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Abstract 
 
 

Space frame structures today are a common choice of load bearing system for achieving long 
spans with minimal interruptions of the floor plan beneath. On top of that, the versatility of space frame 
structures to conform to any shape makes them particularly interesting today, especially in the context 
of free-form geometry which is becoming ever more common. This MSc thesis deals with the parametric 
design, engineering and optimization of space frame structure typologies based on different initial 
surface discretization of the input free-form surface geometry, and different topological relations of 
space frame top and bottom layers. These topological relations are based on Conway operators most 
relevant for the structural patterns occurring in space frame structures specifically, dual, kis and ambo. 
These operators are always applied on an initial or seed meshing of the desired free-form surface, to 
create different space frame layouts for them to be compared by their structural performance, primarily 
in terms of mass. The scope of initial meshing options is kept to tri, quad, and skeleton-based quad 
meshing. These three different types of mesh options, combined with the three possible Conway 
operator options, constitute the main nine combinations for each case study example. 

In essence, every space frame design, due to the linear and geometric nature of the structural 
elements (nodes and bars seen as points and lines), can be considered as a literal structural translation 
of the final desired free-form shape. This free-form shape is always tessellated or discretized in certain 
configurations. The aim was to gain more insight into how the initial tessellation affects the behaviour 
of space frame structures as well as how the process of optimization of such structures is influence 
regarding the initial tessellation. To gain insight into this influence qualitatively and quantitatively a 
parametric tool was developed to conduct case studies. The tool allows for the generation and cross-
section optimization of various space frame structures based on an input surface. This parametric tool 
was developed using Rhino, Grasshopper, and karamba3D structural analysis plugin for grasshopper. 
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01
  01 Introduction 

 
 
 
 
 
01.1 Motivation 
 

In recent years, the development of algorithm-aided design has facilitated the overall 
architectural and structural design of complex structures. This advancement in computational design 
allows engineers and architects to design structures not deemed feasible before. Additionally, 
parametric structural design with tools such as karamba3D and grasshopper has opened a potential for 
creating evermore complex geometries and optimizing structural designs, especially in the preliminary 
design phase. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 01.1 
Gallery of the new Milan Trade Fair 
[Source: archello.com] 
 

Space frame building structures have become more interesting than before due to the 
development of these computational design tools, as they allow the designer to create adequate 
parametric models to investigate the relationship between geometry and load bearing behaviour in the 
early design phases. Furthermore, Space frames are excellent load bearing structures for creating large 
spans and open spaces, while at the same time having a certain aesthetic value. This aesthetic value 
although hard to measure or comment, is primarily in the structural pattern created by the 
configuration of the bars and nodes. The modularity and assembly of Space Frames makes it possible 
to cover large spans of irregular, free-form, curved geometries. 

Being a complex system of bars and nodes, with 3D load bearing mechanism hand calculations 
come with many assumptions, providing rough estimates for simple geometries. Moreover, Space 
frame structural behaviour and their respective potential structural patterns or layouts/configurations 
can only be properly assessed by computational methods. Parametric Design tools and 3D modelling 
environments such as Rhino, grasshopper and Karamba3d have the potential to bring more insight into 
the structural behaviour and size optimisation of Space frame structures. Considering the 
aforementioned, rationale for research about space frames structural patterns is presented. 
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Figure 01.2 
Heydar Aliyev Cultural Cent 

[Source: buildpedia.com] 
 

However, another characteristic aspect, which further motivates, are the current tendencies in 
engineering practice, a sort of unification of the roles of architects and structural engineers, reminiscent 
of renaissance builders such as the famous “homo unviersalis”, Leonardo da Vinci. This tendency is 
facilitated by the ever-evolving computational design capabilities and software tools, an ever-
expanding toolbox from which a new type of engineer emerges, one which can “equip” himself with 
as many tools as their profession or curiosity dictates. Thus, the process of design, from the initial idea 
and preliminary design to detail design, is becoming one integrated approach in which the 
collaboration between architects and structural engineers is paramount for successful design from the 
start of the design process. In recent years, these tendencies have resulted in numerous inspiring, novel, 
and complex structures, state of the art from the point of architectural, computational, and structural 
design.  
 
01.2 Why parametric? 
 

Nowadays, due to climate change and the absolute necessity of humanity to mitigate it, more 
and more emphasis is being put on sustainability in engineering design. Civil engineering sector, 
especially the design professionals, are being challenged to continuous learning and updating of their 
knowledge to keep up and implement the latest developments, to create more economical and 
sustainable designs than before. The structural design of today, not only has to assure functionality, 
durability and reliability of structures designed but sustainability and low environmental impact as 
well. Structural efficiency and economy in terms of lower material usage/costs and thus carbon 
footprint is becoming vital. These tendencies have created a new environment in engineering practice 
where the design process is becoming ever more a computational performance driven optimization-
based design process, intersecting with the fields of evolutionary optimization, computational design 
and building performance simulation (Figure 01.3.) However, structural optimisation, has always been 
inherent in structural design in terms of preventing unnecessary wastage and material costs, although 
methods and tools for structural optimisation were not developed and sophisticated as today. 
Developments in computational tools for Parametric engineering and Structural optimisation now 
make it possible to optimize and design more complex structures than ever before. The main benefit of 
using parametric design or algorithm-aided design is in the possibility to automate the creation of 
complex structural system geometry which will serve as a basis for a parametric structural model. 
Another benefit is the potential for creating several different designs depending on input variables to 
gain more insight into which structural configuration is better in respect to some target parameters such 



 
 

5 

as weight, displacement etc. All of the mentioned methods help to achieve a performance-based design 
optimization. 
 
Figure 01.3 
Computational performance-driven design 
optimization is the combination of computational 
design, evolutionary optimization, and BPS in a 
3D modelling graphical context. [1] 
 
 
 
 
 
 

To conclude, it is important to note that the development of parametric design has opened a 
path towards more synergy and collaboration between architects and structural engineers, while at the 
same time considering the MacLeamy curve (Figure 01.4.) facilitating more insight available in the 
preliminary design phase, when the design decisions have the most impact for later design stages, 
potentially saving material and time costs down the line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 01.4 
MacLeamy curve [2]  
 
 
 
 
 
01.3 State of the art 
 

A first literature review has been done to find out what has been researched on the topic of 
structural patterns/configurations/layouts of space frame structures. The search was done through 
google scholar by using key words relating to the topic stated. The main conclusion is that this topic as 
specified has not been researched to my knowledge. However, the key word search has resulted in 
finding useful articles and literature related to some extent with the posed problem and identified a 
research gap regarding structural pattern space frame research. 

The research done by Koronaki et al. [3] and Shepherd and Pearson [4] relates to the layout 
optimization of space frame structures. The main takeaway of these articles is that space frame 
tessellation can be achieved by using certain Conway operators to mathematically define them which 
can facilitate the modularity of the structural configuration. Furthermore, another interesting approach 
outlined by Oval et al. [5] in short shows a procedure for creating structural patterns by topology finding 
of structural patterns for shell-like structures (grid shells, shells, voussoir tessellation for masonry 
vaults) based on the design of singularities in the pattern. More importantly the author shows how 
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quad mesh patterns can be created based on a topological skeleton of the underlying surface. This gives 
a direction for further research into how to formulate different tessellation strategies to form various 
modules or structural patterns of the space frame structure, this type of discretization has not been 
compared to other known types for space frame design, showing a research gap which is to be 
addressed by this MSc Thesis. Another article by Koronaki et al. [6] shows a possible approach to 
rationalizing space frame structures by reducing variability in joints, which could also be an interesting 
optimization goal. More specific details, and relevant knowledge and information from the mentioned 
sources, are presented in the Literature Review, part II of this MSc Thesis. 

To conclude, most of the literature related to the topic used a parametric design approach, 
showing that it is a valid research approach. In short, it can be said that the found literature mostly 
relates to specific sub problems which could help find answers to the originally stated topic. A research 
gap was identified regarding lack of comparison between various possible space frame discretizations 
based on different initial meshings and Conway operator relations of top and bottom space frame 
layers. 
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02
  02 Research Definition 

 
 
 
 
 

Based on the introductory and motivational chapters, the main idea of researching various 
discretizations of input freeform surfaces to create space frames and gain insight into how they 
influence the load bearing behaviour, structural design and optimization has been laid out. To 
formalize and give context to this idea, a problem statement is further presented. 
 
02.1 Problem Statement 
 

The problem is structured as follows: To create a space frame based on a free-form surface, this 
free-form surface geometry must be first discretized/tessellated/meshed in a certain configuration. 
There is a certain design freedom in choice of this initial tessellation or meshing, meaning there is more 
than one configuration. This problem raises two main questions: 

1. Given an architectural free-form surface model to discretize into a steel space frame 
configuration, what is the influence of this structural pattern configuration regarding the 
optimal structural design and behaviour of a space frame? 

2. For a given architectural free-form surface model, how does one generate an appropriate 
parametric structural tool to test various space frame structure typologies? 

 
The first stated problem question forms the basis of the main research question stated in the 

Research questions part of this MSc Thesis. It, of course, implies several sub-questions which are 
explicitly stated as well. The second problem question can be perceived as one of the many necessary 
steps to answer the first main question. Namely, after researching initial approaches, and many 
iterations, it can be concluded that this problem can be approached by using parametric design tools, 
applying different meshing strategies to form the basis of a space frame structure. The following 
images, (Figures 02.1, 02.2 and 02.3) show an example of possible mesh topologies for discretizing an 
input double curved pentagonal surface to be translated into a space frame structure. 
 
 
 
 
 
 
 
 
 
 
 
Figure 02.1 
Quadrilateral tessellation example for bottom layer of a space frame based on a 
concave polygon surface 



 
 

8 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 02.2 
Triangular tessellation example for bottom layer of a space frame 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 02.3 
Topological skeleton based Quadrilateral tessellation example for bottom layer 

of a space frame 
 

 
02.2 Research Objective 
 

Space frame structures have been used extensively in the past to create large spans and column 
free spaces. With new developments in computational and algorithm aided design specifically space 
frame structures can achieve forms before deemed as unfeasible. A parametric structural design or 
generally computational design approach gives the opportunity for algorithmically generating space 
frame configurations based on an input surface as well as potentially giving significant insight into 
structural behaviour in the preliminary design phase. 

The main research objective is to investigate applications of different structural patterns using 
a computational design approach for space frame design and to evaluate each solution in terms of 
multiple optimality criteria. The computational design approach entails the development of a 
grasshopper definition to serves as the main research tool, which could potentially afterwards also be 
used in design practice during the preliminary phase design of a space frame structure. Possible 
optimality criteria are mass, stiffness, aesthetics and fabrication aspects. Least mass is chosen as the 
primary optimality criteria. Each of the design variants should then be evaluated regarding chosen 
optimality criteria. In essence the relationship between geometry, structural pattern and load bearing 
behaviour is investigated. 

This approach will of course entail a certain design space of optimized solutions not only one 
"optimal" solution. The term optimal throughout the MSc thesis is always meant in the context of 
formulated optimality criteria, not in the sense of only one ultimate optimal solution. 
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02.3 Research Questions 
 

The main research question is as follows: 
 

Given an architectural free-form irregular surface model to discretize into a steel space 
frame con- figuration, what is the optimal structural pattern configuration regarding 
multiple optimality criteria (mass, fabrication, aesthetics, stiffness in regards of chosen 
pattern) and their realistic constraints (load bearing behaviour, deflection, available 
types of steel c/s)? 

 
This main research question leads to several sub-questions which will lead to possible answers 

to the main question. The sub-question are as follows: 
 

1. What are relevant surface tessellations/discretization’s/meshing options for 
generating space frame structures? 

2. Is there any noticeable influence on structural performance of space frames in regard 
to chosen tessellations? 

3. Which space frame configuration is most appropriate considering optimality criteria? 

4. Which parameters governing the space frame structure configuration are most relevant 
for optimizing space frames? 

5. What is the influence of the relevant parameters? 

6. Which structural pattern discretization strategy is the most appropriate? 
 
02.4 Approach 
 

Part II, Literature Review is performed to gather relevant knowledge for the prescribed 
research topic, further expanding and substantiating the initial state of the art overview. The contents 
of the literature review are roughly divided into four main chapters dealing with the four main thematic 
aspects of the research, namely, space frame structures, structural patterning, parametric design, and 
optimization methods. In part III the knowledge gathered during the Literature review is applied in 
creating the full parametric space frame tool. Furthermore, the Parametric Tool Development process 
entailed investigating more than one parametric approach depending on desired functionality and 
computational limitations. Ofcourse only the relevant and latest approach is shown. It can be 
considered as the most practical part of the MSc thesis. In part IV a variant study shall be done to 
benchmark the developed parametric tool, show its functionality and possible limitations. Finally in 
Part V the conclusion and further recommendations are laid out based on research done in previous 
chapters especially the ones in part III and part IV of the MSc Thesis. 
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03
  03 Space Frame Structures 

 
 
 
 
 

In context of this MSc thesis, a Space frame structure can be considered as a load-bearing 
structural assembly of linear, axially loaded only, rod or bar elements, which are connected at structural 
nodes, often considered as hinges in terms of structural behaviour. These bar and node elements 
connect to form a three- dimensional load bearing truss module, which is then repeated throughout the 
structure. They are often used for achieving long-spans with minimal intrusions to the spanned space 
below, consequently freeing the space below to be organised and used in a more efficient manner. 
 
03.1 Elements and terminology of space frame structures 
 

When talking about space frames it is important to distinguish several terms which refer to the 
different elements of space frames. From a material point of view the space frame elements considered 
are bars and nodes. However, from a more abstract point of view we can talk about space frame 
elements in geometrical terms of vertices, edges, and faces which are populated with cells, three-
dimensional truss modules. Furthermore, considering a space frame is essentially a 3d truss system we 
can talk about three distinct layers of the structure, the top chord, bottom chord, and web layer. This is 
important in understanding the structure of a space frame as there can exist certain topological relations 
between the layers and thus give us a terminology to name certain configurations of space frame 
structures. This idea is explained in detail in Chapter 04, Structural patterning, while specific 
implementation of these relations is explained in Chapters 7 to 11. Nevertheless, although we talk about 
3 layers in space frames relating to truss terminology, in space frame structure terms these are 
essentially double layer systems. Basically, any space frame structure with a structural height, or web 
layer, is considered a double or more layered structure. Single layered space frames are what is often 
called today as grid-shells. 

One way of categorising space frames is according to their main shape. They can be flat, singly 
curved, doubly curved or a combination of single and doubly curved parts. However today free-form 
space frames are commonplace, thus making shape classifications redundant, the reader is referred to 
many online sources showing such classifications if interested. 
 
03.2 Advantages and disadvantages of space frames 
 

The case for considering a space frame structure in a certain design situation is best reflected 
through the following listed advantages and disadvantages. It should be noted that this is not an 
exhaustive list, but a general indication of most important pros and cons, compiled from Chilton [7] and 
Lan [8]. 
 
Advantages: 
 

Load sharing - space frame structures, due to their three-dimensional structural behavior, contribute 
with all their members in carrying loads, effetely distributing both concentrated and uniform loads 



 
 

14 

throughout the structure towards the supports. 

Installation of services - the self-evident open nature of space frame structures allows the possibility 
to integrate installations such as mechanical, electrical and ventilation services within its structural 
height. The support of such systems can be achieved by supporting them at the structural nodes. 
However, one must consider these loads into the structural model, especially if they are of considerable 
weight. 

Robustness - Although considered lightweight structures, space frame structures have considerable 
rigidity and redundancy. Meaning compression or buckling failure of one of the elements will not induce 
total progressive collapse of the structure. This robustness comes from the 3D load bearing mechanism 
which allows for load sharing and utilization of all members in the structure. 

Modular components - an overwhelming majority of space frame structures are prefabricated in factory 
facilities. The factory fabrication conditions allow for high quality production of elements, with 
highly precise tolerances, surface finishing and accurate dimensions. The space frame elements are also 
easily transported, due to both the compact nature of the product and its relatively small size in relation 
to other structural steel elements, such as girders. Furthermore, the modularity of components gives an 
opportunity in terms of a finite number of chosen standardized cross-sections and nodes which make up 
to final structure. The main strength of modularity is the possibility to reduce the amount of unique or 
one-off bar elements and nodes in the structure. 

Freedom of choice in support locations - space frame structures are ideal for creating long uninterrupted 
spans allowing for a certain freedom in choice of support locations for the space frame. This aspect is 
particularly useful for the architectural layout below the space frame, giving the possibility to utilize the 
space more efficiently, with less interruptions in the floor plan. The space frame can be supported in 
basically any node in the structure. However, a designer must consider the possibility of high local forces 
at support locations, especially if the space frame is considered as point supported. Utilization of linear 
supports will allow more uniform force distributions. 

Ease of erection - No matter the final size of the space frame structure, it is always assembled from 
smaller elements, in-situ, giving the possibility to safely assemble parts of the structure and lift them up 
to their final configuration. 

Lightweight - the main load transfer mechanism in space frames is axial in terms of tension or 
compression forces in the bar elements. Considering that this structural action is much more effect than 
bending, the elements applied in the structure can be almost fully utilized and of relatively smaller 
dimensions, structural height of cross-sections are not as pronounced as in structural elements under 
bending. The axial load bearing mechanism allows for a smaller self-weight while being able to achieve 
large spans at the same time. 

Form and shape versatility - considering the linear nature of space frame structures, they can adhere 
almost to any shape or form be it flat or free-form. This makes space frame structures or space grid 
structures a highly suitable structural system for materializing modern, highly free-form organic, large 
span, interruption free, architecture. 

 
Disadvantages 
 

Cost - when utilized for relatively smaller spans, 20-30m, the cost of space frames can be rather high in 
comparison to alternatives for achieving such a span. The main cost driver is the number of nodes, 
considered as the most expensive part of the structure, while also being 20-30% of the total weight. 
Hence to achieve a cost-efficient design the number of nodes might serve as a good metric to keep under 
consideration. Another cost driver to consider is the complexity of the structural nodes. The number 
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of nodes differing from each other in terms of numbers of bars connected and the angles at which they 
connect, should be minimized to have more uniform elements and thus less fabrication and erection 
complications. 

Erection time - The complexity of structural nodes and their number can lead to longer erection times. 
Care should be taken when designing to avoid too much heterogeneity in structural elements. The final 
solution is neither a fully uniform space frame structure, with all bar and node elements being the same, 
nor one where each bar and node is unique.  

Fire protection- considering the high number of elements and their relatively large total surface area, it is 
difficult to achieve economical fire protection of space frame structures. Case specific situations can 
make fire protection a highly important aspect of space frame design. As for any steel structure, same 
principles of fire protection stand, with the choice of active and passive fire protection measures. 

Load sharing at supports - the same load sharing capacity allowing space frames to distribute 
concentrated and uniform loads efficiently through the structure can cause problems at support 
locations. Considering the case of supporting a space frame in its bottom node, usually four 
diagonals of the web layer join in a node. These diagonals tend to have primarily compression forces at 
the supports, where buckling or compression failure of only one of the members, could cause a 
redistribution of forces to other remaining elements, possibly triggering a partial or even total 
progressive collapse of the space frame structure. This aspect becomes more important the less uniform 
the loading conditions are, high localized loads at support locations can be problematic. 
 
03.3 Short overview of early development and examples of Space Frame structures 
 
According to Chilton [7] the earliest example of a Space Frame structure can be traced back to an 
experimental design for kite construction by none other than the inventor of the telephone Alexander 
Graham Bell. First shown in National Geographic Magazine in 1903, Bell demonstrated that with the 
use of tetrahedral cells a lightweight, yet robust structure can be formed. Although it was an 
experimental kite construction design he commented: “Just as we can build houses of all kinds out of bricks, 
so we can build structures of all sorts out of tetrahedral frames, and the structures can be formed as to posses the 
same qualities of strength and lightness which are characteristic of the individual cells. “. 

In 1907, Bell corroborated his comment by constructing the first steel space frame structure, the 
observation tower at Beinn Breagh, USA. It had tubular members and cast nodes. He successfully 
demonstrated that lightweight and robust steel structures are possible if using a space frame structural 
system. However, his structural innovation did not result in widespread commercial applications in 
architecture and construction. 

The first successful and widely available commercial space frame system was the brainchild of 
German engineer Dr. Ing. Max Meringhousen in 1943, named MERO system.  The system consists of 
tubular member connected at ball shaped nodes. The MERO System at the time was innovative due to 
the industrial fabrication of its components, and relative simplicity of connections. While 
manufacturing methods today are hard to compare with those in 1943 and have much improved, the 
same principle of tubular members and node ball joints is present even today. The system inspired 
numerous other spatial structural systems based on similar principles.  

However, here I want to present two of the most famous space frame structures from my 
country, Croatia, namely the Poljud stadium (Figure 03.1) and Zagreb Airport (Figure 03.2) The Poljud 
stadium (built from 1977-1979) in Split, Croatia, designed by architect Boris Magaš, is considered in 
public opinion to be one the most beautiful stadiums ever built, both because of the location and view 
towards the Adriatic Sea and the shell-like curved flowing shape of the roof achieved by applying 
MERO system for construction of the space frame structure. The Poljud stadium roof was the largest 
spanning Mero structure built to date at the time, spanning an astonishing 206 meters by 47 meters. 
The main layout of the space frame can be considered as Quadrilateral mesh, with a topological dual 
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Conway operator relation between top and bottom space frame layers, it is the most common space 
frame configuration. 

 
 
 
 
 

Figure 03.1 
Poljud Stadium – Split RH 
[Source: wikipedia.com] 

 
 

The Zagreb Airport designed by Neidhardt and Kincl, finished in 2017, received the BigSEE 
Architecture Award 2022 in the Public and commercial architecture category. The most notable part of 
the structure is the roof envelope. The primary choice for a space frame structure was due to facilitating 
an open plan as possible to efficiently utilize the space below. All of the bars in the structure are of 
different length due to the shape of the roof, which shows the possibility of modern space frame 
construction, which allows for highly custom structures, tailored to the needs of the client and project 
specifically. This is primarily because of the custom industrial approach, which has advanced through 
the years, as to not subordinate the client to its technology but adjusts to the client or market 
requirements, opening the possibilities for more complex structures with less limitations than before. 
 

 
 
 
 
 
 
 
 
 
 

Figure 03.2 
Franjo Tuđman Airport interior – Zagreb RH 

[Source: archdaily.com] 
 

 
 As mentioned, space frame structures transfer loads primarily in an axial manner, allowing 

only compression and tension members through the structure, and none should be subject to bending. 
Overall, the structural behaviour of a space frame structure is dependent on its geometry. Depending 
on the shape of the structure the global load-bearing behaviour always consist of three main load 
bearing mechanisms in varying degrees of arch, shell and plate bending. A flat space frame will have 
dominant plate bending out of plane action, where the truss height is governing. A singly curved space 
frame will have primarily arching action, and a doubly curved will have a shell-like load transfer. A 
free-form space frame will have all three depending on the geometry of the space frame. Although 
every time, locally, the structure is a three-dimensional truss of compressive and tensile members, the 
global shape of the space frame surface (assuming only self-weight as load, not any asymmetric snow 
loads or point loads (for example football score screens on a stadium space frame roof) will influence 
how the forces are distributed between the members. Thus, one can see why it would be important to 
choose a sensible shape for a space frame, to achieve the most economical load bearing behaviour. This 
can be achieved through optimization but also through form finding.  
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Figure 03.3 
 Hanging chain model of Sagrada Familia by 
Antoni Gaudi 
 [Source: pinterest.com] 
 
03.4 Form Finding 
 

“Form finding - originally coined in the latter half of the 20th century as 'Formfindung' in 
German - is the methodology for finding the equilibrium geometry for a given set of external loads, 
internal forces, and boundary conditions. Typically, it is assumed that the topology (connectivity) of 
the structural elements is defined, and the form-finding algorithms solve for the unknown nodal (XYZ) 
coordinates.” Popescu and Oval [9]. However, early form finding can be traced back to physical hanging 
chain models made by Antoni Gaudi for the Sagrada Familia (Figure 03.3) or Heinz Islers hanging 
membranes for his shell structures (Figure 03.4). Originally a physical modelling process, today it is 
often applied computationally utilizing various algorithmic form finding procedures such as Force 
Density method, Dynamic relaxation, and Stiffness matrix methods. A full exhaustive explanation of 
those methods is out of scope for this thesis. However, in short according to Veeenendaal and Block [10] 
: “Force density methods refer to all methods that use the concept of the ratio of force to length (or 
stress to surface area) as a central unit in the calculations. Dynamic relaxation methods use the analogy 
with motion, where residual forces are converted to velocities and the mass of the nodes determines 
acceleration. Stiffness matrix methods use real material stiffness matrices in the calculations“. 
 
 
 
 
 
 
 
 
 
 
 
Figure 03.4 
Hanging membrane model by Heinz Isler 
[Source: baunetz.de] 
 

Although form finding is primarily used for modeling of tension structures or shell structures, 
space frame structures also benefit through the form finding of the shape of the final surface to be 
discretized into a space frame structure, as will be shown in this thesis. 
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04
  04 Structural Patterning 

 
 
 
 
 

A core focus of this MSc research is on the structural pattern of space frame structures. The 
structural pattern in space frames is made up of the topology of its bottom grid, top grid, and inter-
connectivity between them. A core question is how these structural patterns influence the load bearing 
behaviour and the structural design and optimization of such structures. A Literature review is done 
to identify current research available on the various topics connected to the structural pattern of space 
frames. Namely, this concerns topics such as application of Conway Operators to space frames, and 
Topological Skeleton based quad meshes. Furthermore, in the following sections appropriate 
terminology will be introduced to help understand the various configurations of space frames 
investigated further in the thesis along with the literature review. 

The design of space frame structures can be viewed as a process of creating structural patterns 
by utilizing various geometrical and topological relations to explain the shape of the assembled 
structural elements (bars and nodes). Furthermore, to be able to adequately describe a particular space 
frame design, a certain vocabulary is needed. Part of this vocabulary was introduced in chapter 3 
regarding Space Frame structures in general, another more specific and relevant for the parametric 
research done is introduced in the following sections. This vocabulary is not only related to the 
fundamental problem of discretizing, tessellating, or meshing a surface to create a space frame structure 
but also to the problem of how certain space frame configuration can be called according to how they 
relate in terms of topology. Essentially much of the following terminology can be interchangeable as 
they talk about the same thing but from differing points of view. 
 
04.1 Tessellations 
 

A tessellation or tiling is the covering of a surface, often a plane, using one or more geometric 
shapes, called tiles, with no overlaps and no gaps. As space grid/space frame/space truss structures 
can be considered as tessellations of a surface by bars and nodes, it is useful to borrow some concepts 
and terminology from this area of mathematics to formalize the structural patterns expressed by space 
frame structures. 

Essentially all elementary space frame configurations are based on so called Euclidean tilings 
by convex regular polygons. There are three basic Euclidean regular tilings, Triangular tiling, Square 
tiling and Hexagonal tiling (Figure 4.1). In this MSc thesis research, triangular and square tilings are 
chosen as initial possible tessellation shapes. This choice is based on the prevalence of these two types 
of tessellations in space frame structures. Furthermore, it is important to note, that tessellations in this 
MSc research always refer to the layout and shape of the bottom layer a space frame structure. The 
initial free-form surface is always tessellated in either a square or triangular tiling, while the top layer 
is created based on topological relations with the bottom layer, which serves as a sort of seed 
tessellation. Hexagonal tiling is not investigated specifically, although this tiling will appear because of 
a dual Conway operator on a triangular seed tessellation. This is explained further in detail in the 
section regarding Conway operators. 
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Triangular tiling Square tiling Hexagonal tiling 
Figure 4.1: Regular Euclidean tilings by convex polygons [Source: wikipedia.com]  

 
04.2 Meshes 
 

In this research the notion of a space frame structure, more specifically its layout, is heavily 
dependent on the initial "tessellation", or in computer graphics terms, "meshing" of the initial input 
NURBS surface, which is supposed to be translated into a space frame structure. Patterns for structural 
applications can effectively be modelled computationally by meshes. 

Meshes are computational representations of 2D or 3D objects. They consist of vertices(points), 
edges(lines) and faces (areas traced by edges, which are defined by vertex connectivity). This 
elementary mesh structure consisting of connected points can form various polygons. The two basic 
two-dimensional polygon meshes are the triangular (tri) and quadrilateral (quad) meshes. 
 
Mesh data structure 
 
To create meshes computationally there needs to be a certain data structure to program the meshing 
procedure. Mesh data structures contain information about mesh geometry and topology. For example, 
in grasshopper, the data structure of meshes is simply defined by face vertex connectivity, meaning 
that with a list of vertices and an ordered groups of those vertices to constitute faces, a mesh is 
constructed. There exist other mesh data structures such as half edge and winged edge structures. The 
compass_singular python library, implemented in this MSc Thesis research with its accompanying 
compass_singular grasshopper plugin components, uses half edge data structures. A full explanation 
of half edge data structures is out of scope of this thesis. However, it should be noted that at the same 
time they: encode more information and are much more elaborate than face-vertex data structures, 
allowing efficient and complex meshing procedures along with editing and exploration of mesh 
patterns. 
 
Structured and Unstructured grids 
 

Meshes with their tessellations form grids. These grids can be either structured, or 
unstructured. Structured grids have regular connectivity meaning a uniform polygon structure some 
examples are shown in figures below. These structured grids co-relate to the basic Euclidean regular 
tilings by convex polygons (Triangular and Square tiling). (Figure 4.2) below illustrates the qualitative 
difference between structured and unstructured meshes. 
 

Structured Unstructured 
 
 
 
 
 
Figure 4.2 
 Structured vs. Unstructured grids [11] 
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While this might be self-evident, it is important to mention to distinguish between the terms of 
tessellation and meshing. Further in this text grids are equivalent terms to meshes and are used 
interchangeably according to the focus to be conveyed. 

The MSc thesis problem of the influence of initial mesh topology on the load bearing behaviour 
on space frame structures, is essentially looking at the problem of how the load bearing behaviour is 
influenced if the space frame structure is based on structured or unstructured meshes. Moreover, there 
is a question of how the load-bearing behaviour differs in between the various structured grids 
possible. The main notion behind this is to see if there is an obvious difference between the load bearing 
behaviours and is there an obvious preference for structured grids (and which ones) as opposed to 
unstructured. 

Considering the load sharing feature of space frame structures, at first one could say that there 
would not be an obvious difference and preference between the two. However, to properly assess the 
question from a qualitative and quantitative aspect, and to see if load-sharing is so substantial that there 
is no difference between structured and unstructured grids, research is done in terms of appropriate 
case studies through the developed parametric tool, which details are contained within part IV of this 
MSc thesis.  
 
Types of meshes 
 

In this MSc thesis research two basic two-dimensional polygon meshes are of interest. Namely 
the triangular (Tri), quadrilateral (Quad) meshes, and a specific subset of Quad meshes based on 
topological skeletons of shapes, named Skeleton-based quad meshes (more detail in section 04.4). In 
the figures below, the layout of these meshes is shown applied on a doubly curved 3D pentagon shaped 
surface. These two types of meshes are well implemented within the Rhino 7 and Grasshopper 
environments. QuadRemesh and TriRemesh grasshopper components are stock components, meaning 
no plugin is required. Furthermore, they have proven to be quite stable and fast, able to appropriately 
mesh almost any surface geometry, if it is based on convex polygons (floor plan projection of surface). 
Without these new components, the initial meshing of surface geometry would have to be done in a 
more manual manner or would require programming the meshing logic, which is not in the scope of 
this research. It is important to note that when developing the grasshopper research tool for case studies 
further in the thesis, the dependency on various plugins was kept to a practical minimum. However, 
the Skeleton-based quad meshes are generated by compass_singular grasshopper plugin, developed 
by Oval. This is explained in detail in chapter contained within part III of this thesis, which concerns 
the details of developing the parametric tool. 
 
04.3 Conway Operators  
 

The above depicted, triangular, quadrilateral meshes and subsequent operations of editing 
those meshes into new patterns can be mathematically described and formalized. More specifically, 
they can be aptly described by so called Conway polyhedron notation. This mathematical notation, 
invented by Conway et al. [12], popularized by Hart [12], is based on operators which are simply 
applied on “seed” polyhedra in order to create other polyhedra. Conway polyhedron notation is thus 
based on a predefined set of operators , named Conway operators, which modify an initial seed 
geometry and thus output a new one. This modification procedure through operators is applied 
sequentially from left to right like mathematical functions. 

In (Figure 4.3) the results of applying the first three basic Conway operators are shown, dual, 
ambo and kis on a seed polyhedra, a cube in this case. Although Conway operators can be applied on 
any polyhedra, the easiest way to understand how they function is to look at the example of a cube. 
The dual operator replaces each face with a vertex and each vertex with a face. The ambo operator 
converts edge midpoints into vertices. Kis operator converts each face into a pyramid, however its 
height can be positive, negative or zero, in (Figure 4.3) the height is zero. The same operators applied 
on polyhedra can of course be applied on polygons as well. Looking at the faces of the cubes one can 
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imagine how the operators would influence Quad mesh geometry establishing a topological relation 
between two meshes the seed and the operated one.  
 
 
 
 
 
 
 
 

Seed Ambo Dual Kis 
Figure 4.3: Relevant Conway Operators [Source: wikipedia.com] 

In (Figure 4.4) the results of applying the three basic Conway operators dual, kis and ambo, 
denoted by pink arrows, shows the transformations achieved by operators on subsequent seed 
geometries. With the three basic operators 12 other compound operators can be achieved. Each of them 
is denoted as a string representing the sequentially applied operators on the seed geometry. For 
example, applying a dual operator on a beforehand kis operated geometry creates the so called Zip 
operator which can mathematically be denoted as dkC, meaning, dual operator applied first, kiss 
secondly on a Cube seed geometry. This the earlier mentioned function like property of the operators. 
Furthermore, the dual of an already dual operated geometry will revert it back to its seed topology, 
meaning ddC = C, and if we take into consideration the definition of the dual operator, it can easily be 
seen why it is so. 

 
Figure 4.4: Relevant Conway Operators [Source: wikipedia.com]  

 
Application to Space frames 
 

The application of Conway Operators to Space Frame design was first implemented by Shepherd 
and Pearson [4]. In their paper they have shown that space frame geometries, top and bottom layer 
specifically, can be effectively described and generated by Conway operators, specifically dual, ambo 
and kis. In their research, these top and bottom layers, generated by applying Conway operators on a 
hexagonal base mesh, are then linked or connected, on a limited proximity basis between vertices of 
the top and bottom layer. The following figures show in blue lines always the original hex mesh and 
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orange parts show the pattern created by respective Conway operators and the layout of the generated 
space frame.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5 
Generated space frame [4] 

 
 

Furthermore, they have addressed topology optimization by applying a new "member adding" 
scheme on the basis of a so called “feasible ground-structure” method, showing that the pervious classic 
ground-structure method where all vertices are connected to each other, a highly redundant and 
computationally heavy structure, can be replaced by one where the ground-structure is sparser, 
although structurally sound, noting “Rather than simply removing unused members for a large list of 
potential members, this approach can start from a sparsely connected structure and can add in missing 
members which are required for optimality“. Moreover, they critically assess their approach stating: 
"However the highly mathematical implementation of linear programming means that it is not easy to 
incorporate directly into modelling software". The authors also mention how in the end the inner 
workings of this implementation are hidden, meaning that to a practicing roof designer a detailed grasp 
of the solver is unlikely, also mentioning "and if an optimal problem to the solution is not found it is 
often difficult to know exactly what needs to be done to fix it.". 
 

 
Figure 4.6: Blue dashed lines showing base hexagonal mesh, orange showing mesh created by applying Conway operator [4]  

The presented approach in their paper has resulted in optimized layouts of their case study 
example which was the famous Chris Williams design of the British Museum Great Court Roof. They 
report a 16% saving in material within 13 optimization iterations. The depicted ground-structure and 
optimized layout show the complexity of both the initial grid and the final optimized design.  
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Figure 4.7: Ground structure (left) and Optimized layout (right) [4]  

While their novel approach of both applying Conway operators and using a new-member 
adding scheme based on feasible ground-structures has its merits, there is a question of how practical 
the achieved final optimized layout in terms of constructability is. Furthermore, even though their 
proposed optimized structure might bring material savings and be an efficient load bearing system, the 
original solution by Chris Williams is already considered as highly aesthetically pleasing and efficient 
structure, posing the question of would this alternative optimized design, if present at the time, be 
accepted in relation to fabricational, architectural and structural requirements and considerations. 

Moreover, the optimized solution having 16% material savings might be diminished in terms 
of impacting the cost of construction, considering the highly complex connectivity. General design 
awareness postulates regularity and predictability in patterns as an imperative. Thus, in this MSc thesis, 
ground structure methods are not included in the scope of research. Nevertheless, the application of 
Conway Operators on Space Frames is noted and serves to further inspire and formalize my MSc 
research.  

Continuing the application of Conway Operators to space frame design, Koronaki et al. [3] 
present in their paper a computational workflow for generating space frames using Conway Operators 
(dual, kis and ambo) on quadrilateral grids, and further optimize the structure, obtaining insight into 
structural behaviour of each operator applied. Depicted in the images below we can see how the three 
Conway operators create the three different grid topologies, as well as how they are connected. The 
mentioned paper also gives a direction of how to research in terms of creating a case study (Oguni 
dome) and evaluating it in terms of structural performance. The authors present results in terms of 
graphs showing the total length of members within each of the three layers (top, bottom, and web 
layers) of a space frame created by the three mentioned operators. In short, they found that the dual 
topology or layout of the original space frame in question (Oguni dome) is considered as the optimal 
topology, meaning the least structural mass in relation to other applied operators. Further they found, 
that the kis topology performed better than ambo in terms of structural mass. Thus, we can see a clear 
ranking from dual, kis to ambo, by leased to most structural mass. Another important insight gained 
by the authors was regarding the utilization of members in each of the space frame layers. They 
conclude that “here seems to be a direct relationship between the distribution of the tension and 
compression areas throughout the structure and its performance further stating that „areas of pure 
tension or compression are minimized “ 

The approach by Koronaki et al. [3] has its limitations, mainly in the application of Conway 
operators only on Quadrilateral regular meshes. Thus, certain gaps are identified, for example, 
Triangular based meshes are not included in the overall research. Furthermore, their approach limits 
the research on only convex based surfaces, leaving concave surfaces out of the scope. This poses the 
question of grid generation on concave surfaces as opposed to convex surfaces. Convex shapes can 
adequately be meshed by Quadrilateral and Triangular faces creating often structured grids, especially 
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in the standard case of a rectangular shaped surface. However, on concave shapes such as a five-pointed 
star, the Quadrilateral and Triangular meshes often produce unstructured grids, posing the question 
of how to generate structured grids on concave shapes. A potential answer is identified in the following 
section, Topological skeleton-based Quad meshing. 

It is important to note that the notion of grid generation for basing space frame structure can 
be understood as purely a process of creating structural patterns. The central question of this MSc thesis 
is how this choice of structural pattern (initial mesh topology), influences the load bearing behaviour 
and structural design and optimization of the space frame structure. The earlier question posed of how 
one finds and creates different structural patterns on convex shapes, which would be structured grids, 
is presented through the findings of Dr. Robin Oval’s PhD thesis, “Topology Finding of Patterns for 
Structural Design” [10].  

 
 
 
 

Figure 4.8 
Grids generated by applying Conway operators 

on a Quad mesh [3] 
 
 
 
 
 

Figure 4.9 
 Lengths of elements per space frame layer [3]  

 
 
 
 
 
 

Figure 4.10 
Created space frame configurations by applying 

Conway operator [3]  
 

 
04.4 Topology Finding of Patterns for Structural Design  
 

In his PhD thesis, Oval [14] shows a novel and complex approach for Topology finding 
of Structural Patterns. He motivates his research stating that “topology of these patterns’ 
constraints their qualitative and quantitative modelling freedom for geometrical exploration. 
Unless topological exploration is enabled”. These patterns are researched on shell-like 
surfaces or structures, based on a Quad mesh approach. In his PhD thesis, his topology finding 
of patterns approach is limited to grid shells, nets and masonry vaults.  

 However, the same approach can be applied for exploring different structural patterns 
(meshings) of a surface to create for example the bottom layer of a space frame structure, thus giving a 
means of researching structural patterns of space frames. 

This mentioned approach is based on “geometry-coded exploration” which relies on a so 
called “skeleton-based” quad decomposition of a surface, potentially including point and curve 
features to appear in the mesh additionally. These point and curve features can stem from many 
reasons, from the statics of the structural system (points, for point supports) to the curvature of the shell 
(main curvature, curve feature). This skeleton-based decomposition relies on the concept of a medial 
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axis or topological skeleton of a shape. For example, in (Figure 4.11), one can see how the initial surface 
boundaries relate to the topological skeleton. One can identify as well, so called singularity points 
which occur as the result of the mesh topology the mesh topology. 
 
 
 
 
 
Figure 4.11 
Skeleton-based surface decomposition to yield a 
pattern aligned with the boundary and point features 
on the boundary [14] 
 

These singularity points can be understood as simply vertices which have an odd number of 
surrounding mesh faces, so called “valency” of the singularity points. Singularities always appear on 
the crossings of the boundaries of the surfaces, as well as in the mesh generated in between the surface 
boundaries. The author shows different generated mesh, including point and curve features, (Figure 
4.12). While including point and curve features creates interesting patterns for single-layerd structural 
systems such as gridshells, for space frames they create a too dense mesh for this feature to be of 
interest, as the fabrication of this space frame if the corner points were included to guide the mesh 
generation would be highly impractical. 

However, Oval’s concept of skeleton-based quad decomposition of surfaces, gives an excellent 
start for creating structured grids on concave shaped surfaces. A topological skeleton of a shape or 
surface can be considered as a dimensional reduction of the surface into a set of curves, which keeps all 
the relevant geometric and topological relation of the underlying shape.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.12 
Quad-mes patterns for British Museum courtyard roof 
including point and curve features to influence the 
topology [14] 

 
This concept of surface decomposition is highly applicable for space frame design, even though 

the author does not investigate this concept on space frames. Nonetheless, the concept of surface 
decomposition based on the topological skeleton of the surface for space frame design is of interest, 
especially in situations where the initial surface is based on concave shapes. The interest lies primarily 
in the fact that the topological skeleton of shape captures its most important features, thus giving a 
valid discretization logic to create structured grids on concave shapes. Furthermore, the author points 
out a famous example of the CNIT in Puteaux (France) a corrugated reinforced concrete shell structure 
with a span of 218 m. With this example the author shows how important is the initial discretization of 
a surface, as this will dictate whether the load bearing mechanism and patterns is structurally efficient 
or feasible. Specifically in the case of the CNIT structure (figure), the blue lines which go towards the 
corner point supports give the structure efficiency, while the feasibility stems from the non-overlapping 



 
 

26 

red and blue elements which introduce the stiffening corrugations over the structures surface. The 
efficient and feasible pattern can be found using the skeleton-decomposition based quad surface 
meshing algorithm developed by Oval. 

 
 
 
 
 
 
 
 
 

Figure 4.13 
 Feasible and unfeasible patterns for CNIT 

structure [14] 
 

This poses a question of do space frame structures benefit in terms of structural behaviour, 
material efficiency if based on skeleton decomposition logic? The answer to the postulated question is 
highly dependent on the initial shape of the surface to be discretized. In any case, whatever the shape 
is, be it concave or convex, the skeleton-based surface decomposition provides often structurally sound, 
geometrically, and topologically relevant structured grids to base space frames on. Oval’s PhD 
concludes that efficient patterns can be found for single-layered structures, following the skeleton-
based decomposition logic. The goal of this MSc research is to gain insight if in relation to other most 
common discretizations of surfaces for space frames (quad, tri, skeleton based, structure vs 
unstructured grids), the skeleton based one improves structural performance. Other structured grids 
would be possible to investigate, primarily generating quad meshes based on the principal stress 
directions, however their relevance is mostly for concrete structures, where corrugations or 
reinforcement can follow those directions. For space frame structures, which are 3-dimensional truss 
structures, this principal stress direction logic is not applicable, more so since in engineering practice 
the amount of load cases, symmetrical and unsymmetrical is large, thus giving unique principal stress 
directions which differ for each load case. This would then postulate the question of how to consider 
all the different principal stress states to create a sensible space frame structure discretization which 
satisfies each case as much as possible while still being feasible. Thus, this approach although 
interesting, is out of scope for this MSc thesis research, and would be an interesting research subject in 
its own right. 
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05
  05 Parametric Design 

 
 
 
 
 

A central part of this thesis is the development of a parametric tool in order to research the 
relation between space frame load-bearing behaviour regarding three possible initial meshings for the 
bottom layer of the space frame and three possible Conway operator relations with the bottom layer 
configurations to create the top layer. In order to understand the developed tool, it is important first to 
understand what parametric design is.  

There exist numerous definitions of Parametric design by various authors. All of the definitions 
vary in scope and terminology, however according to Caetano et al. [15] analysis of literature and 
subsequent definition synthesis, parametric design can be defined simply as“ a design process based 
on algorithmic thinking that uses parameters and rules to constrain them”. In contrast to traditional 
design process the Parametric Design process entails a new mindset for the practicing designer. 
Parametric thinking, described by Swartout [16] as “a thinking process that relates and outputs 
calculated actions to generate solutions to problems rather than simply seeking them”, can be 
considered as a necessary minimum perquisite skill in order to even start with Parametric Design.  

Without parametric thinking skills, parametric design can not be utilized to its full potential. 
Before even starting to create a parametric model one should have a clear vision of what and how ones 
to achieve, otherwise it’s purely a blind trial and error, highly ineffective process. In parametric design 
the focus is thus shifted from the end product as opposed to traditional design, towards the procedure 
of exploring the possible design space of the end product through a rigours defined set of parameters 
and their relations. 

In the last ten years, Parametric Design has resulted in the advent of a new architectural style 
aptly named Parametricism, whose famous proponents among many others are Patrick Schumaher and 
Zaha Hadid. While not without its critics it has resulted in a surge of interest in  parametric design and 
modelling, from companies to university courses, with parametric design tools becoming an expected 
skillset in future engineers and architects. 
 
05.1 Parametric thinking 
 

 Parametric thinking, also sometimes called Parametric design thinking, has be defined by 
Woodbury [17] as to having three distinct characteristics: thinking with abstraction, thinking 
mathematically, and thinking algorithmically. The author would like to point out that the order of the 
parametric design characteristics by Woodbury [17] is intentional, it is a sequence of intellectual activities 
preceding parametric modelling itself. The highly skilled parametric designer might find these steps 
trivial and obvious, as with experience one will develop these modes of thinking as a habit. However, 
for the newly initiated into the world of parametric design and parametric modelling this might present 
a total paradigm shift, with a daunting learning curve. 

 
Nonetheless, in contrast to traditional CAD process, parametric design offers an opportunity 

for both architecture and structures of greater complexity but also for a more mindful, strategical design 
process. However sometimes parametric design is equated with the Parametricist style, which is often 
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critiqued for the lack of societal relevance of the achieved complex geometries. However, the author 
would like to point out that the use of parametric tools does not necessitate creation of Parametricisit 
architecture. According to Karle and Kelly [18], “Parametric design can be defined as a series of questions 
to establish the variables of a design and a computational definition that can be utilized to facilitate a 
variety of outcomes. Parametric design sets up measurable factors of rule-sets to determine behavior “, 
this defintin encompasses the generality of the parametric design approach, negating the notions of 
equating parametric design with parametricist style. 

 Parametric modelling can be effectively used for impressive curvilinear, “science-fiction” like 
architecture but also for creating parametric models of typical dairy cow farms or for example on-shore 
wind turbines. It should be primarily understood simply as a design tool allowing for meaningful 
exploration of the many abstracted relations between parameters of a project being designed. For this 
to be successful one must utilize his capabilities of abstract, mathematical, and algorithmic thinking. 
Starting a parametric model without first having a developed flow chart, either mentally or manually, 
accompanied with an understanding of how data is processed by the parametric software is not going 
to result in a success. 
 
Thinking abstractly 
 
Before setting out to create parametric models for a particular design, one must first abstract the design 
project into a certain set of parameters accompanied with the relations and limitations between them. 
Woodbury [17] aptly states:” To abstract a parametric model is to make it applicable in new situations, 
to make it depend only on essential inputs and to remove reference to and use overly specific terms” 
further stating “If part of one model can be used in another, it displays some sort of abstraction by the 
vary fact of reuse. Well crafted abstractions are a key part of efficient modelling”. This aspect of abstract 
thinking is required due to the programming nature of parametric tools. Similarly, a computer 
programmer who writes lines of code and abstracts classes and functions to have as much utility as 
possible without repeating unnecessary code parts in order to achieve as much generality as possible, 
the parametric designer often uses visual programming components to daisy chain a number of 
components (possibly augmented with the designers own custom scripted nodes/components), 
creating an algorithm, to abstract a design and create relations between its parameters (while 
understanding the underlying data structures being manipulated) in order to create the parametric 
model.  

To conclude, a short example of abstract thinking applied during initial steps of this MSc thesis 
research is as follows :  

A space frame consists of a top and bottom layer with a certain connectivity rule between them. 
The space frame geometry should be generated on an input surface, and any input surface should be 
processable, convex, non-convex, trimmed or untrimmed. There were two initial approaches for 
creating space frame geometry based on an input surface. Either dividing the initial NURBS surface 
into a subset of smaller surfaces, with a prescribed number of U and V divisions of the surface, or by 
using meshing procedures.  

Both approaches were tested and the more general one was applying a meshing procedure due 
to it always being bound by the surface boundaries be the shape convex or non-convex.  

The subsurface approach is lacking due to it not respecting the shown trimmed geometry but 
the underlying untrimmed one, thus requiring deletion of certain subsurface (which also impacts the 
speed of the developed script due to additional process), which in the end do not result in a surface 
with smooth edges as in the meshing procedures, but a surface which appears more approximated by  
rectangular subsurfaces, giving jagged edges, rather than being populated by rectangular cells as in 
meshes.  
 
 
 
 



 
 

29 

Thinking Mathematically 
 

To further develop the beforehand abstracted idea of the parametric model, one also must have 
some understanding of certain mathematical and geometrical principles. Furthermore, the more 
advanced model and processes a designer wants to implement the more advanced the accompanying 
mathematical concepts are. Even so, one does not need to be a mathematician to be a parametric 
designer, however, the more extensive the mathematical background and understanding, the more 
successful the designer can be. The ability to use mathematics is much more important for a designer 
than to do mathematics.  

Concepts such as vectors, tangents, vertices, edges, meshes, connectivity, surface curvature, 
normal vectors, plane projections, plane equations should be familiar for most practicing designers 
with an engineering background. The understanding of how to use them helps to formalize parameter 
relations and achieve the desired result. For example, the famous British Museum courtyard roof shape 
designed by Chris Williams, is a perfect example of applying complex mathematical plane functions to 
generate the roof surface geometry. Furthermore, the structural grid is also laid out according to certain 
mathematical rules. Thus a “free-form” design which can start from a hand drawn blob on a piece of 
paper is formalized in to an exact three dimensional mathematically designed surface.  

One can say that sculpturality and flow of a shape is transformed into something more than 
pure creative whims and sketching (no underestimation intended) once it is mathematically 
formalized. If the initial shape was considered aesthetically pleasing than the mathematical background 
of it elevates the whole aspect of design on a higher level which should be appreciated even more.  

On the other hand, sometimes, special mathematical concepts are needed for creating 
parametric models, which are rarely part of standard engineering mathematics curricula.  
For example, in this thesis a novel mathematical concept for the author was the notion of Conway 
operators. The literature while exhaustive and detailed is highly abstract and theoretical and would 
require a dedication not in the scope of reality for the time available to achieve the same or even 
approximate the understanding as the author of the literature. However, it is possible to grasp the 
concept well enough to be able to utilize while designing the parametric model. Thus, the ability to use 
mathematics is much more important than the ability to do the proofs and understand all the minute 
details of such a niche mathematical field. Another fine example would be the understanding of 
topology, to understand what a Skeleton-based quad decomposition is. Topology is another highly 
abstract field of mathematics, which is rarely taught in engineering curriculum (except for structural 
topology optimization courses) which to understand one can spend a lifetime researching it. Its 
applications range from knot theory, dynamical systems, to string theory in physics.  

However, basic understanding of the underlying principles to convey what a topological 
skeleton of a shape is, how this can be utilized for space frame configurations is possible. 
In conclusion, while sometimes mathematical knowledge of a particular designer might be lacking it 
should not serve as discouragement, rather it should serve as a challenge for the designer to improve 
his knowledge every step of the process, once one is able to use mathematical concepts to achieve the 
desired parametric model behaviour and results then the concepts become much less daunting and 
become part of the designer’s skill set. 
 
Thinking algorithmically 
 

After the initial steps of abstracting and mathematically grasping the design problem the next 
step is to apply the idea algorithmically within a parametric modelling environment. Parametric 
modelling using visual programming tools is essentially creation of an algorithm to process the inputs 
and return the desired outputs for a design. Like programming, but more open to designers without 
practical programming knowledge. The ability to understand algorithms and what they are is still 
essential. Below I include the definition of an algorithm Berlinski 1999, as cited by Woodbury [17] which I 
find rather poetic and highly illustrative:  
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“An algorithm is  
 a finite procedure, 
 written in fixed symbolic vocabulary, 
 governed by precise instructions, 
 moving in discrete steps, 1,2,3,…, 
 whose execution requires no insight, cleverness, 
 intuition, intelligence, or perspicuity, 
 and that, sooner or later, comes to an end. 
 

As Woodbury [17] comments, although the definition is less formal than normally found in 
literature, it still encompasses the full meaning of what an algorithm is.  
The algorithmic thinking aspect of parametric design is best reflected through the development of 
flowcharts which represent what are the main inputs, processes, sub-processes, and outputs of the 
parametric model to be created. One might say that the traditional design processes can also be 
represented algorithmically, however the word algorithmically in the context of parametric design 
relates to the procedural aspect and precision of algorithms.  

The result will only be as good as the underlying developed algorithm, which must be carefully 
developed. This means that the proposed relations of parameters for the algorithm to encompass must 
be developed with careful intent. Algorithms do not care for context or what you thought you 
programmed; they care for the execution of code line by line, what is written. If there is a mistake or 
misconception, the algorithm will not result in what the designer expected. 
 
05.2 Parametric software 
 

There are various software programs with capabilities for parametric modelling, for example 
CATIA, Generative Components, Autodesk Revit and Dynamo to name a few. However, in this thesis 
the primary choice is the 3d-modelling software Rhino developed by McNeel, with its visual 
programming plugin Grasshopper 3D developed by David Rutten, a former alumnus of TU Delft.  

The choice of software was made upon the fact that in many of articles and literature researched 
during this thesis, grasshopper was the common choice of design tool for parametric modelling. 
Furthermore, the community, amount of learning resources available online, and amount of various 
useful plugins available have greatly facilitated this thesis research. Thus, in the following paragraphs 
I present an overview of basic principles of parametric modelling with grasshopper and mention other 
important plugins for grasshopper which facilitated this thesis research.   
 
Grasshopper 3D 
 

Grasshopper is a visual programming plug-in for Rhinoceros, it is not a standalone application. 
It always runs parallel to Rhinoceros. Essentially the same modelling commands which can be used for 
3D-modelling in Rhinoceros for 3d modelling are available in Grasshopper in the form of nodes or 
visual programming components. The whole process of creating a parametric model is thus done 
within the grasshopper editor environment, by setting desired visual scripting components and 
connecting them with other to achieve certain functionality. It can be understood as the creation of a 
visual algorithm. Grasshopper by itself has one directional data flow, from left to right, meaning loops 
are not possible. 

Figure 05.01. shows a typical grasshopper component. From left to right it has an input, a 
name (or icon depending on display settings) and an output. The component draws a parametric 
rectangle whose dimension depend on the input number sliders. With setting the two sliders to the 
same number the component will output a square, the same thing will happen if one slider is connected 
to both x and y, however then you can only create squares, as you have no Y input available, it is 
constrained to one slider.  
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Figure 05.1 
Grasshopper Rectangle Component with its 
inputs and outputs. 
 
 
 
 
 
 
 
 
 
 
Figure 05.2 
Grasshopper Rectangle Component Output in 
Rhino. 
 
 

To further illustrate how one creates parametric models with Grasshopper I will show one 
simple parametric model which can stem from this drawn rectangle.  
 
Example 1 – Flat slab 5x5 m, corner supported by columns 3 m height. 
 

The illustrative parametric model is a geometrical model of a hypothetical flat slab 5x5 m with 
3 m high columns, supported on four corners. For example, this simple model can then be used to 
generate a parametric structural model using the grasshopper Karamba3d plugin.  
 

Figure 05.3 
Grasshopper Rectangle Component chained with other components to create a simple flat slab geometry with corner column supports. 
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Figure 05.4 

 Output of Grasshopper definition, left – all modelled geometry previewed, right - only desired geometry previewed 
 

To explain how the Grasshopper definition in 05.3. is set up to create the result in 05.4 right, the 
components used from (1) to (6) are named along with the results that occur due to putting down the 
component in the grasshopper editor: 
  

(1) – Rectangle component – Creates a Rectangle based on the X size and Y size, in the default 
base plane z=0 in Rhino if Plane input is unconnected. 

(2) – Move component – Moves geometry by a prescribed motion (vector direction and 
amplitude)  

(3) – Unit Z Vector – Vector of unit length in the Z direction, the factor controls the vector 
amplitude 

(4) – Deconstruct Brep – Deconstructs boundary representations (breps) into Faces, Edges and 
Vertices. 

(5) – Line SDL – Creates lines based on start direction and length.  
(6) – Negative – changes the sign of a value.  
 

Modelling procedure: 
 

1.) Generate a Rectangle , 5 x 5 m 
- Put “Rectangle” component (1) in the Grasshopper editor, two sliders set to 5, connect one 

to “X size” other to “Y size”. This generates a 5 x 5 rectangle in the base plane z=0 
 

2.) Move the generated rectangle to 3 m height 
- Put “Move” component (2), connect the “Rectangle” output from (1) into “Geometry “ 

input of (2). Put “Unit Vector Z “(3) and a slider set to 3. Then connect the “Unit vector” 
output from (3) into the “Motion” input of (2). This moves the rectangle to a 3 m height.  

 
3.) Find the vertices of the rectangle to serve as base points for lines which will represent columns 

Put “Deconstruct Brep“(4). Connect the “Geometry” output from (2), the previously moved 
rectangle to 3 m height, to the “Brep” input of (4). This deconstructs our rectangle into 
“Faces”, “Edges” and “Vertices”. Now thanks to the “Vertices” output of (4) the base points 
to create column lines are created. 

 
4.) Create Lines from each corner of the “floating” rectangle in the negative Z-direction and set the 

length to 3 m 
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- Put ”Line SDL” component (5). Set the “Direction” input by using the already existing 
“Unit vector” output of (3) which should have the value of 3 m translation but in the 
negative Z direction (downwards). By using “Negative“(6) we make sure that the line 
direction is in the negative z direction. To make sure the length of the column is coupled 
with the slab height, use the factor slider connected to (3) to input “Length” parameter of 
(5). Next connect the “Vertices” output from (4) into the “Start” input of (5). 

 
The simple geometry of the flat slab supported by corner columns is thus generated. Now using 

the three sliders we can change the X and Y dimensions of the slab, and the Height of our slab and 
columns. It is important to note that this is just one possible approach for creating the desired flat slab 
geometry. There are other possible approaches to create the same geometry. 

 For example, one approach could be instead of starting from a rectangle, one can start from 
modelling the columns first, this alternative grasshopper definition is shown in Figure 05.5, the reader 
is invited to study and compare with the original one as an exercise to check basic understanding. In 
the alternative definition, First create four base points, use the base points to set up lines in the vertical 
direction, find their top end points, use a polyline to connect the top end points, thus creating a 
rectangle shape on top of the four lines. The result is the same, however, the definition and control of 
the model is entirely different.  

Instead of controlling X and Y directions by setting rectangle dimension now the user must set 
the X,Y,Z coordinates of the base points in order to control the X and Y sizes of the rectangle. In the end 
there is no right or wrong approach for creating parametric geometry in general.  
 

Figure 05.5 
Alternative Flat slab geometry definition; Unconnected inputs of components have default values, 0 for the coordinates inputs of 

the point components, unit z vector direction for the Line SDL components 
 

However, depending on specific cases and how the model is supposed to be controlled, each 
component is put with specific intent, to achieve desired control of parametric models. In the 
comparison between the two flat slab geometries one can see why the first definition is more 
straightforward and easier to manipulate. Less number of components, less repetition, and 
straightforward control of X and Y dimensions. It is simply easier to control the rectangle geometry 
with X and Y sizes then with setting base points to specific coordinates. 
 
Karamba3d 
 

Karamba3d is a grasshopper plugin for parametric structural engineering modelling tool 
developed by Preisinger [18]. This plugin is used to translate the parametric geometrical models 
generated in grasshopper into parametric finite element models which can be used for calculation, 
analysis and optimization of the generated parametric geometry. This tool is used as the main structural 
analysis software in this MSc thesis research. To illustrate the basic setup of a karamba3d model within 
a grasshopper definition, I will build upon the already shown example of the flat slab geometry, 
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however a very detailed explanation of the karamba3d part of the grasshopper definition is omitted 
here, only a short overview of the main logic is presented, the detailed explanation is contained within 
Annex of this thesis.  

 
 
 
 
 
 
 
 
 
 

 
Figure 05.6 

Grasshopper definition – Parametric Structural model utilization of elements results, deformation is exaggerated by a factor 4000. 
 

In Figures 05.6. the results of parametric structural model are displayed, left undeformed, right 
deformed structure. One can also extract the calculated utilizations per finite element as well as internal 
forces. By setting a deformation display factor one can exaggerate the deformation in order to see if it 
is as expected. Thus while modeling in karamba3d one can easily see if something was modelled wrong 
due to instant visualization of results. In this case the deformation of the model is as expected, thus 
correct for the set inputs. Figure 05.7. displays the total grasshopper definition for a parametric 
structural model of a flat slab floor supported on corners by columns is shown. To better understand 
its structure, it has been divided into general code block categories from A to J which explain what is 
happening in the code. The categories are as follows:  
 

A) Model inputs – parameters 
B) Generation of geometry 
C) Geometry inputs for structural model 
D) Rectangle to Shell – c/s and material 
E) Lines to beams – c/s and material 
F) Loads 
G) Supports 
H) Assemble model 
I) Analyze model 
J) Result visualization 

 
Code blocks A and B are the geometry model shown in Figure 05.3., code block C just collects 

all the important generated geometry to be used for the structural model, the rectangular face for the 
slab and the four lines for the columns, end points of lines to specify support conditions. 

For any FEA program there are three general steps. Pre-processing, Calculation and Post-
processing. The same three general steps are also applied during creation of the parametric structural 
model with Karamba3d. Code blocks A – G can be considered as pre-processing, G – I  is calculation 
(processing) and J as post-processing. 

Code blocks D – J contain Karamba3d grasshopper plugin components. The central component 
is “Assemble model” component in code block J (Figure 05.10) and in code block I “Analyze model I”, 
which calculates the assembled model according to first order theory (small deflections). The necessary 
inputs to create and calculate the structural model are “Elements”, “Supports” and “Loads”. Code block 
D (Figure 05.8) contains components which translate the meshed rectangular face to a shell element, 
assign a concrete material C20/25 and constant cross section thickness of 30 cm. Code block E (Figure 
05.9) contains components which translate the four lines in to beam elements, assign a concrete material 
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C30/37 and a rectangular solid cross section of 40 x 40 cm. The other inputs like CroSec and Material 
have default values set so one can run the model, however there is a possibility of specifying exact. This 
was done in the shown definition. The supports points are chosen by selecting lower end points of the 
4 lines, with fixed boundary condition applied. The loads is a mesh load of -3 kN/m2 (the negative sign 
indicate the load dirction is downwards) 

 
Figure 05.7 

 Grasshopper definition – Flat slab supported by columns in corners – Parametric Structural model 
 
 
 
 
 
 
 
 
 
Figure 05.8 
Grasshopper definition – C and D code blocks  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 05.9 
Grasshopper definition – E – G code blocks 
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Figure 05.10 
Grasshopper definition – H – J code blocks  
  



 
 

37 

06
  06 Optimization 

 
 
 
 
 

Rajput and Datta [20] define optimization as “the demonstration of ideal the best outcome under 
given conditions “. According to Kelly [21] “The optimization stage of the engineering design process 
is a systematic process using design constraints and criteria to allow the designer to locate the optimal 
solution”. Thus, to surmise, optimization can simply be defined as the search for the best possible 
solution regarding certain posed criteria Considering how a problem is defined in terms of abstracted 
parameters which model all the relevant behaviour, there exists an imaginary design space where the 
combination of all possible parameter states, which represent potential solutions to the problem, exists. 
Thus, one can think of Optimization as a process of navigating the created design space of a specified 
problem, a search for the right combination of design parameters to achieve the desired result regarding 
set limitations. The size and shape (Figure 06.1) of this design space containing all possible solutions 
will depend on the number of parameters describing the problem and the size of their respective 
domains. In this chapter the most important concepts relating to methods of optimization, specifically 
structural optimization are laid out. 
 

Figure 06.1 
Possible visualization of design space  

 
06.1 General concepts 
 

Optimization in civil engineering, specifically structural engineering, has always been inherent, 
economy of design while respecting desired performance and functionality to be achieved has always 
been an essential principle. Typical for the traditional design process is the sequential development of 
a design throughout its design stages, following a deductive approach (from broad to specific, from 
preliminary design to detail design), accompanied with several iterations and reworks of the stages as 
needed. However, today with the tools available and the mostly computational approach in civil 



 
 

38 

engineering design, optimization has moved from being an iterative procedure throughout the design 
phases to being a dedicated process done best in the preliminary phase, where the impact of decisions 
is the highest, and costs of changes are the lowest.  
 
Structural optimization 
 

The term structural optimization can be defined in a few different ways. One definition 
explains structural optimization as the process of finding the optimal design for a load bearing structure 
[22]. Eschenauer et al. [23] defined structural optimization as “the rational establishment of a structural 
design that is best of all possible designs within a prescribed objective and a given set of geometrical 
and/or behavioural limitations”. Furthermore, it can be explained as the use of various numerical 
optimization methods for designing material efficient and/or cost-effective structures. In essence every 
optimization problem is described with an objective function which represents the desired goal to be 
minimized or maximized, and the set of variables with their respective ranges which define the 
behaviour of the problem and influence the objective function. 
 

 
Figure 06.2 

 Structural optimization categories [22] 
 
Categories of Structural optimization 
 
According to Mei and Wang [24].  Structural optimization (Figure 06.1) can be categorized in the 
following: 
 

• Size optimization, refers to cross-sectional areas of structural members as design variables 
• Shape optimization, refers to disposition or configuration of nodal coordinates as variables 
• Topology optimization, refers to nodal connections and supports, deleting unnecessary 

members to achieve optimal design 
• Multi-objective optimization refers to combination of any of the above stated optimization to 

achieve even more specific optimization results. 
 

In this thesis, the posed research problem of finding an “optimal” configuration of space frames 
in regards to three possible base mesh layers which form the bottom layer of the space frame (Tri, Quad, 
Skeleton-based Quad) and three Conway operator relations (Dual, Kis and Ambo) with the base meshes 
which form the top space frame layer, falls into the following categories of structural optimization : 
 

1.) Size optimization (each space frame structure variant has optimized c/s sizes),   
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2.) Shape optimization (Tri, Quad, Skeleton-based quad)  
3.) Topology optimization (Operators, Dual, Kis and Ambo) 

 
Objectives of Structural optimization 
 
Mei and Wang [24] summarize the following objectives of structural optimization occur most in 
literature.  
 

• Cost minimization 
• Structural performance improvement 
• Environmental impact minimization 
• Multi-objective, combining more than one of the above objectives 

 
In this thesis the main objectives for evaluating optimality of designs are cost minimization (in this 

thesis equated with minimization of total mass of steel used in a particular design variant) and 
structural performance improvement (deflection, stiffness). 
 
Methods of Optimization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 06.3 
Gradient-based optimization visualization 
[Source: optimal.uva.nl] 

The methods of optimization can generally be classified as gradient-based approaches or 
heuristic approaches [24]. Gradient-based approaches (Figure 06.3) are explicitly formulated in terms 
of mathematical approaches such as linear and non-linear programming methods, optimality criteria 
methods and feasible direction methods. Heuristic approaches utilize a rule-based trial and error 
process. A sub-type of heuristic approaches named Meta-heuristic approaches are currently often 
applied to find optimized solutions without getting stuck in local optima, which often happens with 
gradient-based approaches. These Meta-heuristic optimization methods are often based on principles 
found in nature such as evolution (Genetic Algorithms), ant colony behaviour (Ant Colony 
Optimization), swarm behaviour (Particle Swarm Optimization), heating and controlled cooling of 
material (Simulated Annealing) etc. The scope of this thesis does not allow for full explanation of each 
of meta-heuristic algorithm available, only the two most common and understood ones will be shortly 
explained, namely Genetic Algorithms and Simulated Annealing. 

All the above stated methods have been invented to avoid the most straightforward but not 
entirely feasible idea of opting for a brute force approach to calculate all the possible solutions for a 
design problem and then simply choose the best one. However, in using the meta-heuristic or heuristic 
methods of optimization, while great for traversing the design space in small enough time to achieve 
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good enough results, one is always presented with a black box process. One sets the parameters and 
formulates desired goals to achieve and leaves all the heavy work to algorithms based on various 
underlying metaphors of natural phenomena.  

Because of this black box process, and the complexity behind understanding the parameters 
and methodology of each one, one cannot always be sure if the achieved results are actually optimal, 
nor can the user grasp the design space of the problem. Thus, in this thesis both a Meta-heuristic 
approach was applied using Galapagos component in grasshopper for optimization (Genetic 
Algorithm and Simulated Annealing) to understand at what range of parameters a supposedly optimal 
solution is located at, and a constrained brute force approach (each parameter with a limited) utilizing 
Colibri plugin and Design Explorer visualization to understand the design space of the problem and 
compare with the meta-heuristic solution.  

The Colibri and Design Explorer limited brute force approach was central in researching how 
particular space frame designs are influenced in terms of mass, stiffness, and deflection regarding the 
three possible initial meshings, three Conwnay operator relations and form finding height. Specific 
details of the process involved are described in Chapter 7 and 8.  
 
Meta-heuristic methods of optimization 
 

To grasp the concept of metaheuristic methods of optimization, a good start is to first 
understand the terminology. The term Metaheuristic, first coined by Glover [25] is constructed from 
Greek prefix meta, signifying something above, on a higher encompassing level, and heuristic, meaning 
to search or to find. In computational terms a heuristic is understood as a rule-based process. There 
exists a vast number of meta-heuristic methods, a good overview of such methods is presented by 
Bandaru and Deb [26]. In this article, he mentions 14 of the most applied meta-heuristic approaches and 
further lists 76 other possible meta-heuristic methods. Yang et al. [27]. give an excellent overview of 
meta-heuristics applicable in civil engineering design optimization problems, illustrating how many of 
the meta-heuristic methods can be applied to specific problems. One can see that the field of meta-
heuristic algorithms is complex and ever evolving and each possible natural phenomena which can 
lend itself to an optimization allegory can almost certainly be turned into a meta-heuristic algorithm. 
The question of which meta-heuristic algorithm is best for a certain problem is still unanswered. While 
there are studies comparing a certain group of meta-heuristic approaches in between each other, for 
example Zavala et al. [28], there exists no study which encompasses a fully exhaustive comparison and 
listing of all possible meta-heuristic approaches. Thus, in this research the application of meta-
heuristics is limited to the two most common and well-known metaheuristic approaches, Simulated 
Annealing and Genetic Algorithms. 
 
Genetic Algorithm 
 

Genetic algorithms are one of the oldest metaheuristic algorithms, invented by Holland [29], 
they are based on the theory of natural selection which drive evolution as postulated by Charles 
Darwin [27]. Properties of natural selection include crossover, recombination, mutation, and selection. 
The procedure of a genetic algorithm can be summarized in the following steps:  

1. Optimization of objective is encoded 
2. Fitness function for selection of a particular solution is defined 
3. Initialization of population of individual solutions 
4. Evaluation of fitness function per individual solution 
5. Generation of a new population according to the rules of natural selection. 
6. Population is evolved until the prescribed stopping criteria is reached 
7. Results are decoded as to obtain solutions to design problem 
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Figure 06.4 

Flowchart of main algorithm steps for a Genetic algorithm [Source: mathworks.com] 
 

Put simply, a genetic algorithm modifies a population of individual solutions. In each step of 
the procedure the algorithm selects a certain set of individual solutions which perform best in regard 
to posed fitness criteria and selects them to be “parents” which will reproduce further to create bit 
more optimized solutions or “children” for the next generations (Figure 06.4). Thus, with each 
generation the population of solutions comes a bit closer towards the desired fitness function values, 
evolving from generation to generation.  
 
Simulated Annealing 
 

The Simulated Annealing, developed independently by Kirkpatrick et al. [30] and Černý [31], 
meta-heuristic algorithm is based on the annealing process in metallurgy and materials science. 
Annealing is the process of heat treatment and subsequent slow cooling of solids which in turn changes 
their physical structure on the atomic level, and thus changes the material properties such as ductility 
and hardness. The process of heating a solid randomly rearranges its particles into the liquid phase. If 
then followed by a slow cooling process, all the particles begin to rearrange themselves into the lowest 
energy state, a regular as possible crystalline lattice. Simulated Annealing algorithm generates a 
random new solution in each step. Then the distance between each current point and subsequent new 
point is calculated based on a probability distibution propotional to the temprature scale (Figure 06.6). 
The algorithm takes into account the points that minimize the objective function values in regards to 
constraints and probability distribution. It systematically decreases the temperature and narrows the 
extent of search. 
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Figure 06.5 

 Flowchart for a Simulated Annealing algorithm [32] 

 

Steps of simulated annealing can be summarised in the following: 

Steps of simulated annealing can be summarised in the following: 

1.) Intialize – at each iteration a random initial placement of a trial point 
2.) Distance – the distance between the current point and newly generated one is calculated 

based on a probability distribution in scale to the temperature 
3.) Evaluation – the algorithm evaluates which points lower the objective function values and 

accepts them, along with some that raise with a certain probability in order to not be stuck in 
local minima/maxima 

4.) 4.) Stopping criteria – once the objective function values become lesser than a prescribed 
tolerance function the algorithm will finish 
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PART III 
PARAMETRIC TOOL DEVELOPMENT 
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07
  07 Space Frame Parametric Logic 

 
 
 
 
 

This chapter describes the core ideas and abstracted structure behind the developed main 
research tool for this MSc thesis. The detailed procedure of how the tool works is presented in chapter 
08.  

The parametric tool was developed to study the influence of initial surface mesh topology on 
the structural design and optimization of space frame structures. The tool is developed in terms of a 
grasshopper definition utilizing kramba3d and compass singular plugins for grasshopper, which will 
be explained in detail in the following sections. It should be noted that this space frame parametric 
definition was not a result of first thought, but by numerous iterations and testing of functionality and 
approaches. Initially a different parametric logic was applied for research as opposed to the current 
one, where the main surface was discretized by creating subsurface using the Isosurface component in 
grasshopper, which then in turn created problems when dealing with trimmed surfaces. The main "aha" 
moment was the switch to meshing the surface and then utilizing the clear data structure of meshes to 
further base the space frame geometry. This has greatly improved the functionality of the tool both in 
terms of quality of the result and speed of the script. It is also important to note, that in the end, the 
developed tool for research can be freely used within an engineering design context as well. This was 
the one of the main guiding principles while developing the tool. Concepts presented in part I and part 
II, Literature Study earlier in this thesis, from established terminology to specifically the Conway 
operator implementation inspired by Koronaki et al [3]. and Shepherd and Pearson [4], and the Topological 
Skeleton based quad meshing inspired by Oval [14] accompanied by relevant parts of the Python library 
he developed, named compas_singular, were applied during the development of the research tool.  
 
07.1 Main Scheme 
 

A Grasshopper definition has been developed to serve as the primary research tool. The tool or 
definition is used to generate space frame configurations. The space frame configurations in question 
consist of three mesh options; tri, quad, skeleton-based quad, to form the bottom layer of the space 
frame, and three Conway operator relations with the bottom mesh topology; dual, kis and ambo. These 
configurations can be researched on various input surfaces, to gain insight into, how the structural 
pattern of space frame structures (initial meshing of the surface accompanied with respective Conway 
Operators) influence the structural design and optimization. This research boils down to a question of 
how mesh topology can influence optimal space frame design (least structural mass). 

To summarize, the generation of space frames is based on two approaches. Firstly, the initial 
input NURBS surface geometry is meshed by one of the three available meshing methods (Quad, Tri, 
Skeleton based Quad mesh) to create the bottom layer of the space frame structure. Secondly, the top 
layer is created by applying one of the three Conway Operators (dual, kis and ambo) on the initial 
bottom layer and afterwards offset by a desired distance (truss height).  

After the creation of space frame geometry, it is translated into a parametric structural model, 
which has been developed to automatically optimize the cross sections for a particular set of space 
frame configuration input parameters. Next, the design can be further optimized by utilizing meta-
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heuristic algorithms to find good-enough combination of space frame input parameters in a short-
enough time with the goal of minimizing the structural mass. 

Thus, a full design loop consists of geometry generation, space frame cross section 
optimization, geometry optimization while always respecting cross section optimization, with the goal 
of minimizing the structural mass. 

On top of that, if one wants to avoid using metaheuristic algorithms for optimization, there is 
an option to use Colibri and Design explorer in order to carry out a limited brute force calculation of a 
large number of structural configurations and record all the relevant data for each case in an excel sheet, 
and visualize the design space in a parallel coordinate graph, which can in turn be used to understand 
how the structural behaviour is influenced by certain parameters. The latter approach is the basis of 
methodology for researching how the space frame geometry consisting of; mesh topology, form finding 
height, truss height, influence the space frame structural behaviour, 

To fully understand the background and logic of the developed tool, it is divided in five main 
parts which constitute the main scheme of the tool: 
 

A) Input data 
1.) Case specific data  

• Surface geometry 
• Support conditions 

2.) Definition specific data  
• Loads 
• Utilization 
• Max displacement 
• Buckling 
• Bending 
• Cross section set 
• Second order theory 

3.) Mesh specific data  
• Bottom layer mesh – base mesh 
• Top layer mesh – offset mesh 

4.) Parametric specific data 
• Truss height – mesh offset distance 
• Mesh density – target number of faces 

5.) Optimization specific data 
• Cross section optimization 
• Space frame fitness parameters 

 
B) Space frame generation 

6.) Geometrical model generation 
 

C) Structural analysis 
7.) Structural model generation 
8.) Structural analysis 

 
D) Optimization 

9.) Cross section optimization 
10.) Galapagos – metaheuristic optimization 

 
E) Data recording and visualization 

11.) Colibri  
12.) Design Explorer 
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07.2 A) Input data  
 

The input data category is divided into five main subcategories. Each of the categories has been 
defined to explain how the developed tool inputs should be used and have been used. The first step of 
utilizing the research tool is to set appropriate values for the input data categories. 
 

1.) Case Specific data 
This data category is related to each specific case and is used to investigate a certain space frame 

configuration based on an input surface. A case consists of an input surface geometry accompanied 
with boundary conditions. In this MSc thesis research, the investigated case was a pentagon shaped 
double curved surface, supported on the external boundaries of the surface.  

• Surface geometry 
Firstly, this part deals with the initial input surface, which can be freely chosen, the tool was 

developed to handle almost any geometry, be it convex polygon based, concave polygon based, then 
relating to curvature, flat, singly curved, doubly curved, or free form and containing openings or not. 
This flexibility was developed to accommodate as much architectural freedom as possible and to have 
as much potential research options as possible. In this research these input surfaces are always long 
span structures (100 meters or more) mainly because space frames become more appropriate structural 
systems the longer the span is.  

• Support conditions 
Secondly, case specific data relates also to the support conditions, which can be based on 

external boundaries of the input surface, internal boundaries, combination of the two and finally point 
supported in characteristic points. 
 

2.) Definition Specific data 
Relates to the general parameters which facilitate the comparison between various cases (input 

surface geometries accompanied with their discretization (choice of meshing) and configuration 
(Conway operator relation between top and bottom layer). They facilitate comparison by being 
invariant in the research, however there is an option to freely change them if one wishes to. However, 
it is important to pay attention to these parameters to have realistic structural behaviour and analysis. 

• Loads 
Always specified in terms of kN/m2 as a uniform vertical surface load. This is a total load, 

which encompasses the influence of snow, wind, and non-load bearing layers, considering a 
symmetrical fully loaded surface. Everything except self-weight which is automatically included. The 
chosen design load is 2.5 kN/m2, while this number might seem arbitrary, this load is adequate 
considering usual loadings of structures. A higher load can of course be specified if wished, however 
it is only important that each space frame configuration has the same load per m2 and same boundary 
conditions to be able to compare the results. 

• Utilization 
The utilization of space frame elements is limited to 0.9, thus a small safety factor of 1.1 is 

applied. This 10% reduction is a general precaution due to the complexity and large span of the space 
frames considered to mitigate possible deviations from the real-world behaviour of the structures, and 
to avoid the possibility of overstressed members. 

• Max displacement 
For large spans, for example 100m and more, a choice of l/300 is considered adequate. Thus, 

the maximum displacement is always limited to 30 cm. 
• Buckling 
The structural analysis of the space frame structure can be carried out with or without 

considering buckling. In all cases buckling is considered, otherwise results would be potentially 
misleading. 
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• Bending 
The structural analysis of the space frame structure can be carried out with or without 

considering bending as well. In all cases bending is not considered, since space frames are 3-
dimensional truss structures, they are considered as pin jointed, or hinged, no bending moments 
allowed, and loads are only applied in the nodes. Furthermore, the influence of bending moments in a 
well-designed space frame should be minimal or non-existent. Bending is relevant for space grid 
structures, which have no truss height to take up bending moments, and their connections must be 
considered as fixed to carry loads and achieve stability. 

• Cross Section Set 
There is a possibility to include many standard steel cross-sections as well as a possibility to 

limit their amount, however this limitation will influence the cross-section optimization, potentially 
leading to skewed or invalid results because of a potential lack of large enough sections or the possible 
omission of light sections through a set cross-section limitation. In this research circular hollow sections 
are chosen as the primary set of cross-sections according to EN10210-2, which consists of 251 possible 
cross section options, ranging from Φ21.3 x 2.3 mm up to Φ1219.0 x 25 mm 

• Second order theory 
The possibility to analyse the structure according to second order theory is present as well. 

However, this type of analysis is not relevant for axially loaded, pin jointed structures, free of bending 
moments, and the general assumptions of space frame behaviour. This relevance was tested, and results 
showed no influence. Thus, first order theory is chosen. 
 

3.) Mesh specific data 
This data category relates to the mesh geometries being investigated. This data category is 

supposed to be changed to investigate how different mesh geometries influence load bearing behaviour 
of space frames. 

• Bottom layer mesh – base mesh 
This is the most important input data, basis of the research done. An initial mesh topology is 

chosen to form the bottom space frame layer, on which Conway operators will be applied to form the 
offset mesh. The relevant mesh options are Quad, Tri and Skeleton based quad mesh types. 

• Top layer mesh – offset mesh 
Using the created base mesh topology, the top layer mesh is generated using Conway operator 

relations, dual, kis and ambo. 
 

4.) Parametric specific data 
This data category contains the main space frame parameters which are to be varied to find the optimal 
solution for a set case and mesh topology. 

• Truss height /Mesh offset  
Parameter slider from 1m to 5m maximum. This parameter controls the truss height of the space 

frame, that is the specified offset distance between top and bottom layer of mesh 
• Mesh density 
Target number of faces, the higher the number the smaller the space frame mesh cells.  
The larger the density the heavier the computation of the script. The lower limits for the number 

of faces parameter are set such that the smallest possible discretization of the surface is 1m x 1m cells, 
and the maximum is 5m x 5m 

• Form finding height 
Expressed as the rise between top and bottom layer of space frame measured at the centroid of 

the surface shape. This way form finding influence can be easily visualized and measured. The 
difference between a form found space frame and not form found is that the form found will not have 
a constant truss height throughout the structure but a slightly cambering one depending on the form 
finding height. Form finding height is unrelated to space frame truss height. 
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5.) Optimization specific data 
This data category contains optimization specific data. It is intended to be constant in each 

space frame configuration calculation but can also be adjusted if wished. 
• Cross-section optimization  
By utilizing karamba3d Optimize cross section algorithm component, in each space frame 

configuration calculation (a specific set of parametric data), the most appropriate cross sections are 
chosen. The main inputs here are the table of cross sections to be applied in the design, along with the 
possibility of limiting the displacement. 

• Space frame structural mass optimization – metaheuristic algorithms 
Choice of algorithm for optimization by utilizing native grasshopper component Galapagos 

used for genetic algorithms or simulated annealing metaheuristic algorithm optimization. The main 
inputs in this step are the parametric specific data and the fitness function which is set to be maximized 
or minimized. The parametric specific inputs are iterated based on a meta-heuristic algorithm and a 
thus created space frame configuration is evaluated based on the fitness function (minimization of mass 
in case of this research) 
 
07.3 B) Space frame generation  
 

Depending on the chosen input parameters in step A, in this step the space frame geometry is 
generated instantly. The input surface has been meshed in a certain configuration constituting the 
bottom layer, and afterwards based on chosen Conway operator relation the top layer is formed. Then 
the two layers are connected in such a way to form a 3-d pyramid module space frame type, thus 
completing the space frame geometry model generation procedure 
 
07.4 C) Structural analysis  
 

The generated space frame geometry model from step B is translated into a parametric 
structural model using karamba3d parametric structural analysis plugin and calculated according to 
first order theory. In each new iteration the corresponding space frame geometry is structurally 
analysed and verified.  

 
07.5 D) Optimization  
 

In this step the analysed space frame is optimized by varying the input parameters and 
evaluating per each parameter set the fitness function (mass). This done by utilizing one of the 
available meta-heuristic algorithms, the genetic algorithm or simulated annealing algorithm. After 
several iterations of various parameter sets, an optimized solution is found, meaning the algorithm 
converges and differences between subsequent solutions become negligible. 

 
07.6 E) Data recording and visualization 
 

Instead of using the black-box approach of optimizing by using meta-heuristic algorithms, 
there is an option to set the range of each parametric specific data input in order to brute force 
calculate a large number of space frame configurations by using the Colibri plugin, with all possible 
parameter combinations (according to set range of parameters) and record all the relevant output 
variables in order to capture the structural behaviour of the space frame in relation to the iterated 
input variables. Each solution is thus recorded by Colibri in an excel .csv file which can then be 
inputted into Design Explorer to view a parallel coordinate graph which encodes all the relations 
between the chosen parameters and output results. This graph, accompanied with the data in the .csv 
file is then used for analysing the results and concluding how a space frame configuration influences 
its load bearing behaviour.  



 
 

50 

08
  08 Space Frame Parametric Tool Procedure 

 
 
 
 
 

After presenting the main scheme of the tool in the previous chapter, the detailed procedure of 
how the tool works is presented here. The main scheme served as the main top-level overview of the 
logic behind the tool, in this section a much closer look at how the tool functions is shown. The detailed 
procedure of the developed grasshopper definition is presented in the following steps: 
 

1.) Input free-form surface  
2.) Bottom layer mesh – base mesh 
3.) Form finding 
4.) Top layer mesh – offset mesh 
5.) Deconstruct meshes – Conway operator top mesh - connectivity 
6.) Forming of space frame geometry 
7.) Structural analysis of space frame 
8.) Optimization 
9.) Data recording and visualization 

 

Figure 08.1 
Developed parametric tool – grasshopper definition 

 
08.1 Input free form surface 
 

This is the first step in utilizing the tool. The user inputs a desired NURBS surface to be 
transformed into a space frame structure. The tool allows for complete freedom in choice of the input 
surface. In this step the case specific data is thus inputted. Some of the examples below illustrate the 
various surfaces to be translated into a space frame structure. They range from the most basic, flat plane 
surface with no openings towards the most complex, double curved with openings. The developed tool 
will mesh each of the inputted surfaces respecting its inner and outer boundaries. Surfaces such as the 



 
 

51 

double curved y shape surface can be created in Rhino by first creating a top view outline of the surface 
to be created then creating a surface out of this closed boundary line and afterwards turning the control 
points of the NURBS surface on to manipulate them according to the desired geometry.  
 

 
 
 
 
 
 
Figure 08.2 
Various input surfaces 
 
 
08.2 Bottom layer mesh – base mesh 
 

After choosing the desired input surface geometry in step 1, the next step is to choose one of 
the three meshing options to discretize the input surface into the base mesh for forming the bottom of 
the space frame layer. One can choose triangular, quadrilateral and skeleton-based quadrilateral 
meshing procedures. The tri and quad meshing procedures are facilitated by native components newly 
available in Rhino 7 version, QuadRemesh and TriRemesh. The Skeleton-based quadrilateral mesh is 
generated utilizing compass_singular python library developed by Oval. Following the choice of 
meshing procedure, one then needs to set the target number of mesh faces, or the mesh density. The 
higher the density the smaller the average size of the mesh cells, the more intricate the space frame 
mesh. Mesh density is set either by defining the target number of mesh faces or by setting the average 
size a x a of the mesh cell. 
 
 
 
 
 
 
 
Figure 08.3 
Base mesh 
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Initially the developed definition facilitated all three mesh option types, however later it was 
divided into three separate definitions, a quad, tri, and skeleton-based definition. This was done to 
simplify the script and speed up its calculation. 

Below an illustration of how each of the three meshes look like on a pentagon shaped double 
curved surface viewed from a plan view. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 08.4 
Base mesh pentagram example 

 
 
 
08.3 Form finding  
 
 

Once the bottom layer is formed, if specified a flat input surface initially, the option of form 
finding can be used to achieve a form found shell like surface for the space frame configuration. The 
bottom mesh is the main input for the form finding which is controlled through the form finding height 
parameter which is measured as the vertical distance from the centroid of the bottom mesh shape to 
the centroid of the form found mesh shape. This is also a highly important feature of the tool, as in the 
case study the influence of this form finding is investigated. It is a question of, starting from a flat space 
frame, is there a certain benefit in the cambering which can be achieved by form finding. This cambering 
or the form finding height can be very small for example 1-5 m or if 20 m, then the height turns from 
being a slight cambering towards the clear height of a shell-like surface with a space frame structure. 
The cambering or form finding height should be kept within certain limits, specifying, for example 40 
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m form finding height, one will generate a highly exaggerated surface which is like to an impossibly 
steep arch in an unfeasible grotesque futuristic gothic cathedral. 
 
 
 
 
 
 
 
 
Figure 08.5 
Form finding 
 
 
08.4 Top layer mesh – offset mesh  
 

After forming the base mesh layer, and form finding it if included, this form found mesh (or 
just the base mesh if the surface was already curved) is simply offset by a specified distance to create 
the top layer mesh. At this step we have formed the bottom and top layers of the space frame which 
are currently identical. 

 
 
 
 
 
Figure 08.6 
Top layer offset 
 
 
08.5 Deconstruct Meshes – Conway operator top mesh - connectivity 
 

After the meshes have been offset, each of them are deconstructed in to faces, edges, vertices 
and mid points of the edges. This is due to two main reasons. The first reason is to create the Conway 
operator relations to form the final geometry of the top layer mesh, by specifying a certain order of 
connecting the points. The order of connecting vertices is different for each Conway operator. Second 
reason is to specify the connectivity between the points of the top and bottom layers. The connectivity 
specified is to achieve a pyramid module. Essentially whatever the discretizations of the surface are, 
they are always connected to form pyramid modules. The pyramid shapes will depend on the shape of 
the base they are formed, or more specifically the shape of the mesh faces. 
 
 
 
 
 
 
 
Figure 08.7 
 Deconstructed mesh points 
 
 
 
 
 



 
 

54 

08.6 Forming of space frame geometry 
 

Based on the deconstructed meshes and set rules to connect the points, the space frame line 
geometry is created, the top, bottom, and web layer. The development of this part of the definition, the 
connection of all the generated points into the correct geometries, was one of the more demanding 
parts. To correctly connect the points with line components, to generate desired geometry, care must 
be taken in managing the data structure of the points.  

 
 
 
 
 
 
 
 
 

Figure 08.8 
 Bottom layer 

 
 
 
 
 
 
 
 
 

Figure 08.9 
Web layer 

 
 
 
 
 
 
 
 
 

Figure 08.10 
 Top layer 

 
 
 
 
 
 
 
 
 

Figure 08.10: 
Space frame geometry 
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08.7 Structural analysis of space fame  
 

 
Figure 08.10 

Internal forces – structural analysis 
 

The generated parametric space frame geometry model is transformed into a parametric 
structural model. The lines are translated into truss elements and the points to hinged nodes and the 
points on the lower outer boundary of the space frame into pinned (translations in x y z directions fixed, 
rotations free) supports. An initial default set of cross sections are defined, and later automatically 
dimensioned. Self-weight is considered, a uniform mesh load is specified by using the top mesh as the 
input, meaning that the specified kN/m2 load is divided into appropriately distributed concentrated 
loads located in the top mesh vertices in the negative z direction (gravity). Steel S355 is assigned as the 
material. The dimensioning is done according to Eurocode 3, buckling considered, bending not 
considered. The structural model results are total mass, number of different cross sections utilized, 
displacement, internal forces, utilization of members. To minimize the mass of the structure, which is 
the primary fitness function for metaheuristic optimization, in every iteration the cross sections in the 
model are optimized along with the geometrical parameters of the space frame truss height, number of 
faces, and form finding height.  
 
08.8 Optimization 
 

Optimization can is done by using the Galapagos native grasshopper component which has the 
option of either utilizing Genetic algorithms or Simulated Annealing algorithm for meta-heuristic 
optimization methods. Optimization is done by varying the geometrical inputs of the space frame 
model (truss height, face number, form finding height), with a goal of minimizing the fitness function, 
the structural mass of the space frame. In each run of the algorithm a variant of the space frame 
geometry is structurally analysed, cross section optimized, its mass recorded. Through iteration the 
algorithms eventually converge to a particular set of input variable values, which give the lowest 
structural mass. The final solution can be considered as optimal, but not in the full sense of the word. 
The nature of the design problem and the size of the design space do not allow for finding just one 
optimal solution. Instead, the found solution is considered as good-enough achieved in short-enough 
amount of time. In this thesis research the meta-heuristic optimization mostly serves to pinpoint a 
plausible location of an optimized solution and arrive at an initial estimate of lowest structural mass. 
By location, the values of the geometrical parameters of the minimal mass version of the space frame 
are meant. This approach is complementary to the main limited brute force approach. 
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Figure 08.11 
Galapagos optimization – Simulated 

annealing 
 

 
08.9 Data recording and visualization 
 

To gain insight into how the mesh topology (base mesh, Conway operator relation for top 
mesh), space frame geometry (truss height, face number, form finding height) influences the load 
bearing behaviour of space frame (structural mass, number of cross sections), instead of relying on the 
black box process of meta-heuristic optimization, instead a limited brute fore approach is applied. 
Using the colibri plugin, one can set several parameters of interest, and then set the number of divisions 
of each parameter value range. For example, if the truss height parameter division is set to 10, and the 
height ranges from 0 – 5 m, then there will be created 10 space frame configurations of truss heights 
with an 0.5 m increment (0.5, 1.0, 1.5, …, 4.5, 5.0). This division of each parameter is to avoid a 
combinatorial explosion. In Figure 8.11, the colibri setup is shown for a triangular base mesh case.  

 
Figure 08.12Colibri parameter divisions and number of iterations 

The relevant parameter and the divisions of their ranges are shown in the black outline below 
the component in the figure. Due to having three definitions, one for each base mesh type, the division 
of mesh type is only 1. There are three Conway operator relations to be investigated. 
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Figure 08.13 

Data recorded for each configuration calculated in a .csv file, intended for visualization in terms of a parallel coordinate graph 
by using Design Explorer 

 
Truss height, density and form finding parameters are all set with divisions of 10. Thus, 

considering all the parameters and their divisions, there will be 1 x 3 x 10 x 10 x 10 = 3000, space frame 
configurations to calculate. The total number of iterations possible, based on the size of each selected 
parameter domain, is 2 894 400 000 (two billion, eight hundred ninety-four million, four hundred 
thousand). To calculate each solution is not feasible, thus the limited approach with specifying a 
number of divisions per each parameter. For each of those configurations, results are recorded into a 
.csv excel file, which can then later be inputted into Design Explorer to visualize, in a parallel coordinate 
graph, how each of the calculated configurations relates to the input and output parameters. 
Furthermore, the data collected can be used to create graphs which show how each of the base mesh 
layers is influenced by each of the parameters (details in Chapter 9). 

  



 
 

58 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PART IV 
CASE STUDY 
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09
  09 Pentagram surface 

 
 
 
 
 
09.1 Introduction 
 

The main research goal of this thesis was to develop a parametric tool for researching the 
influence of mesh topology on the structural performance of steel space frame structures. Both goals 
have been achieved and will be presented in this chapter in the form of a case study and its results. The 
mesh topology being investigated consists of the three base mesh types; quad, tri, skeleton-based quad, 
accompanied with three possible Conway operator relations for each base mesh (dual, kis and ambo) 
to form the top mesh. In this chapter the case study procedure and results will be presented. The 
resulting space frame configurations of investigating those mesh topologies (on a certain input surface), 
can be put in the following categories based on mesh and operator combination: 
 

1.) Quad base mesh + Dual, Kis, Ambo (Q+D/K/A) – Figure 09.1 – 09.7 
2.) Tri base mesh + Dual, Kis, Ambo (T+D/K/A) – Figure 09.8 – 09.14 
3.) Skeleton-based quad base mesh + Dual, Kis, Ambo (S+D/K/A) – Figure 09.15 – 09.21 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.1 
Quad mesh  
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Figure 09.2: Dual of quad mesh                                  Figure 09.3: Ambo of quad mesh                                Figure 09.4: Kis of quad mesh 
 

The letters in the parenthesis represent a shorthand way of writing the names of result 
categories. To generate the various space frame configuration based on different pairs of base mesh and 
operator, a brute force approach was used to generate and record 3000 thousand solutions per category 
by utilizing Colibri plugin and then visualize the recorded data in a parallel coordinate graph with 
Design Explorer. Afterwards, the same recorded data was used to form graphs which show the relation 
between mesh operator pairs evaluated against both fitness functions (mass F1, deflection/stiffness F2). 
With this case study three general questions should be answered regarding the space frame 
configurations on the pentagram surface:  

Q1.) Which combination of mesh and operator, out of the nine possible, will perform best and 
in which category? 
Q2.) Is there any benefit to form finding, what is the influence on F1 and F2? 
Q3.) How do the input parameter values influence the optimal solution? 

 
 
 
 
 
 

Figure 09.5 
 Quad – dual, 3d 

 
 
 
 
 

Figure 09.6 
 Quad – ambo, 3d 

 
 
 
 
 
 
 

Figure 09.7 
Quad – kis, 3d 
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Figure 09.8 
Tri mesh 
 
 

 

 
 
Figure 09.9: Dual of tri mesh                                     Figure 09.10: Ambo of tri mesh                                    Figure 09.11: Kis of tri mesh  
 
 
 
 
 
 
Figure 09.12 
Tri – dual, 3d 
 
 
 
 
 
 
Figure 09.13 
Tri – ambo, 3d 
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Figure 09.14 
Tri – kis, 3d 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.1 
Skeleton-based quad mesh 

 
 
 

 
 

Figure 09.16. Dual of skeleton mesh                  Figure 09.17. Ambo of skeleton mesh                    Figure 09.18. Kis of skeleton mesh 
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Figure 09.19 
Skeleton - dual, 3d 
 
 
 
 
Figure 09.20 
Skeleton - ambo, 3d 
 
 
 
 
 
 
 
Figure 09.21 
Skeleton – kis, 3d 
 
 
09.2 Input surface geometry 
 

The chosen input for the case study is a non-convex polygon, pentagram shaped, double 
curved surface, with a span of 160m. This surface is chosen because it is not clear from the beginning 
which mesh topology for this surface type would be considered as optimal, or if any of the different 
space frame configurations based on those mesh topologies have better structural performance than 
others. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.22 
Plan view of input surface with dimensions 
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In the case of a rectangular flat surface, it is clear a simple structured quad mesh with a dual 
Conway operator relation to the top layer would be optimal, as this is the standard well known space 
frame configuration (pyramid modules, square base), executed many times so far. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.23 
3d shape 

 
 
09.3 Process and details 
 

The procedure of evaluating the input surface was done by using three separate grasshopper 
definitions: quad mesh definition, tri mesh definition and skeleton-based definition. Each of the 
definitions are the same in structure, the only difference is the meshing procedure. Utilizing the Colibri 
plugin for each of the three definitions 3000 space frame configurations have been calculated thus 9000 
in total. 

For each grasshopper definition the “Definition specific data” as described in chapter 7 is kept 
constant, which enables comparison between different solutions, as they are all under the same 
“laboratory” conditions. All the parameters in the “Parametric specific data” category as described in 
chapter 7 are recorded for each calculated solution. The fitness parameters F1, structural mass, and F2, 
stiffness is also recorded. The following steps are repeated in each iteration: 

1.) Input data  

2.) Bottom/base layer mesh   

3.) Offset mesh  

4.) Deconstruct meshes  

5.) Top layer creation  

6.) Forming of space frame geometry model  

7.) Structural analysis – struct. analysis + c/s optimization 

8.) Recording results, and the state of the parameters which gave the results 

The parameters, both input and output which are recorded in every iteration are as follows: 

1.) Mesh type: Skeleton, Tri, Quad 

2.) Conway operator:  Kis, Ambo, Dual 

3.) Truss Height – 0 – 8m  
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4.) Form finding factor – from 0 to 2 

5.) Density – 0 - 5000 

6.) Edge length – 0 – 12m  

7.) Form height – 0 – 40 m 

8.) # Cross sections – 0 – 80 # 

9.) Elastic Energy – 0 – 2000 kNm 

           10.) Max displacement – 0 – 200 cm 

           11.) Mass steel  - 0 – 200 kg/m2 

The 3000 space frame configurations per definition are generated by specifying the following 
divisions of the following input parameters:  

1.) Mesh type – 1 division (either Q, T, S) 
2.) Conway operators – 3 divisions (D, A, K) 
3.) Truss height – 10 divisions – range from 0 to 8 m  
4.) Form finding height – 10 divisions – from 0 to 10 m 
5.) Number of mesh faces – 10 divisions – from 0 to 5000 

By multiplying the number of divisions of each parameter the total number of configurations 
is obtained, 1 x 3 x 10 x 10 x 10 = 3000. In each grasshopper definition this number of divisions is the 
same. This all possible thanks to the Colibri plugin. It functions as an automatic iterator and data 
recorder. The calculation of each of the 3000 solutions although automatic, is a relatively time 
consuming and computationally heavy process. The time to calculate a solution primarily depends on 
the type of grasshopper definition used and number of faces specified for the solution.  

The definition type influence is simply because of the three different meshing algorithms taking 
different amounts of time to generate a solution. There is also a slight influence of the generated 
patterns, some are more intricate and thus simply have more line geometry, considering same number 
of faces.  

The times for the quad mesh definition to generate a solution range from 5 – 30 s depending on 
mesh density. For the Tri mesh the times range from 10 to 60 s and for the Skeleton 20 to 120 secs. Based 
on experience during the process, the total time for generating 3000 solutions is about 10 – 12 hours, 
thus 36 hours of computational time for generating 9000 solutions 
 
09.4 Results 
 

 
Figure 09.24: Parallel coordinate graph – 11 parameter axes 

 
After generating the 9000 solutions and recording the resulting state the 11 parameters for each 

solution, into .csv file, this .csv file is input into Design Explorer to generate a parallel coordinate graph 
of the parameter results. This parallel coordinate graph is then used to analyse and categorized the 
results. The analysis is based on a deductive approach of viewing the results in the parallel coordinate 
graph. Within Design explorer there is an ability to omit desired axis from the graph to lessen the visual 
clutter and focus on certain aspects, that is “zoom-in” on a set of relationships of interest. The “zoom-
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in” approach is also used when viewing how each of the displayed parameter values influences the 
other. One can select a range on the axis to be omitted. In other words, depending on what ones to 
research, the view of the parallel coordinate graph can be adjusted accordingly.  
 
In this case study, the following categories were investigated:   
  
1.)  Absolute category – full parameter ranges, form finding included 
  - Least amount of steel (F1) 
  - Highest stiffness (F2) 
 
     1.1.) Relative category – Limit form finding 10m, 5-10% of span length 
  - Least amount of steel 
  - Highest stiffness 
 
2.) Absolute category – No limits on parameters, Form finding –, (parallel top and bottom layers)  
                           - Least amount of steel 
  - Highest stiffness 
 
    2.1.) Relative category – truss height 4-5m , Form finding – 
  - Least amount of steel 
  - Highest stiffness 
 

The logic behind the category is as follows. Absolute categories are constituted by not 
constraining the parameter scopes, and differ in if form finding is included or not. The relative categories, 
respect the form finding inclusion or exclusion of the absolute categories, and further have a narrowed 
scope of parameter ranges. 

To find which combination of mesh and operator performs best for each category, the parallel 
coordinate graphs are adjusted accordingly.  In Figure 09.25, the graph of all results is shown again, the 
red circle indicates the parameter range of interest. For the absolute category 1.), we first narrow the 
selection of solutions by viewing only the solutions which have the least amount of mass. This means 
narrowing the scope of the material usage axis in the parallel cordinate graph indicated by the red circle 
(0-20 kg/m2). Thus we omitted from the results the most heaviest solutions.  
 
Category 1: Absolute, full param ranges,  form finding included 
 

The relevant axes set to be viewd in the graph are from left to right as follows: Mesh type, 
operator, truss height, mesh density, edge length, form height and the last axis is either masss (F1) or 
elastic energy, stiffness (F2). The colours make it easier to identify which mesh type is in question when 
viewing the results.  Blue = Skeleton mesh, Purple = Tri mesh, Red = Quad mesh 

 
Figure 09.25: Parallel coordinate graph – 7 parameter axes 

 
After omitting the heaviest results, the parallel coordinate graph view is thus narrowed to better 

asses the results. In Figure 09.26. The parallel coordinate graph state is shown, where we view just the 
results with the lowest amount of steel used: 
 



 
 

67 

 
Figure 09.26: Parallel coordinate graph – Cat 1 – abs. – F1 – T – Q+A 

 
Analysing the parallel coordinate graph in Figure 09.26 it is clear that the lowest amount of steel 

usage will be achieved by the combination of Quad mesh and ambo operator. Thus the “winner” in 
category 1 regarding F1 is Q+A.  

To now view which combination in the absolute category wins in terms of highest stiffness, we 
reset the graph back to 09.25. and adjust so least elastic energy solutions are viewed only (Figure 09.27) 

 
Figure 09.27: Parallel coordinate graph – Cat 1 – abs. – F2 – T+D/K/A 

 
In this category the winner is tri mesh, and in this case, there is not only one Conway operator 

which gives the stiffest structure, but all three respectfully. Thus, the winner in this category is T + 
D/K/A.  
 
Category 1.1.: Relative, form finding limited to 5-10% of span 
 

Once again adjusting the graph to view the desired category results, for least amount of steel the 
Skeleton mesh and dual and ambo operator combinations are relevant, S+D/A(Figure 09.28). For the 
highest stiffness, also Skeleton mesh but with either of the three operators. (Figure 09.29) 
 
 

 
 

Figure 09.28: Parallel coordinate graph – Cat 1.1 – rel. – F1 – S+D/A 
 

 
 

Figure 09.29: Parallel coordinate graph – Cat 1.1 – rel. – F2 – S+D/A/K 
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Category 2: Absolute, full param ranges,  form finding excluded 
 

Repeating similar process as before on the graphs, we obtain, winners for F1, Skeleton + dual 
(Figure 09.30) and for F2, Skeleton + dual again (Figure 09.31). Note that in the figures there are two 
mistakes, the order of the parameter on the first axis, mesh type axis, has been changed, and the colour 
is wrong, it should be blue. Nevertheless, results are correct and can be interpreted.  
 

 
Figure 09.30: Parallel coordinate graph – Cat 2 – abs. – F1 – S+D 

 
 

 
Figure 09.31: Parallel coordinate graph – Cat 2 – abs. – F2 – S+D 

 
 
Category 2.2.:  Relative, truss heigth range 4 -5 m,  form finding excluded 
 

Again setting the parameter scopes according to the category, the winners are obtained for F1, 
Skeleton + dual (Figure 09.32) , and for F2, Skeleton + dual again (Figure 09.33). Again the same colour 
mistake and ordering mistake occurs here as mentioned in category 2 paragraph. 
 

 
Figure 09.32: Parallel coordinate graph – Cat 2.2 – rel. – F1 – S+D 

 
 

 
Figure 09.33: Parallel coordinate graph – Cat 2.2 – rel. – F2 – S+D 

 
The summarized results are now presented again in respect to categories: 
 
1.)  Absolute category – full parameter ranges, form finding included 
  - Least amount of steel (F1) – Q +A  
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  - Highest stiffness (F2) – T + D/A/K 
 
     1.1.) Relative category – Limit form finding 10m, 5-10% of span length 
  - Least amount of steel – S + D/A 
  - Highest stiffness – S + D/A/K 
 
2.) Absolute category – No limits on parameters, Form finding –, (parallel top and bottom layers)  
                           - Least amount of steel – S + D 
  - Highest stiffness – S + D 
 
    2.1.) Relative category – truss height 4-5m , Form finding – 
  - Least amount of steel – S + D 
  - Highest stiffness – S + D 
 

To conclude the following very simple matrix shows which combinations of mesh and operator 
have emerged in any category as a winner, meaning Q+D and Q+K are the only combinations of mesh 
and operator for the specified surface in the case study which do not win in any of the posed categories:  
 

 
Figure 09.34: Matrix of which combination of mesh and operator have emerged as winners in categories 

 
 
Further analysis of results 
 

Next the question of influence of form finding on F1 (steel usage) and F2 (stiffness) in regards to 
the 3 possible mesh types and 3 Conway operators is investigated. The parameter ranges are further 
narrowed, to obtain relevant results. Density is from 500 to 1000 faces, truss height from 4-6 m. The 
categories of solutions can be constituted as: 
 

1.) F1 +Q/T/S + D/K/A  
2.) F2 + Q/T/S + D/K/A 

 
1. F1 +Q/T/S + D/K/A  

 
1.1. Quad – F1  
 

The data in the .csv file is adjusted according to the narrowed parameter ranges, and for each 
mesh type three scatter plot graphs are generated and the points curve fitted to form trend lines. One for 
each combination of Conway operator possible for the mesh type. The graphs are divided into the two 
above categories, they show the mass of steel vs. the form height. It can be seen from these graphs that 
there is a slight influence of form height on the steel usage. Especially when the form height is between 
1-5 m.  
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Figure 09.35 
F1 vs. FF height – Q+D 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.36 
F1 vs. FF height – Q+A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.37 
F1 vs. FF height – Q+A 

 
 
 
1.2. Tri – F1 
 

Like results for Quad – F1 the same influence of form finding, within 1 – 5 m of height (5-10% of 
span) is found.  
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Figure 09.38 
F1 vs. FF height – T+D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.39 
F1 vs. FF height – T+A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.40 
F1 vs. FF height – T+K 
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1.3. Skeleton – F1 
 

Like results for Quad and Tri – F1 the same highest influence of form finding is found, within 1 
– 5 m of height (5-10% of span). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.41 
F1 vs. FF height – S+D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.42 
F1 vs. FF height – S + A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.43 
F1 vs. FF height – S+K 
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1.4. Cumulative graph for F1 
 

In the cumulative graph (Figure 09.44) each line represents one of the nine diagrams presented 
in the last paragraph. They are colour coded in to three groups, quad group = blue, tri group = red, 
skeleton group = white. The line type indicates the Conway operator applied. Thus, the explanation of 
lines and colour codes is as follows:  
 
 
Q+D (Figure 09.35) = Solid blue line in Figure 09.44 
Q+A (Figure 09.36) = Dashed blue line in Figure 09.44 
Q+K (Figure 09.37) = Dash-dot blue line in Figure 09.44 
 
 
T+D (Figure 09.38) = Solid red line in Figure 09.44 
T+A (Figure 09.39) = Dashed red line in Figure 09.44 
T+K (Figure 09.40) = Dash-dot red line in Figure 09.44 
 
 
S+D (Figure 09.41) = Solid white line in Figure 09.44 
S+A (Figure 09.42) = Dashed white line in Figure 09.44 
S+K (Figure 09.43) = Dash-dot white line in Figure 09.44 
 
 

 
Figure 09.44: Cumulative graph of F1 vs FF height 

 
Analysing the cumulative graph (Figure 09.44), two extremes become apparent. Considering a 

form finding height of 3 – 5 m in the graph, the skeleton dual mesh performs best regarding material 
usage vs. form height. Then Quad ambo, Quad dual, Quad kis, Tri dual, Tri kis and finally Tri ambo. 
Thus, the most efficient regarding F1 would be Skeleton dual and least efficient Tri ambo. 
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2. F2 + Q/T/S + D/K/A 
 
2.1. Quad – F2 
 

In this step the data is adjusted to create scatter plot graphs and trend lines regarding the 
combination of mesh and operator on F2, highest structural stiffness goal. Not the inverted graph, due 
to the inverted relationship between mass and stiffness. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.45 
F2 vs. FF height – Q+D 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.46 
F2 vs. FF height – Q+A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.47 
F2 vs. FF height – Q+A 
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2.2. Tri – F1 
 

Like results for Quad – F1 the same influence of form finding, within 1 – 5 m of height (5-10% of 
span) is found.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.48 
F2 vs. FF height – T+D 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.49 
F2 vs. FF height – T+A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 09.50 
F2 vs. FF height – T+K 
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2.3. Skeleton – F1 
 

Like results for Quad and Tri – F1 the same highest influence of form finding is found, within 1 
– 5 m of height (5-10% of span). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.51 
F2 vs. FF height – S+D 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.52 
F2 vs. FF height – S + A 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 09.53 
F2 vs. FF height – S+K 
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2.4. Cumulative graph for F2 
 

In the cumulative graph for F2 (Figure 09.54) each line represents one of the nine diagrams 
presented in the last paragraph. They are colour coded again in to three groups, quad group = blue, tri 
group = red, skeleton group = white. The line type indicates the Conway operator applied. Thus, the 
explanation of lines and colour codes is as follows:  
 
 
Q+D (Figure 09.35) = Solid blue line in Figure 09.54 
Q+A (Figure 09.36) = Dashed blue line in Figure 09.54 
Q+K (Figure 09.37) = Dash-dot blue line in Figure 09.54 
 
T+D (Figure 09.38) = Solid red line in Figure 09.54 
T+A (Figure 09.39) = Dashed red line in Figure 09.54 
T+K (Figure 09.40) = Dash-dot red line in Figure 09.54 
 
S+D (Figure 09.41) = Solid white line in Figure 09.54 
S+A (Figure 09.42) = Dashed white line in Figure 09.54 
S+K (Figure 09.43) = Dash-dot white line in Figure 09.54 
 
 

 
Figure 09.54: Cumulative graph of F2 vs FF height 

 
Analysing the cumulative graph (Figure 09.54), two extremes become apparent. Considering a 

form finding height of 3 – 5 m in the graph, the skeleton kis mesh performs best regarding sitffness vs. 
form height. Then skeleton dual, tri kis, skeleton ambo, quad kis, quad dual, quad ambo. Thus, the most 
efficient regarding in the viewed range and F2 would be Skeleton kis and least efficient Tri ambo  
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10
  10 Conclusions and Recommendations 

 
 
 
 
 

WIP 
 

The main goal of this research was to develop a parametric tool to investigate the relationship 
between mesh topology, Conway operators and structural behaviour of space frame structures formed 
based on them.  

In this chapter, the results will be discussed following with conclusions and followed up with 
future recommendations. 

Before discussing the results and conclusions, while unusual, I will first describe here a few 
problems that occurred during the development and research for this thesis. The first and foremost 
problem encountered was the continuous occurrence of new ideas of how to restructure both this thesis, 
tool logic, and focus of research. Thus, the developed tool has a large amount of input data and 
possibilities for researching a vast number of combinations of the related parameters. This often created 
some confusion, in which parameter relations and influence should be investigated, because to 
investigate everything that is possible with the developed tool is not feasible in the scope of this MSc 
thesis. Thus, gradually the scope was narrowed to be adequate for MSc thesis and resulted in the 
presented case study and the conclusions to follow.  

Furthermore, the research problem as stated, or any similar research in the same sense, will 
always result in dealing with a multi-variable design space of the problem. With trying to expand the 
number of parameters, the search for the optimal design and gauging the influence of the parameters 
on the design, becomes less and less feasible.  

Another problem was raised in the use of the word “optimal” to describe the solutions. The 
question of what is meant by optimal in this MSc thesis research is highly important. With optimal it 
was not the idea to suggest that there is one optimal solution in general, but that there exist relative 
optimal solutions in the context of different posed optimality criteria. In this research, four optimality 
criteria were considered initially, which in the opinion of the author could be considered as the four 
general optimality criteria for any civil engineering design. Namely, mass, stiffness, aesthetics, and 
fabrication. Mass and stiffness were investigated, due to the possibility of those being objective and 
quantifiable criteria. Aesthetics for example is hard to objectify and quantify and is often in the eye of 
the beholder. Fabrication as an optimality criterion was considered, however, the possible formulation 
of criteria would have to be quite rigorous and informed by experts within the space frame construction 
industry and can be a thesis topic by itself potentially. 

However, even if all four of the optimality criteria could be implemented, this poses a question 
of how to weigh the influence of each of the criteria within the final solutions. There would have to be 
certain trade-offs specified, due to for example, the criteria of aesthetics and fabrication clashing 
together. What might be considered more aesthetic might prove much less fabricable. 
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Thus, in the end the chosen optimality criteria considered in this MSc thesis research were the mass 
and stiffness. For large span structures, to minimize the material wastage and achieve thus a more 
sustainable solution, is important. Furthermore, due to the large span, stiffness is also important to limit 
the possible deflections. A space frame with a large span that deflects excessively is not something that 
should be designed in the first place. 

The final conclusions which were formed based on results of the case study, indicate more the 
direction towards where attention of the designer should be to optimize the design, rather than 
providing exactly quantified relations of parameters to achieve it. However, effort was made to try and 
quantify the results, this will be presented in  
 
10.1     Discussion  

 
In chapter 2, the main research question was stated as follows: 

 
Given an architectural free-form irregular surface model to discretize into a steel space frame con- 
figuration, what is the optimal structural pattern configuration regarding multiple optimality criteria 
(mass, fabrication, aesthetics, stiffness in regards of chosen pattern) and their realistic constraints (load 
bearing behaviour, deflection, available types of steel c/s)? 

The posed research sub questions were as follows:  
 

1.) What are relevant surface tessellations/discretization’s/meshing options for generating space frame 
structures? 

2.) Is there any noticeable influence on structural performance of space frames regarding chosen 
tessellations? 

3.) Which space frame configuration is most appropriate considering optimality criteria? 
4.) What is the influence of the relevant parameters? 
5.) Which structural pattern discretization strategy is the most appropriate? 
6.) Which parameters governing the space frame structure configuration are most relevant for 

optimizing space frames? 
 

Answers to the following posed research questions are given as follows: 

1.) What are relevant surface tessellations/discretization’s/meshing options for generating space frame 
structures? 
 
Answer: Based on the literature study done, the relevant tessellations were identified as: 
Quadrilateral, Triangular and Skeleton based mesh. 

2.) Is there any noticeable influence on structural performance of space frames regarding chosen 
tessellations? 
 
Answer: Based on the case study done, the initial hunch of space frames being insensitive 
towards the choice of tessellation/meshing was proved to be wrong. There is an influence 
which can be noticed, as presented in graphs in chapter 9. 

 

3.) Which space frame configuration is most appropriate considering optimality criteria? 
 
Answer: For the researched pentagram shaped surface, the skeleton based quad mesh often 
proved the most appropriate. The specific combination of skeleton based quad mesh and kis 
operator emerged as most appropriate considering high stiffness (F2), and skeleton dual in 
terms of material usage (F1) 
 

5.) Which structural pattern discretization strategy is the most appropriate? 
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Answer:  Meshing is the most appropriate discretization strategy for creating space frame 
structures based on free-form input surfaces. The mesh approach respects the total geometry 
of the inputted surface, inner and outer boundaries, and shape of the surface. Initially the 
discretization strategy was based on creating sub surfaces on the input surfaces using the 
Isosurface component in grasshopper, with which one can specify the number of U and V 
divisions of the surface and create subsurfaces. This approach was lacking due to this strategy 
not respecting the total geometry of the input surface. For example, if a trimmed surface was 
tried to be discretized by this strategy it would discretize the untrimmed geometry. One 
would then have to cull the subsurfaces which were out of the boundary of the trimmed 
geometry. This was more complex, less controllable and resulted in a much slower script 
which would in the end output incorrect geometry. Furthermore, the subsurface approach 
does not allow for generating meshes such as the skeleton-based mesh. 
 

10.2     Conclusion  
 

In this thesis research the following areas of influence were investigated: 

1.) Type of base mesh – Quad, Tri, Skeleton-based  
2.) Conway operator relations – Dual, Ambo, kis 
3.) Mesh density – 500 – 5000 faces  
4.) Truss height – 0.5 m – 8 m 
5.) Form finding height – 2% - 25% of span 

The search for an optimal solution depends on the fitness function or goal posed. 
Furthermore, it depends on the number, scope and type of parameters thought of as important for the 
optimization of the space frame structure. With the tool developed in this thesis, the solutions can 
always be considered as 3 x 3 matrix (3 mesh types x 3 Conway operators) for which we evaluate 
certain parameters (Mesh density, truss height, form finding height) and/or goals (F1 or F2).  

The focus in this research was on the two goals (fitness functions), lowest mass (F1), highest stiffness 
(F2) in relation to three parameters, mesh density, truss height and form finding height.  

Form finding influences F1 and F2 the most. One hypothesis would be that with form finding 
the shape of the surface is adjusted to behave more like a shell or arch than a flat plate, thus lessening 
the required amount of steel and having a higher stiffness. For example, a flat space frame on a large 
span will behave like a plate, meaning truss height will be the main parameter for achieving adequate 
load bearing behaviour, and the cross sections will be large. 

 The influence of form finding was further investigated at three specifics from finding 
height parameter “areas”.  First, maximum form finding height was allowed up to 30% of the span. 
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10.3 Recommendations 
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