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Abstract 
 

This thesis presents a parametric design tool for structural analysis of shallow shells. The tool was 

developed with Rhino and Grasshopper. Also VB (Visual Basic) scripting was used to create new 

components in the Grasshopper interface. The techniques and methods involved for the 

development of the tool consists mainly of classic analytical and numerical methods like the finite 

difference method.  

 

In contrast to FEM (Finite Element Method) based analysis programs, the current tool offers more 

qualitative insight into the behaviour of shell structures which is often more important during a 

conceptual design stage. This is mainly because of the parametric and real time capabilities of the 

tool and the way in which it presents the results. The tool was tested on several test cases whereby 

the results were compared to analytical and FEM solutions and showed good correspondence. The 

results of the developed tool are sufficiently accurate for a conceptual design stage and give fast 

quantitative and qualitative insight into the behavior of shell structures. Still, several limitations are 

encountered, especially with respect to the boundary conditions, these provide opportunities for 

future research. 
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List of symbols 

 

Symbol 

 

Meaning 

𝑚𝑥𝑥, 𝑚𝑦𝑦, 𝑚𝑥𝑦 Bending and twisting moments (per unit length) respectively 

𝑛𝑥𝑥, 𝑛𝑦𝑦, 𝑛𝑥𝑦 Normal and shear forces (per unit length) respectively 

𝜙 Airy stress function 

𝑤 Displacement perpendicular to the surface 

𝑘𝐺  Original Gaussian curvature of unrestrained surface 

𝑔 Change of Gaussian curvature 

𝑘1, 𝑘2 Principal curvatures 

𝑘𝑥𝑥, 𝑘𝑦𝑦, 𝑘𝑥𝑦 Curvatures and twist of a surface 

𝜅𝑥𝑥, 𝜅𝑦𝑦, 𝜅𝑥𝑦 Curvatures and twist caused by bending moments 

𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑥𝑦 Strains caused by stretching 

𝐷 Flexural rigidity 

𝐸 Young’s modulus 

𝑡 Thickness of the shell 

𝑅1, 𝑅2 Radius of principal curvatures 

𝑣𝑥, 𝑣𝑦 Shear forces 

𝑣𝑛 Principal shear force 

𝑝 Total load 

𝑝𝑆,  𝑝𝐵 Load carried by stretching, load carried by bending respectively 

𝜑𝑥, 𝜑𝑦 Angle 

𝜈 Lateral contraction (or Poission’s ratio) 

𝑓 Kirchhoff shear force 
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1. Introduction 
 

1.1. Background and problem statements 
Within the field of structural and architectural engineering it can be observed that the use of 

advanced geometry and computation is increasing (Coenders, 2006). Computation is used to 

generate complex geometries and to perform structural analysis. An iterative process is often 

necessary for complex (structural) design, which consists of design-, calculation- and production 

phases where data exchange can occur between CAD (Computer Aided Design) programs and 

FEM (Finite Element Method) programs (Borgart, Hoogenboom & de Leeuw, 2005). As a result 

of these processes and new technological advances, the possibilities for free form architecture have 

significantly increased. An example of free form architecture are shell structures. Shell structures 

are lightweight structures, typically (double) curved and can be used to create large covered spaces. 

An example of a shell structure is given below (Fig. 1.1). 

 

 

Fig. 1.1 - Meiso no Mori Municipal Funeral Hall (Kakamigahara, Japan) 

 

Much knowledge is currently available regarding the mechanical behavior of geometrically regular 

curved surfaces like most shells structures are (Flügge 1960). This is mainly caused by the fact that 

these surfaces are relatively easy to describe by analytical mathematical functions. For describing 

irregular curved surfaces, like those in free form architecture, few analytical mathematical functions 

exist and therefore it is hard to derive formulas to describe their mechanical behavior. One way of 

dealing with this problem is to calculate the stresses and strains of these irregular curved structures 

with computer programs based on the FEM (finite element method).  

http://www.e-architect.co.uk/japan/meiso-no-mori-municipal-funeral-hall
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However the problem is that one only obtains quantitative information about the results (like the 

magnitude of the forces) but no qualitative information. This does not always give clear insight into 

the structural behavior. Qualitative insight in this respect refers to insight in the relation between 

parameters such as structural geometry, boundary conditions and materials properties and the 

resulting deformations and stress resultants (quantitative information). For example, what is the 

relation between the shape of the curved surface and the flow of forces? Because of the lack of 

insight it can be difficult to design irregular curved surfaces which have shell-like behavior (that is, 

carrying the load mainly by normal forces and little by bending moments).  

 

During the conceptual stage of the design process, many important design decisions are made with 

regard to structural considerations, laying the basis for the rest of the project. The first structural 

setup is usually conceived at this stage. Qualitative- and global quantitative insight in the mechanical 

behaviour of the structure is therefore very important. When such insight is obtained in the 

conceptual stage of the design process it could be employed respect to esthetical appearance or 

constructability at an early stage, could lead to a reduction of risk and cost, and thus reduce 

problems during later stages.  

 

FEM based structural analysis programs might thus not be the most appropriate computational 

structural analysis tools in the conceptual design stage. Additionally, these analysis programs require 

a rather detailed structural model and the results produced are unnecessarily precise for the 

conceptual design stage. Most of the existing software tools for structural analysis are oriented 

towards advanced users and require a detailed understanding of the program and its underlying 

principles. Moreover, the calculation procedures within FEM programs in combination with the 

necessary interfacing between different CAD programs decreases the speed and flexibility of the 

design and analysis process.  

 

In contrast to FEM programs, (classical) analytical methods offer, apart from quantitative insight, 

qualitative insight into the mechanical behaviour for a wide range of structural topologies. Graphic 

statics is a good example of such a method in which analytical relations between the structural 

geometry and the corresponding mechanical behaviour are used to generate a graphical 

representation of the flow and magnitude of forces.  
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A recent development in the field of computational design are parametric associative design tools 

which capture design information by defining logical relations between (geometrical) components, 

controlled by parameters. These techniques offer a very flexible approach to exploring complex 

geometries and are, currently, mainly used within the field of architectural design. Despite the wide 

range of possibilities for linking geometry to structural analysis they still find little application within 

the field of structural engineering at the moment.  

 

 

Fig. 1.2 - Example of parametric associative design tool (Rhino and Grasshopper) 

 

Successful attempts have been made however. In 2010 M. Oosterhuis developed a tool to analyse 

plates loaded out-of-plane. In 2012, D. Liang expanded this tool and developed a second tool to 

analyse plates loaded in-plane. With these models (Fig. 1.3) the internal forces, moments, 

displacements etc. of a surface can be calculated. This thesis can be seen as an extension of their 

previous work and will thus combine these in-plane and out-off-plane models and introduce 

curvature to design and calculate shell structures. 

 

Fig. 1.3 - Parametric structural models by M. Oosterhuis (2010) and D. Liang (2012)  
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Following M. Oosterhuis and D. Liang the two problem statements, forming the incentive for 

writing this thesis, are deduced from this background:  

1) There is a need for simple structural analysis tools, based on analytical relations, which give both the architect and 

engineer quantitative insight as well as qualitative insight in the (flow of) forces of (shell)-structures during a conceptual 

design stage.  

2) Parametric design applications are not used to their full potential within the field of structural engineering.  
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1.2. Objectives and approach 
The purpose of this research project is to be able to analyse the structural behavior of shell 

structures by studying the way (applied) loads flow through the shell’s surface to the supports and 

how this relates to the shell’s geometry. To unlock this secret will give fundamental understanding 

of the behavior of shell structures and thus the means to design shells with efficiency of 

performance and elegance of form. The main objective for this thesis can be defined as follows: 

 

“Develop a parametric structural design tool for shell structures that can be used by architects and engineers, which 

is based on simple analytical methods, which gives both quantitative and qualitative (real time) insight in the flow 

and magnitude of forces during a conceptual design stage.” 

 

The development of the new envisioned tool for shallow shell structures which combines bending 

and stretching is considered the next logical step after the development of the tools by Oosterhuis 

and Liang. The basic approach which will be used here is thus similar to their approach: 

 

 Provide the theoretical framework covering all the theory and methods that need to be 

used 

 Define which demands have to be fulfilled with respect to functionality and usability by the 

parametric tool 

 Provide a general outline and structure for the parametric tool in accordance with the 

demands 

 Implement the theoretical framework into the structural design tool 

 Choose several test cases and use the tool to analyse them 

 Validate the results in a qualitative and quantitative manner by comparing the results to 

analytical solutions or FEM results 
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1.3. Scope 
Although there is a broad range of structural topologies, the scope of this thesis is confined to 

isotropic shallow shell structures. A shallow shell is defined as a (thin) shell having a relatively small 

raise as compared to its span. Such shells have a wide application in engineering, for example in 

roof structures. Moreover many practically important problems lie within the scope of shallow-

shell theory. 

Furthermore, the following limitations or restrictions are applied in this thesis: 

 The thickness of the shell is constant 

 Only physically linear behavior is considered 

 Confined to shell (or plate ) structures with a rectangular projected floorplan 

 Only loads perpendicular to the shell will be considered, these do not have to be uniformly 

distributed however 

 

Finally, the following assumptions are made: 

 The effect of the transverse shear forces 𝑣𝑥 and 𝑣𝑦 in the in-plane-equilibrium equation is 

negligible (the static assumption, see 3.2.2) 

 The influence of the transverse deflections, 𝑤, will predominate over the influence of the 

in-plane displacements 𝑢𝑥 and 𝑢𝑦 in the bending response of the shell (the geometric 

assumption) 

 The lateral contraction (or Poisson’s ratio) is zero (𝜈 = 0) 
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2. General definitions and fundamentals of surfaces 

and shells 
 

2.1. Shells in general 
Thins shells as structural elements are considered as occupying a special position in engineering, in 

particular in civil, architectural, aeronautical and marine engineering. Examples of shell structures 

in civil and architectural engineering are: water tanks, large-span roofs, concrete domes etc. The 

wide range of application of using shell structures can be explained by their having the following 

advantages (Ventsel, 2001):  

 Efficiency of load-carrying behavior 

 High degree of reserved strength integrity 

 High strength: weight ratio 

 High stiffness 

 Containment of space 

Moreover, apart from these mechanical advantages, shell structures have the unique position of 

having high aesthetic value in various architectural designs.  

 

Fig. 2.1 - Shell characteristics (Ventsel, 2001) 

 

The term shell is used for bodies which are bounded by two curved surfaces and whereby the 

distance between these surfaces is small in comparison with other body dimensions. The surface 

of points that lie at equal distances from these two curved surfaces is called the middle surface of 

the shell. The length of the segment, which is perpendicular to the curved surfaces, is called the 

thickness of the shell and is denoted by 𝑡 (Fig. 2.1). The geometry of a shell is defined by specifying 

the geometry of the middle surface and the thickness of the shell at each point. In this thesis only 

shells of a constant thickness are considered however.  
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Shells have all the characteristics of plates, along with an additional one: namely curvature. 

Curvature can be considered as the main classifier of a shell due to the fact that a shell’s mechanical 

behavior is primarily governed by curvature. Due to the curvature of the surface, a shell’s behavior 

is in general more complicated than that of flat plates because their bending cannot, in general, be 

separated from their stretching. On the other hand, a plate may be considered as a special limit case 

of a shell that has zero curvature (see also 5.2); consequently, shells are sometimes referred to as 

curved plates. There are two different classes of shells: thick shells and thin shells. For engineering 

purposes, a shell may be regarded as thin if the following condition is satisfied: 

 
max (

𝑡

𝑅
) ≤

1

20
  

(2.1) 

 

Hence, shells for which this inequality does not hold are referred to as thick shells.   

 

The complexity of the governing equations of the general linear theory of thin shells lead to the 

development of a wide range of approximate theories associated with simplifications of these 

equations. Donnel (1933),Mushtari (1938) and Vlasov (1964) independently developed a simplified 

approximate theory of thin shells of a general form. Due to their simplicity, the governing equations 

(see 3.2.7) of this theory were found to be extremely convenient for solving many engineering shell 

problems. Apart from the Kirchhoff–Love hypotheses, some additional assumptions that simplify 

the strain–displacement relations, equilibrium, and compatibility equations were used in deriving 

these equations. It turned out that the Donnel-Vlasov-Mushtari theory could be applied with 

sufficient accuracy to shallow shells as well.  

 

As been stated in section 1.3 a shallow shell is defined as a (thin) shell having a relatively small raise 

as compared to its span. According to Ventsel (2001) a shell is said to be shallow if at any point of 

its middle surface the following inequalities hold1: 

 
(
𝜕𝑧

𝜕𝑥
)
2

≪ 1, (
𝜕𝑧

𝜕𝑦
)
2

≪ 1  
(2.2) 

Or more specifically: 

 
(
𝜕𝑧

𝜕𝑥
)
2

<
1

20
, (

𝜕𝑧

𝜕𝑦
)
2

<
1

20
  

(2.3) 

                                                 
1 Vlasov (1964) defined a shallow shell as a shell whose rise does not exceed 1/5 of the smallest dimension of the 

shell in its plane (projection on the coordinate plane Oxy). It can be shown however that this practical limitation of 
the applicability of the shallow shell theory corresponds to an error noticeably exceeding 5% (Novozhilov, 1964). 
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2.2. Coordinate system 

Lines and surfaces can be described in a global Cartesian coordinate system (𝑥, 𝑦, 𝑧). Local 

properties of surfaces can however also be described by a local coordinate system (𝑥, 𝑦, 𝑧), see 

(Fig. 2.2). In the local coordinate system the 𝑧-direction is perpendicular to the surface and the 𝑥- 

and 𝑦 -direction are tangent to the surface.  

 

Fig. 2.2 - Global and local coordinate system (Lecture notes, Hoogenboom) 

 

The right-hand-rule is used to determine which axis is 𝑥 and which is 𝑦 (Fig. 2.3). 

 

 

Fig. 2.3 - Right-hand-rule to remember the Cartesian coordinate system (Lecture notes, Hoogenboom) 
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2.3. Surfaces and curvature 
 

2.3.1. Curvatures of a surface 

The curvature is the reciprocal of the radius of curvature: 

 
𝑘 =

1

𝑅
  

(2.4) 

 

Fig. 2.4 - Curvatures on surface (Lecture notes, Hoogenboom) 

 

In local coordinate system (z-axis perpendicular to the surface): 

Curvature in x- and y-direction: 

 
𝑘𝑥𝑥 =

𝜕2𝑧

𝜕𝑥2
, 𝑘𝑦𝑦 =

𝜕2𝑧

𝜕𝑦2
  

(2.5) 
 

Twist of the surface: 

 
𝑘𝑥𝑦 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
 

(2.6) 

 

In global coordinate system the curvatures become: 

 

𝑘𝑥𝑥 =

𝜕2𝑧

𝜕𝑥
2

(1 + (
𝜕𝑧
𝜕𝑥

)
2

)

3
2

, 𝑘𝑦𝑦 =

𝜕2𝑧

𝜕𝑦
2

(1 + (
𝜕𝑧
𝜕𝑦

)
2

)

3
2

  

(2.7) 

 

Note that strictly speaking these are not the same as the curvatures of a flat plate in bending, 

which are defined by: 

 
𝜅𝑥 =

𝜕𝜑𝑥

𝜕𝑥
= −

𝜕2𝑤

𝜕𝑥2
, 𝜅𝑦 =

𝜕𝜑𝑦

𝜕𝑦
= −

𝜕2𝑤

𝜕𝑦2
, 𝜅𝑥𝑦 = −

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(2.8) 
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Principal curvatures         

At a point of a surface there will be a minimum value 𝑘2 and maximum value 𝑘1. These are 

called the principal curvatures and are given by the following formulas:  

 

  𝑘1 =
1

2
(𝑘𝑥𝑥 + 𝑘𝑦𝑦) + √

1

4
(𝑘𝑥𝑥 − 𝑘𝑦𝑦)

2
+ 𝑘𝑥𝑦

2  

(2.9) 

 

 

  𝑘2 =
1

2
(𝑘𝑥𝑥 + 𝑘𝑦𝑦) − √

1

4
(𝑘𝑥𝑥 − 𝑘𝑦𝑦)

2
+ 𝑘𝑥𝑦

2  

(2.10) 

   

2.3.2. Gaussian curvature 

Carl Friedrich Gauss (1777-1855) was a German scientist who was famous for his work in 

mathematics. In his paper ‘General investigation of curved surfaces’ (Gauss, 1827) he described the 

product of the principal curvatures as the measure of curvature. Thus, the Gaussian curvature of a 

surface at a point is defined as the product of the principal curvatures at that point: 

 𝑘𝐺 = 𝑘1 ∙ 𝑘2 (2.11) 

 

It can also be shown that: 

 𝑘𝐺 = 𝑘𝑥𝑥 ∙ 𝑘𝑦𝑦 − 𝑘𝑥𝑦
2  (2.12) 

 

 
𝑘𝐺 = 𝑘1 ∙ 𝑘2 =

𝜕2𝑧

𝜕𝑥2
∙
𝜕2𝑧

𝜕𝑦2
− (

𝜕2𝑧

𝜕𝑥𝜕𝑦
)

2

 
(2.13) 

 

A positive value means the surface is bowl-like. A negative value means the surface is saddle-like. 

A zero value means the surface is flat in at least one direction (plates, cylinders, and cones have 

zero Gaussian curvature), see (Fig. 2.5). 

 

Fig. 2.5 - Gaussian curvature (Lecture notes, Hoogenboom) 
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Due to deformation of a surface (in a shell this is caused by the applied loading) there will be a 

changes of Gaussian curvature. Following Calladine (1983) this change of Gaussian curvature is 

denoted by: 𝑔  

 

2.3.3. NURBS surfaces 

NURBS stands for Non Uniform Rational B-Spline. It is a way to define surfaces in a mathematical 

way and is commonly used in computer graphics. It was developed in the sixties to model smooth 

surfaces. A NURBS surface is determined by an order, weighted control points, and knots. A 

NUBRS surface can be seen as a generalization of B-splines which are lines that have a 

mathematical definition consisting of a number of curves that are added. The B-spline has a 

beginning point and an end point which the line goes through but it does not go through the 

intermediate points, these latter points are the control points.  

 

 

 

 

 

Fig. 2.6 - B-Spline (image from Hoogenboom, lecture 
notes) 

 

 

Fig. 2.7 - NURBS surface 

 

The software uses this data to generate the surface. The shape can be changed by moving the 

control points.   
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3. Theoretical Framework 
 

3.1. Introduction 
As been stated in section 1.2, the first step to be undertaken will be the following: 

 Provide the theoretical framework covering all the theories and methods that need to be 

used 

 

The theoretical framework can be considered as the basis for the development of the tool. In 

accordance with the objective and approach defined in chapter 1, the theoretical framework 

consists mainly of (classic) analytical analysis methods for shell structures. These analytical methods 

provide the exact relation between the structural geometry, material properties and boundary 

conditions as parameters and the resulting internal forces and deformations in an unequivocal way 

by exact algebraic equations. They therefore give the engineer quantitative as well as qualitative 

insight on the mechanical behavior of the shell structure.   

 

As with the work of M. Oosterhuis (2010) and D. Liang (2012) the emphasis within this thesis also 

lies on the computational application of these (classic) analytical theories. It is envisioned that the 

implementation of these methods results in a faster and more flexible structural analysis process, 

which is more appropriate for the conceptual design process.  
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3.2. Shell differential equations 
 

3.2.1. Calladine’s two-surfaces shell theory 

The interaction between stretching and bending behavior in shell structures can be studied 

effectively by a so called two-surface theory which was proposed by Calladine (1983). According 

to this theory the surface of the shell can be conceptually split into two distinct surfaces which are 

designated the B-(or bending) surface and the S-(or stretching) surface. The S-surface possesses 

only in-plane stiffness and can carry only membrane forces but it cannot transmit bending (and 

twisting) moments and shear forces. The B-surface on the other hand only possesses flexural 

stiffness and can sustain bending (and twisting) moments and also transverse shear forces, but it 

cannot carry membrane forces.  

 

Fig. 3.1 - Calladine's two surface shell theory: (a) Shell element showing positive sense of pressure loading, all stress 
resultants and displacement w. (b) The S-Surface (c) The B-surface  
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The idea of separating the behavior of a shell into two distinct parts affords the possibility of 

thinking separately about two different aspects of shell behavior while still allowing for the actual 

interaction between them. Since the “split” is only conceptual the B-surface and the S-surface still 

must coincide with each other, not only in the original configuration but also in the subsequent 

distortion of the shell caused by loading. This is achieved by simply stating that the values of 𝑔𝑆 

and 𝑔𝐵 (the changes of Gaussian curvature) are equal to each other, thus the compatibility 

condition becomes: 

 𝑔𝑆 = 𝑔𝐵 

 

(3.1) 

In this two-surface model for a shell the force interaction is expressed in terms of an interface 

stress or pressure. Thus the applied load 𝑝𝑆 and 𝑝𝐵carried by the S- and B-surface respectively are 

related to the applied loading 𝑝 by the equilibrium equation: 

 

 𝑝 = 𝑝𝑆 + 𝑝𝐵 (3.2) 

 

Thus, the load-sharing between the two surfaces provides insight into the regime of behaviour into 

which a particular problem falls.  
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3.2.2. Equilibrium equations 

 

The equilibrium equations that follow from considering an element are: 

𝑛𝑥𝑥

𝑅1
+ 

𝑛𝑦𝑦

𝑅2
−

𝜕𝑣𝑥

𝜕𝑥
−

𝜕𝑣𝑦

𝜕𝑦
= 𝑝 

 

(3.3)  

 

Fig. 3.2 – Equilibrium of shell element with all stress 
resultants 

 

𝜕𝑛𝑥𝑥

𝜕𝑥
+ 

𝜕𝑛𝑥𝑦

𝜕𝑦
+ [

𝑣𝑥

𝑅1
] = 0 

 

(3.4) 

𝜕𝑛𝑦

𝜕𝑦
+ 

𝜕𝑛𝑥𝑦

𝜕𝑥
+ [

𝑣𝑦

𝑅2
] = 0 

 

(3.5) 

𝜕𝑚𝑥𝑥

𝜕𝑥
+

𝜕𝑚𝑥𝑦

𝜕𝑦
= 𝑣𝑥 

 

(3.6) 

𝜕𝑚𝑦𝑦

𝜕𝑦
+

𝜕𝑚𝑥𝑦

𝜕𝑥
= 𝑣𝑦 

 

(3.7) 

These equations are somewhat untidy and can be made more useful by rearranging them into two 

separate sets of equations (one for bending and the other for stretching) in accordance with the 

two surface theory.  Moreover, since we are dealing with shallow shells we may disregard the terms 

enclosed in squared brackets in (3.xx):  

 
⇒

𝑣𝑥

𝑅1
≈ 0,

𝑣𝑦

𝑅2
≈ 0  

(3.8) 

 

The general justification for this is simply that the denominators 𝑅1and 𝑅2 in terms 
𝑣𝑥

𝑅1
 and 

𝑣𝑦

𝑅2
 are 

large for shallow shells, and consequently give only a very weak coupling between the bending and 

stretching effects; a coupling which disappears entirely, of course, in the case of a flat plate. 
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3.2.3. Equilibrium equations after separation of B-surface and S-surface 

In accordance with the two surface concept the equilibrium equations after separation for the 

stretching surface become:  

 
 
𝑛𝑥𝑥

𝑅1
+ 

𝑛𝑦𝑦

𝑅2
= 𝑝𝑆 

 

 
 
(3.9) 

 
Fig. 3.3 - Equilibrium of stretching surface 

𝜕𝑛𝑥𝑥

𝜕𝑥
+ 

𝜕𝑛𝑥𝑦

𝜕𝑦
= 0 

 

(3.10) 

𝜕𝑛𝑦𝑦

𝜕𝑦
+ 

𝜕𝑛𝑥𝑦

𝜕𝑥
= 0 

 

(3.11) 

 

The principal normal forces can be calculated with the following formulas: 

 

𝑛1 =
𝑛𝑥𝑥 + 𝑛𝑦𝑦

2
+ √(

𝑛𝑥𝑥 − 𝑛𝑦𝑦

2
)
2

+ 𝑛𝑥𝑦
2,  

(3.12) 

 

 

𝑛2 =
𝑛𝑥𝑥 + 𝑛𝑦𝑦

2
− √(

𝑛𝑥𝑥 − 𝑛𝑦𝑦

2
)
2

+ 𝑛𝑥𝑦
2 

(3.13) 

 

The equilibrium equations for the bending surface become:  

 
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= −𝑝𝐵 

 

 
(3.14) 

 
Fig. 3.4 - Equilibrium of bending surface 

𝜕𝑚𝑥𝑥

𝜕𝑥
+

𝜕𝑚𝑥𝑦

𝜕𝑦
= 𝑣𝑥 

 

(3.15) 

𝜕𝑚𝑦𝑦

𝜕𝑦
+

𝜕𝑚𝑥𝑦

𝜕𝑥
= 𝑣𝑦 

(3.16) 

 

These last three equations can be combined and lead to the following equation: 

 
⇒

𝜕2𝑚𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑚𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑚𝑦𝑦

𝜕𝑦2
= −𝑝𝐵 

(3.17) 
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3.2.4. Constitutive equations 

The constitutive equations describe the relations between the internal forces and deformations. 

For a lateral contraction (or Poisson’s ratio) equal to zero (𝜈 = 0) the constitutive relations for 

stretching behavior are:  

 
𝜀𝑥𝑥 =

𝑛𝑥𝑥

𝐸𝑡
, 𝜀𝑦𝑦 =

𝑛𝑦𝑦

𝐸𝑡
, 𝛾𝑥𝑦 =

2𝑛𝑥𝑦

𝐸𝑡
 

(3.18) 

 

 

Fig. 3.5 - Constitutive relations stretching behavior for zero-poisson's ratio 

 

For bending behavior the constitutive relations with poisson’s ratio is zero are as follows: 

 

 

𝑚𝑥𝑥 = 𝐷𝜅𝑥𝑥, 𝑚𝑦𝑦 = 𝐷𝜅𝑦𝑦, 𝑚𝑥𝑦 = 𝐷𝜅𝑥𝑦 (3.19) 

 

Fig. 3.6 - Constitutive relations bending behavior for zero poisson's ratio 

 

Where 𝐷 is the flexural rigidity of the shell: 

 
𝐷 =

𝐸𝑡3

12
 

(3.20) 
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The principal moments can be calculated with the following formulas: 

 

𝑚1 =
𝑚𝑥𝑥 + 𝑚𝑦𝑦

2
+ √(

𝑚𝑥𝑥 − 𝑚𝑦𝑦

2
)
2

+ 𝑚𝑥𝑦
2 

(3.21) 

 

 

𝑚2 =
𝑚𝑥𝑥 + 𝑚𝑦𝑦

2
− √(

𝑚𝑥𝑥 − 𝑚𝑦𝑦

2
)
2

+ 𝑚𝑥𝑦
2 

(3.22) 

   

3.2.5. Kinematic equations 

The kinematic equations relate the deformations to the displacements. For stretching behavior the 

kinematic equations are:  

 
𝜀𝑥𝑥 =

𝜕𝑢𝑥

𝜕𝑥
+

1

2
(
𝜕𝑤

𝜕𝑥
)
2

, 𝜀𝑦𝑦 =
𝜕𝑢𝑦

𝜕𝑦
+

1

2
(
𝜕𝑤

𝜕𝑦
)
2

, 

 𝛾𝑥𝑦 =
𝜕𝑢𝑥

𝜕𝑦
+

𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑤

𝜕𝑥
∙
𝜕𝑤

𝜕𝑦
 

(3.23) 

The strain compatibility equation (see appendix A for the derivation) is as follows: 

 
−

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
= 𝑔𝑠 

(3.24) 

 

For bending the kinematic equations are as follows: 

 
𝜅𝑥𝑥 = −

𝜕2𝑤

𝜕𝑥2
, 𝜅𝑦𝑦 = −

𝜕2𝑤

𝜕𝑦2
, 𝜅𝑥𝑦 = −

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(3.25) 

 

 
⇒

𝜅𝑥𝑥

𝑅1
+

𝜅𝑦𝑦

𝑅2
= −Γ2𝑤 = 𝑔𝐵 

(3.26) 

 

 
⇒ 𝐷

𝜕4𝑤

𝜕𝑥4
+ 2

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
= 𝐷∇4𝑤 = 𝑝𝐵 

 

(3.27) 

Where Γ2 is the “shell-operator” defined by: 

 
Γ2(… ) =

1

𝑅1

𝜕2

𝜕𝑦2
(… ) +

1

𝑅2

𝜕2

𝜕𝑥2
(… ) 

(3.28) 
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3.2.6. Airy Stress Function 

 

To deal with stretching behavior the Airy stress function is introduced, which is defined in the 

following way: 

 
𝑛𝑦𝑦 = 

𝜕2𝜙

𝜕𝑥2
, 𝑛𝑥𝑥 =

𝜕2𝜙

𝜕𝑦2
, 𝑛𝑥𝑦 = −

𝜕2𝜙

𝜕𝑥𝜕𝑦
 

(3.29) 

 

This reduces the amount of variables in the compatibility equation from three to one variable: 

 
⇒ −

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
= −

1

𝐸𝑡
(
𝜕4𝜙

𝜕𝑥4
+ 

𝜕4𝜙

𝜕𝑥2𝜕𝑦2
+

𝜕4𝜙

𝜕𝑦4
) = −

1

𝐸𝑡
∇4𝜙 = 𝑔𝑠 

 

(3.30) 

 

Also the equilibrium equation for stretching becomes: 

 
⇒

𝑛𝑥𝑥

𝑅1
+ 

𝑛𝑦𝑦

𝑅2
= Γ2𝜙 = 𝑝𝑠 

 

(3.31) 

Where Γ2 is the “shell-operator” defined by: 

 
Γ2(… ) =

1

𝑅1

𝜕2

𝜕𝑦2
(… ) +

1

𝑅2

𝜕2

𝜕𝑥2
(… ) 

(3.32) 

 

           

Physical interpretation of the Airy stress function 

According to Pál Csonka (1987) the Airy stress function can be interpreted in the following way:  

 

 The derivative of the stress function with respect to x or y at point 𝑃 equals - disregarding 

its sign -  the component in direction x or y of the specific forces acting along the arc 𝑃0𝑃 

 

 The value of the stress function at point 𝑃 equals - disregarding its sign - the moment of 

the specific forces acting along the arc 𝑃0𝑃 about a straight line which passes through 𝑃 

and which is parallel to z-axis.  
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3.2.7. Static geometric analogy 

There is a curious formal analogy between the static equilibrium equations and the geometric 

compatibility equations in the classical theory of thin shell. It was pointed out by Gol’denweiser 

(1940) and Lur’e (1940) and examined by Novozhilov (1959) and Calladine(1980). According to 

the static geometric analogy the same expressions or equations occur for corresponding quantities 

from bending behavior and stretching behavior. This can be seen in the table below: 

Bending behavior Stretching behavior 

 

−𝑤 
 

 

𝜙 

 

𝜑𝑥 =
𝜕𝑤

𝜕𝑥
, 𝜑𝑦 =

𝜕𝑤

𝜕𝑦
 

 

 

−𝑋 = [
𝜕𝜙

𝜕𝑥
]
𝑃
, +𝑌 = [

𝜕𝜙

𝜕𝑦
]
𝑃

 

 

𝜅𝑥𝑥 = −
𝜕2𝑤

𝜕𝑥2
, 𝜅𝑦𝑦 = −

𝜕2𝑤

𝜕𝑦2
, −𝜅𝑥𝑦 =

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 
 

𝜅𝑥

𝑅1
+

𝜅𝑦

𝑅2
= −

1

𝑅1

𝜕2𝑤

𝜕𝑥2
−

1

𝑅1

𝜕2𝑤

𝜕𝑦2
 = 𝑔𝐵 

 

 

𝑛𝑦𝑦 = 
𝜕2𝜙

𝜕𝑥2
,  𝑛𝑥𝑥 =

𝜕2𝜙

𝜕𝑦2
,  𝑛𝑥𝑦 = −

𝜕2𝜙

𝜕𝑥𝜕𝑦
 

 
 

𝑁𝑦

𝑅1
+

𝑁𝑥

𝑅2
= 

1

𝑅1

𝜕2𝜙

𝜕𝑥2
+

1

𝑅1

𝜕2𝜙

𝜕𝑦2
= 𝑝𝑆 

 
 

 

𝑚𝑥 = 𝐷𝜅𝑥𝑥 , 𝑚𝑦 = 𝐷𝜅𝑦𝑦 , −𝑚𝑥𝑦 = −𝐷𝜅𝑥𝑦 

 

𝜀𝑦 =
1

𝐸𝑡
𝑛𝑦𝑦 , 𝜀𝑥 =

1

𝐸𝑡
𝑛𝑥𝑥,

1

2
𝛾𝑥𝑦 =

1

𝐸𝑡
𝑛𝑥𝑦 

 

 

𝜕2𝑚𝑥𝑥

𝜕𝑥2
+ 2

𝜕2𝑚𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑚𝑦𝑦

𝜕𝑦2
= −𝑝𝐵 

 

𝜕2𝜀𝑥𝑥

𝜕𝑦2
−

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝜀𝑦𝑦

𝜕𝑥2
= −𝑔𝑠 

 

 

𝐷 (
𝜕4𝑤

𝜕𝑥4
+ 

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑤

𝜕𝑦4
) = 𝑝𝐵 

 

 

−
1

𝐸𝑡
(
𝜕4𝜙

𝜕𝑥4
+ 

𝜕4𝜙

𝜕𝑥2𝜕𝑦2
+

𝜕4𝜙

𝜕𝑦4
) = 𝑔𝑠 

 

Table 1 - Static geometric analogy: corresponding equations 

The correspondence exists between the following variables:  

 

𝑛𝑥𝑥 ↔ 𝜅𝑦𝑦 

 

𝜀𝑥𝑥 ↔ 𝑚𝑦𝑦 

 

𝜙 ↔ −𝑤 

 
 

𝑛𝑦𝑦 ↔ 𝜅𝑦𝑦 
 

𝜀𝑦𝑦 ↔ 𝑚𝑥𝑥 

 

 

𝑔𝑠 ↔ 𝑝𝐵 

 

𝑛𝑥𝑦 ↔ −𝜅𝑥𝑦 
 

1

2
𝛾𝑥𝑦 ↔ −𝑚𝑥𝑦 

 

 

𝑃𝑠 ↔ 𝑔𝐵 
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3.2.8. Coupled equations for (shallow) shells 

In the general case of a shallow shell we can combine equations […] which lead to the well-known 

coupled equations of shallow-shell theory: 

 
𝑔𝑆 = 𝑔𝐵  ⇒  −

1

𝐸𝑡
∇4𝜙 = −Γ2𝑤 = 𝑔 

(3.33) 

 

 𝑝𝐵 + 𝑝𝑆 = 𝑝 ⇒      𝐷∇4𝑤 + Γ2𝜙 = 𝑝 
 

(3.34) 

 

Where ∇4 is the biharmonic operator: 

 
∇4= 

𝜕4

𝜕𝑥4
(… ) + 2

𝜕4

𝜕𝑥2𝜕𝑦2
(… ) +

𝜕4

𝜕𝑦4
(… ) 

(3.35) 

 

And Γ2 is the “shell-operator” defined by: 

 
Γ2(… ) =

1

𝑅1

𝜕2

𝜕𝑦2
(… ) +

1

𝑅2

𝜕2

𝜕𝑥2
(… ) 

(3.36) 

 

Now instead of working with the radius of principal curvatures 𝑅1 and 𝑅2 we can also rewrite this 

Γ2 operator with curvatures 𝑘𝑥𝑥, 𝑘𝑦𝑦 and 𝑘𝑥𝑦: 

 
Γ2(… ) = 𝑘𝑥𝑥

𝜕2

𝜕𝑦2
(… ) − 2𝑘𝑥𝑦

𝜕2

𝜕𝑥𝜕𝑦
(… ) + 𝑘𝑦𝑦

𝜕2

𝜕𝑥2
(… ) 

(3.37) 

 

From here on this expression shall be used. 
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3.2.9. Boundary conditions 

One of the most challenging parts in this thesis is to deal with boundary conditions appropriately. 

In accordance with the two-surface theory discussed in 3.2.1 where the B-surface and the S-surface 

were endowed with specific mechanical properties, it follows that some boundary conditions have 

to be applied to the S-surface and others to the B-surface. For example, edge displacement 

conditions in the tangent plane apply to the S-surface but normal constraints are transferred to the 

B-surface. It turns out that on each edge of the shell two stretching boundary conditions and two 

bending boundary conditions have to be specified.  

 

 

Fig. 3.7 - Common boundary conditions on the edges of a shell 

 

Some common boundary conditions which occur in practice are the following: 

 Fixed edge 

- Stretching conditions:  𝑢𝑡 = 0 ,   𝑢𝑛 =  0 

- Bending conditions: 𝑤 = 0,   
𝜕𝑤

𝜕𝑛
= 0 

 Semi-rigid edge (diaphragm wall): 

- Stretching conditions:  𝑢𝑡 = 0 ,   𝑛𝑛 =  0 

- Bending conditions: 𝑤 = 0,   
𝜕2𝑤

𝜕𝑛2 = 0 

 Free edge 

- Stretching conditions:  𝑛𝑛𝑡 = 0 ,   𝑛𝑛 =  0 

- Bending conditions: 𝑓 = 0,   
𝜕2𝑤

𝜕𝑛2 = 0 

Here the subscript letter 𝑡 denotes the direction parallel to the edge and 𝑛 the direction normal to 

the edge.  
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In this thesis it was attempted to express the bending and stretching boundary conditions in terms 

of the transverse displacements 𝑤 and the Airy stress function 𝜙  respectively. With respect to 

expressing the bending boundary conditions in terms the displacements 𝑤 this seems to go quite 

well. With respect to the stretching boundary conditions however, there exists some disagreement 

in the literature whether these stretching boundary conditions can all be expressed in terms of the 

Airy stress function, specifically the boundary conditions where displacements (𝑢𝑥 and 𝑢𝑦) are 

specified. In the theory of plane elasticity this is a well-known problem.  

 

Thus, some authors claim that it is not possible because the Airy stress function can only handle 

boundary conditions in terms of stresses/loading and not displacements. For example S. R. Ahmed 

et al. (2004) have written: 

 

“Successful application of the stress function formulation in conjunction with the finite difference technique has been reported 

for the solution of plane elastic problems where the conditions on the boundary are prescribed in terms of stresses only. (…) 

Boundary restraints specified in terms of ux and uy cannot be satisfactorily imposed on the stress function. As most of the 

practical problems of elasticity are of mixed boundary conditions, the approach fails to provide any explicit understanding 

of the stress distribution in the region of restrained boundaries, which are, in general, the most critical zones in terms of 

stresses.” 

 

On the other hand, other authors have claimed that it is possible, for example Zienkiewicz and 

Gerstner (1959) have written:  

 

“(…) problems in which displacements are specified on part of the boundary, are considerably more difficult. (…) it is 

proposed to derive here the boundary conditions which would have to be satisfied by the Airy stress function on the portion 

of a boundary for which the displacements are specified (…).” 

 

They further point out that a striking similarity occurs between the expressions of the Airy stress 

function which they derive and the expressions for certain boundary conditions for a plate in 

bending2. In this thesis the intent is to use the expressions of Zienkiewicz and Gerstner and it will 

be seen whether these can successfully be implemented. 

 

                                                 
2 This can actually be expected because of the static geometric analogy for shell structures (3.2.7) which states that 
there is a correspondence between quantities from the stretching surface and quantities from the bending surface. 
When the shell has zero curvature everywhere and thereby reduces to a flat plate or disk, this static geometric analogy 
reduces to the so called ‘plate analogy’ (Prager, 1956). 
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The expressions in terms of the Airy stress function for the stretching boundary conditions where 

the displacements are specified (and equal zero, i.e. a fixed edge) proposed by Zienkiewicz and 

Gerstner (1959) are given below. Also the corresponding bending boundary conditions which use 

expressions in the same form (but then in terms of the displacements 𝑤) are given. These boundary 

conditions are given for a straight edge parallel to the y-axis, but can be used as well for a straight 

edge parallel to the x-axis by simply changing the subscript letters from x to y in all terms. 

 

Stretching combination 1:  Bending combination 1:  

 
 

 
 

 

𝑢𝑦 = 0 ⇒ 
𝜕𝑢𝑦

𝜕𝑦
= 𝜀𝑦𝑦 = 0 

 

⇒ 𝑛𝑦𝑦 = 
𝜕2𝜙

𝜕𝑥2
= 0 

 

 

𝑚𝑥𝑥 = 0 

 

 

⇒ 
𝜕2𝑤

𝜕𝑥2
= 0 

 

 
 
 
 

 

 

𝑢𝑥 = 0 ⇒  −
𝜕𝜃

𝜕𝑦
=

𝜕𝜀𝑦

𝜕𝑥
−

𝜕𝛾𝑥𝑦

𝜕𝑦
= 0 

  

⇒ (
𝜕3𝜙

𝜕𝑥3
+ 2

𝜕3𝜙

𝜕𝑥𝜕𝑦2
) = 0 

 

 

𝑓 =
𝜕𝑚𝑥𝑥

𝜕𝑥
+ 2

𝜕𝑚𝑥𝑦

𝜕𝑦
= 0 

 

⇒ (
𝜕3𝑤

𝜕𝑥3
+ 2

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) = 0 

 

In this case, it can be seen that a fixed edge on the stretching surface, corresponds to a free edge 

for the bending surface. Another common stretching boundary condition is where the 

displacements parallel to the edge is zero while the edge can move freely perpendicular to the 

edge. The expressions used for these stretching boundary conditions also occur for the bending 

boundary conditions when the edge is hinged and have a prescribed curvature (though the latter 

is usually zero). 

 

Stretching combination 2:  Bending combination 2:  

 

 

 

𝑢𝑦 = 0 ⇒ 
𝜕𝑢𝑦

𝜕𝑦
= 𝜀𝑦 = 0 

 

⇒ 
𝜕2𝜙

𝜕𝑥2
= 0 

 

 

𝑀𝑥 = 0 

 

⇒ 
𝜕2𝑤

𝜕𝑥2
= 0 

 

 
 
 
 

 
 

𝑁𝑥 = 𝐺𝑥 

 

⇒ 
𝜕2𝜙

𝜕𝑦2
= 𝐺𝑥 

 

 

𝜅𝑦 = 𝜅𝑦;0 (prescribed curvature) 

 

⇒ 
𝜕2𝑤

𝜕𝑦2
= −𝜅𝑦;0 
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The final stretching boundary conditions which are considered is where the edge can move freely 

parallel and perpendicular to the edge. The expressions used for these stretching boundary 

conditions also occur for the bending boundary conditions when the edge have a prescribed twist 

and curvature parallel to the edge. However, when these are zero the edge becomes a fully clamped 

edge. 

 

Stretching combination 3:  Bending combination 3:  

 

 

 

𝑛𝑥𝑦 = 𝐺𝑦 

 

⇒ 
𝜕2𝜑

𝜕𝑥𝜕𝑦
= −𝐺𝑦 

 

𝜅𝑥𝑦 = 𝜅𝑥𝑦;0 (prescribed twist) 

 

⇒ 
𝜕2𝑤

𝜕𝑥𝜕𝑦
= −

1

2
𝜅𝑥𝑦;0 

 
 
 

 

 

𝑛𝑥𝑥 = 𝐺𝑥 

 

⇒ 
𝜕2𝜙

𝜕𝑦2
= 𝐺𝑥 

 

 

𝜅𝑦𝑦 = 𝜅𝑦𝑦;0 (prescribed curvature) 

 

⇒ 
𝜕2𝑤

𝜕𝑦2
= −𝜅𝑦𝑦;0 

 

 

Note that although there is a correspondence between the expressions used for the stretching 

boundary conditions and those used for the bending boundary conditions, these corresponding 

boundary conditions do not have to occur at the same edge. For example, stretching combination 

1 can occur with bending combination 3. 
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3.3. Finite difference method 
In mathematics the Finite Difference Method (FDM) is a numerical method to approximate 

derivatives of a certain function. It can also be used for surfaces. The essence of the FDM lies in 

the following: 

1. The middle plane of the surface under consideration is covered by a rectangular, triangular, 

or other reference network depending on the geometry of the surface. This network is 

called a finite difference mesh and points of intersection of this mesh are referred to as 

mesh or nodal points. 

  

2. The governing differential equation inside the shell domain is replaced by the 

corresponding finite difference equations at the mesh points using the finite difference 

operators. 

 

3. Boundary conditions are also formulated with the use of the finite difference operators at 

nodal points located on the boundary. 

 

As a result, a closed set of linear algebraic equations is obtained for every nodal point within the 

plate or shell. Solving this system of equations, one obtains a numerical field of the nodal 

displacements (and Airy stress function in the case of shells). The key point of the FDM is the 

finite difference approximation of derivatives. Consider the approximations for the derivatives of 

a one- dimensional, continuous function 𝑓(𝑥). It is known that the derivative at point 𝑥𝑖 is defined, 

as follows: 

 
(
𝑑𝑓

𝑑𝑥
)
𝑖
= lim

∆→0

𝑓𝑖+1 − 𝑓𝑖
∆

    or     (
𝑑𝑓

𝑑𝑥
)
𝑖
= lim

∆→0

𝑓𝑖 − 𝑓𝑖−1

∆
   

 

(3.38) 

 

 

Figure 2.4.1 – function f(x) discretised 
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Where 𝑓𝑖 = 𝑓(𝑥𝑖) and ∆ is a finite increment of the variable 𝑥. If the symbol for limit is left out 

one obtains: 

 

 
(
𝑑𝑓

𝑑𝑥
)
𝑖
≈

𝑓𝑖+1 − 𝑓𝑖
∆

    or     (
𝑑𝑓

𝑑𝑥
)
𝑖
≈

𝑓𝑖 − 𝑓𝑖−1

∆
   

 

(3.39) 

These expressions in 2.xx are called the first forward and first backward approximations of the 

derivative of 𝑓(𝑥) at point 𝑥𝑖 , respectively. However, in practice the expression for a central 

approximation is often used:  

 

 
(
𝑑𝑓

𝑑𝑥
)
𝑖
≈

𝑓𝑖+1 − 𝑓𝑖−1

2∆
      

 

(3.40) 

As the increment ∆ gets smaller the approximation of the derivative will get more accurate. 

Applying expressions (2.xx) and (2.xx) as operators we can derive the corresponding differential 

approximations of the second, third, and fourth derivatives of the function 𝑓(𝑥). 

 

 
(
𝑑2𝑓

𝑑𝑥2
)

𝑖

≈
𝑓𝑖+1 − 2𝑓𝑖 + 𝑓𝑖−1

∆2
      

(3.41) 

 

 
(
𝑑3𝑓

𝑑𝑥3
)

𝑖

≈
𝑓𝑖+2 − 2𝑓𝑖+1 + 2𝑓𝑖−1 − 𝑓𝑖−2

2∆3
      

(3.42) 

 

 
(
𝑑4𝑓

𝑑𝑥4
)

𝑖

≈
𝑓𝑖+2 − 4𝑓𝑖+1 + 6𝑓𝑖 − 4𝑓𝑖−1 + 𝑓𝑖−2

∆4
      

(3.43) 
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The finite difference method can also be used for a continuous function 𝑧(𝑥, 𝑦) of two variables. 

One can use a rectangular mesh with the following reference points (Fig. 3.8):  

 

 

Fig. 3.8 - Rectangular mesh for finite difference method 

 

Here ∆𝑥 =  𝜆𝑥 and ∆𝑦 =  𝜆𝑦 and in a square mesh we have 𝜆𝑥 = 𝜆𝑦 = 𝜆. Now if for example 

one wants to calculate ∇2𝑧 = (
𝜕2𝑧

𝜕𝑥2 +
𝜕2𝑧

𝜕𝑦2) at a specific point in the grid one gets: 

 

 
(
𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
)

𝑂

=
𝑧𝑁 + 𝑧𝑆 + 𝑧𝐸 + 𝑧𝑊 − 4𝑧𝑂

𝜆2
      

(3.44) 

 

A better way to visualize this finite difference approximation is to use a coefficient pattern. Then 

equation 2.xx becomes: 

 

(
𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
)

𝑂

=
1

𝜆2
∙

 

 

     

(3.45) 
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In similar ways the following derivatives can be derived and represented: 

 

(
𝜕𝑧

𝜕𝑥
)
𝑂

=
1

2𝜆
∙

 

 

                                    (
𝜕𝑧

𝜕𝑦
)
𝑂

=
1

2𝜆
∙  

 

 

  

(3.46) 

 

 

(
𝜕2𝑧

𝜕𝑥2
)

𝑂

=
1

𝜆2
∙

 

 

                                    (
𝜕2𝑧

𝜕𝑦2
)

𝑂

=
1

𝜆2
∙

 

 

  

(3.47) 

 

 

(
𝜕2𝑧

𝜕𝑥𝜕𝑦
)

𝑂

=
1

4𝜆2
∙

 

 

                                      

(3.48) 

  

 

∇4𝑧 = (
𝜕4𝑧

𝜕𝑥4
+ 2

𝜕4𝑧

𝜕𝑥2𝜕𝑦2
+

𝜕4𝑧

𝜕𝑦4
) =

1

𝜆4
∙

 

 

                                      

(3.49) 
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3.4. Rain flow analogy 
 

3.4.1. Application for principal shear force trajectories 

The concept of the so called “rain flow analogy” was inspired by Beranek (1976). It can be used to 

determine the principal shear force trajectories. To do this one visualises the sum of bending 

moments ( 𝑚 = 𝑚𝑥𝑥 + 𝑚𝑦𝑦 ) as a ‘hill’. The rain flow analogy then states that like rain which falls 

on a surface and flows down in the steepest direction generating streamlines, the principal shear 

force trajectories too follow in the steepest direction of the 𝑚-hill (Fig. 3.9). The rain flow analogy 

can thus be used to determine the load path for out-of-plane structural mechanic behavior.  

 

Fig. 3.9 - Rain flow analogy (image from Blaauwendraad 2010) 

 

3.4.2. Application for magnitude of principal shear forces 

To obtain the magnitude of the principal shear forces one can integrate the associated load flows 

between the stream lines. However, the calculation can be much simpler which will be shown by 

considering the following equations. Starting with the sum of bending moments: 

 

 
𝑚 = 𝑚𝑥𝑥 + 𝑚𝑦𝑦 = −𝐷 (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2) 
(3.50) 

Shear forces: 

 

 
𝑣𝑥 =

𝜕𝑚𝑥𝑥

𝜕𝑥
+

𝜕𝑚𝑥𝑦

𝜕𝑦
= −𝐷 (

𝜕3𝑤

𝜕𝑥3
+

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) = −𝐷

𝜕

𝜕𝑥
(
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
) 

⇒ 𝑣𝑥 =
𝜕

𝜕𝑥
(𝑚) 

(3.51) 
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𝑣𝑦 =

𝜕𝑚𝑦𝑦

𝜕𝑦
+

𝜕𝑚𝑥𝑦

𝜕𝑥
= −𝐷 (

𝜕3𝑤

𝜕𝑦3
+

𝜕3𝑤

𝜕𝑥2𝜕𝑦
) = −𝐷

𝜕

𝜕𝑦
(
𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑥2
) 

⇒ 𝑣𝑦 =
𝜕

𝜕𝑦
(𝑚) 

(3.52) 

This shows that the shear force at a certain point and direction equals the gradient of the 𝑚-hill 

on that specific point in that direction. Next consider a triangular plate part with shear forces 

acting on the edges.  

 

Fig. 3.10 - Shear forces of an elementary plate (image from Blaauwendraad 2010) 

 

From these equations it follows that: 

 

 

 

𝑣𝑛 = 𝑣𝑥 cos𝛽 + 𝑣𝑦 sin𝛽 

𝑣𝑡 = −𝑣𝑥 sin𝛽 + 𝑣𝑦 cos𝛽 

(3.53) 

 

If 𝑣𝑛 is the maximum shear force it follows that 𝛽 has to be chosen such that the following 

condition is satisfied: 

 

 𝜕𝑣𝑛

𝜕𝛽
= −𝑣𝑥 sin𝛽 + 𝑣𝑦 cos 𝛽 = 0 ⇒ tan𝛽 = 

𝑣𝑦

𝑣𝑥

 
(3.54) 

 

The maximum value of 𝑣𝑛can then be calculated with the following formula: 

 

 

 
𝑣𝑛;𝑚𝑎𝑥 = √(𝑣𝑥)

2 + (𝑣𝑦)
2
, 𝑣𝑡;𝑚𝑖𝑛 = 0  

(3.55) 
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The minimum shear force is perpendicular to the maximum shear and equals zero. It has been 

stated that the gradient of the 𝑚-hill surface is equal to the shear force in corresponding direction. 

The gradient of the contour lines of the 𝑚-hill surface is zero, and the steepest direction is 

perpendicular to the contour lines. Thus the minimum shear forces correspond to the gradient of 

the contour lines (which equal zero) while the maximum or principal shear forces equal the gradient 

of the steepest direction which is perpendicular to the minimal one. The principal shear force can 

thus be written as: 

 
𝑣𝑛 =

𝜕

𝜕𝑛
(𝑚) 

(3.56) 

Where 𝑛 is the steepest direction of the 𝑚-hill.  
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3.5. Shell behavior assessment 
 

3.5.1. Ratio normal and bending stress 

A well designed shell should carry its load efficiently mainly through normal forces, when it does 

it shows shell like behavior. There are several ways to assess whether a shell carries its load efficiently. 

One way is to consider the ratio between the normal stress (𝜎𝑛) and the total stress caused by 

bending and normal forces (𝜎𝑚 + 𝜎𝑛). If this ratio approaches 100% it indicates more shell like 

behavior while a ratio closer to 0% indicates more plate like bending behavior (Fig. 3.11).  

 

 
Fig. 3.11 - Shell assessment based on ratio bending and normal stresses 

 

However determining the ratio of bending and normal stresses is not as straightforward as it may 

seem. The difficulty in determining this ratio is that the result is a vector quantity and is therefore 

dependent on which direction is considered. In this thesis it is decided to consider this ratio in the 

directions of the principal normal forces: 

 
𝑅1 =

𝜎𝑛1

𝜎𝑚;𝛼0
+ 𝜎𝑛1

∙ 100% =
(
𝑛1
𝑡 )

(
6 𝑚(𝛼0)

𝑡2 +
𝑛1
𝑡 )

∙ 100% =
𝑛1

6 𝑚(𝛼0)

𝑡 + 𝑛1

∙ 100%  
(3.57) 

 
𝑅2 =

𝜎𝑛2

𝜎𝑚;(𝛼0+0,5𝜋) + 𝜎𝑛2
∙ 100% =

(
𝑛2
𝑡 )

(
6 𝑚(𝛼0+0,5𝜋)

𝑡2 +
𝑛2
𝑡 )

∙ 100% =
𝑛2

6 𝑚(𝛼0+0,5𝜋)

𝑡 + 𝑛2

 ∙ 100%  
(3.58) 

 

To determine the stress caused by bending in the direction of the principal normal forces it is 

necessary to determine first the direction 𝛼0 of the principal normal forces themselves. 
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Fig. 3.12 - Transformation of stresses and principal stresses and direction (Image from Blaauwendraad 2010) 

 

The direction of the principal normal forces is denoted as 𝛼0 and can be calculated from the 

equation:  

 
tan(2𝛼0) =

2𝜎𝑥𝑦

𝜎𝑥𝑥 − 𝜎𝑦𝑦
=

2𝑛𝑥𝑦

𝑛𝑥𝑥 − 𝑛𝑦𝑦
 

(3.59) 

 

 
⇒𝛼0 =

1

2
∙ arctan (

2𝑛𝑥𝑦

𝑛𝑥𝑥 − 𝑛𝑦𝑦
) 

(3.60) 

Then the bending moments in the corresponding directions can be calculated with the following 

transformation equations: 

 𝑚(𝛼0) = 𝑚𝑥𝑥  sin2 𝛼0 − 𝑚𝑥𝑦 sin 2𝛼0 + 𝑚𝑦𝑦 cos2 𝛼0 (3.61) 

 

 
𝑚(𝛼0 +

𝜋

2
) = 𝑚𝑥𝑥  cos2 𝛼0 + 𝑚𝑥𝑦 sin 2𝛼0 + 𝑚𝑦𝑦 sin2 𝛼0 

(3.62) 

 

Once these bending moments have been determined the ratios 𝑅1and 𝑅2(3.xx) can be finally be 

calculated, then from the values of these ratios insight into the behavior of the shell can be gained. 
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3.5.2. Load carried by the S-surface and by B-surface 

Another way to assess the efficiency of a shell is by considering how much of the total load is 

carried by the stretching surface and how much is carried by the bending surface (in accordance 

with the two surface theory explained in 3.2.1). Recall the following equation: 

 

 𝑝 = 𝑝𝐵 + 𝑝𝑆 = 𝐷∇4𝑤 + Γ2𝜙 
 

(3.63) 

 

It follows that once the displacement field (𝑤) and the Airy stress function field (𝜙) are known 

one can calculate back the load carried by bending (𝑝𝐵) and the load carried by stretching (𝑝𝑆). 

When most of the load is carried by the stretching surface (and 𝑝𝑆 is large compared to 𝑝𝐵) this 

indicates shell like behavior. With these quantities the following ratio can then also be calculated: 

 

 
𝑅3 =

𝑝𝑆

𝑝𝐵 + 𝑝𝑆
 

 

(3.64) 
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4. Development of the parametric design tool 
 

4.1. Introduction 
This chapter will elaborate on the development of the parametric structural design tool for shell 

structures. Following the list of steps which have been stated in section 1.2, the next steps to be 

undertaken in this chapter are the following: 

 Define which demands have to be fulfilled with respect to functionality and usability by the 

parametric tool 

 Provide a general outline and structure for the parametric tool in accordance with the 

demands 

 Implement the theoretical framework into the structural design tool 

 

Though much of the current developed tool was initially based on the models developed by M. 

Oosterhuis (2010) and D. Liang (2012), most components of their models had to be modified 

significantly in the current tool. Moreover, many new components had to be developed from 

scratch as well. However, the development of the current tool has still greatly benefited from the 

earlier work by M. Oosterhuis and D. Liang. 
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4.2. Functionality and usability 
It is envisioned that the parametric tool for shell structures can be used and understood by both 

architects and engineers to gain quantitative and qualitative insight into the structural behavior of 

shell structures in a conceptual design stage.  Based on this objective the following demands can 

be defined: 

 Able to provide real-time results 

 Able to choose in a simple way which- and how results are represented 

 Able to change design parameters such as geometry, material properties, boundary 

conditions and loading  

 Able to extend functionality further for future development (by adding parametric 

components and procedures) 

With respect to the specific calculation results the tool should be able to give as output the 

following quantities:   

 Airy stress function 𝜙 

 Transverse displacement 𝑤 

 Internal forces:  

- Normal forces  

- Principal normal forces 

- Sum of normal forces 

- Bending moments 

- Principal moments 

- Sum of bending moments 

- Shear forces 

- Principal shear forces 

 Trajectories of the principal shear force (rain flow analogy)  

 Measure for assessment shell behavior 
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4.3. Choice of software 
For developing the tool the software application Rhinoceros (or Rhino) was chosen with the 

parametric plugin Grasshopper (Error! Reference source not found.). As been explained in the 

introduction of this thesis (1.1) a recent development in the field of computational design are 

parametric associative design tools which capture design information by defining logical relations 

between (geometrical) components, controlled by parameters. Rhino in combination with 

Grasshopper is an example of such a tool and offers a powerful approach for creating parametric 

models.  

 

Moreover, the previous models developed by M. 

Oosterhuis (2010) and D. Liang (2012) were also 

developed with Rhino and Grasshopper. Since 

this thesis can be considered as an extension of 

their work it is only logical that the same software 

applications will be used here.  

 

Following Oosterhuis and Liang, also VB.net 

(Visual Basic) programming is used to create new 

components within the Grasshopper interface 

(Fig. 4.1). 

 

 

Fig. 4.1 - Example of VB.net script 

 

Also for solving matrix equations an external matrix class library for linear algebra computations 

was used called Mapack for .Net which was developed by Lutz Roeder (Roeder, 2002). Mapack 

library can be accessed by referencing from within the VB script components to the external library. 
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4.4. General outline and structure of the tool 
The general outline of the tool can be seen in the figure below (Fig. 4.2). It consists of all the main 

components and the output that they give. The outline shows how the output information of each 

component is sent to the next component, thus the relation between all the components becomes 

clear. 

 

Fig. 4.2 - General outline and structure of the tool 
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4.5. Implementation of the theoretical framework 
 

In this section explanation of all the developed components will be given and how the theoretical 

framework discussed in chapter 3 is applied in these components. Together these components 

generate all the results and visualize these in the Rhino interface. 

 

4.5.1. Geometry and mesh component 

The first component in the parametric tool is the geometry and mesh component. It is used to 

specify and visualize the geometry of the shell and to create a mesh on it. Here a shape function 

for the shell can be given, thereby defining the shape of the shell. Also, the mesh size and the length 

in x-direction and width in y-direction of the shell can be determined here. The component will 

then automatically create the surface and mesh. 

 

It is however desirable that the parametric tool can handle more arbitrary shapes which are not 

merely determined by having a certain shape function as input. Therefore the tool was further 

developed in such a way that one can give a surface itself as input. In the Rhino / Grasshopper 

environment this means a NURBS surface can be given as input. The component then 

automatically calculates the z-coordinates of the shell for a given specified grid.   

 

Fig. 4.3 - Geometry & Mesh component in Grasshopper 

 

 

 

 
 
 

Fig. 4.4 - Output of the Geometry & Mesh 
component 

 

The component creates an organized list of the coordinates and sends these to the other 

components.    
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4.5.2. Load component 

In this component the loads can be specified. Though only loads perpendicular to the shell can be 

applied, they do not have to be uniformly distributed. The loads are applied on the grid nodes and 

visualised as point loads. However each ‘point load’ should actually be thought of as a distributed 

load on a small piece of the surface which equals the mesh size squared (Fig. 4.5). Thus with a 

smaller mesh size, the load specification can be given more precisely. 

 

Fig. 4.5 - Corresponding surface of a load on a grid node 

 

The component visualizes the loads on the shell and also creates a list of all the loads which will 

then be sent to the shell calculation component. 

 

Fig. 4.6 - Loads component in Grasshopper 

 

 

 

 
 

Fig. 4.7 - Visualisation of loads on surface 
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4.5.3. Curvature component 

The curvature component calculates the curvatures and the twist of the shell surface (Fig. 4.8).  

 

Fig. 4.8 - Curvature component in Grasshopper 

The calculation is based on the following formulas:  

 
𝑘𝑥𝑥 =

𝜕2𝑧

𝜕𝑥2
≈

𝜕2𝑧

𝜕𝑥
2 , 𝑘𝑦𝑦 =

𝜕2𝑧

𝜕𝑦2
≈

𝜕2𝑧

𝜕𝑦
2  , 𝑘𝑥𝑦 =

𝜕2𝑧

𝜕𝑥𝜕𝑦
≈

𝜕2𝑧

𝜕𝑥𝜕𝑦
 

(4.1) 

 

It calculates these derivatives with the finite difference method. The previous equations rewritten 

in finite difference form become: 

 [𝑘𝑥𝑥] =  [𝐾𝑥] ∙ [𝑧], [𝑘𝑦𝑦] = [𝐾𝑦] ∙ [𝑧], [𝑘𝑥𝑦] = −[𝐾𝑥𝑦] ∙ [𝑧] (4.2) 

 

Where [𝐾𝑥], [𝐾𝑦], [𝐾𝑥𝑦] stand for the finite difference matrices which use the following operators: 

 

(
𝜕2𝑧

𝜕𝑥2
)

𝑂

=
1

𝜆2
∙

 

 

                                    (
𝜕2𝑧

𝜕𝑦2
)

𝑂

=
1

𝜆2
∙

 

 

  

(4.3) 

 

(
𝜕2𝑧

𝜕𝑥𝜕𝑦
)

𝑂

=
1

4𝜆2
∙

 

 

                                      

(4.4) 

The component produces lists of all the values of 𝑘𝑥𝑥,  𝑘𝑦𝑦 and 𝑘𝑥𝑦 and sends these to the shell 

calculation component which will is discussed at 4.4.5. 
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4.5.4. Boundary conditions component 

Before any calculations will be performed first the fictitious outer points have to be introduced. 

These points are only used so the finite difference method can be applied at and near the boundary 

of the shell as will be seen when calculation procedures are discussed. From a top view the grid of 

the shell would look as follows (Fig. 4.9): 

 

 

Fig. 4.9 - Top view of shell grid with imaginary outer points 

 

Now on each boundary edge two stretching boundary conditions and two bending boundary 

conditions are applied (3.2.9). To implement these boundary conditions, the finite difference 

method is used. Here the finite difference operators are given for specific boundary conditions for 

an edge parallel to the y-axis, but can be used as well for an edge parallel to the x-axis by simply 

rotating the finite difference operators: 

Boundary condition type 1: 

Stretching boundary condition type 1: Bending boundary condition type 1: 

𝑢𝑦 = 0 ⇒ 
𝜕𝑢𝑦

𝜕𝑦
= 𝜀𝑦 = 0 

 

⇒ 
𝜕2𝜙

𝜕𝑥2
= 0 

𝑀𝑥 = 0 

 

⇒ 
𝜕2𝑤

𝜕𝑥2
= 0 

 

 

⇒ (
𝜕2 …

𝜕𝑥2
)

𝑂

=
1

𝜆2
∙
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Boundary condition 2: 

Stretching boundary condition type 2: Bending boundary condition type 2: 

𝑢𝑥 = 0 ⇒  −
𝜕𝜃

𝜕𝑦
=

𝜕𝜀𝑦

𝜕𝑥
−

𝜕𝛾𝑥𝑦

𝜕𝑦
= 0 

  

⇒ (
𝜕3𝜙

𝜕𝑥3
+

𝜕3𝜙

𝜕𝑥𝜕𝑦2
) = 0 

𝑓 =
𝜕𝑀𝑥

𝜕𝑥
+ 2

𝜕𝑀𝑥𝑦

𝜕𝑦
= 0 

 

⇒ (
𝜕3𝑤

𝜕𝑥3
+

𝜕3𝑤

𝜕𝑥𝜕𝑦2
) = 0 

⇒ (
𝜕3 …

𝜕𝑥3
+

𝜕3 …

𝜕𝑥𝜕𝑦2
)

𝑂

=
1

2𝜆3
∙

 

 

 

 

Boundary condition 3: 

Stretching boundary condition type 3: Bending boundary condition type 3: 
𝑁𝑥𝑦 = 𝐺𝑦 

 

⇒ 
𝜕2𝜑

𝜕𝑥𝜕𝑦
= 𝐺𝑦 

𝜅𝑥𝑦 = 𝜅𝑥𝑦;0 (prescribed twist) 

 

⇒ 
𝜕2𝑤

𝜕𝑥𝜕𝑦
= −

1

2
𝜅𝑥𝑦;0 

⇒ (
𝜕2 …

𝜕𝑥𝜕𝑦
)

𝑂

=
1

4𝜆2
∙

 

 

    

 

Boundary condition 4: 

Stretching boundary condition type 4: Bending boundary condition type 4: 
𝑁𝑥 = 𝐺𝑥 

 

⇒ 
𝜕2𝜙

𝜕𝑦2
= 𝐺𝑥 

𝜅𝑦 = 𝜅𝑦;0 (prescribed curvature) 

 

⇒ 
𝜕2𝑤

𝜕𝑦2
= −𝜅𝑦;0 

⇒ (
𝜕2 …

𝜕𝑦2
)

𝑂

=
1

𝜆2
∙
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With these the finite difference operators matrices can be assembled. In the following equation 𝐸 

stands for the applied finite difference operator matrix which depend on which boundary 

conditions are applied. For stretching boundary conditions: 

 

 [𝐸𝑆] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝑁𝑆] (4.5) 

 

For bending boundary conditions: 

 

 [𝐸𝐵] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝑁𝐵] (4.6) 

 

Here [𝑁𝑆] and [𝑁𝐵] simply stand for the values that the boundary condition equations have to be 

equal to (and are in general equal to zero). On each boundary edge two stretching boundary 

conditions and two bending boundary conditions are applied. Furthermore on each corner three 

stretching boundary conditions and three bending boundary conditions are applied, therefore: 

 

 

𝐸𝑆 = 

[
 
 
 
 
 
𝐸𝑆;𝑏𝑜𝑢𝑛𝑑;𝑏𝑐1

𝐸𝑆;𝑏𝑜𝑢𝑛𝑑;𝑏𝑐2

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐1

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐2

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐3]
 
 
 
 
 

, 𝑁𝑆 =

[
 
 
 
 
 
𝑁𝑆;𝑏𝑜𝑢𝑛𝑑;1

𝑁𝑆;𝑏𝑜𝑢𝑛𝑑;2

𝑁𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;1

𝑁𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;2

𝑁𝑆;𝑐𝑜𝑟𝑛𝑒𝑟;3]
 
 
 
 
 

, 𝐸𝐵 = 

[
 
 
 
 
 
𝐸𝐵;𝑏𝑜𝑢𝑛𝑑;𝑏𝑐1

𝐸𝐵;𝑏𝑜𝑢𝑛𝑑;𝑏𝑐2

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐1

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐2

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;𝑏𝑐3]
 
 
 
 
 

 , 𝑁𝐵 =

[
 
 
 
 
 
𝑁𝐵;𝑏𝑜𝑢𝑛𝑑;1

𝑁𝐵;𝑏𝑜𝑢𝑛𝑑;2

𝑁𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;1

𝑁𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;2

𝑁𝐵;𝑐𝑜𝑟𝑛𝑒𝑟;3]
 
 
 
 
 

 

(4.7) 

 

Where: 

 
𝐸𝑆;𝑏𝑜𝑢𝑛𝑑,𝑗 = 

[
 
 
 
𝐸𝑆;𝑏𝑜𝑢𝑛𝑑𝐴−𝑖

𝐸𝑆;𝑏𝑜𝑢𝑛𝑑𝐵−𝑖

𝐸𝑆;𝑏𝑜𝑢𝑛𝑑𝐶−𝑖

𝐸𝑆;𝑏𝑜𝑢𝑛𝑑𝐷−𝑖

 

]
 
 
 

, 𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟,𝑗 =  

[
 
 
 
𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟0−𝑖

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟1−𝑖

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟2−𝑖

𝐸𝑆;𝑐𝑜𝑟𝑛𝑒𝑟3−𝑖

 

]
 
 
 

 , 𝐸𝐵;𝑏𝑜𝑢𝑛𝑑,𝑗 =  

[
 
 
 
𝐸𝐵;𝑏𝑜𝑢𝑛𝑑𝐴−𝑖

𝐸𝐵;𝑏𝑜𝑢𝑛𝑑𝐵−𝑖

𝐸𝐵;𝑏𝑜𝑢𝑛𝑑𝐶−𝑖

𝐸𝐵;𝑏𝑜𝑢𝑛𝑑𝐷−𝑖

 

]
 
 
 

, 𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟,𝑗 = 

[
 
 
 
𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟0−𝑖

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟1−𝑖

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟2−𝑖

𝐸𝐵;𝑐𝑜𝑟𝑛𝑒𝑟3−𝑖

 

]
 
 
 

  

(4.8) 

 

 
where:  

𝑖 = 1 for boundary condition 1
𝑖 = 2 for boundary condition 2
𝑖 = 3 for boundary condition 3
𝑖 = 4 for boundary condition 4 

 

  

 

The purpose of the boundary condition component is thus to provide the finite difference operator 

matrices which will then be sent to the shell calculation component which will use it to calculate 

the Airy stress function and displacements. In (Fig. 4.10) an example can be seen from the 

boundary condition component with the matrices as output. 
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Fig. 4.10 - Boundary condition component for bending behavior with matrix E_Bending as output 
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4.5.5. Shell calculation component 

Perhaps the most important component is the “shell calculation”-component. The purpose of this 

component will be to calculate the transverse displacements 𝑤, the Airy stress function 𝜙, the load 

carried by the stretching surface 𝑝𝑆 and the load carried by the bending surface 𝑝𝐵. Recall from 

(3.2.6) the governing coupled-equations for a shallow shell: 

 
−

1

𝐸𝑡
∇4𝜙 = −Γ2𝑤 = 𝑔 

(4.9) 

 

 Γ2𝜙 + 𝐷∇4𝑤 = 𝑝𝑆 + 𝑝𝐵 = 𝑝 

 

(4.10) 

Where Γ2 is the “shell-operator” defined by: 

 
Γ2(… ) = 𝑘𝑥𝑥

𝜕2

𝜕𝑦2
(… ) − 2𝑘𝑥𝑦

𝜕2

𝜕𝑥𝜕𝑦
(… ) + 𝑘𝑦𝑦

𝜕2

𝜕𝑥2
(… ) 

(4.11) 

 

Rewriting equations [...] in finite difference method notation: 

 1

𝐸𝑡
∙ [𝐴] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐺] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [−𝑔] 

(4.12) 

 

 [𝐺] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] + 𝐷 ∙ [𝐴] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝑝] (4.13) 

Where: 

 [𝐺] stands for the Γ2 finite difference operator matrix with the factors 𝑘𝑥𝑥, 𝑘𝑥𝑦 and 𝑘𝑦𝑦 

supplied by the curvature component (4.4.4)  

 [𝐴] stands for the ∇4 finite difference method matrix : 

 

∇4(… ) = (
𝜕4(… )

𝜕𝑥4
+ 2

𝜕4(… )

𝜕𝑥2𝜕𝑦2
+

𝜕4(… )

𝜕𝑦4
) =

1

𝜆4
∙

 

 

 

(4.14) 
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Recall the specification of the generated grid for the shell with imaginary outer points: 

 

Fig. 4.11 - Top view of grid for the shell 

 

Now we need to find a way to express the change of Gaussian curvature [𝑔] in the load [𝑝]. 

Therefore we first need to express 𝜙 and 𝑤 in 𝑔. We start with 𝜙 using the following equation 

(which is based on equation 4.xx): 

 [𝐴] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = −𝐸𝑡 ∙ [𝑔] (4.15) 

 

For every interior point we can provide the finite difference operator equations. 

However, at this point the Airy stress function 𝜙 cannot yet be expressed in terms of 𝑔 because 

matrix A is not a square matrix and is thus not invertible.  Therefore extra equations need to be 

used which are provided by the boundary conditions. This is where matrix 𝐸1 comes in and needs 

to be used. It stands for the finite difference operator matrix resulting from the boundary condition 

component for stretching as explained in (4.4.3): 

 [𝐸𝑠] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝑁𝑠] (4.16) 

 

Adding equations to equations (4.xx) gives: 

 
⇒ [

𝐴
𝐸𝑠

] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [
−𝐸𝑡𝑔
𝑁𝑆

] 
(4.17) 
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Now let: 

 
[𝐹𝑠] = [

𝐴
𝐸𝑠

] 
(4.18) 

Then: 

 
⇒ [𝐹𝑠] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [

−𝐸𝑡𝑔
𝑁𝑆

] 
(4.19) 

 

Now matrix 𝐹𝑆 will be a square invertible matrix and thus the Airy stress function 𝜙 can now be 

expressed in terms of 𝑔 through: 

 
⇒ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑆

−1] ∙ [
−𝐸𝑡𝑔
𝑁𝑆

] 
(4.20) 

Now let: 

 [𝐹𝑆
−1] = [𝐻𝑆] = [𝐻𝑆1 𝐻𝑆2] (4.21) 

 

Then the full expression for 𝜙 becomes:  

 ⇒ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑠
−1] ∙ [

−𝐸𝑡𝑔
𝑁𝑆

] = [𝐻𝑆1 𝐻𝑆2] ∙ [
−𝐸𝑡𝑔
𝑁𝑠

] = −𝐸𝑡 ∙ [𝐻𝑆1] ∙ [𝑔] + [𝐻𝑆2] ∙ [𝑁𝑆] 
(4.22) 

 

Now the next step is to express the displacement 𝑤 in terms of 𝑔. For this we use the following 

equation: 

 [𝐺] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [−𝑔] (4.23) 

 

Now the displacement 𝑤 cannot yet be expressed in terms of 𝑔 because matrix 𝐺 is not a square 

matrix and is thus not invertible.  Therefore again extra equations need to be used which are 

provided by the boundary conditions. This is where matrix 𝐸𝑏 comes in and needs to be used. It 

stands for the finite difference operator matrix resulting from the applied boundary conditions for 

bending as explained in (4.5.4): 

 [𝐸𝑏] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝑁𝑏] (4.24) 

 

Adding equations … to equations … gives: 
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⇒ [

𝐺
𝐸𝑏

] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [
−𝑔
𝑁𝑏

] 
(4.25) 

 

Now let: 

 
[𝐹𝑏] = [

𝐺
𝐸𝑏

] 
(4.26) 

Then: 

 

 
⇒ [𝐹𝑏] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [

−𝑔
𝑁𝑏

] 
(4.27) 

 

Now matrix 𝐹2 will be a square invertible matrix and thus the displacement 𝑤 can now be expressed 

in terms of 𝑔 through: 

 
⇒ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑏

−1] ∙ [
−𝑔
𝑁𝑏

] 
(4.28) 

Now let: 

 [𝐹𝑏
−1] = [𝐻𝑏] = [𝐻𝑏1 𝐻𝑏2] (4.29) 

 

Then the full expression for 𝑤 becomes:  

 ⇒ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑏
−1] ∙ [

−𝑔
𝑁𝑏

] = [𝐻𝑏1 𝐻𝑏2] ∙ [
−𝑔
𝑁𝑏

] = −[𝐻𝑏1] ∙ [𝑔] + [𝐻𝑏2] ∙ [𝑁2] 
(4.30) 

 

Now we can substitute the expressions for 𝜙 and 𝑤 in equation (4.xx): 

 [𝐺] ∙ [−𝐸𝑡 ∙ [𝐻𝑠1] ∙ [𝑔] + [𝐻𝑠2] ∙ [𝑁𝑠]] + 𝐷 ∙ [𝐴] ∙ [−[𝐻𝑏1] ∙ [𝑔] + [𝐻𝑏2] ∙ [𝑁𝑏]] = [𝑝] (4.31) 

 

Now we can express 𝑔 in terms of 𝑝: 

 −𝐸𝑡 ∙ [𝐺] ∙ [𝐻𝑠1] ∙ [𝑔] + [𝐺] ∙ [𝐻𝑠2] ∙ [𝑁𝑠] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏1] ∙ [𝑔] + 𝐷 ∙ [𝐴] ∙ [𝐻𝑏2] ∙ [𝑁𝑏] = [𝑝] (4.32) 

 

 𝐸𝑡 ∙ [𝐺] ∙ [𝐻𝑠1] ∙ [𝑔] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏1] ∙ [𝑔] = [𝑝] − [𝐺] ∙ [𝐻𝑠2] ∙ [𝑁𝑠] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏2] ∙ [𝑁𝑏] (4.33) 

 

 [𝐸𝑡 ∙ [𝐺] ∙ [𝐻𝑠1] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏1]] ∙ [𝑔] = [𝑝] − [𝐺] ∙ [𝐻𝑠2] ∙ [𝑁𝑠] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏2] ∙ [𝑁𝑏] (4.34) 
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 ⇒ [𝑔] = [𝐸𝑡 ∙ [𝐺] ∙ [𝐻𝑠1] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏1]]
−1

∙ [[𝑝] − [𝐺] ∙ [𝐻𝑠2] ∙ [𝑁𝑠] − 𝐷 ∙ [𝐴] ∙ [𝐻𝑏2] ∙ [𝑁𝑏]] (4.35) 

 

At this point the change of Gaussian curvature is determined at every point. Now the Airy stress 

function 𝜙 and the displacements 𝑤 can be determined with the expressions: 

 [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑠
−1] ∙ [

−𝐸𝑡𝑔
𝑁𝑆

] = [𝐻𝑆1 𝐻𝑆2] ∙ [
−𝐸𝑡𝑔
𝑁𝑠

] = −𝐸𝑡 ∙ [𝐻𝑆1] ∙ [𝑔] + [𝐻𝑆2] ∙ [𝑁𝑆] 
(4.36) 

 

 [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] = [𝐹𝑏
−1] ∙ [

−𝑔
𝑁𝑏

] = [𝐻𝑏1 𝐻𝑏2] ∙ [
−𝑔
𝑁𝑏

] = −[𝐻𝑏1] ∙ [𝑔] + [𝐻𝑏2] ∙ [𝑁2] 
(4.37) 

 

Which were already derived previously. Now the Airy stress function 𝜙 and the displacements 𝑤 

are known and it becomes possible to calculate the load carried by the S-surface and the load carried 

by the B-surface: 

 𝑝𝑆 = Γ2𝜙 , 𝑝𝐵 = 𝐷∇4𝑤 (4.38) 

 

Which is again calculated with the finite difference method: 

 

 [𝑝𝑆] = [𝐺] ∙ [𝜙𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡], [𝑝𝐵] = 𝐷 ∙ [𝐴] ∙ [𝑤𝑓𝑟𝑒𝑒+𝑏𝑜𝑢𝑛𝑑+𝑜𝑢𝑡] 

 

(4.39) 

This information is then sent to the shell assessment component. 
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4.5.6. Internal forces component 

Once the Airy stress function 𝜙 and the displacements 𝑤 are determined the internal forces can 

also easily calculated using the finite difference method by calculating the derivatives of the 𝜙- and 

𝑤 field. Recall from (3.2) the following equations: 

 
𝑛𝑦𝑦 = 

𝜕2𝜙

𝜕𝑥2
, 𝑛𝑥𝑥 =

𝜕2𝜙

𝜕𝑦2
, 𝑛𝑥𝑦 = −

𝜕2𝜙

𝜕𝑥𝜕𝑦
 

(4.40) 

 

 
𝑚𝑥𝑥 = −𝐷

𝜕2𝑤

𝜕𝑥2
, 𝑚𝑦𝑦 = −𝐷

𝜕2𝑤

𝜕𝑦2
, 𝑚𝑥𝑦 = −𝐷

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

(4.41) 

 

Rewrite in finite difference form: 

 [𝑛𝑦𝑦] =  [𝐾𝑥] ∙ [𝜙], [𝑛𝑥𝑥] = [𝐾𝑦] ∙ [𝜙], [𝑛𝑥𝑦] = −[𝐾𝑥𝑦] ∙ [𝜙] (4.42) 

 

 [𝑚𝑥𝑥] =  −𝐷[𝐾𝑥] ∙ [𝑤], [𝑚𝑦𝑦] = −𝐷[𝐾𝑦] ∙ [𝑤], [𝑚𝑥𝑦] = −𝐷[𝐾𝑥𝑦] ∙ [𝑤] (4.43) 

 

Where [𝐾𝑥], [𝐾𝑦], [𝐾𝑥𝑦] stand for the finite difference matrices which use the following 

operators: 

 

(
𝜕2 …

𝜕𝑥2
)

𝑂

=
1

𝜆2
∙

 

 

                                    (
𝜕2 …

𝜕𝑦2
)

𝑂

=
1

𝜆2
∙

 

 

  

(4.44) 

 

(
𝜕2 …

𝜕𝑥𝜕𝑦
)

𝑂

=
1

4𝜆2
∙

 

 

                                      

(4.45) 

At this point the normal forces and bending moments are known. The principal normal forces and 

principal bending moments are then calculated by the component using the formulas: 

 
𝑛1 =

𝑛𝑥𝑥 + 𝑛𝑦𝑦

2
+ √(

𝑛𝑥𝑥 − 𝑛𝑦𝑦

2
)
2

+ 𝑛𝑥𝑦
2 

 
 

𝑛2 =
𝑛𝑥𝑥 + 𝑛𝑦𝑦

2
− √(

𝑛𝑥𝑥 − 𝑛𝑦𝑦

2
)
2

+ 𝑛𝑥𝑦
2 

𝑚1 =
𝑚𝑥𝑥 + 𝑚𝑦𝑦

2
+ √(

𝑚𝑥𝑥 − 𝑚𝑦𝑦

2
)
2

+ 𝑚𝑥𝑦
2 

 
 

𝑚2 =
𝑚𝑥𝑥 + 𝑚𝑦𝑦

2
− √(

𝑚𝑥𝑥 − 𝑚𝑦𝑦

2
)
2

+ 𝑚𝑥𝑦
2 

 

 

(4.46) 



 

54 
 

4.5.7. Derivative component (for shear forces) 

The derivative component was a component developed by M. Oosterhuis (2010) and is also used 

in the current tool. The component is meant to visualise and calculate the magnitude and direction 

of the principal shear forces and its components in x- and y-direction. It is based on the analytical 

relationship between the sum of bending moments and the shear forces. As been pointed out in 

paragraph 3.4, the shear force in a particular direction equals the first derivative of the sum of 

bending moments ‘hill’ in that particular direction. 

 

The component developed by M. Oosterhuis was developed by combining a set of predefined 

components which were already provided in Grasshopper.  The required input for the derivative 

component consists of the sum of bending moments surface (which in the current tool is provided 

by the internal forces component discussed in the previous paragraph) and the grid points. 

 

To determine the magnitude and direction of the principal shear force in a grid point, the derivative 

(slope) of the sum of bending moments hill has to be calculated in the direction of the steepest 

descent.  As explained by M. Oosterhuis (2010) in his thesis, first, the steepest descent direction is 

determined by using the surface normal vector. By multiplying this normal vector with the global 

z-vector the cross vector is obtained. This is then used to rotate the normal vector around over 90° 

and thereby becomes the steepest descent vector which is tangential to the sum of bending 

moments surface in the considered point. The resulting vector collection can then be plotted on 

the sum of the bending moments hill (Fig. 4.12). Finally the magnitude of the shear force is 

calculated by calculating the slope of the steepest descent vector.  

 

 

Fig. 4.12 – Direction of the principal shear forces (Image from M. Oosterhuis 2010) 
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The shear forces in x- and y-direction are calculated by determining the corresponding planar 

components of the principal shear force. The component is also able to display the shear also as 

scaled arrows where the magnitude is represented by the thickness of the arrows. Below an example 

of the shear forces visualised is given from Oosterhuis (2010) for a simply supported plate in 

bending subjected to a uniformly distributed load (Fig. 4.13). 

 

 

Fig. 4.13 - vn, vx and vy represented by scaled arrows (image from Oosterhuis 2010) 
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4.5.8. Rain flow analogy component 

The component which uses the rain flow analogy and generates the principal shear trajectories was 

also developed by M. Oosterhuis (2010) and will be used in the current tool as well. The component 

generates ‘continuous’ rain flow trajectories on a surface by using a gradient descent algorithm.  

This algorithm starts from a predefined point 𝑝𝑖  and 

iteratively determines the steepest descent vector on 

the sum of bending moments hill and defines the next 

point 𝑝𝑖+1 by moving the starting point over a small 

distance in this direction (Fig. 4.14). This sequence is 

repeated until a local (or global minimum) has reached 

or a predefined stopping condition is met. The 

stopping conditions are: 

 

1) Surface normal vector is almost vertical 

2) Point 𝑝𝑖+1 is outside the 3D surrounding box 

3) Iteration number is larger than predefined 

maximum number of iterations 

 
 

 
Fig. 4.14 - Steepest descent algorithm (image 

from Oosterhuis 2010) 

 

 

An example of the results the component produces are given below. In these images provided by 

Oosterhuis (2010) one can see the sum of bending moments hill with the principal shear force 

trajectories of a plate in bending with a uniformly distributed loaded. One can thus clearly see how 

the tool visualizes the load path for out-of-plane structural mechanic behavior 

 

 
Fig. 4.15 – 3D view of the m-hill of a rectangular plate 
with principal shear force trajectories (image from 
Oosterhuis 2010) 

 

 
Fig. 4.16 - Top view of principal shear force trajectories 
(image from Oosterhuis 2010) 
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4.5.9. Shell assessment component 

The final component is the shell assessment component which is used to assess whether the shell 

carries its loads efficiently. It uses as input the list of values of the displacements 𝑤, Airy stress 

function 𝜙, the load carried by the S-surface 𝑝𝑆 and the load carried by the B-surface 𝑝𝐵 which are 

received from the shell calculation component (4.4.5). 

 

Then it first calculates the two ratios based on normal and bending stress as was discussed in 

paragraph 3.5.1. To calculate these ratios the following quantities: 𝑛1, 𝑛2, 𝑛𝑥𝑥, 𝑛𝑦𝑦, 𝑛𝑥𝑦, 𝑚𝑥𝑥, 𝑚𝑦𝑦, 

𝑚𝑥𝑦 are needed and calculated in the same way as discussed in the internal forces component 

(4.4.6) using the finite difference method on the displacement field and Airy stress function field. 

When these quantities are known, the component calculates the direction 𝛼0 of the principal 

normal forces with the following equation: 

 

 
⇒𝛼0 =

1

2
∙ arctan (

2𝑛𝑥𝑦

𝑛𝑥𝑥 − 𝑛𝑦𝑦
) 

(4.47) 

When 𝛼0 is known at every point the component proceeds to calculate the bending moments in 

the direction the principal normal forces using the following transformation equations: 

 

 𝑚(𝛼0) = 𝑚𝑥𝑥  sin2 𝛼0 − 𝑚𝑥𝑦 sin 2𝛼0 + 𝑚𝑦𝑦 cos2 𝛼0 (4.48) 

 

 𝑚(𝛼0 + 0,5𝜋) = 𝑚𝑥𝑥  cos2 𝛼0 + 𝑚𝑥𝑦 sin 2𝛼0 + 𝑚𝑦𝑦 sin2 𝛼0 (4.49) 

 

Finally the two ratio’s based on normal and bending stress are calculated by the tool: 

 

 𝑅1 =
𝑛1

6 𝑚(𝛼0)

𝑡
+ 𝑛1

∙ 100% , 𝑅2 =
𝑛2

6 𝑚(𝛼0+0,5𝜋)

𝑡
+ 𝑛2

 ∙ 100%   (4.50) 

 

The tool is then able to plot the values of these ratios unto the shell surface and also show the 

direction of the considered principal normal forces with vectors (Fig. 4.17 and Fig. 4.18).  
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Fig. 4.17 - Results ratio R1 on hypar shell under uniform 
distributed load 

 

 

Fig. 4.18 - Results ratio R2 on hypar shell under uniform 
distributed load 

Next the tool also calculates the ratio based on the load carried by the S-surface and the load carried 

by the B-surface. It simply uses the following equation (where 𝑝𝑆 and 𝑝𝐵 are received values of 

input from the shell calculation component): 

 
𝑅3 =

𝑝𝑆

𝑝𝐵 + 𝑝𝑆
 

 

(4.51) 

To obtain even quicker insight into the results the values of the ratio for each point are plotted 

with a colour. Values closer to 1 will be green and values closer to zero red. Thus green indicates 

that more load is carried by the stretching surface which is considered a more efficient way of 

carrying the loads, while red indicates more load is carried by the bending surface. An example of 

the result of the component is given below (Fig. 4.19): 

 

Fig. 4.19 - Result R3 from shell assessment component for a hypar shell under uniform distributed load 
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5. Results and validation 
 

5.1. Introduction 
As been stated in section 1.2, the next steps to be undertaken in this thesis are the following: 

 Choose several test cases and use the tool to analyse them 

 Validate the results in a qualitative and quantitative manner by comparing the results to 

analytical solutions or FEM results 

 

When choosing which shell shapes should be analysed it is presumed that it is best to start from 

simple to more complex shapes. Thus for testing the developed tool the following shapes are 

chosen: 

1. Plate loaded out-of-plane as a limit case of a shell 

2. Plate loaded in-plane as a limit case of a shell 

3. Basic shell shapes: elpar, cylindrical paraboloid, hypar 

4. Modified basic shell shape 

5. Hallenbad shell shape 

 

For comparing and validating the results we shall mainly use the FEM program SCIA Engineer. The 

solver of SCIA Engineer uses elements which are combined plate-membrane elements (see 

Appendix B for more information concerning SCIA’s type of elements). Besides using SCIA 

Engineer for comparison, also known analytical solutions provided by Pavlovic (1999) shall be 

used in the test case of the basic shell shapes (5.4).  
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5.2. Plate loaded out of plane as a limit case of a shell 
In this first test case a plate in bending will be approximated. This is done by providing a shape 

function for the shell with almost zero curvature3. The ‘plate’ is chosen to be 9m long and 6m wide. 

An arbitrary load is applied on the surface. On one half of the surface a load of 1 kN/m2 

downwards is applied and on the other half a load of 0,5 kN/m2 upward is applied. The material 

is steel with E=210000N/mm2 and a thickness of 20mm. Also several different (bending) boundary 

conditions are applied on the edges: edge A is a free edge, edge B and D are a fully clamped edges 

and edge C is a hinged edge. In the parametric model a mesh size of 0,5m is chosen. For 

comparison the plate is modelled with the same properties and loading in SCIA Engineer.  

We set 𝜈 = 0,0001 (in SCIA the Poission’s ratio cannot be set exactly to zero and this is the 

smallest value allowed). Furthermore the mesh size in SCIA is set to 0,5m.  

 
 
 

 
 
 

Fig. 5.1 – Results deformations SCIA Engineer 

 

 

 
Fig. 5.2 - Results parametric tool 

 

When the first results are compared in a qualitative manner by looking at the deformations a very 

good correspondence appears. In the figures above the initial results are shown. On the left is the 

result of the deformed plate calculated in SCIA Engineer, on the right we see the result of the 

parametric tool. The green surface represents the original shape of the plate/shell with the applied 

loading visualized. The purple surface underneath is the projected Airy stress function field. As 

expected the Airy stress function has a value of virtually zero everywhere (which means that the 

normal forces are also virtually zero everywhere). The orange surface then represents the projected 

displacement field which corresponds well with the result from SCIA Engineer. Next more precise 

results will be given for the quantities relating to plates in bending. 

                                                 
3 We cannot simply enter as a shape function z = 0 however, since this will result in a singular matrix. We therefore 
use z = 0,0000001*(x2+y2) which results in a virtually flat shell  (i.e. a plate) and does not lead to a singular matrix. 
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5.2.1. Results displacements w 

 

Fig. 5.3 - Displacements SCIA 

 

 
Fig. 5.4 - Displacements parametric tool close-up 

 

Exact results will now  be given along the 
lines: 
x = -1,5m 
y = -1,0m 

 
 

Exact results of the displacements w:  

 

 
Fig. 5.5 - Results displacements along x = -1,5m 

 

 
 

Fig. 5.6 - Results displacements along y= -1,0m 
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5.2.2. Results bending moments 

Results 𝑚𝑥𝑥: 

Fig. 5.7 - mxx field SCIA 

 

 
 

Fig. 5.8 - mxx field parametric tool 

 

Exact results of mxx: 

 
 
 
 
 

 
 

 

 

Fig. 5.9 - Results mxx along x = -1,5m 

 

 
 

Fig. 5.10 - Results mxx along y= -1,0m 
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Results 𝑚𝑦𝑦: 

 

 
Fig. 5.11 - myy field SCIA 

 

 
Fig. 5.12 - myy field parametric tool 

 

Exact results of myy: 

 

 
Fig. 5.13 - Exact results myy along x = -1,5m 

 

 
Fig. 5.14 - Exact results myy along y = -1,0m 
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Results 𝑚𝑥𝑦: 

 

 
Fig. 5.15 - mxy field SCIA 

 
 

 
Fig. 5.16 - mxy field parametric tool 

 

Exact results of mxy: 

 
 
 
 
 
 

 
Fig. 5.17 - Exact results mxy along x = -1,5m 

 

 
Fig. 5.18 - Exact results mxy along x = -1,5m 
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5.2.3. Results shear forces 

Results 𝑣𝑥: 

 

 
Fig. 5.19 - vx field SCIA 

 

 

 
Fig. 5.20 - vx field parametric tool 

 

Exact results of vx: 

 

 
Fig. 5.21 - Exact results vx along x = -1,5m 

 

 
 

 
 
Fig. 5.22 - Exact results vx along y = -1,0m 
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Results 𝑣𝑦: 

 

 
Fig. 5.23 - vy field SCIA 

 

 
Fig. 5.24 - vy field parametric tool 

 

Exact results of vy: 

 
 
 
 
 

 
 
Fig. 5.25 - Exact results vy along x = -1,5m 

 

 
Fig. 5.26 - Exact results vy along y = -1,0m 

 
 

  



A Parametric Structural Design Tool for Shell Structures 

67 
 

Results 𝑣𝑛: 

 

 
 

Fig. 5.27 - vn field SCIA Fig. 5.28 - vn field parametric tool 

 

Exact results vn: 

 
 

 
Fig. 5.29 - Exact results vn along x= -1,5m 

 

 
 
 
 
 

 
 
Fig. 5.30 - Exact results vn along y = -1,0m 
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5.2.4. Results sum of bending moments and principal shear forces 

Results derivative component and rain flow analogy component: 

 
 

 
 

Fig. 5.31 - Sum of bending moments field with vectors in 
steepest direction (3d) 

 
 

 
Fig. 5.32 - Sum of bending moments field with vectors in 
steepest direction (top view) 

 

 

 
Fig. 5.33 - Principal shear force trajectories (3d) 

 

 
Fig. 5.34 - Principle shear force trajectories (top view) 
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5.2.5. Discussion of the results 
From the previous results the following can be observed: 

 In general, when compared to the results of SCIA the results of the developed tool 

correspond very well. 

 Only at the edges a slight inaccuracy occurs with the calculation of the shear forces. This 

seems to be explained by the fact that the pre-built Grasshopper sub-components which 

are used in the derivative component and which have to calculate the slope of the �̅�-hill 

surface have some trouble dealing with edges of surfaces. 

 It is clear that all the applied load is carried by the B surface since the Airy stress function 

field is virtually zero everywhere, indicating that no stretching forces occur. 

 The way in which the results of quantities are presented as projected surfaces give the user 

a better sense of the relative magnitude of the quantities at every point of the structure. 

 Thus, it seems that a plate in bending can be approximated well by the developed 

parametric design tool for shells. 
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5.3. Plate loaded in-plane as a limit case of a shell 
In this second test case a plate loaded in-plane will be approximated. This is again done by 

providing a shape function for the shell with almost zero curvature. The ‘plate’ is chosen to be 12m 

long and 4m wide. A line load on edge B is applied of 100kN/m. The thickness and Young’s 

modulus can be chosen arbitrarily since only the internal forces are of interest in this investigation 

and they do not depend on the thickness or the Young’s modulus. Different (stretching) boundary 

conditions are applied on the edges: edge A is a fixed edge, edge B is a free edge and edge C and 

D are chosen as semi-rigid (meaning that only the displacement parallel to the edge are restrained). 

For comparison the plate is modelled with the same properties and loading in SCIA Engineer. We 

set 𝜈 = 0,0001 (in SCIA the Poission’s ratio cannot be set exactly to zero and this is the smallest 

value allowed). 

 

 

Fig. 5.35 - Plate loaded in plane modelled in SCIA 

 

In the parametric model a mesh size of 0,5m 

is chosen. On the right ( 

Fig. 5.36) the first results are given. As can 

be seen, the displacement field is virtually 

zero everywhere, indicating that no bending 

action occurs. The Airy stress function field 

is mainly curved in the x-direction 

indicating large values for 𝑛𝑦𝑦 can be 

expected.  Next results for 𝑛𝑥𝑥 , 𝑛𝑦𝑦 and 

𝑛𝑥𝑦 will be given as well as graphs of the 

values along lines of interest. 

 

 
Fig. 5.36 - ‘Plate’ loaded in-plane modelled in parametric 

tool with Airy stress field and displacement field 
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5.3.1. Results normal forces 

 

Results 𝑛𝑥𝑥: 

 

 
Fig. 5.37 - nxx field SCIA 

 
 
 
 

 
 
 

Fig. 5.38 - nxx field parametric tool 

 

 
Fig. 5.39 - nxx along  line y = +2 m 
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Results 𝑛𝑦𝑦: 

 

Fig. 5.40 - nyy field SCIA 

 
 
 
 
 

 

 

Fig. 5.41 - nyy field parametric tool 

 

 
Fig. 5.42 nyy along y = -2 m 
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Results 𝑛𝑥𝑦: 

 

 
Fig. 5.43 - nxy field SCIA 

 
 
 
 
 
 

 

 
Fig. 5.44 - nxy field parametric tool 

 

 
Fig. 5.45 - nxy along line x = -6 m  
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5.3.2. Discussion of the results 

From the previous results the following can be observed: 

 

 In general, when compared to the results of SCIA the results of the developed tool 

correspond very well. In general the results differ less than 5%.  

 Only near the upper corners where the load is applied some differences occur. These might 

be explained by the fact that some inaccuracies will inevitably occur in the solution of the 

FEM when two edges with different boundary conditions and loadings meet at a corner. 

Moreover it is common that near the corner stress concentrations occur which would 

require a very fine mesh to calculate accurately.  

 It appears that a plate loaded in-plane was thus successfully approximated by the tool as a 

limit case of a shell. However, during this research problems relating to the stretching 

boundary conditions of a plate or shell have been encountered, which will unfortunately 

have a big impact on the remaining part of this thesis. These problems will be discussed 

next. 

 

5.3.3. Problems with the stretching boundary conditions 

It was shown that the tool was able to successfully calculate a plate loaded in-plane. However, 

during this research it was discovered that not all plates which are loaded in-plane can be 

successfully modelled by the tool (nor by the tool developed by D. Liang (2012) for that matter).  

 

Problems occur in the situation where only the displacements in the corners have been restrained 

while the edges that connect to the corners are not necessarily fixed. It was the intent in this thesis 

that for all considered shells calculated by the tool, the displacements 𝑢𝑥, 𝑢𝑦 and 𝑤 would be 

restrained for at least the four corner points, even though for example all the edges were free. To 

continue with shells with these sorts of boundary conditions, it therefore also had to be possible 

for the tool to calculate a plate loaded in-plane which only had displacement restrictions at the 

corners (Fig. 5.46).  

 

 

Fig. 5.46 - plate in stretching with only corners fixed 
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In the end, it did not seem possible to implement conditions using the Airy stress function and the 

finite difference method to ensure the desired restrictions. The problem is caused by the fact that 

it is not clear which expression in terms of the Airy stress function should be used in the boundary 

condition component to ensure that the displacements of the corner points will remain zero when 

the edges themselves are not necessarily fixed. Boundary conditions of the corners need to match 

with the boundary conditions of the corresponding edges it seems, to produce good results.  

 

Also the expressions found by Zienkiewicz and Gerstner (discussed at 3.2.9) appear to be only 

applicable for the situation where displacements across a distance are all zero, but not for the 

situation where the displacements of only a single point (i.e. a corner) is specified as zero. This can 

be explained as follows. Consider an edge parallel to the y-axis, the condition which has to be 

fulfilled according to these authors for the displacements to be zero is:  

 

 1

𝐸𝑡
(
𝜕3𝜙

𝜕𝑥3
+ 2

𝜕3𝜙

𝜕𝑥𝜕𝑦2
) = 0,

1

𝐸𝑡
(
𝜕2𝜙

𝜕𝑥2
) = 0  

(5.1) 

 

It turns out that these expression can be rewritten and are actually equal to the derivatives of 𝑢𝑥 

and 𝑢𝑦: 

 

 1

𝐸𝑡
(
𝜕3𝜙

𝜕𝑥3
+ 2

𝜕3𝜙

𝜕𝑥𝜕𝑦2
) =

𝜕2𝑢𝑥

𝜕𝑦2
,

1

𝐸𝑡
(
𝜕2𝜙

𝜕𝑥2
) =

𝜕𝑢𝑦

𝜕𝑦
 

 

(5.2) 

When an edge in the y-direction is fixed the displacements will be zero across the edge and so also 

these derivatives of 𝑢𝑥 and 𝑢𝑦 to y will be zero. But this does not follow for only a single point on 

that edge which is fixed while the surrounding points are not, thus the problem remains. 

 

However, it turns out that when all edges have semi-rigid boundary conditions (i.e. only the 

displacements in the direction parallel to the edge are zero) the condition that the four corner 

points are restrained will be fulfilled automatically and the boundary conditions can always be 

successfully expressed in terms of the Airy stress function. Therefore the decision was made that 

for the remaining part of this thesis only shells with semi-rigid boundary conditions shall be further 

investigated. The challenge for successfully implementing all types of boundary conditions should 

be considered as an opportunity for future research. 
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5.4. Basic shell shapes 
 

5.4.1. Elpar, cylindrical paraboloid and hypar 

Next, three basic shell shapes shall be considered which have also been analysed by M.N. Pavlovic 

(1999), namely: an elpar, a cylindrical paraboloid and a hypar. 

Elpar Cylindrical Paraboloid Hypar 

 

 

 

 

 

 
 

 

𝑧𝐸𝑃 = −
1

300
(𝑥2 + 𝑦2) 

 

 

𝑧𝐶𝑃 = −
1

300
(𝑥2) 

 

 

𝑧𝐻𝑃 = −
1

300
(𝑥2 − 𝑦2) 

 
Fig. 5.47 - Basic shell shapes (images from Bouma 1959) 

The shape functions that were used for each shape are given above. All edges were considered 

hinged and semi-rigid, implying:  
𝜕2𝑤

𝜕𝑥2 =
𝜕2𝑤

𝜕𝑦2 =
𝜕2𝜙

𝜕𝑥2 =
𝜕2𝜙

𝜕𝑦2 = 0 at all edges. Furthermore, the following 

properties were chosen for all three shells: 

 

𝑎 = 𝑏 = 18𝑚 (plan dimensions) 

𝐸 = 40𝑘𝑁/𝑚𝑚2 (concrete) 

𝑝 = −2,22𝑘𝑁/𝑚2 (uniformly distributed on whole surface) 

𝑡 = 100𝑚𝑚 

 

Pavlovic used a rather elaborate method employing an eight-order differential equation4 and double 

Fourier series. In this thesis the same shell shapes will be analysed with the same properties and 

loading and will be compared to the results of Pavlovic. Note that the Young’s modulus used by 

Pavlovic is relatively high for concrete, a more realistic value would be 𝐸 = 10𝑘𝑁/𝑚𝑚2, however 

since this is mainly a theoretical investigation and we want to compare the results for this test case 

using the same properties as much as possible 𝐸 = 40𝑘𝑁/𝑚𝑚2 will still be used in the tool. In his 

article Pavlovic does use a non-zero Poisson ratio of 𝜈 = 0,15 however, thus some differences in 

results can be expected upfront.  The mesh size in the parametric tool is set to 1m.  

                                                 
4 As shown by Vlasov (1964), one can combine the coupled equations (3.2.8) for shallow shells to one single equation.   
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In his article the results for the transverse displacements, normal forces 𝑛𝑥𝑥 and 𝑛𝑦𝑦, moments 

𝑚𝑦𝑦 and 𝑚𝑥𝑦 are given. Also Pavlovic provides graphs indicating how much load is carried by the 

S-surface and by the B-surface. These quantities will also calculated with the developed tool. 

 

5.4.2. First results parametric tool 

After specifying the shape function, boundary conditions, loading and material properties the tool 

shows the first results presenting the shape of the shell, the Airy stress function field and the 

displacement field: 

 

 
 

Fig. 5.48 - First results elpar 

 

 
 

Fig. 5.49 - First results cylindrical 
paraboloid 

 

 
 

Fig. 5.50- First results hypar 

 

By looking at the geometry of the shell, the Airy stress function field and the displacement field 

one can already establish that: 

 The shell shapes Pavlovic chose are in fact very shallow. 

 The hypar shows a displacement field with large displacements and curvatures and a very 

shallow Airy stress function field, indicating plate like behavior. 

 The elpar shape seems to have an Airy stress function field and displacement field with 

smaller magnitudes and curvatures when compared to the cylindrical paraboloid, indicating 

smaller moments and normal forces. 

Next more precise results will be given by comparing graphs including results produced from the 

tool with graphs from Pavlovic his article. It will be seen whether the tool can provide accurate 

results for these basic shell shapes. 
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5.4.3. Results displacements w 

(along the diagonal from corner to centre): 
 

 
 

Fig. 5.51 - Results Pavlovic: displacements along 
diagonal 

 

 
 

Fig. 5.52 - Results parametric design tool: displacements 
along diagonal 

 

5.4.4. Results normal forces  

Results 𝑛𝑥𝑥 (from the middle of the edge to the centre): 

 
Fig. 5.53 - Results Pavlovic: nxx 

 
Fig. 5.54 - Results parametric design tool: nxx 
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Results 𝑛𝑦𝑦 (along the diagonal from corner to centre): 

 
 

Fig. 5.55 - Results nyy by Pavlovic 

    
Fig. 5.56 - Results nyy parametric tool 

 

5.4.5. Results moments 

Results 𝑚𝑦𝑦 (from the middle of the edge to the centre): 

 

 

  

 

Fig. 5.57 - Results Pavlovic: myy  Fig. 5.58 - Results parametric design tool: myy 
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Results 𝑚𝑥𝑦: 

 

 

 
Fig. 5.59 - Results Pavlovic: mxy 

 

Fig. 5.60 - Results parametric tool: mxy 

 
 

5.4.6. Results Ps and Pb 

Load carried by stretching surface along the diagonal: 

 

 
 

Fig. 5.61 - Results Pavlovic: PS  along the diagonal 

 

Fig. 5.62 - Results parametric tool: PS along diagonal 
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Load carried by bending surface along the diagonal: 

 
 
 
 
 

 
 

Fig. 5.63 - Results Pavlovic: PB  along the diagonal 

 

 

 
Fig. 5.64 - Results parametric tool: PB along diagonal 
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5.4.7. Results shell assessment 

Results shell assessment component elpar (top view): 

 

 
Fig. 5.65 - Results n1 vector (elpar) 

 

 
Fig. 5.66 - Results n2 vector (elpar) 

 

 
Fig. 5.67 - Results R1 ratio (elpar) 

 

 
Fig. 5.68- Results R2 ratio (elpar) 

 

 
Fig. 5.69 - Results R3 ratio (elpar) 
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Results shell assessment component cylindrical paraboloid (top view): 

 

 
Fig. 5.70 - Results n1 vector (cylindrical paraboloid) 

 

 
Fig. 5.71 - Results n2 vector (cylindrical paraboloid) 

 

 
Fig. 5.72 - Results R1 ratio (cylindrical paraboloid) 

 

 

 
Fig. 5.73 - Results R1 ratio (cylindrical paraboloid) 

 

 
Fig. 5.74 - Results R3 ratio (cylindrical paraboloid) 
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Results shell assessment component hypar (top view): 

 

 
Fig. 5.75 - Results n1 vector (hypar) 

 

 
Fig. 5.76 - Results n2 vector (hypar) 

 

 
Fig. 5.77 - Results R1 ratio (hypar) 

 

 

 
Fig. 5.78 - Results R1 ratio (hypar) 

 

 
Fig. 5.79 – Results R3 ratio (hypar) 
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5.4.8. Discussion of the results 

 

From the results the following can be observed: 

 In general, when compared to the results of Pavlovic the results of the developed tool 

correspond very well.  

 The differences in the results with respect to 𝑚𝑦𝑦 and 𝑚𝑥𝑦 can be fully explained by the 

fact that Pavlovic takes into account a Poisson’s ratio while in the tool it assumed to be 

zero (the Poisson’s ratio should not affect the normal forces however since these do not 

appear in the derivatives of the Airy stress function (3.2.6). 

 Bending action is predominant in the hypar and thus shows similar behavior to that of a 

plate in bending, this confirms what authors like Beranek (Beranek W. , 1979) have written 

with respect to hypar shells. A further investigation hypar shells compared to a flat plate is 

given in Appendix C. 

 Stretching action is predominant in the centre zones of the elpar and cylindrical paraboloid 

shells. The displacements, normal forces and bending moments in the cylindrical 

paraboloid are larger compared to the elpar. It seems the elpar performs best. 

 Edge moments that occur in the elpar are considerably damped out as one moves into the 

interior of shell, unlike the other two shapes. 

 The load carried by the bending or stretching surface can at some points exceed the original 

applied load (i.e. 𝑝𝑆 > 𝑝 or 𝑝𝐵 > 𝑝) so that for equilibrium the corresponding load on the 

other surface becomes ‘negative’ which can be thought of as a sort of suction that occurs. 

 The results from the shell assessment component for the hypar show that the ratios 𝑅1 and 

𝑅2 are at every point close to zero percent. Also the value of the ratio 𝑅3 at every point 

seem to be near zero thereby also indicating predominant bending behavior which is in line 

with the calculated quantities.  
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5.5. Moified basic shell shape 
 

In the previous section three basic shell shapes have been analysed, these shapes were however 

very shallow, perfectly symmetrical (square projected floorplan) and had only a uniform distributed 

load over the whole surface. In this section a basic shape is chosen but modified with respect to its 

shallowness, floorplan and loading. It can then be checked whether the tool still provides accurate 

results. The shell is also calculated with SCIA Engineer for comparison of results. 

 

5.5.1. Modified elpar  

The shape that is chosen is an elpar with the following shape function and other properties: 

 

𝑧𝐸𝑃 = −
1

20
(𝑥2 + 𝑦2) 

 

Length = 10m 
 

Width = 5m 
 

𝐸 = 10 kN/m2 (concrete) 
 

𝑡 = 80 mm  

 
Fig. 5.80 - Modified basic shell 

A mesh size of 0,5m shall be used in the tool. An arbitrary loading is chosen such that on the left 

half of the shell a downward distributed load of 50 kN/m2 is applied and on the right half an 

upward distributed load of 25kN/m2 is applied (Fig. 5.81).  

𝑝1 = −50 kN/m2 , 𝑝2 = +25 kN/m2  

 
Fig. 5.81 - Shell surface with non-uniform loading 

 

Next the results will be given for: 𝑤, 𝑛𝑥𝑥, 𝑛𝑦𝑦, 𝑛𝑥𝑦, 𝑚𝑥𝑥, 𝑚𝑦𝑦, 𝑚𝑥𝑦, 𝑣𝑥, 𝑣𝑦, 𝑣𝑛 given as well as 

graphs of the values along lines of interest. 
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5.5.2. Results displacements w 

 

 

 
Fig. 5.82 - Displacement field SCIA 

 

 
 
 
 
 

 

 

Fig. 5.83 - displacement field parametric tool 

 

 
Fig. 5.84 - Results w along line y = 0 m 
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5.5.3. Results normal forces 

 

Results 𝑛𝑥𝑥: 

 

 
Fig. 5.85 - nxx field SCIA (topview) 

 
 
 
 
 
 

 

 
 
 

Fig. 5.86 - nxx field parametric tool 

 

 
 

Fig. 5.87 - Results nxx along line y = 0 m 
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Results 𝑛𝑦𝑦: 

 

 
Fig. 5.88 - nyy field SCIA 

 
 
 
 
 

 
 

 

Fig. 5.89 – nyy field parametric tool 

 

 
Fig. 5.90 - Results nyy along y = 0 m 
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Results 𝑛𝑥𝑦: 

 

 
Fig. 5.91 - nxy field SCIA 

 
 
 
 
 
 

 

 
Fig. 5.92 - nxy field parametric tool 

 

 
Fig. 5.93 - Results nxy along line x = 0 m 
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5.5.4. Results bending moments  

 

Results 𝑚𝑥𝑥: 

 

 
Fig. 5.94 - mxx field SCIA 

 
 
 
 
 
 

 
 
 

 
Fig. 5.95 - mxx field parametric tool 

 

 

 
Fig. 5.96 - Results mxx along line y = 0 m 
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Results 𝑚𝑦𝑦: 

 

 
 

Fig. 5.97 - myy field SCIA 

 
 
 
 
 

 
 
 

 

Fig. 5.98 - myy field parametric tool 

 

 

 
Fig. 5.99 - Results myy along line x = -2,5m 
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Results 𝑚𝑥𝑦: 

 

 
Fig. 5.100 – mxy field SCIA 

 

 
 
 
 

 

 

 
Fig. 5.101 – mxy field parametric tool 

 

 
Fig. 5.102 - Results mxy along line x = 0 m 
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5.5.5. Results Shear forces 

 

Results 𝑣𝑥: 

 

 
Fig. 5.103 - vx field SCIA 

 
 
 
 
 
 

 
Fig. 5.104 - vx field parametric tool 

 

 
Fig. 5.105 – Results vx along line y = 0 m 
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Results 𝑣𝑦: 

 

 
Fig. 5.106 -  vy field SCIA 

 
 
 
 
 
 

 
Fig. 5.107 - vy results parametric tool 

 

 

 
Fig. 5.108 - vy results along line x = -2,5 m 
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Results 𝑣𝑛: 

 

 
Fig. 5.109 – vn field SCIA 

 
 
 
 
 
 

 
 

Fig. 5.110 - vn field parametric tool 

 

 
Fig. 5.111 - Results vn along y = 0 m 

 

 
Fig. 5.112 - vn trajectories on sum of bending moments hill (Rain flow analogy) 
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Results shell assessment 

 

 

 
Fig. 5.113 - Results n1 vectors 

 

 
Fig. 5.114 - Results n2 vectors 

 

 
Fig. 5.115 - Results R1 ratio 

 

 

 
Fig. 5.116 - Results R2 ratio 

 

 
Fig. 5.117 - Results R3 ratio 
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5.5.6. Discussion of the results 
From the previous results the following can be observed: 

 In general, when compared to the results of SCIA the results of the developed tool 

correspond well. 

 The tool can handle non-uniform distributed loads and still provide sufficiently accurate 

results. 

 Bending action becomes more dominant near the edges and in the middle where the applied 

loads change in magnitude and direction.  

 Slight differences occur in the results for the shear forces 𝑣𝑛, this might be explained by 

the fact that changes of 𝑣𝑛 occur rapidly along the considered line and so a smaller mesh 

size is required for more accuracy. The finite difference method works better for smooth 

varying quantities. 

 From the results from SCIA it follows that on the edges near the corners the bending 

moments and normal forces are not zero, even though theoretically they should be. By 

contrast the results from the parametric tool do show the bending moments and normal 

forces to be zero since these are ‘enforced’ to be zero through the boundary condition 

component. This also shows a fundamental difference between the methods of the finite 

element method and the finite difference method used by the parametric tool. The finite 

difference methods simply approximates the solution of specific differential equations by 

using derivatives. The finite element method is much less straightforward in determining 

and presenting the results. For example, with the FEM there are discontinuities with respect 

to the forces and stresses at the nodes of the elements (this is caused by the fact that the 

FEM needs to extrapolate quantities from the integration points which are located inside 

the element).  
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5.6. Hallenbad shell shape 
In the previous sections several basic shell shapes have been analysed and discussed. The geometry 

of the surfaces of those basic shell shapes were determined by shape functions. In this section a 

more arbitrary shell shape shall be analysed. This shape is not determined through the use of a 

shape function, but rather a NURBS surface is provided as input. 

 

5.6.1. Hallenbad shell analysis 

In the following test case a shell shape will be analysed which is based on a shell designed by Heinz 

Isler, namely the Hallenbad (Fig. 5.118) in the city Brugg in Switzerland. The shell is 35m long and 

35m wide and made of concrete. 

 

 

Fig. 5.118 - Hallenbad shell designed by Heinz Isler (Brugg, 1981) 

 

Using a special 3D scanner, A. Borgart and P. Eigenraam (2012) were able to scan scale models 

that were originally made and used by Heinz Isler. The results of such a scan, called “cloud points”, 

were then converted to NURBS surfaces (Fig. 5.119).  

 

 

 

 

 

 

 

Fig. 5.119 - 3D scanning proces (image from Borgart and Eigenraam 2012) 
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One of the scale models that were scanned was a scale model of the Hallenbad (Fig. 5.120). The 

NURBS surface that was obtained will now be used as input in the parametric tool. There might 

be a worry that the shape of the shell does not at every point fulfil the conditions to qualify as a 

shallow shell. For example, it can be observed that near the corners the shell has a quite large slope. 

If the shell does not qualify as a shallow shell the results produced cannot be expected to be 

accurate. Therefore a second shell surface based on the original is made and also analysed. This 

second shell is the same as the original but made more shallow by scaling it a factor 0,5 in z-

direction (Fig. 5.121). 

 

 

 
Fig. 5.120 - Original shell shape 

 

 

Fig. 5.121 - Flattened shell shape 

 

For both shell shapes the following properties are chosen for the analysis: 

 

𝑎 = 𝑏 = 35𝑚 (plan dimensions) 

𝐸 = 40𝑘𝑁/𝑚𝑚2 (concrete) 

𝑝 = −10𝑘𝑁/𝑚2 (uniformly distributed on whole surface) 

𝑡 = 100𝑚𝑚 

 

Furthermore we specify the boundary conditions on the edges to be semi rigid and hinged implying 

that: 
𝜕2𝑤

𝜕𝑥2 =
𝜕2𝑤

𝜕𝑦2 =
𝜕2𝜙

𝜕𝑥2 =
𝜕2𝜙

𝜕𝑦2 = 0 on all edges. Both shell shapes will be analysed in the parametric 

tool with a mesh size of 2,5m and 1,25m so that it can be seen how mesh size is related to the 

accuracy of the results. For comparison both shell shapes are again calculated with SCIA Engineer.  
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First results parametric tool 

When the shapes are given as input in the parametric tool one can gets the following first results 

from the shell calculation component: 

 
 

 
Fig. 5.122 - First results parametric tool (original shell 

shape) 

 

 
Fig. 5.123 - First results  parametric tool (flattened shell 

shape) 

 
 

By looking at the displacement field and Airy stress function field the following can be already 

observed: the displacement field of the flattened shell shape shows larger displacements and 

curvatures than that of the original shell shape. Thus more bending action can be expected for the 

flattened shell. Also the Airy stress function field seems to have larger values for the flattened shell. 

Indicating that at least at some points the normal forces will be bigger for the flattened shell as 

well. Next more precise results are given for: 𝑤, 𝑛𝑥𝑥, 𝑛𝑦𝑦, 𝑛𝑥𝑦, 𝑛1, 𝑛2, 𝑚𝑥𝑥, 𝑚𝑦𝑦, 𝑚𝑥𝑦, 𝑚1, 𝑚2  

 𝑣𝑥, 𝑣𝑦, 𝑣𝑛 along lines of interest. 
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5.6.2. Results displacements w 

Original shell shape: 
 

 
Fig. 5.124 - Results SCIA displacements (original shape) 

Flattened shell shape: 
 

 
Fig. 5.125 - Results SCIA displacements (flattened shape) 

 

Exact results displacements 𝑤:  

 

 

 

 
Fig. 5.126 - Displacements from mid-edge to centre 

(original shell shape) 

 

Fig. 5.127 - Displacements from mid-edge to centre 
(flattened shell shape) 
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Fig. 5.128 - Displacements along the diagonal (original 
shell shape) 

 

 
Fig. 5.129 - Displacements along the diagonal (original 
shell shape) 
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5.6.3. Results normal forces  

 

Results 𝑛𝑥𝑥: 

 

 
Fig. 5.130 - nxx field SCIA (original shape) 

 

 
 

 
 
 
Fig. 5.131 - nxx field parametric tool (original shape) 

 

 

Fig. 5.132 - nxx field SCIA (flattened shape) 

 
 

 
 
Fig. 5.133 - nxx field parametric tool (flattened shape) 
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Exact results 𝑛𝑥𝑥: 

 

 
Fig. 5.134 - nxx (original shell shape) 

 

 
Fig. 5.135 - nxx (flattened shell shape) 
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Results 𝑛𝑦𝑦: 

 

 
Fig. 5.136 - Results SCIA nyy (original shape) 

 

 
 

 
 
Fig. 5.137 - nyy field parametric tool (original shape) 

 

 

 
Fig. 5.138 - nyy field SCIA (flattened shape) 

 

 
 
 

 
Fig. 5.139 - nyy field parametric tool (flattened shape) 
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Exact results 𝑛𝑦𝑦: 

 

 
Fig. 5.140 - nyy (original shell shape) 

 

 

 
Fig. 5.141 - nyy (flattened shell shape)  
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Results 𝑛𝑥𝑦: 

 

 
Fig. 5.142 - nxy field SCIA (original shape) 

 

 
 
 

 
 
Fig. 5.143 - nxy field parametric tool (original shape) 

 

 

 

 

 
Fig. 5.144 -nxy field SCIA (flattened shape) 

 

 
 
 

 
 
Fig. 5.145 - nxy field parametric tool (flattened shape) 
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Results 𝑛𝑥𝑦: 

 

 
Fig. 5.146 - nxy (original shell shape) 

 

 

 
Fig. 5.147 - nxy (flattened shell shape) 
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Results 𝑛1: 

 

 
Fig. 5.148 - n1 field SCIA (original shape) 

 

 
 

Fig. 5.149 - n1 field parametric tool (original shell) 

 

 

 

Fig. 5.150 - n1 field SCIA (flattened shell) 

 

 
 

Fig. 5.151 - n1 field parametric tool (flattened shell) 
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Exact results 𝑛1: 

 

 
Fig. 5.152 - n1 (original shell shape) 

 

 

 
Fig. 5.153 - n1 (flattened shell shape) 
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Results 𝑛2: 

 

Fig. 5.154 - n2 field SCIA (original shape) 

 
 
 

 
 
Fig. 5.155 - n2 field parametric tool (original shape) 

 

 

 
Fig. 5.156 - n2 field SCIA (flattened shape) 

 

 
Fig. 5.157 - n2 field parametric tool (flattened shape) 
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Exact results 𝑛2: 

 

 
Fig. 5.158 - n2 (original shell shape) 

 

 

 
Fig. 5.159 - n2 (flattened shell shape) 
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5.6.4. Results bending moments 

 

Results 𝑚𝑥𝑥: 

 

 
Fig. 5.160 - mxx field SCIA (original shape) 

 

 
 

 
 
 
Fig. 5.161 - mxx field parametric tool (original shape) 

 

 

 
Fig. 5.162 - mxx field SCIA (flattened shape) 

 
 
 

 
Fig. 5.163 - mxx field parametric tool (flattened shape) 
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Exact results 𝑚𝑥𝑥: 

 

 
Fig. 5.164 - mxx from edge to centre (original shell) 

 

 

 

 
Fig. 5.165 - mxx from edge to centre (flattened shell 
shape) 
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Results 𝑚𝑦𝑦: 

 

 
Fig. 5.166 - myy field SCIA (original shape) 

 

 
 

 
 
Fig. 5.167 - myy field parametric tool (orignal shape) 

 

 

 

 
Fig. 5.168 - myy field SCIA (flattened shape) 

 

 
 

 
 
Fig. 5.169 - myy field parametric tool (flattened shape) 
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Exact results 𝑚𝑦𝑦: 

 

 
Fig. 5.170 - myy (original shell shape) 

 

 

 
Fig. 5.171 - myy (flattened shell shape) 
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Results 𝑚𝑥𝑦: 

 

 
Fig. 5.172 - mxy field SCIA (original shape) 

 

 

 
Fig. 5.173 - mxy field parametric tool (original shape) 

 

 

 
 

 
 
Fig. 5.174 -mxy field SCIA (flattened shape) 

 

 
 

 
Fig. 5.175 - mxy field parametric tool (flattened shape) 
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Exact results 𝑚𝑥𝑦: 

 

 
Fig. 5.176 - mxy (original shell shape) 

 

 
Fig. 5.177 - mxy (flattened shell shape) 
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Results 𝑚1: 

 

 
Fig. 5.178 - m1 field SCIA (original shell shape) 

 
 
 

 
 
 
Fig. 5.179 - m1 field parametric tool (original shell 
shape) 

 

 

 

 
Fig. 5.180 - m1 field SCIA (flattened shell shape) 

 
 
 

  

Fig. 5.181 - m1 field parametric tool (flattened shell 
shape) 
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Exact results 𝑚1: 

 

 
Fig. 5.182 - m1 (original shell shape) 

 

 
Fig. 5.183 – m1 (flattened shell shape) 
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Results 𝑚2: 

 

 
Fig. 5.184 - m2 field SCIA (original shell shape) 

 
 

 

Fig. 5.185 - m2 field parametric tool (original shell 
shape) 

 

 

 
Fig. 5.186 - m2 field SCIA (flattened shell shape) 

 
 

 
Fig. 5.187 - m2 field parametric tool (flattened shell 

shape) 

 

 

  



A Parametric Structural Design Tool for Shell Structures 

123 
 

Exact results 𝑚2: 

 

 
Fig. 5.188 - m2 (original shell shape) 

 

 
Fig. 5.189 - m2 (flattened shell) 
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5.6.5. Results shear forces 

  

Results 𝑣𝑥: 

 

Fig. 5.190 - vx field SCIA (original shell shape) 

 
 

 
 

Fig. 5.191 - vx field parametric tool (original shell shape) 

 

 

 

Fig. 5.192 - vx field SCIA (flattened shell) 

 
 

 

 

Fig. 5.193 - vx field parametric tool (flattened shell 
shape) 
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Exact results 𝑣𝑥: 

 

 
Fig. 5.194 - vx along diagonal (original shell shape) 

 

 

 
Fig. 5.195 - vx from along diagonal(flattened shell shape) 
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Results 𝑣𝑦: 

 

 
Fig. 5.196 - vy field SCIA (original shell shape) 

 

 
 
 

 
 

Fig. 5.197 - vy field parametric tool (original shell shape) 

 

 

 
Fig. 5.198 - vy field SCIA (flattened shell shape) 

 
 

 

Fig. 5.199 - vy field parametric tool (flattened shell 
shape) 
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Exact results 𝑣𝑦: 

 

 
Fig. 5.200 - vy along mid edge to centre (original shell 

shape) 

 

 

 
Fig. 5.201 - vy along mid edge to centre (flattened shell) 
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Results 𝑣𝑛: 

 
 

 
Fig. 5.202 - vn field SCIA (original shell shape) 

 
 

 
 

Fig. 5.203 - vn field parametric tool (original shell shape) 

 

 

 

 
Fig. 5.204 - vn field (flattened shell) 

 

 

Fig. 5.205 - vn field parametric tool (flattened shell) 
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Exact results 𝑣𝑛: 

 

 
Fig. 5.206 - vn along diagonal (original shell shape) 

 

 

 
Fig. 5.207 - vn along diagonal (flattened shell shape) 
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5.6.6. Results sum of bending moments and principle shear forces 

 

Sum of bending moments: 

 
 
 
 

 
 
 

Fig. 5.208 - Sum of bending moments with vectors in the 
steepest direction 

 

Fig. 5.209 - Top view sum of bending moments surface 
with vectors in steepest direction 

 

 

Principal shear trajectories for the flattened shell: 

 
 

 
Fig. 5.210 - Principal shear trajectories (3d) on m-hill 

 
Fig. 5.211 - Principal shear trajectories (top 

view) 
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5.6.7. Discussion of results 

 

From the results the following can be observed: 

 In general the results from the parametric tool match the results from SCIA better in the 

case of the flattened shell shape than for the original shell shape. 

 In the case of the original shell shape, the results are often not accurate. When compared 

to the results from SCIA, one can see relative differences in magnitude up to 40% for 

certain quantities. This indicates that the original shell shape is most likely not shallow 

enough to be properly modeled by the tool. This is not to say however that for every 

quantity this is the case, the results from the parametric tool and SCIA for 𝑛𝑥𝑥 and 𝑛1 seem 

to correspond quite well. Moreover when the results are plotted, the form of the plot or 

graph is often still in line with results from SCIA (i.e. when the results of a certain quantity 

in SCIA varies over a specific region, the results produced by the parametric tool will vary 

in the same way over that region). In this sense the tool still provides qualitative insight 

into behavior of the shell. 

 In the case of the flattened shell the results from the parametric tool with a mesh of 2,5m 

x 2,5m in general produces results that differ between 0% and 10% from the results from 

SCIA. For the calculations of the shear forces these differences becomes even larger and 

cannot be said to produce accurate results. This might be explained by the fact that more 

rapid changes in the magnitude of the shear forces occur and the mesh size is simply to big 

to calculate these changes accurately.  

 With a mesh of 1,25m x 1,25m the results are in general better and differ between 0% and 

5% from the  results from SCIA. However at the edges or corners bigger differences occur 

for the quantities 𝑛𝑥𝑦, 𝑣𝑥, 𝑣𝑦 and 𝑣𝑛 between the results from SCIA and from the 

parametric tool. At least with respect to the shear forces this can be explained by the fact 

that in the parametric tool the derivative component has difficulties with calculating the 

correct slope of the sum of bending moments hill at the edges.  
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6. Conclusion 
 

 

6.1. Introduction 
In this chapter it will be evaluated whether the main objective and secondary objectives have been 

satisfied. Recall from chapter 1 that the main objective was the following: 

 

“Develop a parametric structural design tool for shell structures that can be used by architects and engineers, which 

is based on simple analytical methods, which gives both quantitative and qualitative (real time) insight in the flow 

and magnitude of forces during a conceptual design stage.” 

 

In order to achieve this goal several secondary objectives had to be satisfied which are listed in 1.2 

and can be summarized as: providing the theoretical framework, developing the tool and validating 

results. In the next paragraph each of these will be shortly evaluated to see whether the secondary 

objectives have indeed been satisfied. After this a list of recommendations is provided. In the end 

the final conclusion will be given and determined if the main objective has been achieved. 
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6.2. Conclusions  
 

6.2.1. Theoretical framework 

With respect to the theoretical framework a two-surface theory proposed by Calladine for 

understanding shell structures has been laid out. It was shown that the idea of separating the 

behavior of a shell into two distinct parts affords the possibility of thinking separately about two 

different aspects of shell behavior while still allowing for the actual interaction between them. 

 

The finite difference method has also been provided as a method which quite literally goes back to 

the analytical equations which it needs to solve. It is a more intuitive and straightforward method 

which affords the possibility to obtain qualitative insight into the structural problems it needs to 

solve, this is especially the case because it can be applied to surfaces. This is important because 

working with the results and visualizing the results as surfaces provides more and faster insight 

compared to say a table with only numbers. Moreover the finite difference method is very suitable 

for computational applications. 

 

Furthermore, the rain flow analogy appears to be a powerful and insightful way of thinking about 

certain structural behavior. It is a very suitable method for obtaining qualitative insight in a direct 

manner in the way it is used to understand and visualize the principal shear forces trajectories.    

 

With respect to shell behavior assessment methods, two methods of assessments have been 

provided. It can be said that these methods together provide a very insightful way of thinking about 

the efficiency of a shell. The first method concerning the ratio of bending and normal stress can 

be thought of as a very concrete way in which the shell can be said to perform well, its physical 

interpretation is very clear because the stress caused by bending and the stress caused by stretching 

are real physical quantities. The second method determines shell efficiency based on the ratio of 

load carried by the stretching surface and the load carried by the bending surface. This is a bit more 

abstract way of thinking about it since the bending surface and stretching surface are not really two 

distinct surfaces but are conceptual in nature. Still the two surface concept by Calladine provides 

an insightful way of thinking about shells, thus this method of assessing shells is very much in 

accordance with that. 
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6.2.2. Development of the tool 

For the development of the tool use of several computational applications has been made. Rhino 

& Grasshopper were chosen and provided the right environment for parametric modelling. Also 

VB (Visual Basic) scripting was used to create new components which offers more possibilities 

and flexibility.  

 

With respect to the demands which have to be fulfilled concerning functionality and usability the 

following can be concluded 

 

 The tool is able to provide real-time results, however with bigger models and higher 

number of nodal points a decrease in speed can occur. For shell shapes where a small mesh 

size is not necessary per se the tool works fast and results are obtained in a matter of 

seconds.  

 Options in the tool have been developed to be able to choose in a simple way which- and 

how results are presented. When results are presented as surfaces, great qualitative insight 

can be gained. Moreover, in the tool it easy to obtain the magnitude of the quantities as 

well.  

 In the tool parametric modelling becomes possible. Design parameters such as geometry, 

material properties and loading can be easily changed and results change accordingly. 

However some problems have been encountered with the implementation of the 

(stretching) boundary conditions (see 5.3.3). This caused the analysis of shells in this thesis 

to be limited to shells with semi-rigid boundary conditions. Still it was shown that a plate 

in bending and a plate in stretching with mixed boundary conditions could be approximated 

well with the tool.  

 Extending the functionality of the tool for future development is certainly possible. This 

can be done by adding new parametric components and extending current ones.  
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It was envisioned that the tool was able to give as output the following quantities:   

 Airy stress function 𝜙 

 Transverse displacement 𝑤 

 Internal forces:  

- Normal forces  

- Principal normal forces 

- Sum of normal forces 

- Bending moments 

- Principal moments 

- Sum of bending moments 

- Shear forces 

- Principal shear forces 

 Trajectories of the principal shear force (rain flow analogy)  

 Measure for assessment shell behavior 

 

It can be said that by implementing the theoretical framework into the components of the tool, the 

tool is able to produce all mentioned quantities. A general outline and structure of the tool has 

been given in paragraph (4.4). There it can be seen which components produces which results.  

 

The finite difference method played an important role in many of the components used, these 

components were the curvature-, boundary conditions-, shell calculation-, internal forces-, and shell 

assessment component. In the shell calculation component the coupled differential equations for 

shallow shells are really solved and is considered the most important component. The rain flow 

analogy is off course used in the rain flow analogy component and in the derivative component 

which were already developed by M. Oosterhuis (2010). Overall, it can be concluded that the 

theoretical framework was implemented well within the current developed tool.  
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6.2.3. Results 

As was stated in chapter (5.1), in choosing which shell shapes should be analysed it was presumed 

that it was best to start from simple to more complex shapes. The following shapes were chosen: 

1. Plate loaded out-of-plane as a limit case of a shell 

2. Plate loaded in-plane as a limit case of a shell 

3. Basic shell shapes: elpar, cylindrical paraboloid, hypar 

4. Modified basic shell shape 

5. Arbitrary shell shape 

 

Though most of the conclusions concerning these results can be read at the end of each paragraph 

of each shell shape, the most important will be summarized here: 

 

 In general the results from the parametric tool provide accurate quantitative as well as 

qualitative insight into the structural behavior of shell structures. When the considered shell 

shape qualifies as a shallow shell and the mesh size is not chosen too big, one can obtain 

results with an accuracy of less than 5% deviation compared to analytical en FEM solutions.  

 The tool is able to approximate flat plates in bending with mixed boundary conditions very 

well.  

 Also a flat plate loaded in-plane with mixed boundary conditions was approximated well  

by the tool, however problems with other types of boundary conditions were discovered 

(see 5.3.3) 

 When stretching boundary conditions in terms of displacements for only the corners of a 

plate or shell have been specified, this unfortunately cannot yet be handled by the tool. To 

ensure the corner points remain fixed it was chosen to further only consider semi-rigid 

boundary conditions on all edges. 

 Results for basic shell shapes (elpar, cylindrical paraboloid and hypar) correspond well with 

results given by Pavlovic (1999). The elpar is shown to perform best, unlike the hypar which 

shows plate like behavior. 

 It is shown that the load carried by the bending or stretching surface can sometimes exceed 

the magnitude of the original applied load (i.e. 𝑝𝑆 > 𝑝 or 𝑝𝐵 > 𝑝) so that for equilibrium 

the corresponding load on the other surface becomes ‘negative’ which can be thought of 

as a sort of suction that occurs. 
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 From the results from FEM solutions it sometimes follows that on the edges (especially 

near the corners) the bending moments and normal forces are not zero, even though 

theoretically they should be zero there because of the boundary conditions. By contrast the 

results from the parametric tool do show the bending moments and normal forces to be 

zero in those cases since these are ‘enforced’ to be zero through the boundary condition 

component. This shows a fundamental difference between the nature of the finite element 

method and the finite difference method used by the parametric tool. 

 When analysing a shell shape which is not shallow enough, the results are often not 

accurate. This seems to be the case of the original Hallenbad shell shape (5.6.1) When 

compared to the results from SCIA, one can see relative differences in magnitude up to 

40% for certain quantities. This indicated that the original shell shape is most likely not 

shallow enough to be properly modeled by the tool. This is not to say however that for 

every quantity this is the case, the results from the parametric tool and SCIA for some 

quantities correspond quite well. Moreover when the results are plotted, the form of the 

plot or graph is often still in line with results from the FEM programm (i.e. when the results 

of a certain quantity in SCIA varies over a specific region, the results produced by the 

parametric tool will vary in the same way over that region). In this sense the tool still 

provides qualitative insight into behavior of the shell. 

 In the case of shell made more flat (5.6.1) and having dimension of 35m by 35m  the results 

from the parametric tool with a mesh of 2,5m x 2,5m in general produces results that differ 

between 0% and 10% from the results from a FEM program. For the calculations of the 

shear forces these differences become even larger and cannot be said to produce accurate 

results. This might be explained by the fact that more rapid changes in the magnitude of 

the shear forces occur and the mesh size is simply to big to calculate these changes 

accurately.  

 With a mesh of 1,25m x 1,25m in the above mentioned case the results are in general better 

and differ between 0% and 5% from the  results from the FEM program. However at the 

edges bigger differences occur for the quantities 𝑛𝑥𝑦, 𝑣𝑥, 𝑣𝑦 and 𝑣𝑛. Some of these 

differences are explained by the fact that at certain specific points there is a difference 

between what the FEM approximates and what the theoretical value should be. The 

parametric tool tries to approximates this theoretical value. It must be kept in mind 

however that the theoretical results not always describe physical reality at these special 

points of interest. 
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6.2.4. Some other cautions and limitations 

The theory of (shallow) shells is based, like other areas of the mechanics of solids, on several 

simplifying assumptions, so that it can only describe the behaviour of shells with a greater or smaller 

degree of error. Moreover, many errors and uncertainties stem from considering the material as 

continuous without cracks, homogeneous and isotropic, which is not at all true of reinforced 

concrete shells. Other uncertainties stem from the assessment of expected loads on a shell, 

inaccuracies in the erection (e.g. deviations in curvature and thickness), chemical and physical 

influences (e.g. thermal effects, shrinkage, creep etc.). With the aid of advanced computational 

methods the accuracy of the analysis can be improved, limited only by the capacity of the computer, 

but it is important to remember that the results cannot be more exact than the computation model 

serving as a basis, which, due to unavoidable simplifications, more or less deviates from physical 

reality. 

 

6.3. Recommendations 
Since the research in this thesis is only one step towards a complete structural analysis tool several 

recommendations can be made for future research and extension of the tool. The following 

recommendations can be made: 

 The tool should be extended by: 

- including the possibility for tangential loading, such an inclusion will change some of 

the equations used, it should be explored whether these changes can be implemented 

in the program 

- application of finite difference method for arbitrary meshes so the tool is not limited 

to only rectangular shallow shells 

- application for non-shallow shells 

- including the possibility for buckling analysis of shells 

 

 Exploring use of the so called displacement potential function (Ahmed, 1998) instead of 

the Airy stress function, this might solve problems with certain boundary conditions in 

terms of displacements 
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6.4. Final conclusion 
Reflecting on the main objective of this thesis it can be said that it was achieved with reasonable 

success. A parametric structural design tool for shell structures has been developed which gives 

architects and engineers both qualitative and quantitative insight into the behavior of shell 

structures. Some limitations and problems remain however, especially with respect to the boundary 

conditions, these provide new opportunities for future research. 
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Appendix A - Derivation strain compatibility equation 
 

Change of Gaussian curvature in terms of strains 𝜺𝒙𝒙 , 𝜺𝒚𝒚 and 𝜸𝒙𝒚 

First and second derivative of 𝜀𝑥𝑥 to 𝑦: 

𝜀𝑥𝑥 =
𝜕𝑢𝑥
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+

1

2
(
𝜕𝑤

𝜕𝑥
)
2
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+ (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

 

= 𝐴 + 𝐵 + 𝐶                             

First and second derivative of 𝜀𝑦𝑦to 𝑥: 

𝜀𝑦𝑦 =
𝜕𝑢𝑦
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+

1

2
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𝜕𝑤

𝜕𝑦
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= 𝐷 + 𝐸 + 𝐶                             

Derivatives of 𝛾𝑥𝑦 to 𝑥 and 𝑦: 

𝛾𝑥𝑦 =
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𝜕𝑥𝜕𝑦
) + (

𝜕2𝑤

𝜕𝑥2
∙
𝜕2𝑤

𝜕𝑦2
+

𝜕𝑤

𝜕𝑦

𝜕3𝑤

𝜕𝑥2𝜕𝑦
) 

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
=

𝜕3𝑢𝑥

𝜕𝑥𝜕𝑦2
+

𝜕3𝑢𝑦

𝜕𝑥2𝜕𝑦
+

𝜕𝑤

𝜕𝑥
∙

𝜕3𝑤

𝜕𝑥𝜕𝑦2
+

𝜕𝑤

𝜕𝑦

𝜕3𝑤

𝜕𝑥2𝜕𝑦
+

𝜕2𝑤

𝜕𝑥2
∙
𝜕2𝑤

𝜕𝑦2
+ (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

 

= 𝐴 + 𝐷 + 𝐵 + 𝐸 + 𝐹 + 𝐶                                                                                       



 

144 
 

From the previous derivations it follows that: 

        −
𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
= 

−(𝐴 + 𝐵 + 𝐶) + (𝐴 + 𝐷 + 𝐵 + 𝐸 + 𝐹 + 𝐶) − ( 𝐷 + 𝐸 + 𝐶) =                                                        

                                                                                          𝐹 − 𝐶 =
𝜕2𝑤

𝜕𝑥2
∙
𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

  

 

This last expression can be recognized as the change in Gaussian curvature (2.xx) from an initial 

flat surface. In this thesis we are concerned with shallow shells. Over the region of interest the 

surface makes such small angles with a particular tangent plane that the x, y coordinate system for 

the plane (with origin at the point of tangency) may be used for the surface without significant loss 

of accuracy. Therefore, for shallow shells it follows: 

𝑔 =
𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
 

 

Change of Gaussian curvature in terms of displacements 𝒘 

Recall from 2.xx the definition of Gaussian curvature  

 

 
𝑘𝐺 = 𝑘1 ∙ 𝑘2 =

1

𝑅1
∙

1

𝑅2
 

(2.xx) 

 

Let 𝜅1 and 𝜅2 be the change of curvatures after deformation in principal directions 1 and 2 

respectively. Then by differentiating the previous equation for the Gaussian curvature one obtains 

the equation for the change of Gaussian curvature: 

𝑔 =
1

𝑅1
𝜅2 +

1

𝑅2
𝜅1 =

𝜅2

𝑅1
+

𝜅1

𝑅2
 

 

Thus two expressions for the change of Gaussian curvature have been obtained which lead to the 

geometric compatibility equation for shells: 

 𝑔 =
𝜅2

𝑅1
+

𝜅1

𝑅2
= −

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
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When one is not working in the principal directions one starts with the following equation for the 

Gaussian curvature (2.xx): 

 

𝑘𝐺 = 𝑘𝑥𝑥 ∙ 𝑘𝑦𝑦 − 𝑘𝑥𝑦
2  

 

Let 𝜅𝑥𝑥, 𝜅𝑦𝑦 be the change of curvatures in the 𝑥 and 𝑦 direction respectively and 𝜅𝑥𝑦the change 

of the twist of the surface. Then by differentiating the previous equation for the Gaussian curvature 

one obtains the equation for the change of Gaussian curvature: 

 

𝑔 = 𝑘𝑥𝑥 ∙ 𝜅𝑦𝑦 + 𝑘𝑦𝑦 ∙ 𝜅𝑥𝑥 − 2𝑘𝑥𝑦 𝜅𝑥𝑦 

 

Next 𝜅𝑥𝑥, 𝜅𝑦𝑦 and 𝜅𝑥𝑦can be expressed in terms of the transverse displacements 𝑤: 

 

𝜅𝑥𝑥 = 
𝜕2𝑤

𝜕𝑥2
, 𝜅𝑦𝑦 =

𝜕2𝑤

𝜕𝑦2
, 𝜅𝑥𝑦 =

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 

Substitution gives: 

𝑔 = 𝑘𝑥𝑥

𝜕2𝑤

𝜕𝑦2
+ 𝑘𝑦𝑦

𝜕2𝑤

𝜕𝑥2
− 2𝑘𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
 

 

Thus the compatibility equation can also be formulated as: 

 

 
𝑘𝑥𝑥

𝜕2𝑤

𝜕𝑦2
− 2𝑘𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑘𝑦𝑦

𝜕2𝑤

𝜕𝑥2
= −

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝛾𝑥𝑦

𝜕𝑥𝜕𝑦
−

𝜕2𝜀𝑦𝑦

𝜕𝑥2
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Appendix B - SCIA Engineer elements 
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Appendix C - Hypar vs flat plate 
 

In chapter 5.4 several basic shell shapes were analysed one of which was a hypar shell shape. In 

this appendix a further investigation is shown with respect to this shape. From the previous results 

in 5.4 it followed that bending action was predominant in the hypar shell, now it will be investigated 

to what degree a hypar shell really behaves like a flat plate. The same loading, properties and 

dimensions as the hypar from 5.4 are chosen but now only the shallowness will be changed. Thus 

the original shape function of the hypar was: 

𝑧𝐸𝑃 = −
1

300
(𝑥2 − 𝑦2) 

Now a shape function which equals (almost) zero is analysed to approximate a flat plate in bending, 

as well as two shape functions which are steeper than the original hypar: 

 

 
 

 

 

 

 
 

 

𝑧𝐸𝑃 = −
1

75
(𝑥2 − 𝑦2) 

 

 

𝑧𝐸𝑃 = −
1

150
(𝑥2 − 𝑦2) 

 
 

𝑧𝐸𝑃 ≈ 0 

 

 

From the first results produced by the tool it can be seen that the transverse displacements do not 

differ that much from each other, and also the moments seem to differ only little. Still it can be 

seen directly that when the shape function is chosen as virtually zero (approximating a flat plate in 

bending), the membrane action is also zero. By contrast, some membrane forces still appear to 

develop in the hypar shell shapes. 

  



 

150 
 

Results 𝑚𝑦𝑦 and 𝑚𝑥𝑦: 

 
 

Displacements 𝑤: 

 

 
 
From these more exact results it follows that 

hypar shells show similar behavior to that of a 

flat plate in bending. However it seems that 

some differences do occur. The displacements 

𝑤 and bending moments 𝑚𝑦𝑦 around the 

centre increase slightly when the hypar is 

chosen steeper. However between the edges 

and the centre area the opposite appears to be 

true. 

 

With respect to the twisting moments 𝑚𝑥𝑦, 

near the corner the flat plate seems to have the 

largest value while choosing steeper hypar 

shapes lead to a slightly smaller value near the 

corner. Between the centre area and the 

corners again the opposite appears to be true.  
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Results ratio R3 (= Ps / (Ps + Pb)) 

 

𝑧𝐸𝑃 = −
1

75
(𝑥2 − 𝑦2) 

 

 

𝑧𝐸𝑃 = −
1

150
(𝑥2 − 𝑦2) 

 

𝑧𝐸𝑃 = −
1

300
(𝑥2 − 𝑦2) 

 

 
 

𝑧𝐸𝑃 ≈ 0 

 

From the results for the ratio R3 (= Ps / (Ps + Pb) )of the shell assessment component (4.5.9) it 

follows that in the case of the flat plate approximation,  the ratio R3 equals zero everywhere 

indicating that no part of the external load is carried by the stretching surface and is carried by the 

bending surface only, which is what one ought to expect from a flat plate in bending. 
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When the hypar is very shallow (𝑧𝐸𝑃 = −
1

300
(𝑥2 − 𝑦2) ) non-zero values for the ratio R3 appear. 

Thus some part of the load is carried by the stretching surface but since ratio R3 is closer to zero 

at most points, most of the load is still carried by the bending surface. Negative values for ratio R3 

around the centre indicate the load carried by the bending surface exceeds the external applied load 

at those points. It follows that the load carried by the stretching surface works in the opposite 

direction of the external applied load, this is to ensure equilibrium.  

When the hypar becomes steeper  ( 𝑧𝐸𝑃 = −
1

150
(𝑥2 − 𝑦2) and  𝑧𝐸𝑃 = −

1

75
(𝑥2 − 𝑦2) ) it can be seen that 

near the edges the load carried by the stretching surface increases In the centre, the load carried by 

the bending surface becomes larger and exceeds the external applied load even further. The load 

carried by the stretching surface in that area therefore also has to increase, though in the opposite 

direction.  

From these results it can be concluded that hypar shells which are quite shallow behave similar to 

flat plates (bending action is dominant) but still not completely. Some membrane forces still 

develop while in a flat plate this is not the case. For steeper hypar shells more membrane forces 

develop and the differences in bending quantities compared to a flat plate slightly become larger. 
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