extensive conclusion can be found at the end of each chapter. The conclusions are ordered 

corresponding to their occurrence in the thesis, i.e. conclusions with respect to Part I: Background, Part II: 

Theory, Part III: Case Study and Part IV: Finite Element Analysis. In the end, the general conclusions are 

discussed point wise. The figures in this chapter correspond to figures of previous chapters and are indicated 

by  the same subscription. 

 

 

16.1 Part I Conclusions 

 

Shell structures have been constructed since ancient times. Early  examples are the Roman Pantheon and the 

Hagia Sophia. In the 18th  and 19th  century, however, the art of designing shells seemed to be forgotten. 

Guided by German designers Franz Dischinger and Ulrich Finsterwalder, the shell made a comeback in the 

early 20th  century. The modern era of shell started in 1925 with the completion of the Zeiss planetarium shell 

in Jena. The modern era is recognised by the trend towards greater spans and thinner shells. Besides 

Dischinger and Finsterwalder, Pier Luigi Nervi, Eduardo Torroja and Anton Tedesko were among the first 

shell builders. In fact, their specific design approach has lead to three prominent design schools; the German 

school, the Italian school and the Spanish school. Up to the Second World War shells gained more and more 

interest to cover medium to large spans economically and aesthetically. After the Second World War, the low 

labour costs and steel being in short supply created exactly those conditions needed for flourishing shell 

construction, leading to a blooming period of widespread shell construction between 1950 and 1970. The 

blooming period was further stimulated by the work of Felix Candela which attracted the attention of 

architects. The inv olvement of architects leaded to more luxury  shapes with less emphasis on the force flow. 

The blooming period ended abruptly, mainly caused by the high costs in compare to other structural 

sy stems. Still, Swiss engineer Heinz Isler was able to continue designing shells by innovative reusable 

formwork. Isler may  also said to be the founder of free-form shells, designed by using form-finding 

techniques such as hanging membranes. Hence, it seems fair to add the Swiss school as the fourth prominent 

design school. Late 20th  century shell development leaded to pioneering formwork techniques and several 

new shell-like structures such as grid shells. Today, there seemed to be a renewed interest in shells, 

stimulated by the desire to built landmark structures and by the fascination to new construction materials 

such as ultra high performance concrete. 
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Shells typically show membrane behaviour with bending effects to satisfy specific equilibrium or 

deformation requirements. The stresses in shells can be determined by hand, e.g. using the classical shell 

theory or by computer, e.g. using finite element software. Furthermore, model tests provide in a very 

practical and convenient method to determine the structural response. They are classified according to their 

Gaussian curvature and generated by mathematical functions or form-finding techniques. To design a sound 

shell structure, the designer must prevent in-extensional deformation, allow for membrane stresses to 

develop, add sufficient curvature everywhere, and take care of edge effects. Subsequently, the designer 

should optimise the shape and thickness of the shell for buckling and membrane dominant behaviour 

(minimising strain energy). Shells are low reinforced structures and prestressing may be applied to balance 

the outward thrust or to ensure compression in the shell surface. Effects of crushing, cracking, creep and 

shrinkage of concrete and the effect of temperature gradients significantly influence the structural response 

and must be included in the design process.  

 

Shells are predominantly constructed by pouring concrete on a conventional timber formwork. The timber 

formwork allows for almost every possible shell shape to be constructed. For highly double curved sections, 

the timber formwork can be replaced by foamed plastic (polystyrene) formwork fit into shape with a CNC 

milling cutter. The main disadvantages of conventional formwork are the high costs inv olved. Therefore, 

prefabricated moulds, airform techniques and stressed membranes have been developed to serve as 

formwork. Furthermore, shells may be assembled from prefabricated elements to save on costs. However, 

for several reasons, none of them gained widespread use. The choice for a particular formwork may not only 

influence the design of the shell, but also puts restrictions on the placement and design of the reinforcement 

and the concrete mixture. The placement of reinforcement on double curved surfaces follows ordinary 

principles, however, for airform construction methods the reinforcement may be asked to autoposition itself. 

The placement of concrete is either by skip of sprayed. Generally, after hydratation, the concrete is left 

untreated and maintenance is limited to occasionally whitewashing.  

 

 

16.2 Part II Conclusions 

 

The classical shell theory can be used to determine the stresses, strains and deformations in an idealised 

linear elastic shell. The theory is a thin shell theory, an extension of the Kirchhoffean plate theory. The 

assumption that the thickness of the shell is much smaller than the radius of curvature yields that the 

flexural rigidity  is much smaller than the extensional rigidity which is the reason that shells mainly carry 

their load by in-plane normal and shear stresses. Stresses or strains in normal direction are of no 

significance to the solution, reducing the three-dimensional problem to a surface deformation problem. 

Bending moments only compensate for the shortcomings of the membrane field and do not carry loads. As 

shells are essentially curved plates, the extensional and flexural problem are coupled, even for the linear 

case. The combined stretching and bending can be described by the membrane theory in combination with 

plate bending behaviour which can be calculated separately and superimposed.  

 

Shells fail by a buckling or by  strength. Strength failure refers to cracking or crushing being the dominant 

failure mechanism and is governed by the material properties. If the shell mainly fails by large deformations, 
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the shell is said to be buckled. Buckling can be characterised as a premature failure mechanism caused by 

eccentricity of compression forces, initiated by deformations or initial geometrical imperfections. The 

buckling behaviour of shells is a complicated phenomenon. Opposite to columns and plates, shells 

experience a sudden decrease in load carrying capacity  after the bifurcation point. The fall-back is caused by 

the phenomenon of compound buckling which refers to sev eral buckling modes associated with the same 

critical load. In the postbuckling range the modes, which were orthogonal in the linear prebuckling range, 

start to interact resulting in a significantly reduced load carrying capacity. The major problem of the shell 

buckling behaviour is the accompanied imperfection sensitivity. Initial geometrical imperfections in the shell 

cause the bifurcation point never to be reached and lead to limit point buckling at a considerably  lower load. 

The size of the imperfections determines the limit load at which the shell fails. 

 

 

16.3 Part III Conclusions 

 

To obtain an answer to the research questions, the Zeiss planetarium shell is subject of a case study. The 

stresses, strains and displacements in the shell are determined using the aforementioned classical shell 

theory for two types of concrete and two types of external applied load. The first concrete mixture is a low 

quality C20/25 concrete mixture with a single layer of low quality reinforcement to ally with the early 20th 

century concrete technology. Typically, the compressive behaviour can be modelled by a Thorenfeldt curve. 

Due to the low quality of reinforcement, the axial tensile relation is mainly determined by the axial tensile 

strength of the concrete. Also in case of bending, the flexural tensile strength mainly depends on the concrete 

flexural tensile strength as the single layer of reinforcement is activated not before significant cracking has 

occurred. The second concrete mixture is a high strength fibre reinforced concrete mixture. The selected 

mixture is a so-called ultra high performance concrete which refers to compressive strengths between 155 

and 250 MPa. The higher compressive strength originates from an optimised mixture composition. The 

major deficiency  is the highly brittle behaviour which is counteracted by the addition of fibres. The fibres 

work as well on micro-level, as reinforcement of the cement matrix, as on macro-level, as reinforcement of 

the structure. They do not necessarily  lead to a higher tensile strength, although it is possible to increase the 

tensile strength through the addition of fibres with different dimensions. Most advantageous is the low-level 

postcracking plateau that leads to a higher toughness and more ductile failure behaviour. The Zeiss 

planetarium shell is loaded by dead weight in combination with either wind load or snow, determined 

according to the Eurocode 2. The results of the classical shell theory show the profound structural behaviour 

of shells as they experience very  small stresses, strains and deformations. I.e. the stresses are -0.217 MPa at 

the top and ±0.433 MPa at the base, the corresponding strains are -0.00722 ‰ and ±0.0144 ‰ and the 

maximum deformation is equal to 0.181 mm. Furthermore, it can be seen that the restrained deformation at 

the supports leads to local edge disturbances reaching up to approximately 2 m, with a maximum bending 

moment of 403 Nmm/mm’ in case of a clamped support. This means that 90% of the shell is free from 

bending. When the shell thickness is reduced, the shell behaves more like a membrane and the influence of 

the edge disturbances is even less. The buckling load of the Zeiss planetarium is 802 kN/m2. In case of the 

C20/25 concrete this means that crushing occurs before buckling. To determine the load carrying capacity in 

case of an imperfect concrete shell, the procedure as proposed by the IASS is followed. According to the IASS 

Recommendations, the maximum allowable load, including safety factors, equals 4.33 kN/m2. 
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16.4 Part IV Conclusions 

 

All following findings and conclusions are restricted to hemispherical shells with R/t 200 – 1000 subjected 

to uniform vertical or spherical load. The shell is modelled with an axisymmetric curved line model and a 

three-dimensional model consisting of two-dimensional quadrilateral and triangular curved shell elements. 

For the geometrically nonlinear analy sis a local top imperfection with an amplitude varying between 0 – 1.0 

times the shell thickness is introduced. For the geometrically and physically nonlinear analysis the material 

behaviour is implemented in a so-called total strain rotating crack model. The C180/210 UHPFRC is 

modelled with a multi-linear tensile relation and an infinite linear elastic compressive relation. The C20/25 

is modelled by a compressive behaviour according to the Thorenfeldt curve combined with either a bilinear 

or brittle tensile relation, depending on the type of failure expected (axial tensile or flexural tensile failure, 

respectively).  

 

16.4.1 Linear Elastic Analysis 

 

The linear elastic analy sis proved to be in fair agreement with the (benchmark) analytical results, except for 

the bending moments that appear in the boundary layer due to restrained deformation at the supports. In 

particular the axisymmetric shell model yielded bending moments with high discrepancy in compare to the 

theory (up to 30%). This is caused by insufficient stress mapping between the ‘exact’ integration points and 

the end nodes. Therefore, the axisymmetric shell model is less accurate and reliable in compare to the three-

dimensional model. In addition to the case study of Part III, a non-symmetrical wind load is considered in 

combination with dead weight. It is observed that wind load changes the direction of the principal stresses 

and is transferred to the supports partly  by  meridional stresses and partly  by  shear. The deformed shape, 

although different, yields approximately similar deformations as caused by dead weight only as they partly 

compensate for each other. In the linear elastic results of the three-dimensional shell model disturbances in 

the stress and bending moment distribution were observed, due to the numerical imperfectness of the 

model. In particular in the top region of the shell relative large inconsistencies were found. The 

imperfectness of the model does not disturb the linear results considerably. 

 

16.4.2 Stability Analysis 

 

The disturbances are more apparent in the linear elastic stability analysis, as the analysis prov ed to be very 

sensitive to small numerical disturbances. The numerical disturbances cause premature buckling modes 

preceding the actual shell buckling shape; a global scatter of small local waves in a chessboard pattern. 

Remarkable, the corresponding critical buckling loads of these premature modes may be nearly similar to 

the theoretical critical buckling load. Additionally, several false modes were observed between the correct 

buckling modes. Hence, to obtain a good understanding of the buckling behaviour of a shell, it is necessary 

to examine both the critical buckling loads as well as their corresponding buckling modes. It is observed that 

adjacent buckling loads are very close to each other, revealing the occurrence of compound buckling. In 

general, thinner shells experience compound buckling up to a higher degree than thicker shells.  
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The critical buckling load is significantly lower for membrane incompatible support conditions. This is 

caused by the edge disturbances or, in case of a roller support, due to the fact that the support is weaker than 

the shell itself. Shells subjected to v ertical load, by definition, buckle in the boundary layer, accompanied by 

a much lower bifurcation load. Higher modes advance to global buckling modes similar to the global 

buckling behaviour of a radial pressed spherical shell. Simultaneously, the corresponding critical buckling 

load approaches the theoretical load of the sphere subjected to radial pressure. The results of the 

axisymmetric shell model are poor, as compound buckling is not predicted correctly. Moreover, the 

axisymmetry causes the tendency to buckle at the top and the buckling loads are disturbed by the incorrect 

bending moments in case of a hinged and clamped support.  

 

Attempts were made to investigate the postbuckling behaviour by  a Koiter theory based perturbation and 

continuation analysis; however, although the results are not in contradiction with the theory, the results are 

poor and no conclusions can be drawn.  

 

16.4.3 Geometrically Nonlinear Analysis 

 

A geometrically nonlinear analy sis on a perfect shell, finds the buckling bifurcation load. It is observed that 

perfect shells experience either shell-like buckling with decrease of load-carrying capacity  in postbuckling 

range or buckling with an almost horizontal postbuckling path. The type of external applied load on the 

shell, i.e. uniform spherical or uniform vertical load, determines the type of buckling. For inclined-roller 

supported shells subjected to spherical load, the introduction of initial geometrical imperfections leads to 

premature limit point failure, as the bifurcation point is never reached. The corresponding load-

displacement relation shows a smooth transition between the nonlinear prebuckling and postbuckling path 

of equilibrium, or may experience a sudden snap-through to a non-adjacent equilibrium configuration. Most 

likely, the snap-through is a numerical related process and does not occur in reality. The amount of decrease 

in load-carrying capacity is governed by the size of the initial geometrical imperfection. This can be seen in 

Figure 14.5, which is valid for an inclined-roller supported hemispherical shell subjected to spherical load. 

The graph is valid for all R/t ratios. 
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Figure 14.5. Load-displacement curves of a shell  with  various initial  geometrical  imperfection sizes (0, 0.2, 0.4, 0.6, 0.8 and 1.0) 

and the minimum postbuckling load as proposed by  Dostanowa and Raiser 
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In Figure 14.8 it can be seen that an initial imperfection equal to the shell thickness causes a fall-back of 

approximately 70%. It is observed that the influence of an initial geometrical imperfection on the load-

carrying capacity depends on the size of the imperfection, as can be seen in Figure 14.8. To validate, the 

finite element results are be compared to the Koiter half-power law and the graph as proposed by the IASS 

Recommendations.  It can be concluded that there is reasonable correlation.  
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Figure 14.8. Comparison between FEA, Koiter half-power law (red) and the curve of Hutchinson/Kollar and Dulacska (blue) 

 

The influence of a different type of load, e.g. uniform vertical load replacing the uniform spherical load, and 

different types of support can be incorporated in the graph of Figure 14.8 as illustrated in Figure 14.11.  
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Figure 14.11. Decrease in  load-carrying capacity  due to boundary  conditions, loads and initial  geometrical  imperfections at the top 

of the shell  for R/t ratios between 200 and 1000 

 

From Figure 14.11 it can be concluded that the inclined-roller supported shell subjected to spherical, which 

buckles by definition in the shell surface, is an upper bound solution. Furthermore, it can be seen that a 

roller supported shell subjected to v ertical load yields a critical load independent of any top imperfection 

(within the range of the R/t ratios investigated). If the roller support it neglected, the shell buckles in the 

shell surface when w0/t > 0.6. For imperfection amplitudes w0/t < 0.6 the type of buckling failure depends 

on the support condition and type of load.  
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16.4.4 Geometrically and Physically Nonlinear Analysis 

 

The introduction of material nonlinearity leads to two major effects: (1) the further reduction of the load-

carrying capacity due to cracking and/or crushing (accompanied by loss of linearity) and (2) the 

transformation to a strength failure rather than a buckling failure in case of shells subjected to uniform 

vertical load. Shells subjected to vertical load mainly fail by violation of the axial tensile strength due to 

circumferential tensile stresses at (or near) the base radius of the shell (depending on the type of support).  

After significant cracking has occurred, responsible for the major part of the knock-down factor, buckling 

ev entually occurs. As the strength failure is governed by the axial tensile strength of the (fibre) reinforced 

concrete, the shell can be thinner as much as the difference in axial tensile strength. For the given concrete 

mixtures this means that the C180/210 can be 4 times thinner than the C20/25 shell. 

 

Spherical loaded shells, or shells confined to their compression zone such that the vertical load can be 

approximated by a spherical load, fail in the region of the imperfection by surpassing the flexural tensile 

strength, by compressive crushing, by buckling or a combination. Whether cracking, crushing or buckling 

occurs first and to which amount depends on the size of the imperfection, the material properties and on the 

thickness of the shell. The C20/25 shell failed due to compressive crushing for small imperfections (w0/t ≤ 

0.2) combined with a relative thick shell (200 < R/t ≤ 400). The occurrence of crushing lowered the load 

carrying capacity up to 50%, for R/t = 200 and w0/t ≥ 0.0). For C180/210 crushing did not occur and, hence, 

UHPFRC is advantageous. For thinner shells (R/t ≥ 600), crushing does not occur as buckling prevails. 

 

In case of imperfection amplitudes w0/t > 0.2, crushing is not decisive or does not occur at all and the shell 

fails by cracking and buckling. The influence of cracking increases for larger imperfection amplitudes and 

thicker shells (gov erned by the fact that thicker shells experience bending up to a higher degree). Thus, the 

point of crack initiation moves further and further towards to origin of the load-displacement curve if the 

imperfection amplifies or the shell thickness increases. Consequently, for a given imperfection amplitude 

and R/t ratio, cracking initiates before, at or after the maximum load carrying capacity. In the latter case, the 

maximum load carrying capacity may be influenced by the loss of linearity preceding crack initiation or is 

exclusively determined by initial geometrical imperfections and buckling (no influence of cracking at all). 
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Figure 15.11. Effect of ini tial  geometrical  imperfections and cracking on the critical  load for hemispherical  C180/210 shell  with  top 

imperfection subjected to spherical  load for several  R/t ratios and support conditions 
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The influence of buckling, cracking and crushing on the load carrying capacity of the hemispherical shell can 

be plotted in a graph for various R/t ratios and support conditions. In Figure 15.11  the influence of cracking 

and imperfection buckling can be seen for various R/t ratios for a shell constructed from C180/210 fibre 

reinforced ultra high performance concrete. Each line represents an R/t ratio ordered similar as the legend. 

It can be concluded that the shell with R/t = 1000 does not experience cracking as it coincides with the 

uncracked line. The results of the shell with R/t = 200 are limited, as modelling errors were encountered. 

The inclined-roller shell provides an upper bound solution. Edge disturbances or the support being weaker 

than the shell itself (roller) cause premature failure in the boundary layer for imperfection sizes w0/t < 0.4. 

In case of imperfection amplitudes w0/t ≥ 0.4 the shell fails by surpassing the flexural tensile strength 

and/or by buckling in the region of the imperfection, independent of the support conditions. It can be seen 

that the influence of cracking leads to a maximum knock-down factor equal to 77% in case of a hemispherical 

shell with R/t = 400. Thus, the additional effect of cracking on the load capacity equals 9%. 
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Figure 15.21. Effect of initial  geometrical  imperfections and cracking on the critical  load for hemispherical  C20/25 shell  with  top 

imperfection subjected to spherical  load for several  R/t ratios and support conditions 

 

In Figure 15.21 the influence of cracking, crushing and imperfection buckling can be seen for various R/t 

ratios for a shell constructed from C20/25 reinforced concrete. Each line represents an R/t ratio ordered 

similar as the legend. Note that not all R/t ratios are included due to missing results. It can be seen that the 

influence of cracking is restricted to the shell with R/t = 400. Crushing lowers the load carrying capacity  by 

34%. Therefore, the influence of boundary conditions is limited to small imperfection sizes. However, if 

crushing not occurs (for thinner shells), the roller support influences the failure up to w0/t = 0.4. Similar to 

the C180/210 shell, for imperfection amplitudes w0/t ≥ 0.4 the shell fails by surpassing the flexural tensile 

strength and/or by buckling in the region of the imperfection, independent of the support conditions. It can 

be concluded from Figure 15.21 that the difference between the lines of R/t = 400 and R/t = 600 is 

significantly larger than for a shell constructed from C180/210. This is caused by the much greater influence 

of cracking in case of a shell constructed from a low quality concrete with a single layer of reinforcement. For 

a shell R/t = 400, it can be concluded that the influence of initial geometrical imperfections, buckling and 

material nonlinearity leads to a maximum knock-down factor equal to 82%. Herein the cracking parameter 

lowers the linear critical buckling load by 14%.  
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From the results it can be concluded that the thickness reduction possible due to the use of C180/210 is not 

governed by a single parameter but depends on the shell geometry (R/t ratio), the material properties and 

the size of the initial geometrical imperfection. For spherical loaded shells, which fail by surpassing the 

flexural tensile strength, by compressive crushing, by buckling or by a combination, the advantageous higher 

axial tensile strength and Young’s modulus are counteract by the importance of the thickness parameter in 

the buckling process. As an example: from the obtained results it can be concluded that a C20/25 shell with 

R/t = 400 and one layer of reinforcement can be reduced to R/t = 700 in case of a C180/210 concrete, based 

on the maximum load carrying capacity. Besides, the shell can be reduced to R/t = 800 when the maximum 

allowable crackwidth of 0.2 mm is taken into consideration.  

 

The finite element results clearly  show that cracking, crushing and buckling strongly interact, depending on 

the R/t ratio, material properties and initial geometrical imperfections. Hence, it can be concluded that it is 

impossible to find a general expression for the knock-down factor, unless high factors of uncertainty are 

taken into consideration. In this thesis, the most onerous situation (R/t 400, C20/25, w0/t = 1.0) yields a 

knock-down factor of 82.2%, leading to a maximum load carrying capacity of 0.178 times the linear critical 

buckling load of a radially pressed sphere. Herein, the additional effect of cracking is a factor of 0.556. Using 

the IASS Recommendations, a cracking factor equal to 0.2 is found. The large discrepancy can indeed be 

explained by the very conservative approach of the IASS Recommendations, i.e. neglecting the influence of 

the R/t ratio on the point of crack initiation and assuming a cracked tensile zone but still linearly  elastic 

behaviour. 

 

16.5 Principal Conclusions 

 

1) Contemporary finite element software makes possible to determine the structural behaviour of an 

imperfect shell and to compute its fall-back in load carrying capacity  conveniently  within a small amount of 

time by  performing a geometrically  and physically  nonlinear analysis. The reliability  and accuracy is proved 

by  the performed checks. In fact, it is this conclusion that is the most salient. 

 

2) For the considered hemispherical shell the knock-down factor is much smaller than the knock-down 

factor as derived using the IASS Recommendations, which apparently are very conservative. 

 

3) Concrete shells with traditional steel reinforcing bars are practically limited to thicknesses not thinner 

than 60 mm or 80 mm, for one or two layers of reinforcement, respectively. Using high strength fibre 

reinforced concrete the shell thickness can be much less.  

 

4) High strength fibre reinforced concrete can contribute to the trend towards greater spans and thinner 

shells. In particular the higher axial tensile strength and modulus of elasticity give the engineer 

opportunities to design thinner shells. Furthermore, high strength concrete is advantageous in compression 

as it excludes premature compressive crushing failure before the critical buckling load is reached. Opposite 

to fibre reinforced beams in bending, the significant ductility (postcracking plateau) of high strength fibre 

reinforced concrete does not influence the ultimate load carrying capacity of hemispherical shells. This 

might be caused by the buckling which occurs simultaneously with significant cracking. 
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5) In the considered hemispherical shells cracking, crushing and buckling interact strongly before and 

during failure. This is influenced by loading, shell thickness, material properties and geometrical 

imperfections. Therefore, it is impossible to formulate a general expression for the knock-down factor 

without significant concession on the accuracy. 

 

6) High strength fibre reinforced concrete can be modelled straightforward in a finite element program as 

the isotropic-like behaviour with a large amount of small cracks allow for the modelling within one 

constitutive law. The modelling of traditional reinforcing bars is far more complicated due to the interaction 

between the cracked concrete and bonded reinforcement. The thesis’ approximation by a simple bilinear and 

brittle law, neglecting the (small) influence of the reinforcement, makes the results difficult to interpret.  
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17 Recommendations 

 

 

The recommendations reported in the following are ordered corresponding to their occurrence in the thesis, 

i.e. recommendations with respect to Part I: Background, Part II: Theory, Part III: Case Study and Part IV: 

Finite Element Analysis. The recommendations are discussed point wise.  

 

 

17.1 Part I Recommendations 

 

1) More research is needed on shell history in Asia, in particular Japan, and Russia 

 

2) More research is needed on computational shell modelling and (computational) shell optimisation. There 

is a wide field of possibilities still to discov er in designing shells and optimise shells using the computer. 

 

3) Further research is needed on shell construction with stressed membrane formwork. 

 

4) Further research is needed on shell construction by the use of prefabrication. 

 

 

17.2 Part II Recommendations 

 

1) Research is needed into the shape deficiency, sizes and amplitudes of imperfections that occur in practice, 

e.g. by making measurements on all kinds of realised shells.  

 

2) Research is needed on the parameters used in the Koiter power laws for other types of shell structures. 

 

 

17.3 Part III Recommendations 

 

1) Research is needed towards possibilities to further increase the axial and flexural tensile strength of high 

strength fibre reinforced concrete as specifically these properties lead to opportunities for thinner shells. 

 

2) Extension of shell loading towards accidental load, foundation settlement and seismic load.  
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17.4 Part IV Recommendations 

 

1) Research is needed to include more effective meshing algorithms for double curved surfaces. 

 

2) Research is needed on the influence of variations in size, location, number and distribution of initial 

geometrical imperfections on the fall-back in load carrying capacity. 

 

3) Research is needed towards the inclusion of time-dependent material behaviour such as creep, shrinkage 

and ambient influences like temperature into the analysis. To incorporate the effects of creep, shrinkage and 

temperature a different material model is required as it is not possible to include these effects in the total 

strain concept. 

 

4) Research is needed to a more optimal concrete mixture for a given shell structure, i.e. hemispherical shells 

need a concrete mixture with high axial and flexural tensile strength, whereas shallow shells need concrete 

which is able to give high resistance against creep.  

 

5) Extension of the research field to a variety of shell shapes. 

 

6) Research is needed to the effectiveness of other finite element solution procedures on finding convergence 

in the postbuckling regime. 
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