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Abstract

Selecting the optimal stability framework for high-rise steel buildings is a critical decision that impact
both economic efficiency and sustainability. This decision is not easy since there are many stability
frameworks to choose from, such as tube, concrete shear-wall, and outrigger system. Designers and
clients aspire to compare multiple structural designs, considering both different frameworks and varia-
tions in geometry. Unfortunately, the current process of evaluating multiple designs is time-consuming
and relies on the designer’s experience and rules of thumb, rather than being driven by data. To ad-
dress this challenge, predictive models can be used to estimate performance in terms of structural and
environmental costs based on the given geometry and framework. However, traditional curve fitting
methods often fall short in accurately predicting a complex relationship. In response, this study explores
the potential of artificial neural networks to accelerate the decision-making process by predicting the
most efficient framework during the early design phase while maintaining sufficient accuracy.

To determine this potential, two parametric models were developed using Rhinoceros software to repre-
sent buildings with braced framed tubes and outrigger systems. These models automatically optimised
beam and column dimensions by FEM of Karamba, aiming to minimise the mass of these structural ele-
ments, across a range of building widths (15 to 60meters) and heights (48 to 300meters). The resulting
data sets of both braced framed tube and outrigger system reflected the structural and environmental
costs for the different designs. Separate neural networks were modelled for each framework. These
networks were trained on the different data sets. By comparing predicted structural and environmental
costs, the models assisted in the selection between braced framed tubes and outrigger systems.

The artificial neural networks accurately approximated structural and environmental costs for both sta-
bility frameworks. The Mean Absolute Percentage Error (MAPE) for the braced framed tube was 14%,
while the most accurate alternative curve fit, a third-order polynomial, had a MAPE of 25%. For the
outrigger system, the neural network achieved an even lower MAPE of 7%, where the most accu-
rate alternative curve fit, also a third-order polynomial, had a significantly higher error with a MAPE
of 31%. The neural networks outperformed traditional curve fitting methods. Additionally, the neural
network generated instant results, taking only a second compared to the parametric model’s 5 to 30
minutes. However, achieving overall time efficiency with the neural models will require approximately
three months when considering both setup time and output generation time. Optimal stability varied
based on specific width and height combinations: when looking at environmental costs, the braced
framed tube excelled for lower (50-80m) and higher heights (200-300m), while the outrigger system
was more efficient for middle heights (80-200m). As the structure’s slenderness increased, the braced
framed tube regained efficiency for the middle heights.

Impact of the stability framework is defined as the relative contribution of embodied carbon of the
stability framework to the total embodied carbon of the structure (including superstructure and floors).
The impact of the stability framework ranged from 25% to 57% for the braced framed tube and 33% to
66% for the outrigger system, with the impact increasing with the building’s height. The potential gain
from selecting the optimal framework, defined as the ratio of the absolute difference in embodied carbon
between both frameworks to the total embodied carbon of the worst performing structural framework,
ranged from 7% to 18%, with the lowest impact found for the highest height range of 250 to 300 meters.

In conclusion, the research has demonstrated the capability of artificial neural networks to accurately
predict the optimal stability system for high-rise steel buildings. Alternative curve fitting methods do
not match up to artificial neural networks in terms of accuracy. Whereas, parametric models do not
match up to artificial neural networks in terms of analysis speed. Although the results are specific to
the braced framed tube and the outrigger system, the proposed methodology offers a framework for
comparing stability frameworks in the early-design phase. Additionally, the validated workflow has the
opportunity to incorporate data from real-life projects into the input data sets of the neural networks
which could bring the predictions in the early-design phase even closer to the reality.
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1
Introduction

1.1. Problem statement
In the domain of architectural design and structural engineering, the selection of an optimal stability
framework for high-rise buildings has significant influence on both the cost-effectiveness and the sus-
tainability of a building. This selection is not easy since there are a significant number of different sta-
bility frameworks to choose from, such as the tube, concrete core, and outrigger systems. Traditional
approaches to evaluating stability frameworks often require substantial time investment and heavily
rely on the designer’s expertise. The desire of the designer or the client to explore multiple designs
and evaluate their performance is therefore frequently constrained by time limitations. One common
approach to speed up a process is curve fitting. Unfortunately, conventional curve fitting methods (e.g.,
second and third order regression models) lack accuracy for complex non-linear relationships. As a
result, clients and designers face challenges in terms of speed and accuracy when wanting to compare
various stability frameworks across different structural dimensions in the early design phase possible
leading to inefficient buildings.

To address that challenge, this study explored the potential of artificial neural networks (ANNs). By
using a curve fitting method with the ability to capture complex non-linear relationships, artificial neural
networks aim to accelerate the decision-making process during the early design phase while main-
taining sufficient accuracy. While the application of artificial neural networks has garnered significant
attention across different industries, its potential in structural engineering, specifically in prediction of
costs, remains relatively unexplored. Bridging this gap is important, as it has potential for redefining the
traditional design process, allowing fast exploration of multiple design options and their performance in
terms of costs during the early design phase.

1.2. Objectives
The primary objective of this study was to design and validate an artificial neural network capable of
accurately predicting the performance parameters in terms of costs associated with different stability
frameworks (namely braced framed tubes and outrigger systems) for high-rise steel buildings across
varying heights and widths. The goal of the neural network is that it serves as a decision-making tool,
helping in the selection of the optimal structural system based on either structural or environmental
costs in a rapid and accurate way. To achieve this, the research also focused on assembling a sufficient
clean data set through parametric models of both stability systems, which could be used to train the
artificial neural networks. The goal and the scope of the research leaded to the following main research
question of this thesis:

’How can the performance parameters for different stability frameworks of a high-rise steel build-
ingwith different volumes be predicted based on its design characteristics in amachine learning
approach to accelerate the decision-process?’

1
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The sub-questions following from the main research question:

1. What aspects should be considered when designing the stability framework of a high-rise steel
building?

The design process of a high-rise steel building can require certain structural checks or design
constraints considering functionality, stability, stiffness and strength of the design. In this sub-
question these aspects were summarized to give an overview on what to take into consideration
when developing and designing a high-rise steel building.

2. What data set and data collection methods are necessary to train a machine learning model to
accurately predict performance parameters of high-rise buildings with different volumes?

This sub-question examined the requirements for the data that were essential for training the ML
tool to make precise predictions of the performance parameters. The quality of the data collection
determined the potential of the accuracy of the model and therefore was important to establish
correctly.

3. Can the best stability framework of a high-rise steel building be accurately predicted by means of
an artificial neural network?

The purpose of this question was to try to establish if it was possible to make a artificial neural
network which can accurately predict the best stability framework which is preferably in terms of
the performance parameters, namely the structural and environmental costs.

4. How does the performance of the artificial neural network compare to the performance of other
established interpolation techniques?

By answering this sub-question, the effectiveness of an artificial neural network was examined
in comparison to alternative interpolation methods (first, second and third order regression mod-
els). This comparison helped to determine whether the artificial neural network can be seen as
advantageous and delivered sufficient performance.

1.3. Scope
The primary focus of this research was on high-rise steel buildings, specifically investigating two types
of stability systems: the braced framed tube and the outrigger system. The chosen location for these
high-rise structures was Rotterdam, the Netherlands. The floor plans of the structures was limited to
rectangular floor plans. Other floor plan shapes were not considered within the scope of this study due
to time limitations. The structures were evaluated based on two key parameters: the structural costs
and the embodied carbon (environmental costs). Regarding the embodied carbon, the focus was on
the stages of Cradle-to-Gate (A1-3) in the Life Cycle Assessment (LCA), excluding stages beyond
A1-3 from consideration in this research. Factors beyond the mass of structural elements were not
accounted for in the cost and embodied carbon assessments. Moreover, the role of the foundation in
the overall structure was not taken into account. The influence of the connections on the performance
of the structure was also not taken into account. The focus of this research was on steel, and therefore
non-steel structural stability frameworks were excluded from this research. The use of artificial neural
networks was explored in this research, other machine learning techniques have not been explored in
this research.

1.4. Approach
The approach of this research was organized into five main tasks:

• Task 1: Parametric Model Development and Optimisation.
In this research, two parametric models were developed for two stability systems: the braced
framed tube and the outrigger system. These models underwent validation using analytical and
2D analyses. Next, an FEM optimisation using Karamba was performed where the stiffness and
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strength requirements were considered, leading to finding the most optimal cross-section solution
of the beams and columns for each structure for different dimensions.

• Task 2: Data Generation.
Data sets for both braced framed tube and outrigger system were produced for the structures.
These ranged in height and width, and were derived from the optimised parametric models. These
data sets included the mass of all structural elements within the respective structures.

• Task 3: Artificial Neural Network Development.
The generated data sets served as input for the development of artificial neural networks (ANNs).
Before training the ANNs, the best configuration of hyperparameters was determined separately
for braced framed tube and outrigger system. Once the hyperparameters were established, the
ANNs were constructed based on the generated data sets, and the ANN models were trained.

• Task 4: Prediction and Visualisation.
Based on the ANN models, predictions were made regarding the performance of the structures
for different volumes (varying heights and widths). These predictions were visualised by graphing
the performance of each stability framework over either the varying height or the varying width of
the structure.

• Task 5: ANN Model Validation and Comparison.
The accuracy of the ANN models was validated by looking at the loss functions. The effective-
ness of the ANN models was compared with other interpolation techniques including the first
order, second order and third order regression models. Furthermore, a comparison was made
between the performance based on the predictions of the ANN models and the performance of
real-life projects.

1.5. Report Outline
The structure of the report is illustrated in Figure 1.1. Furthermore, the constituents of each Chapter
are also displayed.
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Figure 1.1: Structure of the report
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2
High Rise Buildings

This chapter of the literature review of high-rise buildings has two primary objectives. Firstly, it pro-
vides an overview of the stability frameworks applicable to high-rise steel buildings and specifies the
stability frameworks which are chosen for this research. Secondly, it offers an insight into all the impor-
tant factors in the design of high-rise structures. The chapter begins with an introduction to high-rise
buildings, followed by a division of the feasible stability frameworks for high-rise steel buildings. Subse-
quently, there is an explanation on the selected stability frameworks for this study. Finally, an overview
of the key factors relevant to high-rise building design is presented, each briefly explained. The chapter
concludes by summarizing the main findings from the literature review.

This chapter will aim to answer sub-question 1.

1 What aspects should be considered when designing the stability framework of a high-rise steel
building

2.1. Introduction to High-Rise Buildings
A high-rise building in the Netherlands is typically characterized by a total height exceeding 70 meters
according to Bouwbesluit [3]. However, the notion of height is relative, and a building’s classification
cannot be solely based on height alone. Determining whether a structure qualifies as high-rise depends
on the contextual surroundings and conditions, making it challenging to establish a precise and univer-
sal definition for high-rise buildings. Structurally, the classification of a building as high-rise refers to its
sensitivity to lateral forces resulting from wind and earthquakes activities [4]. In essence, a high-rise
building is one in which the impact of these lateral forces significantly influences the architectural and
engineering design process. The interplay between the building’s height and these external forces is
leading in shaping the building’s structural integrity and design considerations.

The majority of the world’s tallest buildings prominently feature a steel structural system [5]. This pref-
erence arises from the remarkable strength-to-weight ratio that steel offers, making it a prime choice for
such ambitious constructions. Beyond its strength, steel has qualities like convenient assembly and on-
site installation, streamlining the construction process. Moreover, steel exhibits cost-effective transport
to the construction site and offers an array of strength levels, enhancing its adaptability. Additionally,
the availability of a diverse range of sections, due to the easiness of fabricating own sections, further
improves the flexibility of steel in high-rise building design.

High-rise structures are exposed to a multitude of diverse loads, stemming from various origins both
internal and external. These loads can either be static or dynamic and can be broadly classified by
their orientation — either vertical or horizontal. Within the vertical orientation, gravitational forces in-
clude the building’s self-weight and live loads each contributing to the overall load distribution [4]. For
high-rise Conversely, horizontal forces, referred to as lateral loads, consist of the wind pressures and
seismic reactions, presenting a challenge to the structural stability [6]. Whereas, the horizontal forces
are most critical for high-rise buildings [1]. The challenge of the stability is about the building’s ability to

6
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competently counterbalance these lateral forces and the second order effect. This resistance, acquired
through deformations and bending, is the base of load-bearing capacity. A schematization of the ver-
tical and horizontal loading of a high-rise building is illustrated in Figure 2.1. The high-rise building is
schematized as a cantilever beam, fixed on one side and free on the other side.

Figure 2.1: Schematic overview vertical and horizontal loading of a high-rise building

2.2. Division of Stability Frameworks
In the pursuit of constructing steel high-rise buildings that can withstand the forces they encounter, a
range of stability frameworks has been developed. These frameworks serve as the structural back-
bone, facilitating the distribution of lateral loads such as wind, seismic forces, and dynamic vibrations.
The selection of an appropriate stability framework is necessary, as it directly influences the building’s
ability to resist deformation, sway, and oscillation. Moreover, the chosen stability framework will ensure
the overall safety of the building and preserves aesthetic vision of the architect. Multiple sources are ac-
cessible, each displaying a different distribution of stability systems. A few sources will be enumerated,
and from among them, two systems will be selected for more in-depth examination for this research.
This selection was based on the materials, the applied height constraints and the source of stability of
the different systems (interior, exterior or hybrid of both).

According to Gunel and Ilgin (2007), different structural systems are suitable for steel, reinforced con-
crete, and composite buildings [5]. These systems are categorized based on their source of stability:
interior, exterior, or a hybrid of both:

• Interior system provides stability

– Rigid frame systems. Rigid framing, specifically moment framing, relies on the fact that the
connections between beams and columns have sufficient rigidity to preserve the nearly con-
stant original angles between intersecting parts. In the context of steel structures, achieving
rigid framing involves enhancing joint stiffness to ensure the withholding of enough rigidity
within the joints.

– Braced frame and shear-walled frame systems. Braced frame systems find application in
steel construction. This approach proves remarkably effective and cost-efficient in counter-
ing horizontal loads. It aims to enhance the efficiency of a rigid frame by significantly min-
imising the bending experienced by columns and girders, achieved through the incorporation
of supplementary bracing elements. Shear-walled frame systems can be characterized as
vertical cantilever beams that withstand lateral wind and seismic loads impacting a structure.
These loads are transmitted through the floor diaphragms to the shear walls. Shear-walled
frame systems are deployed in both reinforced concrete and composite construction scenar-
ios.

• Both interior and exterior systems provide stability

– Outrigger systems. Outrigger systems represent an evolved variation of both braced frame
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and shear-walled frame systems, finding application in steel as well as composite construc-
tions. This structural approach involves a central core that incorporates either braced frames
or shear walls. Horizontal ’outrigger’ trusses or girders then link this core to the outer
columns. Additionally, in many instances, external columns are interlinked through an ex-
terior belt girder. When a building is exposed to horizontal loads, the presence of column-
restrained outriggers withstands the rotation of the core. This design element helps maintain
structural stability during such loading conditions.

• Exterior system provides stability

– Framed-tube systems. Framed-tube systems are suitable for steel, reinforced concrete, and
composite construction methods. The defining feature of a tube system is the utilisation of
closely positioned perimeter columns, interconnected by significant spandrels. This enables
the entire building to function comparable to a substantial vertical cantilever, effectively coun-
tering overturning moments. The system’s efficiency comes from the multitude of robust
connections distributed along the perimeter, forming a substantial structural tube.

– Braced-tube systems. Braced-tube systems find applicability in steel, reinforced concrete,
and composite buildings. By introducing multi-story diagonal bracings along the tube’s
façade, the rigidity and efficiency of the framed tube structure can be improved by requiring
less material. Consequently, this refined braced-tube configuration becomes suitable for
greater heights and permits increased spacing between columns. In steel buildings, steel
diagonals or trusses are employed to implement this system.

– Bundled-tube systems. Bundled-tube systems are suitable for steel, reinforced concrete,
and composite construction. This approach involves a group of tubes interlinked by shared
interior panels, resulting in the creation of a perforated multicell tube structure. the concept
of this system is derived from the organization of distinct tubes.

Moreover, R. Nijsse’s (2012) classification of stability systems is presented in the schematic overview
shown in Figure 2.2 [1]. The stability structures are categorized into frames, cores, outriggers, tubes,
and megastructures. The ‘megastructure’ as defined by Nijsse corresponds to the previously termed
‘bundled tube system.’ The figure also indicates the maximum heights applicable for each system.

Figure 2.2: Stability systems according to R. Nijsse [1]

An alternative strategy for arranging stability frameworks in tall buildings is presented by Ali et al. (2007),
where also the categorization of interior and exterior systems is applied [2]. The layouts of these
systems for both the interior and exterior are presented in Figure 2.3.
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Figure 2.3: Interior and exterior stability systems according to Ali et al. [2]

Drawing from the referenced studies that categorize stability systems by Gunel and Ilgin (2007), R.
Nijsse (2012), and Ali et al. (2007), two systems have been chosen for examination in this research
[5, 1, 2]. This selection process is based on material choice and the designated height range. Given
the utilisation of steel as the chosen material, only systems feasible in steel construction are consid-
ered. Furthermore, the systems under consideration must be applicable to high-rise buildings within
the Netherlands, with a height limit of 300 meters (approximately 100 stories) set as the maximum
threshold and a height of 36 meters (approximately 12 stories) set as the minimum threshold. Notably,
the tallest building in the Netherlands at present is the Zalmhaventoren, standing at a height of 215
meters [7]. Furthermore, to add interest to the comparison, the decision has been made to evaluate
one interior system and one exterior system. This aims to ascertain whether altering the system type
has varying effects for different heights and widths of the structure (different volumes of the structure).
Consequently, the two stability systems that will be considered for study in this research for high-rise
steel buildings are the following:

1. Outrigger system
2. Framed braced tube

The chosen stability frameworks are illustrated in Figure 2.4, presented by the specified height range.
It can be seen that the outrigger system falls under the category of an interior system, while the braced
tube is classified as an exterior system.
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Figure 2.4: Two stability systems chosen for this research based on [2]

2.3. Outrigger Structure
A braced frame featuring outriggers is displayed in figure 2.5, alongside its deflected shape due to
lateral loading. This structural configuration consists of a central braced frame with a specific bracing
system that connects to two outriggers of equal length. These outriggers are essential in preventing
additional rotation of the structure’s facade columns. As a result, they generate significant compression
and tension forces within these columns, effectively counteracting the horizontal loads applied to the
structures.

Figure 2.5: Outrigger (based on [8]). a) Model and loads. b) Deflection shape, and axial forces in the external columns.

The expression for the restraining moment of the outrigger structure is as follows [8]:

Mr =

{
w
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)
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+
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The horizontal deflection at the top of the structure can be obtained with the following equation:

ytop =
wH4

8EIt
+
wH2

2GAt
−
Mr

(
H2 − x2

)
2EIt

− Mr

αGAt
(2.2)
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The derivation of these formulas can be found in the paper of Hoenderkamp and Bakker (2003) [8]. The
right-hand side of equation 2.2 consists of four terms. The first two terms describe the unrestrained
horizontal deflections of the braces frame’s top, resulting from bending and racking shear under the
influence of lateral loading. The third term combines the lateral deflection at the outrigger level, coming
from reverse bending toMr, and the additional deflection occurring above the outrigger due to outrigger-
level rotation. Finally, the fourth term accounts for horizontal deflection within the braced frame over a
single-story height at the outrigger level.

The reduction in deflection for the braced frame is depicted by the final two terms on the right-hand side
of Equation 2.2. To maximise this reduction, it can be optimised by taking its derivative with respect to x,
setting the derivative equal to zero, and solving for x. Figure 2.6 illustrates a graphical representation
of the optimal outrigger locations as a function of two dimensionless characteristics, ω and βH for a
braced frame structure including outriggers. Where ω can be expressed as:

ω =
Sh

Sv
(2.3)

in which Sh represents the strains in the horizontal and diagonal members and Sv represents the strains
in the vertical members. These characteristic structural parameters can be expressed as following:

Sv =
H

EIt
+

H

EIc
(2.4)

Sh =
1

α2

{
b

24EIo
+

1

hGAo
+

1

hGAt

}
(2.5)

Moreover, the dimensionless characteristic parameter of βH can be expressed as:

βH = H

√
αGAt

EIt
(2.6)

where GAt represents the shear stiffness of the braced frame due to racking, EIt represents the bend-
ing stiffness of the braced frame, and α is a dimensionless parameter that can be computed as follows:

α =
l

b
(2.7)

Where l is the distance from the exterior column to the centre line of the braced frame and b is the
length of the flexible outriggermeasured from the facade column to the outrigger-braced frame interface,
illustrated in Figure 2.5.
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Figure 2.6: Optimum location of outriggers [8]

It can be concluded that determining the optimum location for an outrigger in a structure involves com-
plex calculations and depends on various factors. Therefore, for the purpose of the research, a sim-
plification is made of the location of the outrigger by considering only the total height of the structure.
Further details wills be explained in Chapter 4.

2.4. Framed Tube
As previously mentioned, a key characteristic of a tube system is the strategic placement of closely
spaced perimeter columns that are connected by substantial spandrels [5]. The fundamental design
principle supporting this architectural approach is to distribute a significant portion of the load-bearing
structure along the building’s perimeter. This strategy aims to optimise the cross-sectional flexural
rigidity of the structure.

Shear lag is a phenomenon that occurs in structural systems like tube systems, where loads are dis-
tributed along a perimeter structure [9]. When external forces act on a building, such as wind or seismic
loads, these forces are primarily resisted by the outer columns and elements of the building’s perime-
ter. Shear lag arises because not all columns along the perimeter contribute equally to resisting these
forces. The columns farther away to the point of load application carry a larger share of the load, while
those close to the point of load contribute less. This non-uniform distribution of forces can lead to differ-
ences in stress and deformation across the perimeter, potentially resulting in localized weak points or
inefficiencies in the structure’s response to external loads. The axial stress distribution with and without
shear lag of a framed tube due to a lateral load is illustrated in Figure 2.7.
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Figure 2.7: Axial stress distribution framed tube [9]

2.5. Performance Parameters
The primary objective of this study is to establish an accurate prediction of the structure to facilitate
the comparison of various performance parameters across different stability frameworks. Its purpose
is to provide a quick performance assessment of the structure during the initial design phase. The
performance parameters that will be looked at are costs, environmental impact and flexibility. The focus
is therefore not on the structural performance parameters such as deflection, as they are governed by
established norms and requirements. The critical criterion is whether the structure operates effectively
within the specified tolerance limits, rather than the specific extent of deflection. In essence, the primary
focus is on the comparison of the performance of the structure within the established structural norms
and requirements.

2.5.1. Structural costs
The quantification and comparison of construction costs for the various buildings will be determined.
The construction costs typically refers to the expenses related to construction materials (such as con-
crete, rebar, and structural steel), delivery (from factory to construction site), labor, equipment, and
supplementary activities (such as on-site testing). However, this research focuses solely on the costs
associated with various construction materials. The total construction costs will be determined by as-
sessing the type and quantity of materials required. Subsequently, the total material costs will be
calculated by multiplying the quantity of each material by its respective unit cost. The expression for
total costs is presented in Equation 2.8, adapted from Gan et al. [10]:

CCT =

 I∑
i=1

ViCCi +

J∑
j=1

ρjVjCCj

 ·A−1 (2.8)

Where:

CCT = total construction cost of considered building [€/m2]
i = specific type of concrete
j = specific type of rebar or structural steel
Vi = quantity of concrete i [m3]
CCi = material cost of 1 m3 of concrete i [€/m3]
ρj = density of rebar or structural steel j [kg/m3]
Vj = quantity of rebar or structural steel j [m3]
CCj = material cost of one unit of steel j [€/kg]
A = GFA of considered building [m2]
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2.5.2. Environmental Costs
To quantify the environmental impact in this research, the environmental cost (EC) method was utilised.
EC is a Dutch assessment method that consists of ten distinct environmental impact categories and
associated formulas [11]. Each impact category is assigned a factor in euros, representing the hypo-
thetical cost (shadow price) needed to mitigate its impact to a sustainable level (see Table 2.9). The
environmental impact was computed and analyzed based on the Cradle-to-Gate principle, specifically
focusing on the production phase (A1-A3). The stages of life of a building according to EN 15804 is
illustrated in Figure 2.8, where also the principle of Cradle-to-Gate can be seen.

Figure 2.8: Stages of life cycle of a building accordance with EN 15804

This study the environmental cost of design alternatives is calculated through embodied carbon (EmCO2),
which refers to CO2 emissions from material extraction to construction (specifically Cradle to Gate in
this research). EmCO2 serves as a benchmark for global warming potential, expressed in Carbon
Equivalence (CO2eq). The CO2eq for each material will be calculated and adjusted by the shadow
price of CO2eq, as shown in Table 2.9. The formula for cradle-to-gate emissions and costs follows Gan
et al. [12]:

ECC−G =

 I∑
i=1

ViEFi +

J∑
j=1

ρjVjEFj

 · SPCO2eq ·A−1 (2.9)

Where:



2.5. Performance Parameters 15

ECC−G = total embodied cradle-to-gate carbon cost of considered building [€/m2]
i = specific type of concrete
j = specific type of rebar or structural steel
Vi = quantity of concrete i [m3]
EFi = carbon emission factor per unit volume of concrete i [kgCO2eq/m3]
ρj = density of rebar or structural steel j [kg/m3]
Vj = quantity of rebar or structural steel j [m3]
EFj = carbon emission factor per unit mass of steel material j [kgCO2eq/kg]
SPCO2e = shadow price per kg CO2eq [€/kgCO2eq]
A = GFA of considered building [m2]

The shadow price per kg CO2eq can be referenced in Figure 2.9. The impact of other categories is
indirectly considered since for each material the total equivalent CO2 is taken to determine the overall
impact of the materials.

Figure 2.9: Impact categories and corresponding shadow prices [13]

The emissions in the built environment can be divided into the operational carbon and the embodied
carbon. The CO2 emissions resulting from the operation of the built environment are referred to as
the operational carbon and is the sum of all the carbon produced over the life time use of the building.
The embodied carbon is the carbon footprint of the building before it is built, and consists of the green
house gasses emitted during the construction process. The breakdown of the whole life carbon and the
embodied carbon for a typical office building is visually shown in Figure 2.10. Notably, ’Construction’, on
average for a typical office building, accounts for 35% of the embodied carbon. Further dissecting this
construction phase reveals that the ’SuperStructure’ and ’Substructure’ components have the most
significant role, collectively contributing to over 60% of the total embodied carbon in a building. It
illustrates that by attempting to minimise the embodied carbon or by gaining a clear overview of the
embodied carbon of the ’Superstructure’ and the ’Substructure’, a significant influence on the total
embodied carbon of a structure can be achieved.
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Figure 2.10: Breakdown of embodied carbon typical building

Embodied carbon data sourced from various organizations has been compiled for this study [14] [15]
[16]. The environmental impact of different materials and structural elements is assessed using EPDs
(European Product Declarations) from multiple organizations. Specifically, the focus is on global warm-
ing potential (GWP), recognized as the most significant environmental impact category. Additionally,
only stages A1-A3, corresponding to the Production Phase (Cradle to Gate), are considered in this
analysis. Therefore, the environmental impact in terms of GWP for stages A1-A3 is detailed in the
table, with the figures used for this research provided in Table A.1.

2.6. Loads
A high-rise building is exposed to vertical and horizontal loads. In this section in more detail the vertical
and horizontal loads will be explained.

2.6.1. Vertical Loads
The vertical loads can be categorized into dead loads and variable loads.

• Dead loads.
The total dead weight consists of the summation of the contribution of the structural and the non-
structural components. The structural components can be further categorized into the floor struc-
ture, the columns and the facade. The self weight of the structural components will automatically
be generated and taken into account in the parametric model.

The non-structural elements are the floor finishing, the ceiling and the mechanical installations.
The loads coming from those as follows: 1.2 kN/m2 for floor finishing, 0.15 kN/m3 for the ceiling
and 0.1 kN/m3 for mechanical installations [17]. This results in a combined total of 1.45 kN/m3.

• Variable loads.
The amount of variable load is depending on the category of the structure. The overview of the
allocation of the five categories can be seen in Eurocode 1 Part 1 (2019) [18]. Category A refers to
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variable loads applicable to residential buildings, with a magnitude of 1.75 kN/m2 while category
B refers to variable loads for office areas, which is equal to 2.50 kN/m2. The variable load on a
floor thus is depending on the building’s purpose. The variable load for light-weight partition walls
of 1.50 kN/m2 is also taken into account.

2.6.2. Horizontal Loads
The lateral force acting on a structure is referred to as the wind load, and it can be computed using
Equation 2.10 as specified in Eurocode 1 Part 4 (2005) [19]. Only wind loads were considered, as there
is no meaningful seismic activity in the area, Rotterdam, of the structure. The process of wind load
calculation is comprehensive, with a more detailed breakdown of all the involved parameters provided
in Appendix B. In summary, this section presents the primary equations.

Fw = cscd · cf · qp(ze) ·Aref (2.10)

Where:

cscd = structural factor
cf = force coefficient for the structure
qp(ze) = peak velocity pressure ate reference height ze
Aref = reference are of the structure

• The structural factor cscd should take into account the effect on wind actions from the non-
simultaneous occurrence of peak wind pressures on the surface (cs) together with the effect of the
vibrations of the structure due to turbulence (cd). The assumption that cscd equals 1.0 cannot be
applied to this research, as it does not align with the conditions applicable to high-rise structures.
The value of cscd can be determined with the following expression:

cscd =
1 + 2kp · Iv(zs) ·

√
(B2 +R2)

1 + 7Iv(zs)
(2.11)

Where:

zs = reference height for determining the structural factor
kp = peak factor of the fluctuating part of the load
Iv = turbulence intensity
B2 = background factor
R2 = resonance response factor

• The force coefficient cf of structural elements of rectangular section can be determined with the
following expression:

cf = cf,0 · ψr · ψλ (2.12)

Where:

cf,0 = force coefficient of rectangular sections
ψr = reduction factor of force coefficient for square sections with rounded corners
ψλ = end-effect factor for elements with free-end flow, related to slenderness ratio λ

• The peak velocity pressure qp(z) can be found with the formula:

qp(z) = (1 + 7Iv(z)) ·
1

2
ρ · v2m(z) (2.13)
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Where:

ρ = wind density
vm = mean wind speed

The wind speed is depending on the wind zone of the location of the structure. The reference
height ze is depending on the height and width of the building and is illustrated for a high-rise
building in Figure 2.11. Moreover, the corresponding velocity pressure profile is illustrated over
the height of the building.

Figure 2.11: Reference height and velocity pressure profile [19]

2.6.3. Load Combinations
For the design of the structure, different load combinations must be considered. The load combinations
and factors that must be considered are summarized in Appendix C. The general formula for the SLS
and ULS are presented below. The load combinations for vertical loads in the ultimate limit state is
shown in Equation 2.14:

ULS = Σ(γ(G,j) ·G(k,j)) + γ(Q;1) ·Q(1;k) +Σ(γ(Q;i) · ψ(0;i) ·Q(i;k)) (2.14)

The load combinations for vertical loads in the service limit state is shown in Equation 2.15:

SLS = ΣG(k,j) +Q(1;k) +Σ(ψ(0;i) ·Q(i;k)) (2.15)

Where:

γ(G,j) = partial factor for permanent action j
G(k,j) = characteristic value of permanent action j
γ(Q;1) = partial factor for leading variable action
Q(1;k) = characteristic value of leading variable load
γ(Q;i) = partial factor for variable action i
ψ(0;i) = factor for combination value of variable action i
Q(i;k) = characteristic value of accompanying variable action i

2.7. Load-Bearing Floor Systems
This research will examine one type of load-bearing floor systems, namely the hollow core slab floors.
This selection is influenced by a study conducted by Lankhorst et al. in 2019, which conducted a life
cycle analysis of load-bearing structures in high-rise buildings across Western Europe [11]. While the
study considered several materials for the structural components, when looking at the material steel as
the structural material, the focus was on the examination of the floor combinations of hollow core slab
floors and composite floors. The hollow core slab floor is a floor system that uses the precast concrete
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slabs with hollow cores. The slabs feature voids or hollow sections, significantly reducing their weight
without compromising strength. The composite floor is a floor system what is a combination of steel
with cast-in-situ concrete. The concrete is applied in the compressive layer of the floor and the steel
is used to accommodate the tensile forces. For this research the focus will be on the hollow core slab
floor. A floor system has various functions, such as the separation of floor levels, insulation of heat and
sound, and a structural function. The structural function consist of transferring vertical loads to the floor
beams and channeling horizontal loads on the facade to the core.

2.8. Foundation
In order to transmit the structural loads of a building to the underlying soil, the installation of a foundation
is needed. Foundations can generally be categorized into three main types: shallow foundations, pile
foundations, and pile raft foundations [20]. A shallow foundation directly transfers the structural loads
to the soil immediately beneath its level. On the other hand, a pile foundation transmits these loads
to a deeper layer of sand, while a pile raft foundation uses a combination of both approaches. In the
context of high-rise building design in the Netherlands, shallow foundations are typically unsuitable.
This limitation comes from the high vertical pressure working on the soil by the structure’s own weight.
Consequently, high-rise buildings in the Netherlands typically rely on pile foundations for support. The
load-bearing capacity and deformation behavior of a pile group is different from that of the behavior of
the same piles individually, primarily due to the interaction between the piles and the surrounding soil.

The total deflection at the top of a high-rise building is determined by various structural factors, including
flexural rigidity (EI), rotational stiffness (Cr), shear deformation, and second-order effects. The founda-
tion influences the deflection and rotation due to stiffness and fixing the grid of piles at predetermined
distances. For this research it has been decided to not include the foundation calculation, since the aim
of the research is to compare different stability frameworks. Moreover, since the focus is on high-rise
building, the rotational stiffness is having less influence on the total deflection when the height of the
building is increasing. Since the influence of the rotational stiffness will have an comparable influence
on both stability systems, it inclusion of the foundation will not influence the comparison between the
stability systems.

2.9. Summary
This literature review focuses on stability frameworks for high-rise steel buildings, emphasizing the
design considerations essential for constructing such structures. High-rise buildings, sensitive to lat-
eral forces like wind and earthquakes, rely heavily on the strength and adaptability of steel, making it
a preferred material due to its strength-to-weight ratio. The review categorizes stability systems into
several frameworks, including rigid frame, braced frame, and outrigger systems, but narrows its focus
to outrigger and braced-tube systems based on their suitability for steel construction and applicability
within Dutch height restrictions. The analysis includes an evaluation of load-bearing factors, highlight-
ing the predominance of lateral forces in high-rise design. Evaluation of the performance parameters is
also provided, including the construction costs and the environmental implication of embodied carbon.
the use and application of load-bearing floor systems, particularly hollow core slab floors. The perfor-
mance parameters of costs and embodied carbon are explained and the calculation of it. Conclusively,
the review underlines the importance of selecting appropriate stability frameworks for high-rise steel
buildings, considering design, performance parameters, and environmental impacts.



3
Machine Learning

This chapter of the literature review delves deeper into the Machine Learning (ML) theory, serving
two main objectives: providing an introductory exploration of ML theory, and secondly, offering an
overview of existing studies in the intersection of machine learning and structural engineering. First,
an introduction to the essence of ML will be given, followed by an overview of research conducted in
the ML and structural engineering domain. Subsequently, an explanation will be given of the Artificial
Neural Networks, the chosen tool for this study. The chapter will conclude with a summary of the key
findings from the literature review.

This chapter will aim to answer sub-question 2.

2 What data set and data collection methods are necessary to train a machine learning model to
accurately predict performance parameters of high-rise buildings with different volumes?

3.1. Introduction to Machine Learning
The utilisation of artificial intelligence (AI) has been getting increasing attention across various engi-
neering domains [21]. AI-based methodologies have demonstrated their effectiveness in related do-
mains such as robotics [22], manufacturing [23], and medicine [24]; however, they have not yet been
fully implemented by structural engineers [25]. A significant sub-field of AI is Machine Learning (ML),
which involves the study, design, and creation of algorithms capable of learning from data and sub-
sequently making predictions based on this learned information. Unlike, traditional programming, ML
allows computers to acquire knowledge autonomously. Over the past decade, ML methods have seen
an increasing adoption in tackling real-world challenges within structural engineering [21]. Nonethe-
less, substantial room remains for additional integration and utilisation of these methods. Notably,
these methods have been applied to a spectrum of tasks, including structural health monitoring (SHM)
and damage identification, optimisation, performance evaluation, evaluation of structural reliability and
reliability assessment, as well as parameter identification for structural components. This research
delves into the spectrum of the task of structural parameter identification, since the aim is to predict the
performance parameters for a given volume of a steel high-rise building for different stability systems.

Classification of Machine Learning
ML can be classified into three categories: supervised, unsupervised, and reinforcement learning [25].
This classification is illustrated in Figure 3.1. Supervised learning is used when both the outcome (also
referred to as target or response) and the governing variables of a phenomenon are known. This
category of learning can be further divided into regression, where the target is a numerical quantity,
and classification, where the target is a label or class. Unsupervised learning, on the other hand, is
useful when dealing with unlabeled data. Specifically, it can only be grouped into clustering, where the
goal is to identify natural groupings or patterns within the data. Lastly, reinforcement learning applies
to algorithms capable of adjusting actions in response to evolving conditions. This type of learning
involves making decisions that optimise cumulative rewards over time.

20
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Considering the categorization of various ML types, a selection can be determined for the type to be
employed in this research. This choice should be in line with the research objective. The objective
is to predict the performance parameters of high-rise buildings where the input is the volume of the
high-rise building. The needed data for the ML model will be generated with a parametric model, so
both the outcome and the governing variables are known. Moreover, the target is a numerical quantity
and therefore it can be concluded that this research falls into the category of Supervised Learning,
specifically Regression.

Figure 3.1: Main types of Machine Learning

3.2. Machine Learning and Structural Engineering
Over the past ten years, there has been a growing trend in the utilisation of ML techniques to address
practical challenges in the field of structural engineering [21]. The study of Thai (2022) into the current
literature concerning the application of ML methods in the domain of structural engineering revealed
five topics [26]:

1. Member
2. Material
3. Damage and Structural Health Monitoring (SHM)
4. Analysis and Design
5. Fire

In order to gain a clearer perspective on the types of subjects that are examined for each topic, a
handful of examples are provided within each respective topic. An example within the topic of ’Member’
is the prediction of load-carrying capacity of isolated structural members. An example within the topic
of ’Material’ is the prediction of mechanical property and optimising mix design of concrete. Crack
detection and damage assessment of structures is an example within the topic of ’Damage and SHM’.
Performing structural analysis to predict the behaviour of structures and optimising their design is an
example within the topic of ’Analysis and Design’ and predicting fire resistance of structures is an
example within the topic of ’Fire’. This research falls within the topic of Analysis and Design since a
prediction will be made of the performance of a high-rise building.

3.2.1. Machine Learning and Performance
Within the domain of Analysis and Design, there are numerous perspectives that can be explored.
One particular emphasis is about assessing the performance of a building. Numerous studies have
been conducted in the realm of ’Analysis and Design,’ specifically targeting the structural performance
of buildings. It has been observed that the artificial neural networks (ANN) method has been domi-
nantly used in this domain [26]. So was the optimal design of truss systems examined by Iranmanesh
and Kaveh (1999) using neural networks [27]. Kaveh and Servati (2001) employed ANN to formulate
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designs for expansive truss structures comprising double-layer grids. Their study consisted of an as-
sessment of the structures’ maximum deflection and weight [28]. Papadrakakis et al. (1996) delved
into utilising ANN for the purpose of conducting reliability analysis on steel frames [29]. ML has also
found utility in the domain of structural analysis by forecasting the deflections and drifts of frames sub-
jected to both gravity and lateral loads. Lee et al. (2001) formulated an ANN model for the analysis
of steel-concrete composite bridge girders. This model demonstrated comparisons between the pre-
dicted outcomes of deflections, member forces, and ultimate loads and those derived from numerical
methods [30]. Another example of a research that is conducted in the domain of ML regarding the anal-
ysis and design is from Guan et al. (2021) who created a model based on Random Forest to forecast
the drift in steel moment frames [31]. Truong et al. (2022) evaluated different machine learning models
including linear regression models, support vector machines, deep learning and tree-based ensemble
algorithms for load-carrying capacity assessment of semi-rigid steel structures [32]. Yucel et al. (2019)
developed an ANN for the estimation of the optimum tuned mass damper parameters where it was
found that the proposed equations were effective for structures subject to seismic input [33].

Another perspective within the domain of Analysis and Design involves predicting the construction cost
associated with a building. Research have delved into the utilisation of ANN to enhance the accuracy
of building cost estimation [34]. Findings from multiple studies have consistently demonstrated that
ANN’s outperform traditional regression models in cost estimation of a structure. For example, Kim et
al. (2004) conducted a study in which they predicted construction costs using both linear regression
and neural networks [34]. The input data included variables such as gross floor area, number of stories,
total units, duration, and roof types. Their research revealed that ANN’s surpassed the performance of
linear regression models in terms of prediction accuracy.

When ANN is being implemented, a surrogate model is created. ANN’s are one of the many techniques
that can be used to create surrogate models. Surrogate models are statistical models that aim to
approximate complex simulation models [35]. Surrogate models serve as statistical representations
of the relationship between a set of input variables (e.g. structural properties, loading characteristics)
and the response or performance quantities of interest [36]. They are useful for reducing the number
of simulations needed for computationally intensive applications. According to Geyer and Singaravel
(2018) the main steps to build and use a surrogate model in building design are the following [37]:

1. Build a detailed simulation model
2. Run the model for many different cases to generate a database of results
3. Use the outputs to train and test the meta-model

Surrogate models hold promise as a quick decision-support tool for professionals in the field of construc-
tion. Nevertheless, it is crucial to evaluate the quality of the data. Furthermore, although employing
surrogate models can reduce computational demands and decrease the time required for simulations
and post-processing, it is essential to keep in mind the time required for surrogate model development,
as it can significantly impact the design process [37]. Westermann and Evins (2019) found that ANN
is the most popular method for surrogate modelling-based optimisation in building design, with energy
use, overheating, carbon emissions and total cost as the most common prediction outputs [38].

The preference for ANN over traditional regression analysis in structural engineering arises from its
ability to handle the nonlinear relationships between input and output variables during structural design.
For instance, the relation between internal forces, displacements, and the size of structural members
is nonlinear. This effectiveness in applying ANN to structural engineering is demonstrated in Cheng
et al.’s study (2017), where they employed ANN to identify the optimal design parameters for steel
columns subjected to axial load [39].

3.2.2. Machine Learning and Energy Performance
In the field of ML and structural engineering, and more specifically in the topic of Analysis and Design,
another relevant area of exploration involves using surrogate models within ANN for the Building Perfor-
mance Simulation (BPS) [40]. The focus of this domain is, however, more on the energy performance
of a building rather than the structural performance of the building. Leveraging ML in BPS offers a sig-
nificant advantage: when high-quality measured data is accessible for training the models, the energy
consumption can quickly be estimated using these models. The utilisation of ANN surrogate models in
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BPS has increased over the recent years, and that can be related to the ability of the positive trade-off
between accuracy and computational costs.

The outcomes generated by these models can be categorized into four main domains: energy con-
sumption, comfort metrics, climatic conditions, and environmental performance. Interestingly, the ex-
isting literature lacked any applications of high-rise buildings being subjected to such investigations.
The predominant focus across these studies was the prediction of performance, rather than the goal
of screening, comparisons, optimization, calibration, energy labeling, or control. Furthermore, it was
found that the most used approach employed in this context was the utilisation of multilayer feedfor-
ward neural networks (MFNN). This is due to their capacity and diversity to develop surrogate models
for different case studies and applications, with a high number of inputs and outputs, and diverse re-
lationships between them. An example of a research that demonstrates the effectiveness of an ANN
model in the field of energy performance is the study of Li et al. where the building cooling load was
effectively predicted for an office building [41].

3.3. Artificial Neural Networks
In the domain of ML, Artificial Neural Networks (ANN’s) have emerged as a powerful and diverse tool
for solving complex problems across various domains [26]. ANN’s are computational models inspired
by the human brain’s neural structure, and their ability to learn and generalise from data has made
them essential in numerous applications. This section serves to provide a overview of the foundational
concepts of ANN’s, setting the stage for the exploration of their application in this research.

The primary objective of an ANN is to forecast output values based on a given set of input values [42].
The strength of an ANN lies in its capacity to make predictions on data it has never encountered during
the training phase. To validate this capability, the network’s performance must be assessed using a
separate set of test samples from the data set that were not part of the training process. This data set
is typically divided into two subsets: one for training, and the other for testing. The training samples are
employed to train the network, while the testing set is reserved for assessing the network’s performance
on unseen data. An accurate network demonstrates effective generalisation to previously unseen data.

It’s important to note that a longer training process does not necessarily results in better predictions.
Overfitting is a common pitfall across all ML algorithms and should be avoided [42]. Overfitting occurs
when the ANN achieves exceptional accuracy on the training data at the expense of significantly poorer
performance on the testing data and is illustrated in Figure 3.2 [40]. In such cases, the trained network
loses its utility since it fails to generalise effectively on unseen data (green square). On the other hand,
underfitting is also a challenge and it arises when a model is too simplistic to capture the underlying
patterns in the data. In the context of ANN’s, this can occur if the network is too shallow or has too few
neurons in its layers. An underfit model may perform poorly both on the training and the testing data.
Achieving the right balance between overfitting and underfitting is a crucial aspect of training ANN for
optimal predictive performance.

Figure 3.2: Example of overfitting [40]

3.3.1. Network Architecture
ANN’s are approximating functions, and the fundamental concept underlying this ability is known as
the Universal Approximation Theorem [43]. This theorem represents the basic idea of this domain of



3.3. Artificial Neural Networks 24

ANN’s, stating that specific types of neural networks can approximate particular functions to a high
degree of accuracy. The theorem implies that as long as certain conditions are met, a neural network
possess the capacity to learn complex patterns and relationships in data.

Neural networks consist of layers of nodes, including an input layer, one or more hidden layers, and
an output layer [42]. Each node functions as an artificial neuron, connecting to the next node and
possessing its own weight and threshold value. When the output of a node surpasses its threshold
value, it becomes activated and transmits its data to the subsequent layer in the network. Conversely,
if the output falls below the threshold, no data is propagated further. A neural network consisting of
more than three layers, including both input and output layers, is classified as a deep-learning algorithm.
An schematic representation of an ANN is illustrated in Figure 3.3.

Most neural networks operate in a feed-forward manner, meaning information flows in the direction
from the input layer to the output layer [43]. There is no feedback loop, and the network does not use
its output as input for further processing in the same pass. Backpropagation is the training algorithm
most commonly used with feed-forward neural networks. It is not a type of neural network itself but
rather an optimization algorithm for training neural networks. It involves calculating the gradient of the
loss function (or error function) with respect to the networks weight’s and then updated the weights to
minimise the loss or error. The section about the training process of the network will go into more detail
about that process.

Figure 3.3: Schematic illustration of ANN

Input values are fed into the neurons within the input layer, where the quantity of neurons aligns with
the number of variables or features associated with the problem. Within the input layer, input values
do not change in value since there is no activation function present. Therefore, the output value of an
input neuron is equal to the value of the actual data input value, where the actual data input values
can be written as

[
x1 x2 . . . xj

]
and the values of the input layers as

[
a1 a2 . . . aj

]
. Therefore

it can be stated that xi = ai. The values of the input layers are subsequently sent to the first hidden
layer. The neurons in the hidden layers do modify the incoming data by means of an activation function.
This activation function is usually a certain non-linear function which enables the network to predict the
non-linear behaviour of the system. The output layer ultimately generates the values that the network
aims to predict,

[
y1 y2

]
. The quantity of the neurons within the output layer corresponds to the num-

ber of output parameters targeted for prediction. The neurons within the output layer also apply data
modification through the use of an activation function.
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3.3.2. Mathematical Description
In this section, the mathematical description is given and explained of how a neural network maps
output values to a predefined set op input parameters [42]. Figure 3.4 illustrates a single artificial
neuron where an input layer is connected to one individual artificial neuron. This neuron accepts inputs
from the previous layer, which could be either the input layer or neurons from the previous layer. It
receives activation values from the input layer denoted as:

aj =
[
a1 a2 . . . aj

]
(3.1)

Each connection between neurons is associated with a weight, represented as in vector form:

wj =


w1

w2

...
wj

 (3.2)

Additionally, there is a bias value b, a numerical parameter that contributes flexibility to the ANN. The
bias allows a neuron to remain inactive if the weighted sum does not exceed a specific threshold. These
three elements are combined to yield the total input z of the neuron, as follows:

z =
[
a1 a2 ... aj

]

w1

w2

...
wj

+ b =

j∑
i=1

(wiai) + b (3.3)

The input z is subsequently passed through the activation function f , which will be elaborated upon in
more detail in a later section. This process ends with the generation of the neuron’s final output.

y = f(z) = f(

j∑
i=1

(aiwi) + b) (3.4)

Figure 3.4: An input layer connected to an individual artificial neuron

When the layer is comprised of multiple neurons, as opposed to the single-neuron example mentioned
earlier, the weights are illustrated in a 2-dimensional matrix Wj,k, where j corresponds to the number
of neurons in the previous layer (L− 1) and k represents the number of neurons in the current layer L.
The resulting weight matrix connecting two layers can be expressed as the following vector:
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Wj,k =


w1,1 w1,1 . . . w1,k

w2,1 w2,2 . . . w2,k

...
...

. . .
...

wj,1 wj,2 . . . wj,k

 (3.5)

Up to this point, the input data has been depicted only as a vector, representing a single data sample. In
practice, neural networks are trained on data sets containing numerous data samples. The actual data
set takes the form of i× j matrix, where i represents the number of data samples, and j corresponds
to the number of features or input variables for each sample. This data set is denoted as Xi,j and can
be written as the following vector:

Xi,j =


x1,1 x1,1 . . . x1,j
x2,1 x2,2 . . . x2,j
...

...
. . .

...
xi,1 xi,2 . . . xi,j

 (3.6)

The matrix multiplication between the input data and the weights can be written as following, where
A

(L)
i,k represents the resulting activating matrix. It can be seen that the input z is subsequently passed

through the activation function f(z).

z(L) = A
(L−1)
i,j W

(L)
j,k +B

(L)
i,k (3.7)

A
(L)
i,k = f(z(L)) = f(A

(L−1)
i,j W

(L)
j,k +B

(L)
i,k ) (3.8)

The activating matrixA(L)
i,k is subsequently used as input for the next layer (L+1). This iterative process

continues for each layer until the ultimate output is generated from the output layer. The output matrix,
denoted as Yi,k consists of i rows, corresponding to the number of data samples, and k columns,
aligning with the number of neurons in the output layer, which is equivalent to the number of output
parameters. The notation for the different elements are illustrated in the schematic representation of
ANN in Figure 3.5.

Figure 3.5: Schematic representation of ANN including notation for different elements
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3.3.3. Hyperparameters
The criterion for determining the neural network architecture is based on the performance evaluation
of several design aspects, the so called hyperparameters [30]. Here’s a short explanation of the key
hyperparameters that must be defined to achieve an accurate model:

1. The number of neurons in the hidden layer.
The size of the hidden layer is one of the most important considerations when defining an accu-
rate model [44]. Expanding the number of neurons within a layer has the potential to improve
the model’s ability to capture complex system behavior. However, this isn’t always an assured
outcome. The number of neurons should be tried to be minimised, given that an increase in
number of neurons results in a significant rise in the number of connections. As a consequence,
the weight matrices expand, leading to an increase of computational demands for calculating the
gradient of the loss function and optimizing weight values. Generally, the number of neurons is
increased until there is no improvement in performance anymore.

2. The number of hidden layers.
The number of hidden layers corresponds to the layers positioned between the input and out-
put layers. This concept connects to the Universal Approximation Theorem, which states that a
single-layer network with a finite number of neurons in its hidden layer can represent any function
[42]. However, achieving this may result in an impractically large number of neurons in the hidden
layer, which will hinder effective network training. To be able to efficiently capture the complex
behavior of a system while keeping the neuron count manageable, multiple hidden layers can be
applied within the network. The optimal number of hidden layers can vary based on the problem’s
complexity and the data set’s size.

3. The initial connection weights.
The conventional approach to network training involves initialising its weights with small random
values. If all weights are set to identical values initially, the network can face training challenges
[44]. Therefore, when building a model, it is recommended to utilise kernel initializers, which
statistically initialise the weights, generating and distributing them as suitable starting values for
training.

4. The initial biases.
The probability distribution from which the initial biases are drawn is depending on the hyperpa-
rameter of the bias initializer. When building a model, it is recommended to utilise bias initializers,
which statistically initialise the biases, generating and distributing them as suitable starting values
for training.

5. The activation function type.
The role of the activation function is to introduce non-linearities in the network. Selecting the right
activation function holds significant importance, as it can influence the formatting of input data.
Available activation functions include the linear function, rectified linear unit (ReLU), hyperbolic
tangent (tanh), and logistic sigmoid [43]. For both the hidden layer as for the output layer an
activation function has to be chosen. In Figure 3.6 the different activation functions are plotted
and to provide an understanding of these activation functions, the functions are shortly explained.

• Linear

f(z) = linear(z) = z (3.9)

The linear activation function, sometimes referred to as the ”identity” function (scaled by 1.0)
or ”no activation,” retains the input’s weighted sum without altering it, returning the value di-
rectly. It is widely used in the output layer for regression problems due to its straightforward
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nature, making it the default choice for the output layer for regression problems.

• ReLU

f(z) = ReLU(z) = max(0, z) (3.10)

Rectified Linear Unit (ReLU) neurons are very popular in ANN applications [42]. This ac-
tivation function is non-linear and has a derivative equal to 1 for x > 0, equal to 0 for x <
0 and undefined at x = 0. The neuron’s input is denoted as z, which can be calculated by
using Equation 3.7. However, a drawback of this function arises when the neuron’s input
is significantly below zero, rendering the neuron inactive. Sometimes, it remains inactive
because the small step sizes in weight adjustments during learning are insufficient to shift
the input towards a positive value.

• Logistic Sigmoid

f(z) = Sigmoid(z) =
ez

1 + ez
(3.11)

Prior to the arrival of the ReLU function, the Sigmoid function held the position of being
the most widely used activation function in the hidden layers [42]. This function’s output
consistently falls within the interval (0,1), making it a non-linear function with a well-defined,
continuous derivative. Due to the restriction of the sigmoid function’s output to the range of
0 to 1, it is primarily employed in the output layer of an ANN. This strategic usage makes
sure that the final output is normalized and directly represents the probability of any of the
output classes being true.

• Hyperbolic tangent

f(z) = tanh(z) =
ez − e−z

ez + e−z
(3.12)

The Hyperbolic tangent is relatively similar to the Sigmoid function. The function produces
an output in (-1, 1) and is a scaled version of the Sigmoid Function. The hyperbolic tangent
turns out to be a better choice than Sigmoid in almost every case. The reason for this is that
the mean of the activation is closer to zero and the range is twice as large, which makes
learning faster by having a higher derivative. However, the same issue as with the Sigmoid
function is still observed: if the input becomes large, the slope approaches zero and learning
is slowed down. The tanh function is mostly used as activation for the hidden layer, for the
same reason as the Sigmoid is.

Both Hyperbolic tangent and Sigmoid have the gradient vanishing problem. That is, for some
input regions the gradient is extremely small. This makes training via algorithms, such as
gradient descent, inefficient. As a consequence, both the Sigmoid and Hyperbolic tangent
functions are not widely used nowadays. The most common activation function for the hid-
den layer is the ReLU.
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Figure 3.6: Commonly used activation functions in ANN [43]

6. The learning rate.
The learning rate, denoted as either ηt or α, is the step size used during gradient descent optimi-
sation to update the model’s weights. It determines the size of weight adjustments during training.
The learning rate significantly impact the model’s performance, as a lower learning rate may re-
sult in slower convergence but a more accurate model. In comparison, a larger learning rate may
result in faster convergence but a less accurate model. The significance of this parameter be-
comes clear when looking at Figure 3.7. As illustrated, a learning rate that is too small results in
slow training progress (indicated by the blue short arrows), while a too large learning rate causes
training to overshoot the minimum, potentially leading to convergence failure (indicated by the
green long arrows).

Figure 3.7: Importance of the parameter learning rate for training the ANN [40]

7. The momentum term.
Incorporating amomentum term is a technique used to accelerate the convergence of the gradient-
based optimisation techniques [42]. The momentum parameter determines the impact of prior
weight adjustments on the current one. This momentum tries to prevent the model from becom-
ing trapped in a local minimum. The value of momentum is between 0 and 1.

8. Batch size
The batch size determines the number of data samples that are processed together in a single
forward and backward pass during one iteration of training. It specifies how many training exam-
ples are used in each mini-batch to update the model’s weight and biases. The choice of batch
size can have a significant impact on the training process and the convergence of the model.

9. Number of training epochs
An epoch is one complete pass through the entire training data set. It represents the number of
times the model has seen and learned from all the training examples. The number of training
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epochs is a critical hyperparameter because it determines how many times the model will update
its weights and biases based on the training data. The appropriate number of epochs can vary
depending on the complexity of the problem, the size of the data set, and the convergence be-
havior of the model.

3.3.4. Network Setup and Training Process
Before the training process of the model can begin, the network has to be properly set up. This consists
of the determination of hyperparameters, which serve as the network’s initial settings as just explained
in Section 3.3.3. These hyperparameters significantly influence the behaviour and performance of the
neural network. The hyperparameters can be optimized by applying an optimization technique.

After setting up the neural network, the training process can start. The training of a neural network is an
iterative process aimed at reducing the loss in the produced output values [42]. This error is typically
quantified using a loss function or a cost function, which can take various forms. The training procedure
for a neural network involves iteratively minimising this loss function. Figure 3.8 presents a flowchart
illustrating the general network set-up and training process of an ANN.

Figure 3.8: Flowchart network setup and training process of an ANN

Loss Function
One of the steps in the training process involves calculating the loss, which depends on the definition
of the applied loss function. The loss function quantifies the error between the predicted values and
the true data values. In regression problems, a commonly used loss function is the Mean Squared
Error (MSE), as defined in Equation 3.13 [42]. Here, ŷi represents a single column vector containing
predicted values for all training samples corresponding to a specific output variable, while yi represents
the known true output values from the data set. The MSE across all training samples (n) is given by:

MSE =

n∑
i=1

(ŷi − yi)
2

n
(3.13)

The value of MSE is always positive, regardless of whether the individual errors are positive or negative.
The unit of measurement for the MSE is the square unit associated with the output parameter being
predicted. To provide a more intuitive sense of the error magnitude, one can calculate the square root
of the MSE, resulting in the Root Mean Squared Error (RMSE). In Equation 3.14 the definition is given
of the RMSE.
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RMSE =
√
MSE =

√√√√ n∑
i=1

(ŷi − yi)2

n
(3.14)

Similarly, another commonly used metric to evaluate the performance of regression models is the Mean
Absolute Percentage Error (MAPE). Unlike the RMSE, which provides the error in terms of the absolute
value of the error, the MAPE gives the relative error in terms of the percentage of the difference between
the predicted and actual values. MAPE is calculated as the average of the absolute percentage errors
over all instances, as shown in Equation 3.15:

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (3.15)

MAPE provides a measure of the accuracy of the model in predicting future values, and it is particularly
useful when dealing with data of varying scales or when interpreting the predictive performance in terms
of relative error percentages.

Optimization techniques
During the process of setting up the neural network and the training process, two instances of opti-
mization techniques come into play. Initially, a technique is selected to optimize the hyperparameters,
and subsequently, another technique is chosen to optimize the weights and biases. The choice of an
appropriate optimization technique can significantly impact the model’s convergence, generalisation,
and overall performance.

• Optimization techniques for determining hyperparameters.
There exist mainly three approaches in finding the best hyperparameters [45]:

– Grid Search (GS).
Grid search is a systematic approach where a set of hyperparameter values (a grid) is de-
fined for each hyperparameter that needs to optimized. It exhaustively explores all possible
combinations of hyperparameters from the predefined grid. GS is straightforward and en-
sures that all specified hyperparameter values are explored. It is useful for relatively small
hyperparameter spaces. However, it can be computationally expensive and inefficient for
large or continuous hyperparameter spaces since it explores all combinations.

– Random Search (RS).
Random search, in contrast to GS, randomly samples hyperparameter values from prede-
fined ranges. It randomly selects combinations of hyperparameters for evaluation without
the exhaustive nature of GS. RS is more efficient than GS for high-dimensional or continuous
hyperparameter spaces. It can find good configurations with fewer evaluations. However, it
does not guarantee that all hyperparameter combinations will be explored.

– Genetic Algorithm (GA).
Genetic algorithms are inspired by the process of natural selection. They evolve a population
of potential solutions (hyperparameter configurations) over generations. GA’s use selection,
crossover (recombination), andmutation operators to generate new hyperparameter configu-
rations. Fitness evaluation guides the selection of the best configurations. GA’s are suitable
for complex and non-linear hyperparameter spaces, and can discover good configurations
efficiently. A disadvantage of GA’s is that it may require more computational resources and
tuning compared to GS and RS.

• Optimization techniques for determining weights and biases.
The common used methods to optimize the weights and biases in the training process are the
gradient descent method and the momentum optimization [42] [46].
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– Gradient Descent Optimization.
Gradient Descent algorithms are a class of optimizers with the ability to locate local optima
within a loss function [47]. These algorithms rely on the gradients, or derivatives, of the loss
function concerning the problem variables at each step to establish the appropriate step
size and direction. In the domain of ANN, a method called back-propagation efficiently and
analytically calculates these gradients.

Back-propagation is the process of updating the weights of the network in order to reduce
the error prediction. The loss, denoted as C, represents a function of all weights and biases
in the network. Its gradient, denoted as ∇C, points in the direction of the steepest ascent
within the loss function. However, through the process of gradient descent, the model’s
parameters are systematically adjusted in the opposite direction of the gradient, effectively
minimising the loss. This iterative approach forms the core of training neural networks.

The loss gradient vector, ∇C, can be expressed as:

∇C =
[
δC
δv1

δC
δv2

... δC
δvn

]T (3.16)

Here vi represents a vector containing all weights and biases. The loss gradient vector
indicates the direction in an n-dimensional space in which the slope of the loss function is
maximised. The update to the vector containing all weights and biases (vi) is calculated as:

∆v = −η∇C (3.17)

Where η, known as the learning rate, is a crucial hyperparameter (see Section 3.3.3) that
determines the step size used during gradient descent. The change in the loss function can
be approximated as:

∆C ≈ ∇C ·∆v (3.18)

This change quantifies how the loss is expected to decrease after each parameter update.

– Momentum Optimization.
In contrast to regular Gradient Descent, which takes small consistent steps down the slope,
Momentum Optimization accelerates the descent process significantly [46]. Instead of di-
rectly subtracting the gradient of the cost function, multiplied by the learning rate, Momentum
Optimization introduces a momentum vectorm. At each iteration, it subtracts the local gradi-
ent from this momentum vector and updates the weights by adding the adjusted momentum
vector, see equation 3.19. Unlike the conventional approach where the gradient determines
the speed of descent, in Momentum Optimization, the gradient acts as an accelerator rather
than just the speed controller. The method considers the previous gradients, allowing the op-
timization process to get a momentum in a specific direction. To prevent too big momentum,
a hyperparameter of the momentum term, denoted as β, is used. This parameter ensures
that the momentum doesn’t grow too large and the model doesn’t overshoot the optimal
solution.

m = βm− η∇C
∆v = ∆v +m

(3.19)

3.4. Genetic Algorithm
Genetic Algorithm (GA) is based on natural evaluation of organisms. As discussed in Section 3.3.4,
the GA optimisation technique proves to be suitable technique for identifying optimal hyperparameter
settings. It has been briefly noted that GA’s are able in handling complex and non-linear hyperpa-
rameter spaces, efficiently uncovering effective configurations of the hyperparameters. Consequently,
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this research will employ the GA optimisation technique, and the following section will provide a short
introduction in the theory behind GA’s.

The GA process starts with the population initialisation stage where a population is a collection of
individuals [45] [35]. The initial population is typically formed by generating a set of individuals at
random. Then, for each successive generation, the following sequence of steps is iteratively carried
out:

1. Evaluation of Fitness. Each individual’s fitness is assessed and connected to the individual.
2. Selection. Individuals are chosen to carry over into the next generation.
3. Variation. The gene pool undergoes variation to explore new potential solutions.
4. Repeat. Continue the process until the one of the specified stopping criteria is satisfied.

The flowchart of the process of GA, including all the different steps, is illustrated in Figure 3.9.

The GA can be stopped when one of the following stopping criterion is satisfied:

• The maximum number of generation is reached.
• The desired level of fitness is reached.
• The fitness of individuals in new generations stops improving (convergence).

Figure 3.9: Flowchart genetic algorithm for optimisation hyperparameters

3.4.1. Evaluation of Fitness
Each individual within the population is assigned a fitness value, which play a important role in their
potential for survival and genetic reproduction in the evolutionary process [35]. An individual’s likelihood
of surviving and passing on its genetic information to the next generation is directly influenced by its
fitness score. The fitness score is computed using a fitness function and will be chosen based on the
specific problem. The design and selection of the fitness function depend on problem’s requirements.
When optimising ML model hyperparameters, an individual’s fitness can be measured, for instance, by
its prediction accuracy.

3.4.2. Selection
In the selection phase, individuals are chosen to become parents for the next generation [35]. The
probability of selection is typically proportional to an individual’s fitness score. Solutions with higher
fitness scores have a higher chance of being selected, simulating the concept of ”survival of the fittest”
from natural selection. The two most common selection methods are the following:

• Tournament selection. Tournament selection is a GA technique where a small group of individ-
uals (the tournament size) is randomly sampled from the population. These individuals compete,
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and the one with the highest fitness is chosen as a parent for the next generation. This method
helps maintain genetic diversity and promotes the survival of individuals with relatively high fit-
ness.

• Elitism. Elitism is a selection strategy in GA’s where the best-performing individuals from the
current generation are preserved and directly passed to the next generation without undergoing
genetic operations like crossover and mutation. This ensures that the top solutions in the popu-
lation are retained and continue to contribute to subsequent generations.

The selection procedures conducted result in the formation of a new generation, which is called the
offspring. When the step of selection is done, this new generation will then undergo genetic variation
to explore new potential solutions.

3.4.3. Variation
The gene pool undergoes variation to explore new potential solutions and there exist two main methods
for variation [35]:

• Crossover. Crossover, also known as recombination, involves taking genetic material from two
parent individuals selected from the current generation and combining it to create one or more off-
spring individuals for the next generation. This process mimics genetic recombination in nature,
where traits from both parents are mixed to produce genetically diverse offspring. The hyperpa-
rameter of the crossover rate (number between 0 and 1) indicates the probability of two parents
interchanging their genes.

• Mutation. Mutation is a genetic operator that introduces random, small changes into an individ-
ual’s genetic material. When mutated, the individual will have one or more of its genes altered.
The hyperparameter of the mutation rate (number between 0 and 1) indicates the probability of
an individual being mutated.

3.5. Summary
This literature review examined the application of machine learning theory in structural engineering, fo-
cusing on surrogate modeling with Artificial Neural Networks (ANN). The review gave a first introduction
of the mechanics of ANN, detailing how input values pass through layers of neurons, each modified
by activation functions, to generate predicted values. Training involves iteratively minimising loss func-
tions using metrics like Mean Squared Error (MSE) or Root Mean Squared Error (RMSE) or relative
error percentages such as Mean Absolute Percentage Error (MAPE). Optimisation techniques play an
important role in neural network setup and training, regarding both hyperparameters and weights/bi-
ases. Hyperparameters are the design aspects of the neural network and they significantly influence
the model convergence and performance. The optimisation techniques for determining hyperparame-
ters are grid search, random search, and genetic algorithms. Weight and bias optimisation primarily
rely on Gradient Descent and Momentum Optimisation methods, adjusting parameters based on loss
gradients and momentum vectors, respectively. Optimisation of both the hyperparameters and of the
determination of the weights and biases is needed to enable the network to capture complex patterns
in data.
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4
Methodology

This chapter describes the methodology used to answer the research question ’How can the perfor-
mance parameters for different stability frameworks of a high-rise steel building with different volumes
be predicted based on its design characteristics in a machine learning approach to accelerate the
decision-process?’. To do so, first the general approach is explained to give a framework for the re-
search. Thereafter, different steps that were part of the approach are further elaborated.

4.1. Research Design
A methodology was constructed to be able to make the machine learning (ML) tool, more specifically
to make the artificial neural network (ANN) model, which was used to make predictions about the
performance of the stability framework for the given volume of high-rise steel buildings. The steps
that were taken to achieve the goal of this research are summarized in a workflow diagram. The
workflow is a rough estimate of the procedure and is shown in Figure 4.1. The goal was to outline
a method that enabled an accurate and fast prediction of the performance, in terms of the structural
and environmental costs, of a high rise steel building. By determining the costs of different stability
frameworks, a decision can be made in the early-design phase regarding the most optimal stability
framework for given dimensions.

Figure 4.1: Workflow diagram

36
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4.2. Data Collection
The data collection consisted of the establishment of two parametric models, one for the braced framed
tube and one for the outrigger system, to generate input data for training the neural networks. The
buildings were modelled in Grasshopper. Moreover, Karamba was used to make structural calculations
of the structures. It was chosen to build parametric models of each of the framework since no sufficient
available data of real-life high rise buildings and their performance was available. With a parametric
model, output data was synthetically produced. In this thesis, simple parametric models were created
to represent the high-rise buildings where the height and length of the rectangular floor plan of the
building could differ. The chosen stability frameworks of the braced framed tube (S1) and the outrigger
system (S2) are presented in Figure 4.2.

Figure 4.2: Stability Systems

4.2.1. Create Parametric Model
The parametric models were made in the software Grasshopper as a plugin in the software Rhinoceros.
The modelling and creation of the parametric models can be subdivided into the following steps:

1. Determination of Input of Model.
The variables influencing building performance can be grouped into two main categories: struc-
tural variables and performance variables. Structural variables, managed within the Grasshopper
(GH) script, refer to variables necessary for constructing the structure’s geometry and conducting
structural analysis. These variables can further be classified into fluctuating and fixed variables.
Fluctuating variables, such as structure width (number of grids) and height (number of floors),
fluctuated during data set creation, directly impacting the volume variations. In contrast, fixed vari-
ables remained constant during the data set creation. The data set generated by the parametric
models provides masses of the structural elements for different geometries of the structures.

The parameters are necessary for converting the masses of structural elements into structural
and environmental costs. This conversion occurred in the Python script after obtaining the data
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sets from running the parametric models.

2. Building Geometry.
Once the input parameters were established, the geometry was defined and translated into Karamba
elements. Structural elements’ dimensions differed across the building height to effectively opti-
mise material usage. To be able to do this, different height zones were determined. The distribu-
tion of the height zones was depending on the distribution of the wind zones of the structure. A
more detailed explanation of the distribution of height zones can be found in Section 5.3.1. Each
height zone was customized with an optimised element cross-section, making sure that material
efficiency was obtained over the height of the structure in the global analysis.

3. Determination of Structural Analysis.
The structural analysis of the structure was done with Karamba, a finite element software, which
was depending on the following input:

• Joints. Since this research primarily concentrated on the structural behavior during the early
design phase, the connections were not elaborated in detail. However, the structure’s stiff-
ness was influenced by the connections’ stiffness, making it essential to determine whether
a connection was rigid or hinged. The default connection between elements in Karamba is
rigid, so it was only needed to model the hinged connections. In Table 4.1 an overview is
given of the connection type which were hinged for each stability system. Schematisation
of the hinged connections between the elements is given in Figure 4.3 and Figure 4.4.

Table 4.1: Overview of connections for the different stability systems

Element Connection type Stability System
Exterior Beams to Floors Hinged S1 and S2
Exterior Beams to Floor Beams Hinged S1 and S2
Inner Column to Floor Beams Hinged S1 and S2
Exterior Column to Floors Hinged S1 and S2
Exterior Column to Outrigger Truss Hinged S2
Interior Column to Outrigger Truss Hinged S2
Diagionals to Exterior Columns Hinged S1

Figure 4.3: Schematisation of hinged connection between elements of braced framed tube
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Figure 4.4: Schematisation of hinged connection between elements of outrigger system

• Material. The material of the load-bearing structure was entirely of steel for braced framed
tube and a combination of steel and concrete for outrigger system. The steel grade of S355
was chosen and the concrete class of C45/55. The most important material properties of
S355 are given in Table 4.2 and of C45/55 (uncracked) in Table 4.3.

Table 4.2: Material properties of S355 [48]

ρ (kg/m 3) E (MPa) G (MPa) fy (MPa) fu (MPa) ν (-)
S355 7850 210000 81000 355 490 0.30

Table 4.3: Material properties of C45/55

ρ (kg/m 3) Ecm (MPa) G (MPa) fck (MPa) fcm (MPa) ν (-)
C45/55 2500 36283 15118 45 53 0.20

• Load definitions. The load definitions ware categorized into vertical load, gravity, and hor-
izontal load, with the horizontal load specifically referring to wind load. The magnitude of
the horizontal load depended on the different wind zones applied to the structure. These
wind zones, represented in Figure 2.11, varied in intensity across the height of the building.
A more detailed explanation of the loads and their determination methods is presented in
Section 2.6 of the Literature Review. The load combination in the ULS for Consequence
Class 3 (CC3) was chosen for during the analysis.

• Structural elements. The structural elements included the floors, structural core, exterior
columns, exterior diagonals, exterior beams, floor beams, inner columns and the outrigger
truss. For the outrigger system, there is an additional distinction between the interior and
exterior columns which are connected to the outrigger truss and those that are not. The
columns that are connected to the outrigger truss will contribute more to the stability system
of the structure, where the columns that are not connected to the outrigger truss will con-
tribute mostly to only the gravity system. Since those columns will have a different function
within the structure, they are divided into different subsets to enable a better optimisation.
The floors and structural core were converted from a mesh to a shell. The other structural
elements were all converted from a line to beam elements.

• Supports. The support of the structure was modelled as a fixed support at the bottom points
of the structure.
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• Mesh size. As Karamba is a finite element software, the model’s elements were converted
into a mesh. The accuracy of the results and the computation time depend on the mesh
density. It was therefore necessary to determine the mesh size that will be applied in the
model. The mesh size was assumed to be equal to the grid size.

Once these inputs were identified, they were combined into a single component for structural
analysis. This process allowed for the calculation of maximum horizontal deflection and the as-
sessment of the utilisation of beam and shell elements under the selected load case. The opti-
misation consisted of both strength and stiffness requirements, with the maximum utilisation of
elements and maximum displacement established as criterion.

4. Generation of Results.
Once the parametric model and the desired output data were established, the target output of the
structure was generated. The wanted output was the mass of the structural elements for each
of the height zone specific. A plug-in tool in Grasshopper called Colibri was used to iterate the
parametric model through various geometry variables. This process yielded a data set consist-
ing of the results of the parametric model and the corresponding structural analyses. Table 4.4
provides an overview of the data set’s general structure. Each row in this data set represents a
list containing input parameter values for a single analysis, alongside the corresponding output
values derived from the analysis. The output was the mass of each structural element, denoted
as i, for each height zone, denoted as n. Columns in the table represent specific input or output
parameters. The data was stored in a Comma-Separated Values (CSV) file.

Table 4.4: General shape of data set

Input x1 Input x2 Output y(i, n)
Width Height Mass(i, n)

Sample 1 . . .
Sample 2 . . .

... . . .
Sample m . . .

A widely accepted rule of thumb in ML suggests having at least 10 times as many samples as
parameters (weights and biases) in the neural network [46]. Applying this rule to this research,
where the input data included the building’s volume, a total of two input variables was present: one
for height and one for the width of the floor plan. The number of output variables was significantly
higher as the masses split up regarding different structural elements and different height zones.
The total count of output variables was determined by the total number of structural elements and
the number of height zones. These structural elements were categorized into two groups: those
independent of height zones and those dependent on them. In the case of the braced framed
tube, the bracing remained consistent across height zones, whereas for the outrigger system,
the outrigger and core structures maintained consistent across heights. For both systems the
floor beams are consistent across heights. The structural elements who were dependent on
the height zone were the outer columns, inner columns and the outer beams. For the outrigger
system, there is an additional division for exterior and interior columns connected to the outrigger
and those not connected.. In Table 4.5 an overview is giving on what value these parameters had
for the different stability frameworks.

Table 4.5: Overview determination of total number of output variables for each system

Braced Framed Tube (S1) Outrigger (S2)
# of dependent structural elements 3 5
# of independent structural elements 2 3
# of height zones 6 6
Total # of output variables 3*6+2=20 5*6+3=33
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Taking into account these variables and the specification of one hidden layer with a maximum of
50 neurons, the total number of parameters (P) was estimated using the following equation:

P = xinput;features · xneurons + xneurons · xoutput;neurons
PS1 = 2 · 50 + 50 · 20 = 1100

PS2 = 2 · 50 + 50 · 33 = 1750

(4.1)

To meet the rule of thumb, the aim was for a data set of around 1110 ∗ 10 = 11100 samples for
braced framed tube and 1750 ∗ 10 = 17500 for outrigger system. Since this required a substantial
data set, it was decided to simplify the desired output to only the total mass of each material.
Since the research aimed to determine the overall performance of a structure to compare the two
systems, the goal was still met only looking at the total masses. The masses were combined to
represent only the total mass of steel and total mass of concrete. In this case, there was only one
output neuron for braced framed tube (representing the mass of steel) and two output neurons
for outrigger system (representing steel and concrete mass).

P = xinput;features · xneurons + xneurons · xoutput;neurons
PS1 = 2 · 50 + 50 · 1 = 150

PS2 = 2 · 50 + 50 · 2 = 200

(4.2)

Applying the rule of thumb again, this resulted in a needed data set of 1500 samples for braced
framed tube and 2000 samples for outrigger system, which was a more achievable data set size.
Since, it was beneficial to understand the mass distribution across different structural elements
for various height zones, additional neural networks were established and trained specifically for
this purpose. After training, assessing the accuracy of all neural network models allowed for
determining their usability and insights, even if they did not meet the rule of thumb beforehand.

Achieving a data set size of considerable size involved automating the Grasshopper script. The
plugin of Colibri in GH was utilised to automatically generate through the GH model of braced
framed tube and outrigger system by iterating through the input variables and extracted the corre-
sponding outcomes. This approach enabled the generation of substantial data sets for the neural
networks. The parametric models for both the braced framed tube and the outrigger system
required approximately 72 hours each to run to complete the total data set.

The different steps needed for the creation of the parametric models in GH are summarized in the
flowchart in Figure 4.5.

Figure 4.5: Flowchart of the creation of the parametric model in Grasshopper
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4.3. Data Preprocessing
After generating the data sets through the parametric models, it was crucial to preprocess the data to
prepare it for use as input for the neural networks. Initially, the data was divided into training and test
sets, followed by scaling. It is important to note that data preprocessing was performed separately for
each of the four different neural networks. These neural networks consisted of twomodels for predicting
the total mass of both stability frameworks, and two for predicting the mass of each specific structural
element within each height zone. An overview of these neural networks is provided in Table 6.3.

Stability System ANN Model Prediction Goal

Braced Framed Tube
S1-A Total mass of structure
S1-B Mass of each structural element within height zones

Outrigger System
S2-A Total mass of structure
S2-B Mass of each structural element within height zones

Table 4.6: Different ANN models for prediction of the performance of stability systems

4.3.1. Split Data
To evaluate the performance of the neural network, the data set was divided into a training data set
and a testing data set. During this process, the testing data set was set aside to ensure that the neural
network was exclusively trained on the training data set. The purpose of the testing data set was to
assess the accuracy of the predictive model on data it had not been exposed to before. This validation
was important because the concept of a predictive model is to generalise its predictions across all data
points, not just those seen during training. It is common practice to use 80% of the data for training
and reserve 20% for testing [46]. Therefore, in this research, 20% of the data was allocated for the
testing set and 80% for the training set. However, it was essential to carefully select the test data points.
Simply choosing 20% of the data from either end of the data set is not advisable. This approach might
lead to clustering of points in specific regions of the design space, potentially biasing the evaluation. A
more representative selection method was used to ensure an unbiased and accurate assessment of the
neural network’s performance. The selection method for this research was the k-fold cross-validation.

4.3.2. Scale Data
The input variables were scaled to the same range to prevent poor performance of the neural network
due to significant differences in scales along the variables [46]. The two most common and important
scaling methods are:

• Min-Max scaling (normalization).
This scaling method scales all data to values within a specified interval, which is almost always the
interval of 0 and 1. This is done by subtracting the min value and dividing by the max value minus
the min value. The library of Scikit-Learn in Python provides a transformer calledMinMaxScaler
for this.

• Standard scaling (standardization).
This scaling technique transforms the data into a standard normal distribution. Standardization
involves subtracting the mean value, ensuring the standardized values always have a zero mean,
and then dividing by the standard deviation, resulting in a distribution with unit variance. Unlike
min-max scaling, standardization doesn’t constrain values to a specific range, which may be
a problem for some models. Neural networks often expect an input value ranging from 0 to
1, and therefore standard scaling may not be the best fit for this research. The advantage of
standardization is that it is much less affected by outliers. Scikit-Learn offers a transformer called
StandardScaler specifically designed for this standardization process.

To meet the input requirements of the neural networks, which typically expect values within the range
of 0 to 1, the research implemented the min-max scaling (normalization) method. Moreover, it should
be noted that it was important to fit the scalers to the training data only, not to the full data set (including
the test set). Additionally, it was also not necessary to scale the output data, or also referred to as the
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target values.

4.4. Modelling Procedure
After generating and pre-processing the data set, the subsequent step involved starting the modeling
procedure. This modeling process included implementing neural network algorithms and collecting
and comparing the results. The modelling procedure consisted of implementing ML algorithms and
gathering and contrasting the outcomes. The modelling procedure was done in Python, where Python
packages were used for the development of theML algorithm. Themodelling procedure was subdivided
in the following tasks:

1. Import the scaled clean training data.
2. Create ANN model.
3. Choose hyperparameters.
4. Training ANN on data.
5. Validate model.
6. Make predictions.

4.4.1. Create Artificial Neural Network
The process of training or learning an ANN involved the optimisation of interconnected weights and
biases [49]. The widely utilised technique for determining optimal weights and biases in neural networks
is the back-propagation algorithm. This technique enhances the network’s precision by using a first-
order gradient descent approach. The most significant advantage of this approach is its capacity to
navigate beyond local minima on the error surface, which will result in solutions that are either optimal
or very close to optimally. Thus, in this study, the back-propagation algorithm was the chosen method
for the optimisation of interconnected weights and biases. The loss function that was used in this
research is the Root Mean Squared Error (RMSE), which is a common loss function for regression
problems. A more detailed explanation and the equation of the RMSE can be found in Section 3.3.4 of
Chapter 3. The Python library Keras was used for the creation of the neural network and the Python
library DEAP was used for the creation of the genetic algorithm (GA) for the determination of the optimal
hyperparameters configuration. DEAP, which stands for Distributed Evolutionary Algorithms in Python,
is a widely used library designed for the implementation of genetic algorithms. The Python library
Scikit-Learn was used for the scaling of the data as mentioned in Section 4.3.

4.4.2. Choose Hyperparameters
The ability of an ANN to adapt to the data is depending on both its network architecture and the spe-
cific set of hyperparameters chosen. Selecting the appropriate hyperparameters is crucial and time-
consuming. Because the network’s ultimate performance can only be assessed after training, evalu-
ating numerous hyperparameter combinations can become a time-intensive limitation. Consequently,
finding an efficient method to determine the optimal hyperparameters becomes essential. As previously
mentioned in the Section 3.3.4 of Chapter 3, there are multiple optimisation techniques for determining
the hyperparameters. The three main optimisation techniques are Grid Search, Random Search and
Genetic Algorithm. The method applied in this research for finding the optimal set of hyperparameters
was the Genetic Algorithm.

Table 4.7 displays the hyperparameters used for optimisation. While there are several hyperparameters
available for adjustment in an ANN, this research concentrated on four specific parameters: the number
of neurons within the hidden layer, the kernel initializer, the bias initializer and the learning rate. The
remaining hyperparameters were maintained as fixed variables for the purposes of this study. A short
explanation of the chosen fixed parameters is given below. A more detailed explanation of the theory
of each of the hyperparameters can be found in Section 3.3.3 of Chapter 3.

• The number of neurons in the input layer was depending on the number of input variables of
the model, which included the height of the structure and the length of the floor plan, and therefore
was equal to two for all the ANN models.
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• The number of neurons in the output layer corresponded to the desired output of the model,
specifically the performance parameters in this research for each of the structural elements, and
therefore was equal to 1 for S1-A, 25 for S1-B, 2 for S2-B and 38 for S2-B.

• The number of hidden layers was set to be equal to one. This decision was based on the
fundamental idea that one layer can handle complex tasks well according to the universal ap-
proximation theorem. This approach ensured that the neural network could capture important
patterns in the data without unnecessary complications [30].

• For the activation functions, ReLU is commonly used in hidden layers, while Linear activation
is suitable for the output layer for regression problems [46]. Therefore, for this research the ReLu
was chosen for the hidden layers and Linear activation for the output layer.

• The chosen cost function for this regression task was Root Mean Square Error (RMSE), a widely
used metric for evaluating the accuracy of regression models.

• In the training process, the number of epochs was set to a 10,000.
• A smaller batch size was taken and was set to be equal to 64 at first [46].
• The selected optimiser was momentum optimisation, preferred for its speed compared to the tra-
ditional gradient descent, as detailed in the theory Section 3.3.4. Additionally, Adam optimisation
was adopted due to its proven effectiveness, ensuring fast convergence to a good solution [46].
To implement Adam optimisation, it was crucial to determine the learning rate hyperparameter,
which was identified as one of the parameters to be optimised by GA.

Table 4.7: Summary of different ANN characteristics in this study

Parameter Type Parameter Description

Fix

Neurons in input layer 2
Neurons in output layer 1 (S1-A), 25 (S1-B), 2 (S2-A), 26 (S2-B)
Number of hidden layers 1

Hidden layer activation function ReLU
Output layer activation function Linear

Cost function RMSE
Number of epochs 10.000

Batch size 64
Optimiser Momentum optimisation (Adam)

Variable

Neurons in hidden layer Varying from 1 to 50
Kernel initializer Random uniform, Constant, Zeros
Bias initializer Random uniform, Constant, Zeros
Learning rate 0.01 or 0.001

4.4.3. Training ANN on Data
Once the neural network was constructed, the next step involved fitting the model to the training data.
Before initiating the training process, it was essential to provide and clean the training data, and deter-
mine the number of training epochs. As mentioned earlier, the term ”epochs” refers to the number of
complete passes the model makes through the entire training data set. Each epoch signifies one full
cycle during which the model learns from all the provided training examples. Pre-defining a specific
number of training epochs can be challenging. Choosing a too low value might lead to underfitting,
while a too high number could result in overfitting. Although callback functions are typically used to
address this dilemma, they are not applicable due to the utilisation of the Scikit library in Python. In-
stead, convergence graphs of the validation and training loss was inspected after training to assess if
the selected number of epochs was adequate. Throughout the training process, the performance and
error of the neural networks were evaluated using two different metrics: loss and validation loss. The
loss represents the error computed over predictions for all training samples, while the validation loss
quantifies the error across predictions for all testing samples. It is important to note that the neural
network’s weights were updated based on the optimisation of the loss value, not the validation loss.
The validation loss served only to assess the network’s ability to predict unseen data accurately.
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The convergence graph illustrates the training and validation loss (or error) plotted against the num-
ber of epochs during the training process of the ANN model. By analyzing the convergence graph, it
becomes clear if overfitting or underfitting is occurring. Overfitting is observed when the training loss
continues to decrease while the validation loss either increases or remains constant. On the other
hand, underfitting is identified when both the training and validation loss remain high and show minimal
improvement, plateauing without convergence to a low value. If the convergence graph reveals any
signs of overfitting or underfitting, adjustments can be made to the maximum number of epochs. Fur-
thermore, the ANN model with the lowest error was defined as the best model and was saved as the
final output.

4.4.4. Validation
In this research, two different types of validation were crucial. The first, cross-validation, played a role
in the hyperparameter optimisation process. It was used in fine-tuning the hyperparameters to ensure
optimal performance. The second type involved validation using the testing data set, which served as
the ultimate evaluation and validation step for the selected neural network. This evaluation was based
on the hyperparameters derived from the optimisation process. Both the different types of validation
are presented in the flowchart in Figure 4.6.

Figure 4.6: Flowchart cross-validation and genetic algorithm workflow

The cross-validation score holds significant importance as it provides insights into the generalisation
capabilities of the neural network. This score essentially represents the network’s ability to predict
values on data it has never encountered before. This study utilised the cross-validation score as a key
metric within the genetic algorithm.

The challenge of overfitting on the test set occurs when evaluating different settings, or hyperparame-
ters, within the neural networks. This issue occurs because hyperparameters can be adjusted until the
neural network model performs optimally, potentially allowing knowledge about the test set to influence
the model. This leakage of information into the model can distort the evaluation results, no longer ac-
curately reflecting the model’s generalisation performance. To overcome this problem in this research,
a portion of the data set was set aside as a ’validation set’. Training took place on the training set,
and evaluation was done on the validation set. If the model performed well, the final evaluation was
carried out on the test set. However, dividing the data into three sets significantly reduces the samples
available for model learning, and the results can be skewed by a specific random choice for the pair
of (train, validation) sets. A solution to this challenge is the implementation of cross-validation (CV).
Although a test set is still reserved for final evaluation, the validation set is no longer needed in CV. In
the basic k-fold CV approach, the training set is divided into k smaller sets. For each of the k folds:

1. A model is trained used (k − 1) of the folds as training data.
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2. The resulting model is validated on the remaining part of the data.

The resulting model is validated on the remaining portion of the data. The performance measure re-
ported by k-fold cross-validation is the average of the values computed in this iterative process. In
this research, the training data set was divided into five different parts, thus employing a 5-fold cross-
validation approach. This strategy ensured a reliable evaluation of the neural network’s performance.
A visual representation of k-fold cross-validation is presented in Figure 4.7.

Figure 4.7: Schematization k-fold cross validation

4.4.5. Hyperparameter Optimisation using GA
The objective of hyperparameter optimisation was to identify the most effective values for the parame-
ters of the neural network that resulted in the most accurate results. As mentioned earlier, this research
implemented the genetic algorithm as the optimisation technique. The fundamental concept involved
iterating toward an optimal set of hyperparameters for the ANN models. These iterations, referred to
as generations, mimic generations of individuals in biological evolution. The goal was for the fitness of
these individuals to improve with each subsequent generation. In the first generation, a variety of ran-
dom hyperparameter sets (referring to the variable hyperparameters) were generated. These different
sets were so called individuals within the context of the GA. Each set of hyperparameters was used to
create, train, and validate the neural network. The validation process assigned a specific fitness value
to the neural network. The fittest ANN models were selected to survive and pass on their values of the
parameters to the next generation.

Settings for Genetic Algorithm
Before the GA could be runned and the optimised hyperparameters could be found, the settings of the
GA had to be set. Moreover, it should be clear which hyperparameters are fixed and which one are
variable. As previously presented, table 4.7 provides an overview of both fixed and variable parameters
of the neural network. It illustrates that this research focused on optimising four hyperparameters: the
neurons in the hidden layer, the kernel initializer, the bias initializer and the learning rate. Given that
there are four hyperparameters to optimise, an individual’s genotype was represented as a list with four
elements. Each element corresponded to a value within the range of possible values for the respective
hyperparameter. The genotype essentially captured an individual’s properties and was viewed as the
set of genes defining that individual.

Before being able to run the GA, there are other settings that needed to be determined. The theory
behind these settings is given in Section 3.4 of Chapter 3. An overview of the chosen values for each
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of the settings is presented in Table 4.8.

• Population Size.
The population size must be sufficiently large to make sure there is enough diversity in the gene
pool. A population that is too small can lead to rapid convergence to a local optimum. How-
ever, a larger population size requires evaluating more individuals in each generation. In this
study, the evaluation involved a time-consuming 5-fold cross-validation of an ANN. To manage
computational time, the population size was limited and set to 100 in this research.

• Number of Generations.
Ensuring convergence requires a sufficient number of generations, but a higher count means
evaluating more individuals, leading to increased computational time. In this project, the number
of generations was set to be equal to 30.

• Convergence Limit.
The convergence limit was set to prevent exhaustive search, and was set to be equal to three.
This parameter dictates that if no improvement was observed for three consecutive iterations, the
GA was terminated to prevent exhaustive search.

• Tournament Size.
The size of the selected group of competitors is referred to as the tournament size. It’s crucial
for this size to be proportionate to the population. If the tournament size matches the population
size, the best individual of the generation would dominate every tournament, resulting in offspring
with limited genetic diversity. On the other hand, a too small tournament size might allow weaker
individuals to pass on their genes. In this research, the tournament size was set to be ten, which
was 10% of the population size.

• Elite portion.
To prevent the risk of overlooking the best individuals, elite portion was taken into account. For
this research, the elite portion was set to be equal to 0.10, indicating that the top 10% of each
generation was guaranteed to pass to the next generation.

• Crossover Rate and Mutation Rate.
The crossover rate indicates the probability of two parents interchanging their genes. And the
mutation rate indicates the probability of an individual being mutated. Both values strongly influ-
ence the behaviour of the GA. The values of the crossover rate and mutation rate were set to be
equal to 0.80 and 0.10, respectively.

Table 4.8: Determined values for the settings for GA

Setting Value
Population size 100
Number of generations 30
Convergence limit 3
Tournament size 10
Elite portion 0.10
Crossover rate 0.80
Mutation rate 0.10

A schematization of how the GA worked to find the best possible configuration of the hyperparameters
is presented in Figure 4.8.
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Figure 4.8: Schematization of the GA for finding the best configuration of the hyperparameters

4.5. Analysis of Model Results
The results obtained from the modelling procedure were analysed to see if the predictions from the
artificial neural network were accurate. A comparison was made between the predictions from the
ANN models with the parametric models and other curve fitting models. Moreover, it was checked
analytically if the structural requirements are met in terms of stability of the structure in the parametric
models. The flowchart illustrating the progression from one step in the modelling procedure to the
subsequent analysis of model results can be seen in Figure 4.9.
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Figure 4.9: Flowchart modelling procedure to next step analysis of model results

4.5.1. Comparison Parametric Model
The predicted output generated by the ANN models was compared to the outcomes of the masses of
the parametric model. The parametric model served as the accurate baseline in this research, with a
100% accuracy, as it generated the input data. Next to the accuracy, the needed computational time
to generate the outcome of both the parametric model and the ML model was compared.

4.5.2. Comparison Other Curve Fitting Methods
The results from the ANN models were compared with the results of other curve fitting methods to
assess their respective accuracy’s. The ANN model was compared to the curve fitting models of linear
regression, second order regression and third order regression.

Linear Regression
Linear regression is the most basic form of regression modeling [32]. In its formal representation, the
predicted output y is determined through a weighted sum of the input features plus a constant called
the bias term (or intercept term), outlined as:

y = ax+ b (4.3)

In this equation, a represents the slope and b represents the intercept term. These factors are deduced
by minimising the error between the actual y and the estimated y′, which is called the loss function.
The loss function, which in this research was equal to the mean squared error (MSE), quantifies this
error. In the Python library Scikit-Learn, the class of LinearRegression was used to find the linear
relationship between the input and output features [46].

Polynomial Regression
Polynomial regression is a technique where a linear model is used to fit nonlinear data by adding
powers of each feature as new features, then training a linear model on this extended set of features
[46]. Specific forms of polynomial regressions are the second order and third order regression. The
general form of the equations for the second and third order are:

y2nd = ax2 + bx+ c (4.4)

y3rd = ax3 + bx2 + cx+ d (4.5)
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In this equation, y represents the predicted output, x is the input variable, and a b c d are the coeffi-
cients that need to be determined. Polynomial interpolation aims to find the best-fitting nth-order curve
that passes through a set of given data points, where the n refers to the polynomial degree. For this re-
search, the Python library Scikit-Learn, the class of PolynomialFeatures was used to find relationships
between features.

4.5.3. Analyzing the Structural Model
The analysis of the structural model involves the validation process to ensure its reliability. To validate
the 3D model in GH, a combination of 2D analyses and analytical calculations was done, see for the
elaboration Section 5.5.1. The structure was simplified into a 2D assembly of line members, allowing
for easier assessment of its behavior. A reference structure, with predefined dimensions, served as
the basis for validation through analytical and 2D analysis methods. In this research, the analytical
analysis of individual local members was not included, since the aim of this research was to get an
initial feasibility analysis of the design concept in the early design phase rather than a comprehensive
final evaluation of the design.

In the analytical analysis, specific formulas known as ’vergeet-me-nietjes’ were utilised to determine
displacement due to bending in the structural system, focusing primarily on the braced framed tube.
The structure was divided into sections corresponding to different wind zones to accurately account for
the non-uniform distribution of wind load. Displacement due to shear and the second-order moment
generated by self-weight were also considered to ascertain the total displacement of the structure. The
results obtained from the analytical analysis were compared against the outputs from the 3D model
(parametric model) to evaluate its accuracy and identify any differences. Simultaneously, a 2D analysis
was conducted using MatrixFrame software, focusing on both the braced framed tube and outrigger
system. Displacement due to bending was calculated, and adjustments were made to incorporate
displacement due to shear, particularly for braced framed tube system. The input data derived from
previous methodologies, including profile definitions, load definitions, and support definitions, were
utilised in the 2D analysis. The outcomes of the 2D analysis were compared with the outputs from the
3D model to assess its performance and reliability.

4.6. Summary
This study started by creating data sets for the masses of two stability frameworks: the braced framed
tube and the outrigger system. Parametric modelling in Rhinoceros with Grasshopper was used for the
creating of the data sets. The cross-sections of the beams and columns of the structures were opti-
mised to minimise the mass. Separate parametric models were developed for each stability framework,
resulting in distinct data sets.These data sets served as the foundation for training the ANN models.
The data collection phase involved generating both fixed and variable input variables to capture the
specifics of high-rise building designs. Subsequently, data preprocessing was conducted, which in-
cluded dividing the data set into training and testing subsets and normalizing the data to optimise it for
efficient training of ANNs. The modeling phase consisted of formulating, training, and validating the
ANN model, with the utilisation of a genetic algorithm for hyperparameter optimisation. The training
process involved back-propagation for optimising weights and biases, with the Root Mean Squared
Error (RMSE) as the loss function. Additionally, the methodology incorporated an evaluation of the
ANN’s models predictions against those of traditional parametric models and established interpolation
methods. Moreover, an analytical verification of the parametric model was performed to ensure the
reliability of the parametric model.



5
Data Generation

This chapter outlines the procedures for setting up the parametric models in Rhinoceros, Grasshopper
(GH) to generate the data about the masses of the structural elements for structures of various sizes of
the braced framed tube (S1) and the outrigger system (S2). It starts with an overview of the roadmap
of the data generation process which consisted of six different steps. Afterwards, a more detailed
explanation of the different steps of the roadmap is given. First, an overview of input variables is pro-
vided, followed by an explanation of assumptions made in the geometry. Then, the chapter details the
assumptions and decisions guiding the structural analysis. Subsequently, the chapter considers the
specific assumptions and decisions required for the structural analysis. Additionally, an explanation
of the results generation process is provided. These outlined steps align with the procedures previ-
ously discussed in Chapter 4 of the Methodology, specifically in Section 4.2.1. Any supplementary
assumptions, besides those covered in that section, are discussed in this chapter.

It is important to emphasize that the objective of this research was to compare two stability frameworks,
making the analysis relative to one another. Consequently, some assumptions could be made, as
precision to the exact value was not mandatory for the comparative study. However, it was essential
that these assumptions remained consistent across the two different stability frameworks. This made
sure that a fair comparison was made among them.

5.1. Data Generation Process Overview
Figure 5.1 presents a roadmap outlining the different stages required to generate essential data for
training the ANN models. Each step is further broken down into a list of its component parts. The
purpose of this roadmap was to provide a preliminary overview of the necessary tasks without requiring
an in-depth examination of the GH model for the parametric model and the Python code for the ANN
model. An overview of the total GH script is provided in Appendix D.
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Figure 5.1: Detailed flowchart of the different steps for the generation of data and results

5.2. Determination Input for Grasshopper Model
Figure 5.2 provides an overview of the location of the first part, A: Determine input, within the GH script.
This section specifically introduced several parameter types related to the structural parameters. Struc-
tural parameters were categorized into fixed and variable parameters for both structural system. Fixed
structural parameters included components such as stability framework, geometry parameters, build-
ing usage, and load combinations. On the other hand, the variable structural parameters influenced
the volume of the building.
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Figure 5.2: Overview Grasshopper script for part A. Determine input

Table 5.2 presents an overview of the model’s input structural parameters, which were categorized
into fixed and variable parameters. Fixed variables refer to values established before data generation.
While these variables were initially self-selected, they could be altered to create a new data set by
incorporating different factors. For instance, adjustments may be made if there was a change in the
building’s function or a modification in the grid size. On the other hand, variable parameters were those
that under went variation during the data set generation process. It can be seen that there were only two
such variables: the number of floors and the number of grids. Together, these parameters contributed
to defining the building’s overall volume.

Table 5.1: Summary of structural input parameters for the Grasshopper model

Type Parameter Description

Fixed

General

Stability framework
S1: Braced framed tube
S2: Outrigger system

Height floor to floor 3 m
Floor thickness 220 mm
Building usage Office space
Load combination ULS

S1 Specific

Grid size 1.8 m
Min angle of bracing 30°
Max angle of bracing 60°
Max n floors bracing 30

S2 Specific

Grid size 3.6 m
Ratio for location rigger (i = 1) 0.7
Location rigger on nth floor (i > 1) 20
Max range floor beam 8 m

Variable

General Number of floors Varying from 16 to 100

S1 Specific Number of grids Varying from 4 to 32

S2 Specific Number of grids Varying from 2 to 16

Table 5.2: Summary of structural input parameters for the Grasshopper model
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5.3. Building Geometry
Details regarding additional assumptions made during the establishment of the structure in the second
step of Building Geometry, such as the distribution of height zones, bracing definition, structural core
definition, and floor plan determination are provided. Figure 5.3 illustrates the specific section in the
script where the second part was executed. The visualisation from the GH script of the results of
building the geometry is presented in Figure 5.4 for the braced framed tube and in Figure 5.5 for the
outrigger system.

Figure 5.3: Overview Grasshopper script for part B. Create geometry

(a) Front view of S1 (b) 3D Perspective of S1

Figure 5.4: Visualisation of geometry of S1 for w = 28.8 m and h = 150 m
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(a) Front view of S2 (b) 3D Perspective of S2

Figure 5.5: Visualisation of geometry of S2 for w = 28.8 m and h = 150 m

5.3.1. Height Zones
As previously noted, for effective cross-section optimisation of the load-bearing structure, the building
was divided into distinct height zones. This segmentation ensured efficient material optimisation. The
division of the structure into zones was based on the classification of wind zones according to the
Eurocode [19]. The reference height ze of the wind zones depends on the height and width of the
building. A more detailed explanation of the division of the different wind zones acting on a structure
can be found in Section 2. If the height of the building was more than twice the width of the building,
three wind zones were identified. The first wind zone, and consequently the first height zone, was equal
to one time the width of the building. The third wind zone, and therefore the last height zone (viewed
from the top of the building going downwards), was also equal to one time the width of the building. The
second wind zone referred to the middle part of the building, and the wind velocity increased in that
zone. For the division of the height zones, the second wind zone was divided by an n-fold of the width
of the structure, similar to what was done for the first and last height zones. In cases where a precise
equal distribution of the second wind zone in n folds of the width of the structure was not feasible, the
height zones closer to the ground level consisted of a higher number of floor zones. The maximum
division of the second wind zone was set at four; therefore, the maximum number of height zones was
capped at six. Figure 5.6 illustrates examples of the distribution of these height zones for varying total
numbers of floors.
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Figure 5.6: Examples of the distribution of height zones over different heights of the structure

5.3.2. Bracing Definition
The bracing configuration on the outer perimeter of the braced framed tube is critical for structural
integrity. This configuration is determined by the maximum and minimum angles of the diagonals, as
informed by literature on optimal diagonal angles. Baradaran et al. (2019) recommended an optimal
angle range for mega bracing systems in steel frames to be between 30 to 60 degrees, varying with the
number of stories [50]. They found the most effective angle for mega bracing to be between 36 to 42
degrees, considering the frame height and span. The broader range of 30 to 60 degrees was chosen
for this research to allow for a wider variety of bracing configurations. It ensured that there was a higher
possibility of the structure to be feasible, since the bracing was required to be evenly distributed across
the total height.

5.3.3. Structural Core
The structural core was only taken into account for the stability framework of the outrigger system
and was not taken into account for the braced framed tube. The dimensions of the structural core
were established by examining the ratio observed in the structural cores of various real-life high-rise
buildings. The core-to-total area ratio was determined for four different high-rise structures and plotted
against their respective total heights. This ratio was calculated as the core’s proportion relative to the
entire floor plan area. Figure 5.7 displays the plotted results. By analyzing these real-life projects,
assumptions were made regarding the relationship between the core ratio and different heights. A
fitted line was derived to represent this relationship, enabling the calculation of core lengths for varying
heights and floor plans. The final step involved determining howmany times the grid size evenly divided
the total length. The resulting number, rounded to the nearest even whole number, became the ultimate
dimension for the building’s core. To maintain symmetry, this number was rounded to the nearest even
value, since the total length of the structure was a multiple of an even number of grids. This was done
to ensure that the remaining dimensions from the core to the outer perimeter on both sides was evenly
distributed in multiples of the grid size.



5.4. Determination of Structural Analysis 57

Figure 5.7: Ratio of the structural core of different real-life projects

5.3.4. Floor Plan Determination
The floor plan varied between the different stability frameworks of braced framed tube and outrigger
systems due to the presence or absence of a core. In both systems, the floor beams played a crucial
role in transferring vertical forces from the floors to either the core (if present) or the exterior columns.
For the outrigger system, the beams connected the stabilizing core and the moment frame. Figure 5.8
provides a schematic overview of the floor plan of 28.8 m for both stability frameworks, including the
location of inner and outer columns. To facilitate incremental core size adjustments, the grid size for
the outrigger system was intentionally chosen to be twice as small (grid = 1.8 m) as that of the braced
framed tube (grid = 3.6 m). This design decision ensured that core dimensions could increase more
gradually, avoiding significant changes in the core dimensions.

Figure 5.8: Schematic representation of the floor plan distribution

5.4. Determination of Structural Analysis
In this section, an elaboration is made on additional assumptions essential for the structural analysis.
These assumptions relate to the definition of the wind load on the structure and the conversion of the
structural elements to either shell or beam elements. Figure 5.9 illustrates the specific section in the
script where this part was executed.
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Figure 5.9: Overview Grasshopper script for part C. Determination structural analysis

5.4.1. Load Definition: Wind Load
To be able to determine the wind load working on the structure, it was necessary to establish the peak
velocity pressure, qp(ze). The calculation of qp(ze) for a building involved certain assumptions about
its height. The qp(ze) was influenced by the building’s reference height, and to be able to determine
the qp(ze) over a changing height, a relationship between structure height and qp(ze) was needed to be
stated. This relationship was incorporated into GH, enabling the calculation of qp(ze) for varying building
heights. The qp(ze) of Area II, urban for the Netherlands was taken [51]. The relationship between the
qp(ze) and the height of a building is presented in Figure 5.10. The established assumed relation
between the variables was derived in Python by determining the best possible logarithm function and
is presented in Equation 5.1. Furthermore, it was assumed that in the case of three wind zones, the
qp(ze) in the middle wind zone was subdivided into working heights equal to the floor-to-floor height of
the structure. The distribution of the velocity pressure over the height of the building is presented in
Figure 5.11.

qp(ze) = max(0.58, 0.39 · z0.29e ) (5.1)

Figure 5.10: Change of wind velocity pressure for different heights based on Area II (urban)
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Figure 5.11: Assumed velocity pressure distribution over the height of the building

The structural factor cscd was assumed to be 1.1 but was included as a variable parameter, allowing
for adjustments to asses its sensitivity if wanted. Given the symmetric rectangular shape of the floor
plan, the force coefficient was set at 2.1. This determination was based on cf,0 on being 2.1, as the
width and length were identical. Additionally, ψr is 1.0, reflecting the absence of rounded corners, and
ψlapda was also 1.0, as the research assumed no reduction was needed for the end-effect factor. A
more detailed explanation of the assumptions can be found in Appendix B. The wind pressure, derived
from the peak velocity pressure and the force coefficient, was represented as a line load on each storey
working on one side of the structure.

5.4.2. Elements
Each stability framework, both braced framed tube and outrigger system, consisted of a different set
of structural elements. Common to both frameworks were the floors, exterior columns, exterior beams,
floor beams, and inner columns. However, the braced framed tube consisted also of exterior bracings,
while the outrigger system incorporated the outrigger beams and the structural core. Moreover, for the
outrigger system there was an distinction made between the columns (both interior and exterior) which
were connected to the outrigger truss and which were not. Tables 5.3 and 5.4 provide an overview of
the input parameters essential for the structural analysis of each element within the respective systems.
For the outrigger system, the distinction between the subsets of the columns connected to the outrigger
truss and not connected to the outrigger truss is not presented in the Table since the input range for
both columns were equal.

Braced Framed Tube System (S1)
Element Input model Material type Cross sections Max. Reachable Section
Floors Mesh to shell Concrete Hollow core slab (-)
Exterior columns Line to beams Steel RHS RHS2000
Exterior diagonals Line to beams Steel RHS RHS2000
Exterior beams Line to beams Steel HEA HEA1000
Floor beams Line to beams Steel HEA HEA1000
Inner columns Line to beams Steel RHS RHS1000

Table 5.3: Overview input braced tube (S1) for structural analysis for each element



5.5. Analyze Model 60

Outrigger System (S2)
Element Input model Material type Cross sections Max. Reachable Section
Floors Mesh to shell Concrete Hollow core slab (-)
Core Mesh to shell Concrete t = 300 mm (-)
Exterior columns Line to beams Steel RHS RHS2000
Exterior beams Line to beams Steel HEA HEA1000
Floor beams Line to beams Steel HEA HEA1000
Inner columns Line to beams Steel RHS RHS2000
Outrigger truss Line to beams Steel RHS RHS1000

Table 5.4: Overview input outrigger (S2) for structural analysis for each element

5.5. Analyze Model
The analysis of the parametric model was divided into two parts: optimising the GH model by adjusting
the cross-sections for various height zones and validating the GHmodel. The first part was incorporated
into the GH script and was executed there, while the second part involved an analytical analysis that
was independent of the GH script. Figure 5.12 illustrates the specific section in the script where the
optimisation of cross-sections took place.

Figure 5.12: Overview Grasshopper script for part D. Analyze model

5.5.1. Validation of Model
The validation of the 3D model in Grasshopper involved both 2D analysis and analytical calculations.
The 3D structure was simplified to a 2D model of line members with moment-resistant and/or pinned
connections. A reference structure, with a floor plan measuring 28.8 by 28.8 meters and a height
of 150 meters, was chosen for validation of the 3D model through both analytical and 2D analysis
methods. This analytical calculation relied on a simplified model of the structure, using formulas known
as ’vergeet-me-nietjes’ for determining the displacement due to bending. The simplified representation
of the structure with the acting wind load is presented in Figure 5.13. The overall displacement of the
structure was determined by the combined effects of bending and shear, with the total displacement
being the sum of the displacements resulting from these effects. These calculations were used to
validate the displacement output from the 3D model by comparing it with the calculated displacement
of the building. The displacement output from the 3D model is presented in Figure 5.14. The detailed
elaboration of the analytical and 2D analysis for the reference model is provided in Appendix E.
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Figure 5.13: Simplified representation of the structural system with wind load

(a) Deformation of S1 (b) Deformation of S2

Figure 5.14: Visualisation of deformation of S1 and S2 for w = 28.8 m and h = 150 m, deformation scale is set at 20

For modeling and developing simplified methods of analysis for lateral load-resisting systems in tall
buildings, some simplifications were implemented. These simplifications were applicable in both the
analytical as the 2D analysis for the validation of the 3Dmodel. Firstly, it was assumed that all structural
elements behaved in a linear elastically, and the principle of superposition could be applied. Secondly,
floor structures were considered to have infinite flexural stiffness in their own plane, and the contri-
butions from out-of-plane bending stiffnesses of floors could be neglected. This way the floor did not
deform in its own plane but it translated and rotated as a single element in a horizontal plane. Addition-
ally, the foundation was assumed to have infinite rigidity [8].

For both the analytical and the 2D analysis it was necessary to determine the input geometry which
would represent the simplified structural system. In Figure 5.15 a visual schematization is presented
of the determination of the input geometry for the braced tube system. The formula for determining
the moment of inertia of the simplified structural system of the tube is also presented in Figure 5.15.
The average thickness of the building’s facade was distributed across its entire width, allowing an
assumption of the overall average thickness. This was achieved by determining the thickness of the
facade columns and the bracing which were present at the intersection of the structure. Subsequently,
the thickness was spread out over the total length of the facade to ensure a uniform and average
thickness along the perimeter.
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Figure 5.15: Determination of input geometry for analytical and 2D analysis of the braced framed tube

The schematization of the outrigger system for the determination of the input for the 2D analysis is
presented in Figure 5.16.

Figure 5.16: Determination of input geometry for 2D analysis of the outrigger system

Analytical Analysis
An analytical analysis was only conducted on the structural system of the braced framed tube, as
the outrigger system could not be simplified using the ’vergeet-me-nietjes’. The specific ’vergeet-me-
nietjes’ utilised to represent the displacement due to bending of the simplified structural system of the
braced tube are provided in Figure 5.17.
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Figure 5.17: Visual representation of the ’vergeet-me-nietjes’ for deflection due to bending

Since the wind load was not uniformly distributed over the height of the building, resulting in multiple
wind zones due to the building’s height, it became necessary to divide the structure into three different
sections to be able to use the ’vergeet-me-nietjes’. Each section represented the structure within a
specific wind zone. The comprehensive calculation, illustrating the division of the structure into different
wind zones, with different values of qw, and presenting the total deflection due to bending, is presented
in Appendix E.

Next to the displacement due to bending, it was necessary to determine the displacement due to shear
to get the total deflection. The displacement due to shear was calculated based on the following formula:

wshear =
qwl

2

2GAframe
(5.2)

Where l represents the total height of the structure and qw the wind load. To complete this formula,
the actual increasing wind force qw was transformed into a constant wind force, which resulted in an
equivalent total moment on the structure as the original increasing wind force.

After determining the total displacement, the next step was to consider the second-order moment gen-
erated by the self-weight of the building. The total displacement, inclusive of the second-order moment,
was calculated using the following formulas:

w2,total = w1,total ∗N (5.3)

N =
n

n− 1
(5.4)

Where n represents the ratio between Euler’s critical load (Fcr) and the working axial force (FEd). Eu-
ler’s critical load was calculated based on Equation 5.5. The axial force depended on the total own
weight of the structure.

Fcr =
π2EI

l2k
(5.5)

Where:

lk = buckling length of the structure [m]
EI = total EI of the structure [Nm2]
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The results of the analytical calculation of determining Euler’s critical load (Fcr) and the magnification
factor for the second order moment effect (N ) are presented in Table 5.5.

Stability System Euler’s critical load Factor N
[kN] [-]

Braced Framed Tube 11.5 * 106 1.018
Outrigger System 12.2 * 106 1.021

Table 5.5: Results of calculation of critical load factor and second-order moment ratio

The final outcome of the deflection based on the analytical analysis of the braced framed tube is pre-
sented in Table 5.6. The analytical calculation regarding the deflection of the outrigger system was not
done regarding the complex calculation.

Stability System 3D Model Analytical Model Difference
[cm] [cm] [%]

Braced Framed Tube 30.0 29.8 0.8

Table 5.6: Comparison outcome displacement 3D model and analytical model

2D Analysis
The 2D analysis was executed using the MatrixFrame software. The geometry input was derived from
the previously mentioned methods for determining the area and moment of inertia, representing the
simplified structural system. The 2D analysis was conducted for both the braced tube and the outrigger
system. MatrixFrame calculated the displacement without taking into account shear, it considered only
the displacement due to bending. Therefore, to enable a comparison with the 3D model output, the
outcome of the 2D analysis was combined with the calculated displacement due to shear based on
the analytical analysis. It was important to note that this adjustment was only applied to the braced
tube, as the displacement due to shear has an insignificant impact on the total displacement for the
outrigger system. The input data for profile definitions, load definitions, and support definitions used
in the reference structure for both the braced tube and the outrigger are provided in Appendix E. The
results of the 2D analysis are presented in Table 5.7.

Stability System 3D Model 2D Model Difference
[cm] [cm] [%]

Braced Framed Tube 30.0 29.2 2.9
Outrigger System 21.0 21.2 0.9

Table 5.7: Comparison outcome displacement 3D model and 2D model

5.6. Generation of Results
After completing the structural and parametric model analyses, the next phase involves generating re-
sults. The desired output from the Grasshopper (GH) script is the mass of each structural element
within specific height zones. These masses serve as the basis for determining the performance param-
eters of construction and environmental costs. The first step in generating the masses will be performed
in GH (see Figure 5.18). Subsequently, the masses will be converted into performance parameters in
Python.
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Figure 5.18: Overview Grasshopper script for part E. Generation of Results

Visualisations of the structural analysis results for the braced framed tube and outrigger structures are
presented in Figure 5.19 till Figure 5.24. These visualisations used color to represent the utilisation
of the elements, where red indicated compression and blue represented tension. The intensity of the
color corresponded to the degree of utilisation, darker colors signified higher utilisation. Notably, for
the braced framed tube and the outrigger system, it was not possible to find a feasible structure for
such height-to-width ratio. These examples provide insight into all the analyses performed. Structural
analysis was performed for all structures within the range of widths from 7.2 to 57.6 m and heights from
48 to 300 m.

(a) S1: w = 14.4 m and h = 90 m (b) S1: w = 28.8 m and h = 90 m (c) S1: w = 50.4 m and h = 90 m

Figure 5.19: Visualisation of 3D analysis of S1 with height = 90 m
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(a) S1: w = 14.4 m and h = 150 m (b) S1: w = 28.8 m and h = 150 m (c) S1: w = 50.4 m and h = 150 m

Figure 5.20: Visualisation of 3D analysis of S1 with height = 150 m

(a) S1: w = 14.4 m and h = 240 m (b) S1: w = 28.8 m and h = 240 m (c) S1: w = 50.4 m and h = 240 m

Figure 5.21: Visualisation of 3D analysis of S1 with height = 240 m

(a) S2: w = 14.4 m and h = 90 m (b) S2: w = 28.8 m and h = 90 m (c) S2: w = 50.4 m and h = 90 m

Figure 5.22: Visualisation of 3D analysis of S2 with height = 90 m
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(a) S2: w = 14.4 m and h = 150 m (b) S2: w = 28.8 m and h = 150 m (c) S2: w = 50.4 m and h = 150 m

Figure 5.23: Visualisation of 3D analysis of S2 with height = 150 m

(a) S2: w = 14.4 m and h = 240 m (b) S2: w = 28.8 m and h = 240 m (c) S2: w = 50.4 m and h = 240 m

Figure 5.24: Visualisation of 3D analysis of S2 with height = 240 m

5.6.1. Optimisation Requirements
The mass of each structural element within each height zone is depended on the cross-section and the
material of the element. To obtain the correct cross-section for each structural element, an optimisation
process was conducted within GH. This optimisation considered both the strength and stiffness of the
structure. For strength considerations, the maximum utilisation was set to 0.90 to ensure the structure
possessed sufficient strength. Additionally, the maximum displacement was set to ensure adequate
stiffness. Typically, the maximum displacement requirement is provided for load combinations in Ser-
viceability Limit State (SLS), while strength is based on load combinations in Ultimate Limit State (ULS).
Consequently, the maximum displacement was set at a factor (fu,ULS) higher than what was possible
in SLS, allowing for the examination of both strength and stiffness in ULS. This assisted the progress
of optimisation of the cross-section in the structure based on both factors. Equations 5.6, 5.7, and
5.8 provide an overview of how the factor can be determined and how to calculate the displacement
requirement in ULS:

fu,ULS =
γW,ULS · γW,SLS + γ2nd,ULS · γ2nd,SLS · n2,δ

1 + n2,δ
(5.6)
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umax,SLS =
h

500
(5.7)

umax,ULS = umax,SLS · fu,ULS =
fu,ULS · h

500
(5.8)

The calculated values for the additional conversion factor (fu,ULS) used to determine the maximum
displacement in the ULS are presented in Table 5.8. A more detailed calculation of this conversion
factor is provided in Appendix E. The factor is based on the geometry of the base structure, which has
a width of 28.8 meters and a height of 150 meters. For simplification, this factor is assumed to be equal
for all different geometries of the structures of the braced framed tube and the outrigger system.

Stability System n2,δ fu,ULS

[-] [-]
Braced Framed Tube 1.02 1.40
Outrigger System 1.02 1.40

Table 5.8: Calculated values of the conversion factor to go from SLS to ULS

5.6.2. Performance Variables
To derive the performance parameters in terms of the structural and environmental costs of the structure,
it was essential to multiply the output of the GH in the form of the specific masses of materials and
elements by the corresponding factors of the performance variables. The factors for the determination
of the structural and environmental costs are illustrated in Table 5.9. The conversion of the masses of
the elements to the performance parameters of costs was done in Python, and was thus external of
the GH script.

The cost per kilogram of hollow core slab was calculated by dividing the price per square meter of
hollow core slab, €110/m2, by the mass per unit area of the hollow core, corresponding to a height (h)
of 320 mm, which equaled 429 kg/m2 [15]. Similarly, the cost per kilogram of reinforced prefab concrete
was computed by dividing the price of reinforced concrete, set at €850 per cubic meter, by the specific
weight of reinforced concrete, set at 2500 kg/m3 [52].

Material Specifications Costs Weight CO2e Weight Source
[€/kg] [kgCO2e/kg]

Steel Structural, hot rolled, S355 3.50 1.12 [16]

Concrete
Precast, C45/55, hollow core, h=320mm 0.256 0.155 [14] [15]
Precast, C45/55, reinforced 150 kg/m3 0.340 0.238 [52]

Table 5.9: Factors per material for costs and embodied carbon

5.7. Training Machine Learning Tool
After generating a data set of the desired output, the modeling and training of the artificial neural net-
works started. This process took place externally to the GH script and was implemented using Python.
The scripts for building and training the neural networks in Python can be found in Appendix H. The
decision was made to develop two distinct neural network models to effectively predict and present the
results for each stability system (S1 and S2). The neural network models were designed to predict the
total mass of the structures. This prediction formed the foundation for calculating total structural and
environmental costs, both of which relied solely on the mass of materials in this research. However, the
data set from the parametric models provided masses for each structural element within specific height
zones. To determine the total mass of each material, the masses of all structural elements made from
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the same material were summed. Additionally, separate neural networks were modelled to predict the
mass of each structural element within each height zone, corresponding to the input data set. It was
decided not to use the outputs of these neural networks to derive the total mass prediction by summing
up all the outputs of each prediction of the structural elements for each height zone. Instead, sepa-
rate neural networks were developed specifically for predicting the total mass. This approach aimed
to prevent the accumulation of errors and inaccuracies from individual mass predictions. Consistently,
this methodology was applied to both braced framed tube and outrigger system, resulting in the con-
struction of four distinct neural networks (two neural networks for each structural system). In Table
6.3 of Chapter 4 an outline is given of the four different neural network models with their prediction
target. The aim of the additional two neural networks, with the division of the elements, was to gain
additional insights into which elements of the structure have the highest contribution to the total mass
of the structure.

5.8. Summary
This chapter presented the steps that were taken for the generation of the data sets of both the braced
framed tube and the outrigger system using a parametric model in GH. It outlined a six-step roadmap for
the data generation process, from defining input variables to generating results for structural element
masses. The research aimed to facilitate a relative analysis between braced framed tube and outrig-
ger system, ensuring consistent assumptions for a fair comparison. The process included detailing
fixed and variable structural parameters, assumptions for building geometry based on wind zones, and
structural analysis considerations, particularly for wind load calculations. Moreover, an approach was
given on how the GH model was validated in terms of analytical and 2D analysis, ensuring its reliability
for further analysis. Result generation focused on optimising the mass of structural elements within
height zones, which were then used to calculate the performance parameters of costs and embodied
carbon. Furthermore, the reasoning for developing and training four different neural network models
was explained in detail, explaining the approach towards accurate predictions by prevention of error
accumulation.



Part III
Research Outcome

70



6
Results

This chapter will focus on the elaboration of the insights that can be derived from the artificial neural
network models with the input data sets generated by the parametric models. This chapter will aim to
answer sub-questions 3 and 4.

3 Can the stability framework of a high-rise steel building be accurately predicted by means of a
machine learning tool?

4 How does the performance of the machine learning tool compare to the performance of other
established interpolation techniques and to analytical calculations?

As outlined in Chapter 4, the research process consisted of two primary phases: ’Data Collection’ and
’Modelling Procedure’, as presented in Figure 4.1. This chapter starts with the outcomes of the initial
phase, with the focus on the data collection from the parametric models. After visualising and analyzing
the results of the ’Data Collection’ phase, the next step involved analyzing the results of the ’Modelling
Procedure’. An analysis of the output of the constructed neural networks is presented. Subsequently,
the errors associated with this output is discussed and explained. Additionally, the computational time
required for both the parametric models and the neural network is explored. Finally, the contribution of
the stability framework to the overall structure is assessed.

6.1. Results Data Collection
The raw data sets from the parametric model of the braced framed tube (S1) and the outrigger system
(S2) were first cleaned and converted. This involved calculating the performance parameters, in terms
of structural and environmental costs, based on the mass provided in the raw data sets for both struc-
tural forms. The structural cost was determined using Equation 2.8, while the environmental costs was
computed using Equation 2.9, both of which are elaborated upon in Chapter 2. Following data conver-
sion and cleaning, the data sets were visualised to illustrate the correlation between the performance
parameters and the structure’s geometry.

Visualisation over Height
Figure 6.1 and Figure 6.2 present scatter plots of structural and environmental costs over the height
of the structure, respectively. The width of the structure is represented by the changing transparency
of color. In the scatter plots, it was observed that costs per gross floor area (m2GFA) increased with
increasing height, and costs per m2GFA also increased with decreasing width.
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Figure 6.1: Structural costs per m2GFA for different dimensions of width and height, S1 and S2

Figure 6.2: Environmental costs per m2GFA for different dimensions of width and height, S1 and S2

In the stability system of the braced framed tube, there were no structures within the 0-10 meter width
range. This absence could be due to two main factors: either there was no feasible bracing configu-
ration within the allowable range of bracing angles, or the stiffness requirements for these dimensions
could not be met. The slenderness (height-to-width ratio) was significant for these dimensions, making
it challenging to find suitable dimensions within the predetermined cross-section of ranges in the para-
metric model to still meet the stiffness requirements. A similar trend occurred for the outrigger system,
but the highest reachable slenderness was slightly higher. However, costs increased exponentially
with such significant slenderness. A zoomed-in graph provides a clearer comparison (see Figure 6.3),
and Table 6.1 shows the highest slenderness values for both systems.

Stability System Highest Slenderness
[-]

Braced Framed Tube 11.67
Outrigger System 12.50

Table 6.1: Maximum achieved slenderness of both stability systems, S1 and S2
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Figure 6.3: Zoomed-In: Costs per m2GFA for different dimensions of width and height, S1 and S2

Figure 6.4 illustrates the relationship between total structural costs and total environmental costs per
m2GFA for both structural systems: the braced framed tube and the outrigger system. Both systems
showed nearly identical slopes in their structural - environmental costs relationship, with a slope of ap-
proximately 62 €/m2 of environmental costs. This implied that for every additional unit of environmental
costs per square meter, the associated increase in structural costs was consistent for both systems.
This correlation is logical, as both costs depended solely on the quantity of materials used, which in
turn was proportional to the structural element’s mass. Comparing the two stability systems, the ob-
servations can be done that the highest total costs of the braced framed tube is much lower than the
highest reachable total costs of the outrigger system. This observation was also already seen in pre-
vious figures (Figure 6.1 and Figure 6.2), where the outrigger system had higher maximum structural
and environmental costs compared to the braced framed tube.

Figure 6.4: Construction cost versus the environmental costs per m2GFA for different structural forms

Visualisation over Constant Width or Height
Additionally, the performance visualisation of stability frameworks was conducted, this time by main-
taining one variable constant, either the height or the width. This isolation helped in capturing the
behavior when one variable remained consistent. Figure 6.5 illustrates the scatter plot of both braced
framed tube and outrigger system with a fixed width of 28.8 meters (matching the width of the validation
structure utilised for the 2D and analytical analyses). Notably, the performance of both braced framed
tube and outrigger system appeared quite similar. Likewise, Figure 6.6 showcases the performance,
in terms of both structural and environmental costs, across varying width plans while the height was
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held constant at 150 meters (also aligned with the validation structure). Once more, the performance
of both stability systems showed significant similarity.

Figure 6.5: Performance versus the height of structure (S1 and S2) for a constant width of 28.8 m

Figure 6.6: Performance versus the width of structure (S1 and S2) for a constant height of 150 m

Comparison with Literature
Based on the consistent slope of the relationship between structural costs and environmental costs (as
shown in Figure 6.4), it can be stated that the relative change in output for structural costs is directly re-
lated to environmental costs. Moreover, when comparing the stability frameworks of the braced framed
tube and the outrigger system, the choice between embodied carbon and environmental costs does
not change the relative comparison. The fundamental environmental impact of a structure remains con-
stant, regardless of whether the focus is on raw carbon emissions (embodied carbon) or the associated
financial costs (environmental costs). By multiplying the raw carbon emissions by the shadow price of
CO2 the environmental costs can be determined.

To validate the comparison between the two stability frameworks based on the data sets obtained from
the parametric models, an analysis was conducted using existing literature. Lankorst et al. (2019)
studied load-bearing structures, specifically focusing on their embodied carbon [11]. The findings from
Lankhorst et al. align with the parametric models for structures at 150 and 250 meters in height. How-
ever, for a 200-meter structure, the parametric model suggests that the braced framed tube has the
lowest embodied carbon, whereas Lankorst et al. found the outrigger system to be better. The com-
parison between the models is presented in Table 6.2.
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Height Width Optimal Stability Framework
[m] [m]

150
30.0 Lankhorst both Outrigger and Braced Tube
28.8 Parametric Model both Outrigger and Braced Tube

200
31.5 Lankhorst Outrigger
28.8 Parametric Model Braced Tube

250
33.0 Lankhorst Outrigger
36.0 Parametric Model Outrigger

Table 6.2: Comparison findings from parametric model with study of Lankhorst (2019)

Visualisation over Volume
In addition to visualising the performance in terms of costs over the height of the structure, a visuali-
sation for different volumes of the structure is provided to explore the relationship between costs and
varying volume. The total volume of the structure was calculated based on its two input variables: the
height and the width of the floor plan. The volume was obtained by multiplying the total area of the
symmetrically squared floor plan by the number of floors of the structure and the floor-to-floor height.

Figure 6.7 illustrates the visualisation of structural costs per m2GFA over the volume of the structure.
Notably, there were some data points within outrigger system data set that exhibited significant struc-
tural costs despite having very low volume. These data points correspond to structures with significant
slenderness, where the width was substantially smaller than the height of the structure. Meeting stiff-
ness requirements for such structures was a significant challenge. In contrast, less of such outliers
were observed in the data set of the braced framed tube. This difference can be attributed to two rea-
sons: either a feasible bracing configuration could not be found, or the stiffness requirements could
not be met for dimensions and slenderness similar to those of the outliers in the outrigger data set.
To provide a clearer understanding of the relationship between stability systems, these outliers were
excluded from the zoomed-in graph, as presented in Figure 6.8.

Figure 6.7: Costs per m2GFA versus volume of structure
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Figure 6.8: Zoomed-In: Costs per m2GFA versus volume of structure

6.2. Results Modelling Procedure
After visualising the results obtained from the parameters models in the ’Data Collection’ phase, the
next step involved investigating the feasibility of prediction the correlation between the structure’s di-
mensions and the performance parameters. The detailed steps of the ’Modelling Procedure’ were
thoroughly outlined in Chapter 4, where the workflow was explained (see Figure 4.9 in Chapter 4). The
presentation of results follows this workflow, and an overview of which results is presented and where
in the flowchart they occur is provided in Figure 6.9.

Figure 6.9: Flowchart modelling procedure to next step analysis of model results

After cleaning and processing the data sets, and successfully training the artificial neural networks,
predictions can be made using the ANNmodels. To add to the relevance of the results and gain insights
into the elements with the most impact on the performance in terms of costs, the data sets have been
divided to illustrate different perspectives. The prediction of the overall costs of each structural element
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is provided based on the S1-A and the S2-A models, along with the performance of each structural
element within each height zone, based on the S1-B and S2-B models. By segregating the structural
elements in the data set, the contribution of the stability system (both gravity and the stability system)
to the overall structure can eb determined. An overview of the different artificial neural networks is
provided in Table 6.3.

Stability System ANN Model Prediction Goal

Braced Framed Tube
S1-A Total mass of structure
S1-B Mass of each structural element within height zones

Outrigger System
S2-A Total mass of structure
S2-B Mass of each structural element within height zones

Table 6.3: Different ANN models for prediction of the performance of stability systems

The research aimed to identify the most advantageous stability framework in terms of structural or envi-
ronmental costs relative to the given volume of the structure. Therefore, the comparison focused solely
on the structural forms. Consequently, the costs of the floors, specifically the hollow core slabs, are
not factored into this comparison. This decision was based on the fact that the thickness of the hol-
low core slab remained constant across different geometries, resulting in consistent mass per squared
meter (per m2GFA). As both structural and environmental costs were determined solely by the quan-
tity of mass, they remained constant across different geometries of the structures. Hence, predicting
these values of the impact of the floors was unnecessary, as they would remain unchanged. Given
their equality across the structural forms, including them in the comparison would not provide additional
value.

6.2.1. Genetic Algorithm
The Genetic Algorithm (GA) was utilised to optimise hyperparameters across all four ANN models (see
Table 6.3. These hyperparameters included the number of neurons in the hidden layer, kernel initializer
option, bias initializer option, and learning rate option, as outlined in Table 6.4. The GA iterated through
various combinations of these options, aiming to minimise the Mean Squared Error (MSE), serving as
the fitness function, on the validation set. This function evaluated each solution’s performance based
on its hyperparameter configuration, quantifying the difference between predicted and actual values
(MSE).

Output Description
Number of Neurons [1,50] Range from 1 till 50
Kernel Initializer [0,2] [Random Uniform, Constant, Zeros]
Bias Initializer [0,2] [Random Uniform, Constant, Zeros]
Learning Rate [0,1] [0.001, 0.01]

Table 6.4: GA configuration parameters

The results obtained give an overview of the GA’s optimisation process and its ability to identify the best
solution for each ANN model. Specifically, the GA was executed individually for each ANN model to de-
termine the most suitable hyperparameters. Figure 6.10 presents the outcomes of these GA iterations,
showing the objective function values (MSE) at different iterations. The x-axis represents the iteration
number, while the y-axis indicates the objective function value, with a blue line illustrating its fluctua-
tions across iterations. It can be seen that, for all ANN models, the GA was terminated prematurely
due to reaching the convergence limit of three iterations. Table 6.5 provides a summary of the results
concerning the best solution uncovered by the GA for each ANN model, along with the corresponding
objective function value. The GA successfully identified optimal hyperparameter configurations for all
ANN models.



6.2. Results Modelling Procedure 78

Hyperparameter ANN S1-A ANN S2-A ANN S1-B ANN S2-B
Number of Neurons 13 42 47 47
Kernel Initializer Zeros Random Uniform Random Uniform Constant
Bias Initializer Constant Random Uniform Constant Constant
Learning Rate 0.001 0.01 0.01 0.01
MSE 692 467 85 460

Table 6.5: GA of best configuration for each ANN model

(a) GA for S1-A (b) GA for S2-A

(c) GA for S1-B (d) GA for S2-B

Figure 6.10: GA for finding the best configuration of hyperparameters for all ANN models

6.2.2. Optimum ANN
The convergence plots offer a visual representation of the training and validation loss throughout the
iterative process, known as epochs. The convergence plots provide insights into whether the ANN
model has reached a stable state during training, indicating progress towards finding an optimal con-
figuration of weights and biases. Convergence in this context refers to the point at which the training
and validation loss stabilize, indicating that the model has effectively learned the underlying patterns in
the data. The training loss measures the model’s performance on the training data during each epoch,
while the validation loss evaluates its generalization performance on a separate data set. Initially, a
decrease in the validation loss is expected, reflecting the model’s capacity to generalize. However,
if the model begins to overfit the training data by memorizing noise, the validation loss may show an
increase, even as the training loss continues to decrease. The term ”loss” here refers to the Mean
Squared Error (MSE) loss function used during the training phase. The primary goal during training is
to minimise this loss, as a lower MSE indicates that the model’s predictions closely align with the actual
values, indicating better performance. It was determined that setting the maximum number of epochs
for all the models to 10,000 was sufficient to reach a stabilized point for the loss.
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Figure 6.11 presents the convergence plot for the braced framed tube (S1-A), presenting both training
and validation loss over epochs. The left graph provides a comprehensive view, while the right graph
offers a zoomed-in perspective. The observations regarding the convergence plot of the braced framed
tube are briefly mentioned in Table 6.6. Figure 6.12 displays the convergence plot of the outrigger’s
ANN model (S2-A), exhibiting similar trends to the convergence plot of the braced framed tube’s ANN
model (S1-A). The observations are also presented in Table 6.6.

Aspect
Braced Framed Tube Outrigger System

ANN S1-A ANN S2-A
Initial training Rapid decline in both training

and validation loss
Rapid decline in both training

and validation loss
Change in Behaviour Beyond 100 epochs slower

rate of decline for both losses
Beyond 80 epochs slower

rate of decline for both losses
Stable State Around 300 epochs losses

remained relatively constant
Around 600 epochs losses

remained relatively constant
Validation vs. Training Validation loss slightly higher

than training loss
Validation loss slightly higher

than training loss
Overfitting Check Validation loss constant,

absence of overfitting
Validation loss constant,
absence of overfitting

Optimal Configuration Found within range of
max. number of epochs

Found within range of
max. number of epochs

Table 6.6: Observations convergence graphs of S1-A and S2-A

Figure 6.11: Convergence plot of ANN for S1-A
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Figure 6.12: Convergence plot of ANN for S2-A

The convergence plots for S1-B and S2-B are presented in Figure 6.13 and Figure 6.14, respectively.
Similar trends to the other convergence plots were observed, with no signs of overfitting or underfitting.
It can be concluded that both models reached a stable state, indicating that S1-B and S2-B likely found
the optimal configuration of weights and biases within the specified number of epochs of 10,000 for
both systems.

Figure 6.13: Convergence plot of ANN for S1-B

Figure 6.14: Convergence plot of ANN for S2-B
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6.2.3. Predictions
Prediction: Total Structure
After modeling and training the ANN model of braced framed tube and outrigger system, predictions
can be made regarding the total masses of the materials of the structure. Based on these predictions,
performance parameters such as structural and environmental costs was determined. Since the impact
in terms of costs relied solely on the mass predictions, their accuracy was equal. Consequently, for the
error analysis, only one of the performance parameters is illustrated (see Section 6.2.4). Figure 6.15
presents the results of the prediction, where input was provided via a slider. The tool automatically gen-
erated predictions of performance, compared stability forms, and concluded which stability framework
was the most cost-effective in either terms of structural or environmental costs.

Figure 6.15: Prediction of performance for both structural forms for specific input data

Moreover, to better illustrate the performance of different stability forms, an interactive tool was devel-
oped. This tool automatically graphed performance for different input variables, to be able to make a
comparison of both structural forms based on the same geometry. The initial step involved selecting
one of the two geometry variables, either height or width, as the constant parameter. Subsequently, by
choosing one variable as constant, the changing parameter was plotted on the x-axis. This visualisa-
tion enabled representation of both total structural and environmental costs over the changing variable.
By promptly graphing the performance prediction, the behavior of both structural forms for different
geometries became visible. The interactive tool of the total structural costs is presented in Figure 6.16.
The graph also includes upper and lower bands for the predictions, illustrating the potential maximum
error range. Notably, the RMSE consistently increased in absolute value as the total costs increased.
For lower values, the range of error was relatively small, but it expanded as the total costs increased, in-
dicating a widening bandwidth. Additionally, Figure 6.18 highlights the presence of the threshold of the
braced framed tube and the outrigger system regarding the maximum reachable slenderness, where
after surpassing the upper limit of the slenderness the graph comes to a halt. It can be seen that the
maximum reachable slenderness of the outrigger system is slightly higher than the slenderness of the
braced framed tube, but the costs increase significantly for such high height-to-width ratios.
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Figure 6.16: Interactive tool for prediction of performance for both structural forms, width=29m

Figure 6.17: Interactive tool for prediction of performance for both structural forms, width=20m
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Figure 6.18: Interactive tool for prediction of performance for both structural forms, width=45m

Considering the mass predictions, both structural and environmental costs were determined. Since
they rely on the same mass predictions, their accuracy was equivalent. Consequently, for the error
analysis, only one of the performance parameters is presented. The predictive accuracy of the models
was assessed by comparing their output with the actual data derived from the parametric model. This
comparison was crucial for evaluating whether the model could effectively capture the relationship and
behavior of structures across varying dimensions. To illustrate this, the relationship between the actual
and predicted values, specifically for models S1-A and S2-A, is demonstrated in Figures 6.19 and 6.20.
These figures revealed that the ANN models closely mirrored the actual data, indicating their accuracy
in capturing the underlying structural behavior. For instance, one figure shows the comparison for a
structure width of 28.8 meters, while another figure presents the analysis for a width of 42.2 meters,
based on the ANN predictions and actual input data. The magnitude of prediction errors and their
implications is discussed in greater detail in Subsection 6.2.4.

Figure 6.19: Comparison predictions of S1-A with input data with width of 28.8 meters
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Figure 6.20: Comparison predictions of S2-A with input data with width of 43.2 meters

Prediction: Element Split
The outcomes of the ANN models of S1-B and S2-B are plotted for both structural and environmental
costs for each specific structural element. This approach allowed for the identification of areas with the
highest costs. The distinction is made between the structural elements part of the stability and gravity
system. Within the stability framework, different structural elements play varying roles in the overall
impacts. These roles and contributions differ between the two systems of the braced framed tube and
the outrigger system. Table 6.7 provides an overview of how these elements contribute to either stability
(horizontal force) or gravity (vertical force). The inner columns connected to the outrigger have two
purposes: contributing to both the stability and gravity systems. In slender structures, their contribution
to stability becomes more governing. An assumption is made regarding the mass distribution of the
inner columns connecting to the outrigger truss. The mass of inner columns connected to the outrigger,
contributing to the gravity system, is equal to the total mass of inner columns not connected to the
outrigger truss (since the latter only contribute to the gravity system). The remaining mass of the inner
columns connected to the outrigger contributes to the stability system

Figure 6.23 illustrates the breakdown of performance parameters for the braced framed tube, while
Figure 6.24 presents the breakdown for the outrigger system. Both figures display the structural costs
predictions for a structure with a height of 150 meters and a width of 29 meters. The tool was designed
to be interactive, enabling users to adjust the width and height of the structure. This enabled the
automatic generation of new graphical representations, illustrating costs based on the updated input
parameters. The costs of the floor system (hollow core slab) was included to visualise the total costs
of the gravity system to the stability system of the framework. The contribution in terms of costs from
both gravity and stability system and the stability system’s ratio are presented.
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Stability System Framework Structural Element Ratio

Braced Framed Tube

Stability Framework
Outer columns Fully
Bracing diagonals Fully

Gravity Framework

Floor beams Fully
Outer beams Fully
Floor system Fully
Inner columns Fully

Outrigger System

Stability Framework

Outrigger system Fully
Core Fully
Outer columns connected to outrigger Fully
Inner columns connected to outrigger Partly

Gravity Framework

Floor beams Fully
Outer beams Fully
Floor system Fully
Outer columns not connected to outrigger Fully
Inner columns not connected to outrigger Fully
Inner columns connected to outrigger Partly

Table 6.7: Overview of contribution of each structural element to either gravity or stability

Figure 6.21: Prediction of parameters prediction; element split S1
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Figure 6.22: Prediction of performance parameters; element split S2

The Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) values for the
various elements are presented in Table 6.8 for S1-B and Table 6.9 for S2-B. The RMSE quantifies
the error in terms of kg per m2GFA, representing the absolute value of the error. On the other hand,
the MAPE expresses the relative error as a percentage of the difference between the predicted and
actual values. Using the MAPE metric is particularly useful for assessing the accuracy of these neural
networks because it presents the error in relative error percentage. Since the average masses of the
structural elements are far apart, making the RMSE relative to the mass and expressing it in terms
of the MAPE provides a good way to understand accuracy and compare it across different structural
elements.

Structural Element RMSE MAPE
[kg/m2GFA] [%]

Outer Beams 0.68 25
Outer Columns 32.83 30
Floor Beams 0.60 5
Inner Columns 6.12 18
Bracing 10.32 18

Table 6.8: RMSE and MAPE of ANN model S1-B for each structural element
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Structural Element RMSE MAPE
[kg/m2GFA] [%]

Outer Beams 1.40 9
Outer Columns conn. Truss 16.90 29
Outer Columns not conn. Truss 1.23 21
Floor Beams 1.34 22
Inner Columns conn. Truss 31.94 43
Inner Columns not conn. Truss 5.61 25
Outrigger Truss 15.20 23
Core 7.22 7

Table 6.9: RMSE and MAPE of ANN model S2-B for each structural element

Prediction: Element and Height Zone Split
Furthermore, an overview of the impact of each distinct height zone was determined, based on the
output of the ANN model S1-B and ANN model S2-B. This approach allowed for clear visibility into
the contribution of each structural element within its respective height zone to the total structural and
environmental costs. Figures 6.23 and 6.24 illustrate the division of elements and height zones for
both the braced framed tube and the outrigger. The findings align with the expectation that lower
height zones require more mass, as they experience greater gravitational forces from the mass above.
Consequently, higher mass corresponds to higher costs. Similar to the element split, this tool was
designed to be interactive, allowing for adjustments to the width and height inputs. This prompts the
automatic generation of new visualisations illustrating the predicted performance of the structure divided
over the elements within the specific height zone.

Figure 6.23: Prediction of parameters prediction; element and height zone split S1
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Figure 6.24: Prediction of performance parameters; element and height zone split S2

The RMSE and MAPE was calculated for each structural element within each height zone. Tables F.1
and F.2 in Appendix F provide a comprehensive overview of all RMSE and MAPE values for structural
elements within each height zone. For the S1-B model, the MAPE ranged from 5% to 35%, indiciting
significant variability in the predictions. The mean MAPE across all elements was 23%. The variability
in MAPE may be attributed to the large number of desired outputs and the relatively small data set
size. For the S2-B model, the MAPE range was even broader, falling between 2% and 53%. The mean
MAPE across all elements was equal to 35%.

6.2.4. Analysis of Error Predictions
Given that the primary research question is related to the feasibility of developing an ANN model to
predict the best performing stability framework across various volumes, the analysis of prediction errors
was solely conducted for the ANN models of S1-A and S2-A. The artificial neural network models of
S1-A and S2-A align directly with the main aim of this study. While the ANN models of S1-B and S2-B
were included to demonstrate potential value outputs, the scope of this research restricted the further
analysis of errors for those ANN models. Therefore, the error analysis and comparison with other
interpolation techniques was only performed for ANN models S1-A and S2-A.

The relative performance of the ANN was assessed by comparing its prediction error with that of other
curve fitting models. This comparison involved examining the distribution of percentage differences
between actual and predicted values, also called the relative error, for both the the braced framed tube
and the outrigger system. The ANNmodels were compared to three different curve fittingmodels: linear
regression, second order polynomial regression, and third order polynomial regression. By contrasting
the performance of the ANN with that of performance of the curve fitting methods, insights into its
relative effectiveness were gained.

Evaluation for Braced Framed Tube (S1-A)
First, the values of RMSE and MAPE were calculated to get an impression of the performance of the
different models. These values are detailed in Table 6.10, the errors are determined based on the total
height range of 50 to 300 meters. It is important to note that the unit of RMSE corresponded to the
unit of the output data, which in this case was the mass of the structure, measured in kg/m2GFA. To
contextualize the magnitude of the RMSE, attention can be given to the 25th and 75th percentiles and
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the mean of the mass of the braced framed tube. Specifically, the 25th percentile of the total mass of
braced framed tube was 70.3 kg/m2GFA, the 75th percentile was 190.3 kg/m2GFA, with a mean mass
of the structure of 146.2 kg/m2GFA. The results showed that the ANN model outperformed the other
models with the lowest MAPE among the four models, standing at 14%, compared to 49% for linear
regression, 38% for the second order, and 25% for the third order.

Curve Fitting Models RMSE MAPE
[kg/m2GFA] [%]

ANN 38.9 14
First Order 55.3 49
Second Order 44.3 38
Third Order 40.3 25

Table 6.10: Overview of RMSE for braced framed tube (S1)

Furthermore, the results of the RMSE for different height subsets of the braced framed tube was ex-
amined to understand the variation in accuracy across varying heights, see Table 6.11. The findings
revealed that the RMSE increased as the height of the structures increased. Additionally, consider-
ing the increase of total mass of the structures as the height of the structures increased, the MAPE
was examined. The MAPE also showed an upward trend with increasing heights. Specifically, within
the height range of 50 to 100 meters, a MAPE of 5.9% was observed, while for the subset of heights
between 250 and 300 meters, the MAPE reached 23.5%.

Height Subset RMSE MAPE
[kg/m2GFA] [%]

50 - 100 m 11.2 5.9
100 - 150 m 27.3 8.0
150 - 200 m 68.8 11.2
200 - 250 m 216.4 23.8
250 - 300 m 223.8 23.5

Table 6.11: Overview of RMSE and MAPE over different height subsets of S1

The probability density of the different models was also generated to provide a more visual representa-
tion of the performance of the models. The mean (µ) and the standard deviation (σ) provide information
about the central tendency and distribution of the percentage differences for each regression model.
Probability density functions represent the likelihood of different outcomes occurring within a given
range. They provide insights into the variability and reliability of predictions, showing how frequently
different levels of error occur. The calculated parameters are summarized in Table 6.12. Figure 6.25
illustrates the distribution of relative error for each regression model based on the parameters for the
braced framed tube.

Curve Fitting Models µ σ Total PD ± 15%
[%] [%] [-]

ANN 3.52 17.0 0.62
First Order -15.72 80.1 0.14
Second Order 5.99 59.4 0.20
Third Order 3.87 26.7 0.39

Table 6.12: Overview of parameters of the probability density functions for S1
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Figure 6.25: Distribution of percentage differences of braced framed tube (S1) for different regression models

From the Table 6.12 and the Figure 6.25, several insights can be drawn the performance of the regres-
sion models in predicting the system’s mass.

• ANN Model
The ANN model showed a slightly positive mean (µ = 3.52%), indicating a tendency to overes-
timate the actual values. The moderate standard deviation (σ = 17.0%) illustrated the relatively
high accuracy of the ANN model. The probability that the relative error is within the ranges of
-15% and +15% was equal to 62%.

• First Order Model
In contrast to the ANN model, the linear regression model showed a significant negative mean
(µ = -15.72%), suggesting a significant underestimation of the actual values. Additionally, the
substantial standard deviation (σ = 80.1%) indicated significant variability in predictions, resulting
in not accurate estimations. Moreover, the probability of the relative error of the predictions being
within ± 15% was merely 14 %.

• Second Order Model
The second order regression model demonstrated a positive mean of (µ = 5.99%), indicating
a tendency to overestimate the actual values. Moreover, the substantial standard deviation (σ =
59.4%) suggested high variability in the predictions. Similarly to the first order, was the probability
that the relative error is within ± 15% low, and is equal to 20% for the second order.

• Third Order Model
The third order model demonstrated a mean (µ = 3.87%), implying a tendency towards overes-
timation. The standard deviation (σ = 26.7%) suggested relatively high variability in predictions,
exceeding that of the ANNmodel. The probability of third order predictions falling within the range
of ± 15% was 39%, which was better than the first and second order but inferior to the ANN.

Evaluation of Performance in terms of Structural Costs
In addition to assessing the accuracy of predictions for the mass of structures, an evaluation of the
performance of the curve fitting models in predicting structural and environmental costs was performed.
Scatter plots were used to visualise the relationship between predicted and actual values for structural
costs across four regression models: ANN, linear regression, second-order regression, and third-order
regression. Figure 6.26 presents the scatter plots for the braced framed tube. The x-axes represents
the actual costs (€/m2GFA), and the y-axes represents the predicted costs based on the same input
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data. The scatter plots include training data (blue circles), test data (purple circles), and a reference
line (“True value”) indicating perfect prediction. The main observations are presented in Table 6.13.

(a) Actual vs prediction values ANN (b) Actual vs prediction values Linear Regression

(c) Actual vs prediction values 2nd Order Regression (d) Actual vs prediction values 3rd Order Regression

Figure 6.26: Actual vs prediction values of structural costs for S1 with different regression models

S1: Braced Framed Tube Observation

Curve Fitting
Models

ANN Significantly high accuracy at low costs, but accuracy decreasing
with increasing of costs values.

First Order Tendency for underestimation at lowest costs, followed by slight
overestimation at middle costs, and significant underestimation
at highest costs.

Second Order Relative accurate at lower costs, but accuracy decreasing with
increasing of costs.

Third Order Closely resembled the trend of ANN and second order, but less
accurate at lower costs than ANN.

General
Accuracy of the ANN is the best.
The observed behavior in the scatter plots aligned with the
insights from the probability density distribution.

Table 6.13: Observations from the scatter plot of different regression models for S1
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Evaluation for Outrigger (S2-A)
In line with the methodology applied to the braced framed tube, the RMSE and MAPE were com-
puted for the outrigger system, and the resulting values are listed in Table 6.14. To contextualize the
RMSE values, percentiles of the total mass of the outrigger system were determined: the 25th and 75th
percentiles and the mean, corresponding to 120.8 kg/m2GFA, 295.2 kg/m2m2GFA and 250.2 kg/GFA
respectively.

Curve Fitting Models RMSE MAPE
[kg/m2GFA] [%]

ANN 29.1 7
First Order 62.9 67
Second Order 52.9 41
Third Order 52.3 31

Table 6.14: Overview of RMSE of percentage difference for S2

Furthermore, the results of the RMSE and MAPE for different height subsets of the outrigger system
was again examined to understand the variation in accuracy across varying heights, see Table 6.15.
For the outrigger system, the MAPE pattern varied with height: it initially decreased as structures got
taller, but for the highest two height subsets, it increased again. The highest accuracy (5.7%) occurred
for structures between 150 and 200 meters. The lowest accuracy was observed for the lowest height
subset, likely due to the low total mass, which made the error-to-mass ratio relatively higher.

Height Subset RMSE MAPE
[kg/m2GFA] [%]

50 - 100 m 14.7 9.2
100 - 150 m 20.1 6.4
150 - 200 m 38.6 5.7
200 - 250 m 86.9 7.7
250 - 300 m 53.3 6.7

Table 6.15: Overview of RMSE and MAPE over different height subsets of S2

The ANN model for the outrigger system exhibited the highest level of accuracy among the tested
interpolation techniques, with an RMSE of 29.1 kg/m2GFA, indicating a relatively low deviation of pre-
dictions from actual values. This accuracy was further underscored when looking at the MAPE which
is equal to 7%. In contrast, the linear regression model showed a significantly higher RMSE of 62.9
kg/m2GFA and a MAPE of 67% and could therefore be considered as not accurate. Similarly, the sec-
ond order regression and third order regression models demonstrated RMSE values of 52.9 kg/m2GFA
and 52.3 kg/m2GFA, respectively. Despite these lower RMSE values, suggesting relatively better pre-
diction accuracy compared to the linear regression model, they still fell short to be able to make an
accurate prediction. In summary, the ANN model provided the most accurate predictions among the
tested curve fitting models for the outrigger system.

In addition to analyzing the probability density functions for the braced framed tube, the probability
density functions for the outrigger system was also examined. The mean (µ) and standard deviation
(σ) for the four regression models were observed, reproducing the process of the braced framed tube.
The parameter values are presented in 6.16 and the distribution of percentage differences for each of
the regression models based on those parameters is presented in Figure 6.27.



6.2. Results Modelling Procedure 93

Curve Fitting Models µ σ Total PD ± 15%
[%] [%] [-]

ANN -1.03 9.5 0.89
First Order 20.03 77.0 0.08
Second Order 6.41 48.7 0.19
Third Order 2.54 35.5 0.34

Table 6.16: Overview of parameters of the probability density functions for Outrigger (S2)

Figure 6.27: Distribution of percentage differences of S2 for different regression models

From the Table 6.12 and the Figure 6.25, several insights can be done regarding the performance of
the regression models in predicting the system’s mass.

• ANN Model
The ANN model for the outrigger exhibited a slightly negative mean µ = -1.03%), indicating a very
small tendency to slightly underestimate the actual values. The standard deviation (σ = 9.5%)
suggested slight variability in predictions. The probability that the relative error of the predictions
falls within the range of -15% and +15% is significant and equal to 89%.

• First Order Model
In contrast to the ANN model, the linear regression model showed a significantly higher positive
mean (µ = 20.03%), suggesting a substantial overestimation of the actual values. Additionally,
the large standard deviation (σ = 77.0%) indicated considerable variability in predictions, resulting
in inaccurate estimations. Moreover, the probability of the relative error of the predictions being
within ± 15% was merely 8%, indicating that the accuracy of the first order regression model
should be considered to be insufficient

• Second Order Model
The second order regression model exhibited a positive mean (µ = 6.41%), indicating a tendency
to slighty overestimate the actual values. Furthermore, the standard deviation (σ = 48.7%) sug-
gested high variability in the predictions. The probability of the relative error of the predictions
being within ± 15% was only 19%, indicating that the accuracy of the second order regression
model should be considered to be insufficient.
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• Third Order Model
The third order regression model showed a slight positive mean (µ = 2.54%), implying a small
tendency towards overestimation of results. The standard deviation (σ = 35.5%), however, sug-
gested significant high variability in predictions. The probability of third order regression predic-
tions falling within the range of ± 15% was 34%, which made the third order model the most
accurate model compared to the first and second order curve fitting models.

Evaluation of Performance in terms of Costs
The predictive performance of total costs for outrigger system is presented in Figure 6.28. This figure
showcases scatter plots comparing predicted cost values against actual values for each regression
model. The main observations from the scatter plots are presented in Table 6.17.

(a) Actual vs prediction values ANN (b) Actual vs prediction values Linear Regression

(c) Actual vs prediction values 2nd Order Regression (d) Actual vs prediction values 3rd Order Regression

Figure 6.28: Actual vs prediction values of construction costs for S2 with different regression models
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S2: Outrigger System Observation

Curve Fitting
Models

ANN The ANN model has a significant high accuracy. Accuracy
decreased slightly as total costs increased.

First Order Tendency for overestimation at lower costs values,
and significant underestimation at higher cost values.

Second Order Similar trend as for the first order but to a lesser extent.
Third Order Same trend as second order and first order, but to a lesser extent.

General
Accuracy of the ANN is significantly the best.
The observed behavior in the scatter plots aligned with the
insights from the probability density distribution.

Table 6.17: Observations from the scatter plot of different regression models for S2

Difference Accuracy Braced Framed Tube and Outrigger
The difference in accuracy in terms of the RMSE between the braced framed tube (RMSE = 38.9
kg/m2GFA) and the outrigger system (RMSE = 29.1 kg/m2GFA) can be attributed to the difference in
sample size. The data set for the braced framed tube consisted of 246 samples, whereas the outrigger
system data set consisted of 654 samples. Generally, a larger data set allows for more accurate training
of neural network models. Additionally, the higher difference in accuracy when comparing the values
of the MAPE for the braced framed tube (MAPE = 14%) and the outrigger system (MAPE = 7%) can be
better understood by examining the definition of the MAPE. The MAPE is determined by comparing the
predicted total mass to the actual total mass. Notably, the outrigger system has, on average, a higher
mass due to its combination of concrete and steel, whereas the braced framed tube system consists
solely of steel. The average total mass of the braced framed tube was found to be 146.2 kg/m2GFA
and the average total mass of the outrigger system was 250.2 kg/m2GFA. Consequently, even if both
systems have the same RMSE value, the MAPE will be lower for the outrigger system. This outcome
results from the higher total mass, leading to a smaller error-to-mass ratio and, consequently, a relatively
lower MAPE.

6.2.5. Computational Time
The total computational time required to capture the final output can be divided into two phases: the
initial computational time for model creation and the ongoing time required for result generation. The
initial computational time for model creation is a one-time investment, while the time required for result
generation is occurring for each iteration. To assess whether the artificial neural network models save
computational time, both aspects have been examined for either the neural networks as well for the
parametric model.

Time for Model Creation
The artificial neural network models required a significant initial investment in terms of time since it was
built based on data sets generated by parametric models. So besides modelling the neural networks,
also the parametric models had to be modelled. The total initial time required for the creation of the
neural networks, before outputs can be generated, was determined by looking at the different tasks
outlined in the section of Approach in Chapter 1. An overview of the computational efforts for each
of the tasks, which can be understated as the tasks required in the initial investment and creation of
the needed models, is presented in Table 6.18. Additionally, the total initial computational time for
the parametric model is included in the table, which only consisted of the first task as no further data
generation or model creation is needed. There was no time for the model creation when looking at the
analytical method, regarding the traditional way of calculating a structure.
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Method Explanation Time Total Time Prerequisite

ANN Model

Task 1 Parametric model
development 2 weeks

4 weeks

Familiar with
software GH

Task 2 Data generation 1 week (-)

Task 3 ANN development 1 week Familiar with
ML

Parametric Model Task 1 Parametric model
development 2 weeks 2 weeks Familiar with

software GH

Analytical (-) No model creation
needed (-) (-) (-)

Table 6.18: Overview of time for model creation for ANN and parametric model

Time for Output Generation
The additional initial computational time required for the neural networks compared to the parametric
model needed to be compensated to justify their creation. The time saved with neural networks was
in the final phase of the result generation. After training the neural networks, it only took a second to
produce an output, significantly faster than with parametric models. In contrast, running the parametric
models required between 5 to 30 minutes for both braced framed tube and outrigger system to generate
a single output, depending on the scale of the structure. Comparing multiple structures with varying
volumes for both stability frameworks could easily extend this time to several hours. Utilising neural
networks for comparison significantly reduced this required time, as generating an output took less than
a second. Outputs were immediately provided by the neural networks.

Method Explanation Time

ANN Model Task 4 Prediction and
visualization 1 second per iteration

Parametric Model Task 2 Prediction and
visualisation 5 - 30 minutes per iteration

Analytical Task 1 Calculation of model 0.5 week per iteration

Table 6.19: Overview of time for output generation for ANN and parametric model

The break-even point for the number of iterations, where after it became more advantageous for the
ANN models, was reached at 120, illustrated in Figure 6.29. This was based on an average durations
of 20 minutes per iteration for the parametric model. To provide a more clear perspective, an average
of three to four iterations are needed per structure for different geometry variations. This is only con-
sidering the structural point of view, however other disciplines such as building physics, cities, facade
design and sustainability can also benefit from generating multiple models per project. Therefore, the
120 iterations will be reached after approximately 5 projects if two stability frameworks are compared
in the design phase and three disciplines are involved (120/(3 ∗ 4 ∗ 2) = 5). For further context, a
engineering company, such as Buro Happold, can be considered, which is assumed to handle around
20 high-rise buildings projects per year. Consequently, it can be concluded that it will take around 3
months before the neural network becomes less time-consuming in terms of total computational time.
Moreover, a significant advantage of the neural networks is that, during this period, the actual data
from real-life projects can be reused as input for the neural network. Over time, the neural networks
can capture and learn from real-life data, a capability that the parametric model lacks.
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Figure 6.29: Initial and output generation time (total computational time) for different methods

6.3. Impact of Stability Framework
The impact of the stability framework was assessed in terms of its contribution of embodied carbon to the
total embodied carbon of the structure, including both superstructure (the main-load bearing elements)
and the floors. The embodied carbon refers to the raw carbon emission from the structure during the
considered life-cycle. The embodied carbon is one step prior to the environmental costs since the
environmental costs are calculated based on multiplying the embodied carbon with the shadow price
per kg CO2-equivalent. The total embodied carbon is defined as both the embodied carbon coming
from the gravity framework and the stability framework. Table 6.7 from Section 6.2.3 gives an overview
of the division for the braced framed tube and outrigger system which structural elements are part of
the stability or gravity system.

The embodied carbon from the total structure was determined based on the output from the parametric
models, with width ranges of 15 to 60 meters and height ranges of 48 to 300 meters. The data from the
parametric models was used since the accuracy of the neural networks S1-B and S2-B was considered
to be not sufficient enough since the MAPE of S1-B ranged from 5% to 35% and MAPE of S2-B ranged
from 2% to 53%. The data from the parametric models was categorized into subsets, each representing
a height difference of 50 meters. The results are visualized using box plots, with the median value
provided, see Figure 6.30 for braced framed tube and Figure 6.31 for the outrigger system. The median
percentage contribution of the stability framework for braced framed tube ranged from 25% to 57%,
and for outrigger system, it varied between 33% and 66%. This data illustrated the significant role of
the stability framework for both systems in the total impact of the structure, which included both the
stability and the gravity framework. Moreover, it can be seen that the relative impact of the stability
framework, compared to the impact of the gravity framework, was increasing with the height of the
structure. This trend was expected, as the stability requirement of a structure becomes more governing
as the slenderness of the building is increasing.
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Figure 6.30: Box plot of share of EmCO2 of stability framework S1 relative to total EmCO2

Figure 6.31: Box plot of share of EmCO2 of stability framework S2 relative to total EmCO2

6.3.1. Impact of Choosing the Best Performing Framework
In addition, the impact of selecting the optimal stability framework, either braced framed tube or outrig-
ger system, and the potential gains from such a choice was examined. This was achieved by calculating
the absolute difference in embodied carbon between both systems for each specific input data based
on the predictions from the neural networks, which ranged again from 15 to 60 meters in width and
48 to 300 meters in height. Next, the ratio between the absolute difference in embodied carbon and
the total embodied carbon of the worst performing structure was determined. This ratio highlighted the
potential benefits of choosing the best performing stability framework. This ratio is visualised in Figure
6.32 using box plots. The total embodied carbon was based on the summation of the superstructure
and the floor system. Looking at the ratios, they ranged from 7% to 18%. For lower heights, the differ-
ence between both systems was already observed to be small, see for example Figure 6.18. However,
due to the relatively low total impact, even minor gains were significant in lower subsets. As the struc-
ture height increased, the difference between stability systems expanded more rapidly than the total
impact of the structure, resulting in slightly higher percentage gains for middle subsets. For the tallest
structures (250 to 300 meters), the relative gain decreased, which can be explained due to a higher
relative increase of the total impact than of the relative increase of the difference between both systems.
It should be noted that only the values of gains were considered when both stability frameworks were
feasible. Since the braced framed tube could not exceed a slenderness of 11, the outrigger system
was capped for the structures with slenderness exceeding 11.
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Figure 6.32: Box plot of potential gain of best performing stability system in terms of embodied carbon

6.4. Comparison with Literature
In this research, the performance of stability frameworks (braced framed tube and outrigger system)
was investigated using data sets of optimised structures from both frameworks. The predicted values
based on the neural networks were compared with real-world projects. It was found that there is lim-
ited literature about the impact of high-rise structures, which is the emphasis of this research. Values
regarding the impact of high-rise buildings were found in studies by Rock, M. and Sorensen, A. (2022),
Oldfield (2012), and Trabucco (2016) [53] [54] [55].

To enablemeaningful comparisons, it was essential that values found in literature aligned with the scope
of the neural networks. Thus, the focus was on the Cradle-to-Gate (A1-3) life cycle assessment stages.
Furthermore, only the lateral-load bearing structures and floors were considered, while aspects such
as foundations, envelopes, internal components, services, and appliances, which were not factored
into the neural networks, were excluded from the comparison. The results of the comparison between
the found values in the literature and the predicted values based on the neural networks are presented
in Table 6.20.

• Study A: Rock (2022)
In a comprehensive study conducted by Rock, M. and Sorensen, A. (2022) (referred to as Study
A), 769 life cycle assessment (LCA) studies on buildings from five different EU countries were
compiled [53]. Among these, only one building met the criteria for a steel frame and could be
quantified as a high-rise building. This building consists of 27 storeys and had a total GFA of
64,762 m2. Study A captured an embodied carbon impact of 161 kgCO2eq/m2GFA. The impact
of the embodied carbon was defined as the load-bearing system including the floors. The com-
parison between real-life projects and the neural network is detailed in Appendix G in Section
G.1.

The neural network of the braced framed tube, based on the same input parameters as the real-life
project, predicted a value of 117 kgCO2eq/m2GFA, reflecting a decrease of 28%. The difference
can be attributed to the different stability systems. The prediction was made based on a braced
framed tube, whereas the actual stability framework of the building is a steel frame.

• Study B: Oldfield (2012)
In a 2012 study by Oldfield (referred to as Study B), a LCA was conducted on the 41-story office
building, known as 30 St. Mary Axe, in London [54]. This building stands at 180 meters tall and
has a gross floor area (GFA) of 64,469 m2. The study calculated the building’s embodied carbon
at 226 kgCO2eq/m2GFA, taking into account only the structural superstructure and floor system
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from stages A1 to A3. A more detailed explanation of the conversion of the embodied carbon
value from the study for comparison is presented in Appendix G in Section G.1.

For comparison, a 180-meter braced framed tube structure was examined, where the GFA is
higher due to the neural network being based on a lower floor-to-floor height of 3 meters, result-
ing in more storeys and thus a higher GFA, equal to 64,469 m2. The neural network predicted an
embodied carbon value of 285 kgCO2eq/m2GFA, which is higher than the obtained impact of St.
Mary Axe from Study B. The difference may be attributed to the varying architectural designs, as
the neural network was based on a fully rectangular structure, unlike the shape of St. Mary Axe.
Moreover, another possible reason for the difference can be the different wind load requirements
in England relative to wind load requirements of the Netherlands were the neural network is based
on.

• Study C: Trabucco (2016)
A third comparison was conducted with the 60-story models from the research of the Council
of Tall Buildings and Urban Habitat (CTBUH), by Trabucco [55]. These models have a GFA of
141,600 m2 and are 246 meters in height. Two models were particularly highlighted for com-
parison: the steel diagrid system and the concrete core with steel frame system. The all-steel
diagrid model by Trabucco has an embodied carbon impact of 285 kgCO2eq/m2GFA, while the
246-meter steel braced framed tube model from this research was predicted to have an impact
of 269 kgCO2eq/m2GFA.

Similarly, the impact of Trabucco’s concrete core with steel frame model is 236 kgCO2eq/m2GFA,
compared to the outrigger system of this research, which was predicted at 252 kgCO2eq/m2GFA.
The observed differences could be attributed to the difference in stability framework, as the con-
crete core and steel frame represent a different approach compared to the outrigger system.
Trabucco’s concrete core and steel frame model was selected for comparison as it most closely
resembled the stability framework of the outrigger system.

• Study D: MIT (2024)
Furthermore, a comparison was done between the study of MIT Building Technology Program
and the Circular Engineering for Architecture (CEA) lab (referred to as Study D) and the neural
networks based on the same input data, detailed in Section G.2 of Appendix G [56]. Study D
conducted comparisons based on subsets of buildings categorized by the number of stories and
floor area, utilising box plots to illustrate statistical measurements. For structures ranging from 11
to 50 stories, the neural networks consistently predicted lower embodied carbon values. However,
comparisons for structures with 51 to 100 stories showed significant differences due to the small
sample size in the database of Study C and the inclusion of economically and environmentally
unfavorable high-slenderness structures in the ANN models. Similar trends were observed in
comparisons based on different floor areas.

To address outliers caused by high-slenderness structures in the neural network’s data set, an
upper limit on slenderness (set at 11) was implemented for comparison. The revised comparisons
still showed significant differences, but it was concluded that setting an upper limit on slenderness
in the neural network’s data set helped align predictions more closely with real-life scenarios. For
structures ranging from 11 to 50 stories it was found that the relative difference of the median was
equal to -64%, for the subset 51 to 100 stories the relative difference of the medias was equal to
-43%. Similarly, in floor area subsets ranging from 1000 to 10,000 m2, 10,000 to 100,000 m2, and
above 100,000 m2, the relative differences in median values were found to be -57%, -63%, and
-47%, respectively.

The significant difference between Study D and the neural networks might be because Study D’s
data set included all sorts of materials and building types, including concrete. In contrast, the neu-
ral network was trained only on the primary material of steel. Comparing Study D to the neural
networks was challenging due to the lack of transparency in Study D’s data compilation. It could
not be seen which buildings and structures the subsets consisted of, and therefore a meaningful
comparison was difficult to make.
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Study System Height Width xxxx GFA EmCO2
[m] [m] [m2] [kgCO2eq/m2GFA]

Study 64762 161
A Steel Frame 81 49

ANN: S1 64762 117

Study 64469 285
B Steel Diagrid 180 40

ANN: S1 96000 226

Study 141600 285
C Steel Diagrid 246 49

ANN: S1 196882 269

Study 141600 236
C Concrete Core

+ Steel Frame 246 49
ANN: S2 196882 252

Table 6.20: Comparison calculated impact from literature with predicted impact of ANN



7
Discussion

In this chapter, the focus lies within answering the main question by exploring the ability of predicting
the best stability framework, in terms of either structural or environmental costs, based on the input
geometry of the structure. The analysis consist of examining the outcomes of the ’Data Collection’
phase and the subsequent ’Modelling Procedure’ step. Their alignment with the Theoretical Framework
is assessed to address the main research question, which is restated below:

’How can the performance parameters for different stability frameworks of a high-rise steel build-
ingwith different volumes be predicted based on its design characteristics in amachine learning
approach to accelerate the decision process?’

To address the main research question, the results from both the parametric models as from the ar-
tificial neural network (ANN) models are discussed. The results regarding the development and the
optimisation of the ANN models are examined. Lastly, the performance of the ANN models regarding
other curve fitting methods in terms of accuracy is discussed. The discussion concludes by reflecting
on the influence of those insights on the decision-making processes when designing a structure.

Analysis of Parametric Model
The findings from the parametric models of both braced framed tube and outrigger system demon-
strated that the relationship between performance in terms of costs of the structure and the input ge-
ometry behaved similarly for both stability systems. As buildings increased in height, structural and
environmental costs per m2 Gross Floor Area (m2GFA) also rose. The performance in terms of costs
(both structural and environmental) was calculated based solely on the mass of the structural elements.
The graph representing the costs of the braced framed tube and the outrigger system over an increasing
height or width did not reveal a clear relationship or offer a robust comparison. A non-linear relation-
ship was shown, where the relationship for the outrigger system was more complex than for the braced
framed tube. For the braced framed tube the maximum reachable slenderness (height-to-width ratio)
was found to be 11.67 and for the outrigger system to be 12.50. Higher slenderness was not feasible
within the cross-section ranges predetermined in the parametric models. For both system, it failed to
meet stiffness requirements beyond the maximum slenderness ratio. The visualisation of data sets
showed a parallel relationship between structural and environmental costs for both systems. The ap-
proximate slope was 62 €/m2 over the total height range of 50 to 300 meters. Changes in environmental
costs had proportional structural cost adjustments across both stability systems.

Analysis of ANN Model Development and Optimisation
The results of the analysis of the neural networks can be separated into the results regarding the neural
network model development and the optimisation of the neural networks.

• Model Development.
The neural networks of both stability frameworks were developed and trained based on the ob-
tained data sets from the parametric models. These parametric models provided data sets con-
taining the total mass of structures, where column and beam dimensions were optimised for
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minimal mass. The neural networks were trained based on this total mass information, resulting
in predictions for the overall mass of the structure. Additionally, separate neural networks were
created to predict the mass of individual structural elements within the overall structure. These
element-specific networks were trained using the masses of each component. However, rather
than summing up the predicted masses of individual elements to obtain the total structure mass,
it was decided to avoid error accumulation by keeping these predictions separate.

• Model Optimisation.

– Genetic Algorithm.
It was found that genetic algorithm was a sufficient method to use for the optimisation of
the hyperparameter configurations for the ANN models. For all the four ANN models, the
genetic algorithm was able to find the best configuration of the hyperparameters for each
specific neural network. Different configurations were found for each of the four ANNmodels,
aligning with literature recommendations that the optimal ANN architecture is specific to each
data set and model.

– Optimum ANN.
The results showed that the use of Back Propagation and Gradient Descent were sufficient
methods for training the ANN models. By analyzing training and validation loss over 10,000
epochs for both stability systems, optimal weights and biases were identified. The conver-
gence graphs indicated stable model states without underfitting or overfitting.

Analysis of Accuracy of ANN Model
The objective of the neural network of the braced framed tube was to predict the total mass of the steel,
where the masses are convertible to structural and environmental costs. The objective of the neural
network of the outrigger system was to predict the combined total mass of the steel and concrete. The
results from the neural networks, presented in Table 7.1, indicated that the neural networks of both
braced framed tube and outrigger system gave sufficient accuracy in approximation of the data bases;
RMSE of 14% and 7% respectively. The assessment was based on two key metrics: Root Mean
Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE).

Braced Framed Tube Outrigger System
S1-A S2-A

Objective Prediction of mass Steel
Steel

Concrete

Results
Sample size [-] 246 654
RMSE [kg/m2GFA] 38.9 29.1
MAPE [%] 14 7

Table 7.1: Overview of the objective and results of the neural networks

The neural network of the braced framed tube considered only one variable (steel mass), where the
neural network of the outrigger system accounted for both steel and concrete mass (due to the concrete
core as part of the stability framework). Despite the additional complexity in modeling the outrigger
system, a higher accuracy was found for the outrigger system compared to the braced framed tube.
A possible reason is the larger sample size of the outrigger system (n = 654) compensating for its
modeling difficulty compared to braced framed tube (n = 246).

Comparison of ANN Model with other Regression Models
The accuracy and predictive performance of the neural networks were compared with other curve fitting
models, including first order, second order, and third order, to evaluate their relative effectiveness. The
accuracy of the neural networks of both the braced framed tube and the outrigger system was found
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to be the most precise model compared to all the other curve fitting models, see Table 7.2. The results
showed the superiority of the neural networks by the quantification of lower RMSE and MAPE values,
and visually confirmed through scatter plots comparing actual versus predicted values (Chapter 6 for
Section 6.2.4).

Metric Curve Fitting Methods Braced Framed Tube Outrigger System
S1-A S2-A

MAPE [%]

First Order 49 67
Second Order 38 41
Third Order 25 31
Artificial Neural Network 14 7

Table 7.2: Overview of accuracy of different curve fitting methods

Analysis of Results based on ANN Model
The results showed that the best performing framework was a function of specific width and height com-
bination. For each specific combination of width and height, a different optimal stability framework was
found, looking at either structural or environmental costs. An overview of the best stability framework
in terms of structural costs is presented in Table 7.3 and in terms of environmental costs is presented
in Table 7.4.

Width [m]
10 20 30 40 50

Height
[m]

50 Braced Tube Outrigger Outrigger Outrigger Braced Tube
100 Braced Tube Outrigger Outrigger Outrigger Outrigger
150 (-) Outrigger Outrigger Outrigger Outrigger
200 (-) Braced Tube Braced Tube Braced Tube Outrigger
250 (-) (-) Braced Tube Outrigger Braced Tube
300 (-) (-) Braced Tube Braced Tube Braced Tube

Table 7.3: Overview of best framework in terms of structural costs based on ANN models

Width [m]
10 20 30 40 50

Height
[m]

50 Braced Tube Outrigger Braced Tube Braced Tube Braced Tube
100 Braced Tube Outrigger Outrigger Outrigger Outrigger
150 (-) Braced Tube Braced Tube Outrigger Outrigger
200 (-) Braced Tube Braced Tube Braced Tube Outrigger
250 (-) (-) Braced Tube Braced Tube Braced Tube
300 (-) (-) Braced Tube Braced Tube Braced Tube

Table 7.4: Overview of best framework in terms of environmental costs based on ANN models

Impact of Stability Framework
The impact of the stability framework is defined as the contribution in terms of embodied carbon to the
overall embodied carbon of a structure, which includes both the superstructure and floors. Embodied
carbon is one step prior to environmental costs, since the value is not yet multiplied with the shadow
price of CO2-equivalent. Specifically, the stability framework’s role is to provide lateral stability to the
building. For the braced framed tube system, the stability framework’s relative impact ranged from
25% to 57%. For the outrigger system, the relative impact varied between 33% and 66%. The actual
percentage depended on the height of the building. As the building height increased, the stability frame-
work’s influence on embodied carbon became higher. The substantial impact of the stability framework
underscores its importance in determining the overall embodied carbon of a structure. Moreover, it
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was found that selecting the optimal stability framework can lead to a potential reduction in embodied
carbon. The potential gain ranged from 7% to 18%. This gain is calculated as the ratio between the
absolute difference in total embodied carbon between the braced framed tube and the outrigger system,
divided by the total embodied carbon of the worst-performing stability framework.

Accelerating Decision-Making Processes
The parametric model took approximately 5 to 30 minutes per output, depending on the scale of the
structure. When evaluating multiple structures with varying volumes, this time extended to several
hours. While the parametric model provided valuable results, its output generation time was relatively
slow. In contrast, the output generation for the neural networks was merely a second. The neural net-
works offered a dramatic reduction in output generation time. This speed advantage enabled instant
comparisons between the different structural frameworks of the braced framed tube and the outrigger
system. However, the setup time for neural networks was longer than that for parametric models. Neu-
ral networks were constructed based on data sets generated by the parametric model. Despite this
initial setup time, after 120 iterations, the neural networks became more advantageous over the para-
metric model. For typical structures, three to four iterations of different dimensions of the structure are
needed per stability framework when considering the structural point of view. An engineering company
handling 20 high-rise building projects annually, with multiple disciplines involved each project, would
require approximately 3 months for the neural networks to become less time-consuming. Regarding
the possibilities within the neural networks, the results showed the possibility of interpolation between
the heights and grid sizes, and was thus not limited by the input data ranges, unlike parametric mod-
els. Furthermore, integrating real-life data into the neural network’s input data set is possible, enabling
predictions in the early design phase to learn from real-life projects and improve accuracy and link to
reality.

In summary, the study has shown that an artificial neural network can effectively predict the best sta-
bility system for high-rise steel buildings. While the findings are specific to the braced framed tube and
outrigger system, the method proposed offers an accurate and fast way to compare stability systems
during the initial design stage. This validated approach can be easily adapted to other stability frame-
works and shapes by expanding the parametric model, by including different stability systems, different
materials and different shapes, and increasing the input data for the artificial neural network models.
Additionally, data from real-life projects can be integrated in the input data sets to link the neural net-
work directly to actual data of costs of buildings. The integration of artificial neural network models as
predictive models into the design workflow has the potential to improve the efficiency and to promote
cost-effective and sustainable design solutions.



8
Conclusion & Recommendations

8.1. Conclusion
In the early design phase, designers and clients aspire to compare multiple structural designs, consid-
ering both different stability frameworks and variations in geometry. Unfortunately, the current process
of evaluating multiple designs is time-consuming. To address this challenge, predictive models can be
used to estimate performance in terms of structural and environmental costs based on the given ge-
ometry. These models rely on the established relationship between performance and input geometry
where the established relationship is depending on the used predictive model. Traditional curve fitting
methods, such as polynomial regression models, often fall short in accurately predicting a complex non-
linear relationship. Therefore, in this research the potential of artificial neural network was examined
as an alternative. It was found that the artificial neural network is able to accurately predict structural
and environmental costs based on the input geometry. The artificial neural network outperforms the
current design evaluation process in terms of time and outperforms other curve fitting models in terms
of accuracy. The conclusions from this research are elaborated below:

• An artificial neural network gives enough accuracy in approximation of the data base.
The artificial neural network for the braced framed tube, which predicted the total mass of steel,
demonstrated high accuracy with a Mean Absolute Percentage Error (MAPE) of 14%. Similarly,
the neural network model for outrigger system, which predicted the total mass in terms of both
steel and concrete, also showed high accuracy with a MAPE of 7%. When looking at the absolute
value of the RMSE, a trend was observed where predictions for lower values (heights from 50 to
200meters) had lower errors in terms of RMSE compared to predictions for higher values (heights
from 200 meters). The neural network of the braced framed tube had the small tendency (µ =
3.5% ) to rather overestimate the costs, whereas the neural network of the outrigger system had
rather the very small tendency (µ = -1.0%) to underestimate.

See for a more detailed explanation Chapter 6 for Section 6.2.4.

• The artificial neural network significantly outperforms the curve fitting methods in terms
of accuracy.
The artificial neural network models for both braced framed tube and outrigger system demon-
strated lower errors compared to the curve fitting models of the first, second, and third order
regression models. For the braced framed tube, the neural network’s MAPE was found to be
14%, whereas the most accurate alternative curve fit, the third order, had a MAPE of 25%. For
the outrigger system, the neural network’s MAPE was 7%, while the most accurate curve fit,
again the third order, had a significantly higher error with a MAPE of 31%, indicating its inability
to approximate the database effectively.

See for a more detailed explanation Chapter 6 for Section 6.2.4.
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• An artificial neural network is significantly faster in generating results than a parametric
model, but needs more model setup time.
The artificial neural network model significantly reduced output generation time to just one sec-
ond per iteration, compared to the parametric model, which took up to 30 minutes. However, the
setup time for ANN models was longer because they were constructed based on data sets gen-
erated by the parametric models. When considering the total time required for both parametric
and neural network approaches, the neural network model became more advantageous after 120
iterations. Typically, three to four iterations are needed per stability framework for different geom-
etry variations. Therefore, when comparing two stability frameworks, it would take approximately
five projects or about three months for an engineering company handling 20 high-rise building
projects annually with multiple disciplines for the artificial neural network model to become less
time-consuming overall.

See for a more detailed explanation Chapter 6 for Section 6.2.5.

• The best performing framework is a function of specific width and height combination, and
differs for structural and environmental costs.
The optimal stability framework for structures depends on specific combinations of width and
height. When considering structural costs, the outrigger system was more efficient up to a height
of 150 meters for a 20-meter width, while the braced framed tube becomes optimal beyond that
height. For a 30-meter width, the outrigger system performs better between 50-155 meters, and
the braced framed tube dominates between 155-300 meters. Similarly, for widths of 40 meters,
the outrigger system is preferable within specific height ranges of 50-190 and 210-255 meters and
for widths of 50 meters, the outrigger system is preferable within the ranges of 80-230 meters.
The results indicate that the braced framed tube is the optimal stability system for the lowest and
highest heights, whereas the outrigger system dominates in the middle section. However, when
assessing environmental costs, the braced framed tube was found to more optimal for the middle
section of heights. In summary, each specific combination of width and height leads to a different
optimal stability framework for either structural or environmental costs.

See for a more detailed explanation Chapter 6 for Section 6.2.3 and Chapter 7 for Table 7.3 and
Table 7.3.

• The relative contribution of embodied carbon from the stability framework ranges from
25% to 57% for braced framed tube and 33% to 66% for outrigger system as part of the
total embodied carbon of the structure.
The impact is defined as the relative contribution of embodied carbon of a specific part to the
total embodied carbon of the structure. The impact of the stability framework, as a part of the
total structural framework (superstructure and floors), was found to range from 25% to 57% for
the braced framed tube and 33% to 66% for the outrigger system, where the impact increased
with the building’s height. This significant contribution underscored the influence of the horizontal
force (wind load) compared to the vertical force, so the influence of the stability framework to the
gravity framework.

See for a more detailed explanation Chapter 6 for Section 6.3.

• The potential gain in terms of less impact of the best stability framework ranges from 7%
to 18%.
The potential gain from selecting the optimal framework, defined as the ratio of the absolute
difference in embodied carbon between braced framed tube and outrigger system to the total
embodied carbon of the structural framework, was found to range from 7% to 18%, where the
lowest impact of 7% was found for the highest height range of 250 to 300 meters and the highest
impact of 18% was found for the middle height range of 150 to 200 meters.

See for a more detailed explanation Chapter 6 for Section 6.3.1.
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8.2. Limitations
While this research provided valuable insights, several limitations should be noted:

• Relative small sample size. The creation of the data set for training the ANN models required
considerable time and resources. Especially for the model of the braced framed tube, the data
set was rather small (n = 246), where the data set of the outrigger system was significantly bigger
(n = 654). By establishing a bigger data set for the braced framed tube, the ANN model can be
trained based on more data points, and therefore will likely reach a higher accuracy. So expand
the data set used for training the ANN models to improve the accuracy of the ANN models, with
the emphasize on the braced framed tube.

• Assumption of wind force. This study assumed a structural factor (cscd) of 1.1, which is a
parameter in calculating the wind force. The structural factor accounts for the impact of non-
simultaneous peak wind pressures on the surface and the structure’s vibration due to turbulence.
This assumption of a constant value of 1.1 does not hold true under all conditions, as the struc-
tural factor can vary based on factors such as the building’s design, location, and local weather
conditions. Future research could consider a variable structural factor to see the effect on the
accuracy of the wind force estimation.

• Foundation not considered. The research primarily focused on the load-bearing structure of
high-rise buildings, overlooking the foundation’s impact on building performance in terms of struc-
tural and environmental costs. Future studies could incorporate foundation considerations for
a more comprehensive assessment. The influence of including the foundation remains some-
what unpredictable. Lighter structures would require a less substantial foundation, leading to a
decreased relative impact. Consequently, the outrigger system (a combination of steel and con-
crete) might become less favorable compared to the braced framed tube, given the found higher
average mass of the outrigger system compared to the braced framed tube . On the other hand,
the rotational stiffness of the foundation significantly shapes tall building design. Therefore, it
could be argued that the foundation may be relatively consistent across different stability frame-
works. Moreover, the building parts of the envelope, internal, services and appliances were also
not considered in this research. The contribution of these building parts to the comparison of the
stability frameworks can also be investigated.

• Limited LCA scope. The life cycle assessment considered only stages A1-3 in this research,
leaving out the following stages (A4-D) which would result in a better overview of the environmen-
tal impact across the building’s entire life cycle.

– Exclusion of construction phase: A4-A5. The impact of transportation is project-specific,
closely tied to supplier choices. Predicting the influence of construction remains challenging
due to various factors and project-specific considerations. While the construction phase
does not significantly affect the overall environmental impact, it is most likely that it will have
an equalising effect on the gap in impact between braced framed tube and outrigger system.

– Exclusion of demolition phase: C1-C4. The end-of-life phase was excluded from the
scope of this research since demolition of high-rise buildings above 150 meters is rare. In
the case that demolition of high-rise buildings would be considered possible and desirable,
the highest use of the material steel would most likely become the most favourable due to
its high recycling and reuse potential in comparison with concrete. However, it is more de-
sirable to focus on extending the building’s lifetime instead of demolition and reconstruction
of the building.

• Assumption structural and environmental costs. This research assumed that the structural
and environmental costs are solely dependent on the mass of the materials used. However, this
simplification did not capture the full picture. This assumption is in line with the considered stages
of the LCA of A1-3. The total structural and environmental costs of a structure are influenced by
a variety of factors besides material quantity. These could include the energy used in material
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production and transportation, the costs of different connections between elements, the lifespan
and maintenance costs of the materials, and the recycling or disposal impacts at the end of the
building’s life. All these factors are taken into account when the total LCA is considered, so stages
A till D.

• Rectangular floor plans. Themethodology of this research was limited to rectangular floor plans.
Future research could explore the incorporation of diverse floor plan geometry to increase the po-
tential of usability even more for real-life projects.

• Constant slenderness over building height. This research focused on structures where the
slenderness, or the ratio of the height to width, remained constant throughout the building. The
floor plan stayed consistent over the total height of the building. This limitation meant that the
findings are not applicable to buildings with varying slenderness or floor plans at different heights.

• Constant floor system: The current research considered only one type of floor system, namely
the pre-stressed hollow-core slab. This limitation means that other floor systems, such as flat-
slab floors and composite floors, are not taken into account. Expanding the scope to include a
broader variety of floor systems could improve the scalability and usability of the ANN models.

8.3. Recommendations
To further improve the applicability of this research, the following recommendations are proposed:

• Addition of more performance parameters. In this research, the ANN models were limited
to predicting the masses of structures, as the input was solely based on the masses of the ma-
terials. By expanding the input of the ANN models, the predicted output will also expand. The
input of the ANN model depends on the data generated from the parametric model. Incorporat-
ing performance parameters, such as aspects of building physics like thermal performance and
energy efficiency, into the parametric model alongside the masses of the structure, can expand
the number of inputs for the ANN models. Consequently, further research can be done if the
ANN models will also be capable of accurately predicting the newly incorporated performance
parameters, such as thermal performance or energy efficiency.

• Expand determination of structural and environmental cost. In this research, the perfor-
mance parameters of structural and environmental costs were solely based on the mass of the
materials. There is potential to expand this approach by including additional aspects that influ-
ence the total costs of a structure. For instance, future research could investigate the impact of
connections and their complexity on both structural and environmental costs. Additionally, the
effect of column length could be considered, such as in cases where columns extend across mul-
tiple floors instead of just one. Further research can investigate if this will affect the comparison
between the best performing stability frameworks.

• Inclusion of more building types. The current research included only two stability frameworks,
namely the braced framed tube and the outrigger system. Future research could explore whether
the performance of other types of buildings and structures can also be accurately predicted. For
instance, stability frameworks such as the frame, tube, and diagrid could be considered. While
this study focuses on steel as a material, structures that primarily use cast-in-situ concrete, pre-
cast concrete, or timber could also be included for investigation. Further research could examine
the potential of incorporating a broader range of materials and investigate the performance of
ANN models in predicting the optimal stability framework.

• Integration of real-life projects. Future research could explore the impact of incorporating data
from actual high-rise building projects into the ANN models. In this study, the data sets utilised
for the ANN models are exclusively generated from parametric models, without any real-life data.
The effect of integrating such real-life data into the ANN models’ input data set requires further
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investigation.

• Dimensions of structural core. The size of the structural core is determined based on the anal-
ysis of four real-life high-rise buildings, which is a small sample size. Moreover, the slenderness
of the core was in this research not linked to the slenderness of the building. Linking the slen-
derness of the core to the slenderness of the structure can improve the determination of the size
of the core. The dimensions of the core significantly influence the performance of the outrigger
system, as they determine the volume of required concrete. Future research could explore the
optimal core dimensions for different structural sizes by increasing the sample size and relating
the slenderness of the core with the slenderness of the structure. Moreover, it can be investi-
gated how the core dimensions impact the performance of the outrigger system. This could, in
turn, affect the comparison between different stability frameworks.

• Sensitivity analysis of (shadow) prices. A sensitivity analysis can be conducted to examine
the shadow prices and material prices of concrete and steel. Shadow prices and material prices
can fluctuate due to a variety of factors, such as the use of different material suppliers or concrete
mix designs. This analysis would investigate whether an increase or decrease in the (shadow)
prices of these materials corresponds to a similar change in the gap between the optimal stability
framework.

• Sensitivity analysis of network architecture. The assumptions regarding the network archi-
tecture in this research were that the activation function of the hidden layer was the Rectified
Linear Unit (ReLU), and the activation function of the output layer was the Linear function. Future
research could investigate whether the accuracy and performance of the ANN models change
when the activation function is changed, for example, to the logistic sigmoid or hyperbolic tangent
functions. If a different activation function is chosen, it may be necessary to make a change in
the optimisation technique. Furthermore, while the optimiser chosen for this research was Adam
(a type of momentum optimisation), future studies could investigate whether different optimisers
have varying effects on the accuracy and efficiency of the model.
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A
Material Data Summary

A.1. Embodied Carbon Data
The total equivalent of CO2 per kg of prefab reinforced concrete is determined by summing the em-
bodied carbon of precast concrete (unreinforced) with that of the reinforcement bars. The embodied
carbon per kg for the reinforcement is computed by multiplying the embodied carbon of reinforcement
bars by the ratio of the density of the reinforcement bars to that of reinforced concrete (150 kg/m3 /
2500 kg/m3).

Table A.1: Embodied carbon data, all numbers are Cradle to Gate (A1-A3)

Material Specifications CO2e Area CO2e Weight Source
[kgCO2e/m2] [kgCO2e/kg]

Steel Structural, hot rolled, S355 (-) 1.12 [16]
Reinforcement bars (-) 0.992 [57]

Concrete Precast, C45/55, hollow core, h=320 mm 66.43 0.155 [14] [15]
Precast, C40/50, unreinforced (-) 0.178 [58]
Precast, C40/50, reinforced 150 kg/m3 (-) 0.238
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B
Wind Force

The wind force can be calculated using the guidelines outlined in NEN-EN 1991-1-4 [19]. All the equa-
tions and information within this section are taken fromNEN-EN 1991-1-4 [19]. Equation B.1 represents
the expression for calculating wind loads. This appendix provides instructions and assumptions on how
to determine the parameters which are present in the equation.

Fw = cscd · cf · qp(ze) ·Aref (B.1)

Where:

cscd = structural factor, see Equation 2.11
cf = force coefficient for the structure, see Equation B.2
qp(ze) = peak velocity pressure at reference height ze, see Equation 5.1
ze = reference height for external wind action, internal pressure
Aref = reference area of the structure

B.1. Structural Factor, cscd
The structural factor cscd should take into account the effect on wind actions from the non-simultaneous
occurrence of peak wind pressures on the surface (cs) together with the effect of the vibrations of the
structure due to turbulence (cd). The assumption is made that cscd equals 1.1 for this research.

B.2. Force Coefficient, cf
The force coefficient (cf ) of structural elements of rectangular section can be determined with the fol-
lowing expression:

cf = cf,0 · ψr · ψλ (B.2)

Where:

cf,o = force coefficient of structures with sharp corners and without free-end flow
ψr = reduction factor of force coefficient for square sections with rounded corners
ψλ = end-effect factor for elements with free-end flow

cf,o = 2.1
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The force coefficient of rectangular sections cf,o for this structure is 2.1, given that the width and length of
the floor plan are identical, as depicted in Figure B.1. The floor plans of all structures have a symmetrical
rectangular profile.

Figure B.1: Force coefficients cf,0 of rectangular sections with sharp corners and without free-end flow according to NEN-EN
1991-1-4:2005

ψr = 1.0

The reduction factor ψr for this structure is set to 1.0 due to the floor plan featuring sharp corners.
Consequently, the radius over the width of the floor plan equals zero. The determination of the reduction
factor is illustrated in Figure B.2.

Figure B.2: Reduction factor according to NEN-EN 1991-1-4:2005

ψλ = 1.0

The end-effect factor ψλ is presumed to be 1.0, given the emphasis on high-rise buildings of this re-
search. One of the characteristics of high-rise structures is their significant slenderness. Amore precise
determination of the end-effect factor can be done based on Figure B.3.



B.3. Peak Velocity Pressure, qp(z) 117

Figure B.3: End-effect factor ψλ according to NEN-EN 1991-1-4:2005

Where the solidity ratio ϕ is given by the following expression:

ϕ =
A

Ac
(B.3)

Where:

A = the sum of the projected areas of the members
Ac = the overall envelope area, Ac = l · b

B.3. Peak Velocity Pressure, qp(z)
The peak velocity pressure will be determined using available data for peak velocity pressure in the
Netherlands, specifically in Area II urban. This data can be extracted from the National Annex.



C
Structural Loads and Limit States

C.1. Load Combinations
Eurocodes and national annexes of each country regulate the structural design of European buildings.
The limit state design principle is used to evaluate the state of a structure as either satisfactory or unsat-
isfactory based on whether it meets the limit state design criteria. EN 1990 (Basis of Structural Design)
of Eurocode defines two types of limit states that relate to structural safety and usability requirements:

• The Ultimate Limit State (ULS) involves the risk of collapse or other failures that jeopardize per-
sonal safety due to instabilities, excessive deformations, or rupture of structural elements.

• The Serviceability Limit State (SLS) refers to deformations that affect a structure’s appearance,
comfort level, or planned functionality, disrupt its normal use, cause damage, or have long-term
effects on its durability.

The structural design process should ensure sufficiently low probability of failure. Therefore, partial
safety factors are used for actions and loads. Table C.1 shows the partial safety factors for ULS and
SLS considering consequence class 3 for buildings. To take the consequence class into account, the
applicable load factors (γG and γQ;1) are multiplied by the factor of 1.1 which results in the values
presented in the Table.

Design Permanent Variable
Load combination Unfavourable Favourable Dominant Accompanying
ULS (1) 1.5 Gk,j,sup 0.9 Gk,j,inf 1.65 ψ0,1Qk,1 1.65 ψ0,iQk,1 with (i > 1)
ULS (2) 1.3 Gk,j,sup 0.9 Gk,j,inf 1.65 Qk,1 1.65 ψ0,iQk,1 with (i > 1)
SLS 1.0 Gk,j,sup 1.0 Gk,j,inf 1.0 Qk,1 1.0 ψ0,iQk,1 with (i > 1)

Table C.1: Partial safety factors for ULS and SLS

ψ0, ψ1 and ψ2 are the combination factors applied to variable actions to determine their combination
value, as per EN 1990 [59]. The factors for Category A: residential spaces and Category B: office
spaces can be seen in Table C.2.

ψ0 ψ1 ψ2

Category A: residential spaces 0.4 0.5 0.3
Category B: office spaces 0.5 0.5 0.3

Table C.2: ψ factors for building according to EN1990 [59]

From NEN-EN1991-1-1 the live load at the floors is set and can be seen in Table C.3. The concentrated
force must be applied over an area of 100x100m.
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qk Qk
kN/m2 kN

Category A: residential spaces 1.75 3.0
Category B: office spaces 2.5 3.0
Category B: light weight partition walls 1.5 (-)

Table C.3: Live loads according to NEN-EN1991 [18]

C.2. Ultimate Limit State
The ULS checks can be divided into checks regarding the stability and the strength of the structure.
The equations presented below are based on the reader by P.H. Ham and K.C. Terwel (2017) [60].

Stability
In the context of the ULS of the stability, the focus is on the slenderness and vertical loading of the
structure. Increased slenderness raises the risk of the structure tipping over. To prevent this, the
moment generated by wind load and the second-order effect, is compared to the moment resistance
caused by the vertical loading. Sufficient capacity must be demonstrated to ensure the building remains
stable and in place.

Mvertical =
1

2
· Fvertical · width (C.1)

Mhorizontal =
1

2
· Fhorizontal · height (C.2)

Mvertical > Mhorizontal (C.3)

Strength
The strength condition requires a specific compressive strength of the building material. The actual
stress should be smaller than the allowable stress.

γQ ·Mwind

W
+
γG ·Ndead

A
< fyd (C.4)

The strength requirement is taken into account in the parametric model, where the unity check of 0.90
is applied. When the strength requirement could not be met, the structure was found insufficient.

C.3. Serviceability Limit State
There are two essential global SLS checks for high-rise buildings: one concerning the maximum al-
lowable lateral deflection and the other focusing on the maximum allowable acceleration, both are
determined based on the dynamic behaviour of the structure.

C.3.1. Deflection
The building’s stiffness restricts its lateral deflection due to wind and earthquake loads. The latter
are not considered in this research since the location of the structure is in the Netherlands, however
they should be taken into account in seismic regions. The maximum allowable total lateral deflection,
denoted as u, of a building is limited to h/500, see Equation C.6. The maximum lateral deflection for
inter-storey can also be determined; in this case the stiffness of the foundation is not taken into account,
see Equation C.5.

cd · qw · h4storey
8 · EeffI

<
hstorey
300

(C.5)
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cd · qw · h4

8 · EeffI
+
cd · 2 ·M · h

k · x2
<

h

500
(C.6)

C.3.2. Acceleration
The speed at which a building accelerates is constrained by the comfort of its occupants. Too high accel-
eration can create unsafe or uncomfortable conditions for those inside. Figure C.1 from the Eurocode
illustrates the allowable acceleration levels plotted against the structure’s natural frequency. The ac-
celeration measured at the building’s top may not be greater than this threshold. Line 1 corresponds
to office spaces, and line 2 applies to residential spaces. The expression for the natural frequency of
a structure can be found in Appendix B, referred to as Equation ??. The method which is used, is
described in the Dutch building code NEN 6702.

Figure C.1: Requirement acceleration of a structure according to NEN1991-1-4 [19]

The acceleration at top of the building can be calculated with the following formula:

a = 1.6 · ϕ2 · pw · Ct · b
m

(C.7)

Where:

pw = fluctuating part of the wind pressure, see Equation C.9
Ct = shape factor of the structure
b = average width of the structure perpendicular to the wind direction
ϕ2 = dynamic factor for vibration caused by wind, see Equation C.8
m = mass of the structure

The dynamic factor which takes the fluctuation of the wind load into account, denoted as ϕ2, can be
expressed as:

ϕ2 =

√
0.0344 · n−2/3

1

D · (1 + 0.12 · n1 · h)(1 + 0.2 · n1 · b)
(C.8)

Where:
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n1 = natural frequency
D = damping coefficient of the building
h = height of the structure
b = average width of the building perpendicular to the wind direction

The fluctuating part of the wind pressure, denoted as pw can be expressed as:

pw = 100 · 0.2
h

(C.9)

Where:

h = height of the structure



D
Grasshopper Script

Figure D.1: Overview GH script: total

Figure D.2: Overview GH script: part A. determine input

Figure D.3: Overview GH script: part B. create geometry
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Figure D.4: Overview GH script: part C. determination structural analysis

Figure D.5: Overview GH script: part D. analyze model

Figure D.6: Overview GH script: part E. generation of results



E
Validation of 3D Model

The Grasshopper model validation is conducted using Excel. In this validation, the deformation of the
reference model is examined. The reference model has a height of 150 meters and a floor plan width
of 28.8 meters. As the focus is on deformation, the load combination considered is the Serviceability
Limit State (SLS), and no vertical loads, apart from gravity, are applied to the model. The horizontal
load is the acting wind force on the structure.
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F
Error Analysis of S1-B and S2-B

Structural Element RMSE MAPE
[kg/m2GFA] [%]

H1: Outer Beams 1.14 25
H2: Outer Beams 1.15 26
H3: Outer Beams 0.52 23
H4: Outer Beams 0.46 27
H5: Outer Beams 0.35 23
H6: Outer Beams 0.45 23
H1: Outer Columns 70.02 30
H2: Outer Columns 59.12 33
H3: Outer Columns 39.79 35
H4: Outer Columns 17.10 30
H5: Outer Columns 8.28 25
H6: Outer Columns 4.41 27
H1: Inner Columns 9.69 9
H2: Inner Columns 8.82 16
H3: Inner Columns 6.28 17
H4: Inner Columns 5.32 20
H5: Inner Columns 4.01 22
H6: Inner Columns 2.04 23
Floor Beams 0.59 5
Bracing 10.32 18

Table F.1: RMSE and MAPE of ANN S1-B of each element within each height zone
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Structural Element RMSE MAPE
[kg/m2GFA] [%]

H1: Outer Beams 0.34 2
H2: Outer Beams 1.40 10
H3: Outer Beams 1.31 9
H4: Outer Beams 0.87 13
H5: Outer Beams 0.78 12
H6: Outer Beams 0.67 8
H1: Outer Columns conn. Truss 31.01 27
H2: Outer Columns conn. Truss 32.93 34
H3: Outer Columns conn. Truss 96.28 37
H4: Outer Columns conn. Truss 65.53 33
H5: Outer Columns conn. Truss 46.83 28
H6: Outer Columns conn. Truss 10.29 13
H1: Outer Columns not conn. Truss 31.01 27
H2: Outer Columns not conn. Truss 32.93 27
H3: Outer Columns not conn. Truss 96.28 28
H4: Outer Columns not conn. Truss 65.53 22
H5: Outer Columns not conn. Truss 46.83 20
H6: Outer Columns not conn. Truss 10.29 9
H1: Inner Columns conn. Truss 60.42 53
H1: Inner Columns conn. Truss 46.46 48
H1: Inner Columns conn. Truss 40.35 47
H1: Inner Columns conn. Truss 49.49 49
H1: Inner Columns conn. Truss 61.08 38
H1: Inner Columns conn. Truss 7.33 23
H1: Inner Columns not conn. Truss 60.42 25
H1: Inner Columns not conn. Truss 46.46 29
H1: Inner Columns not conn. Truss 40.35 28
H1: Inner Columns not conn. Truss 49.49 27
H1: Inner Columns not conn. Truss 61.08 25
H1: Inner Columns not conn. Truss 7.33 14
Floor Beams 1.63 9
Outrigger Truss 26.69 38
Core 19.18 7

Table F.2: RMSE and MAPE of ANN S2-B of each element within each height zone



G
Comparison Literature

G.1. Adaption of Literature Data
A comparison is made with three different studies found in the literature regarding the embodied carbon
impact of high-rise buildings. To ensure a fair comparison, it was necessary to adapt the literature data
to match the scope of the ANNs. The scope of the ANN consisted of the load-bearing system, which
included the superstructure and upper floors, while the scope of the LCA spanned from stages A1 to
A3. The foundation was not considered in this analysis. Table G.1 provides an overview of the data
found in the literature before adaptation to the ANN’s scope, where study A refers to Rock (2022) [53],
study B to Oldfield (2012) [54] and study C to Trabucco (2016) [55].

Study System Total GFA Floors Scope Scope EmCO2
[m2] [-] Structure LCA [kgCO2eq/m2GFA]

A Steel
Frame 64,762 27 All

Components ABC 1201

B Steel
Diagrid 64,469 41 Load-bearing

System ABC 404

C Steel
Diagrid 141,600 60 Load-bearing

System A1-3 285

C Concrete Core +
Steel Frame 141,600 60 Load-bearing

System A1-3 236

Table G.1: Overview of the found data in the literature

Study A
The values from Study A needed adjustments to match the structural scope, focusing only on the load-
bearing system, and confining the LCA scope to stages A1-A3. The study revealed that the Cradle-to-
Gate phase (A1-A3) accounts for an average of 56%of the total life cycle embodied carbon. Additionally,
the load-bearing structure (including floors) constitutes an average of 24% of the life cycle’s embodied
carbon emissions. These established average ratios, 56% for A1-A3 and 24% for the load-bearing
structure, were used to calculate the embodied carbon. The structure in Study A was intended for
non-residential purposes.

Study B
For Study B, the values only required adjustments to fit the correct LCA scope. The average impact
ratio of stages A1-A3 on the total life cycle, identiefied in Study A, was again utilized for this study’s
adjustments. This was essential since Study B lacked specific information about the impact ratios of
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different life cycle stages, leading to the assumption that the ratio from Study A is also representative
for Study B.

Study C
The embodied carbon values identified in Study C were already consistent with the scope of the ANN
models used in this research, thus no adjustments were necessary.

The adapted values from the literature are summarized in Table G.2, ensuring that the scope of the
structure and the LCA are uniform across all evaluated impacts.

Study System Total GFA Floors Scope Scope EmCO2
[m2] [-] Structure LCA [kgCO2eq/m2GFA]

A Steel
Frame 64,762 27 Load-bearing

System A1-3 161

B Steel
Diagrid 64,469 41 Load-bearing

System A1-3 226

C Steel
Diagrid 141,600 60 Load-bearing

System A1-3 285

C Concrete Core +
Steel Frame 141,600 60 Load-bearing

System A1-3 236

Table G.2: Overview of the adapted data from literature

G.2. Adaption of Data Base
The MIT Building Technology Program and the Circular Engineering for Architecture (CEA) lab at ETH
Zurich have established a data base, known as deQo, of the embodied carbon of a significant number
of buildings [56] (referred to as study B). While a graphical overview of the data was provided, direct
access to the underlying data sets was not available. The data sets consist of various building types,
and the life cycle stages considered align with the scope of this research, specifically stages A1-3.
Moreover, the considered building components are also in line with the building components considered
in the ANNmodels, namely only the structural components of a structure, excluding the foundation. The
buildings analyzed in both box plots serve an office function, conforming the function of the building
usage considered in the data sets of the ANN models. Two comparisons are made, one where the
data set is divided into subsets for different number of stories, and one where the data set is divided
into subsets for different floor area.

G.2.1. Illustration of Distribution through Box Plots
The box plots illustrate statistical measurements including the median, the 25th and 75th quartiles, and
the minimum and maximum values. The minimum and maximum values are defined as the quartile
value plus 1.5 times the interquartile range (IQR). The IQR is a measure of statistical distribution, repre-
senting the range between the 25th and 75th percentiles of the data. It provides insight into the spread
of the middle 50% of the data, making it a measure of variability. To be able to make a comparison,
predictions were generated using the ANN models across width ranges of 15 to 60 meters and height
ranges of 48 to 300 meters, corresponding to the input data. These predictions were then grouped into
the same subsets as those of the box plots provided by the deQo database. Additionally, box plots
were constructed based on these ANN predictions. The box plots, and the corresponding statistical
measures, based on the real-life projects within the data base of Study C are compared to the box
plots, and statistical measurements, generated based on the ANN models.

• Distribution over different ranges of number of stories
Figure G.1 illustrates the box plots of the distribution of the embodied carbon over a different
number of stories for all building types. Given the research’s focus on high-rise buildings, box
plots based on the ANN models were created only for the last two subsets of the number of
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stories, representing buildings with 11 to 50 and 51 to 100 stories, respectively. It’s important to
note that the number of buildings within the database falling within the subset of 51 to 100 stories
was relatively small, with only 10 buildings considered. Consequently, the box plot and statistical
measures derived from this subset may not be fully representative due to the small sample size.

An overview comparing the values of embodied carbon between real-life projects in Study C
(deQo database) and the predicted values using identical input parameters is provided in Table
G.5. The box plots generated by the ANN models, are based on the best performing stability
framework, so either S1 or S2. For each specific input the best performing stability framework
has been considered and taken into account. Moreover, the contribution of the floors are also
taken into account and added to the predictions, to get the full embodied carbon contribution
of the structure including the floors. The floors are taken into account since the floors are also
considered in the box plots of the results of Study C.

Figure G.1: Box plots of distribution of embodied carbon for all building types for different number of stories based on
database of embodied quantity outputs [56]

Figure G.2: Box plots of distribution of predicted embodied carbon for different number of stories based on ANN models
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Study C: EmCO2 ANN: EmCO2 ∆ EmCO2 ∆ EmCO2
[kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [%]

11 - 50 Stories
Min 121 96 -25 -21
Q25 232 116 -116 -50
Median 325 117 -208 -64
Q75 380 132 -248 -65
Max 466 156 -310 -67

51 - 100 Stories
Min 374 134 -240 -64
Q25 434 191 -243 -56
Median 447 289 -158 -35
Q75 520 484 -36 -7
Max 611 924 +313 +51

Table G.3: Overview of the predicted values based on ANN models and the actual values based on study C for different ranges
of number of stories

In the comparison of total embodied carbon between the ANN model and actual values for struc-
tures ranging from 11 to 50 stories, the ANNmodel consistently predicts lower values. The relative
difference ranges from -21% to -67%, suggesting that the choice of an optimal stability framework
can significantly reduce the total embodied carbon. For structures in the range of 51 to 100 stories,
the comparison between the data base and the ANN models is significantly different. This could
be attributed to the limited number of samples (n=10) in the database for this range, which is not
representative for such a large range. The ANN model considered all possible combinations of
widths and heights, including structures with significant slenderness. In reality, a structure with
such a small width and such a large height (and thus such a significant slenderness) would not
be constructed due to economic and environmental considerations. While such examples are ab-
sent in real-life projects, they are included in the ANN model’s dataset. This difference becomes
also visible when comparing statistical measurements. As the cost of the structure increases, the
relative difference also increases. This can be attributed to the ANN model’s dataset, which in-
cluded high-slenderness structures that are both economically and environmentally unfavorable
and unlikely to be realized in real-life projects.

• Distribution over different ranges of floor area
Figure G.3 presents the box plots of the distribution of the embodied carbon over different floor
areas based on the data base of Study B. Figure G.4 presents the box plots based on the predic-
tions of ANN models regarding the division of the data based on different floor areas. The first
subset for areas smaller than 1000 m2 was excluded for comparison, as no structure within the
ANN model ranges had a floor area smaller than 1000 m2.
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Figure G.3: Box plots of distribution of embodied carbon for all building types for different floor areas based on database of
embodied quantity outputs [56]

Figure G.4: Box plots of distribution of predicted embodied carbon for different floor areas based on ANN models
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Study B: EmCO2 ANN: EmCO2 ∆ EmCO2 ∆ EmCO2
[kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [%]

1000-10,000 m2

Min 33 107 +74 +224
Q25 205 118 -87 -42
Median 316 136 -180 -57
Q75 520 158 -362 -70
Max 974 217 -757 -78

10,000-100,000 m2

Min 98 95 -3 -3
Q25 257 116 -141 -55
Median 366 157 -209 -57
Q75 436 437 +1 0
Max 668 918 +250 +37

> 100,000 m2

Min 224 114 -110 -49
Q25 283 144 -139 -49
Median 380 201 -179 -47
Q75 530 290 -240 -45
Max 696 509 -187 -27

Table G.4: Overview of the predicted values based on ANN models and the actual values based on study B for different ranges
of floor areas

In the segment covering areas between 1000 to 10,000 m2, the ANN model tends to predict
considerably lower values compared to those from Study B, with the exception of the minimum
value. This can be attributed to the smallest floor area considered in the ANN model being 3600
m2, based on a width equal to 15 meters and a height equal to 48 meters. This is significantly
larger than the subset’s minimum value of 1000 m2.

The same trend observed for the subsets of the number of floors is also present for the last two
subsets of different floor areas. For the subset of areas between 10,000 to 100,000 m2, the ANN
models significantly overestimate the upper quartile and the maximum values compared to the
Study B database. For the subset of areas larger than 100,000 m2, only the minimum value is not
overestimated by the ANNmodels. This can be attributed to the ANNmodel receiving inputs of all
possible options within the width and height ranges, thereby generating structures with significant
slenderness. The Study C database, which relies solely on real-life projects, is unlikely to include
structures with a very small width and a significant height.

G.2.2. Setting Upper-Limit Slenderness
It was concluded from the comparison between Study C and the predictions based on ANNmodels that
the ANN models included structures with very small widths and significant heights, which resulted in
some outliers in the comparison. Therefore, the decision was made to conduct the comparison as well
with an upper limit on the slenderness of the structures. This upper limit was set at 11, consistent with
the maximum slenderness of a braced framed tube. In reality, structures with such small widths and
large heights, resulting in a slenderness greater than 11, would not be economically or environmentally
feasible to construct. Consequently, such examples are absent in real-life projects and are therefore
excluded from the dataset used by the ANN models.
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• Distribution over different ranges of number of stories

Figure G.5: Box plots of distribution of embodied carbon for all building types for different number of stories based on
database of embodied quantity outputs [56]

Figure G.6: Box plots of distribution of predicted embodied carbon for different number of stories based on ANN models

Study B: EmCO2 ANN: EmCO2 ∆ EmCO2 ∆ EmCO2
[kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [%]

11 - 50 Stories
Min 121 96 -25 -21
Q25 232 116 -116 -50
Median 325 117 -208 -64
Q75 380 132 -248 -65
Max 466 156 -310 -67

51 - 100 Stories
Min 374 134 -240 -64
Q25 434 181 -253 -58
Median 447 256 -191 -43
Q75 520 386 -134 -26
Max 611 695 +84 +14

Table G.5: Overview of the predicted values based on ANN models and the actual values based on study B for different ranges
of number of stories
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• Distribution over different ranges of floor area
Figure G.7 presents the box plots of the distribution of the embodied carbon over different floor
areas based on the data base of Study C. Figure G.8 presents the box plots based on the predic-
tions of ANN models regarding the division of the data based on different floor areas. Again, the
first subset for areas smaller than 1000 m2 was excluded for comparison. The structures of the
ANN models are limited to having a slenderness smaller than 11.

Figure G.7: Box plots of distribution of embodied carbon for all building types for different floor areas based on database of
embodied quantity outputs [56]

Figure G.8: Box plots of distribution of predicted embodied carbon for different floor areas based on ANN models
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Study B: EmCO2 ANN: EmCO2 ∆ EmCO2 ∆ EmCO2
[kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [kgCO2eq/m2GFA] [%]

1000-10,000 m2

Min 33 107 +74 +224
Q25 205 118 -87 -42
Median 316 136 -180 -57
Q75 520 158 -362 -70
Max 974 217 -757 -78

10,000-100,000 m2

Min 98 95 -3 -3
Q25 257 116 -141 -55
Median 366 137 -229 -63
Q75 436 285 -151 -35
Max 668 539 -129 -19

> 100,000 m2

Min 224 114 -110 -49
Q25 283 144 -139 -49
Median 380 201 -179 -47
Q75 530 290 -240 -45
Max 696 509 -187 -27

Table G.6: Overview of the predicted values based on ANN models and the actual values based on study B for different ranges
of floor areas



H
Python Script of ANN Model

The Python scripts related to visualizing the output data from parametric models and building the artifi-
cial neural networks can be found in the additional document attached to this thesis.
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