CT5060 Master Thesis

A Parametric Structural Design Tool for

Shell Structures

Delft University of Technology

Faculty of Civil Engineering and Geosciences
Master track: Building Engineering

Specialization: Structural Design

Kiris Riemens (1365924)
4-28-2015



A Parametric Structural Design Tool for Shell Structures

Delft
U e t University of
Technology

Delft University of Technology

Faculty of Civil Engineering and Geosciences
Building 23

Stevinweg 1 / PO-Box 5048

2826CN / 2600 GA Delft

Kris Riemens (author)
Nijverheidsstraat 1

4538AX, Terneuzen
kristiemens@gmail.com

Members of the graduation committee:

Prof. Dr. Ir. I.]. Rots (chairman)
TU Delft, Faculty of Civil Engineering and Geosciences

Department of Structural Engineering
J.G Rots@tudelft.nl

Ir. A. Borgart (first mentor)

TU Delft, Faculty of Architecture
Department of Structural Mechanics
A.Borgart@tudelft.nl

Ir. S. Pasterkamp (second mentor)

TU Delft, Faculty of Civil Engineering and Geosciences
Department of Structural and Building Engineering
S.Pasterkamp@tudelft.nl

Dr. Ir. P.C.J. Hoogenboom (third mentor)

TU Delft, Faculty of Civil Engineering and Geosciences
Department of Structural Engineering
P.C.J.Hoogenboom@tudelft.nl




A Parametric Structural Design Tool for Shell Structures
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their support and inspiration during my entire education.
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K. W. Riemens

i



A Parametric Structural Design Tool for Shell Structures

Abstract

This thesis presents a parametric design tool for structural analysis of shallow shells. The tool was
developed with Rhino and Grasshopper. Also VB (Visual Basic) scripting was used to create new
components in the Grasshopper interface. The techniques and methods involved for the
development of the tool consists mainly of classic analytical and numerical methods like the finite

difference method.

In contrast to FEM (Finite Element Method) based analysis programs, the current tool offers more
qualitative insight into the behaviour of shell structures which is often more important during a
conceptual design stage. This is mainly because of the parametric and real time capabilities of the
tool and the way in which it presents the results. The tool was tested on several test cases whereby
the results were compared to analytical and FEM solutions and showed good correspondence. The
results of the developed tool are sufficiently accurate for a conceptual design stage and give fast
quantitative and qualitative insight into the behavior of shell structures. Still, several limitations are
encountered, especially with respect to the boundary conditions, these provide opportunities for

future research.

i



List of symbols

Symbol

Meaning

Meyx, My, Myy

Bending and twisting moments (per unit length) respectively

Texer Myys Ny Normal and shear forces (per unit length) respectively
¢ Airy stress function
w Displacement perpendicular to the surface
ke Original Gaussian curvature of unrestrained surface
g Change of Gaussian curvature
ki, k, Principal curvatures

Kaxs kyy, Ky

Curvatures and twist of a surface

Kxxs Kyy, Kxy

Curvatures and twist caused by bending moments

Exxr Eyyr Exy Strains caused by stretching
D Flexural rigidity
E Young’s modulus
t Thickness of the shell
R, R, Radius of principal curvatures
Uy, Uy Shear forces
v, Principal shear force
D Total load
Ds, Pg Load carried by stretching, load carried by bending respectively
Pxr Py Angle
v Lateral contraction (or Poission’s ratio)

Kirchhoff shear force

v
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1. Introduction

1.1. Background and problem statements
Within the field of structural and architectural engineering it can be observed that the use of

advanced geometry and computation is increasing (Coenders, 2006). Computation is used to
generate complex geometries and to perform structural analysis. An iterative process is often
necessary for complex (structural) design, which consists of design-, calculation- and production
phases where data exchange can occur between CAD (Computer Aided Design) programs and
FEM (Finite Element Method) programs (Borgart, Hoogenboom & de Leeuw, 2005). As a result
of these processes and new technological advances, the possibilities for free form architecture have
significantly increased. An example of free form architecture are shell structures. Shell structures
are lightweight structures, typically (double) curved and can be used to create large covered spaces.

An example of a shell structure is given below (Fig. 1.1).

Fig. 1.1 - Meiso no Mori Municipal Funeral Hall (Kakamigahara, Japan)

Much knowledge is currently available regarding the mechanical behavior of geometrically regular
curved surfaces like most shells structures are (Flugge 1960). This is mainly caused by the fact that
these surfaces are relatively easy to describe by analytical mathematical functions. For describing
irregular curved surfaces, like those in free form architecture, few analytical mathematical functions
exist and therefore it is hard to derive formulas to describe their mechanical behavior. One way of
dealing with this problem is to calculate the stresses and strains of these irregular curved structures

with computer programs based on the FEM (finite element method).



http://www.e-architect.co.uk/japan/meiso-no-mori-municipal-funeral-hall

However the problem is that one only obtains quantitative information about the results (like the
magnitude of the forces) but no qualitative information. This does not always give clear insight into
the structural behavior. Qualitative insight in this respect refers to insight in the relation between
parameters such as structural geometry, boundary conditions and materials properties and the
resulting deformations and stress resultants (quantitative information). For example, what is the
relation between the shape of the curved surface and the flow of forces? Because of the lack of
insight it can be difficult to design irregular curved surfaces which have shell-like behavior (that s,

carrying the load mainly by normal forces and little by bending moments).

During the conceptual stage of the design process, many important design decisions are made with
regard to structural considerations, laying the basis for the rest of the project. The first structural
setup is usually conceived at this stage. Qualitative- and global quantitative insight in the mechanical
behaviour of the structure is therefore very important. When such insight is obtained in the
conceptual stage of the design process it could be employed respect to esthetical appearance or
constructability at an early stage, could lead to a reduction of risk and cost, and thus reduce

problems during later stages.

FEM based structural analysis programs might thus not be the most appropriate computational
structural analysis tools in the conceptual design stage. Additionally, these analysis programs require
a rather detailed structural model and the results produced are unnecessarily precise for the
conceptual design stage. Most of the existing software tools for structural analysis are oriented
towards advanced users and require a detailed understanding of the program and its underlying
principles. Moreover, the calculation procedures within FEM programs in combination with the
necessary interfacing between different CAD programs decreases the speed and flexibility of the

design and analysis process.

In contrast to FEM programs, (classical) analytical methods offer, apart from quantitative insight,
qualitative insight into the mechanical behaviour for a wide range of structural topologies. Graphic
statics is a good example of such a method in which analytical relations between the structural
geometry and the corresponding mechanical behaviour are used to generate a graphical

representation of the flow and magnitude of forces.
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A recent development in the field of computational design are parametric associative design tools
which capture design information by defining logical relations between (geometrical) components,
controlled by parameters. These techniques offer a very flexible approach to exploring complex
geometries and are, currently, mainly used within the field of architectural design. Despite the wide
range of possibilities for linking geometry to structural analysis they still find little application within

the field of structural engineering at the moment.
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Fig. 1.2 - Example of parametric associative design tool (Rhino and Grasshopper)

Successful attempts have been made however. In 2010 M. Oosterhuis developed a tool to analyse
plates loaded out-of-plane. In 2012, D. Liang expanded this tool and developed a second tool to
analyse plates loaded in-plane. With these models (Fig. 1.3) the internal forces, moments,
displacements etc. of a surface can be calculated. This thesis can be seen as an extension of their
previous work and will thus combine these in-plane and out-off-plane models and introduce

curvature to design and calculate shell structures.

Fig. 1.3 - Parametric structural models by M. Oosterhuis (2010) and D. Liang (2012)




Following M. Oosterhuis and D. Liang the two problem statements, forming the incentive for

writing this thesis, are deduced from this background:

1) There is a need for simple structural analysis tools, based on analytical relations, which give both the architect and
engineer quantitative insight as well as qualitative insight in the (flow of) forces of (shell)-structures during a conceptual

design stage.

2) Parametric design applications are not used to their full potential within the field of structural engineering.
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1.2.  Objectives and approach

The purpose of this research project is to be able to analyse the structural behavior of shell
structures by studying the way (applied) loads flow through the shell’s surface to the supports and
how this relates to the shell’s geometry. To unlock this secret will give fundamental understanding
of the behavior of shell structures and thus the means to design shells with efficiency of

performance and elegance of form. The main objective for this thesis can be defined as follows:

“Develop a parametric structural design tool for shell structures that can be used by architects and engineers, which
is based on simple analytical methods, which gives both quantitative and qualitative (real time) insight in the flow

and magnitude of forces during a conceptual design stage.”

The development of the new envisioned tool for shallow shell structures which combines bending
and stretching is considered the next logical step after the development of the tools by Oosterhuis

and Liang. The basic approach which will be used here is thus similar to their approach:

e Provide the theoretical framework covering all the theory and methods that need to be

used

e Define which demands have to be fulfilled with respect to functionality and usability by the

parametric tool

e Provide a general outline and structure for the parametric tool in accordance with the

demands
e Implement the theoretical framework into the structural design tool
e Choose several test cases and use the tool to analyse them

e Validate the results in a qualitative and quantitative manner by comparing the results to

analytical solutions or FEM results




1.3. Scope

Although there is a broad range of structural topologies, the scope of this thesis is confined to
isotropic shallow shell structures. A shallow shell is defined as a (thin) shell having a relatively small
raise as compared to its span. Such shells have a wide application in engineering, for example in
roof structures. Moreover many practically important problems lie within the scope of shallow-

shell theory.

Furthermore, the following limitations or restrictions are applied in this thesis:

The thickness of the shell is constant

Only physically linear behavior is considered

Confined to shell (or plate ) structures with a rectangular projected floorplan

Only loads perpendicular to the shell will be considered, these do not have to be uniformly

distributed however

Finally, the following assumptions are made:

e The effect of the transverse shear forces vy and vy, in the in-plane-equilibrium equation is
negligible (the static assumption, see 3.2.2)

e The influence of the transverse deflections, w, will predominate over the influence of the
in-plane displacements u, and u,, in the bending response of the shell (the geometric
assumption)

e The lateral contraction (or Poisson’s ratio) is zero (v = 0)
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2. General definitions and fundamentals of surfaces
and shells

2.1. Shells in general

Thins shells as structural elements are considered as occupying a special position in engineering, in
particular in civil, architectural, aeronautical and marine engineering. Examples of shell structures
in civil and architectural engineering are: water tanks, large-span roofs, concrete domes etc. The
wide range of application of using shell structures can be explained by their having the following

advantages (Ventsel, 2001):

e [Efficiency of load-carrying behavior

e High degree of reserved strength integrity
e High strength: weight ratio

e High stiffness

e Containment of space

Moreover, apart from these mechanical advantages, shell structures have the unique position of

having high aesthetic value in various architectural designs.

\ middle
surface

Fig. 2.1 - Shell characteristics (Ventsel, 2001)

The term shell is used for bodies which are bounded by two curved surfaces and whereby the
distance between these surfaces is small in comparison with other body dimensions. The surface
of points that lie at equal distances from these two curved surfaces is called the middle surface of
the shell. The length of the segment, which is perpendicular to the curved surfaces, is called the
thickness of the shell and is denoted by t (Fig. 2.1). The geometry of a shell is defined by specifying
the geometry of the middle surface and the thickness of the shell at each point. In this thesis only

shells of a constant thickness are considered however.




Shells have all the characteristics of plates, along with an additional one: namely curvature.
Curvature can be considered as the main classifier of a shell due to the fact that a shell’s mechanical
behavior is primarily governed by curvature. Due to the curvature of the surface, a shell’s behavior
is in general more complicated than that of flat plates because their bending cannot, in general, be
separated from their stretching. On the other hand, a plate may be considered as a special limit case
of a shell that has zero curvature (see also 5.2); consequently, shells are sometimes referred to as
curved plates. There are two different classes of shells: thick shells and thin shells. For engineering
purposes, a shell may be regarded as thin if the following condition is satisfied:

t) 1 @2.1)

)
max(R =20

Hence, shells for which this inequality does not hold are referred to as #hick shells.

The complexity of the governing equations of the general linear theory of thin shells lead to the
development of a wide range of approximate theories associated with simplifications of these
equations. Donnel (1933),Mushtari (1938) and Vlasov (1964) independently developed a simplified
approximate theory of thin shells of a general form. Due to their simplicity, the governing equations
(see 3.2.7) of this theory were found to be extremely convenient for solving many engineering shell
problems. Apart from the Kirchhoff—I.ove hypotheses, some additional assumptions that simplify
the strain—displacement relations, equilibrium, and compatibility equations were used in deriving
these equations. It turned out that the Donnel-Vlasov-Mushtari theory could be applied with

sufficient accuracy to shallow shells as well.

As been stated in section 1.3 a shallow shell is defined as a (thin) shell having a relatively small raise
as compared to its span. According to Ventsel (2001) a shell is said to be shallow if at any point of

its middle surface the following inequalities hold':

(62)2 «1 (62)2 «1 2.2)
ox ’ oy
Or more specifically:
(62)2 - 1 (62)2 - 1 (2.3)
dx 20° dy 20

! Vlasov (1964) defined a shallow shell as a shell whose rise does not exceed 1/5 of the smallest dimension of the
shell in its plane (projection on the coordinate plane Oxy). It can be shown however that this practical limitation of
the applicability of the shallow shell theory corresponds to an error noticeably exceeding 5% (Novozhilov, 1964).

8
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2.2. Coordinate system

Lines and surfaces can be desctibed in a global Cartesian coordinate system (X, Y, Z). Local
properties of surfaces can however also be described by a local coordinate system (x,y, z), see
(Fig. 2.2). In the local coordinate system the z-direction is perpendicular to the surface and the x-

and y -direction are tangent to the surface.

Fig. 2.2 - Global and local coordinate system (Lecture notes, Hoogenboom)

The right-hand-rule is used to determine which axis is X and which is y (Fig. 2.3).

Fig. 2.3 - Right-hand-rule to remember the Cartesian coordinate system (Lecture notes, Hoogenboom)




2.3. Surfaces and curvature

2.3.1. Curvatures of a surface
The curvature is the reciprocal of the radius of curvature:

1 2.4)

Fig. 2.4 - Curvatures on surface (Lecture notes, Hoogenboom)

In /ocal coordinate system (z-axis perpendicular to the surface):
Curvature in x- and y-direction:

0%z 0%z (2.5)
Kax =55 kyy ==—
0x dy

Twist of the surface:

= 0%z (2.6)
XY 9xoy

In global coordinate system the curvatures become:

927 0%z @7

— —2

(1 (@)

Note that strictly speaking these are not the same as the curvatures of a flat plate in bending,
which are defined by:

0y 02w 09, 0%w 0%w (2.8)

ox  0x?’ Ky = dy  oy?’ Fxy =  0xdy

Kx

10
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Principal curvatures
At a point of a surface there will be a minimum value k, and maximum value k;. These are
called the principal curvatures and are given by the following formulas:

2.9)

1
n (kxx - kyy)z + kazcy

1
ko =5 (e + kyy) + |7

(2.10)

1 1
ky = 2 (kxx + kyy) |4 (kxx o kyy)z +kZy

2.3.2. Gaussian curvature
Carl Friedrich Gauss (1777-1855) was a German scientist who was famous for his work in

mathematics. In his paper ‘General investigation of curved surfaces (Gauss, 1827) he described the
product of the principal curvatures as the measure of curvature. Thus, the Gaussian curvature of a

surface at a point is defined as the product of the principal curvatures at that point:

ke =k k, (2.11)
It can also be shown that:
ke = kyx kyy — kZy (2.12)
k k k aZZ aZZ aZZ 2 (2.13)
¢ 7T T2 7 9x2 9y2 \axdy

A positive value means the surface is bowl-like. A negative value means the surface is saddle-like.
A zero value means the surface is flat in at least one direction (plates, cylinders, and cones have

zero Gaussian curvature), see (Fig. 2.5).

i -

posifive negative zero

Fig. 2.5 - Gaussian curvature (Lecture notes, Hoogenboom)
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Due to deformation of a surface (in a shell this is caused by the applied loading) there will be a

changes of Gaussian curvature. Following Calladine (1983) this change of Gaussian curvature is

denoted by: g

2.3.3. NURBS surfaces
NURBS stands for Non Uniform Rational B-Spline. It is a way to define surfaces in a mathematical

way and is commonly used in computer graphics. It was developed in the sixties to model smooth
surfaces. A NURBS surface is determined by an order, weighted control points, and knots. A
NUBRS surface can be seen as a generalization of B-splines which are lines that have a
mathematical definition consisting of a number of curves that are added. The B-spline has a
beginning point and an end point which the line goes through but it does not go through the

intermediate points, these latter points are the control points.

/_\) basis spline (B-spline)
.. '..

K
- control points
—

Fig. 2.6 - B-Spline (image from Hoogenboom, lecture
notes)

Fig. 2.7 - NURBS surface

The software uses this data to generate the surface. The shape can be changed by moving the

control points.

12



A Parametric Structural Design Tool for Shell Structures

3. Theoretical Framework

3.1. Introduction
As been stated in section 1.2, the first step to be undertaken will be the following:

e Provide the theoretical framework covering all the theories and methods that need to be

used

The theoretical framework can be considered as the basis for the development of the tool. In
accordance with the objective and approach defined in chapter 1, the theoretical framework
consists mainly of (classic) analytical analysis methods for shell structures. These analytical methods
provide the exact relation between the structural geometry, material properties and boundary
conditions as parameters and the resulting internal forces and deformations in an unequivocal way
by exact algebraic equations. They therefore give the engineer quantitative as well as qualitative

insight on the mechanical behavior of the shell structure.

As with the work of M. Oosterhuis (2010) and D. Liang (2012) the emphasis within this thesis also
lies on the computational application of these (classic) analytical theories. It is envisioned that the
implementation of these methods results in a faster and more flexible structural analysis process,

which is more appropriate for the conceptual design process.

13



3.2. Shell differential equations

3.2.1. Calladine’s two-surfaces shell theory
The interaction between stretching and bending behavior in shell structures can be studied

effectively by a so called two-surface theory which was proposed by Calladine (1983). According
to this theory the surface of the shell can be conceptually split into two distinct surfaces which are
designated the B-(or bending) surface and the S-(or stretching) surface. The S-surface possesses
only in-plane stiffness and can carry only membrane forces but it cannot transmit bending (and
twisting) moments and shear forces. The B-surface on the other hand only possesses flexural
stiffness and can sustain bending (and twisting) moments and also transverse shear forces, but it

cannot carry membrane forces.

() (©)

Fig. 3.1 - Calladine's two surface shell theory: (a) Shell element showing positive sense of pressure loading, all stress
resultants and displacement w. (b) The S-Surface (c) The B-surface

14
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The idea of separating the behavior of a shell into two distinct parts affords the possibility of
thinking separately about two different aspects of shell behavior while still allowing for the actual
interaction between them. Since the “split” is only conceptual the B-surface and the S-surface still
must coincide with each other, not only in the original configuration but also in the subsequent
distortion of the shell caused by loading. This is achieved by simply stating that the values of gg
and gp (the changes of Gaussian curvature) are equal to each other, thus the compatibility

condition becomes:

9gs = 9s 3.1

In this two-surface model for a shell the force interaction is expressed in terms of an interface
stress or pressure. Thus the applied load pg and ppgcarried by the S- and B-surface respectively are

related to the applied loading p by the equilibrium equation:

P =ps+Ds (3.2)

Thus, the load-sharing between the two surfaces provides insight into the regime of behaviour into

which a particular problem falls.
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3.2.2. Equilibrium equations

The equilibrium equations that follow from considering an element are:

Nyx | Ny 0vy v, (3.3)

R, R, 0dx Ody P W
0Ny N ony,, [& — 0 (3.4

0x dy R,
on,  0ny, vy] B (3.5)

dy ox LR,
Omy, 0my, (3.6)

ox dy Ve

Fig. 3.2 — Equilibrium of shell element with all stress
resultants

om,,  0my, (3.7)
—_ — =

dy 0x Y

These equations are somewhat untidy and can be made more useful by rearranging them into two
separate sets of equations (one for bending and the other for stretching) in accordance with the
two surface theory. Moreover, since we are dealing with shallow shells we may disregard the terms

enclosed in squared brackets in (3.xx):

Uy %
>—=0, 2 ~0
Ry R;

(3.8)

TP o . . v v
The general justification for this is simply that the denominators Rjand R, in terms R—x and R—y are
1 2

large for shallow shells, and consequently give only a very weak coupling between the bending and

stretching effects; a coupling which disappears entirely, of course, in the case of a flat plate.

16
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3.2.3. Equilibrium equations after separation of B-surface and S-surface
In accordance with the two surface concept the equilibrium equations after separation for the

stretching surface become:

Pg
Mox | Myy _ (3.9)
R, "R, S
Oy | Onuy _ (3.10)
0x dy
Onyy , Onwy _ (3.11) o 7
ay | ox n’ » n,,

Fig. 3.3 - Equilibrium of stretching surface

The principal normal forces can be calculated with the following formulas:

- (3.12)
I Ny, + Nyy (nxx — ley) tn2
1 — 2 2 Xy
s ) (3.13)
Nyx T Nyy Nyx — Nyy
my = 2 |(FER) g

The equilibrium equations for the bending surface become:

ove 0%, _ a4

dx  dy Ps

Omy, Omy, (3.15)
ox oy ™

om,, dmy,, (3.106)
dy d0x

Fig. 3.4 - Equilibrium of bending surface

These last three equations can be combined and lead to the following equation:

s 0%,y L 0°my, 0°m,, (3.17)

dx? d0x0y ay? ~Ps
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3.2.4. Constitutive equations
The constitutive equations describe the relations between the internal forces and deformations.

For a lateral contraction (or Poisson’s ratio) equal to zero (v = 0) the constitutive relations for

stretching behavior are:

My . Tlﬂ _ Znﬂ (3.18)

Exx = pr &y = Er Yoy = TE¢

1+ ¢,

"

-
-
-
-
-
-
-

=
A

>

XX S

1+ ¢

T,

|<

Fig. 3.5 - Constitutive relations stretching behavior for zero-poisson's ratio

For bending behavior the constitutive relations with poisson’s ratio is zero are as follows:

My = DKyy, my, = Dk,,, Myy = DKy, (3.19)

Fig. 3.6 - Constitutive relations bending behavior for zero poisson's ratio

Where D is the flexural rigidity of the shell:

D - Et3 (3.20)
- 12
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The principal moments can be calculated with the following formulas:

Myy + My, My = Myy\2
my = #4— (T) +mxy2

Myy + My, Myx — My, 2
my = Tt Moy (Mo Ty

3.2.5. Kinematic equations

(3.21)

(3.22)

The kinematic equations relate the deformations to the displacements. For stretching behavior the

kinematic equations are:

fx =50 T2

du, 1 /0w\° du, 1 /0w 2
I ]
0x Yoo 9y  2\ady

_aux+auy+aw ow

Vay = dy 0x Ox dy

The strain compatibility equation (see appendix A for the derivation) is as follows:

0%y, 0%Vyy _ 0%y,

~9y? | oxdy ox® Ys
For bending the kinematic equations are as follows:
0w 0w 0w
=g S ThE T T,
Kxx = Kyy 2
= — =T =
R, + R, W = (gp
b d*w s 2*w N 04w D4
= = =
dx* dx?dy? 0y* W=Ps
Where I'? is the “shell-operator” defined by:
1 92 1 92
r¢..)=——¢(.. —— (...
()= g 35a )+ g ()

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)
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3.2.6. Airy Stress Function
To deal with stretching behavior the Airy stress function is introduced, which is defined in the
following way:

¢ 0%¢ 92¢ (3.29)
Ty = gyzv T T dy?’ Ty =  0xdy

This reduces the amount of variables in the compatibility equation from three to one variable:

o 0%y, N 02yyy _ 0%ey,, _ 1 ) ¢ N 9% _ —iv‘*cp 4 (3.30)
dy?  0xdy  0x? Et\ox* 0x?0y? o0dy* Et
Also the equilibrium equation for stretching becomes:
Nyx  Nyy 2 (3.31)
Where I'? is the “shell-operator” defined by:
1 92 1 92 (3.32)
r2(.) = ——— () +—-—==(.)
Rl ay R2 0x

Physical interpretation of the Airy stress function

According to Pal Csonka (1987) the Airy stress function can be interpreted in the following way:

e The derivative of the stress function with respect to x or y at point P equals - disregarding

its sign - the component in direction x or y of the specific forces acting along the arc PyP

e The value of the stress function at point P equals - disregarding its sign - the moment of
the specific forces acting along the arc PyP about a straight line which passes through P

and which is parallel to z-axis.
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3.2.7. Static geometric analogy
There is a curious formal analogy between the static equilibrium equations and the geometric

compatibility equations in the classical theory of thin shell. It was pointed out by Gol’denweiser
(1940) and Lur’e (1940) and examined by Novozhilov (1959) and Calladine(1980). According to
the static geometric analogy the same expressions or equations occur for corresponding quantities

from bending behavior and stretching behavior. This can be seen in the table below:

Bending behavior Stretching behavior
ow ow d¢ d¢
=% Py dy [6x P * [ay],,
o%w %w %w a%¢p 2%¢ 0%¢
e = =z oy =~ e = "y = Gz e = gy My = gy
ke Ky 10%w 10%w Ny Ne_ 10% 10% _
R1 R2 - R1 axz R1 6y2 =95 R1 R2 - R1 axz R1 ayz = Ps
m, = Dk, m, = Dk, -m,, = —Dk 1 1 1 1
* = Y ¥ * ¥ & = Enyy' & = Enxxr nyy = Enxy
0%my, N O*myy  92myy S ery  0%vay  0%gyy _ —g
0x? dxdy dy? B dy?  Oxdy  0xZ s
a*w a*tw 9w 1 (o* o* o*
D=+ 5+ ]=0s _L(2e LA p
ox* ~ 0x%0y?  oy* Et\ox* = 0x%20y%? oy*

Table 1 - Static geometric analogy: corresponding equations

The correspondence exists between the following variables:

Nyx © Kyy Exx © My, oo —w
Nyy € Kyy Eyy © Mxx 9s < DB
Nyy © —Kyy 1 Ko gp

SVxy © TMyy
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3.2.8. Coupled equations for (shallow) shells
In the general case of a shallow shell we can combine equations |[...] which lead to the well-known

coupled equations of shallow-shell theory:

1 (3.33)
9s = 9p = _E_tV4¢ =-Tw=g
pgt+ps=p = DV*w+T?¢p=p (3.34)
Where V* is the biharmonic operator:
o4 o4 04 (3.35)
Vi= — (... 2———(..) +=—(..
And I'? is the “shell-operator” defined by:
1 92 1 92 (3:36)
r’(.)==——~0.)+—=—¢C(.
()= 53y g ()

Now instead of working with the radius of principal curvatures Ry and R, we can also rewrite this

I'2 operator with curvatures Ky, kyy and k. :

52 52 92 (3.37)

FZ() = kxxa—yz() - kaym() + kyyﬁ()

From here on this expression shall be used.
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3.2.9. Boundary conditions
One of the most challenging parts in this thesis is to deal with boundary conditions appropriately.

In accordance with the two-surface theory discussed in 3.2.1 where the B-surface and the S-surface
were endowed with specific mechanical properties, it follows that some boundary conditions have
to be applied to the S-surface and others to the B-surface. For example, edge displacement
conditions in the tangent plane apply to the S-surface but normal constraints are transferred to the
B-surface. It turns out that on each edge of the shell two stretching boundary conditions and two

bending boundary conditions have to be specified.

- F ‘ _
r T Semi-rigid
i edge
) |

Free edge

‘Semi-rigid
edge

Fig. 3.7 - Common boundary conditions on the edges of a shell

Some common boundary conditions which occur in practice are the following:
o Lixed edge

- Stretching conditions: u; =0, u, = 0

. .. ow
- Bending conditions: w = 0, Pl 0

o Semi-rigid edge (diaphragm wall):

- Stretching conditions: u; =0, n, = 0

. .. 2w
- Bending conditions: w = 0, pri 0
o Free edge
- Stretching conditions: ny, =0, n, = 0
. .. %w
- Bending conditions: f = 0, 9z = 0

Here the subscript letter t denotes the direction parallel to the edge and n the direction normal to

the edge.
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In this thesis it was attempted to express the bending and stretching boundary conditions in terms
of the transverse displacements W and the Airy stress function ¢ respectively. With respect to
expressing the bending boundary conditions in terms the displacements w this seems to go quite
well. With respect to the stretching boundary conditions however, there exists some disagreement
in the literature whether these stretching boundary conditions can all be expressed in terms of the
Airy stress function, specifically the boundary conditions where displacements (u, and u,,) are

specified. In the theory of plane elasticity this is a well-known problem.

Thus, some authors claim that it is not possible because the Airy stress function can only handle
boundary conditions in terms of stresses/loading and not displacements. For example S. R. Ahmed

et al. (2004) have written:

“Successful application of the stress function formmulation in conjunction with the finite difference technique has been reported
Jor the solution of plane elastic problems where the conditions on the boundary are prescribed in terms of stresses only. (...)
Boundary restraints specified in terms of u.. and u, cannot be satisfactorily imposed on the stress function. As most of the
practical problems of elasticity are of mixed boundary conditions, the approach fails to provide any explicit understanding
of the stress distribution in the region of restrained boundaries, which are, in general, the most critical Fones in terms of

stresses.”

On the other hand, other authors have claimed that it is possible, for example Zienkiewicz and
Gerstner (1959) have written:

“(...) problems in which displacements are specified on part of the boundary, are considerably more difficult. (...) it is
proposed to derive bere the boundary conditions which would have to be satisfied by the Airy stress function on the portion
of a boundary for which the displacements are specified (...).”

They further point out that a striking similarity occurs between the expressions of the Airy stress
function which they derive and the expressions for certain boundary conditions for a plate in
bending”. In this thesis the intent is to use the expressions of Zienkiewicz and Gerstner and it will

be seen whether these can successfully be implemented.

2 This can actually be expected because of the static geometric analogy for shell structures (3.2.7) which states that
there is a correspondence between quantities from the stretching surface and quantities from the bending surface.
When the shell has zero curvature everywhere and thereby reduces to a flat plate or disk, this static geomettic analogy
reduces to the so called plate analogy’ (Prager, 1950).
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The expressions in terms of the Airy stress function for the stretching boundary conditions where
the displacements are specified (and equal zero, i.e. a fixed edge) proposed by Zienkiewicz and
Gerstner (1959) are given below. Also the corresponding bending boundary conditions which use
expressions in the same form (but then in terms of the displacements W) are given. These boundary
conditions are given for a straight edge parallel to the y-axis, but can be used as well for a straight

edge parallel to the x-axis by simply changing the subscript letters from x to y in all terms.

Stretching combination 1: Bending combination 1:
auy My, =0
Uy =0=—"=2¢,=0 =
y
02¢ 02
N = = = w
\ T 7 =0
\ Y
Yy — ,
S : t m_dy-F dy=0
90 0 Yy i} om,
- ux=0:——=i— yy:() f= Macx my=0
dy 0x Oy 0x dy
2°¢ °¢ *w 3w
hilhd — 4" )=
= (6x3 t25ay2) =0 = (5w T 2520y2) = °

In this case, it can be seen that a fixed edge on the stretching surface, corresponds to a free edge
for the bending surface. Another common stretching boundary condition is where the
displacements parallel to the edge is zero while the edge can move freely perpendicular to the
edge. The expressions used for these stretching boundary conditions also occur for the bending
boundary conditions when the edge is hinged and have a prescribed curvature (though the latter

is usually zero).

Stretching combination 2: Bending combination 2:
du M,=0
3 u,=0=>—2=¢g,=0 *
h ay
2
Gz —> o*w
= 9% = 20
=2 x irr
% %
3t
:)) u}.=0
-
N, = G, Ky = Ky, (prescribed curvature)
7’p ’w
D Gy T e
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The final stretching boundary conditions which are considered is where the edge can move freely
parallel and perpendicular to the edge. The expressions used for these stretching boundary
conditions also occur for the bending boundary conditions when the edge have a prescribed twist

and curvature parallel to the edge. However, when these are zero the edge becomes a fully clamped

edge.
Stretching combination 3: Bending combination 3:
v Ny, = Gy Kxy = Kxy;o (Prescribed twist)
02 2%w 1
G —> ¢ __ —_Z
) = axay - O = oxay 2/
N /I\ <
i
— 4\(} Ny = Gy Kyy = Kyy.0 (prescribed curvature)
e [
% 92w
o > Gy = o

Note that although there is a correspondence between the expressions used for the stretching
boundary conditions and those used for the bending boundary conditions, these corresponding
boundary conditions do not have to occur at the same edge. For example, stretching combination

1 can occur with bending combination 3.
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3.3. Finite difference method
In mathematics the Finite Difference Method (FDM) is a numerical method to approximate

derivatives of a certain function. It can also be used for surfaces. The essence of the FDM lies in

the following:

1. The middle plane of the surface under consideration is covered by a rectangular, triangular,
or other reference network depending on the geometry of the surface. This network is
called a finite difference mesh and points of intersection of this mesh are referred to as

mesh or nodal points.

2. The governing differential equation inside the shell domain is replaced by the
corresponding finite difference equations at the mesh points using the finite difference

operators.

3. Boundary conditions are also formulated with the use of the finite difference operators at

nodal points located on the boundary.

As a result, a closed set of linear algebraic equations is obtained for every nodal point within the
plate or shell. Solving this system of equations, one obtains a numerical field of the nodal
displacements (and Airy stress function in the case of shells). The key point of the FDM is the
finite difference approximation of derivatives. Consider the approximations for the derivatives of
a one- dimensional, continuous function f (x). It is known that the detivative at point x; is defined,

as follows:

dx

A-0 A

(df).=limfi+1_fi or (df>' imfi_fi—l (3.38)

A-0 A % -

f;
’ - . X
ai-2i-11i+11i+2 b
AlA|A|
Bl

Figure 2.4.1 - function f(x) discretised
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Where f; = f(x;) and A is a finite increment of the vatiable x. If the symbol for limit is left out

one obtains:

Bt e @i o

These expressions in 2.xx are called the first forward and first backward approximations of the
derivative of f(x) at point X;, respectively. However, in practice the expression for a central

approximation is often used:

(g ) ﬁ+12Aﬁ (3.40)

As the increment A gets smaller the approximation of the derivative will get more accurate.
Applying expressions (2.xx) and (2.xx) as operators we can derive the corresponding differential

approximations of the second, third, and fourth derivatives of the function f(x).

PF\  fin = 2fi+ fin (3.41)
dx? i~ A?

d3f ~ fivz = 2fix1 + 2fic1 — fiz (3.42)
dx3 ; 2A3

d*f\  fir — i H6fi—Afiit fio (3-43)
dx* l,~ A*
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The finite difference method can also be used for a continuous function z(x, y) of two variables.

One can use a rectangular mesh with the following reference points (Fig. 3.8):

|INN
A
A
NW N NE v
WW_ W O E EE

SW__ IS &SE

1SS

k!

Fig. 3.8 - Rectangular mesh for finite difference method

Here Ax = A, and Ay = A,, and in a square mesh we have 1, = A, = A. Now if for example

2 2
one wants to calculate V?z = (ZTi + 372) at a specific point in the grid one gets:
022+ 0%z\  zy+7Zs+2zp + 2y — 42, (3.44)
ox? " dy?), FE

A better way to visualize this finite difference approximation is to use a coefficient pattern. Then

equation 2.xx becomes:

(3.45)

(L0
©

ENENS NG

Ax2 2
dx% dy 0
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In similar ways the following derivatives can be derived and represented:

@ (3.46)
0 1 T d 1 Y
(55), =z LI &) =z ES
@ (3.47)
2 2
@, 4080 ()48
(3.48)
0%z 1
<0x6y>0 T a2
(3.49)

Vi, = 64z+2 0%z +64z B
2=\ ox* T “oxzay? Toyt) T 2
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3.4. Rain flow analogy

3.4.1. Application for principal shear force trajectories
The concept of the so called “rain flow analogy” was inspired by Beranek (1976). It can be used to

determine the principal shear force trajectories. To do this one visualises the sum of bending
moments (M = My, + My, ) as a ‘hill’. The rain flow analogy then states that like rain which falls
on a surface and flows down in the steepest direction generating streamlines, the principal shear
force trajectories too follow in the steepest direction of the m-hill (Fig. 3.9). The rain flow analogy

can thus be used to determine the load path for out-of-plane structural mechanic behavior.

n

Fig. 3.9 - Rain flow analogy (image from Blaauwendraad 2010)

3.4.2. Application for magnitude of principal shear forces
To obtain the magnitude of the principal shear forces one can integrate the associated load flows

between the stream lines. However, the calculation can be much simpler which will be shown by

considering the following equations. Starting with the sum of bending moments:

N D *w N *w (3.50)
m=m My, = —D|—+—
XX vy axZ ayZ
Shear forces:

b = Omy, N Omy,y, - 23w N 23w _ K2 2*w 0w (3.51)

dx dy 0x3 ' 0xdy? dx \ 0x? = 0y?
R 0
v = > (m)
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omy, 0my, 3w 03w d (0*w 3*w (3.52)
Yy = t—=="Dlogtomg|=Dr|lo5+t75
dy dx dy dx?%dy dy \ dy dx

d
=, =@(m)

This shows that the shear force at a certain point and direction equals the gradient of the m-hill
on that specific point in that direction. Next consider a triangular plate part with shear forces

acting on the edges.

r X v!l
®
}? V

Fig. 3.10 - Shear forces of an elementary plate (image from Blaauwendraad 2010)
From these equations it follows that:
Uy = Uy COS B + v, Sinf (3.53)

vy = =V Sinf + v, cosf

If v, is the maximum shear force it follows that § has to be chosen such that the following
condition is satisfied:

dv, . vy, (3.54)
=—-v,sinf+v,cosf=0=tanf = —

B Uy

The maximum value of v, can then be calculated with the following formula:

’ 2 (3.55)
Unymax = (vx)z + (vy) , Vesmin = 0
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The minimum shear force is perpendicular to the maximum shear and equals zero. It has been
stated that the gradient of the m-hill surface is equal to the shear force in corresponding direction.
The gradient of the contour lines of them-hill surface is zero, and the steepest direction is
perpendicular to the contour lines. Thus the minimum shear forces correspond to the gradient of
the contour lines (which equal zero) while the maximum or principal shear forces equal the gradient
of the steepest direction which is perpendicular to the minimal one. The principal shear force can

thus be written as:

- :_n ) (3.56)

Where n is the steepest ditrection of the m-hill.
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3.5.

3.5.1.

Shell behavior assessment

Ratio normal and bending stress

A well designed shell should carry its load efficiently mainly through normal forces, when it does

it shows shell like behavior. There are several ways to assess whether a shell carries its load efficiently.

One way is to consider the ratio between the normal stress (0,) and the total stress caused by

bending and normal forces (0, + 0y,). If this ratio approaches 100% it indicates more shell like

behavior while a ratio closer to 0% indicates more plate like bending behavior (Fig. 3.11).

80%

50% +

20% 1

‘\
o ~
" * e="Y%t
S
N ‘\
compression ... ., 0 rommmelee] —
) ‘. —_
ren:‘on . ., curved t
i . .
“x/’.'slab
* . e:‘/z“t
.
.
.
.
.
e — —
~
~
~
“w
compression . ™
20% 50% 80%

Fig. 3.11 - Shell assessment based on ratio bending and normal stresses

However determining the ratio of bending and normal stresses is not as straightforward as it may

seem. The difficulty in determining this ratio is that the result is a vector quantity and is therefore

dependent on which direction is considered. In this thesis it is decided to consider this ratio in the

directions of the principal normal forces:

n
Oy (Tl) n (3.57)
R1=—-100%=6—-100%=6 -100%
Omiag T On1 ( M(ay) +ﬁ) My -
t2 t t
n
Oy (TZ) 1, (3.58)

Rz_

Gm;(a0+0,5n) + On2

+100% = *100% =

s -100%
+0,
2 agt05m 4

6 M(gy+0,5m) |, Ny
( t2 +T)

To determine the stress caused by bending in the direction of the principal normal forces it is

necessary to determine first the direction a, of the principal normal forces themselves.

34



A Parametric Structural Design Tool for Shell Structures

A= 7---F----

Fig. 3.12 - Transformation of stresses and principal stresses and direction (Image from Blaauwendraad 2010)

The direction of the principal normal forces is denoted as &y and can be calculated from the
equation:
20y 2ny,, (3.59)

tan(2a,) = — = —
O-xx ayy nxx nyy

>a, = 5 arctan

1 < 21y, ) (3.60)

Then the bending moments in the corresponding directions can be calculated with the following

transformation equations:

m(ap) = My, Sin® @y — my,, sin 2ay + my,, cos? a, (3.61)

T
m(@o + ) = My COS? o + My 5in 20 +myy sin® @ (3.62)

Once these bending moments have been determined the ratios Rjand R, (3.xx) can be finally be

calculated, then from the values of these ratios insight into the behavior of the shell can be gained.
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3.5.2. Load carried by the S-surface and by B-surface
Another way to assess the efficiency of a shell is by considering how much of the total load is

carried by the stretching surface and how much is carried by the bending surface (in accordance

with the two surface theory explained in 3.2.1). Recall the following equation:

p =pg+ps =DViw +T?¢p (3.63)

It follows that once the displacement field (W) and the Airy stress function field (¢) are known
one can calculate back the load carried by bending (pp) and the load catried by stretching (ps).
When most of the load is carried by the stretching surface (and pg is large compared to pp) this

indicates shell like behavior. With these quantities the following ratio can then also be calculated:

_ Ps (3.64)
Pp + Ds

R3
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4. Development of the parametric design tool

4.1. Introduction

This chapter will elaborate on the development of the parametric structural design tool for shell
structures. Following the list of steps which have been stated in section 1.2, the next steps to be

undertaken in this chapter are the following:

e Define which demands have to be fulfilled with respect to functionality and usability by the
parametric tool

e Provide a general outline and structure for the parametric tool in accordance with the

demands

e Implement the theoretical framework into the structural design tool

Though much of the current developed tool was initially based on the models developed by M.
Oosterhuis (2010) and D. Liang (2012), most components of their models had to be modified
significantly in the current tool. Moreover, many new components had to be developed from
scratch as well. However, the development of the current tool has still greatly benefited from the

earlier work by M. Oosterhuis and D. Liang.
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4.2. Functionality and usability
It is envisioned that the parametric tool for shell structures can be used and understood by both

architects and engineers to gain quantitative and qualitative insight into the structural behavior of

shell structures in a conceptual design stage. Based on this objective the following demands can

be defined:

e Able to provide real-time results

e Able to choose in a simple way which- and how results are represented

e Able to change design parameters such as geometry, material properties, boundary
conditions and loading

e Able to extend functionality further for future development (by adding parametric

components and procedures)

With respect to the specific calculation results the tool should be able to give as output the

following quantities:

e Aliry stress function ¢
e Transverse displacement w
e Internal forces:
- Normal forces
- Principal normal forces
- Sum of normal forces
- Bending moments
- Principal moments
- Sum of bending moments
- Shear forces

- Principal shear forces
e Trajectories of the principal shear force (rain flow analogy)

e Measure for assessment shell behavior
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4.3. Choice of software

For developing the tool the software application Rhinoceros (or Rhino) was chosen with the

parametric plugin Grasshopper (Error! Reference source not found.). As been explained in the

introduction of this thesis (1.1) a recent development in the field of computational design are

parametric associative design tools which capture design information by defining logical relations

between (geometrical) components, controlled by parameters. Rhino in combination with

Grasshopper is an example of such a tool and offers a powerful approach for creating parametric

models.

Moreover, the previous models developed by M.
Oosterhuis (2010) and D. Liang (2012) were also
developed with Rhino and Grasshopper. Since
this thesis can be considered as an extension of
their work it is only logical that the same software

applications will be used here.

Following Oosterhuis and Liang, also VB.net
(Visual Basic) programming is used to create new
components within the Grasshopper interface

(Fig. 4.1).

Script Editor

3

Mg Scpt component VB

option
option

Strict

Expli

Publi

off

ript_Instance

Inherits GH_Scriptinstance

ivate Sub RunScript(Byval free_points As

Recaver bor

1cache

.Matrix(free_points.count(), 3)

PE® AD

List (Of Pointdd), Byval leading_ty

Fig. 4.1 - Example of VB.net script

Also for solving matrix equations an external matrix class library for linear algebra computations

was used called Mapack for .Net which was developed by Lutz Roeder (Roeder, 2002). Mapack

library can be accessed by referencing from within the VB script components to the external library.
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4.4. General outline and structure of the tool
The general outline of the tool can be seen in the figure below (Fig. 4.2). It consists of all the main

components and the output that they give. The outline shows how the output information of each

component is sent to the next component, thus the relation between all the components becomes

clear.
Geometry & Mesh
Component
I
' ! ! !
Loads Curvature Stretching Boundary Bending Boundary
Component Component Conditions Component Conditions Component
P Kxx kxy k;vy [ES] [NS] [EB] [NB]
| |
Shell Calculation
Component
w Ps (2] ¢
; l l *
Internal Forces Shell Assessment Internal Forces
Component (Bending) Component Component (Stretching)
Moxx| Myyl [Mxy] Ri| | R:| | Rs Ny | | Ryy| [Ty
my| |my| | m ny| | ny n
Rainflow Analogy Derivative
Component Component
V), trajectories 129 Uy Uy

Fig. 4.2 - General outline and structure of the tool
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4.5. Implementation of the theoretical framework

In this section explanation of all the developed components will be given and how the theoretical
framework discussed in chapter 3 is applied in these components. Together these components

generate all the results and visualize these in the Rhino interface.

4.5.1. Geometry and mesh component
The first component in the parametric tool is the geometry and mesh component. It is used to

specify and visualize the geometry of the shell and to create a mesh on it. Here a shape function
for the shell can be given, thereby defining the shape of the shell. Also, the mesh size and the length
in x-direction and width in y-direction of the shell can be determined here. The component will

then automatically create the surface and mesh.

It is however desirable that the parametric tool can handle more arbitrary shapes which are not
merely determined by having a certain shape function as input. Therefore the tool was further
developed in such a way that one can give a surface itself as input. In the Rhino / Grasshopper
environment this means a NURBS surface can be given as input. The component then

automatically calculates the z-coordinates of the shell for a given specified grid.

GEOMETRY & MESH
COMPONENT

Shell surface

Fig. 4.3 - Geometry & Mesh component in Grasshopper Fig. 4.4 - Output of the Geometry & Mesh
component

The component creates an organized list of the coordinates and sends these to the other

components.
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4.5.2. Load component
In this component the loads can be specified. Though only loads perpendicular to the shell can be

applied, they do not have to be uniformly distributed. The loads are applied on the grid nodes and
visualised as point loads. However each ‘point load’ should actually be thought of as a distributed
load on a small piece of the surface which equals the mesh size squared (Fig. 4.5). Thus with a

smaller mesh size, the load specification can be given more precisely.

Fig. 4.5 - Corresponding sutface of a load on a grid node

The component visualizes the loads on the shell and also creates a list of all the loads which will
then be sent to the shell calculation component.

Load component

Fig. 4.6 - Loads component in Grasshopper Fig. 4.7 - Visualisation of loads on sutface
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4.5.3. Curvature component
The curvature component calculates the curvatures and the twist of the shell surface (Fig. 4.8).

Curvature
component

— %_length
— y_width
Shell_grid_points kxx

out

Fig. 4.8 - Curvature component in Grasshopper

The calculation is based on the following formulas:

_ 0%z 0%z o = 0%z 0%z 0%z 0°7 “4.1)
xx = 52 ~ af2’ yy — ayz -

—, k —
ay° Vo 9xdy  0x0dy

~

It calculates these derivatives with the finite difference method. The previous equations rewritten

in finite difference form become:

[kxx] = [Kx] -[z], [kyy] = [Ky] -[z], [kxy] = _[ny] - [z] (4.2)

Where [K,], [Ky], [ny] stand for the finite difference matrices which use the following operators:

(4.3)

4.4

The component produces lists of all the values of ky,, Ky, and ky,, and sends these to the shell

calculation component which will is discussed at 4.4.5.
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4.5.4. Boundary conditions component

Before any calculations will be performed first the fictitious outer points have to be introduced.

These points are only used so the finite difference method can be applied at and near the boundary

of the shell as will be seen when calculation procedures are discussed. From a top view the grid of

the shell would look as follows (Fig. 4.9):

Bound A

(O Mid Point
% Bound Point

@ Outer Point

Fig. 4.9 - Top view of shell grid with imaginary outer points

Now on each boundary edge two stretching boundary conditions and two bending boundary

conditions are applied (3.2.9). To implement these boundary conditions, the finite difference

method is used. Here the finite difference operators are given for specific boundary conditions for

an edge parallel to the y-axis, but can be used as well for an edge parallel to the x-axis by simply

rotating the finite difference operators:

Boundary condition type 1:

Stretching boundary condition type 1:

Bending boundary condition type 1:

ou M,=0
u, =0= a—;zeyzo *
62w_

62¢> Ix2
a2 0

v 1 OEO

= == N,
O0x? o A2
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Boundary condition 2:

Stretching boundary condition type 2:

Bending boundary condition type 2:

00 0Jey,  Oyyy
ux—Oﬁ—@—a— ay =0

3¢ 3¢
- (ﬁ-l_ 6x6y2> =0

Boundary condition 3:

Stretching boundary condition type 3:

Bending boundary condition type 3:

Ny, =G,

2%¢

=G
- oxdy 7

Kyy = Kxy;o (Prescribed twist)

Boundary condition 4:

Stretching boundary condition type 4:

Bending boundary condition type 4:

N, =G,

92¢
= a—yzz Gx

Ky = Ky, (prescribed curvature)

0w
MG

dy?

/
Q
N
N~
(@)
|
| —
Of
.

e

_AZ'
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With these the finite difference operators matrices can be assembled. In the following equation E
stands for the applied finite difference operator matrix which depend on which boundary

conditions are applied. For stretching boundary conditions:
[ES] ’ [¢free+bound+out] = [NS] (4.5)

For bending boundary conditions:

[EB] ’ [Wfree+b0und+out] = [NB] (4.0)

Here [Ng] and [Ng] simply stand for the values that the boundary condition equations have to be
equal to (and are in general equal to zero). On each boundary edge two stretching boundary
conditions and two bending boundary conditions are applied. Furthermore on each corner three

stretching boundary conditions and three bending boundary conditions are applied, therefore:

[ES;bound;bcl] rNS;bound;l] [EB;bound;bcl] [NB;bound;l] (47)
I ES;bound;ch I I NS;bound;Z I I EB;bound;ch I I NB;bound;Z
Es = ES;corner;bcl ) Ns = NS;corner;l ) EB = EB;corner;bcl ) NB = NB;corner;l
ES;corner;bcz NS;corner;Z EB;corner;bcz NB;corner;Z
ES;corner;bCS NS;corner;S EB;corne‘r;bc3 NB;corner;3
Where:
[ES:buundA—i ] [ES;corneTO—i ] [EB;boundA—i ] [EB:cornerO—i ] (4.8)
ES;boundB—i ES;curnerl—i EB;boundB—i B;cornerl—i
Es;baund,j = ES;boundC—i :ES;carner,j - Es;cornerz—i | rEB;baund,j - EB;baundC—i |:EB;corner,j - EB;carnerZ—i |
ES;boundD—i ES;corner3—i EB;boundD—i EB;corneTS—i
i = 1 for boundary condition 1
where: 1= 2 for boundary condition 2

i = 3 for boundary condition 3
i = 4 for boundary condition 4

The purpose of the boundary condition component is thus to provide the finite difference operator
matrices which will then be sent to the shell calculation component which will use it to calculate
the Airy stress function and displacements. In (Fig. 4.10) an example can be seen from the

boundary condition component with the matrices as output.
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Boundary conditions
bending behavior

coocccccccoonone00000
cccocccoomonosssososo

T

ccccccoomonsososooo

e

cocoocrcocooo00000000

cerssccssessesesasos

Hococococ00000000000
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cooooscoooo
e
coocooscssoos
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cococcoocooooo
[
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0000 CO00DD00A0DCO0D0D0100000-20000000000000000C000D0010
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\

N\

(]

T

/]
/

th matrix E_Bending as output

avior wi

Fig. 4.10 - Boundary condition component for bending beh
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4.5.5. Shell calculation component

Perhaps the most important component is the “shell calculation”-component. The purpose of this
component will be to calculate the transverse displacements w, the Airy stress function ¢, the load

carried by the stretching surface pg and the load carried by the bending surface pg. Recall from

(3.2.6) the governing coupled-equations for a shallow shell:

_Eitv4¢__ weg (49)
I2¢ +DViw =ps+pg=p (4.10)
Where I'? is the “shell-operator” defined by:
rz(.) = kxx% (.)— kay% (.)+ kyyaa—; ..) @10
Rewriting equations [...] in finite difference method notation:
it - [A] * [ rree+pounarout] = [G1* [Wrreervounarout] = [—9] *12
[G]- [¢free+bound+out] +D-[A]- [Wfree+bound+out] = [p] (4.13)

Where:
e [G] stands for the T'? finite difference operator matrix with the factors k.., kyy and k,,,,
supplied by the curvature component (4.4.4)

e [A] stands for the V* finite difference method matrix :

(D
(D)
V4(.) = (a‘;i.;) + 2;:2(5;2 + ¢ )> o g @ g o
(D

(4.14)
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Recall the specification of the generated grid for the shell with imaginary outer points:

385838833
kﬁ ose: ﬁ% ?t:
C ] J: )—Q@—.

)

& ¥ OO0 —O0—0 ( O
I —0 I J)— —( O Mid Point
: \—fi: @ Bound Point
‘gi)— @ Outer Point
® e ® e

Fig. 4.11 - Top view of grid for the shell

Now we need to find a way to express the change of Gaussian curvature [g] in the load [p].
Therefore we first need to express ¢ and w in g. We start with ¢ using the following equation

(which is based on equation 4.xx):

[A] - [¢free+bound+out] = —Et-[g] (4.15)

For every interior point we can provide the finite difference operator equations.
However, at this point the Airy stress function ¢ cannot yet be expressed in terms of g because
matrix A is not a square matrix and is thus not invertible. Therefore extra equations need to be
used which are provided by the boundary conditions. This is where matrix E; comes in and needs
to be used. It stands for the finite difference operator matrix resulting from the boundary condition

component for stretching as explained in (4.4.3):

[Es] ' [¢free+bound+out] = [Ns] (4.10)

Adding equations to equations (4.xx) gives:

= [E] [¢free+b0und+out [ Il\i'ltg] 4.17)
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Now let:

(F] = [;S] (4.18)

Then:

—Etg 4.19
= [Es] ) [¢free+bound+out] = [ N ( )

Now matrix Fg will be a square invertible matrix and thus the Airy stress function ¢ can now be

expressed in terms of g through:

—F .
= [¢free+bound+out] = [Fs_l] ) [ N_:g] (4.20)

Now let:

[Fs'] = [Hs] = [Hs1 Hs2] (4.21)

Then the full expression for ¢ becomes:

= [¢free+bound+out] = [Fs_l] ' [_ﬁ:g = [H51 HSZ] . [_ﬁfg] =—Et- [H51] ' [g] + [Hsz] ' [NS] (422)

Now the next step is to express the displacement W in terms of g. For this we use the following

equation:

[G] ' [Wfree+bound+out] = [_g] (4.23)

Now the displacement W cannot yet be expressed in terms of g because matrix G is not a square
matrix and is thus not invertible. Therefore again extra equations need to be used which are
provided by the boundary conditions. This is where matrix E}, comes in and needs to be used. It
stands for the finite difference operator matrix resulting from the applied boundary conditions for

bending as explained in (4.5.4):

[Eb] : [Wfree+bound+out] = [Nb] (4.24)

Adding equations ... to equations ... gives:
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= [gb] . [WfTee+b0und+out] = [;‘z] (4.25)
Now let:
[Fp] = [gb] 4.26)
Then:
(4.27)

= [Fp] - [Wfree+bound+out] = [I_Vf]

Now matrix F, will be a square invertible matrix and thus the displacement w can now be expressed

in terms of g through:

= [Wfree+bound+0ut] = [Fb_l] . [I_Vf] (4.28)

Now let:

[Fy '] = [Hp] = [Hpr Hpa] (4.29)

Then the full expression for w becomes:

= [Wfree+bound+out] = [Fb_l] ' []_V'Z] = [Hbl HbZ] ' [I_Vf] = _[Hbl] ’ [g] + [Hbz] : [NZ] (430)

Now we can substitute the expressions for ¢ and w in equation (4.xx):

[G]-[~Et - [Hsl - [g] + [He] - [NS]] + D - [A] - [=[Hps] - [g] + [Hp2] - [No]] = [p] (4.31)

Now we can express g in terms of p:

—Et-[G] - [Hs1] - [g] + [G] - [Hs,] - [Ns] = D~ [A] - [Hps] - [g] + D - [A] - [Hp,] - [Np] = [p]  (4.32)
Et-[G]-[Hx]- (9] =D - [A]- [Hp] - [g9] = [p] = [G] - [Hsz] - [Ns] = D - [A] - [Hpo] - [Np] ~ (4.33)

[Et - [G] - [Hs1] = D - [A] - [Hp]] - [g] = [p] = [G] - [Hgz] - [Ns] = D - [A] - [Hpz] - [N] (4.34)
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= [g] = [Et-[6]- [Hy] = D - [4] - [Hp) ] - [[p] = [6] - [Heol - [N, = D - [4] - [Hp] - [N,]]  (4:35)

At this point the change of Gaussian curvature is determined at every point. Now the Airy stress

function ¢ and the displacements w can be determined with the expressions:

[¢free+baund+out] = [Fs_l] ) [_16;9] = [HSI HSZ] ) [_Z:g] =—FEt- [Hgl] . [g] + [HSZ] ' [NS] (436)

[Wfree+bound+out] = [Fb_l] ' [I_Vf] = [Hbl HbZ] ) [I_Vf] = _[Hbl] ) [g] + [Hbz] ' [Nz] (437)

Which were already derived previously. Now the Airy stress function ¢ and the displacements w
are known and it becomes possible to calculate the load carried by the S-surface and the load carried

by the B-surface:

ps = T2, pg = DV*w (4.38)

Which is again calculated with the finite difference method:

[PS] = [G] ' [¢free+bound+out]' [pB] =D- [A] ' [Wfree+bound+out] (4.39)

This information is then sent to the shell assessment component.
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4.5.6. Internal forces component

Once the Airy stress function ¢ and the displacements w are determined the internal forces can
also easily calculated using the finite difference method by calculating the derivatives of the ¢- and

w field. Recall from (3.2) the following equations:

0¢ 0%¢ 92¢ (4.40)
Ty = gxz = Gy n"y:_axay
d%w 9%w 92w (4.41)
e R R i P

Rewrite in finite difference form:

[nyy] = [Kx] ' [¢]r [nxx] = [Ky] ) [¢], [nxy] = _[Kx ] ) [¢] (442)
[me] = =DIK]-Iw],  [myy] = =D[K,y]- W], [myy] = —-D[Kyg] W] (443)

Where [K,], [Ky], [ny] stand for the finite difference matrices which use the following
operators:

: (4.44)
0% .. 1 - 0% ... 1 A
- . -2 N
(axz )0 )2 ®-\- J@ (ayz )0 )2 \‘i‘}
(4.45)

At this point the normal forces and bending moments are known. The principal normal forces and

principal bending moments are then calculated by the component using the formulas:

My + 1y Ty — Nyy\ 2 5 My + My, Myyx — Myy 2 5
ny = > + ( > ) + Ny m; = > + ( > ) + My, (4 46)
Ny + Ny, Nyy — Nyy 2 Myy + My, Myy — My, 2
n, = > - ( > ) + 1y, ? my = > - ( > ) + My
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4.5.7. Derivative component (for shear forces)
The derivative component was a component developed by M. Oosterhuis (2010) and is also used

in the current tool. The component is meant to visualise and calculate the magnitude and direction
of the principal shear forces and its components in x- and y-direction. It is based on the analytical
relationship between the sum of bending moments and the shear forces. As been pointed out in
paragraph 3.4, the shear force in a particular direction equals the first derivative of the sum of

bending moments ‘hill’ in that particular direction.

The component developed by M. Oosterhuis was developed by combining a set of predefined
components which were already provided in Grasshopper. The required input for the derivative
component consists of the sum of bending moments surface (which in the current tool is provided

by the internal forces component discussed in the previous paragraph) and the grid points.

To determine the magnitude and direction of the principal shear force in a grid point, the derivative
(slope) of the sum of bending moments hill has to be calculated in the direction of the steepest
descent. As explained by M. Oosterhuis (2010) in his thesis, first, the steepest descent direction is
determined by using the surface normal vector. By multiplying this normal vector with the global
z-vector the cross vector is obtained. This is then used to rotate the normal vector around over 90°
and thereby becomes the steepest descent vector which is tangential to the sum of bending
moments surface in the considered point. The resulting vector collection can then be plotted on
the sum of the bending moments hill (Fig. 4.12). Finally the magnitude of the shear force is

calculated by calculating the slope of the steepest descent vector.

Fig. 4.12 — Direction of the principal shear forces (Image from M. Oosterhuis 2010)
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The shear forces in x- and y-direction are calculated by determining the corresponding planar
components of the principal shear force. The component is also able to display the shear also as
scaled arrows where the magnitude is represented by the thickness of the arrows. Below an example
of the shear forces visualised is given from Oosterhuis (2010) for a simply supported plate in

bending subjected to a uniformly distributed load (Fig. 4.13).

A A A AAdddAAAd A A A A AAARAAE
AL N N B BN B I BN B B R - LA ddddd
B N N Y T I I I I - - Lh b hh
a«asSNAMNA AV V4 4 v P I I AN I N I I TN T Y 1 T Y T Y
PRI . T T T Y R g - = [ I T | L
- .- - - - - —_—— - - - - »
W m sy NNNSES - » (] Frruni o
® 2277700V VAANASDS - --——— —_— - 1 Frrana P
Rt AN N AN A B B B B B B W [ [0 B I B B BN B B
Eanr A B B B BN BN B BN B B T I T y9s vy
(I A BN BN BN BN BN BN BN BN N A

Fig. 4.13 - vn, vx and vy represented by scaled arrows (image from Oosterhuis 2010)
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4.5.8. Rain flow analogy component
The component which uses the rain flow analogy and generates the principal shear trajectories was

also developed by M. Oosterhuis (2010) and will be used in the current tool as well. The component

generates ‘continuous’ rain flow trajectories on a surface by using a gradient descent algorithm.

This algorithm starts from a predefined point p; and

iteratively determines the steepest descent vector on

the sum of bending moments hill and defines the next
point p;41 by moving the starting point over a small
distance in this direction (Fig. 4.14). This sequence is
repeated until a local (or global minimum) has reached

or a predefined stopping condition is met. The

stopping conditions are:

) [ Contour lines
1) Surface normal vector is almost vertical

. ) . . Fig. 4.14 - Steepest descent algorithm (image
2) Point p;;q is outside the 3D surrounding box from Oosterhuis 2010)
3) Iteration number is larger than predefined

maximum number of iterations

An example of the results the component produces are given below. In these images provided by
Oosterhuis (2010) one can see the sum of bending moments hill with the principal shear force
trajectories of a plate in bending with a uniformly distributed loaded. One can thus cleatly see how

the tool visualizes the load path for out-of-plane structural mechanic behavior

s S==SSSsa A
B o o e g "

Fig. 4.15 — 3D view of the m-hill of a rectangular plate Fig. 4.16 - Top view of principal shear force trajectories

with principal shear force trajectories (image from (image from Oosterhuis 2010)
Oosterhuis 2010)
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4.5.9. Shell assessment component
The final component is the shell assessment component which is used to assess whether the shell

carries its loads efficiently. It uses as input the list of values of the displacements w, Airy stress
function ¢, the load carried by the S-surface ps and the load catried by the B-surface pp which ate

received from the shell calculation component (4.4.5).

Then it first calculates the two ratios based on normal and bending stress as was discussed in
paragraph 3.5.1. To calculate these ratios the following quantities: ny, Nz, Nyy, Ny, Nyy, Myy, My,
My, are needed and calculated in the same way as discussed in the internal forces component
(4.4.6) using the finite difference method on the displacement field and Airy stress function field.
When these quantities are known, the component calculates the direction @y of the principal

normal forces with the following equation:

1 < 2Ny, ) (4.47)

>a, = 5 arctan

When « is known at every point the component proceeds to calculate the bending moments in

the direction the principal normal forces using the following transformation equations:

m(ag) = My sin® ag — Myy Sin 20 + m,,, cos? a, (4.48)

m(ay + 0,5m) = my, cos? ay + my, sin 2ay + m,,, sin® a, (4.49)

Finally the two ratio’s based on normal and bending stress are calculated by the tool:

n n
Ri=o—" - 100%, R,= 2 -100% (4.50)
6 M(gy+0,57)
St T — ¢ T

The tool is then able to plot the values of these ratios unto the shell surface and also show the

direction of the considered principal normal forces with vectors (Fig. 4.17 and Fig. 4.18).
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Fig. 4.17 - Results ratio R1 on hypar shell under uniform

Fig. 4.18 - Results ratio R2 on hypar shell under uniform
distributed load

distributed load
Next the tool also calculates the ratio based on the load carried by the S-surface and the load carried

by the B-surface. It simply uses the following equation (where pg and pp are received values of

input from the shell calculation component):

Ps (4.51)

R3=—
Pp + Ds

To obtain even quicker insight into the results the values of the ratio for each point are plotted
with a colour. Values closer to 1 will be green and values closer to zero red. Thus green indicates
that more load is carried by the stretching surface which is considered a more efficient way of
carrying the loads, while red indicates more load is carried by the bending surface. An example of

the result of the component is given below (Fig. 4.19):

Fig. 4.19 - Result R3 from shell assessment component for a hypar shell under uniform distributed load
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5. Results and validation

5.1. Introduction
As been stated in section 1.2, the next steps to be undertaken in this thesis are the following:

e Choose several test cases and use the tool to analyse them

e Validate the results in a qualitative and quantitative manner by comparing the results to

analytical solutions or FEM results

When choosing which shell shapes should be analysed it is presumed that it is best to start from
simple to more complex shapes. Thus for testing the developed tool the following shapes are

chosen:

1. Plate loaded out-of-plane as a limit case of a shell

Plate loaded in-plane as a limit case of a shell

Modified basic shell shape

2
3. Basic shell shapes: elpar, cylindrical paraboloid, hypar
4
5. Hallenbad shell shape

For comparing and validating the results we shall mainly use the FEM program SCLA Engineer. The
solver of SCIA Engineer uses elements which are combined plate-membrane elements (see
Appendix B for more information concerning SCIA’s type of elements). Besides using SCIA
Engineer for comparison, also known analytical solutions provided by Pavlovic (1999) shall be

used in the test case of the basic shell shapes (5.4).
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5.2. DPlate loaded out of plane as a limit case of a shell
In this first test case a plate in bending will be approximated. This is done by providing a shape

function for the shell with almost zero curvature’. The ‘plate’ is chosen to be 9m long and 6m wide.
An atbitrary load is applied on the surface. On one half of the surface a load of 1 kN/m’
downwards is applied and on the other half a load of 0,5 kN/m?* upward is applied. The material
is steel with E=210000N/mm? and a thickness of 20mm. Also several different (bending) boundary
conditions are applied on the edges: edge A is a free edge, edge B and D are a fully clamped edges
and edge C is a hinged edge. In the parametric model a mesh size of 0,5m is chosen. For
comparison the plate is modelled with the same properties and loading in SCIA Engineer.
We set v = 0,0001 (in SCIA the Poission’s ratio cannot be set exactly to zero and this is the

smallest value allowed). Furthermore the mesh size in SCIA is set to 0,5m.

Shell surface

Alry Stress Function ¢

Displacements w

Fig. 5.1 — Results deformations SCIA Engineer
Fig. 5.2 - Results parametric tool

When the first results are compared in a qualitative manner by looking at the deformations a very
good correspondence appears. In the figures above the initial results are shown. On the left is the
result of the deformed plate calculated in SCIA Engineer, on the right we see the result of the
parametric tool. The green surface represents the original shape of the plate/shell with the applied
loading visualized. The purple surface underneath is the projected Airy stress function field. As
expected the Airy stress function has a value of virtually zero everywhere (which means that the
normal forces are also virtually zero everywhere). The orange surface then represents the projected
displacement field which corresponds well with the result from SCIA Engineer. Next more precise

results will be given for the quantities relating to plates in bending.

3 We cannot simply enter as a shape function z = 0 however, since this will result in a singular matrix. We therefore
use z = 0,0000001*(x?+y?) which results in a virtually flat shell (i.c. a plate) and does not lead to a singular matrix.
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5.2.1. Results displacements w

Uz [mm]

Fig. 5.3 - Displacements SCIA

Fig. 5.4 - Displacements parametric tool close-up

Exact results will now be given along the

lines:
x = -1,5m j
y =-1,0m I x
T ~y=4£m

x=-1,5m

Exact results of the displacements w:

x coordinate [m]

y coordinate [m]
-45 -4 -35 -3 -25 -2 -15-1-050 05 1 15 2 25 3 35 4 45

-3 -2 -1 0 1 2 3
6]

-80 _80

Displacement Displacement

w [mm] w [mm]
—8—Resulis SCIA == Results SCIA
=& Results parametric tool
—8— Results parametric tool
Fig. 5.5 - Results displacements along x = -1,5m Fig. 5.6 - Results displacements along y= -1,0m
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5.2.2. Results bending moments
Results m,.:

m [kNm/m]

240
210
1.80
1.60
1.30
1.10

Fig. 5.7 - mxx field SCIA

Exact results of mxx:

Fig. 5.8 - mxx field parametric tool

i [kWm/m]

25

-3 -2 -1 o 1 2 3

y coordinate [m]

—&— Results 5CIA

—&_ Results parametric tool

Fig. 5.9 - Results mxx along x = -1,5m

mxx [kKNm/m}

25

x coordinate [m]

-1.5

—@—Results SCIA

—@—Results parametric tool

Fig. 5.10 - Results mxx along y= -1,0m
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Results My

Fig. 5.11 - myy field SCIA

Exact results of myy:

Fig. 5.12 - myy field parametric tool

myy [kNm/m]

1

y coordinate [m]

—®— Results SCIA

—&— Results parametrictool

Fig. 5.13 - Exact results myy along x = -1,5m

myy [kNm/m]
0.6

x coordinate [m]

4.5

-0.1

—8— Results SCIA

—@— Results parametric tool

Fig. 5.14 - Exact results myy along y = -1,0m
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Results my,,:

mxy [kNm/m]

1.40

&
Fig. 5.15 - mxy field SCIA

Exact results of mxy:

Fig. 5.16 - mxy field parametric tool

mixy [kNm/m]

0.2

015

y coordinate [m]

-0.05
-0.1
—e—Results SCIA

== Results parametric
tool

Fig. 5.17 - Exact results mxy along x = -1,5m

mxy [kNm/m]

1

0.8

0.6

0.4

0.2

x coordinate [m

]

-4.5 -3

-0.6

—8— Results SCIA

—&— Results parametric tool

Fig. 5.18 - Exact results mxy along x = -1,5m
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5.2.3. Results shear forces
Results v,.:

va [kN/m] "y
2.02 . oaaaesiiiel Ee
160 5
130
100
0.60
0.30
0.00
030
080
090

-1.30
-1860
-2.00

Fig. 5.19 - vx field SCIA

Fig. 5.20 - vx field parametric tool

Exact results of vx:

vx [kN/m)]

0,2

vx [kN/m]
25

rdinate [m]
45 3 3 45
-15
-2
-0,3
—8—Results SCIA
=—a— Results SCIA
—@— Results parametric tool
=—#— Results parametric tool
Fig. 5.21 - Exact results vx along x = -1,5m Fig. 5.22 - Exact results vx along y = -1,0m
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Results Vy:

Lw [kN/m]
1.03

0.60

0.30
-0.00
-0.30
-0.60
-0.90
-1.20
-1.50
-1.80
=210
-2.40
-270
-3.00
-3.48

Fig. 5.23 - vy field SCIA

Exact results of vy:

Fig. 5.24 - vy field parametric tool

vy [kN/m]

—a—Results SCIA

=== Results parametric
tool

Fig. 5.25 - Exact results vy along x = -1,5m

vy [kN/m]
0.5

0.4

03

02

0.1

-0.3

-0.4

—8— Results SCIA

—@— Results parametric tool

Fig. 5.26 - Exact results vy along y = -1,0m

x coordinate [m]

3 4.5
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Results v,;:

gmax-b [kN/m]

350
3.00
270
| 240
210
| 180
150
| 120
0.90
0.60
0.03

Fig. 5.27 - vn field SCIA Fig. 5.28 - vn field parametric tool

Exact results vn:

vn [kN/m]

4

vn [kN/m]
25

x coordinate [m]

o
y coordinate [m] 45 3 15 0 15 3 45
©
-3 -2 -1 0 1 2 3
—8— Results SCIA
—@— Results SCIA .
—8— Results parametric tool
—@— Results parametric tool
Fig. 5.29 - Exact results vn along x= -1,5m Fig. 5.30 - Exact results vn along y = -1,0m
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5.2.4. Results sum of bending moments and principal shear forces
Results derivative component and rain flow analogy component:

b | - | R
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Fig. 5.32 - Sum of bending moments field with vectors in

Fig. 5.31 - Sum of bending moments field with vectors in R X N
steepest direction (top view)

steepest direction (3d)

Fig. 5.33 - Principal shear force trajectories (3d) Fig. 5.34 - Principle shear force trajectories (top view)
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5.2.5. Discussion of the results
From the previous results the following can be observed:

In general, when compared to the results of SCIA the results of the developed tool
correspond very well.

Only at the edges a slight inaccuracy occurs with the calculation of the shear forces. This
seems to be explained by the fact that the pre-built Grasshopper sub-components which
are used in the derivative component and which have to calculate the slope of the m-hill
surface have some trouble dealing with edges of surfaces.

It is clear that all the applied load is carried by the B surface since the Airy stress function
field is virtually zero everywhere, indicating that no stretching forces occur.

The way in which the results of quantities are presented as projected surfaces give the user
a better sense of the relative magnitude of the quantities at every point of the structure.
Thus, it seems that a plate in bending can be approximated well by the developed

parametric design tool for shells.
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5.3. Plate loaded in-plane as a limit case of a shell
In this second test case a plate loaded in-plane will be approximated. This is again done by

providing a shape function for the shell with almost zero curvature. The ‘plate’ is chosen to be 12m

long and 4m wide. A line load on edge B is applied of 100kN/m. The thickness and Young’s

modulus can be chosen arbitrarily since only the internal forces are of interest in this investigation

and they do not depend on the thickness or the Young’s modulus. Different (stretching) boundary

conditions are applied on the edges: edge A is a fixed edge, edge B is a free edge and edge C and

D are chosen as semi-rigid (meaning that only the displacement parallel to the edge are restrained).

For comparison the plate is modelled with the same properties and loading in SCIA Engineer. We

set v = 0,0001 (in SCIA the Poission’s ratio cannot be set exactly to zero and this is the smallest

value allowed).

=X

IE_|II_|II_|II_|II_|II_|II_‘J

N I S O N N s S I A N S SO A L L SIS S

e oy e ey ey e B e e I ]

Fig. 5.35 - Plate loaded in plane modelled in SCIA

In the parametric model a mesh size of 0,5m
is chosen. On the right (

Fig. 5.306) the first results are given. As can
be seen, the displacement field is virtually
zero everywhere, indicating that no bending
action occurs. The Airy stress function field
is mainly curved in the x-direction
indicating large values for n,, can be
expected. Next results for Ny, , Ny, and
Ny, will be given as well as graphs of the

values along lines of interest.

Shell surface

Airy Stress Function ¢

Displacements w

Fig. 5.36 - ‘Plate’ loaded in-plane modelled in parametric
tool with Airy stress field and displacement field
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5.3.1. Results normal forces

Results 11,

[nx [kN/m]
747

3.00
0.00

-3.00

-10.00

-18.00

-27.00

-32.00

Fig. 5.37 - nxx field SCIA

-38.00
-44.00
-50.00
-55.00
-61.00
-57.00
-72.00
-78.00
-54.45

e

Fig. 5.38 - nxx field parametric tool

x coordinate along y = +2 [m]

5 -4 3 2 1 0
0

-100
nxx [kN/m]

—8—SCIA —@— Parametric tool

Fig. 5.39 - nxx along liney = +2m
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Results Nyy:

ny [kN/m]

0.05

-6.00
-13.00
-20.00
-26.00
-33.00
-40.00
-45.00
-53.00
-50.00
-66.00

-73.00

-20.00
-86.00
-93.00

-100.00
-108.31

Fig. 5.40 - nyy field SCIA

Fig. 5.41 - nyy field parametric tool

x coordinate along y = -2 [m]
-6 5 -4 3 2 -1 0
0

-20

-40

-60

-80

-120
nyy [kN/m]

—8—SCIA —@—Parametric tool

Fig. 5.42 nyy along y = -2m
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Results 1y,

Fig. 5.43 - nxy field SCIA

Lnxy [kN/m]
4157

36.00
30.00
25.00
20.00
15.00
10.00
5.00
0.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-36.00
-41.57

-2 -1.5 -1 -0.5 0 0.5 1
o

-60
nxy [kN/m]

—8—SCIA —@— Parametric tool

Fig. 5.44 - nxy field parametric tool Fig. 5.45 - nxy along line x = -6 m

y coordinate along x = -6m [m]

15 2
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5.3.2. Discussion of the results

From the previous results the following can be observed:

In general, when compared to the results of SCIA the results of the developed tool

correspond very well. In general the results differ less than 5%.

Only near the upper corners where the load is applied some differences occur. These might
be explained by the fact that some inaccuracies will inevitably occur in the solution of the
FEM when two edges with different boundary conditions and loadings meet at a corner.
Moreover it is common that near the corner stress concentrations occur which would

require a very fine mesh to calculate accurately.

It appears that a plate loaded in-plane was thus successfully approximated by the tool as a
limit case of a shell. However, during this research problems relating to the stretching
boundary conditions of a plate or shell have been encountered, which will unfortunately
have a big impact on the remaining part of this thesis. These problems will be discussed

next.

5.3.3. Problems with the stretching boundary conditions
It was shown that the tool was able to successfully calculate a plate loaded in-plane. However,

during this research it was discovered that not all plates which are loaded in-plane can be

successfully modelled by the tool (nor by the tool developed by D. Liang (2012) for that matter).

Problems occur in the situation where only the displacements in the corners have been restrained

while the edges that connect to the corners are not necessarily fixed. It was the intent in this thesis

that for all considered shells calculated by the tool, the displacements Uy, U, and w would be

restrained for at least the four corner points, even though for example all the edges were free. To

continue with shells with these sorts of boundary conditions, it therefore also had to be possible

for the tool to calculate a plate loaded in-plane which only had displacement restrictions at the

corners (Fig. 5.46).

Fig. 5.46 - plate in stretching with only corners fixed
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In the end, it did not seem possible to implement conditions using the Airy stress function and the
finite difference method to ensure the desired restrictions. The problem is caused by the fact that
it is not clear which expression in terms of the Airy stress function should be used in the boundary
condition component to ensure that the displacements of the corner points will remain zero when
the edges themselves are not necessarily fixed. Boundary conditions of the corners need to match

with the boundary conditions of the corresponding edges it seems, to produce good results.

Also the expressions found by Zienkiewicz and Gerstner (discussed at 3.2.9) appear to be only
applicable for the situation where displacements across a distance are all zero, but not for the
situation where the displacements of only a single point (i.e. a corner) is specified as zero. This can
be explained as follows. Consider an edge parallel to the y-axis, the condition which has to be

tulfilled according to these authors for the displacements to be zero is:

1 (03 03 1 (9% 5.1
Et\ dx3 d0x0dy? Et\ 0x?

It turns out that these expression can be rewritten and are actually equal to the derivatives of U,

and Uy:

1 a3¢>+2 0%p \ _ 0%u, 1 (0%¢\ oOu, (5.2)
Et\ 0x3 dxdy2)  ay?’ Et\ox2 ] oy

When an edge in the y-direction is fixed the displacements will be zero across the edge and so also
these derivatives of U, and u,, to y will be zero. But this does not follow for only a single point on

that edge which is fixed while the surrounding points are not, thus the problem remains.

However, it turns out that when all edges have semi-rigid boundary conditions (i.e. only the
displacements in the direction parallel to the edge are zero) the condition that the four corner
points are restrained will be fulfilled automatically and the boundary conditions can always be
successfully expressed in terms of the Airy stress function. Therefore the decision was made that
for the remaining part of this thesis only shells with semi-rigid boundary conditions shall be further
investigated. The challenge for successfully implementing all types of boundary conditions should

be considered as an opportunity for future research.
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5.4.

5.4.1. Elpar, cylindrical paraboloid and hypar

Basic shell shapes

Next, three basic shell shapes shall be considered which have also been analysed by M.N. Pavlovic

(1999), namely: an elpar, a cylindrical paraboloid and a hypar.

Elpar Cylindrical Paraboloid

1
zgp = —z—=(x*+y?)

300

1
Zep = _%(xz)

1

Zyp = _%(xz -y

Fig. 5.47 - Basic shell shapes (images from Bouma 1959)

The shape functions that were used for each shape are given above. All edges were considered

hinged and semi-rigid, implying: oz

9’w _ 9*w _ 9%¢p _ 9%¢p _

ay2 ~ ox2

properties were chosen for all three shells:

a = b = 18m (plan dimensions)
E = 40kN /mm? (concrete)

= 372

0 at all edges. Furthermore, the following

p = —2,22kN /m? (uniformly distributed on whole surface)

t =100mm

Pavlovic used a rather elaborate method employing an eight-order differential equation® and double

Fourier series. In this thesis the same shell shapes will be analysed with the same properties and

loading and will be compared to the results of Pavlovic. Note that the Young’s modulus used by

Pavlovic is relatively high for concrete, a more realistic value would be E = 10kN /mm?, however

since this is mainly a theoretical investigation and we want to compare the results for this test case

using the same properties as much as possible E = 40kN/mm? will still be used in the tool. In his

article Pavlovic does use a non-zero Poisson ratio of v = 0,15 however, thus some differences in

results can be expected upfront. The mesh size in the parametric tool is set to 1m.

* As shown by Vlasov (1964), one can combine the coupled equations (3.2.8) for shallow shells to one single equation.
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In his article the results for the transverse displacements, normal forces ny, and n,,, moments
m,,, and My, are given. Also Pavlovic provides graphs indicating how much load is carried by the

S-surface and by the B-surface. These quantities will also calculated with the developed tool.

5.4.2. First results parametric tool
After specifying the shape function, boundary conditions, loading and material properties the tool

shows the first results presenting the shape of the shell, the Airy stress function field and the

displacement field:

Shell surface

‘tr " Shell surface Shell surface

ey

Airy Stress Function ¢

Alry Stress Function § Alry Stress Function §

Displacements w

Displacements w Displacements w

Fig. 5.49 - First results cylindrical Fig. 5.50- First results hypar

Fig. 5.48 - First results elpar paraboloid

By looking at the geometry of the shell, the Airy stress function field and the displacement field

one can already establish that:

e The shell shapes Pavlovic chose are in fact very shallow.

e The hypar shows a displacement field with large displacements and curvatures and a very
shallow Airy stress function field, indicating plate like behavior.

e The elpar shape seems to have an Airy stress function field and displacement field with
smaller magnitudes and curvatures when compared to the cylindrical paraboloid, indicating

smaller moments and normal forces.

Next more precise results will be given by comparing graphs including results produced from the
tool with graphs from Pavlovic his article. It will be seen whether the tool can provide accurate

results for these basic shell shapes.
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5.4.3. Results displacements w
(along the diagonal from corner to centre):

Distance from corner to centre [m]

corner centre
. /‘ o o7 ' QR:EI ; 0 32 6V2 92
: ! i EP
-0 P -40
-80 |- -80
2120 | -120
160 E -160
=
-200 - -200
20 -240
HP
-280 | -280
HP
-320 | -320
w (mm)
Fig. 5.51 - Results Pavlovic: displacements along Fig. 5.52 - Results parametric design tool: displacements
diagonal along diagonal
5.4.4. Results normal forces
Results 1y, (from the middle of the edge to the centre):
Nx(kN/m) Distance from edge to centre [m]
or 80
wl HP 10 HP
edge
N : : : ] 0 3 6 9
3m 6m 9m
-40 -40
-80 *80
i -120
E
£
160 AZ_‘, 160
=
EP % EP
00 < 200
o -240
w0 -280
320 | -320
380 cp -360
cP
-400 -400

Fig. 5.53 - Results Pavlovic: nxx . . .
Fig. 5.54 - Results parametric design tool: nxx
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Results 1, (along the diagonal from corner to centre):

Distance from corner to centre [m)]

Ny (KN/m) 0 32 612 92
wl 40
corner centre
/ ﬁﬁm \
0 - , T . ‘ 0
3Zm 9Zm
wh HP 40 P
80 - -80
0 - -120
-160 | L IS
£ 160
e > £
wor ~ -200
a0 |- E -240
0 - -280
w0 -320
sor -360 e
=l e -400
ka0~ -440
Fig. 5.55 - Results nyy by Pavlovic Fig. 5.56 - Results nyy parametric tool
5.4.5. Results moments
Results m,,, (from the middle of the edge to the centre):
Distance from edge to centre [m]
edge :emu] N N . 5
0 T .iyn — Eum I Ly o N
P \ EP
cP —_ . e e—————————2
st E ® T cP
= \
E N
-10 E 10 N
= AN
15 - E s AN
2 Sa,
c
(1]
-20 E “u
<} :
E e
-28 1 gﬂ 25 ‘c
- e ﬁP-
c
30+ HP & =0
351 35
M, [kNm/m )
Fig. 5.57 - Results Pavlovic: myy Fig. 5.58 - Results parametric design tool: myy
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Results my,,:
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Mgyl kNm/m)

HP
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0 1

centre

5.4.6. Results Ps and Pb

3j§'m

Fig. 5.59 - Results Pavlovic: mxy
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Twisting moments mxy [kNm/m]
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Load carried by stretching surface along the diagonal:
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-3.0

Normal pressure (kN/m*)
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ijm
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Fig. 5.61 - Results Pavlovic: Ps along the diagonal
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-25

HP

32

6v2

Distance from corner to centre [m]

Fig. 5.60 - Results parametric tool: mxy

32

Applied pressure
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Fig. 5.62 - Results parametric tool: Psalong diagonal
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Load carried by bending surface along the diagonal:

Distance from corner to centre [m]

0 332 642 942
1
Normal pressure (kN/m?)
05 EP 0.5 EP
corner CP
. / 5Zm centre 7 . cP
" ‘ ) ; ' QJ—lﬂ‘m
05
-1
-15
-2
H Applied pressure
-25
=25 | . HF
applied pressure
0l -3
Ph [kN/m2]
Fig. 5.63 - Results Pavlovic: Pp along the diagonal Fig. 5.64 - Results parametric tool: Ppalong diagonal
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5.4.7. Results shell assessment

Results shell assessment component elpar (top view):
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Fig. 5.66 - Results n2 vector (elpar)
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Fig. 5.67 - Results R1 ratio (elpar) Fig. 5.68- Results R2 ratio (elpar)
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Fig. 5.69 - Results R3 ratio (elpar)
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Results shell assessment component cylindrical paraboloid (top view):
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Fig. 5.70 - Results nl vector (cylindrical paraboloid) Fig. 5.71 - Results n2 vector (cylindrical paraboloid)
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Fig. 5.72 - Results R1 ratio (cylindrical paraboloid) Fig. 5.73 - Results R1 ratio (cylindrical paraboloid)
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Fig. 5.74 - Results R3 ratio (cylindrical paraboloid)
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Results shell assessment component hypar (top view):
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Fig. 5.75 - Results nl vector (hypar) Fig. 5.76 - Results n2 vector (hypar)
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Fig. 5.77 - Results Rl ratio (hypar) Fig. 5.78 - Results R1 ratio (hypar)
0 1071 1 1 01 1 1 101 1 1 01 1 1 1 no
1 1101 1 101 1 1 101 01 1 01 1 1 R
! 1 ), 1 1 1 01 01 101 1 1 12 1 1
11 ot ) (1 1. 01 01 ¢ 10 00 01 101 01 02 01 i1
1 1 11 31 1 i} (4] 0 0. 00 0o 0 1 1 1 1 i1
1 1 101 Q QO 010101 1 01 00 ol 1 1 1 1
1 1 1 1 O L0 =01 02 ED 0 01:0100 04 1 1 1
1 101 0 O L0 =02 L02 FD 0 0. 0100 0 1 1 pd
1 101 0 0 0 0 0.2 FO.3 H, 0. 0.1 0.0 0 1 .
11 1 100 00 F0A H02 02 FO2 FO2 L02 H01 0.0 00 1 1
1P 0t B 00 Fo 1 02 02 201 01 00 01 01 1 B
1 101 061 L] O W01 0 F0 1 RO D 0 0 1 1 1
1 1 101 01 4] [e] (§] a 0 00 00 1 1 1 1 1
1 1 2 1 1 101 0 a 0 1 1 1 01 2 1 1
1 102 1 01 1 1 1N 1 1 01 2 2 1A
1 101 1 1 01 1 1 I 101 1 1 N
1.0 1 101 1 1 1 01 01 101 1 1 1 01 1 el

Fig. 5.79 — Results R3 ratio (hypar)
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5.4.8.

Discussion of the results

From the results the following can be observed:

In general, when compared to the results of Pavlovic the results of the developed tool
correspond very well.

The differences in the results with respect to m,,,, and my,, can be fully explained by the
fact that Pavlovic takes into account a Poisson’s ratio while in the tool it assumed to be
zero (the Poisson’s ratio should not affect the normal forces however since these do not
appear in the derivatives of the Airy stress function (3.2.6).

Bending action is predominant in the hypar and thus shows similar behavior to that of a
plate in bending, this confirms what authors like Beranek (Beranek W. , 1979) have written
with respect to hypar shells. A further investigation hypar shells compared to a flat plate is
given in Appendix C.

Stretching action is predominant in the centre zones of the elpar and cylindrical paraboloid
shells. The displacements, normal forces and bending moments in the cylindrical
paraboloid are larger compared to the elpar. It seems the elpar performs best.

Edge moments that occur in the elpar are considerably damped out as one moves into the
interior of shell, unlike the other two shapes.

The load carried by the bending or stretching surface can at some points exceed the original
applied load (i.e. ps > p or pg > p) so that for equilibrium the corresponding load on the
other surface becomes ‘negative’ which can be thought of as a sort of suction that occurs.
The results from the shell assessment component for the hypar show that the ratios Ry and
R, are at every point close to zero percent. Also the value of the ratio R3 at every point
seem to be near zero thereby also indicating predominant bending behavior which is in line

with the calculated quantities.
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5.5. Moified basic shell shape

In the previous section three basic shell shapes have been analysed, these shapes were however
very shallow, perfectly symmetrical (square projected floorplan) and had only a uniform distributed
load over the whole surface. In this section a basic shape is chosen but modified with respect to its
shallowness, floorplan and loading. It can then be checked whether the tool still provides accurate

results. The shell is also calculated with SCIA Engineer for comparison of results.

5.5.1. Modified elpar
The shape that is chosen is an elpar with the following shape function and other properties:

1
- _ 2 2
Zgp 20 (x* +y°)
Length = 10m

Width = 5m

E = 10 kN/m? (concrete)

t = 80 mm

Fig. 5.80 - Modified basic shell

A mesh size of 0,5m shall be used in the tool. An arbitrary loading is chosen such that on the left
half of the shell a downward distributed load of 50 kN/m?is applied and on the right half an
upward distributed load of 25kN/m? is applied (Fig. 5.81).

p1 = —50kN/m?,p, = +25 kN/m?

Fig. 5.81 - Shell surface with non-uniform loading

Next the results will be given for: W, Nyy, Ny, Ny, Myy, My, My, Uy, Uy, Uy given as well as
graphs of the values along lines of interest.
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5.5.2. Results displacements w

LUZ [mm]
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=20
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-7.0

-8.0

Fig. 5.82 - Displacement field SCIA

Fig. 5.83 - displacement field parametric tool

x coordinate along y = 0 [m]

-9
w [mm)]

—8—Results SCIA  —@—Results parametric tool

Fig. 5.84 - Results w along line y = 0 m
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5.5.3. Results normal forces

Results 1y
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Fig. 5.86 - nxx field parametric tool

x coordinate along y = 0 [m]
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Fig. 5.87 - Results nxx along line y = 0 m
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Results Nyy:

ny [kN/m]
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Fig. 5.88 - nyy field SCIA
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Fig. 5.89 — nyy field parametric tool

Fig. 5.90 - Results nyy along y = 0 m
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Results 1y,

L nxy [KN/m]
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Fig. 5.92 - nxy field parametric tool
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Fig. 5.93 - Results nxy along line x = 0 m
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5.5.4. Results bending moments

Results m,.:

Fig. 5.94 - mxx field SCIA
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—®— Results SCIA
Fig. 5.95 - mxx field parametric tool

x coordinate along y =0 [m]
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Fig. 5.96 - Results mxx along line y = 0 m
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Results My
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Fig. 5.97 - myy field SCIA

Fig. 5.98 - myy field parametric tool
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Fig. 5.99 - Results myy along line x = -2,5m
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Results my,,:

mxy [kNm/m]

49
420
3.60
3.00
2.40

1.80

1.20

0.50
0.00
-0.60
-1.20
-1.80

-2.40

-3.00

-3.60

-4.20
-4.91

Fig. 5.101 — mxy field parametric tool
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Fig. 5.102 - Results mxy along line x = 0 m
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5.5.5. Results Shear forces

Results v,
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Fig. 5.103 - vx field SCIA

Fig.
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5.104 - vx field parametric tool

Fig. 5.105 — Results vx along liney = 0 m
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Results Vy:

vy [kNim]
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Fig. 5.106 - vy field SCIA

Fig. 5.107 - vy results parametric tool
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Fig. 5.108 - vy results along line x = -2,5 m
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Results v,

i W
TTALY

N 40
i) JE A

\ﬂ(-b [kN/m]
14.81

| 13.00 ]
12.00

11.00 +—
. 10.00 +—
5.00 +—
2.00 —
7.00
6.00
5.00 +—
4.00
3.00
Z.00
0.03

Fig. 5.110 - vn field parametric tool
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Fig. 5.111 - Results vn along y = 0 m

Fig. 5.112 - vn trajectories on sum of bending moments hill (Rain flow analogy)
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Results shell assessment

Fig. 5.115 - Results R1 ratio Fig. 5.116 - Results R2 ratio

Fig. 5.117 - Results R3 ratio
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5.5.6. Discussion of the results
From the previous results the following can be observed:

In general, when compared to the results of SCIA the results of the developed tool
correspond well.
The tool can handle non-uniform distributed loads and still provide sufficiently accurate

results.

Bending action becomes more dominant near the edges and in the middle where the applied
loads change in magnitude and direction.

Slight differences occur in the results for the shear forces v, this might be explained by
the fact that changes of v, occur rapidly along the considered line and so a smaller mesh
size is required for more accuracy. The finite difference method works better for smooth
varying quantities.

From the results from SCIA it follows that on the edges near the corners the bending
moments and normal forces are not zero, even though theoretically they should be. By
contrast the results from the parametric tool do show the bending moments and normal
forces to be zero since these are ‘enforced’ to be zero through the boundary condition
component. This also shows a fundamental difference between the methods of the finite
element method and the finite difference method used by the parametric tool. The finite
difference methods simply approximates the solution of specific differential equations by
using derivatives. The finite element method is much less straightforward in determining
and presenting the results. For example, with the FEM there are discontinuities with respect
to the forces and stresses at the nodes of the elements (this is caused by the fact that the
FEM needs to extrapolate quantities from the integration points which are located inside

the element).
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5.6. Hallenbad shell shape

In the previous sections several basic shell shapes have been analysed and discussed. The geometry
of the surfaces of those basic shell shapes were determined by shape functions. In this section a
more arbitrary shell shape shall be analysed. This shape is not determined through the use of a

shape function, but rather a NURBS surface is provided as input.

5.6.1. Hallenbad shell analysis
In the following test case a shell shape will be analysed which is based on a shell designed by Heinz

Isler, namely the Hallenbad (Fig. 5.118) in the city Brugg in Switzerland. The shell is 35m long and

35m wide and made of concrete.

Fig. 5.118 - Hallenbad shell designed by Heinz Isler (Brugg, 1981)

Using a special 3D scanner, A. Borgart and P. Eigenraam (2012) were able to scan scale models
that were originally made and used by Heinz Isler. The results of such a scan, called “cloud points”,

were then converted to NURBS surfaces (Fig. 5.119).

Ualéu&s___&'i::f&: o [ B8y,

Fig. 5.119 - 3D scanning proces (image from Borgart and Eigenraam 2012)
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One of the scale models that were scanned was a scale model of the Hallenbad (Fig. 5.120). The
NURBS surface that was obtained will now be used as input in the parametric tool. There might
be a worry that the shape of the shell does not at every point fulfil the conditions to qualify as a
shallow shell. For example, it can be observed that near the corners the shell has a quite large slope.
If the shell does not qualify as a shallow shell the results produced cannot be expected to be
accurate. Therefore a second shell surface based on the original is made and also analysed. This

second shell is the same as the original but made more shallow by scaling it a factor 0,5 in z-

direction (Fig. 5.121).

Fig. 5.120 - Original shell shape

Fig. 5.121 - Flattened shell shape

For both shell shapes the following properties are chosen for the analysis:

a = b = 35m (plan dimensions)

E = 40kN /mm? (concrete)

p = —10kN/m? (uniformly distributed on whole surface)
t =100mm

Furthermore we specify the boundary conditions on the edges to be semi rigid and hinged implying

?w 2w 3%¢  9%¢ . . .
oz oy ok ayr 0 on all edges. Both shell shapes will be analysed in the parametric

tool with a mesh size of 2,5m and 1,25m so that it can be seen how mesh size is related to the

accuracy of the results. For comparison both shell shapes are again calculated with SCIA Engineer.
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First results parametric tool
When the shapes are given as input in the parametric tool one can gets the following first results

from the shell calculation component:

Shell surface

Shell surface

Airy Stress Function ¢

Airy Stress Function ¢

Displacements w

L

Fig. 5.122 - First results parametric tool (original shell
shape)

Fig. 5.123 - First results parametric tool (flattened shell
shape)

By looking at the displacement field and Airy stress function field the following can be already
observed: the displacement field of the flattened shell shape shows larger displacements and
curvatures than that of the original shell shape. Thus more bending action can be expected for the
flattened shell. Also the Airy stress function field seems to have larger values for the flattened shell.
Indicating that at least at some points the normal forces will be bigger for the flattened shell as

well. Next more precise results are given for: W, Nyy, Ny, Ny, Mg, Ny, My, My, My, My, My

Vy, Uy, Up along lines of interest.
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5.6.2. Results displacements w

Original shell shape:

E s = o e s

===
Fig. 5.124 - Results SCIA displacements (original shape)

Flattened shell shape:
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Fig. 5.125 - Results SCIA displacements (flattened shape)

Exact results displacements w:
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Fig. 5.126 - Displacements from mid-edge to centre
(original shell shape)
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Fig. 5.127 - Displacements from mid-edge to centre
(flattened shell shape)
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Distance from corner to centre [m]
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Fig. 5.128 - Displacements along the diagonal (original
shell shape)
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Fig. 5.129 - Displacements along the diagonal (original
shell shape)
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5.6.3. Results normal forces

Results 11,

[
Fig. 5.132 - nxx field SCIA (flattened shape)
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Fig. 5.130 - nxx field SCIA (original shape) Fig. 5.131 - nxx field parametric tool (original shape)
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Fig. 5.133 - nxx field parametric tool (flattened shape)
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Exact results 7,
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—8—Results 5CIA
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Fig. 5.134 - nxx (original shell shape)
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Fig. 5.135 - nxx (flattened shell shape)
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Results Nyyt

Fig. 5.136 - Results SCIA nyy (original shape)
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Fig. 5.137 - nyy field parametric tool (original shape)
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Fig. 5.138 - nyy field SCIA (flattened shape)
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Fig. 5.139 - nyy field parametric tool (flattened shape)
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Exact results Nyyt

Distance edge to centre [m]

0 25 5 75 10 12.5 15 17.5

-200

-600

-800

-1000

-1200

nyy [kN/m]

—8—Results SCIA
—8—Results parametric tool (mesh 1,25m x 1,25m)

—@— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.140 - nyy (original shell shape)
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Fig. 5.141 - nyy (flattened shell shape)
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Results 1y,

nxy [kN/m]
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Fig. 5.142 - nxy field SCIA (original shape)
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Fig. 5.143 - nxy field parametric tool (original shape)

Fig. 5.144 -nxy field SCIA (flattened shape)

nxy [kN/m]
1586.00
1395.00
1195.00
995.00
795.00
585.00
385.00
195.00
0.00
-200.00
-400.00
-600.00
-300.00
-1000.00
-1200.00
-1400.00
-1587.00

Fig. 5.145 - nxy field parametric tool (flattened shape)
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Results 1y,

Distance corner to centre [V2 m]
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nxy [kN/m]

—&—Results SCIA
—@— Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.146 - nxy (original shell shape)
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—&—Results SCIA
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—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.147 - nxy (flattened shell shape)
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Results ny:

n1 [kh/m]
132926
1215.00
‘ 1100.00
990.00
875.00
760.00
650.00
535.00
425.00
310.00
195.00
85.00
-30.00
-140.00
-255.00
-370.00
-483.15

Fig. 5.148 - n1 field SCIA (original shape)

Fig. 5.149 - n1 field parametric tool (original shell)

3| n1 kimy
i | 180246
1720.00
1555.00
1390.00
1229.00
1060.00
895.00
730.00
65.00
400.00
235.00
000
5000
-255.00
—&20.00
-535.00
-750.05

Fig. 5.150 - n1 field SCIA (flattened shell)

Fig. 5.151 - n1 field parametric tool (flattened shell)
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Exact results n:

Distance edge to centre [m]
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—8—Results 5CIA
—@8—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.152 - n1 (original shell shape)
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—@—Results SCIA

—@&—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.153 - nl (flattened shell shape)
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Results n,:

Fig. 5.154 - n2 field SCIA (original shape)

n2 [kN/m]
938.19
815.00
630.00
560.00
440.00
310.00
185.00
60.00
-50.00
-185.00
-310.00
-435.00
-560.00
-£85.00
-810.00
-935.00

-1062.07

Fig. 5.155 - n2 field parametric tool (original shape)

AT
Fig. 5.156 - n2 field SCIA (flattened shape)

n2 [kN/m]
665.31
530.00
380.00
255.00
160.00
0.00
-160.00
-295.00
-435.00
-570.00
-710.00
-845.00
-580.00

-1120.00
-1260.00
-1385.00
-1533.69

Fig. 5.157 - n2 field parametric tool (flattened shape)
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Exact results n,:

Distance edge to centre [m]
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n2 [kN/m]

—®—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.158 - n2 (original shell shape)

Distance edge to centre [m]

0 2.5 5 7.5 10 125 15

-200

-400

-600

-800

-1000

-1200

n2 [kN/m]
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—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.159 - n2 (flattened shell shape)

17.5
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5.6.4. Results bending moments

Results m,.:

D‘ [kNm/m]

12.00
7.00
4.00
2.00
-2.00
-5.00
-8.00
-11.00
-14.00
-18.00
-21.00
-24.00
-27.00
-31.00
-34.00
-37.00
-41.00

Fig. 5.160 - mxx field SCIA (original shape)

Fig. 5.161 - mxx field parametric tool (original shape)

Fig. 5.162 - mxx field SCIA (flattened shape)

bx [kNmim]

18.00
15.00

Fig. 5.163 - mxx field parametric tool (flattened shape)
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Exact results m,,:

20
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-10

Distance edge to centre [m]

0 25 5 75 10 12.5 15 17.5

IMXX

[kNm/m]

—&— Results SCIA
—8— Results parametric tool (mesh 1,25m x 1,25m)

—8— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.164 - mxx from edge to centre (original shell)

Distance edge to centre [m]
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mxx
[kNm/m]
—8—Results SCIA

—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.165 - mxx from edge to centre (flattened shell
shape)
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Results My

By [KNm/m]

19.00
15.00
11.00
.00
4.00
1.00
-2.00
-5.00
-9.00
-12.00
-16.00
-19.00
-23.00
-26.00
-30.00
-33.00
-38.00

Fig. 5.166 - myy field SCIA (original shape)

Fig. 5.167 - myy field parametric tool (otignal shape)

Fig. 5.168 - myy field SCIA (flattened shape)

Iﬂx [kNm/m]

18.00
15.00

Fig. 5.169 - myy field parametric tool (flattened shape)
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Exact results My,

Distance edge to centre [m]
0 25 5 75 10 12.5 15 17.5
14

12

10

myy
[kNm/m]

—8—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.170 - myy (original shell shape)

Distance edge to centre [m]
0 25 5 75 10 12.5 15 17.5
14

12

10

myy
[kNm/m]

—8—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.171 - myy (flattened shell shape)
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Results my,,:

Fig. 5.173 - mxy field parametric tool (original shape)

Fig. 5.172 - mxy field SCIA (original shape)

Fig. 5.175 - mxy field parametric tool (flattened shape)

Fig. 5.174 -mxy field SCIA (flattened shape)
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Exact results my,,:

Distance corner to centre [V2 m]

0 25 5 7.5 10 125 15 17.5
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-20

mxy
[kNm/m]

—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.176 - mxy (original shell shape)

Distance corner to centre [ V2 m]
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—&—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.177 - mxy (flattened shell shape)
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Results my:

|11 [kNm/m]

5027
46.00
42,00
38.00
34.00
30.00
25.00
2000
16.00
12.00
8.00
4.00
0.00
-4.00
-300
-12.00
-17.01

Fig. 5.178 - m1 field SCIA (original shell shape)

Fig. 5.179 - m1 field parametric tool (original shell
shape)

_ |_m1 [kNm/m]

80.59
70.00
€0.00
50.00
40.00
30.00
20.00
10.00
0.00
-10.00
-2814

5 o
Fig. 5.180 - m1 field SCIA (flattened shell shape)

Fig. 5.181 - m1 field parametric tool (flattened shell
shape)
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Exact results my:

Distance edge to centre [m]

0 2.5 5 7.5 10 12.5 15 17.5
20
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-10

m1l
[kNm/m]

—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.182 - m1 (original shell shape)

Distance edge to centre [m]
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[kNm/m]

—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.183 — m1 (flattened shell shape)
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Results m,:

|_mz [kNm/m]

728
4.00

0.00
-4.00

-8.00
-12.00

-16.00

-20.00

-24.00

-28.00
-32.00

-36.00
-40.00
-45.00
-50.00
-55.00
-60.68

]

il 3

=
Fig. 5.184 - m2 field SCIA (original shell shape) Fig. 5.185 - m2 field parametric tool (original shell
shape)

bz [kNm/mi]

1115
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-24.00

-30.00

-36.00
-42.00
-48.00
-54.00
-50.00
-66.00
-72.00

-78.00
-85.73

Fig. 5.186 - m2 field SCIA (flattened shell shape) Fig. 5.187 - m?2 field parametric tool (flattened shell
shape)

il 1 1= i
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Exact results m5:

Distance edge to centre [m]

0 2.5 5 7.5 10 12.5 15 17.5
12

10

m2
[kNm/m]

—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.188 - m2 (original shell shape)

Distance edge to centre [m]
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[kNm/m]

—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—@—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.189 - m2 (flattened shell)
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5.6.5. Results shear forces

Results v,

',r,\\‘l

[y il

i
(| !

a

1

Fig. 5.190 - vx field SCIA (original shell shape)

vx [kNim]
107.15
90.00
20.00
25.00
20.00
15.00
10.00
5.00
-5.00
-10.00
-15.00
-20.00
-25.00
-30.00
-80.00
-80.00
10727

Fig. 5.191 - vx field parametric tool (original shell shape)

TE

Fig. 5.192 - vx field SCIA (flattened shell)

wx [kN/m]
12539
100.00
80.00
£0.00
40.00
2000
0.00
-20.00
-40.00
-50.00
-80.00
-100.00
-12568

Fig. 5.193 - vx field parametric tool (flattened shell
shape)
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Exact results v,,:

Distance corner to centre [V2 m]
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—@—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.194 - vx along diagonal (original shell shape)
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—8—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.195 - vx from along diagonal(flattened shell shape)
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Results Vy:

I

vy [kNim]
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€5.00
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Rt

Fig. 5.196 - vy field SCIA (original s

hell shape)

Fig. 5.197 - vy field parametric tool (original shell shape)
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-40.00
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-0.00
-100.00
-126.58

Fig. 5.198 - vy field SCIA (flattened

shell shape)

Fig. 5.199 - vy field parametric tool (flattened shell
shape)
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Exact results Vy:

Distance edge to centre [m]

vy
[kNm/m]

—@— Results SCIA
—@— Results parametric tool (mesh 1,25m x 1,25m)

—8— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.200 - vy along mid edge to centre (original shell
shape)
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—®— Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.201 - vy along mid edge to centre (flattened shell)
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Results v,;:
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Fig. 5.202 - vn field SCIA (original shell shape)
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Fig. 5.203 - vn field parametric tool (original shell shape)
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Fig. 5.205 - vn field parametric tool (flattened shell)
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Exact results v;:

Distance corner to centre [V2 m]
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—8—Results SCIA
—@—Results parametric tool (mesh 1,25m x 1,25m)

—®—Results parametric tool (mesh 2,5m x 2,5m)

Fig. 5.206 - vn along diagonal (original shell shape)
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Fig. 5.207 - vn along diagonal (flattened shell shape)
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5.6.6. Results sum of bending moments and principle shear forces

Sum of bending moments:
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Fig. 5.208 - Sum of bending moments with vectors in the . . .
g g rome Fig. 5.209 - Top view sum of bending moments surface
steepest direction . . O
with vectors in steepest direction

Principal shear trajectories for the flattened shell:

®

Fig. 5.210 - Principal shear trajectories (3d) on m-hill Fig. 5.211 - Principal shear trajectories (top

view)
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5.6.7.

Discussion of results

From the results the following can be observed:

In general the results from the parametric tool match the results from SCIA better in the
case of the flattened shell shape than for the original shell shape.

In the case of the original shell shape, the results are often not accurate. When compared
to the results from SCIA, one can see relative differences in magnitude up to 40% for
certain quantities. This indicates that the original shell shape is most likely not shallow
enough to be properly modeled by the tool. This is not to say however that for every
quantity this is the case, the results from the parametric tool and SCIA for n,, and n; seem
to correspond quite well. Moreover when the results are plotted, the form of the plot or
graph is often still in line with results from SCIA (i.e. when the results of a certain quantity
in SCIA varies over a specific region, the results produced by the parametric tool will vary
in the same way over that region). In this sense the tool still provides qualitative insight
into behavior of the shell.

In the case of the flattened shell the results from the parametric tool with a mesh of 2,5m
x 2,5m in general produces results that differ between 0% and 10% from the results from
SCIA. For the calculations of the shear forces these differences becomes even larger and
cannot be said to produce accurate results. This might be explained by the fact that more
rapid changes in the magnitude of the shear forces occur and the mesh size is simply to big
to calculate these changes accurately.

With a mesh of 1,25m x 1,25m the results are in general better and differ between 0% and
5% from the results from SCIA. However at the edges or corners bigger differences occur
for the quantities My, Uy, V) and v, between the results from SCIA and from the
parametric tool. At least with respect to the shear forces this can be explained by the fact
that in the parametric tool the derivative component has difficulties with calculating the

correct slope of the sum of bending moments hill at the edges.
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6. Conclusion

6.1. Introduction
In this chapter it will be evaluated whether the main objective and secondary objectives have been

satisfied. Recall from chapter 1 that the main objective was the following:

“Develop a parametric structural design tool for shell structures that can be used by architects and engineers, which
is based on simple analytical methods, which gives both quantitative and qualitative (real time) insight in the flow

and magnitude of forces during a conceptual design stage.”

In order to achieve this goal several secondary objectives had to be satisfied which are listed in 1.2
and can be summarized as: providing the theoretical framework, developing the tool and validating
results. In the next paragraph each of these will be shortly evaluated to see whether the secondary
objectives have indeed been satisfied. After this a list of recommendations is provided. In the end

the final conclusion will be given and determined if the main objective has been achieved.
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6.2. Conclusions

6.2.1. Theoretical framework
With respect to the theoretical framework a two-surface theory proposed by Calladine for

understanding shell structures has been laid out. It was shown that the idea of separating the
behavior of a shell into two distinct parts affords the possibility of thinking separately about two

different aspects of shell behavior while still allowing for the actual interaction between them.

The finite difference method has also been provided as a method which quite literally goes back to
the analytical equations which it needs to solve. It is a more intuitive and straightforward method
which affords the possibility to obtain qualitative insight into the structural problems it needs to
solve, this is especially the case because it can be applied to surfaces. This is important because
working with the results and visualizing the results as surfaces provides more and faster insight
compared to say a table with only numbers. Moreover the finite difference method is very suitable

for computational applications.

Furthermore, the rain flow analogy appears to be a powerful and insightful way of thinking about
certain structural behavior. It is a very suitable method for obtaining qualitative insight in a direct

manner in the way it is used to understand and visualize the principal shear forces trajectories.

With respect to shell behavior assessment methods, two methods of assessments have been
provided. It can be said that these methods together provide a very insightful way of thinking about
the efficiency of a shell. The first method concerning the ratio of bending and normal stress can
be thought of as a very concrete way in which the shell can be said to perform well, its physical
interpretation is very clear because the stress caused by bending and the stress caused by stretching
are real physical quantities. The second method determines shell efficiency based on the ratio of
load carried by the stretching surface and the load carried by the bending surface. This is a bit more
abstract way of thinking about it since the bending surface and stretching surface are not really two
distinct surfaces but are conceptual in nature. Still the two surface concept by Calladine provides
an insightful way of thinking about shells, thus this method of assessing shells is very much in

accordance with that.
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6.2.2. Development of the tool
For the development of the tool use of several computational applications has been made. Rhino

& Grasshopper were chosen and provided the right environment for parametric modelling. Also

VB (Visual Basic) scripting was used to create new components which offers more possibilities

and flexibility.

With respect to the demands which have to be fulfilled concerning functionality and usability the

following can be concluded

e The tool is able to provide real-time results, however with bigger models and higher
number of nodal points a decrease in speed can occur. For shell shapes where a small mesh
size is not necessary per se the tool works fast and results are obtained in a matter of

seconds.

e Options in the tool have been developed to be able to choose in a simple way which- and
how results are presented. When results are presented as surfaces, great qualitative insight
can be gained. Moreover, in the tool it easy to obtain the magnitude of the quantities as

well.

e In the tool parametric modelling becomes possible. Design parameters such as geometry,
material properties and loading can be easily changed and results change accordingly.
However some problems have been encountered with the implementation of the
(stretching) boundary conditions (see 5.3.3). This caused the analysis of shells in this thesis
to be limited to shells with semi-rigid boundary conditions. Still it was shown that a plate
in bending and a plate in stretching with mixed boundary conditions could be approximated

well with the tool.

e Extending the functionality of the tool for future development is certainly possible. This

can be done by adding new parametric components and extending current ones.
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It was envisioned that the tool was able to give as output the following quantities:

e Aliry stress function ¢
e Transverse displacement w

o Internal forces:
- Normal forces
- Principal normal forces
- Sum of normal forces
- Bending moments
- Principal moments
- Sum of bending moments
- Shear forces

- Principal shear forces
e Trajectories of the principal shear force (rain flow analogy)

e Measure for assessment shell behavior

It can be said that by implementing the theoretical framework into the components of the tool, the
tool is able to produce all mentioned quantities. A general outline and structure of the tool has

been given in paragraph (4.4). There it can be seen which components produces which results.

The finite difference method played an important role in many of the components used, these
components were the curvature-, boundary conditions-, shell calculation-, internal forces-, and shell
assessment component. In the shell calculation component the coupled differential equations for
shallow shells are really solved and is considered the most important component. The rain flow
analogy is off course used in the rain flow analogy component and in the derivative component
which were already developed by M. Oosterhuis (2010). Overall, it can be concluded that the

theoretical framework was implemented well within the current developed tool.
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6.2.3. Results
As was stated in chapter (5.1), in choosing which shell shapes should be analysed it was presumed

that it was best to start from simple to more complex shapes. The following shapes were chosen:

Plate loaded out-of-plane as a limit case of a shell
Plate loaded in-plane as a limit case of a shell

1.
2
3. Basic shell shapes: elpar, cylindrical paraboloid, hypar
4. Modified basic shell shape

5

Arbitrary shell shape

Though most of the conclusions concerning these results can be read at the end of each paragraph

of each shell shape, the most important will be summarized here:

e In general the results from the parametric tool provide accurate quantitative as well as
qualitative insight into the structural behavior of shell structures. When the considered shell
shape qualifies as a shallow shell and the mesh size is not chosen too big, one can obtain
results with an accuracy of less than 5% deviation compared to analytical en FEM solutions.

e The tool is able to approximate flat plates in bending with mixed boundary conditions very
well.

e Also a flat plate loaded in-plane with mixed boundary conditions was approximated well
by the tool, however problems with other types of boundary conditions were discovered
(see 5.3.3)

e When stretching boundary conditions in terms of displacements for only the corners of a
plate or shell have been specified, this unfortunately cannot yet be handled by the tool. To
ensure the corner points remain fixed it was chosen to further only consider semi-rigid
boundary conditions on all edges.

e Results for basic shell shapes (elpar, cylindrical paraboloid and hypar) correspond well with
results given by Pavlovic (1999). The elpar is shown to perform best, unlike the hypar which
shows plate like behavior.

e Itis shown that the load carried by the bending or stretching surface can sometimes exceed
the magnitude of the original applied load (i.e. pg > p or pg > p) so that for equilibrium
the corresponding load on the other surface becomes ‘negative’ which can be thought of

as a sort of suction that occurs.
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From the results from FEM solutions it sometimes follows that on the edges (especially
near the corners) the bending moments and normal forces are not zero, even though
theoretically they should be zero there because of the boundary conditions. By contrast the
results from the parametric tool do show the bending moments and normal forces to be
zero in those cases since these are ‘enforced’ to be zero through the boundary condition
component. This shows a fundamental difference between the nature of the finite element

method and the finite difference method used by the parametric tool.

When analysing a shell shape which is not shallow enough, the results are often not
accurate. This seems to be the case of the original Hallenbad shell shape (5.6.1) When
compared to the results from SCIA, one can see relative differences in magnitude up to
40% for certain quantities. This indicated that the original shell shape is most likely not
shallow enough to be properly modeled by the tool. This is not to say however that for
every quantity this is the case, the results from the parametric tool and SCIA for some
quantities correspond quite well. Moreover when the results are plotted, the form of the
plot or graph is often still in line with results from the FEM programm (i.e. when the results
of a certain quantity in SCIA varies over a specific region, the results produced by the
parametric tool will vary in the same way over that region). In this sense the tool still
provides qualitative insight into behavior of the shell.

In the case of shell made more flat (5.6.1) and having dimension of 35m by 35m the results
from the parametric tool with a mesh of 2,5m x 2,5m in general produces results that differ
between 0% and 10% from the results from a FEM program. For the calculations of the
shear forces these differences become even larger and cannot be said to produce accurate
results. This might be explained by the fact that more rapid changes in the magnitude of
the shear forces occur and the mesh size is simply to big to calculate these changes
accurately.

With a mesh of 1,25m x 1,25m in the above mentioned case the results are in general better
and differ between 0% and 5% from the results from the FEM program. However at the
edges bigger differences occur for the quantities Ny, Vy, V) and v,. Some of these
differences are explained by the fact that at certain specific points there is a difference
between what the FEM approximates and what the theoretical value should be. The
parametric tool tries to approximates this theoretical value. It must be kept in mind
however that the theoretical results not always describe physical reality at these special

points of interest.
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6.2.4. Some other cautions and limitations
The theory of (shallow) shells is based, like other areas of the mechanics of solids, on several

simplifying assumptions, so that it can only describe the behaviour of shells with a greater or smaller
degree of error. Moreover, many errors and uncertainties stem from considering the material as
continuous without cracks, homogeneous and isotropic, which is not at all true of reinforced
concrete shells. Other uncertainties stem from the assessment of expected loads on a shell,
inaccuracies in the erection (e.g. deviations in curvature and thickness), chemical and physical
influences (e.g. thermal effects, shrinkage, creep etc.). With the aid of advanced computational
methods the accuracy of the analysis can be improved, limited only by the capacity of the computer,
but it is important to remember that the results cannot be more exact than the computation model
serving as a basis, which, due to unavoidable simplifications, more or less deviates from physical

reality.

6.3. Recommendations
Since the research in this thesis is only one step towards a complete structural analysis tool several

recommendations can be made for future research and extension of the tool. The following

recommendations can be made:

e The tool should be extended by:

- including the possibility for tangential loading, such an inclusion will change some of
the equations used, it should be explored whether these changes can be implemented
in the program

- application of finite difference method for arbitrary meshes so the tool is not limited
to only rectangular shallow shells

- application for non-shallow shells

- including the possibility for buckling analysis of shells

e Exploring use of the so called displacement potential function (Ahmed, 1998) instead of
the Airy stress function, this might solve problems with certain boundary conditions in

terms of displacements
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6.4. Final conclusion

Reflecting on the main objective of this thesis it can be said that it was achieved with reasonable
success. A parametric structural design tool for shell structures has been developed which gives
architects and engineers both qualitative and quantitative insight into the behavior of shell
structures. Some limitations and problems remain however, especially with respect to the boundary

conditions, these provide new opportunities for future research.
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Appendix A - Derivation strain compatibility equation

Change of Gaussian curvatute in terms of strains €y, , €yy, and Yy,

First and second derivative of &, to y:

_ Ouy, N 1 <6w>2
o = 5x T 2 \ox
Oey,  0%uy N ow 02w
dy  0xdy Ox 0xdy

0%eyy 07Uy +6W 3w N 2w\’
dy?  0xdy? 0x dxdy? \0xdy

=A+B+C

First and second derivative of Eyyto X:

ou, 10w\’
=2 3(20)
dy 2\ady

ey, 07w, N ow 9%w
dx  0dxdy Oy 0xdy

0eyy _ uy 0w 0w (0°w ’
0x2  0x2dy 9y 0x20y \0xdy

=D+E+C

Derivatives of Yy, to x and y:

_ 0uy N ou,, N ow Jdw
Vay = dy 0x Ox dy

0%y, 0%u, 0%w, Ow 0°w Ow Ow

0x _6x6y+ dx? +6x axay+@'@
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From the previous derivations it follows that:

0%y, 0%y 0%gy,
dy?  0xdy  0x?

—(A+B+C)+(A+D+B+E+F+C)—(D+E+C) =

F-C=

2w 92w [9*w\’
dx? 0y? d0xdy

This last expression can be recognized as the change in Gaussian curvature (2.xx) from an initial
flat surface. In this thesis we are concerned with shallow shells. Over the region of interest the
surface makes such small angles with a particular tangent plane that the x, y coordinate system for
the plane (with origin at the point of tangency) may be used for the surface without significant loss

of accuracy. Therefore, for shallow shells it follows:

0% 0%yxy  0%gy,
9= dy?  0xdy  0x?

Change of Gaussian curvature in terms of displacements w

Recall from 2.xx the definition of Gaussian curvature

1 1 (2.xx)
kG :kl'kz :R_l'R_Z

Let kq and Kk, be the change of curvatures after deformation in principal directions 1 and 2
respectively. Then by differentiating the previous equation for the Gaussian curvature one obtains

the equation for the change of Gaussian curvature:

1 +1 _K2+K1
IR TR, TR, "R,

Thus two expressions for the change of Gaussian curvature have been obtained which lead to the

geometric compatibility equation for shells:

_ke K 0%y, 0%y 0%gyy
Y=R, "R, T " oayz " oxay ox?
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When one is not working in the principal directions one starts with the following equation for the
Gaussian curvature (2.Xx):

ke = kyx “kyy — kZy

Let Kyy, Kyy be the change of curvatures in the X and y direction respectively and Ky, the change
of the twist of the surface. Then by differentiating the previous equation for the Gaussian curvature

one obtains the equation for the change of Gaussian curvature:
g =kax " Kyy t kyy Ky — 2Kyy Kyy

Next Kyy, Kyy and Kyycan be expressed in terms of the transverse displacements w:

0%w d0%w d0%w
Yoo oy2’ Ky = 0x0y

Substitution gives:

02w 02w d0%w

Thus the compatibility equation can also be formulated as:

%w d%w 2%w 0%y, 0%y 0%gy,

Y ok, tk .
X 9y? Y 0x0y T lyy G2 dy% = 0xdy  0x?

k
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Appendix B - SCIA Engineer elements

Advanced Concept Training - FEM

The elements in Scia Engineer

Type of Element — Solver

The solver of SCIA ENGINEER uses the same element for plates as for the bending behaviour of shell
members. Analogously, the same element is used for walls and for their funcfioning, namely the wall inner
forces.

In a General XYZ environment there are 6 degrees of freedom for each node. Physically, these 6 degrees of
freedom represent the following: the displacements u, v, w and the rotations ¢y, gy, ;. The components of
dizplacement are given in the local axis of the element. So u, v, g represent the plane stress/strain state, w,
o, gy indicate bending/shear force.

The element used in Scia Engineer for the calculation of membrane forces includes a 3-nodes triangle and a
4-nodes guadrilateral with 3 degrees of freedom per node.

[uz, v, 3]

[uz, vs, @3 [us, vy, 4]

R

(s, V1, ] [uz, ¥z, @] [ur, ¥, 1] [uz, vz, e]

For the bending behaviour there are 2 types of elements implementad:
- The Mindlin element including shear force deformation

- The Kirchhoff element without shear force deformation

For more information see ref. [3]. A detailed description of the element used for bending/shear force is given
in ref. [7].

[7] Lynn-Dhillon, 2nd Conf. Matrix Meth. JAPAN - USA, Tokyo, 1971.
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Appendix C - Hypar vs flat plate

In chapter 5.4 several basic shell shapes were analysed one of which was a hypar shell shape. In
this appendix a further investigation is shown with respect to this shape. From the previous results
in 5.4 it followed that bending action was predominant in the hypar shell, now it will be investigated
to what degree a hypar shell really behaves like a flat plate. The same loading, properties and
dimensions as the hypar from 5.4 are chosen but now only the shallowness will be changed. Thus
the original shape function of the hypar was:

Zgp = _ﬁ(xz -y

Now a shape function which equals (almost) zero is analysed to approximate a flat plate in bending,

as well as two shape functions which are steeper than the original hypar:

+  Shell surface HIT '_ Shell surface

Airy Stress Function ¢

Mormal force maot Normal force mo

Displacements w Displacements w

Moments micx Moments mx NMoments mio:

1 1
ZEP=—%(x2—y2) ZEP=_ﬁ(x2_y2) zgp = 0

From the first results produced by the tool it can be seen that the transverse displacements do not
differ that much from each other, and also the moments seem to differ only little. Still it can be
seen directly that when the shape function is chosen as virtually zero (approximating a flat plate in
bending), the membrane action is also zero. By contrast, some membrane forces still appear to

develop in the hypar shell shapes.
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Results my,,, and myy;:

Distance from edge to centre [m]

0 3 6 9
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- \:
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-35

myy [kNm/m]

—8—7=-1/75%(x"2-y"2)

—8—12=-1/150%(x2-y"2)
7= -1/300%(xA2-yA2)
Plate:z=0

Displacements w:

Distance from corner to centre V2[m]

o] 3 6 9

-40
-80
-120
-160
200
240 \
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-320

w [mm]

—8—HP: z = -1/75%(x2-y"2)
—8—HP: 2=-1/150%(x"2-yA2)
HP: z = -1/300%(x"2-yA2)

Plate:z=0

mxy [KNm/m]
35

30
25
20
15

10

0 3 6 9

Distance from corner to centre v2 [m]

—0—1 =-1/75%(x"2-y"2)
—8—12 = 1/150%(x*2-y72)
2 =-1/300% (xA2-y72)

Plate: z= 0

From these more exact results it follows that
hypar shells show similar behavior to that of a
flat plate in bending. However it seems that
some differences do occur. The displacements
w and bending moments My, around the
centre increase slightly when the hypar is
chosen steeper. However between the edges
and the centre area the opposite appears to be

true.

With respect to the twisting moments My,
near the corner the flat plate seems to have the
largest value while choosing steeper hypar
shapes lead to a slightly smaller value near the
corner. Between the centre area and the

corners again the opposite appears to be true.

150



A Parametric Structural Design Tool for Shell Structures

Results ratio R3 (= Ps / (Ps + Pb))
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From the results for the ratio R3 (= Ps / (Ps + Pb) )of the shell assessment component (4.5.9) it
follows that in the case of the flat plate approximation, the ratio R3 equals zero everywhere
indicating that no part of the external load is carried by the stretching surface and is carried by the

bending surface only, which is what one ought to expect from a flat plate in bending.
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When the hypar is very shallow (zgp = —3i

5 (x* —y?) ) non-zero values for the ratio R3 appear.

Thus some part of the load is carried by the stretching surface but since ratio R3 is closer to zero
at most points, most of the load is still carried by the bending surface. Negative values for ratio R3
around the centre indicate the load carried by the bending surface exceeds the external applied load
at those points. It follows that the load carried by the stretching surface works in the opposite

direction of the external applied load, this is to ensure equilibrium.

When the hypar becomes steeper (zgp = — ﬁ (x?2 —y?) and zgp = —% (x* —y?)) it can be seen that

near the edges the load carried by the stretching surface increases In the centre, the load carried by
the bending surface becomes larger and exceeds the external applied load even further. The load
carried by the stretching surface in that area therefore also has to increase, though in the opposite

direction.

From these results it can be concluded that hypar shells which are quite shallow behave similar to
flat plates (bending action is dominant) but still not completely. Some membrane forces still
develop while in a flat plate this is not the case. For steeper hypar shells more membrane forces

develop and the differences in bending quantities compared to a flat plate slightly become larger.
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