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Abstract 
 
This thesis focuses on the design of reinforced concrete walls with the use of linear elastic finite 
element methods. Since the introduction of Eurocode EN1992, the set of design standards in which 
design requirements related to concrete structures are committed to paper, it is allowed to derive the 
required amount of reinforcement directly from the membrane forces which follow from a linear elastic 
finite element analysis. This method deviates however at some points considerably from common 
design methods. Compared to the common design methods the moment diagram is for example no 
longer shifted over a specific distance during the design of beams to prevent failure due to the 
development of inclined bending cracks. In addition, the assumed linear elastic isotropic material 
behavior in the finite element analyses results in the computation of load transfer mechanisms which 
deviate considerably from mechanisms which are expected to develop in practice. These deviations 
gave rise to analyze this recently approved design method in further detail, indicated by the term linear 
elastic finite element method (LE-FEM) henceforth. 
 
The linear elastic finite element method is verified by considering a large number of single- and 
several two-span beams. The required reinforcement of these beams is determined with LE-FEM by 
taking all relevant provisions of the Eurocodes into account. In a subsequent step the structural 
behavior of the considered beams was analyzed by means of a non-linear finite element analysis, in 
which a similar level of reliability was taken into account as during the design process. These non-
linear analyses, which are performed in ATENA, are capable to predict the actual behavior of 
concrete. 
 
Structural analyses of the considered specimen led to the following main conclusions: 
 

• Assuming linear elastic material behavior of concrete for reinforcement design with LE-FEM of 
structures does not approximate concrete behavior in an accurate way. 

• No direct relation is found between the limited amount of longitudinal reinforcement which 
reaches the supports and the observed failure mode. Concrete crushing in the compressive 
zone, caused by flexural deformations, turned out to be the normative failure mode. 

• Reinforcement designs according to LE-FEM of the considered beams do not meet 
requirement related to crack control in the serviceability limit state. It is not possible to 
determine the stresses in the required distributed reinforcement without the application of 
advanced (non-linear) methods, since there is no direct relation between the applied load and 
stress development in individual reinforcement bars. 

• Design of structures with LE-FEM which are loaded by a compressive force and contain 
symmetrical reinforcement, such as columns, results in an overestimation of the concrete 
compressive strength since eccentricities and second order effects are left out of 
consideration. 

• Redistribution of considered two-span beams in case differential support settlements appear is 
insufficient to withstand settlements which are allowed by the codes. 
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1 Introduction 
 

1.1 Background 
 
The use of linear elastic finite element methods as a tool for the design of reinforced concrete 
structures has shown a tremendous growth in the past years and is still under development. 
Increasing calculation capacity of personal computers provides current engineers the possibility to 
analyze simple, as well as more complex concrete structures with these methods within a limited 
amount of time. A small survey showed that the use of finite element analyses is nowadays a 
frequently used tool in the design of concrete structures. Appendix A discusses this survey in more 
detail. 
 
The introduction of Eurocode EN1992, the set of design standards in which design requirements 
related to concrete structures are committed to paper, responds to the increasing use of linear elastic 
finite element analyses during the design process of reinforced concrete structures. Eurocode 
EN1992-1-1, which provides general rules and rules for buildings, gives in §5.1.1 (3) its explicit 
approval to the use of “simplified” design methods to determine the reinforcement for in plane stress 
fields. This implies that it is allowed to the derive the required amount reinforcement for in plane stress 
fields directly from membrane forces which follow from a linear elastic finite element analysis. This can 
be done manually, but the great advantage is that some in engineering practice frequently used 
computer programs are capable to perform these calculations within a couple of seconds. Henceforth 
this method to determine reinforcement will in this thesis be indicated by the term “linear elastic finite 
element method” (LE-FEM). 
 
One of the major advantages of this recently approved method is, as already stated above, its 
economical attractiveness. Computer programs are capable to analyze simple as well as more 
complicated structural elements within a very short timeframe compared to manual calculations. 
Besides, the required amount of reinforcement which follows from the linear elastic finite element 
method is more economical compared to the regular design methods. An earlier performed master 
thesis [1] which focused on the reinforcement of deep beams, showed a significant reduction in the 
amount of required reinforcement compared to the regular beam theory or strut-and-tie method. 
 
Although at first glance the linear elastic finite element method seems to be very attractive, its 
reinforcement design process and underlying principles deviate at some essential points from common 
design methods. These deviations lead to questions about the overall applicability and correctness of 
this recently approved method, which gives reason for a further analysis. 

1.2 Problem definition 
 
Where common design methods are based on the assumption that concrete is only capable to transfer 
compressive forces in assumed load transfer mechanisms, reinforcement design with the linear elastic 
finite element method is initially based on isotropic, uncracked linear elastic material behavior. Not 
until the reinforcement is derived from the determined membrane forces, the assumption is made that 
concrete is not capable to transfer tensile stresses. This approach results in applied load transfer 
mechanisms which can be considered questionable. It can be elucidated by considering an 
elementary single-span wall element, loaded by a concentrated top load at midspan. 
 
Common design methods show general agreement on the way loads are transferred in single-span 
walls. Figure 1.1 gives an example of two possible load transfer mechanisms in a single-span deep 



 

14 

beam in case the strut-and-tie method is applied to determine the required reinforcement. The left 
figure shows a tied-arch model, the right figure a truss mechanism. Which mechanism is applied in 
practice depends on the shear span-depth ratio (a/d). A tied arch model is predominantly used in 
design of short beams, which have a a/d equal to 1,0 or less, and is based on the assumption that 
load is transferred directly from the loading point into the support through the formation of concrete 
compressive struts. The horizontal component of each strut is set in equilibrium at the support by a 
horizontal tie which extends the full length of the beam. For longer beams, which have a a/d of 4,0 or 
above, load transfer occurs indirectly from the loading point into the supports through struts that form 
between diagonal cracks within the shear span of the beam. The vertical component of struts that 
reach the bottom longitudinal reinforcement is set in equilibrium by vertical tie forces generated in 
stirrups that enclose the longitudinal reinforcement. The bottom longitudinal reinforcement provides 
equilibrium between the horizontal components of strut forces at the bottom nodes. In beams of 
intermediate length a combination of both load transfer mechanisms can be assumed [2].  
 

Tension tie

Compressive strut

Node

F F

d

a a

 
Figure 1.1: Load transfer mechanisms according to the strut-and-tie method: tied-arch (left) and truss mechanism (right). 

 
Although the strut-and-tie method only gives a possible approach of the actual behavior, from the 
beginning of the design process load transfer mechanisms are taken into account which correspond to 
the typical strength properties of applied materials. Contrary, the linear elastic finite element method 
assumes during the derivation of the membrane forces that concrete behaves as a linear elastic 
isotropic material. As a consequence load transfer mechanism develop that deviate from the common 
design methods. This can be illustrated with the trajectory plot of a structure which is loaded in a 
similar way as the structures in figure 1.1. 
 

 
Figure 1.2: Stress trajectories which follow from a linear elastic finite element analysis. 

 
Due to the top load the stress trajectories show the development of a compression arch, which shows 
similarities to the tied-arch mechanism of figure 1.1. However, besides the development of a 
compression arch, also the development of a tension arch can be observed. It is questionable if the 
applied orthogonal reinforcement, which is derived directly from the membrane forces in an in-plane 
stress field, in practice will transfer loads in a similar way as is assumed in the linear elastic analyses.  
Due to the anisotropic behavior of concrete it can be expected that in practice the tied-arch 
mechanism finally becomes the normative load transfer mechanism. However, the amount of 
reinforcement in the bottom tensile tie might be too limited to transfer the full load by tied-arch action, 
since the amount of applied reinforcement is during the design process based on the development of  
multiple load transfer mechanisms. 
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A second point at which the linear elastic finite element method deviates considerably from common 
design methods is that during the design process the moment diagram is no longer shifted over a 
specific distance d, equal to the effective height of a cross-section. The former Dutch Code NEN 6720 
explicitly prescribed shifting of the moment line to prevent failure as a result of possible occurrence of 
diagonal cracks in the ultimate limit state. A similar approach is embedded in the strut-and-tie method.  
 

 
Figure 1.3: Shifting of the moment line for a continuous beam, as shown in NEN 6720 [3]. 

 
In combination with the relative limited amount of longitudinal reinforcement which according to the 
linear elastic finite element method is required to reach the supports, anchorage problems can be 
expected in the vicinity of the supports. 
 

1.3 Aim of this study 
 
As stated in the previous section, a short analysis of the reinforcement design process of a relative 
basic single-span deep beam with the linear elastic finite element method shows already some 
considerable deviations compared to common design methods. These deviations, in combination with 
the increasing use of the linear elastic finite element method in engineering practice, gave reason to 
examine this design method in further detail. The aim of this master thesis is to examine to what extent 
the discussed deviations have a influence on the structural behavior or resistance to failure of 
reinforced concrete deep beams. 
 
Reinforcement of the considered beams is determined according to the linear elastic finite element 
method, taking all relevant provisions of the Eurocodes into account. For the design of reinforcement 
Scia Engineer 2009 is used, although every other finite element program can be applied which is 
capable to apply the in Eurocode EN1992-1-1 mentioned “simplified” design method. Subsequently 
their structural behavior is analyzed in the non-linear finite element program ATENA, which is capable 
to simulate the actual structural behavior of the considered beams numerically. On the basis of the 
non-linear analysis results conclusions can be drawn about the use of the linear elastic finite element 
method for reinforcement design of concrete structures. 
 

1.4 Thesis outline 
 
This thesis continues in chapter 2 with a more detailed introduction of the linear elastic finite element 
method. The backgrounds of this method, which are closely linked to continuum mechanics, will be 
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discussed in further detail. Chapter 3 will subsequently discuss the considered beams of which the 
reinforcement will be designed according to the linear elastic finite element method. Besides all 
relevant basic principles which are related to the reinforcement design process are discussed in this 
chapter, such as for example material properties, the design loads and the geometry of considered 
beams. The reinforcement configurations of the considered beams will be presented in chapter 4. In 
this chapter also code checks are discussed which are related to crack control in the serviceability limit 
state. 
 
Chapter 5 continues with an overview of the assumed principles in non-linear analyses. Material 
models and model properties will be discussed in detail. Compared to the reinforcement design 
process a same level of reliability will be taken into account in these non-linear analyses. In chapter 6 
the options are considered which are available to obtain a same level of reliability in the non-linear 
analyses. Based on this comparison analysis an optimal safety format is chosen which is applied in 
the non-linear analyses of the considered specimens. The results of the non-linear analyses will be 
discussed in chapter 7, which focuses on the structural behavior and the observed failure modes. In 
chapter 8 subsequently the unfavorable effect of shrinkage and unequal support settlements is 
discussed shortly. This thesis finishes in chapter 9 with an overview of the conclusions and 
recommendations. 
 
References 
 
[1]  Mahmoud, M.N., Design of deep beams, Nieuwegein, The Netherlands, October 2007 
[2]  Breña, S.F., Roy, N.C., Evaluation of Load Transfer and Strut Strength of Deep Beams with 
 Short Longitudinal Bar Anchorages, Massachusetts, United States, September 2008 
[3] NEN 6720, Voorschriften Beton – Constructieve eisen en rekenmethoden, Delft, The 
 Netherlands, September 1995 
 



 

17 
 

2 Linear elastic finite element method - design pro cess 
 

2.1 Introduction 
 
Finite element methods are a well known method in engineering practice to analyze the behavior and 
load transfer mechanisms of in-plane stress fields. The introduction of Eurocode EN1992-1-1, which 
gives its approval to the use of simplified design methods for determining of reinforcement in in-plane 
stress fields, provides the possibility to derive the required reinforcement directly from the membrane 
forces which are determined with finite element analyses. The amount of reinforcement is roughly 
determined by dividing appearing tensile stresses by the design strength of reinforcement. This 
chapter gives a global overview of the design procedure with this relatively new method. 
 

2.2 Design procedure 
 
The design procedure with the linear elastic finite element method can be subdivided into some 
general, chronological design steps. A step by step overview of the design procedure is given below. 
 

• Definition of material strength parameters and normative load combinations. Similar to other 
common reinforcement design methods, material strength parameters and normative load 
combinations have to be specified according to relevant provisions, stated in the Eurocodes.  

• Creation of an adequate finite element model of the considered structure, which is capable to 
take the assumed material parameters and load combinations into account. 

• Calculation of the membrane forces in the in-plane stress field by means of a linear elastic 
finite element analyses. In each node of the finite element mesh the membrane forces σx, σy 
and τxy will be determined, which in a subsequent step will be used to derive the required 
amount of reinforcement. 

• Derivation of the required reinforcement from the determined membrane forces σx, σy and τxy. 
This design step forms the basis of the linear elastic finite element method. Required 
reinforcement is given in an amount per element of the finite element mesh. Transformation to 
a reinforcement configuration which consists of discrete bars has to be done manually in a 
subsequent step. 

• Transformation of the required amount of reinforcement into a reinforcement configuration 
consisting of discrete bars, taking all relevant code requirements with respect to proper 
anchoring and bar spacing into account  

 
The theoretical background of the linear elastic finite element method will be discussed in further detail 
in the next section. Remaining design steps will be specified in more detail in chapter 3 and 4, where 
the principles and reinforcement designs of the considered specimen will be discussed. 
 

2.3 Tension reinforcement expressions 
 
The expressions given in this section to derive required reinforcement directly from known membrane 
forces are taken from Eurocode EN1992-1-1. They only take effect for in-plane stress fields and can 
be derived from elementary continuum mechanics. They are based on the assumptions that the tensile 
strength of concrete is ignored and that strain in bonded reinforcement is the same as that in the 
surrounding concrete. 
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Fixure 2.1: Forces in a membrane element and definition of the axes. 

 
Required tension reinforcement in elements which are subjected to in-plane forces depends on the 
sign and size of the normal stresses σEdx, σEdy and shear stress τEdxy, shown in figure 2.1. When 
compressive stresses are taken as positive, with σEdx > σEdy, and the direction of reinforcement 
coincides with the x and y axes, the tensile strength provided by reinforcement can be determined 
from: 
 
 =tdx x ydf fρ  and =tdy y ydf fρ  (2.1) 

 
In equation 2.1 ftdx and ftdy are the resolved stresses in an element along the x and y axes respectively, 
ρx and ρy are the corresponding geometric reinforcement ratios for each direction. The design yield 
strength fyd of the reinforcement has to be determined according to: 
 

 = yk
yd

s

f
f

γ
 (2.2) 

 
Where: 
 
fyk is the characteristic yield strength of reinforcement. 
γs is the partial safety factor for reinforcement. 
 
In locations where σEdx and σEdy are both compressive and σEdx · σEdy > τ2Edxy, design reinforcement is 
not required. The maximum compressive stress should however not exceed the design compressive 
strength of concrete fcd, which is prescribed by equation 2.3. The provisions in Eurocode EN1992-1-1 
related to reinforcement design with simplified design methods do not include specific expressions for 
compression reinforcement. 
 

 = ck
cd

c

f
f

γ
 (2.3) 

 
Where: 
 
fck is the characteristic cylindrical compressive strength of concrete 
γc is the partial safety factor for concrete. 
 
In locations where σEdy is in tension or σEdx · σEdy < τ2Edxy, reinforcement is required. Eurocode 
EN1992-1-1 distinguishes two separate sets of expressions which give provisions to determine the 
required amount of reinforcement. One set is based on the optimum amount of reinforcement, in which 
the directions of reinforcement are identical to the direction of the principal stresses. The optimum 
reinforcement, which is indicated by a subscript ’, is determined by equations 2.4 up to 2.9. 
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For σEdx < | τEdxy|: 
 

 ' = −tdx Edxy Edxf τ σ  (2.4) 

 

 ' = −tdy Edxy Edyf τ σ  (2.5) 

 

 2=cd Edxyσ τ  (2.6) 

 
For σEdx > |τEdxy|: 
 

 ' 0=tdxf  (2.7) 

 

 
2

' = −Edxy
tdy Edy

Edx

f
τ

σ
σ

 (2.8) 

 

 
2

1
  
 = +      

Edxy
cd Edx

Edx

τ
σ σ

σ
 (2.9) 

 
Alternatively, Eurocode EN1992-1-1  provides also a general set of expressions to determine the 
reinforced concrete stresses ftdx, ftdy and σcd, expressed by equation 2.10 up to 2.12. The angle θ is the 
angle between the principal concrete compressive stress and the x-axis. 
 

 cot( )= −tdx Edxy Edxf τ θ σ  (2.10) 

 

 
cot( )

= −Edxy
tdy Edyf

τ
σ

θ
 (2.11) 

 

 
1

cot
cot

 = + 
 

cd Edxyσ τ θ
θ

 (2.12) 

 
Eurocode EN1992-1-1 requires the verification of the concrete stress σcd, which is expressed in 
equation 2.9 and 2.12, with a realistic model that describes the compressive strength of cracked 
concrete. Eurocode EN1992-2 §6.109 gives detailed expressions for concrete strength of cracked 
sections. However, the concrete stress σcd should at least meet the requirement stated in equation 
2.13. 
 

 ≤cd cdfσ ν  (2.13) 

 
In equation 2.13 ν is a strength reduction factor for concrete cracked in shear, expressed in Eurocode 
EN1992-1-1 §6.2.2 (6). Its recommended value follows from equation 2.14. 
 

 
0,6 1

250
 = − 
 

ckfν
 

(2.14) 
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In order to avoid unacceptable cracks in the serviceability limit state, and to ensure the required 
deformation capacity in the ultimate limit state, EC2-1-1 requires that the amount of reinforcement 
derived from expressions 2.10 and 2.11 for each direction should not be more than twice and not less 
than half of the reinforcement determined by expressions 2.4 and 2.5 or 2.7 and 2.8. These limitations 
can be expressed by equation 2.15. 
 

 ' '1 22 ≤ ≤tdx tdx tdxf f f  and ' '1 22 ≤ ≤tdy tdy tdyf f f  (2.15) 

 

2.3 Eccentricities 
 
The tension reinforcement expressions which are discussed in the previous section derive the required 
reinforcement directly from the membrane forces in an in-plane stress field. Since the calculation of 
membrane forces in an in-plane stress fields is based on two-dimensional elements, all loads act 
centrically on the modeled structure. Possible eccentricities of the load are not taken into account, 
although for specific types of structures this is required according to Eurocode EN1992-1-1. In §6.1 (4) 
it is required that in cross sections with symmetrical reinforcement which are loaded by a centric 
compression force it is necessary to assume a minimal eccentricity equal to e0 = h/30, but not less 
than 20 mm, where h is the depth of the considered section. For centrically loaded structures which 
show a direct load transfer from the point of loading to the supports, such as for example columns or 
walls, use of the linear elastic finite element method results therefore in underserved optimal 
reinforcement designs and an overestimation of the allowable concrete compressive strength. This is 
illustrated in figure 2.2. 
 

e0

fcd
fcd

A C

Frontal view of in-plane stress field

Stress development in a vertical cross-section of the
in-plane stress field in case no out of plane eccentric-
ity is taken into account (LE-FEM approach). LE-FEM
takes the full compressive strength into account.

Stress development in a vertical cross-section of the
in-plane stress field in case out-of-plane eccentricity
e0 is taken into account (prescibed approach accord-
ing to Eurocode EN1992-1-1). LE-FEM should take a
reduced concrete compressive strength into account
to meet code provisions.

A

B

C

B

q q q

 
Figure 2.2: Stress development as assumed in a vertical cross-section of an in-plane stress field. 

 
It must be emphasized that this inadequacy has no influence on the single-span specimens which are 
considered in this thesis, since for horizontal forces which develop in the compressive zone of a 
structure which is subjected to a flexural deformation eccentricities do not have to be taken into 
account. 
 
References 
 
[1] NEN, NEN-EN 1992-1-1, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 Deel 1- 1: Algemene regels en regels voor gebouwen, Delft, The Netherlands, December 
 2007 
[2] NEN, NEN-EN 1992-2, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 bruggen, Delft, The Netherlands, November 2005 
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3 Linear elastic finite element method – specificat ions 
 

3.1 Introduction 
 
The linear elastic finite element method is evaluated by considering the structural behavior of 
reinforced, single-span beams. Their reinforcement is determined by taking all relevant provisions of 
the Eurocodes into account. In this chapter the normative design principles and geometry of the 
considered specimens are discussed. 
 

3.2 Geometry of considered specimen 
 
This study focuses on relative basic, statically determined single-span structures. In the introductory 
chapter it has already been discussed that reinforcement design of this type of structures based on the 
linear elastic finite element method shows considerable deviations from common design methods. The 
overall geometry of the considered specimens and the applied external load cases can be seen in 
figure 3.1. 
 

F

l

h

100100

200

q

l

h

100100

 
Figure 3.1: Overall geometry of considered specimen and applied external load cases. 

 
In total five types of specimen with a varying length and height are considered. The width of all 
specimen is equal to 200 mm. An overview of their dimensions can be seen in table 3.1. 
 

Specimen Length l [mm] Height h [mm] Width t [mm] 
S-1 2000 1000 200 
S-2 3000 1000 200 
S-3 4000 1000 200 
S-4 6000 1000 200 
S-5 2000 2000 200 

Figure 3.1: Dimensions of considered specimens. 

 
Concentrated loads are applied at midspan, since this will result in the greatest amount of locally 
required flexural reinforcement. The size of the supports and load introduction zone are chosen such 
that similar stress concentrations in vertical direction can be expected in the compressive zone and 
around the supports. A well distributed introduction of the concentrated load and support reaction is 
considered to be important to prevent local failure in these areas due to concrete crushing. Distributed 
loads are applied over the distance between the centre lines of the supports, to exclude the favorable 
effects of hogging moments on the bending moment at midspan which can appear if a load is applied 
at the overhangs directly near the supports. 
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3.3 Material strength parameters 
 
Eurocode EN1992-1-1 prescribes for the design of concrete structures the use of simplified, idealized 
material models, which are subdivided into a number of strength classes. The applied concrete class 
for all test specimen is C30/37, the two numbers indicate the characteristic cylindrical and cubical 
compressive strength respectively. The strength and deformation characteristics of C30/37 according 
to EN1992-1-1 can be seen in table 3.2.  
 

fck 
[N/mm2] 

fcm 
[N/mm2] 

fctm 
[N/mm2] 

fctk,0,05 

[N/mm2] 
fctk,0,95 

[N/mm2] 
Ecm 
[N/mm2] 

εcu [‰] 

30 38 2,9 2,0 3,8 33000 3,5 
Table 3.2: Material properties of concrete class C30/37. 

 
The mean modulus of elasticity Ecm, the parameter on which the structural behavior is based in the 
linear finite element analyses, is defined as: 
 

 
0,3

22
10
cm

cm
f

E
 =  
 

 (3.1) 

 
Characteristic concrete strength parameters are based on the 5% fractile of their statistical distribution, 
defined through elaboration of compression tests on cylindrical specimens with a diameter and height 
of 150 mm, executed after 28 days of hardening. The relation between the characteristic cylindrical 
strength fck and mean cylindrical strength fcm, both given in table 3.2, is defined as: 
 
 8cm ckf f= +  (3.2) 

 
The mean cylindrical tensile strength is derived from the cylindrical compressive strength according to: 
 

 
2

30,30ctm ckf f=  (3.3) 

 
The characteristic cylindrical tensile strength is subsequently defined as: 
 
 ,0,05 0,7ctk ctmf f=  (3.4) 

 
Design values of the compressive strength of fcd and tensile strength fctd are derived from their 
characteristic values according to: 
 
 /cd cc ck cf fα γ=   and /ctd ct ctk cf fα γ=  (3.5) 

 
Where αcc and αct are coefficients taking into account long term strength effects, having a value equal 
to 1,0, and γc is the partial material safety factor for concrete, which has a value of 1,5. For concrete 
class C30/37 this result in a design compressive strength of 20 N/mm2 and design tensile strength of 
1,33 N/mm2. The tensile strength is however not taken into account during the reinforcement design 
process.  
 
The applied idealized bilinear stress-strain relation can be seen in figure 3.2. Besides the uniaxial 
stress-strain relation is shown which would follow from laboratories tests. 
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Figure 3.2: Prescribed quantitative material model according to Eurocode EN1992-1-1 (left figure) and the typical, global uniaxial 

behavior which follows from laboratory tests (right figure). 

 
According to the right diagram of figure 3.2 the response of concrete under compression is linear-
elastic to approximately 40% of the peak stress fc. Beyond this point concrete behaves non-linear up 
to the peak stress with a decreasing stiffness, caused by micro cracking. When the maximum 
compressive strength has been reached, the compressive strength reduces into a softening region 
due to the development of macro cracks. According to the applied bilinear material model of Eurocode 
EN1992-1-1, this descending branch may be neglected. 
 
Applied reinforcement quality is B500, which has a characteristic tensile strength of 500 N/mm2. The 
corresponding design strength is equal to 435 N/mm2. The idealized stress-strain diagram, which 
applies both for tensile as well as compression forces, can be seen in figure 3.3. Also the actual 
stress-strain relation which would follow from laboratory tests of hot rolled reinforcement under tension 
is shown. 
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Figure 3.3: Prescribed quantitative material model according to Eurocode EN1992-1-1 (left figure) and the typical, global, 

behavior which follows from laboratory tests (right figure). 

 

3.4 Loads and load combinations 

 

3.4.1 Load combinations 
 
Reinforcement design of the considered specimen is based on a load combination which takes 
account for the specimen’s dead weight, equal to 24 kN/m3, and a specific external top load. Table 3.2 
gives an overview of the partial safety factors which are taken into account in the serviceability limit 
state (SLS) and ultimate limit state (ULS) for the considered load combination. The SLS concerns 
limits to the to the functioning of a structure under normal use, the comfort of people and the 
appearance of the structure, the ULS to the safety of people and structures. The external applied top 
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load is theoretically composed of a permanent and variable part, for which a load factor equal to 
respectively 1,2 and 1,5 should be taken into account. It is assumed that 2/3 of the external load 
consists of a permanent part, while the other 1/3 is variable. This results in an overall partial safety 
factor equal to 1,3. 
 

Load case Load factor [-] 
SLS ULS 

Dead weight 1,0 1,2 
Permanent and variable loads 1,0 1,3 

Table 3.2: Applied load cases and corresponding safety factors. 

 

3.4.2 Loads 
 
To evaluate to what extend the amount of reinforcement influences the structural behavior of the 
considered specimen, reinforcement designs are based on several load sizes. It can be expected that 
a relative high load will result in a relative high amount of locally required longitudinal reinforcement 
bars at midspan that does not reach the supports, which could possibly result in failure at the supports. 
Contrary, a relative small design load will result in an overall limited amount of reinforcement, both at 
midspan as well as at the supports. 
 
Initially the amount of reinforcement is based on an as large design load as possible, indicated as the 
limit load, which is limited by the maximum allowed concrete compressive strength fcd of concrete. 
Scia Engineer verifies automatically if the design compressive strength of concrete is exceeded. In 
addition, for the specimen loaded by a concentrated load also the reinforcement configuration is 
evaluated which is based on a reduced load, equal to halve and a quarter of this limit load. 
 
All of above discussed reinforcement configurations will contain a basic reinforcement mesh with a bar 
diameter of 5 mm and a centre to centre distance of 150 mm, in both directions. For specimens loaded 
by the concentrated limit load also the reinforcement configuration is evaluated in which in stead of a 
basic mesh an equivalent amount of additional reinforcement is applied.  
 
Table 3.3 gives an overview of the applied design loads for the considered specimens. Beside the 
design load in the ultimate limit stated (ULS), also the serviceability limit state (SLS) load is shown. 
 

Specimen Reinforcement mesh Load type Load size ULS SLS 
S-1-1 yes concentrated limit load 651 kN 501 kN 
S-1-2 yes concentrated ½ · limit load 326 kN 251 kN 
S-1-3 yes concentrated ¼ · limit load 163 kN 125 kN 
S-1-4 no concentrated limit load 651 kN 501 kN 
S-1-5 yes distributed limit load 382 kN/m 294 kN/m 
S-2-1 yes concentrated limit load 646 kN 497 kN 
S-2-2 yes concentrated ½ · limit load 323 kN 248 kN 
S-2-3 yes concentrated ¼ · limit load 162 kN 125 kN 
S-2-4 no concentrated limit load 646 kN 497 kN 
S-2-5 yes distributed limit load 239 kN/m 184 kN/m 
S-3-1 yes concentrated limit load 640 kN 492 kN 
S-3-2 yes concentrated ½ · limit load 320 kN 246 kN 
S-3-3 yes concentrated ¼ · limit load 160 kN 123 kN 
S-3-4 no concentrated limit load 640 kN 492 kN 
S-3-5 yes distributed limit load 172 kN/m 132 kN/m 

Table 3.3: Applied design loads and considered specimen. 
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Specimen Reinforcement mesh Load type Load size ULS SLS 
S-4-1 yes concentrated limit load 628 kN 483 kN 
S-4-2 yes concentrated ½ · limit load 314 kN 242 kN 
S-4-3 yes concentrated ¼ · limit load 157 kN 121 kN 
S-4-4 no concentrated limit load 628 kN 483 kN 
S-4-5 yes distributed limit load 110 kN/m 85 kN/m 
S-5-1 yes concentrated limit load 696 kN 535 kN 
S-5-2 yes concentrated ½ · limit load 348 kN 268 kN 
S-5-3 yes concentrated ¼ · limit load 174 kN 134 kN 
S-5-4 no concentrated limit load 696 kN 535 kN 
S-5-5 yes distributed limit load 409 kN/m 315 kN/m 

Table 3.3 (continuation): Applied design loads and considered specimen. 

 

3.5 Environmental conditions 
 
Eurocode EN1992-1-1 classifies the influence of environmental conditions into exposure classes. It is 
assumed that none of the specimens will be exposed to severe chemical environmental conditions nor 
subjected to chloride attack. Since concrete walls can be located both at the relative dry inner side of a 
structure, as well as at its more humid façade, exposure class XC4 (cyclic wet and dry) is taken as a 
standard for all specimens. The design working life category is estimated to be S3 (design working life 
of 50 years). For specific code requirements related to this safety class one is referred to Eurocode 
EN1992-1-1 [2]. 
 

3.6 Anchorage of reinforcement 
 
To safely transmit bond forces to the concrete and avoid longitudinal cracking or spalling, a minimum 
required anchorage length is added to all longitudinal reinforcement bars. A same length is added to 
all transversal bars that do not have to enclose longitudinal bars at the bottom or top of the specimens. 
The minimum applied anchorage length is equal to 100 mm or 10 times the diameter ϕ of the applied 
bar. 
 

Bar diameter ϕ [mm] Anchorage length [mm] 
6 100 
8 100 
10 100 
12 120 
16 160 
20 200 

Table 4.4: Applied minimum anchorage lengths. 
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4 Linear elastic finite element method – designs 
 

4.1 Introduction 
 
This chapter focuses on the reinforcement design of the considered specimens. Its first part discusses 
the bottlenecks which came across during reinforcement design with the linear elastic finite element 
method. Special attention is paid here to the creation of an adequate finite element model, which is of 
importance to exclude singularities and obtain a reliable reinforcement configuration. Subsequently the 
reinforcement configurations of the considered specimens are discussed, which are determined by 
taking the design principles of the previous chapter into account. In the last section the reinforcement 
configurations are verified by some basic code checks, which are related to the moment capacity and 
crack control. Code provisions impose limits to the stress in reinforcement to control the width of 
cracks in the serviceability limit state. Cracking is a normal phenomenon in reinforced concrete 
structures, although it should be limited to an extent that will not impair the proper functioning or 
durability of a structure or cause its appearance to be unacceptable. 
 

4.2 Numerical models 
 

4.2.1 Mesh size 
 
As an initial step, the models of the considered specimens are subdivided into a number of square four 
noded finite elements, in which the membrane forces and strains are calculated. An important step in 
finite element modeling is the selection of the mesh density. A convergence of results is obtained 
when an adequate number of elements is used in a model. This is practically achieved when an 
increase in the mesh density has a negligible effect on the results. 
 
A convergence study is applied for each considered specimen. An overall finite element mesh which 
consists of square elements of 50 mm turned out to provide adequate analysis results. This is 
illustrated in figure 4.1, where the maximum applicable load is set out against the mesh size of for 
example specimen S-1-1, S-2-1 and S-3-1. 
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Figure 4.1 Mesh size versus applicable load for specimen S-1-1, S-2-1 and S-3-1. 

 
For estimation of the membrane forces a calculation methodology is applied which is based on the 
theory of Reissner-Mindlin. This theory takes shear deformation into account, which can not be 
neglected given the depth of the considered specimen. 
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4.2.2 Supports and loads 
 
Pin supports and loads which are applied at single nodes of the finite element mesh result in infinite 
stresses, indicated by the term singularities. Since the amount of reinforcement is directly derived from 
the determined stresses, singularities will result in an incorrect required amount of reinforcement. 
Therefore, applied finite element models are optimized to exclude any unfavorable influence of these 
numerical problems. They are avoided by taking the actual width of the supports and introduction zone 
of the concentrated load into account, similar as was depicted in figure 3.1. Singularities are also the 
reason that the supports are positioned 100 mm from the specimens’ edges. 
 

Singularities
Load

 
Figure 4.2: Regions in the finite element mesh which are sensitive to singularities and therefore are optimized to avoid numerical 

problems. These findings correspond to those found by Rombach [1]. 

 
For proper modeling of the supports two possibilities are considered to model distributed supports that 
do not prohibit rotation, one which is based on distributed springs and one which is based on a 
distributed reaction force equal to the concentrated support reaction. Both types of supports are 
illustrated in figure 4.3. 
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Figure 4.3: Considered types of supports: distributed springs (left) and distributed support reaction (right). 

 
Modeling of supports with flexible springs is preferable, since still disturbances can be found near the 
pin supports which are connected to a single node. The spring stiffness is related to the stiffness of the 
material to which it is connected and the dimensions of the support. The axial stiffness Cn is obtained 
from equation 4.1. 
 

 cm
n

E t
C

h
=  (4.1) 

 
Where: 
 
Ecm is the modulus of elasticity of concrete, for C30/37 equal to 33000 N/mm2. 
t is the width of the specimen. 
h is the depth of the structure located above the flexible support. 
 
For S-1 up to S-4, which have a depth equal to 1000 mm, a stiffness of 6,6 MN/m2 is applied. For 
specimen S-5, which has a depth 2000 mm, the applied stiffness is equal to 3,3 MN/m2.  
 
Concentrated loads are modeled as a distributed load over a width of 200 mm. Modeling of a load 
introduction zone in Scia Engineer similar as was depicted in figure 3.1 turned out to be difficult, since 
the elements which should introduce the concentrated load become part of the load bearing 
mechanism. Scia Engineer did not provide the possibility to apply interface type elements to overcome 
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this problem. Figure 4.4 gives a global overview of the applied numerical model in the linear elastic 
finite element analyses. 
 

 
 

Figure 4.4: Original geometry of a specimen loaded by a concentrated load (left figure) and its numerical model which is applied 
to determine the required reinforcement (right figure). 

 

4.3 Reinforcement configurations 
 

4.3.1 Design of reinforcement 
 
The linear elastic finite element method derives the required reinforcement directly from the membrane 
forces which are calculated in individual nodes of the finite element mesh. As a consequence, high 
concentrations of local reinforcement are required in regions were high concentrations of tensile 
stresses appear. Reinforcement bars are positioned according to this specific output of the linear 
elastic finite element method. Longitudinal reinforcement bars do not always reach the supports, while 
locally required transversal bars do not always enclose longitudinal reinforcement at the top or bottom 
of a specimen. Besides, reinforcement is distributed over the height of a specimen, similar to the 
distribution of the membrane forces. Also bars with different diameters are applied within a same 
specimen, all to approach the output of required reinforcement as close as possible. As a 
consequence, estimated reinforcement configurations deviate slightly from common design principles 
which are applied in engineering practice. 
 
The average output of required reinforcement per finite element is used to determine the 
reinforcement configuration of the considered specimen. This average value is the mean of the values 
which are determined in the four individual nodes of a finite element. Scia Engineer gives its output per 
element in mm2/m. To obtain the actual required reinforcement area As in longitudinal direction, the 
output must be multiplied by the height of the finite element. For the transversal direction the output 
must be multiplied by the width of the finite element. The output for each finite element is processed in 
the spreadsheet program Microsoft Excel to determine as accurately as possible a reinforcement 
configuration which corresponds to the output of the linear elastic finite element method. 
 
To meet code requirements related to minimum reinforcement ratios, Scia Engineer requires a 
minimum reinforcement amount of 0,002Ac,e per element, where Ac,e is the cross sectional area of a 
single finite element element. For the considered specimens which are subjected to flexural 
deformations this approach results in a relative conservative amount of reinforcement, since provisions 
in Eurocode EN1992-1-1 §9.6 require a minimum amount of reinforcement equal to 0,002Ac over the 
whole cross sectional area Ac. 
 
The next subsections contain the detailed reinforcement drawings of the considered specimen, based 
on the output of Scia Engineer and provisions given in Eurocode EN1992-1-1. To keep this chapter 
concise, only the reinforcement configurations of specimen and S-3-1, S-3-3 and S-3-5 are discussed 
in this section to give an impression of the design process and the effect of assumed linear elastic 
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uncracked material behavior on the required amount of reinforcement. Reinforcement drawings of the 
other considered specimens can be found in appendix B. 
 

4.3.2 Reinforcement configuration of specimen S-2-1  
 
Reinforcement design of specimen S-2-1 is based on a concentrated limit load of 646 kN. In figure 4.5 
the reinforcement can be seen which is required according to the linear elastic finite element method. 
It must be emphasized that the output is given for one single side of the specimen only, and should be 
applied at both sides. 
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Figure 4.5: Required reinforcement in longitudinal (left figure) and transversal direction(right figure). Output is in mm2/m. 

 
Figure 4.5 clearly shows that a relative high amount of longitudinal reinforcement is required at 
midspan, where the maximum tensile stresses appear as a result of flexural deformations. In the 
purple areas where an amount of reinforcement equal to 200 mm2/m is required, the minimum amount 
of required reinforcement is applied which is equal to 0,002Ac,e. A higher amount of reinforcement is 
required in these areas than would be derived from the membrane forces. 
 
Compared to common methods where shear reinforcement is distributed equally over the span of a 
structure, the linear elastic finite element method requires transversal reinforcement mainly in 
concentrated areas between the loading points and supports. In addition, a considerable amount of 
transversal reinforcement does not have to enclose the longitudinal reinforcement at the top or bottom 
of the specimen. This is primarily caused by the development of a tension arch which can be seen in 
the stress trajectory plot of figure 4.6. As was already discussed in the introductory chapter, the 
approach of concrete as a linear elastic isotropic material results in the development load transfer 
mechanisms which deviate from common assumed mechanisms. 
 

 
Figure 4.6: Development of load transfer mechanisms in case concrete is considered to behave as a linear elastic, isotropic 

material. 

 
The reinforcement configuration which corresponds to the required amount of figure 4.5 is shown in 
figure 4.7. Except for the reinforcement mesh all individual bars are shown in this figure. Bars with a 
relative small diameter are applied to follow the distribution of reinforcement in figure 4.5 as close as 
possible. It must be emphasized that hairpins and other provisions to anchor the reinforcement mesh 
and stirrups properly have not been drawn. 
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Figure 4.7: Reinforcement drawing of specimen S-2-1. 

 
Figure 4.5 shows that a relative high amount of local longitudinal reinforcement is required directly 
below the loading area. To increase the capacity to sustain compressive stresses which exceed the 
assumed design compressive stress fcd, in nodes of elements where both principal stresses are under 
compression, Scia Engineer applies compression reinforcement. This is illustrated in figure 4.8, where 
it can be seen that in the compressive zone directly below the concentrated load stresses develop 
which exceed the design strength fcd.  
 

 
Figure 4.8: Principal stresses in specimen S-2-1 caused by a concentrated top load of 646 kN. 

 
The cross sectional area of the two longitudinal bars with a diameter of 8 mm which are applied at the 
top of the specimen turned out to be sufficient to meet the amount of required compression 
reinforcement. However, when the slenderness of a specimen which is loaded by the maximum 
permissible load increases, an increasing amount of compression reinforcement is required. This can 
be seen in the required amount of reinforcement of specimens  S-3-1 and S-4-1, which can be found 
in appendix B.  
 

4.3.3 Reinforcement configuration of specimen S-2-3  
 
Reinforcement design of specimen S-2-3 is based on a concentrated limit load of 162 kN, equal to a 
quarter of the design load of specimen S-2-1. Similar load transfer mechanisms develop as were 
shown in figure 4.6. The corresponding principal stresses and required reinforcement can be seen in 
figure 4.9 and 4.10. Due to the limited load size, no compressive reinforcement is required and only 
the minimum amount of required reinforcement is applied in longitudinal direction at the top of the 
specimen. 
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Figure 4.9: Principal stresses in specimen S-2-3 caused by a concentrated top load of 162 kN. 
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Figure 4.10: Required reinforcement in longitudinal (left figure) and transversal direction(right figure). Output in is in mm2/m. 

 
The reinforcement configuration which corresponds to the required reinforcement of figure 4.10 is 
shown in figure 4.11. Compared to specimen S-2-1 a relative limited amount of longitudinal bars 
reaches the supports, while transversal bars are more equally distributed over the length of the 
specimen and enclose longitudinal reinforcement bars at the top and bottom of the specimen. 
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Figure 4.11: Reinforcement drawing of specimen S-2-3. 

 

4.3.4 Reinforcement configuration of specimen S-2-5  
 
Specimen S-2-5 differs from the previous discussed specimen because it is loaded by a distributed 
load. Compared to the concentrated loaded specimen, a considerable part of the applied load is 
transferred to the supports by a compression arch, while only a relative small part of the load is 
transferred by a tension arch. This is illustrated in figure 4.12, where the stress trajectories are plotted.  
 

 
Figure 4.12: Development of load transfer mechanisms in case a distributed load is applied. 
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The distribution of principal stresses which follow from the linear elastic finite element analysis are 
shown in figure 4.13. The corresponding required amount of reinforcement can be seen in figure 4.14. 
 

 
Figure 4.13: Principal stresses in specimen S-2-5 caused by a distributed top load of 239 kN/m. 
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Figure 4.14: Required reinforcement in longitudinal (left figure) and transversal direction(right figure). Output in is in mm2/m. 

 
In figure 4.15 the reinforcement configuration can be seen which corresponds to the required 
reinforcement of figure 4.14. Compared to the specimen loaded by a concentrated load a relative high 
amount of longitudinal bars reaches the supports. 
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Figure 4.15: Reinforcement drawing of specimen S-2-5. 

 

4.4 Verification of reinforcement configurations 
 

4.4.1 Considered specimen 
 
In advance of the non-linear analyses which will be applied to determine the specimens’ actual 
structural behavior and resistance to failure, some basic code checks are applied to verify the 
reinforcement configuration of the considered specimen with code provisions. These code checks are 
related to the moment capacity in the ultimate limit state (ULS) and crack width requirements in the 
serviceability limit state (SLS). 
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The applied code checks are based on the conventional beam theory which assumes that plane 
sections remain plane in case of flexural deformations. Part of the considered specimens has however 
such a small span to depth ratio, that their behavior considerably differs from slender beams. In 
contrast to slender beams, the response is characterized by non-linear stress and strain distributions 
and a direct load transfer from the point of loading to the supports. As a consequence, only the 
different variants of specimens S-3 and S-4 are verified. The span of these specimens is more than 
three times the section depth. Structures of which this ratio is less than three must according to 
Eurocode EN1992-1-1 §5.3.1 (3) considered as deep beams, for which the conventional beam theory 
is no longer valid. 
 

4.4.2 Verification of moment capacity 
 
The moment capacity of the considered specimens is compared with the design bending moment 
which follows from its mechanical scheme. Since the amount of longitudinal reinforcement is not 
constant over the span, the moment capacity is verified at two sections, one at midspan and one in the 
vicinity of the supports. This last section must be capable to sustain a bending moment which is 
shifted over a distance d, where d is the effective height of the cross-section. It is assumed as the 
distance between the top of the compressive zone and the centre of the bottom longitudinal 
reinforcement bar. The procedure is illustrated in figure 4.16. 
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Figure 4.16: Global (shifted) moment diagrams of specimens which are loaded by a concentrated load and a distributed load. 

The span is defined as the distance between the centre lines of the supports. 

 
The actual moment capacity at a specific cross-section depends on the distribution of longitudinal 
reinforcement bars which cross the considered section. If it is assumed that the concrete in the 
concrete compressive zone reaches its ultimate compressive strain εcu and a bilinear stress-strain 
relation is taken into account, the general distribution of internal forces can be seen in figure 4.17. 
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Figure 4.17: Internal forces at an arbitrary cross section which contribute to the moment capacity. 
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The forces in the reinforcement bars are related to the strain, which runs linearly over the height of the 
specimens since it is assumed that plane sections remain plane. The strain in an individual 
reinforcement bar can be expressed by equation 4.2. 
 

 ,
, ,/ 1bar i

y i cu cu cu bar i cu
u u u

h hh h
h h

x x x
ε ε ε ε ε

     −     
= − − = −                      

 (4.2) 

 
Where: 
 
εy,i is the strain in an individual reinforcement bar. 
hbar,i is the distance between the centre of a reinforcement bar and the bottom edge of the 
 specimen. 
 
The force Ns,i inside an individual bar follows from equation 4.3, where it must be emphasized that the 
maximum allowed stress is limited according to the assumed bilinear stress-strain diagram of 
reinforcement steel which was shown in figure 3.3. 
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The height xu of the concrete compressive zone, which is required to determine the moment capacity 
of a section, can be determined by solving equilibrium equation 4.4. 
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With a known value of xu the moment capacity can be determined in an arbitrary point on the 
considered section. Table 4.1 and 4.2 give an overview of the moment capacity and design moment at 
specific sections of the considered specimens. The fourth column shows the design moment Md which 
follows from the mechanical scheme of figure 4.16, the fifth column the actual moment capacity Mc of 
the cross-section. 
 
Specimen Position section* Design moment Md [kNm] Moment capacity Mc [kNm] Mc/Md [-] 
S-3-1 2000 586 681 1,16 

300 50 284 5,56 
300 365 (shifted) 284 0,78 

S-3-2 2000 298 375 1,27 
300 26 136 5,26 
300 187 (shifted) 136 0,73 

S-3-3 2000 154 222 1,45 
300 14 130 9,29 
300 97 (shifted) 130 1,34 

S-3-4 2000 586 672 1,15 
300 50 280 5,56 
300 365 (shifted) 280 0,77 

S-3-5 2000 304 396 1,30 
300 47 293 6,23 
300 256 (shifted) 293 1,14 

Table 4.1: Verification of the moment capacity of specimen S-3 according to Eurocode EN1992-1-1. *Position from left edge of 
specimen. 



 

36 

Specimen Position section* Design moment Md [kNm] Moment capacity Mc [kNm] Md/Mc [-] 
S-4-1 3000 901 993 1,10 

300 49 336 6,67 
300 355 (shifted) 336 0,95 

S-4-2 3000 462 558 1,20 
300 26 199 7,65 
300 185 (shifted) 199 1,07 

S-4-3 3000 243 332 1,37 
300 14 130 9,29 
300 99 (shifted) 130 1,32 

S-4-4 3000 901 1039 1,15 
300 49 365 8,11 
300 355 (shifted) 365 1,03 

S-4-5 3000 470 543 1,16 
300 48 280 6,22 
300 290 (shifted) 280 0,97 

Table 4.2: Verification of the moment capacity of specimen S-4 according to Eurocode EN1992-1-1. *Position from left edge of 
specimen. 

 
The last column of table 4.1 and 4.2 shows that in a considerable amount of cases where the moment 
line in shifted over a distance d, reinforcement which is required according to the linear elastic finite 
element method provides insufficient moment capacity. Therefore it is preferable to apply longitudinal 
reinforcement bars which run over the full length of the span, also when this is not strictly necessary 
according to the output of the linear elastic finite element method. Required reinforcement at midspan 
turns out to meet the required design capacity in the ultimate limit state.  
 

4.4.3 Verification of crack width requirements 
 
As was discussed in chapter 2, the linear elastic finite element method determines the required 
reinforcement by dividing the membrane forces by the assumed yield strength of reinforcement. This 
approach is based on the assumption that in the ultimate limit state the strain in all nodes is such that 
the yield strength fyd of reinforcement is reached. 
 
However, in the considered specimens which are subjected to flexural deformations no yield strain is 
reached in bars which are required in the vicinity of the neutral axis, or just after considerable yielding 
of bars in the bottom part of the tension zone. The unjust assumption that these bars reach the full 
yield strength fyd results in a too limited amount of longitudinal reinforcement too meet requirements 
related to crack control in the serviceability limit state. This is illustrated in figure 4.18. 
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Figure 4.18: Strain in horizontal direction which will follow from a linear elastic analysis of a beam which is subjected to pure 
bending, assuming that the beam’s geometry is such that plane sections remain plane. According to the strain distribution, 

which develops linearly, the yield strain of reinforcement will not be reached in the vicinity of the neutral axis, although this is 
assumed during the design process. 

 
As a consequence, bars which are positioned at the bottom side of the tension zone in figure 4.18 
have to yield considerably before the bars, which according to the linear elastic analyses are required 
in the vicinity of the neutral axis, are capable to transfer any load and equilibrium of internal forces is 
reached. In the serviceability limit state this results in stresses in reinforcement bars at the bottom part 
of the tension zone which do not longer satisfy code requirements related to crack control. This can be 
elucidated by a manual verification of the stresses in the individual bars. 
 
In a similar way as the moment capacity was verified in section 4.4.2, the stresses in the individual 
reinforcement bars in the SLS are determined for those specimens of which the span is not less than 
three times the overall section depth. Based on the known bending moment and the assumption that 
plane sections remain plane the stress in each individual bar at midspan is determined. 
 
Figure 4.19 shows the strain distribution and distribution of internal forces when a specimen is 
subjected to a known bending moment which is the result of a combination of loads in the SLS. The 
height of the concrete compressive zone xu and the concrete strain εc are two unknown variables, 
which can be determined on basis of the known bending moment Md in the SLS and horizontal 
equilibrium of forces. The general form of these two equations is given by equation 4.5 and 4.6. 
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Where: 
 
Ns,i is the force in an individual reinforcement bar in horizontal direction. 
Nc is the resultant horizontal force in the concrete compressive zone. 
Ms,i is the contribution to the bending moment of an individual reinforcement bar. 
Mc is the contribution to the bending moment of the concrete compressive zone. 
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Figure 4.19: Strain and corresponding distribution of internal forces at midspan of an arbitrary specimen, as a result of a known 

bending moment. 

 
Since the SLS is considered, it is initially assumed that the strain in the concrete compressive zone 
does not exceed a value of 1,75‰ and Nc can be expressed by equation 4.7. 
 

 
1
2c c c uN E x tε=  (4.7) 

 
In above equation Ec is equal to the long-term value for the modulus of elasticity, which corresponds 
to the applied stress-strain diagram for concrete which was shown in figure 3.2 and can be expressed 
by equation (4.8) 
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The force Ns,i in an individual bar depends on the cross-sectional area As,i and the strain εy,i, and can 
be expressed by equation 4.9. 
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Substitution of equations 4.7 and 4.8 in equation 4.6 results in: 
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As discussed above, εc and xu can be derived by solving equations 4.5 and 4.6. To solve above 
system of equations efficiently for multiple specimens, the computer algebra system Maple is applied. 
The applied maple code can be found in appendix C. Table 4.3 gives an overview of the moment at 
midspan in the SLS for the considered specimens and the values of xu and εc which follow from above 
system of equations. 
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Specimen moment in SLS [kNm] xu [mm] εc [-] σs [N/mm2] ϕ [mm] 
S-3-1 451 390 0,00127 374 12 
S-3-2 230 310 0,00084 353 10 
S-3-3 119 248 0,00054 311 8 
S-3-4 451 390 0,00128 377 12 
S-3-5 234 318 0,00083 336 12 
S-4-1 695 435 0,00089 377 20 
S-4-2 357 369 0,00111 357 12 
S-4-3 239 294 0,00089 406 8 
S-4-4 695 455 0,00151 338 16 
S-4-5 363 365 0,00115 378 12 

Table 4.3: Design moment at midspan, 

 
With the known values of εc and xu, the stress σs,i in the individual bars can subsequently be derived 
from equation 4.11. The last two columns of table 4.3 show the stresses in the longitudinal bars which 
are located closest to the bottom edge of the considered specimens and their diameter. 
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The stresses which follow from equation 4.11 are compared with the assumed maximum permissible 
stress in the serviceability limit state, which is expressed in equation 4.12. 
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Assuming an average partial external load factor γ of 1,3, as was derived in chapter 3, this results in a 
limit stress σs of 335 N/mm2. Based on the data of table 4.3 and the equation 4.11 the development of 
stresses in the reinforcement bars is plotted over the depth of the considered specimens in figure 4.20 
and 4.21. The considered maximum allowed stress in the SLS is indicated by a vertical line. It can be 
observed that in the serviceability limit state stresses will develop in the reinforcement bars which are 
located at the bottom of the tension zone which exceed the maximum stress of 335 N/mm2. It is 
recommended to concentrate the longitudinal reinforcement in areas were the highest tension stresses 
appear, or to enlarge the required amount of reinforcement at the bottom side of the tension zone by a 
specific factor to reduce the stresses in reinforcement steel in the serviceability limit state. 
 

0

500

1000

-300 -200 -100 0 100 200 300 400 500

σs [N/mm2]

h [mm]

Specimen S-3-1

0

500

1000

-300 -200 -100 0 100 200 300 400 500

σs [N/mm2]

h [mm]

Specimen S-3-2

0

500

1000

-300 -200 -100 0 100 200 300 400 500

σs [N/mm2]

h [mm]

Specimen S-3-3  
Figure 4.20: Development of stresses in reinforcement over the depth of the considered variants of specimen S-3. The vertical 

red line represents the maximum allowed tension stress in the SLS according to equation 4.12. 
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Figure 4.20 (continuation): Development of stresses in reinforcement over the depth of the considered variants of specimen S-3. 

The vertical red line represents the maximum allowed tension stress in the SLS according to equation 4.12. 
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Figure 4.21: Development of stresses in reinforcement over the depth of the considered variants of specimen S-4. The vertical 

red line represents the maximum allowed tension in the SLS stress according to equation 4.12. 

 
Also according to provisions in Eurocode EN1992-1-1 it can be shown that the determined stresses in 
reinforcement bars which are located at the bottom side of the tension zone will not meet the 
requirements which are related to crack control. Eurocode EN1992-1-1 provides an efficient and 
simplified method to verify by means of tabular data if, for a specific reinforcement stress, 
requirements which are related to crack control will be satisfied. Table 4.4 gives an overview of the 
allowed steel stresses for several bar diameters. 
 

Steel stress σs  [N/mm2] Maximum bar size [mm] 
wk = 0,4 mm wk = 0,3 mm wk = 0,2 mm 

160 40 32 25 
200 32 25 16 
240 20 16 12 
280 16 12 8 
320 12 10 6 
360 10 8 5 
400 8 6 4 
450 6 5 - 

Table 4.4: Maximum bar diameters and steel stresses in the serviceability according to table 7.2N of Eurocode EN1992-1-1. 
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The third column of table 4.4, which is related to a maximum crack width wk of 0,3 mm, corresponds to 
the exposure class which is assumed during the design of the considered specimens. If the maximum 
allowable steel stresses for specific bar diameters which are stated in table 4.4 are compared to the 
stresses which are determined in the serviceability limit state and are shown in the last two columns of 
table 4.3, again the conclusion can be drawn that in a major part of the considered specimens higher 
stresses develop than according to the tabular data of Eurocode EN1992-1-1 is allowed. 
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5 Non-linear finite element analyses - principles 
 

5.1 Introduction 
 
As discussed in the introductory chapter of this report, non-linear finite element analyses form an 
important part of this Master thesis. Non-linear numerical analyses are performed to simulate the 
failure behavior and to determine the ultimate load bearing capacity of the considered specimens. 
Contrary to the linear analyses which are applied during the reinforcement design, the non-linear 
analyses take the actual interaction between all structural elements into account, including the effect of 
for example concrete cracking, concrete crushing, tension stiffening, reinforcement bond slip and 
reinforcement yielding. 
 
Before the results of non-linear analyses will be discussed in further detail, this chapter focuses on the 
basic principles which are taken into account during the non-linear analyses. Correct modeling is of 
great importance, since it can have a considerable influence on the analysis results. 
 
The non-linear finite element program which is used to verify the reinforcement design and structural 
behavior of the considered specimens is ATENA 2D, version 4.2.2.0. ATENA’s ability to simulate real 
concrete behavior has been proven numerous times in the preceding years, when results of non-linear 
analyses with ATENA showed great similarities with the structural behavior and failure loads which 
were found by real laboratory tests. Although ATENA’s proven ability to simulate the behavior of 
concrete structures accurately, it must be emphasized that the results of non-linear analyses which will 
be discussed in following chapters always remain a numerical approach of the specimens’ actual 
behavior. 
 
This chapter starts with a description of the applied material models. Subsequently other analysis 
parameters are discussed, such as specific model details, the loading path and mesh properties. 
 

5.2 Material models 
 

5.2.1 Concrete 
 
Concrete is modeled by using ATENA’s default pre-programmed SBETA material model, which is 
largely based on guidelines of CEB-FIB Model Code 1990 [5]. This model adequately describes the 
behavior of concrete and meets the provisions of Eurocode EN1992-1-1 with respect to non-linear 
finite element analyses. The SBETA material model adopts a smeared crack approach for modeling of 
cracks. Rather than representing a single discrete crack, the smeared crack model represents an area 
of the concrete that is cracked. Within the smeared crack concept a fixed crack model is applied. In a 
fixed crack model the crack direction is given by the principal stress direction at the moment of the 
crack initiation. 
 
A global overview of the uniaxial stress-strain relation which describes the non-linear behaviour of 
concrete can be seen in figure 5.1. Besides the biaxial failure function is shown. For a detailed 
description and the mathematical backgrounds of these diagrams and the applied SBETA material 
model in general, one is referred to ATENA’s theoretical manual [2]. 
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Figure 5.1: Stress strain diagram (left figure) and the bilinear failure function (right figure) of concrete in the considered SBETA 

model. 

 
In compression, the stress-strain curve for concrete is linear elastic up to approximately 40% of the 
maximum compressive strength. Above this point the strength increases gradually up to the maximum 
compressive strength. After it reaches the maximum compressive strength fc, the curve descends 
linearly into a softening region, and eventually crushing failure occurs at the ultimate strain εd. In 
tension, the stress-strain curve for concrete is linear elastic up to the maximum tensile strength. After 
this point, concrete cracks and the strength gradually decreases to zero. 
 
In the plane stress analyses, cracking of concrete occurs when the principle stress in any direction lies 
outside the failure surface of the biaxial failure function. Crushing occurs when all principal stresses 
are compressive and lie outside the failure surface. 
 
An overview of the derivation of the most important parameters in the SBETA material model can be 
seen in table 5.4. The SBETA material model calculates all parameters as functions of the entered 
concrete cubic strength fcu. Values of concrete material parameters for C30/37 which according to the 
safety formats of Eurocode EN1992-1-1 and Eurocode EN1992-2 have to be used in non-linear 
analyses are shown in respectively the third and fourth column of table 5.1. Chapter 6 will discuss the 
backgrounds of these safety formats in more detail. 
 

Parameter Formula / notation EN1992-1-1 EN1992-2 
Nominal cubic strength [N/mm2] fcu 23,53 29,76 

Cylinder strength [N/mm2] 0,85c cuf f= −  20 25,3 

Tensile strength [N/mm2] 
2
30,24ct cuf f=  2,09 2,305 

Initial elastic modulus [N/mm2] (6000 15,5 )c cu cuE f f= −  27340 30220 

Fracture energy [MN/m] 0,000025f ctG f=  4,927 10-5 5,762 10-5 

Poisson’s ratio [-] ν  0,2 0,2 

Softening compression [mm] dw  -5 10-4 -5 10-4 

Compressive strain [-] cε  -1,463 10-3 -1,674 10-3 
Table 5.1: Properties of concrete in ATENA according to the SBETA material model. The fracture energy Gf is the required 

energy to propagate a tensile crack. 

 

5.2.2 Reinforcement Steel 
 
Reinforcement steel is modelled by a bilinear stress-strain relation. Its behavior is assumed to be 
perfectly elastic-plastic and identical in tension and compression. Hardening of reinforcement steel in 
the plastic stage is left out of consideration. The maximum allowable strain εuk at which rupture of the 
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reinforcement steel occurs is set at 3 percent. Figure 5.2 shows the applied uniaxial stress-strain 
diagram. Quantitative properties of reinforcement steel can be seen in table 5.2. 
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Figure 5.2: Assumed stress-strain diagram of reinforcement steel. 

 
Parameter Notation EN1992-1-1 EN1992-2 
Elastic modulus [N/mm2] Es 200000 200000 
Yield strength [N/mm2] fyk 435 550 
Ultimate strain [-] εuk 0,03 0,03 
Yield strain [-] εy 0,002175 0,00275 

Table 5.2: Reinforcement steel properties. 

 

5.3 Geometry and model properties 
 

5.3.1 Overall geometry 
 
The in chapter 3 discussed specimens, including their reinforcement configuration which was 
determined in chapter 4, are transformed into two dimensional finite element models. Although due to 
symmetry of the considered single-span specimens it is possible to model only half of the specimens, 
the full geometry is taken into account in the non-linear analyses. It increases the computational 
expense, but any possible influence on the analysis results is excluded. 
 
The concrete specimens are modeled by two-dimensional macro elements, which have a length and 
height similar to that of the considered specimens. A thickness is assigned to the macro-element, 
which represents its third dimension. The macro elements are subdivided into a specific amount of 
finite elements, such that accurate analysis results are obtained. All reinforcement bars are modeled 
as discrete elements. 
 

5.3.2 Supports and loading point 
 
Steel plates with a thickness of 50 mm are modelled below the loading point and above the pin 
supports to avoid local concrete crushing or stress concentration problems. If the support conditions or 
loads are applied at single nodes, this may create strong stress concentrations affecting the analysis 
results. The applied steel plates provide a more even stress distribution over the supports and load 
point. To obtain similar conditions, the width of these steel plates is set equal to the width of the 
supports and concentrated loads which are applied during the reinforcement design with linear elastic 
finite element methods. The behaviour of the steel plates is considered to be perfectly elastic, the 
considered stress-strain relation can be seen in figure 5.3. A pin support is placed under the centre 
line of the steel plates to allow rotation of the specimens. 
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Figure 5.3: Uniaxial stress-strain relation for steel plates which are located at the supports and at the loading point. 

 
To prevent that the steel plates become part of the concrete structure and contribute to a specimens 
load bearing capacity, gap type interface elements are modelled between the concrete and steel 
plates. Interface elements describe the physical properties of the contact between two surfaces, its 
behaviour is based on the criteria of Mohr-Coulomb. Properties of the interface material model can be 
seen in table 5.3. 
 

Parameter Notation Value 
Normal stiffness [MN/m3] Knn 3 106 
Tangential stiffness [MN/m3] Ktt 3 106 
Tensile strength [N/mm2] ft 0 
Cohesion [N/mm2] C 0 
Friction coefficient [-] ϕ 0,1 
Minimal normal stiffness [MN/m3] Knnmin 3 103 
Minimal tangential stiffness [MN/m3] Kttmin 3 103 

Table 5.3: Properties of the interface material model. 

 

5.3.3 Reinforcement bond slip 
 
Bond slip between the reinforcement steel and concrete is modelled by a reinforcement bond model 
according to default settings based on CEB-FIB Model code 1990. It defines the relationship between 
bond stress and slip between bar and concrete. Ribbed reinforcement, confined concrete and a good 
bond quality are assumed in the reinforcement bond model. The relation between bond strength and 
reinforcement slip can be seen in table 5.4. In all numerical analyses the settings of the reinforcement 
bond model are kept constant. 
 

Slip [m] Bond stress [N/mm2] 
0,00000 4,8425 
0,00025 6,3582 
0,00050 9,1766 
0,00100 12,106 
0,00300 12,106 
0,01500 4,8425 
1,00000 4,8425 

Table 5.4: Relation between bond strength and reinforcement slip. 
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5.3.4 Anchorage of reinforcement mesh 
 
Bars of the reinforcement mesh which are located at both faces of the specimens are in practice 
connected to each other by hairpins. Since a two dimensional numerical model is applied, it is not 
possible to take hairpins and their favorable effect on the resistance to failure into account in the 
numerical analyses. The effect of hairpins is therefore approached by the assumption that bond slip is 
disabled at the beginning and end of those bars that are part of the reinforcement mesh. The same 
setting is applied for additional vertical bars that enclose longitudinal bars at the top or bottom of the 
specimens. 
 

5.4 Load path 
 
In the non-linear analyses specimens are loaded up to failure to trace down their resistance to failure 
and corresponding failure mode. In a first load step the dead weight is taken into account, in 
subsequent steps the external load is applied. 
 
The solution procedure of a non linear analyses is based on an incremental-iterative formulation. This 
implies that an external load is divided into a number of increments, which are than imposed on the 
finite element model. Within each increment an iterative procedure is applied to obtain the equilibrium 
solution. In case of a incremental-iterative analysis, there are two methods of imposing an external 
load and achieving convergence within each load step. The first method consists of applying a load 
into a number of increments, the load controlled method. The second method is based on applying a 
prescribed displacement divided into increments, the displacement controlled method. Except for the 
analyses of specimens which are loaded by distributed load over the full span, the displacement 
controlled method is applied in all numerical analyses. Use of the displacement controlled method for 
specimens loaded by a distributed load would result in immediate compressive failure of concrete that 
is located between the supports and the distributed load.  
 
At the same node to which the prescribed displacement is applied, the specimens’ resistance is 
monitored by a monitoring point, as shown in figure 5.4. Since it is not possible to monitor the size of 
an distributed load by a single monitoring point, for these specimens the reaction forces are monitored 
at the supports. Based on the found resistance at the support, the dead weight and the distance over 
which the load is distributed the distributed failure load can be determined. 
 

 
Figure 5.4: Monitoring points which monitor the reaction force (upper one) and displacement (lower one). 

 
Although it results in a larger computational expense, a small increment size is desirable. It will provide 
a more stable and convergent numerical process, since the degree of non-linear response per 
increment is smaller and therefore the iterative procedure converges more easily. Besides, a smaller 
increment size will provide more accurate results. In figure 5.5 the effect of the increment size on the 
analysis results of specimen S-1-1 can be seen. Although the increment size does not seem to 
influence the found resistance to failure much, less information is available about the structural 
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behavior before failure occurs when a relative large increment size is applied. An average increment 
size of 0,1 mm turned out to result in accurate analyses results for all considered specimens. Only for 
specimens with a length of 6000 mm an increment size of 0,5 mm is applied. Due to the increasing 
flexural behavior of slender specimens an increment size of 0,1 mm would require too much 
computational expense, without providing more accurate analysis results.  
 

0

100

200

300

400

500

600

700

800

0 1 2 3 4 5 6

increment size 0,05 mm

increment size 0,1 mm

increment size 0,25 mm

increment size 0,5 mm

increment size 1,0 mm

Displacement [mm]

R
es

is
ta

nc
e

[k
N

]

 
Figure 5.5: Effect of increment size on the load-displacement diagram of specimen S-1-1. 

 
The applied increment size of the load controlled non linear analyses of specimen S-2-5, S-3-5 and S-
4-5 is equal to 10 kN/m. To reduce the computational expense for specimen S-1-5 and S-5-5, which 
due to their limited slenderness show a relative high resistance to failure, a somewhat higher load 
increment size of 20 kN/m is applied. 
 

5.5 Solver properties 
 

5.5.1 Mesh size 
 
An important step in the finite element modeling is the selection of the mesh density. An adequate 
number of finite elements has to be used to obtain accurate analysis results. The consequence of a 
too course mesh is that the accuracy requirements are not met. Although selecting of a very small 
element size will increase the accuracy, the calculation process may become computationally 
expensive since the corresponding stiffness matrix increases and more computations are required to 
solve the system of equilibrium equations. An overall finite element mesh with quadrilateral elements 
sized 100 by 100 mm, combined with mesh refinement in areas where high stress gradients can be 
expected, provided the most optimal analysis results with respect to computational expense and 
accuracy. The minimum size of elements in refined areas is equal to 20 by 20 mm. In figure 5.6 an 
example can be seen of meshing of specimen S-1-1 and S-2-1.   
 

 
Figure 5.6: Example of the applied mesh for specimen S-1-1 and S-2-1. 
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5.5.2 Solver 
 
Although ATENA provides the possibility to apply the more advanced and efficient arc-length solution 
method, the Newton Raphson method is applied since it showed more robust results. The Newton 
Raphson equilibrium iterations provide convergence at the end of each load increment within 
tolerance limits. The default pre-programmed tolerance limits in ATENA are applied in all numerical 
non-linear analyses. 
 
References 
 
[1] Cervenka, V et. al., ATENA Program documentation Part 2-1: User’s Manual for ATENA 2D, 
 Prague, Czech Republic, November 2006 
[2] Cervenka, V et. al., ATENA Program documentation Part 1: Theory, Prague, Czech Republic,  
 October 2009 
[3]  Claus, T. T. B., Non-Linear Finite Element Analysis of Shear Critical Reinforced Concrete 
 Beams, Delft, The Netherlands, April 2009 
[4] Kachlakev, D et. al., Finite element modeling of reinforced concrete structures strengthened 
 with FRP laminates, Washington DC, United States, May 2001 
[5] Comité Euro-International du Béton, CEB-FIB Model Code 1990, London, United Kingdom, 
 1993 
[6] NEN, NEN-EN 1992-1-1, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 Deel 1- 1: Algemene regels en regels voor gebouwen, Delft, The Netherlands, December 
 2007 
[7] NEN, NEN-EN 1992-2, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 bruggen, Delft, The Netherlands, November 2005 



 

50 



 

51 
 

6 Non-linear finite element analyses – safety forma ts  

 

6.1 Introduction 
 
Uncertainties which affect the structural performance of a structure must be taken into account during 
its design process. To account for possible uncertainties related to material and structural 
imperfections, Eurocode EN1992-1-1 prescribes the reduction of material strength parameters of 
concrete and reinforcing steel by specific partial safety factors. In practice this results in structures with 
a design resistance which is lower than their actual resistance which would follow from laboratory 
tests, all to meet a sufficient level of reliability. A similar procedure is prescribed for applied loads, 
which have to be multiplied by a specific partial load factor. 
 
Reinforcement design according to the linear elastic finite element method is, similar to the other 
common design methods, based on these prescribed partial safety factors. A same level of reliability 
as assumed during the design process should be taken into account in the non-linear analyses to fairly 
verify the design resistance. However, use of the same partial material safety factors in non-linear 
analyses can be called into question, since non-linear analyses differ at some essential points from 
their linear counterparts. The safety format which is based on partial material safety factors is tailored 
for classical design procedures, based on hand calculations or linear analyses and local safety checks 
of critical individual sections. On the other hand, non-linear analyses are a global type of assessment 
in which all structural parts and intersections interact. In case design values of material strength 
parameters are applied in non-linear analyses, an unrealistic degraded material is assumed. This can 
result in structural behavior which deviates from the actual behavior that would be found in case mean 
values for material strength parameters are applied. Therefore in non-linear analyses a safety check of 
the overall structural resistance can possibly be preferred to the safety format of partial material safety 
factors. 
 
Eurocode EN1992-2, which is prescribed as a basis for the design of bridges in plain reinforced and 
prestressed concrete, introduces a separate safety format especially for non-linear analyses to 
overcome the difficulties which are discussed above. A second, more general, alternative for the 
application of the partial safety factor method is the execution of a full probabilistic analysis, although 
this is a rather time-consuming method. 
 
In this chapter a comparison is made between the above mentioned safety formats which can be 
applied in non-linear analyses. The main objective is to extend the understanding of the influence of a 
specific safety format on the results of non-linear analyses, the found resistance to failure. Based on 
this comparison analysis an optimal safety format can be chosen for the non-linear analyses which are 
discussed in the next two chapters. Specimen S-2-1 is chosen as the basis for the comparison 
analysis, its geometry and reinforcement configuration can be seen in figure 6.1. 
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Figure 6.1: Geometry and reinforcement configuration of specimen S-2-1, based on an external design load of 646 kN. 
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This chapter starts with a concise explanation and some backgrounds of the prescribed safety formats 
in Eurocode EN1992-1-1 and Eurocode EN1992-2 which take account for uncertainties in material and 
model properties that can affect the structural performance. Subsequently the full probabilistic analysis 
is discussed, which is based on the principles of the Monte Carlo method. Preceding the Monte Carlo 
analysis the general backgrounds related to reliability analyses are introduced shortly. At the end of 
this chapter the analysis results which follow from the different safety formats are discussed. 
 

6.2 Safety format according to Eurocode EN1992-1-1 
 
The safety format which is prescribed in Eurocode EN1992-1-1 is completely based on partial safety 
factors [4,5]. Strength of materials is represented through a characteristic value, indicated as fk. 
Eurocode EN1990 defines the characteristic value of a material property as the 5% fractile of its 
statistical distribution. To obtain the design value fd, which has to be applied in design calculations, the 
characteristic value is reduced by a partial material safety factor γm to account for uncertainties in 
material and geometrical properties. This procedure is illustrated graphically in figure 6.2, where the 
normal probability density function of a random strength parameter is shown. 
 

µf
fk

fd

/ γm

 
Figure 6.2: Procedure to determine the design value of a material strength parameter according to Eurocode EN1992-1-1 and 

Eurocode EN1990. 

 
Eurocode EN1992-1-1 defines the design compressive concrete strength fcd and tensile concrete 
strength fctd as: 
 
 /cd cc ck cf fα γ=  (6.1) 

 
 ,0,05 /ctd ct tck cf fα γ=  (6.2) 

 
Where: 
 
γc is the partial safety factor for concrete. 
αcc is a coefficient taking account of long term effects on the compressive strength and of 
 unfavourable effects resulting from the way the load is applied. 
αct is a coefficient taking account of long term effects on the tensile strength and of unfavourable 
 effects  resulting from the way the load is applied. 
 
According to Eurocode EN1992-1-1 the recommended value of αcc and αct is equal to 1,0. The 
prescribed design yield strength fs is determined in a similar way: 
 
 /yd yk sf f γ=  (6.3) 

 
Where: 
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γs is the partial safety factor for reinforcement steel. 
 
An overview of the quantitative values given in Eurocode EN1992-1-1 for the above mentioned safety 
factors can be seen in table 6.1: 
 
Design situation γc for concrete [-] γs for reinforcing steel [-] γs for prestressing steel [-] 
Persistent and transient 1,5 1,15 1,15 
Accidental 1,2 1,0 1,0 

Table 6.1: Partial safety factors for materials according to EC2-1-1. Partial safety factors related to accidental load will not be 
discussed further. 

 
Partial safety factors related to persistent and transient design situations take account for variation in 
model uncertainty, geometry and material strength, which are all distributed according to a specific 
probability density function. The values of partial safety factors shown in table 6.1 are determined by: 
 

 3,04 1,64r rV V
m eγ −=  (6.4) 

 
Where: 
 

 2 2 2
r m g fV V V V= + +  (6.5) 

 
 0,8 3,8 3,04αβ = ⋅ =  (6.6) 

 
 (0,05) 1,64Φ =  (6.7) 

 
Vr is the coefficient of variation of the resistance. 
Vm is the coefficient of variation of the model uncertainty. 
Vg is the coefficient of variation of the geometrical factor. 
Vf is the coefficient of variation of the material strength. 
α is the dominant FORM (First Order Reliability Method) sensitive factor for resistance. 
β is the reliability index for a resistance class 2 structure with a reference period of 50 years. 
Φ(0,05) is the 5% characteristic value corresponding to the Hasofer-Lind reliability index. 
 
An overview of the coefficients of variation on which the partial safety factors are based can be seen in 
table 6.2: 
 

Coefficient of variation Concrete [-] Steel [-] 
Vm 0,05 0,025 
Vg 0,05 0,05 
Vf 0,15 0,04 
γm 1,295 1,154 

Table 6.2: Coefficients of variation for the different model uncertainties for concrete and reinforcement steel. The bottom row 
shows the resulting partial safety factor which follow from equation 6.4 and 6.5. 

 
To cover the uncertainty arising from concrete being tested which is especially made and cured for this 
purpose, rather than from a random finished structure, the partial safety factor for concrete which is 
shown in table 6.2 is multiplied by a factor 1,15. This results in a final partial safety factor γc of 1,5, 
equal to the value shown in table 6.1. 
 
 1,15 1,295 1,50cγ = ⋅ =  (6.8) 
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6.3 Safety format according to Eurocode EN1992-2 
 
Eurocode EN1992-2 gives in contrast to Eurocode EN1992-1-1 some clear provisions for material 
strength parameters which have to be used in non-linear analyses [6]. The prescribed safety format in 
Eurocode EN1992-2 is based on both partial, as well as global safety factors. The entered concrete 
compressive strength and reinforcement tensile strength have to be multiplied by a specific partial 
safety factor, the resistance which finally follows from the non-linear analysis has to be reduced by a 
global safety factor. 
 
For reinforcing steel the required steel yield strength which has to be used in non-linear analyses is 
prescribed as: 
 
 1,1y ykf f=  (6.9) 

 
The concrete compressive strength which has to be used in non-linear analyses is prescribed by 
equation 6.10. No clear provisions are given for the other concrete strength parameters. However, all 
relevant material parameters in the default pre-programmed constitutive concrete model in ATENA are 
a function of the prescribed concrete compressive strength fc, as was shown in table 5.1 of chapter 5. 
 

 1,1 s
c cf ck ck

c

f f f
γγ
γ

= =  (6.10) 

 
The structure has to be loaded by an increasing load, until one region of the structure attains the 
ultimate strength or there is global failure. The following inequality should be satisfied: 
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+ ≤  
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γ
 (6.11) 

Where: 
 
γRd is the partial factor for model uncertainty for resistance, γRd = 1,06. 
γSd is the partial safety factor for model uncertainty for action / action effort, γSd = 1,15. 
γO is the overall safety factor, γO = 1,20. 
 
When model uncertainties γRd and γSd are not considered explicitly in the analysis, which is the case 
when γRd = γSd = 1, γO = 1,27 should be applied. It must be emphasized that in the hypothetical case in 
which a structure only exists of reinforcement steel or concrete, and thus no interaction between these 
materials in the non-linear analysis is present, the safety format prescribed in Eurocode EN1992-2 is 
equal to that of the partial safety factor format prescribed in Eurocode EN1992-1-1: 
 
For concrete: 
 

 
1,15

(1,1 ) / (1,1 ) /1,27 0,664
1,5 1,51
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c
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f f f

γ γ
γ
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 (6.12) 

 
For reinforcement steel: 
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6.4 Probabilistic analysis 
 

6.4.1 Introduction 
 
A full probabilistic analysis is a suitable safety format for non-linear analyses. Probabilistic analyses 
are a general tool for safety assessment, and can therefore also be applied in case of non-linear 
analyses of reinforced concrete structures. Instead of the use of safety factors on which the other 
discussed safety formats are based, in probabilistic analyses the actual probability density functions of 
all relevant strength and load variables are taken into account.  
 
The probabilistic analysis of the considered specimen is based on the general limit state function 6.14, 
which can also be denoted as the reliability function. The state just before failure occurs, which is the 
case when Z=0, is the limit state. The reliability is defined as the probability that this limit state will not 
be exceeded. 
 
 Z R S= −  (6.14) 
 
Where: 
 
R is the strength or more generally the resistance to failure, which has an appropriate type of 
 probability distribution. 
S is the load which is conducive to failure, which has an appropriate type of probability 
 distribution. 
 
The Monte Carlo method is applied to evaluate limit state function 6.14, a full probabilistic method 
which is based on repeated random sampling of variables. The resistance to failure R is represented 
by repeated non-linear numerical analyses, in which relevant strength parameters are assumed as 
random quantities having appropriate types of distribution function. Load S, which is conducive to 
failure, can be derived from the resistances which follow from the non-linear analyses and the 
assumed reliability index β.  
 
The reliability index β is specified as the probability that failure occurs, which is the case when Z < 0. 
During the probabilistic analysis a reliability index β of 3,8 is assumed, which corresponds with the 
reliability index prescribed in Eurocode EN1990 for a class 2 structure with a reference time of 50 
years. Besides, the safety formats provided by Eurocode EN1992-1-1 and Eurocode EN1992-2, 
discussed in the previous paragraphs, are based on a reliability index β of 3,8 too.  
 
If it is assumed that the distribution of Z in equation 6.14 is normally distributed, the reliability index β 
can be expressed by equation 6.15: 
 

 3,8z

z

µ
σ

=  (6.15) 

 
Where: 
 
µz is the mean value of the normal distribution of Z. 
σz is the standard deviation of the normal distribution of Z. 
 
The failure probability Pf that corresponds to a reliability index of 3,8 of a normal distributed variable 
can be determined with the cumulative density function of the standard normal distribution. The 
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cumulative density function can be derived by integration of the probability density function of the 
standard normal distribution, shown by equation 6.16. The cumulative density function is expressed by 
equation 6.17. 
 

 
21

2
1

( )
2

x
x eφ

π
−

=  (6.16) 

 

 
1

( ) 1 erf
2 2

x
x

  Φ = +  
  

 (6.17) 

 
Where erf is the error function, defined as: 
 

 
2

0

2
erf( )

x
tx e dt

π
−= ∫  (6.18) 

 
The probability to failure Pf, which follows from equation 6.17 and corresponds to a reliability index β of 
3,8, is equal to 7,23 10-5. A graphical representation can be seen in figure 6.3. The probability to 
failure Pf subsequently follows from equation 6.19: 
 

 1 ( )fP x= − Φ  (6.19) 

 

Φ(x)

x = β = 3,8

x  
Figure 6.3: Graphical representation of the probability to failure Pf if it is assumed that the distribution of Z is normally distributed 

and a reliability index of 3,8 is taken into account. 

 
In the next sections the probabilistic analysis will be discussed in more detail. It can roughly be divided 
into the following steps: 
 

• Creation of a numerical model for the non-linear finite element analysis. This model describes 
the resistance function R and can perform deterministic analysis of the resistance for a given 
set of input variables. This step has already been discussed in detail in chapter 5. 

• Randomization of the input variables. Random values are generated based on the statistical 
distribution of each input variable. 

• Probabilistic analysis of the resistance and load. This is performed by a Monte Carlo analysis. 
Results of this analysis provide random parameters of the resistance R and load S. 

• Evaluation of the reliability, based on the defined reliability index β. 
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6.4.2 Resistance to failure R 
 
For the Monte Carlo analysis a total of hundred numerical analyses are applied to establish the 
resistance to failure. For each separate simulation the properties and circumstances which have the 
most significant influence on the resistance to failure are generated randomly according to their 
statistical distribution. Random numbers are drawn from a uniform probability density function between 
zero and one, which correspond to a specific non-exceedence value of the cumulative density function 
of the considered material property or circumstance. This can be formulated as: 
 
 ( )x uF X X=  (6.20) 

 
Where: 
 
Xu is the value of the random drawn number from a uniform probability density function between 
 zero and one. 
Fx(X) is the probability of non-exceedence of the corresponding cumulative density function of the 
 considered material property or circumstance. 
 
With a given random generated value of Xu the corresponding value of X is determined by: 
 

 1( )x uX F X−=  (6.21) 

 
Using this formula a random number X can be generated from an arbitrary distribution Fx(X) by 
drawing a number Xu from the uniform distribution between zero and one. A graphical representation 
of this method can be seen in figure 6.4.  
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Figure 6.4: Randomization of the input variables. 

 
Properties and circumstances which have a significant influence on the resistance to failure have to be 
taken into account in a probabilistic analysis and are listed below: 
 

• Material strength properties. 
• Model uncertainties caused by influence of the fabrication and execution procedures and 

uncertainties in geometrical parameters. 
• Geometrical imperfections. 

 
Two options are available to take the distribution of above properties and circumstances into account 
in the Monte Carlo analysis. The first option is to take the distribution of a property or circumstance 
into account in the actual numerical analysis which is applied to determine the resistance to failure. 
The second option is to leave the distribution out of the numerical analysis, and to multiply the 
resistance which follows from the numerical analyses by a multiplication factor. This multiplication 
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factor takes the effect of the distribution of a property or circumstance on the resistance to failure into 
account. The spreadsheet program Microsoft Excel is applied to generate all considered random 
variables and to process the data which follows from the non-linear analysis. Graphs are plotted with 
the computer algebra system Maple. 
 

Model uncertainties and geometrical imperfections 
 
The effect of geometrical imperfections and model uncertainties is modeled according to the second 
option, since it is extremely difficult to take their actual scatter into account in the numerical 
simulations. Their effect on the resistance to failure can be represented by: 
 
 m g analysisR k k R=  (6.22) 

Where: 
 
km is a randomly generated multiplication factor which takes model uncertainties into account. 
kg is a randomly generated multiplication factor which takes geometrical imperfections into 
 account. 
Ranalysis is the resistance to failure which follows from the non-linear numerical simulation.  
 
For each numerical analysis a random value for km and kg is generated. Both the effect of geometrical 
imperfections as well as the effect of model uncertainties is assumed to have a lognormal distribution. 
Their parameters can be seen in table 6.3 and are taken from the Dutch CUR rapport titled “Probability 
in Civil Engineering” [3]. All other statistical data which will be discussed throughout this chapter is 
taken from this same rapport. The coefficient of variation V, which is shown in table 6.23, is defined as: 
 

 V
σ
µ

=  (6.23) 

 
Property or circumstance Notation Distribution µ [-] V [-] 
Model uncertainty km lognormal 1 0,05 
Geometrical imperfections kg lognormal 1 0,05 

Table 6.3: Parameters of the statistical distribution of km and kg. 

 
 
In figure 6.5 the probability density functions of km and kg are plotted. 
 

km
k

g  
Figure 6.5: Probability density functions of km and kg. 
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Material strength properties 
 
Scatter in material strength parameters is taken into account in the actual numerical analyses. Since in 
practice every material parameter is scattered according to a specific kind of distribution, only the 
material parameters are randomly generated that have a significant influence on the resistance to 
failure. These considered material strength parameters are: 
 

• The concrete compressive strength fc. 
• The concrete tensile strength fct. 
• The reinforcement steel yield strength fy. 

 
All other material properties, such as for example the modulus of elasticity of reinforcing steel, are 
considered as deterministic values during the repeated simulations. Concrete properties are for each 
repeated simulation derived from the random generated concrete compressive strength by the 
formulas given in table 5.1 of chapter 5. Only the concrete tensile strength is replaced by a random 
generated value. Table 6.4 shows the assumed properties of the distribution functions which describe 
the scatter of above listed material strength parameters. The accompanying probability density 
functions can be seen in figure 6.6. 
 

Strength parameter Notation Distribution µ [N/mm2] V [-] 
Concrete compressive strength fc lognormal 38 0,15 
Concrete tensile strength fct lognormal 2,9 0,20 
Steel yield strength fy lognormal 500 0,10 

Table 6.4: Material properties used in numerical simulations. 

 

fy [N/mm2]fct [N/mm2]f
c
 [N/mm2]  

Figure 6.6: Statistical distribution of fc, fct and fy. It must be emphasized that the scale of the axes differs in each graph. 

 
Mean concrete strength parameters provided in Eurocode EN1992-1-1 are related to the short-
duration strength of concrete, estimated with tests of cubic specimens at an age of 28 days after 
casting. Long-term effects, which already appear during real laboratory tests of specimens, have 
significant influence on the considered concrete strength parameters and are taken into account in the 
numerical simulations. The diagram in figure 6.7 shows a representation of concrete strains as a 
function of the applied stresses for several loading times, nailed down in an extensive long-term effect 
study by Rüsch in the 1960’s. 
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Figure 6.7: Stress strain relations for several time durations of axial compressive loads [4]. 

 
On basis of the ultimate compressive strain εcu1 of C30/37, which is equal to 3,5‰, and an assumed 
duration of a real laboratory failure test which takes between 20 to 100 minutes, a reduction factor of 
approximately 0,85 for the short-term concrete compressive strength can be derived from the diagram 
in figure 6.7. A reduction factor for the effect of long-term loading on the concrete tensile strength is 
taken from the former Dutch concrete code NEN 6720, which charges the long-term effects with a 
reduction coefficient of 0,7. Random generated values of the concrete compressive and tensile 
strength are multiplied by these reduction factors before they are imported in the numerical analyses. 
 
Since both the concrete compressive strength as well as the concrete tensile strength are generated 
randomly, both material properties are considered to be fully independent. In practice however a 
certain correlation between these two variables can be expected, a concrete specimen which has an 
above average compressive strength would probably also has an above average tensile strength. 
Closer examination on the influence of the concrete tensile strength on the resistance to failure of the 
considered specimen, which was performed to verify if disregarding of the correlation would have an 
unfavorable influence on the analysis results, shows however that its size has almost no influence. In 
the left diagram of figure 6.8 the concrete tensile strength is kept constant at a value corresponding to 
a non-exceedence probability of 0,5, while that of the concrete compressive strength varies between 
0,01 and 0,99. In the right diagram the compressive strength is kept constant, while the tensile 
strength varies. From the right diagram in figure 6.8 it comes clear that the size of the concrete tensile 
strength has almost no influence on the analysis results, and that disregarding of the correlation would 
probably not influence the analysis results. 
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Figure 6.8: Influence of the concrete compressive strength (left diagram) and concrete tensile strength (right diagram) on the 

resistance to failure which follows from a non-linear analysis. 
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Results of non-linear analyses 
 
Numerical simulation of the hundred test specimens which are based on random generated material 
properties and affected by random generated circumstances results in a dataset with a mean 
resistance to failure µR of 850 kN and a standard deviation σR of 83 kN. These values are determined 
according to equation 6.24 and 6.25. 
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The histogram in figure 6.9 shows the distribution of the found resistances. Three frequently appearing 
types of distribution functions in the field of probabilistic analyses are plotted manually through the 
histogram. In table 6.5 the corresponding probability density functions and scale parameters can be 
seen. The green graph corresponds to the normal distribution, the red graph to the lognormal 
distribution and the blue graph to the Gumbel distribution. The curve which corresponds to the 
lognormal distribution appears to describe as accurate as possible the scatter which is found in the 
analyses results, and has the advantage that it cannot assume negative values which on physical 
grounds are not possible. The correctness of the approximation of the resistance to failure by a 
lognormal distribution can be proven by the Kolmogorov-Smirnov-test, which compares the chosen 
distribution function with the statistical material. 
 

R [kN]  
Figure 6.9: Statistical distribution of the resistance R which is found after 100 numerical analyses. Based on the available data 

different distribution functions are plotted. 
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Table 6.5: Probability density functions and scale parameters of three frequently appearing distribution functions in the field of 
probabilistic analysis. 
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The histogram in figure 6.9 also shows one limitation of the performed Monte Carlo analysis. The 
amount of hundred repeated non-linear analyses is actually too limited to accurately determine a type 
of distribution function which describes the distribution in the lower and higher ends, since less 
analysis results are available in these regions. To obtain more accurate results the amount of non-
linear analyses should be increased considerably, which due to the required computational time for a 
single non-linear analysis was not attainable. 
 

6.4.3 Load S 
 
The scale parameters that describe the distribution of the permissible load S, which is assumed to be 
lognormal, can be derived by an iterative process from reliability function 6.14 and the determined 
reliability index β of 3,8. Since only a single reliability function is available to solve the two unknown 
scale parameters that describe the distribution function of S, which are µs and σs, four separate 
analyses are performed. Each analysis is based on a different value for the coefficient of variation Vs 
of load S, so that µs remains as the only unknown variable. The values of Vs are chosen such that they 
represent the range in variation which can be found in practice. Table 6.6 gives an overview, inclusive 
the corresponding scale parameters. 
 

Analysis Distribution µs [kN] Vs [-] σs [kN] 
1 lognormal 515 0,05 26 
2 lognormal 481 0,10 48 
3 lognormal 443 0,15 66 
4 lognormal 407 0,20 81 

Table 6.6: Properties which describe the distribution functions of S for different coefficients of variation. 

 
The four corresponding distribution functions can be seen in figure 6.10. The red graph corresponds to 
distribution function of the resistance. 
 

R [kN]  
Figure 6.10: Probability density functions of R and S. 

 

6.4.4 Design resistance 
 
With the known statistical distributions of the resistance and each separate load case a level II FORM 
(First Order Reliability Method) analysis can be applied to determine the design points, which are 
defined as the points in the failure space with the greatest joint probability. The distribution functions 
which are shown in figure 6.10 are transformed to normally distributed variables to approximate the 
resistance Rd and load Sd which correspond to the design point. It is assumed that R and S are fully 
uncorrelated. 
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Figure 6.11 gives a graphical representation of the determination of the design point which belongs to 
a load with a coefficient of variation of 0,10. Design points which correspond to the other load cases 
are indicated at the graph which corresponds to the reliability function Z.  
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Figure 6.11: Failure space and determination of design points with the greatest joint probability. 

 
The corresponding resistance Rd and load Sd for each considered load case can be determined by: 
 
 d R R RR µ α βσ= −  (6.26) 

 
 d S S SS µ α βσ= +  (6.27) 

 
The α-values are a measure for the sensitivity of the reliability function Z to the resistance R and load 
S, and are specified by: 
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 (6.28) 

 
In table 6.7 an overview can be seen of the resistance and load which correspond to the design point 
of each considered load case. 
 

Analysis R [kN] S [kN] β [-] αR [-] αS [-] Rd [kN] Sd [kN] 
1 850 515 3,84 0,955 0,295 544 544 
2 850 481 3,83 0,867 0,499 570 570 
3 850 443 3,82 0,782 0,623 601 601 
4 850 407 3,80 0,716 0,698 623 623 

Table 6.7: Design values of Rd which follow from the probabilistic analysis and meet a reliability index β of 3,8. 

 

6.5 Comparison safety formats 
 
Table 6.7 of the previous section already shows the design resistances which follow from a full 
probabilistic analysis which meets a reliability index of 3,8. The resistances to failure which are found 
when the safety formats of Eurocode EN1992-1-1 and Eurocode EN1992-2 are applied can be seen in 
table 6.8. 
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Safety format fcd [N/mm2] fyd [N/mm2] Ranalysis [kN] Rd [kN] 
Eurocode EN1992-1-1 20 435 610,0 610,0 
Eurocode EN1992-2 25,3 550 709,5 558,7 

Table 6.8: Resistances which follow from a non-linear analysis in case the discussed safety formats of the Eurocodes are 
applied. 

 
At first glance no significant differences can be seen between the results which follow from the 
different safety formats. All applied safety formats finally result in a similar type of failure mechanism, 
results which corresponds to earlier found observations by Cervenka [1]. The first load steps result in 
flexural cracks at the mid-span of the specimen. By an increasing prescribed displacement the amount 
of cracks in the compressive struts increase considerably. Failure is finally caused by flexural 
deformation. Due to yielding of the tensile reinforcement concrete in the compressive strain reaches its 
ultimate strain, whereupon the concrete fails in compression. In chapter 7 the observed failure mode 
will be discussed in more detail and it will be explained why, considering a same level of reliability, the 
non-linear analyses show a lower resistance to failure compared to the design load. 
 
Figure 6.12 shows the load-displacement diagram of the analyses which are based on the safety 
format of Eurocode EN1992-1-1 and Eurocode EN1992-2. It must be emphasized that the resistance 
which follows from the non-linear analysis which corresponds to the Eurocode EN1992-2 method must 
be reduced by a factor γo of 1,27, as was discussed in section 6.3. The design resistances which 
follow from the full probabilistic analyses are indicated by a horizontal line. 
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Figure 6.12: Resistances which follow from the different safety formats plotted in a load-displacement diagram. After the 

normative failure mode appeared the non-linear analyses were interrupted. 

 
The small difference in resistance to failure between the two safety formats which are prescribed in the 
codes can be explained by a difference in the modulus of elasticity of concrete which is applied in the 
non-linear analyses. As discussed in chapter 5, the modulus of elasticity in the applied concrete 
material model in non-linear analyses is a function of the applied concrete compressive strength. 
Since the safety format of Eurocode EN1992-2 is based on a higher initial concrete compressive 
strength, the stiffness of concrete which is applied in the non-linear analyses is also higher compared 
to that of analyses which are based the safety format of Eurocode EN1992-1-1. Because the modulus 
of elasticity of reinforcement steel is kept constant in both safety formats, concrete in a non-linear 
analysis which is based on the safety format of Eurocode EN1992-2 will carry relatively more load due 
to its higher stiffness. Since exceeding of the ultimate compressive strain of concrete is the governing 
failure criteria, a relative lower resistance to failure is found in the analysis in which the safety format of 
Eurcode EN1992-2 is applied. 
 
The design resistances which follow from the full probabilistic analyses do not deviate considerably 
from the results that follow from analyses which are based on safety formats of the codes. For the 
greater part this can be explained by the fact that the full probabilistic analysis is largely based on the 
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same assumptions as the ones on which the safety factors of the codes are based. The small 
deviation can be explained because code prescriptions deviate to a limited extent from the assumed 
reliability index of 3,8, mostly because of economical reasons. Furthermore it depends on the type of 
load, permanent or variable, which value for the coefficient of Vs should be applied. 
 

6.6 Conclusion 
 
The resistances which follow from the comparison analysis of the different safety formats all lie in 
approximately the same range. Although the full probabilistic analyses can be considered as the most 
exact method to determine the resistance to failure that meets a reliability index of 3,8, it has the 
disadvantage that it is too time-consuming to apply it on all considered specimens. Therefore 
preference is given to the safety format of Eurocode EN1992-2, which is exclusively derived for non-
linear analyses. 
 
References 
 
[1] Cervenka, C. et. al., Probabilistic Estimate of Global Safety Factor – Comparison of Safety 
 Formats for Design based on Non-linear Analysis, Prague, Czech Republic, October 2006  
[2] Dekking, F.M et. al., A Modern Introduction to Probability and Statistics: Understanding Why 
 and How, Delft, The Netherlands, February 2007 
[3] Civiel Technisch Centrum Uitvoering Research en Regelgeving, Kansen in de civiele techniek. 
 Deel 1: probabilistisch ontwerpen in theorie, Gouda, The Netherlands, March 1997 
[4]  European Concrete Platform ASBL, Commentary Eurocode 2, Brussels, Belgium, June 2008 
[5] NEN, NEN-EN 1992-1-1, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 Deel 1- 1: Algemene regels en regels voor gebouwen, Delft, The Netherlands, December 
 2007 
[6] NEN, NEN-EN 1992-2, Eurocode 2: Ontwerp en berekening van betonconstructies –  
 bruggen, Delft, The Netherlands, November 2005 
[7] NEN, NEN-EN 1990: Eurocode – Grondslagen van het constructief ontwerp, Delft, The 
 Netherlands, December 2002 
[8] NEN 6720, Voorschriften Beton – Constructieve eisen en rekenmethoden, Delft, The 
 Netherlands, September 1995 



 

66 

 



 

67 
 

7 Non-linear finite element analyses – results 
 

7.1 Introduction 
 
This chapter discusses the results which follow from non-linear analyses in ATENA of the considered 
specimens. The non-linear numerical analyses are applied to evaluate if the applied reinforcement is 
sufficient to meet the required load bearing capacity. In addition attention is paid to the appearing 
failure modes. As was already discussed extensively in the previous chapter, a same level of reliability 
is taken into account in the non-linear analyses as was applied during the reinforcement design 
process to make a clear comparison between the design load and resistance to failure. The safety 
format of Eurocode EN1992-2 is applied to meet the considered level of reliability, equal to 3,8. 
 

7.2 Analysis results 
 
Non-linear finite element analyses show a similar type of failure mode for the considered specimens. 
At the load increment which results in a regression of the monitored load bearing capacity, concrete in 
the compressive zone fails in compression, caused by bending of the specimens. Only the considered 
variants of specimen S-5, which have a dimension of 2000 by 2000 mm, fail due to shear. Rupture of 
the reinforcement steel due to exceeding of the limit strain or significant bond slip of the reinforcement 
in the vicinity of the supports, as was expected to be one of the possible normative failure modes, did 
not be normative. 
 
An overview of the resistances to failure which follow from the non-linear analyses can be seen in the 
fourth column of table 7.1. 
 

Specimen Dimensions [mm] Design load Resistance Displacement Resistance /  
design load 

S-1-1 2000 x 1000 x 200 651 kN 676 kN 3,0 mm 1,04 
S-1-2 2000 x 1000 x 200 326 kN 498 kN 3,8 mm 1,53 
S-1-3 2000 x 1000 x 200 163 kN 375 kN 4,1 mm 2,30 
S-1-4 2000 x 1000 x 200 651 kN 706 kN 3,2 mm 1,08 
S-1-5 2000 x 1000 x 200 382 kN/m 572 kN/m - 1,50 
S-2-1 3000 x 1000 x 200 646 kN 559 kN 5,0 mm 0,86 
S-2-2 3000 x 1000 x 200 323 kN 428 kN 6,3 mm 1,33 
S-2-3 3000 x 1000 x 200 162 kN 273 kN 6,5 mm 1,69 
S-2-4 3000 x 1000 x 200 646 kN 536 kN 5,0 mm 0,83 
S-2-5 3000 x 1000 x 200 239 kN/m 354 kN/m - 1,48 
S-3-1 4000 x 1000 x 200 640 kN 545 kN 8,5 mm 0,85 
S-3-2 4000 x 1000 x 200 320 kN 421 kN 10,7 mm 1,32 
S-3-3 4000 x 1000 x 200 160 kN 252 kN 5,8 mm 1,56 
S-3-4 4000 x 1000 x 200 640 kN 548 kN 8,3 mm 0,86 
S-3-5 4000 x 1000 x 200 172 kN/m 292 kN/m - 1,70 
S-4-1 6000 x 1000 x 200 628 kN 473 kN 16 mm 0,75 
S-4-2 6000 x 1000 x 200 314 kN 342 kN 19,5 mm 1,09 
S-4-3 6000 x 1000 x 200 157 kN 229 kN 21 mm 1,46 
S-4-4 6000 x 1000 x 200 628 kN 489 kN 16,5 mm 0,79 
S-4-5 6000 x 1000 x 200 110 kN/m 169 kN/m - 1,54 

Table 7.1: Resistances to failure which follow from non-linear analyses. 
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Specimen Dimensions [mm] Design load Resistance Displacement Resistance /  
design load 

S-5-1 2000 x 2000 x 200 696 kN 904 kN 1,4 mm 2,21 
S-5-2 2000 x 2000 x 200 348 kN 852 kN 1,6 mm 2,45 
S-5-3 2000 x 2000 x 200 174 kN 840 kN 2,1 mm 4,83 
S-5-4 2000 x 2000 x 200 696 kN 918 kN 1,5 mm 1,32 
S-5-5 2000 x 2000 x 200 409 kN/m 582 kN/m - 1,42 

Table 7.1 (continuation): Resistances to failure which follow from non-linear analyses. 

 
As can be seen in table 7.1 it turned out that especially for slender, heavily loaded specimens the 
resistance to failure which follows from the non-linear analyses is lower than the assumed design 
strength. This is noticeable since a higher resistance to failure would be expected. Contrary to the 
design process, the non-linear analyses take the concrete tensile strength into account. In addition, 
ATENA also takes the favorable effect of confined concrete in the compressive zone into account, and 
the amount of reinforcement which is required according the linear elastic finite element method is 
rounded up. Section 7.3 will focus in more detail on the cause of the relatively low monitored 
resistances to failure of these specimens. 
 

7.2 Overall behavior 
 
Initial load steps result at all specimens in the development of flexural cracks at midspan. The 
development of cracks after subsequent load steps depends on the geometry of the specimens, 
corresponding load transfer mechanisms and the applied reinforcement. The relative less slender 
variants of specimens S-1 and S-5, which transfer a considerable part of their load by shear, show a 
relative direct load transfer from the loading area to the supports. During load increments up to failure 
the most significant cracks in the variants of specimens S-1 develop parallel to the compressive struts, 
while variants of specimens S-5 show primarily crack development at midspan. This is illustrated in 
figure 7.1. Besides the development of cracks, also the transfer of principle compressive stresses is 
plotted. 
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Specimen S-1-1 (resistance 676 kN) Specimen S-5-1 (resistance 904 kN)  
Figure 7.1: Crack development and direct load transfer before failure. Output is N/mm2. 

 
The more slender variants of specimens S-2, S-3 and S-4 show a more distributed crack development 
after subsequent load increments. Normative cracks in specimens of which reinforcement is based on 
the limit load develop in compressive struts near the supports, while in specimens in which less 
reinforcement is applied normative cracks develop at midspan. 
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Specimen S-3-5 (resistance: 292 kN/m)
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Figure 7.2: Example of crack development and principle compressive forces before failure. Output is in N/mm2. 

 
Since the non-linear finite element analyses take the effect of redistribution due to cracking of the 
concrete into account, load transfer mechanisms develop which deviate from the mechanisms which 
were observed during the linear elastic analyses. Concrete loaded under compression behaves 
considerably stiffer compared to cracked, reinforced concrete in tension. Development of a tension 
arch to transfer loads to the supports as was observed in the linear analyses, is therefore not observed 
again in the non-linear analyses. Instead, all loads are, dependent on the span of the specimen, 
transferred to the supports by a tied arch or truss mechanism in which the outer struts transfer the 
highest compressive forces. As a consequence, to equilibrate the horizontal component of the strut 
forces, longitudinal reinforcement in the tension zone has to transfer higher loads than initially is 
assumed during the design process which was based on linear elastic analyses. This results in a 
considerable development of cracks and relative high compressive forces in the compressive zone, 
which will be discussed in more detail in section 7.4. 
 

F F

R R R R  
Figure 7.3: Development of normative load transfer mechanisms in linear analyses (left figure, development of both a 

compression and as well as a tension arch) and non-linear analyses (right figure, only the development of a compression arch). 

 
In section 4.4.3 it has already been discussed that, based on the stresses in longitudinal bars at 
midspan, in the serviceability limit state (SLS) a significant number of considered specimens does not 
meet requirements related to crack control. Next to these flexural cracks at midspan, ATENA also 
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shows a significant development of inclined bending cracks near the supports in the SLS of heavily 
loaded specimen. Due to the concentrated forces in the compressive struts, lateral forces appear 
which results in the development of splitting cracks parallel to the load direction. Specimens of which 
the reinforcement is based on lower concentrated designs load or a distributed load show in the SLS 
primarily the development of flexural cracks at midspan. 
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Figure 7.4: Development of shear- and splitting cracks in the compressive strut between the point of loading and support of 

specimen S-1-1. Output is in N/mm2. 

 
ATENA gives for each load increment a prediction of the crack width per element. A small element 
size of the finite element mesh will result in the development of many small cracks. In reality these 
small cracks will represent one or more big cracks. To obtain the actual crack width, the individual 
cracks have to be summed up over a specific distance. Table 7.2 gives an overview of the expected 
crack widths near the supports of three specimens loaded by the limit load. It can be seen that 
according to ATENA in each specimen in the SLS cracks develop which exceed the allowable crack 
width of 0,3 mm that according to Eurocode EN1992-1-1 §7.3.1 corresponds to the considered 
exposure class XC4. 
 

Specimen Dimensions [mm] SLS Load [kN] Crack width [mm] 
S-1-1 2000 x 1000 x 200 501 0,78 
S-2-1 3000 x 1000 x 200 497 0,69 
S-3-1 4000 x 1000 x 200 492 1,27 

Table 7.2: Crack width in the SLS near the support of four heavily loaded specimens. 

 
The linear elastic finite element method does not explicitly require provisions to prevent or limit the 
development of these types of cracks. Due to the considered isotropic material behavior in linear 
elastic finite element analyses less load is transferred directly through the compressive struts, and the 
effect of lateral forces which causes the development of splitting cracks is underestimated. Therefore, 
additional code checks are recommended during the design process of structures with the linear 
elastic finite element method in which a load transfer trough compressive struts can be expected. 
 

7.3 Failure mode 
 

7.3.1 Normative failure mode 
 
As was discussed shortly in the previous section, failure of the concrete compressive zone due to 
bending of the specimens turned out to be the normative failure mode. Rupture of the reinforcement 
steel due to exceeding of the limit strain or significant bond slip of the reinforcement in the vicinity of 
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the supports, as was in the introductory chapter expected to be one of the possible normative failure 
modes due to the limited amount of longitudinal reinforcement that reaches the supports, turned out 
not to be normative. Also the lack of shifting of the moment diagram, prescribed to prevent failure in 
the ultimate limit state due to the development inclined bending cracks, did not have a significant 
influence on the normative failure mode. The beam method, the design method in which it is required 
to shift the moment line over a specific distance, assumes that in case of the development of such a 
crack only the concentrated longitudinal reinforcement in the tension zone contributes to the load 
transfer mechanism, as was illustrated in figure 1.3. The non-linear analyses take however also the 
contribution of remaining reinforcement bars which cross the diagonal crack into account, which 
explains why lack of shifting of the moment diagram has no direct significant influence on the observed 
failure mode, although inclined bending cracks develop. This is illustrated in figure 7.5. 
 

 
Figure 7.5: Contribution of reinforcement in case a diagonal crack develops in the ultimate limit state. 

 

7.3.2 Concrete compressive zone 
 
The increasing prescribed displacement on top of the specimens forces the longitudinal reinforcement 
bars in the tension zone to yield, which causes an increasing compressive strain in the concrete 
compressive zone. After concrete located at the top of the compressive zone has crushed, 
redistribution of forces occurs such that still a limited load bearing capacity is monitored, although 
considerably less than the initial resistance. Figure 7.6 gives an example of the development of 
horizontal stresses during several phases of the non-linear analyses of specimen S-3-1. 
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Figure 7.6: Development of horizontal stresses in specimen S-3-1 directly below the loading point at midspan. Output is in 

N/mm2. 

 
A similar global stress development as depicted in figure 7.6 is observed in the analyses of other 
considered specimens. Until the development of initial cracks, concrete behaves as a linear elastic 
material. In subsequent load increments, concrete cracks, loses its capacity to transfer tensile stresses 
and finally reaches its maximum compressive strength at the top of the concrete compressive zone.  
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Figure 7.7: According to the biaxial failure function in the applied SBETA material model confined concrete in the compressive 

zone is capable to withstand higher stresses than the assumed uniaxial compressive strength fc (dashed area). 

 
In the second and third stress plot of figure 7.6 it can be seen that the maximum monitored 
compressive stress before failure is equal to 29,90 N/mm2, which is 18% higher than the applied 
compressive strength in ATENA of 25,3 N/mm2. Concrete located in the compressive zone is confined 
by the applied load in vertical direction and reaction forces caused by bending in horizontal direction. 
According to the applied bilinear failure function, shown in figure 7.7, confined concrete can withstand 
higher compressive forces than the assumed compressive strength fc. 
 
A noticeable result follows from the non-linear analyses of specimens in which reinforcement design is 
based on the relative high limit load. As was discussed in chapter 4, except for specimen S-1 and S-5, 
compressive reinforcement is required in the concrete compressive zone of these specimens. In none 
of the non-linear analyses of specimens in which compressive reinforcement is applied the design 
strength is reached. Non-linear analyses also show that at the moment of failure the compression 
reinforcement does not fully function. In table 7.3 the stresses σs are shown which are monitored in the 
compression reinforcement at the load increment before the normative failure mode appeared. 
 

Specimen σs [N/mm2] fyd σs / fyd 

S-2-1 217,9 550 0,40 
S-2-4 292,8 550 0,53 
S-3-1 267,6 550 0,49 
S-3-4 290,6 550 0,53 
S-4-1 492,9 550 0,90 
S-4-4 442,3 550 0,80 

Table 7.3: Maximum monitored stresses in compression reinforcement. 

 
The found resistances to failure are expressed as a percentage of their design load in the diagrams 
figure 7.8. The left diagram shows the specimens which reinforcement is based on the limit load and in 
which a basic reinforcement mesh is applied, the right one the specimens in which the reinforcement 
mesh is replaced by an equivalent amount of additional reinforcement. 
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Figure 7.8: Resistance to failure of specimens of which reinforcement is based on the limit load, with a basic reinforcement 
mesh (left diagram) and without (right diagram). 
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It can be observed from figure 7.8 and table 7.1 that no significant differences in the resistance to 
failure can be seen between specimens in which a standard reinforcement mesh is applied and 
specimens in which instead of a reinforcement mesh a similar amount of additional reinforcement is 
applied. In both specimens a similar amount of reinforcement is required, which is distributed over the 
depth of the specimens similar to the output of the linear elastic finite element method. This explains 
the almost equal analysis results. 
 

7.3.3 Influence of the stress-strain relation on th e failure mode 
 
The relative low resistance to failure of the heavily loaded specimens in which compression 
reinforcement is required can be explained by the relative conservative shape of the stress-strain 
diagram which is applied in the non-linear analyses. The applied vertical deflection at the top of the 
specimens is accompanied by a rotation of the specimens’ cross section, which results in the 
development of a concrete compressive zone directly below the loading point. The horizontal 
compressive forces that can be transferred to this zone are related to the compressive strain and the 
applied stress-strain relation. According to the idealized stress-strain relations which are provided by 
the codes and have to be used during the design of concrete cross-sections, concrete preserves its 
full compressive strength up to the ultimate compressive strain is reached. In the non-linear analyses 
however a stress-strain relation is applied in which the compressive strength of concrete linearly 
decreases to zero as the ultimate limit strain is reached, which has a considerable influence on the 
moment capacity and corresponding utilized reinforcement. The influence on the resistance to failure 
of the differing stress-strain relations which are applied during the design and the verification of the 
specimens can be elucidated by considering an elementary beam element which is subjected to a 
flexural deformation. 
 

Elementary beam element 
 
In figure 7.9 the cross-section of an elementary single-span beam element can be seen which has a 
arbitrary width b and depth h. All longitudinal reinforcement, which surface is indicated by As, is 
concentrated in the tension zone at a distance equal to 0,1h from the bottom side of the beam. The 
presence of other reinforcement bars is not taken into account. The effective height d is equal to 0,9h. 
 

h

0,1h

A
s

b

d

 
Figure 7.9: Geometry of cross-section of the considered beam element. 

 
The ultimate moment capacity Mu of the considered section and corresponding reinforcement ratio ω 
depend on the applied stress-strain relation of concrete and the distribution of strain over the height of 
the beam. The relation between the reinforcement ratio ω and As is defined by: 
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 0,9= =sA bd bhω ω  (7.1) 

 
In case a stress-strain diagram is applied which assumes that concrete preserves its full compressive 
strength up to the ultimate yield strain, the maximum reinforcement ratio ω is required when at the top 
of the beam the ultimate compressive strain εcu is reached and at the location where the concentrated 
reinforcement is positioned the yield strain εy. This is illustrated in figure 7.10, where the idealized 
linear strain distribution can be seen. The strain distribution is based on the assumption that plane 
sections remain plane and that the strain in the reinforcement is the same as that in the surrounding 
concrete. Besides, the tensile strength of concrete is not taken into account. 
 

εcu

h

0,1h
εy

x
u

 
Figure 7.10: Idealized strain distribution over the depth of the considered section. 

 
The depth of the concrete compressive zone, in figure 7.10 indicated by xu, can be expressed by: 
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+ +
cu cu
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x d h
ε ε
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(7.2) 

 

Stress-strain relations of Eurocode EN1992-1-1 
 
Eurocode EN1992-1-1 prescribes a parabola-rectangle stress-strain relation for the design of concrete 
under compression, which is based on the assumption that concrete preserves its full compressive 
strength up to the ultimate compressive strain εcu is reached. Other similar simplified stress-strain 
relations may be applied if they are equivalent or more conservative, as for example the bilinear 
stress-strain relation which has already been discussed in the previous chapters. 
 
The mentioned parabola-rectangle stress-strain relation can be seen in figure 7.11. Besides the 
corresponding development of stresses in the concrete compressive zone is shown in case the 
elementary beam element of figure 7.9 is considered and the ultimate compressive strain is reached. 
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Figure 7.11: Parabola-rectangle stress-strain relation and development of compressive stresses in the concrete compressive 

zone. 
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For normal strength concrete εc2 and εcu2 are equal to 0,002 and 0,0035 respectively. The stress-strain 
relation for 0 ≤ εc ≤ εc2 is expressed by equation 7.3, for  εc2 ≤ εc ≤ εcu2 by equation 7.4. The parameter 
n in equation 7.3 is equal to 2. 
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1 1
  
 = − − 
   

n
c

c cd
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(7.3) 

 

 =c cdfσ  (7.4) 

 
The reinforcement ratio ω, which expresses the required reinforcement, follows from horizontal 
equilibrium of forces. 
 

 =s cN N  (7.5) 

 
The resultant forces Ns and Nc are defined as: 
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The parameter β is a shape factor which takes account for the shape of the concrete compressive 
zone and can be derived by numerical integration of equation 7.3 and 7.4. 
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In case the ultimate compressive strain εcu2 is reached, for the parabola-rectangle stress-strain relation 
of figure 7.11 β is equal to 0,810. After substitution of equation 7.6 and 7.7 into equation 7.5 the 
required reinforcement ratio ω can be expressed as: 
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 (7.9) 

 
The ultimate moment capacity can subsequently be determined according to equation 7.10. 
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In a similar way as discussed above the maximum effective reinforcement ratio can be derived in case 
the more conservative bilinear stress-strain relation is taken into account for the design of an arbitrary 
rectangular cross-section. The bilinear stress-strain relation, just like the development of stresses in 
the compressive zone, can be seen in figure 7.12. For normal strength concrete εc3 and εcu3 are equal 
to 0,00175 and 0,0035 respectively. 
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Figure 7.12: Bilinear stress-strain relation and development of compressive stresses in the concrete compressive zone. 

 
Taking the material strength parameters into account which according to the safety format of Eurocode 
EN1992-2 are applied in the non-linear analyses and were discussed in chapter 5, the required 
reinforcement ratio ω and ultimate moment capacity Mu can be expressed in a quantitative way. Table 
7.5 gives an overview of the required reinforcement ratio ω an moment capacity Mu at the moment that 
the ultimate compressive strain is reached. Figure 7.13 and 7.14 show the development of the 
required reinforcement ratio and moment capacity as a function of the compressive strain from the 
moment that, according to the stress-strain relation, the peak stress fcd is reached. 
 

Material Strength parameter Quantitative value 
Concrete fyd 25,3 N/mm2 

Reinforcement fy 550 N/mm2 
Es 200000 N/mm2 
εy 0,00275 

Table 7.4: Summary of the relevant strength parameters according to the safety format for non-linear analyses described in 
Eurocode EN1992-2. 

 
 

Relation β [-] xu [mm] y [mm] ω [-] Mu [Nmm] 
Parabolic-rectangle 0,8095 0,5040h 0,2059h 0,0209 7,961bh2 
Bilinear 0,7500 0,5040h 0,1960h 0,0193 7,481bh2 

Table 7.5: Maximum reinforcement ratio and moment capacity for the parabolic-rectangle and bilinear stress-strain relation. 
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Figure 7.13: Development of the required reinforcement ratio and moment capacity after the peak stress fcd is reached in case a 

parabola-rectangle stress-strain relation is assumed and the yield strain εy of reinforcement is reached. 
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Figure 7.14: Development of the required reinforcement ratio and moment capacity after the peak stress fcd is reached in case a 

bilinear stress-strain relation is assumed and the yield strain εy of reinforcement is reached. 

 

Stress-strain relation ATENA 
 
Above discussed stress-strain relations which according to Eurocode EN1992-1-1 are provided for the 
design of concrete cross-sections show an increasing moment capacity Mu and required reinforcement 
ratio ω up till the ultimate compressive strain is reached. Since in the applied stress-strain relation in 
the non-linear analyses the compressive strength linearly decreases to zero up to the ultimate 
compressive strain, a deviating behavior can be observed. Due to the descending compressive 
strength, the utilized reinforcement ratio ω and corresponding moment capacity Mu are lower than 
considered during the design process. This can be illustrated in a similar way as was done in the 
previous section. 
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Figure 7.15: Stress-strain relation as applied in the non-linear analyses. 

 
Figure 7.12 shows the applied stress strain-relation for concrete loaded under compression. Up to εc, 
which for a compressive strength fc of 25,3 N/m2 is equal to 0,001674, the stress strain relation is 
defined by equation 7.11. 
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After reaching the peak stress fcd the compressive strength descends linearly into a softening region 
up to the limit compressive strain εd. This limit strain is calculated from a plastic displacement wd and a 
band size Ld according to equation 7.12. For the backgrounds of this formula one is referred to 
ATENA’s theoretical manual [1]. 
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To make a clear comparison with the discussed parabolic-rectangle and bilinear stress-strain relations, 
εd is set to 0,0035. The development of stresses in the compressive zone at the moment that this 
strain is reached can be seen in figure 7.16, just like the stress development at a strain equal to εc. 
 

h

fcd

Ns

N
c

εc

h

0,1h

ε
y

xu

y

0,1h

xu

h

fcd

Ns

Nc

ε
d

h

0,1h

εy

xu

y

0,1h

xuεc

1 2  
Figure 7.16: Stress development in the concrete compressive zone at a strain equal to εc and εd. 

 
It follows clearly from above figure that according to the applied stress-strain relation the capacity to 
transfer compressive forces in the top of the compressive zone decreases. The influence of this 
descending capacity can be seen in figure 7.17, were the development of the utilized reinforcement 
ratio and moment capacity is set out against the compressive strain from the moment that the peak 
stress fc is reached. 
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Figure 7.17: Development of the utilized reinforcement ratio and moment capacity after the peak stress fcd is reached. 

 
In figure 7.18 both the reinforcement ratio which is required according to reinforcement design based 
on a bilinear stress-strain relation, as well as the utilized reinforcement ratio when a descending 
stress-strain relation is applied in the non-linear analyses are plotted as a function of the compressive 
strain. The same is done in figure 7.19 for the moment capacity. 
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Figure 7.18: Required reinforcement ratio set out against the compressive strain, assuming that the yield strain εy of 

reinforcement is reached. 
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Figure 7.19: Moment capacity set out against the compressive strain, assuming that the yield strain εy of reinforcement is 

reached. 

 
It follows from figure 7.18 and 7.19 that due to the descending compressive strength which is taken 
into account in the non-linear stress-strain relation the moment capacity decreases considerably. As a 
consequence a smaller amount of reinforcement is utilized to preserve horizontal equilibrium of forces 
than is initially assumed when for example the bilinear stress-strain relation is taken into account. In 
combination with the redistribution of internal forces at the top of the compressive zone, which goes 
hand in hand with the descending compressive strength, a resistance to failure is finally monitored 
which is lower than the initially assumed design strength. This phenomena will primarily appear in 
structures which transfer a significant part of their load by bending, since in these structures relative 
high concentrated compressive forces appear in combination with a significant compressive strain. 
 
Although above analysis is based on an elementary reinforced concrete beam in which all 
reinforcement is located in the tension zone and reaches its plastic phase, the relative low resistances 
to failure which follow from the non linear analysis of the considered highly loaded slender specimens 
can be explained on the basis of the same principles. Also the relative limited stresses which are 
monitored in the compression reinforcement can be explained by the applied stress-strain relation of 
concrete in the non-linear analyses. Before the strain is reached in the concrete compressive zone at 
which the compression reinforcement reaches its full compressive strength, the strength of concrete in 
the concrete compressive zone has already decreased to such an extent that ATENA assumes that 
the concrete at the top of the compressive zone has failed in compression. This is illustrated in figure 
7.20. It must be emphasized that the maximum stresses in concrete and reinforcement steel do not 
develop at the same rate. 
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Figure 7.20: Development of compressive stresses in concrete and reinforcement as applied in the design process (left 

diagrams) and in the non-linear analyses (right diagrams). 
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Above explanation for the relatively low monitored resistances to failure of heavily loaded slender 
specimens raises the question if the stress-strain relation which is applied in the non-linear analyses is 
not to conservative, or on the other hand, if the parabola rectangle or bilinear stress-strain relations do 
not overestimate the capacity of concrete. A univocal answer to this question cannot be given and 
requires further research. Fact is that the uniaxial non-linear stress-strain relation which is applied in 
non-linear analyses gives a more realistic approach of the actual behavior which follows from 
laboratory tests, which never show a horizontal yield path which can be seen in the parabola-rectangle 
or bilinear stress-strain relation.  
 
Moreover Eurocode EN1992-1-1 does not always allow the use of the full yield capacity of concrete as 
in indicated in the idealized stress-strain relations. In §6.1 (5) it states that for cross sections in 
bending which are subjected to an approximately concentric loading, where e/h < 0,1, the 
compression strain should be limited to εc2 or εc3. In case such a reduced stress-strain relation has to 
be taken into account during the design process, the deviation compared to the stress-strain relation 
which is applied in the non-linear analyses is reduced to a minimum. 
 

7.4 Redistribution of internal forces 
 
Evaluation of reinforcement designs which are based on a design load equal to halve and a quarter of 
the limit load turn out to posses sufficient load bearing capacity, just like specimens which are loaded 
by a distributed load. Contrary to considered specimens of which reinforcement designs are based on 
concentrated limit loads, these specimens are during the design process not loaded up to the 
maximum compressive strength in the normative concrete compressive zone. 
 
However, due to the redistribution of stresses in after crack development which is taken into account in 
the non-linear analyses, considerable higher compressive stresses in the concrete compressive zone 
will develop in practice than is assumed during the design process. This is illustrated in figures below 
for specimen S-3-2 and S-4-2, but a similar phenomenon is observed during linear and non-linear 
analyses the other considered specimens. 
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Figure 7.21: Distribution of horizontal stresses at midspan in a linear elastic analysis of specimen S-3-2 in the SLS (left figure, 

load 246 kN) and ULS (right figure, load 320 kN). Output is in N/mm2. 
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Figure 7.22: Development of horizontal stresses at midspan at several phases of the non-linear analysis of specimen S-3-2. 
Output is in N/mm2. 
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Figure 7.23: Distribution of horizontal stresses at midspan in a linear elastic analysis of specimen S-4-2 in the SLS (left figure, 

load 246 kN) and ULS (right figure, load 314 kN). Output is in N/mm2. 
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Figure 7.24: Development of horizontal stresses at midspan at several phases of the non-linear analysis of specimen S-4-2. 
Output is in N/mm2. 

 
Since in the linear elastic finite element analyses during the design process a different safety format is 
applied compared to the non-linear analyses which are applied to evaluate the resistance to failure, 
values of above figures cannot compared directly with each other. However, it is still possible to 
compare the relative stresses in the concrete compressive zone. 
 

Specimen Load Linear analyses Non-linear analyses 
fc uniaxial fc analysis relative fc uniaxial fc analysis relative 

S-3-2 SLS 20 11,6 0,58 25,3 20,12 0,80 
ULS 20 15 0,75 25,3 25,26 1,00 

S-4-2 SLS 20 15,4 0,77 25,3 23,87 0,95 
ULS 20 19,9 1,00 25,3 28,97 1,15 

Table 7.6: Relative stresses in the concrete compressive zone of specimen S-3-2 and S-4-2 according linear and non-linear 
finite element analyses. Output is in N/mm2. 

 
The fifth and eighth column of table 7.6 show the relative utilized compressive strength capacity in 
respectively the linear and non-linear analyses. It can be observed that in the non-linear analyses due 
to redistribution of internal forces considerable higher relative loads are transferred through the 
concrete compressive zone than was estimated in the linear analyses. Table 7.5 shows a relative 
increase in size of compressive stresses in the non-linear analyses up to 38% (specimen S-3-2, ULS). 
The conclusion can be drawn that for the considered specimens which are subjected to flexural 
deformations, the linear elastic finite element method underestimates the development of compressive 
stresses which will develop in practice. 
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8 Shrinkage and support settlements  
 

8.1 Introduction 
 
To approach realistic concrete material behavior the tensile strength of concrete is taken into account 
in all non-linear analyses which are discussed in the previous chapter. According to code provisions 
however, the favorable effect of the concrete tensile strength was not taken into account during the 
design process of the required reinforcement. The resistance to failure which follows from a non-linear 
analysis of a specific specimen can therefore be seen as an upper-bound approximation.  
 
Any unfavorable effect caused by thermal deformation, differential support settlements or shrinkage 
will result in the development of cracks, reducing the favorable contribution of the concrete tensile 
strength to the resistance to failure. This chapter focuses shortly on the influence of above 
phenomena on the resistance to failure which follows from non-linear analyses of specimen of which 
the reinforcement is determined on basis of the linear elastic finite element method. It is generally 
known that these phenomena result in the development of cracks, both during the hardening of 
concrete as well as during the lifetime of a structure. However, a specimen, or structure in general, 
should not immediately loose part of its load bearing capacity due to these cracks. 
 
In this chapter the influence of shrinkage and differential support settlements are analyzed in two 
separate parts. The first part focuses on development and influence of cracks as a result of shrinkage 
in early aged concrete. The second part focuses on the developments and influence of differential 
support settlements during loading of a specimen. 
 

8.2 Shrinkage 
 
Shrinkage of concrete is a process which can develop during the hardening of early age concrete or 
during the lifetime of a structure due to changes in the environmental humidity. In this section primarily 
the first mentioned type of shrinkage is considered. The chemical processes which occur during 
hardening of young concrete are accompanied by volume and temperature changes. Hydration of 
cement is a highly exothermic process and thermally activated reaction. The exothermic nature of the 
chemical reaction leads to heat generation which may result in high temperature rises. As the rate of 
hydration slows down, the temperature decreases resulting in thermal shrinkage which induces 
significant tensile stresses. Furthermore this hydration process is accompanied by a volume reduction 
usually called autogeneous shrinkage, which develops during the hardening of concrete in the early 
days after casting and is caused by the internal consumption of water by hydration of cement. For the 
considered normal strength concrete C37/30 however, autogeneous shrinkage is small and is included 
with drying shrinkage [5]. 
 
If concrete is restrained, shrinkage can result in the development of cracks. In the last decades 
advanced finite element methods have been developed which link thermal mechanical to structural 
mechanical numerical analyses which are capable to take the time-dependent temperature effect that 
causes shrinkage into account. Also ATENA offers the possibility to apply advanced creep and 
shrinkage analyses, although this is only possible for three-dimensional models. Since a too limited 
amount of time was available to transform the in chapter 5 discussed two-dimensional models to a 
three dimensional model, a more fundamental approach is applied to analyze the effect of shrinkage 
on the resistance to failure. 
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As discussed above, shrinkage during the hardening of concrete can in the worst case result in the 
development of cracks which can affect the structural behavior or lead to a decay of structural 
performance. Therefore the effect of shrinkage is taken into account in the non-linear analyses by 
modeling an initial crack. The effect of such a crack is analyzed at two critical locations. One flexural 
vertical crack is modeled at midspan, a second diagonal crack is modeled near the supports. Since 
cracks which were modeled over the full depth of the specimens immediately resulted in a significant 
decay of the resistance to failure, the cracks are modeled up to 100 mm below the top side of the 
specimens. 
 

initially modelled shrinkage crack

initially modelled shrinkage crack

 
Figure 8.1: Deliberately modeled shrinkage cracks before appliance of the external top load. Left: flexural crack at midspan. 

Right: shear crack in the compressive strut. 

 
The shrinkage cracks are modeled by interface elements. These elements, which are based on the 
theory of Mohr-Coulomb, are defined such that they possess a certain friction which represents the 
shear transfer mechanism by aggregate interlock.  
 

Parameter Notation Value 
Normal stiffness [MN/m3] Knn 3 105 
Tangential stiffness [MN/m3] Ktt 3 105 
Tensile strength [N/mm2] ft 0 
Cohesion [N/mm2] C 0 
Friction coefficient [-] ϕ 0,1 
Minimal normal stiffness [MN/m3] Knnmin 3 102 
Minimal tangential stiffness [MN/m3] Kttmin 3 102 

Table 8.1: Interface material properties for the modeled crack. 

 
In the previous chapter it has already been discussed that the resistance of a number of specimens 
which followed from the non-linear analyses turned out to be lower than the actual design strength. 
These specimens are not considered furthermore. The analysis results of the remaining considered 
specimens can be seen in table 8.2. The third, fifth and seventh column show the monitored 
resistance in case no, a vertical and a diagonal crack are modeled respectively. Next to these columns 
the design strength is expressed as a ratio of the monitored resistance. 
 
It can be observed that the overall effect of the modeled cracks is limited. The vertical modeled crack 
has only a significant influence in the slender specimen S-4-2, which already showed less 
overcapacity in the non-linear analysis in which no initial crack were modeled. Influence of diagonally 
modeled cracks can be observed in the heavily loaded deep specimens which show a relative direct 
load transfer to the supports. Due to the modeled diagonal crack, which runs parallel to the 
compressive strut, these specimens fail prematurely due to shear. 
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Specimen Design 

load D 
Resistance 
R without 
crack 

R/D Resistance 
R vertical 
crack 

R/D Resistance 
R diagonal 
crack 

R/D 

S-1-1 651 kN 676 kN 1,04 674 kN 1,04 564 kN 0,87 
S-1-2 326 kN 498 kN 1,53 492 kN 1,51 492 kN 1,51 
S-1-3 162 kN 375 kN 2,30 360 kN 2,22 370 kN 2,28 
S-1-4 651 kN 706 kN 1,08 678 kN 1,04 575 kN 0,88 
S-1-5 382 kN/m 572 kN/m 1,50 563 kN/m 1,47 538 kN/m 1,41 
S-2-2 323 kN 428 kN 1,33 425 kN 1,32 417 kN 1,29 
S-2-3 162 kN 273 kN 1,69 263 kN 1,62 271 kN 1,67 
S-2-5 239 kN/m 354 kN/m 1,48 349 kN/m 1,46 356 kN/m 1,49 
S-3-2 320 kN 421 kN 1,32 300 kN 1,07 279 kN 1,15 
S-3-3 160 kN 252 kN 1,56 244 kN 1,53 250 kN 1,56 
S-3-5 172 kN/m 292 kN/m 1,70 290 kN/m 1,69 279 kN/m 1,62 
S-4-2 314 kN 342 kN 1,09 307 kN 0,98 342 kN 1,09 
S-4-3 157 kN 229 kN 1,46 223 kN 1,42 228 kN 1,45 
S-4-5 110 kN/m 169 kN/m 1,54 114 kN/m 1,04 137 kN/m 1,25 
S-5-1 696 kN 904 kN 2,21 892 kN 1,28 583 kN 0,84 
S-5-2 348 kN 852 kN 2,45 834 kN 2,40 592 kN 1,70 
S-5-3 174 kN 840 kN 4,83 823 kN 4,73 591 kN 3,40 
S-5-4 696 kN 918 kN 1,32 861 kN 1,24 524 kN 0,75 
S-5-5 409 kN/m 582 kN/m 1,42 565 kN 1,38 574 kN 1,40 

Table 8.2: Influence of shrinkage cracks on the resistance to failure. 

 

8.3 Differential support settlements 
 

8.3.1 Considered specimens 
 
The so far considered single-span specimens are not sensitive to differential support settlements, 
since no significant redistribution of membrane forces will appear. To examine the influence of 
differential support settlements therefore two-span, statically undetermined, specimens are 
considered. It is generally known that, compared to their statically determined counterpart, statically 
undetermined deep beams are more sensitive to differential support settlements and do not posses a 
great amount of deformation capacity. The internal load distribution is very dependent on the stiffness 
of the supports. Differential support settlements can therefore result in a considerable development of 
cracks and in the worse case even result in loss of load bearing capacity. 
 
In the past extensive research has already been performed to improve the understanding of the 
structural behavior of continuous deep beams and their load transfer mechanisms, for example by 
Asin [1]. Load transfer in two-span specimens can generally be simplified by three equilibrium 
systems, which can be seen in figure 8.2. These systems are interdependent and their individual 
contribution to the resistance to failure depends on their stiffness. 
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Figure 8.2: Load bearing systems in two span specimens: strut-and-tie action with bottom reinforcement (top, left), strut-and-tie 

action with top reinforcement (top, right), combination of strut-and-tie action with truss-action (bottom, middle) [1]. 

 
Reinforcement design with LE-FEM is based on a single, very specific linear elastic distribution of 
membrane forces in which each of the above mechanisms contributes specifically to the load bearing 
capacity of a specimen. Differential support settlements can however significantly change the 
assumed contribution of each mechanism. It is analyzed to what extent two-span specimens of which 
reinforcement is determined with LE-FEM are capable to resist differential support settlements 
redistribute internal forces.  
 
In total two specimens with a distinctive geometry are considered of which the redistribution capacity 
due to differential support settlements is analyzed. For each specimen two reinforcement 
configurations are taken into account, one which is based on a relative high concentrated top load of 
550 kN and one which is based on a smaller concentrated top load of 200 kN. These loads have been 
chosen such that in the linear elastic finite element analyses nowhere in the considered two-span 
specimens the concrete compressive strength fcd is exceeded, and no compressive reinforcement is 
required. As a consequence the non-linear analysis results are not influenced by disfunctioning of 
compression reinforcement, as was observed during analyses of single-span specimens in chapter 7. 
 
The overall geometry is based on the same principles as the single-span specimens and will therefore 
not be discussed in detail again. A distributed introduction of reaction forces at the supports is applied 
to exclude immediate concrete crushing in ATENA or unrealistic peak stresses during the 
reinforcement design with LE-FEM. Supports at the ends of a specimens have a width of 100 mm, the 
width of the middle support is equal to 200 mm. Specimens are loaded at both midspans by an 
identical load which are introduced over a width of 200 mm. The centre lines of the loads are 
positioned exactly at the midpoint between the centre lines of the supports. The overall geometry of a 
two-span specimen can be seen in figure 8.3. The specific geometrical properties of the considered 
specimens are shown in table 8.3. 
 

½ l½ l

h

F F

200 mm

100 mm 100 mm 200 mm

200 mm

100 mm 200 mm

 
Figure 8.3: Overall geometry of the considered two-span specimens. 
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Specimen Length l [mm] Depth h [mm] Width t [mm] Design load [kN] 
S-6-1 4000 1000 200 550 
S-6-2 4000 1000 200 200 
S-7-1 6000 1000 200 550 
S-7-2 6000 1000 200 200 

Table 8.3: Geometrical properties of the considered two-span specimens. 

8.3.3 Reinforcement design with LE-FEM 
 
Reinforcement design of two-span specimens with LE-FEM is determined in a similar way as 
discussed in chapter 4. A basic reinforcement mesh with a bar diameter of 5 mm and a centre to 
centre distance of 150 mm is applied in each specimen, finished by a specific amount of additional 
reinforcement according to the output of the linear elastic finite element method.  
 
To exclude numerical problems and prohibited rotation, supports are during the linear elastic analyses 
once again modeled by distributed springs. Contrary to the considered single-span specimens, the 
support stiffness of multi-span beams can have a considerable influence of the distribution of 
membrane forces and support reactions. The in chapter 4 derived spring stiffness of 6,6 MN/m2 turned 
out to be such stiff, that it has no significant influence on the distribution of membrane forces. 
 

8.3.4 Reinforcement designs 
 
The reinforcement configuration of the considered two-span specimens can be seen in the next 
sections. Also the total amount and distribution of reinforcement which is required according to the 
linear elastic finite element method is shown. Individual reinforcement bars are positioned such that 
they correspond to this distribution as well as possible, although it is inevitable that some concessions 
had to be made.  
 

Specimen S-6-1 
 
The according to the linear elastic finite element method required reinforcement corresponding to a 
design load of 550 kN can be seen in figure 8.4. 
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Figure 8.4: Required reinforcement for a design load of 550 kN in longitudinal direction (upper figure) and in transversal direction 

(lower figure). Output is given in mm2/m. 
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The corresponding reinforcement drawing can be seen in figure 8.5. Due to symmetry only the left 
halve of specimen S-6-1 is shown. 
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Figure 8.5: Reinforcement drawing of specimen S-6-1. Due to symmetry only the left halve of the specimen is shown. 

 

Specimen S-6-2 
 
The according to the linear elastic finite element method required reinforcement corresponding to a 
design load of 200 kN can be seen in figure 8.6. 
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Figure 8.6: Required reinforcement for a design load of 200 kN in longitudinal direction (upper figure) and in transversal direction 

(lower figure). Output is given in mm2/m. 

 
The corresponding reinforcement drawing can be seen in figure 8.7. Due to symmetry only the left 
halve of specimen S-6-2 is shown. 
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Figure 8.7: Reinforcement drawing of specimen S-6-2. Due to symmetry only the left halve of the specimen is shown. 
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Specimen S-7-1 
 
The according to the linear elastic finite element method required reinforcement corresponding to a 
design load of 550 kN can be seen in figure 8.8. 
 

600

550

500

450

400

350

300

250

200

637

200

1600

1400

1200

1000

800

600

400

200

1712

200

 
Figure 8.8: Required reinforcement for a design load of 550 kN in longitudinal direction (upper figure) and transversal direction 

(lower figure). Output is given in mm2/m. 

 
The corresponding reinforcement drawing can be seen in figure 8.9. Due to symmetry only the left 
halve of specimen S-7-1 is shown. 
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Figure 8.9: Reinforcement drawing of specimen S-7-1. Due to symmetry only the left halve of the specimen is shown. 

 

Specimen S-7-2 
 
The according to the linear elastic finite element method required reinforcement corresponding to a 
design load of 200 kN can be seen in figure 8.10. 
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Figure 8.10: Required reinforcement for a design load of 550 kN in longitudinal direction (upper figure) and transversal direction 

(lower figure). Output is given in mm2/m. 
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The corresponding reinforcement drawing can be seen in figure 8.11. Due to symmetry only the left 
halve of specimen S-7-2 is shown. 
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Figure 8.11: Reinforcement drawing of specimen S-7-2. Due to symmetry only the left halve of the specimen is shown. 

 

8.3.5 Non-linear analyses 
 
Non-linear analyses of two-span specimens are based on the same basic principles as discussed in 
chapter 5. Due to their symmetry only the left half of the specimens is modeled, the centre line of the 
middle support is taken as the axis of symmetry. At the axis of symmetry the specimens are fully 
constrained in horizontal direction. The influence of differential support settlements on the load bearing 
capacity has been verified for settlement of both the end support, as well as the mid support. 
 
Several methods are available to model differential support settlements in non-linear analyses. One of 
the options is to first load a specimen up to its design load, after which it will be subjected to a 
differential support settlement. Another option is to model one of the supports by a vertical spring, 
which during load increments results in an increasing support settlement, proportional to the support 
reaction. Redistribution capacity of the considered two-span specimens is verified in ATENA according 
to the second option. The spring stiffness is modeled such that due to the external top load and dead 
weight a predefined settlement can be expected. The shortening of a spring in ATENA, and thus the 
settlement of the support, depends on the spring’s dimensions, material properties and support 
reaction. The spring stiffness K defines the stress-strain relation of a spring and can be expressed by 
equation 8.1. 
 

 
K

σ
ε

=
 

(8.1) 

 
Where: 
 
σ is the stress in the spring, which is related to the cross-sectional area A of the support and the 
 reaction R at the support: 
 

 

R
A

σ =
 

(8.2) 

 
ε is the relative strain, which is related to the length l of a spring and its shortening u: 
 

 

u
l

ε =
 

(8.3) 
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The resultant forces R at the supports depend on the size of the applied external load F and the 
specimens’ dead weight. The general qualitative size of the support reactions is expressed in figure 
8.12, where the geometry of a two-span specimen is schematized to a one-dimensional element. 
 

F F

dead weight

external loads

q

l l

3R ql 0,313F8= + 10R ql 1,374F8= +
+ 

Figure 8.12: Qualitative expression of the support reactions for a two-span specimen. The span is defined as the distance 
between the centre lines of the supports. 

 
It must be emphasized that due to redistribution of forces as a result of unequal support stiffnesses, 
the final reaction R at the support at which a spring is modeled will be lower than is assumed during 
the calculation of the spring stiffness, resulting in a somewhat smaller support settlement during the 
non-linear analyses. 
 
The cross-sectional area of the spring, in equation 8.2 expressed by the variable A, is set equal to the 
surface of the supports. For the length l of the spring an arbitrary value of 500 mm has been chosen. 
To exclude that an arbitrarily chosen spring length would have a considerable influence on the 
resistance to failure, the resistance to failure of specimen S-6-1 has also been verified with a spring 
length of respectively 200 and 1000 mm. Analysis results showed a scatter of only 2‰.  
 
In table 8.4 an overview can be seen of the applied spring stiffnesses in the several non-linear 
analyses. 
 

Support 
settlement [mm] 

Location 
settlement 

Spring stiffness per specimen [N/mm2] 
S-6-1 S-6-2 S-7-1 S-7-2 

5 end 881 346 894 364 
5 middle 1923 720 1941 738 
10 end 440 173 447 182 
10 middle 961 360 970 369 
20 end 220 87 224 91 
20 middle 481 180 485 185 

Table 8.4: Applied spring stiffnesses to model differential support settlements. 

 

Analysis results 
 
All non-linear analyses in which differential support settlements are taken into account show similar 
results. In each analysis a regression of the resistance to failure is observed, even if only a relative 
small support settlement of 5 mm is taken into account. In table 8.5 an overview can be seen of the 
resistances to failure which follow from the non-linear analyses. Next to it the found resistance is 
expressed as a percentage of the design load. 
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Support 
settlement [mm] 

Location 
settlement 

Resistance per specimen [kN] 
S-6-1 S-6-2 S-7-1 S-7-2 

- - 660 1,2 430 2,15 563 1,02 359 1,80 
5 outer 472 0,86 317 1,59 487 0,89 311 1,56 
10 outer 304 0,55 243 1,22 429 0,78 260 1,3 
20 outer 297 0,54 182 0,91 369 0,67 182 0,91 
5 middle 597 1,09 333 1,66 506 0,92 347 1,74 
10 middle 516 0,94 236 1,18 502 0,91 296 1,48 
20 middle 454 0,82 191 0,96 442 0,80 203 1,02 

Table 8.5: Resistances to failure which follow from the non-linear analyses. The first row with analysis results relates to an 
analysis in which no support settlements are taken into account. 

 
Table 8.5 shows that especially the specimen of which reinforcement is based on a design load of 550 
kN show less capacity to overcome differential support settlements. Except the analysis of specimen 
S-6-1 in which a deflection of the middle support of 5 mm is taken into account, all analyses show a 
regression of the resistance to failure to a value lower than the original design load. This is primarily 
caused by the fact that concrete, which strength turns out to be normative, in some areas is already 
almost loaded up to its design strength fcd when a design load of 550 kN is applied. The capacity left to 
redistribute membrane forces due to differential support settlements is therefore very limited.  
 
In figure 8.13 the load-displacement diagrams which follow from non-linear analyses of specimen S-6-
1 and S-7-1 can be seen. Due to its more flexural behavior the more slender specimen S-7-1 requires 
a larger top displacement before failure is initiated. Although specimen S-7-1 behaves less stiff, no 
considerable reduced sensitivity to differential support settlements is observed. 
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Figure 8.13: Load-displacement diagrams which follow from non-linear analyses of specimen S-6-1 (left diagram) and S-7-1 

(right diagram). For clarity, graphs which belong to analyses in which settlement of the middle support is analyzed are indicated 
by a dashed line. 

 
Since non-linear analyses are primarily performed to analyze the effect of differential support 
settlements on the resistance to failure, analyses were interrupted after the normative failure mode 
appeared. Thus, the ends of the graphs in figure 8.13 do not mean that the resistance to failure of a 
specimen has completely been reduced to zero. After the normative failure mechanism has appeared, 
still a certain load bearing capacity is monitored after continuous prescribed displacement, primarily 
due to yielding of the reinforcement. 
 
The structural response which follows from the non-linear analyses of specimens in which no 
differential settlements are taken into account seems to follow the schematized structural mechanisms 
which were shown in figure 8.2. Flexural cracks develop within a view load steps, both at midspan and 
above the middle support. In subsequent load steps diagonal shear cracks develop, first between 
middle support and the loading point, later on also between the loading point and the outer support. 
Specimen S-6-1 shows a sudden development of shear cracks which involves a small regression in 
the monitored resistance, visible in the load-displacement diagram in figure 8.13. Specimen S-7-1 
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shows a more uniform development of shear cracks. Until failure the amount and width of shear cracks 
increases. Failure is finally caused by shear failure of the concrete compressive strut between the 
loading point and the middle support. An global overview of crack development can be seen in figure 
8.14 and 8.15. Besides, the development of principal compressive stresses is plotted. 
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development of first shear cracks
displacement: 0,9 mm
monitored resistance: 382 kN

ultimate limit state
displacement: 2,4 mm
monitored resistance: 550 kN  

Figure 8.14: Development of cracks in specimen S-6-1 in case no differential support settlements are taken into account. Shown 
displacements are magnified by a factor 10, output is in N/mm2. 

 

development of flexural cracks
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monitored resistance: 254 kN

development of flexural and shear cracks
displacement: 1,9 mm
monitored resistance: 293 kN

ultimate limit state
displacement: 5,3 mm
monitored resistance: 551 kN  

Figure 8.15: Development of  cracks in specimen S-7-1 case no differential support settlements are taken into account. Shown 
displacements are magnified by a factor 10. A same scale of stresses is applied as in figure X.X. Output is in N/mm2. 

 
In case differential support settlements are taken into account in the non-linear analyses, a 
considerable change in the crack pattern can be observed which alludes to redistribution of forces. 
The redistribution capacity of specimen S-6-1 and S-7-1 is however too limited to maintain the 
required load-bearing capacity. Due to settlement of the outer support more load is transferred by the 
top reinforcement above the middle support. As a consequence the top reinforcement reaches its 
plastic phase and starts to yield, resulting in a considerable increase in the width of cracks and 
premature failure. Figure 8.16 shows the crack pattern of specimen S-6-1 and S-7-1 for a settlement of 
the outer support of 5 mm, at the increment before failure appears. For comparison, also the 
development of cracks is shown when an approximately similar resistance is monitored in case no 
support settlements are taken into account. 
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Figure 8.16: Crack development in specimen S-6-1 and S-7-1 with differential settlement of the outer support of 5 mm (upper 

figures) and without (bottom figures). Shown displacements are magnified by a factor 10, output is in N/mm2. 

 
Figure 8.17 shows the redistribution of load transfer to the supports up to the moment of failure in case 
a differential support settlement of the outer support of 5 mm is taken into account. The diagrams 
show clearly that in case of a differential settlement of the outer support, relatively more load is 
transferred to the middle support. Disturbances in the diagrams are caused by a regression of the 
monitored resistances due to cracking of the concrete. 
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Figure 8.17 Redistribution of load transfer to the supports in specimen S-6-1 (left diagram) and S-7-1 (right diagram) in case a 

differential support settlement of 5 mm at the outer support is taken into account.  

 
Differential settlement of the middle support results in an increase in the load transfer to the outer 
supports. The amount and width of cracks above the middle support decrease, since fewer load is 
transferred by the top reinforcement. Conversely, a considerable increase of the amount and width of 
flexural cracks at midspan and shear cracks in the compression strut between the loading point an 
outer support can be observed. Figure 8.18 gives an impression of the crack development. For 
comparison, also the development of cracks is shown when an approximately similar resistance is 
monitored in case no support settlements are taken into account. 
 



 

95 
 

settlement middle support 5 mm
displacement: 5,7 mm
monitored resistance: 550 kN (ULS load)

no support settlement
displacement: 2,4 mm
monitored resistance: 550 kN (ULS load)

settlement middle support 5,0 mm
displacement: 8,0 mm
monitored resistance: 506 kN

no support settlement
displacement: 4,6 mm
monitored resistance: 510 kN

-3.000E+01
-2.750E+01

-2.500E+01

-2.250E+01
-2.000E+01

-1.750E+01

-1.500E+01
-1.250E+01

-1.000E+01
-7.500E+00

-5.000E+00
-2.500E+00

0.000E+00
2.500E+00

3.000E+00

 
Figure 8.18: Crack development in specimen S-6-1 and S-7-1 with differential settlement of middle support of 5 mm (upper 

figures) and without (bottom figures). Shown displacements are magnified by a factor 10, output is in N/mm2. 
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Figure 8.19: Redistribution of load transfer to the supports in specimen S-6-1 (left diagram) and S-7-1 (right diagram) in case a 

differential support settlement of 5 mm at the middle support is taken into account.  

 
Due to differential settlement of the middle support a change in the normative failure mode can be 
observed. Most of the load is transferred by the bottom reinforcement, which starts to yield. An 
increase in the width of cracks and flexural deformation can be observed. Flexural deformation finally 
results in compressive failure of the concrete in the compressive zone at midspan, a failure mode 
similar to the one discussed in chapter 7.  
 
Specimen S-6-2 and S-7-2, which reinforcement is determined on a design load of 200 kN, show a 
higher redistribution capacity before the load bearing capacity reduces to a value lower than the 
original design load. This can be explained by the fact that at a design load of 200 kN by no means the 
normative concrete compressive strength fcd is reached. In case of small differential settlements 
sufficient capacity is left to resist the design load, although this involves a considerable increase in the 
width of cracks. 
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Figure 8.20: Load-displacement diagrams which follow from non-linear analyses of specimen 11-2 (left diagram) and 12-2 (right 
diagram). To be clear, graphs which belong to analyses in which settlement of the middle support is analyzed are indicated by a 

dashed line. 

 
Redistribution of internal forces and crack development in analyses of specimen S-6-2 and S-7-2 in 
which differential settlements are taken into account show great similarities with the already discussed 
specimens S-6-1 and S-7-1. Crack development is somewhat more concentrated at the midspan and 
above the middle support, where yielding of the reinforcement is observed. Exceeding of the maximum 
yield strain of reinforcement which is located above the supports characterizes the failure mode of 
specimens in which differential settlement of the outer support is taken into account. The failure mode 
which is found by specimens where differential settlement of the middle support is considered is 
characterized by compressive failure of concrete in the concrete compressive zone at midspan. 
 

Code provisions 
 
Geotechnical design codes provide requirements in which limiting values for settlements of 
foundations are defined. The Dutch national annex of Eurocode EN1997-1, in which the geotechnical 
design provisions are stated, refers to relevant clauses of the former Dutch code NEN 6740 with 
respect to allowed differential settlements. According to NEN 6740 in the serviceability limit state a 
maximum differential settlement equal to a value of 1/300 times the distance between the centerlines 
of the supports is allowed. This value must be seen as an upper bound, since more stringent rules 
may apply if the supported structure is very sensitive to differential settlements. For the considered 
variants of specimen S-6, which have a distance of 1850 mm between the centerlines of the middle 
and outer support, a differential settlement of 6,2 mm should be possible. The considered variants of 
specimen S-7, of which the distance between the centerlines is equal to 2850 mm, should be able to 
resist an differential settlement of 9,5 mm. 
 
Although this analysis of differential support settlement focuses primarily on the ultimate limit state, 
while provisions in NEN 6740 relate to the serviceability limit state, a quick comparison between the 
above values and the analysis results in table 8.5 shows that most specimen will show a considerable 
decay of structural performance or even failure before a permissible differential settlement of 6,2 or 9,5 
mm is reached. 
 

Conclusions 
 
Non-linear analyses of the four considered two-span specimen show that differential support 
settlements next to a considerable increase in the width of cracks immediately involve a regression of 
the monitored resistance to failure, often to a value which is even lower than the initial design load. In 
this respect in can be concluded that specimen of which reinforcement is determined with the linear 
elastic finite element method have very limited, or even no capacity to redistribute internal forces in 
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case of differential settlements. It must be emphasized that this conclusion is based on a limited set of 
considered specimen and that further research is required. 
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9 Conclusions and recommendations 
 

9.1 Introduction 
 
Analyses of specimens of which reinforcement is determined according to the linear elastic finite 
element method (LE-FEM) have led to a number of conclusions and recommendations related to the 
use of this method in the design process of reinforced structures. A point by point overview of these 
conclusions and recommendations is given in the next two sections.  
 

9.2 Conclusions 
 

• Assumed linear elastic material behavior of concrete during reinforcement design with LE-
FEM does not approach concrete behavior in an accurate way. 
 

Cracked reinforced concrete loaded in compression behaves considerably stiffer than 
cracked reinforced concrete which is loaded in tension. As a consequence, the linear 
elastic, isotropic approach of concrete material behavior results in the development of load 
transfer mechanisms which deviate from the expected mechanisms that will develop in 
practice. 

 
• No direct relation is found between the observed failure mode and the moment distribution 

which is no longer shifted to prevent failure as a result of possible appearance of inclined 
bending cracks in the ultimate limit state. Concrete crushing in the concrete compressive 
zone, caused by flexural deformations, turned out to be the normative failure mode for the 
considered specimens. 

 
In the considered single-span specimens of which reinforcement was determined with LE-
FEM a relative limited amount of longitudinal reinforcement had to reach the supports. The 
presence of transversal bars and bars of the applied reinforcement mesh which cross a 
possible inclined bending crack reduce the direct influence of the development of such a 
crack considerably.  

 
• Especially heavily loaded specimens which are subjected to bending and in which according 

to LE-FEM compression reinforcement is required in the concrete compressive zone, can be 
considered to be unsafe. Failure occurs at monitored loads which in the worst case are 25% 
lower than the assumed design load. 
 

Premature failure was primarily caused by the relative conservative shape of the applied 
stress-strain relation in the non-linear analyses and the limited development of stresses in 
the compression reinforcement, while concrete at the same moment already reached its 
ultimate compressive strength. It must be emphasized that generally, independent of the 
applied reinforcement design method, the compressive stresses in concrete and 
reinforcement do not develop at the same rate. This is indicated in figure 9.1. 
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Figure 9.1: Global development of maximum compressive stresses in concrete and  hot-rolled reinforcement, according to the 

behavior which will follow from laboratory tests. Before compressive reinforcement will be fully active, the concrete compressive 
strength is already decreasing due to the development of macro cracks.  

 
• Execution of a full probabilistic analysis results in even lower failure loads compared to the 

ones which will be found when the popular partial safety factor methods of the codes are 
applied, even when all these types of safety assessment are based on a similar reliability 
index of 3,8. Compared to the partial safety factor method which is discussed in Eurocode 
EN1992-1-1, the full probabilistic analysis result in failure loads which can be up to 10% lower, 
although this is strongly related to the assumed coefficient of variation of the applied load. 

 
• LE-FEM overestimates the concrete strength of structures which are loaded by a top load and 

fully supported at their base, since eccentricities are left out of consideration. 
 

According to Eurocode EN1992-1-1 §6.1 (4) for cross-sections with symmetrical 
reinforcement loaded by a compression force it is necessary to assume a minimum 
eccentricity e0 equal to h/30 but not less than 20 mm, where h is the depth of the section. 
Since LE-FEM is only capable to analyze in-plane stress fields, it takes no eccentricities or 
second order effects into account and allows structures to be loaded up to their full design 
strength fcd, without requiring additional reinforcement. This is illustrated in figure 9.2. 
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Figure 9.2: Stress development in a vertical cross-section of an in-plane stress field. 
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• Reinforcement designs according to LE-FEM of the considered single-span specimens do not 
meet the requirements related to crack control in the serviceability limit state. It is not possible 
to verify the stress development in the distributed reinforcement bars without the application of 
advanced (non-linear) methods, since there is no linear relation between the applied load and 
stress development in the distributed reinforcement bars which are required according to LE-
FEM. In common design methods, like the beam theory or strut and tie method, its less 
complicated to verify the stresses in the SLS, since these methods assume that longitudinal 
reinforcement is concentrated in a specific tension zone. 

 
• Considered specimens seem to be less sensitive for the development of shrinkage cracks. 

Redistribution capacity of two-span specimens which during the design process are already 
loaded up to their limit strength fcd turned out to be negligible. 

 

9.3 Recommendations 
 

• Although no direct relation is found between the observed failure mode and the limited amount 
of longitudinal reinforcement bars which reach the supports, it is still recommend to extend all 
bars such that they are properly anchored near the supports to limit the development of local 
cracks. 

 
• Also stirrups and other vertically positioned reinforcement bars should be extended such that 

they enclose longitudinal reinforcement at the bottom or top of a structure, and must be 
anchored properly. 

 
• To meet requirements related to crack control in the serviceability limit state, the required 

amount of bottom reinforcement in the tension zone of structures which are subjected to 
bending should be multiplied by a specific factor, larger than 1. Further research is required to 
quantify this factor. 

 
• To take prescribed eccentricities according to Eurocode EN1992-1-1 §6.1 (4) into account 

during the design of structures which have symmetrical reinforcement and are loaded under 
compression, a reduced concrete compressive strength fcd should be taken into account 
during the reinforcement design process with LE-FEM. Otherwise, specific code requirements 
are not met. Although it is not required by code provisions, this approach is also 
recommended for the design of structures which are subjected to flexural deformations and 
posses a local concrete compressive zone where high, concentrated compressive stress 
appear. Further research is required to quantify this reduction factor. 
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Appendix A – Results survey 
 

A.1 Introduction 
 
To get an impression to what extent linear elastic analyses, and more specific the linear elastic finite 
element method to determine required reinforcement, are already applied in engineering practice for 
the design of reinforced concrete walls, a small survey was conducted among ten consulting 
engineering firms and other authorities which are active in the field of commercial and building 
industry. The results of this survey are discussed in the next section. 
 

A.2 Results of the survey 
 
Practically all interviewees of companies which are involved in the design of reinforced concrete 
structures indicated that linear elastic finite element analyses are applied within their company to 
determine the stress distribution in concrete structures, primarily when hand calculations are 
insufficient to determine the distribution of membrane forces adequately.  
 
A majority takes the view that linear elastic analyses in which isotropic material behavior is assumed 
are adequate enough to approach the actual behavior of reinforced concrete. This is illustrated in 
figure A.1, were the answers are shown on the multiple-choice question: 
 
Do you take the view that the approach of reinforced concrete as a linear elastic, isotropic material, as 
is assumed in the finite element analyses, is an accurate approach of the actual behavior? 
 

1
0%

2
12%

3
75%

4
13%

 
Figure A.1: Approach of reinforced concrete as a linear elastic isotropic material. 

 
Although linear elastic analyses are applied frequently in practice to determine the distribution of 
membrane forces in concrete walls, the design method to derive the required amount of reinforcement 
automatically from the determined membrane forces is applied less frequently. Figure A.2 shows the 
answers on the question: 
 
Do you personally use, or are there colleagues within your company who use the mentioned method 
to determine the required reinforcement automatically and/or are there calculations verified of third 
parties in which this method is applied? 
 

1. This is a very accurate approach of the actual behavior of 
reinforced concrete. 

2. This is a reasonably accurate approach of the actual behavior 
of concrete. 

3. This approach is adequate for the design of a reinforced 
concrete structure. 

4. This approach deviates to much from the actual material 
behavior. 
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Figure A.2: Use of the method to determine the required reinforcement directly from the membrane forces in practice. 

 
Interviewees which indicated that within their company calculations are made or verified in which the 
discussed method is applied, unanimously declared that additional checks are applied. These 
additional checks vary from a verification of possible incorrect determined peak stresses to the actual 
verification of cross-sections based on code checks. 
 
The response to the question if it can be stated that the maximum allowed steel stress σs in the 
serviceability state (SLS) can be expressed by equation A.1, as is assumed in chapter 4, was less 
univocal. 
 

 = yd
s

f
σ

γ
 A.1 

 
Where: 
 
fyd  is the design yield strength of reinforcement steel. 
γ is the mean partial load factor which is applied for external loads. 
 
The response to this question can be seen in figure A.3 
 

 

1
40%

2
20%

3
40%

 
Figure A.3: Response to the question the maximum steel stress in the ULS can be determined according to equation A.1. 

 
A frequently mentioned remark about the maximum allowable steel stress in the serviceability limit 
state which follows from equation A.1 is that not only the size of the stresses in the serviceability limit 
state determine if the crack width requirements are satisfied, but that also the assumed exposure 
class, bar diameter and bar spacing. 
 
Finally it was asked if the term “linear elastic finite element method” could be considered as a correct 
name for the considered method. In figure A.4 it can be seen that a majority agree with this name. 
 

1. Calculations which are based on this method are both applied 
as well as verified. 

2. Calculations which are based on this method are only applied, 
but never verified. 

3. Calculations which are based on this method are never 
applied, but verified. 

4. Calculations which are based on this method are never applied 
and verified. 

1. This is a suitable guideline for the maximum steel stress in the 
SLS. 

2. This is not a suitable guideline for the maximum steel stress in 
the SLS. 

3. Else. 
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1
80%

2
20%

 
Figure A.4 Response to the question if the term “linear elastic finite element method” can be considered as a correct name for 

the considered reinforcement design method. 

 
Interviewees which did not agree with this nomenclature put the argument forward that this term can 
lead to confusion, since this method can only be applied in a limited field of applications. 
 
 

1. This can be considered as a correct name. 
2. This cannot be seen as a correct name. 
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Appendix B - Reinforcement drawings 
 

B.1 Introduction 
 
This appendix contains the reinforcement drawings of the specimen which are not discussed in 
chapter 4. For each specimen the required reinforcement and the actual reinforcement drawing are 
shown. In these drawings all individual bars are drawn, except for the bars of the reinforcement mesh. 
It must be emphasized that the output of the linear elastic finite element method is given for one single 
side face of the specimen only, and should be applied at both faces. 
 

B.2 Specimen S-1-1 
 
Dimensions: 2000 x 1000 x 200 mm 
Load: concentrated load, equal to 651 kN 
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Figure B.1: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.2: Reinforcement drawing of specimen S-1-1. 

 

B.3 Specimen S-1-2 
 
Dimensions: 2000 x 1000 x 200 mm 
Load: concentrated load, equal to 326 kN 
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Figure B.3: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.4: Reinforcement drawing of specimen S-1-2. 

 

B.4 Specimen S-1-3 
 
Dimensions: 2000 x 1000 x 200 mm 
Load: concentrated load, equal to 163 kN 
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Figure B.5: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.6: Reinforcement drawing of specimen S-1-3. 
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B.5 Specimen S-1-4 
 
Dimensions: 2000 x 1000 x 200 mm 
Load: concentrated load, equal to 651 kN 
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Figure B.7: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.8: Reinforcement drawing of specimen S-1-4. 

 

B.6 Specimen S-1-5 
 
Dimensions: 2000 x 1000 x 200 mm 
Load: distributed load, equal to 382 kN/m 
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Figure B.9: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.10: Reinforcement drawing of specimen S-1-5. 

 

B.7 Specimen S-2-2 
 
Dimensions: 3000 x 1000 x 200 mm 
Load: concentrated load, equal to 323 kN 
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Figure B.11: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.12: Reinforcement drawing of specimen S-2-2. 

 

B.8 Specimen S-2-4 
 
Dimensions: 3000 x 1000 x 200 mm 
Load: concentrated load, equal to 646 kN 
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Figure B.13: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.14: Reinforcement drawing of specimen S-2-4. 

 

B.9 Specimen S-3-1 
 
Dimensions: 4000 x 1000 x 200 mm 
Load: concentrated load, equal to 640 kN 
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Figure B.15: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.16: Reinforcement drawing of specimen S-3-1. 
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B.10 Specimen S-3-2 
 
Dimensions: 4000 x 1000 x 200 mm 
Load: concentrated load, equal to 320 kN 
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Figure B.17: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.18: Reinforcement drawing of specimen S-3-2. 

 

B.11 Specimen S-3-3 
 
Dimensions: 4000 x 1000 x 200 mm 
Load: concentrated load, equal to 160 kN 
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Figure B.19: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.20: Reinforcement drawing of specimen S-3-3. 

 

B.12 Specimen S-3-4 
 
Dimensions: 4000 x 1000 x 200 mm 
Load: concentrated load, equal to 640 kN 
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Figure B.21: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.22: Reinforcement drawing of specimen S-3-4. 

 

B.13 Specimen S-3-5 
 
Dimensions: 4000 x 1000 x 200 mm 
Load: distributed load, equal to 172 kN/m 
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Figure B.23: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.24: Reinforcement drawing of specimen S-3-5. 

 

B.14 Specimen S-4-1 
 
Dimensions: 6000 x 1000 x 200 mm 
Load: concentrated load, equal to 628 kN 
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Figure B.25: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.26: Reinforcement drawing of specimen S-4-1. 

 

B.15 Specimen S-4-2 
 
Dimensions: 6000 x 1000 x 200 mm 
Load: concentrated load, equal to 314 kN 
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Figure B.27: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.28: Reinforcement drawing of specimen S-4-2. 

 

B.16 Specimen S-4-3 
 
Dimensions: 6000 x 1000 x 200 mm 
Load: concentrated load, equal to 157 kN 
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Figure B.29: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.30: Reinforcement drawing of specimen S-4-3. 

 

B.17 Specimen S-4-4 
 
Dimensions: 6000 x 1000 x 200 mm 
Load: concentrated load, equal to 628 kN 
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Figure B.31: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.32: Reinforcement drawing of specimen S-4-4. 
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B.18 Specimen S-4-5 
 
Dimensions: 6000 x 1000 x 200 mm 
Load: distributed load, equal to 110 kN/m 
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Figure B.33: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.34: Reinforcement drawing of specimen S-4-5. 

 

B.19 Specimen S-5-1 
 
Dimensions: 2000 x 2000 x 200 mm 
Load: concentrated load, equal to 696 kN 
 

660

600

540

480

420

360

300

240

701

200

420

390

360

330

300

270

240

210

428

200

 
Figure B.35: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.36: Reinforcement drawing of specimen S-5-1. 

 

B.20 Specimen S-5-2 
 
Dimensions: 2000 x 2000 x 200 mm 
Load: concentrated load, equal to 348 kN 
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Figure B.37: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.38: Reinforcement drawing of specimen S-5-2. 
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B.21 Specimen S-5-3 
 
Dimensions: 2000 x 2000 x 200 mm 
Load: concentrated load, equal to 174 kN 
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Figure B.39: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.40: Reinforcement drawing of specimen S-5-3. 

 

B.22 Specimen S-5-4 
 
Dimensions: 2000 x 2000 x 200 mm 
Load: concentrated load, equal to 696 kN 
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Figure B.41: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.42: Reinforcement drawing of specimen S-5-4. 

 

B.23 Specimen S-5-5 
 
Dimensions: 2000 x 2000 x 200 mm 
Load: distributed load, equal to 409 kN/m 
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Figure B.43: Required reinforcement in longitudinal (left figure) and transversal (right figure) direction. Output is in mm2/m. 
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Figure B.44: Reinforcement drawing of specimen S-5-5. 

 

 



 

122 



 

123 
 

Appendix C - Maple code 
 
This appendix contains the applied input in the computer algebra system Maple, a computer program 
which has been used several times to solve mathematical problems. To keep this appendix concise, 
only the input is shown. The output will be generated automatically when the code below is entered in 
Maple. Version 12.0 of Maple is used. 
 
In section 4.4.3 of chapter 4 the stresses in individual horizontal bars in the serviceability limit state are 
verified for specimens of which the span is not less than three times the overall section depth. To 
determine these stresses equation C.1 and C.2 have to be solved, in which εc and xu are two unknown 
variables. 
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(C.2) 

 
The Maple code which is shown below is based on the geometry of specimen S-4-1. However, the 
applied code for the other considered specimens is based on the sample principles. 
 
> restart; 
> h:=1000; 
> t:=200; 
> fcd:=20; 
> ec3:=1.75/1000; 
> Ec:=fcd/ec3; 
> Es:=200000; 
> M:=449; 
> n:=20; 
> hbar:=Vector([940,940,935,785,700,635,485,380,335,280,230,230,185,130,130,80,80,40,40,35]); 
> dbar:=Vector([6,8,5,5,6,5,5,12,5,12,8,12,5,12,12,12,12,12,8,5]); 
> nbar:=Vector([2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)]; 
> Ns:=(add((((h-hbar[k])/xu-1)·ec·Es·((dbar[k]·0.5)̂ 2·π·nbar[k]),k=1..n))/1000; 
> Nc:=-(Ec·ec·t·xu·0.5)/1000; 
> Ms:=(add((((h-hbar[k])/xu-1)·ec·Es·((dbar[k]·0.5)̂ 2·π·nbar[k])·(hbar[k]/1000),k=1..n))/1000; 
> Mc:=(Nc·(h-((1/3)·xu)))/1000; 
> eq1:=Ns+Nc=0; 
> eq2:=Ms+Mc=M; 
> solution:=solve({eq1,eq2},{xu,ec}); 
> assign(solution[1]); 
> xu; 
> ec; 
 
 
 


