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Abstract 
 
Plated girders have been extensively used in steel bridge construction since the 19th century. Over the 
past century, the effective width method was developed to take the nonlinearities resulting from shear 
lag and plate buckling into account. This method leads to having a cross-section with a reduced area in 
which the stress can linear be considered. The section properties of the reduced cross-section can be 
used for determining the resistance and the longitudinal stress in the plated girder. The reduction of the 
cross-section area takes place in two steps. First, the section area is reduced in local scale for subpanels 
that have class 4, and local effective section properties will be determined. Second, the local effective 
cross-section is reduced to consider the overall buckling, which can be plate-like buckling, column-like 
buckling, or their interaction. 
 
The longitudinal compressive stress that can be determined from effective section properties in a box 
girder with pure bending moment will be higher since the effective section includes a reduced second 
moment of inertia and an increased distance between the neutral line and the compression flange. This 
master thesis aims to assess whether effective section properties accurately determine the compression 
stress magnitude in box sections with pure bending moment that remain unaffected by local buckling 
and experience overall buckling in the form of pure column-like buckling in the compression flange.  
 
The findings indicate that if the subpanels of the isolated compression plate are stocky, and the overall 
buckling failure has the form of pure column-like buckling, the stress, and behavior remain within the 
elastic region up to column-like buckling failure. There does not exist any sudden increase in 
compression stress magnitude in the plate. The analytical method that can address the maximum 
magnitude of the compression stress in the plate has contribution of the gross section area of the plate. 
 
If such a stiffened plate with pure column-like buckling failure and stocky subpanels serves as the 
compression flange of a box girder, the same conclusion was reached regarding determining the first 
moment of inertia. However, in the presence of the slender web in the cross-section, the effective area 
of the web, in combination with the gross section area of compression flange should be considered for 
determining the section properties with which the maximum longitudinal stress can be determined. 
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 1 
1. Introduction 

 
 
Box girders have wide thin plates that are mainly stiffened by open or closed stiffeners to deal with the 
stability problem of the thin plates.  
The verification of the slender steel structures is covered in EN 1993-1-5 by the effective width method. 
The Eurocode's effective width method offers a practical approach for assessing the resistance of the 
slender structures by considering all instability phenomena, which introduce nonlinear stress 
distribution, as a reduction in the panel width. In EN1993-1-5 , part 4-3-(1), it is also mentioned that 
effective cross-section properties should also be  used  for determining the internal stresses. This master 
thesis will investigate the implementation of column buckling in this method for determining the internal 
longitudinal stress using geometrically and materially nonlinear analysis with imperfections trough finite 
element program Abaqus.  
 

1.1 Background information  
 
Effective width method is introduced to deal with stability problem of the slender parts of the sections in 
compression. Effective area of the compressed part of the section should be determined based on the 
slenderness of each plate elements (flange and the web) separately. The reductions that need to be 
considered for determining the effective section area of the compressed part of the cross-section by 
plate buckling takes place in two stages.  
 
First, the local reduction factor for the slender parts of the cross-section (parts with class 4) will be 
determined. The local reduction factor will be applied on the subpanels including, distance between 
longitudinal stiffeners in the plate sheet and on each part of the longitudinal stiffeners (web and flange) 
separately as shown in Figure 1-1 left. 
In the second stage, as depicted in Figure 1-1 on the right, the reduced cross-section with all the local 
reductions will again be reduced to consider overall buckling. The overall buckling can have the form of 
pure column-like buckling, interaction of column-like buckling and plate-like buckling or pure plate-like 
buckling.  

 
Figure 1:1 Left: reduced cross section by local buckling of the subpanels. Right: reducing local effective cross 

section for overall buckling. 

. 𝑝: 
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By using effective section properties, an elevated longitudinal stress will be determined in the box girder 
with pure bending moment. The increased magnitude of the stress at the compression flange level 
,determined from effective section properties, is the result of shifting in the position of the neutral towards 
the tension side in the effective cross section and reduction of second moment of inertia in the effective 
cross-section as shown in Figure 1-2. 

 
Figure 1:2 Effective section area with reduced compression flange and shift in the neutral line towards tension 

side [1] 

 
𝜎B;DEC'F=CD8B	 =

G#$.H%&&%'()*%	,%'()-.
I%&&%'()*%	,%'()-.

≫ G#$.H/0-,,	,%'()-.
I/0-,,	,%'()-.

       ( 1-1) 

 
The elevated magnitude of the compression stress should be considered in design, following part 4-3-
(1) of N 1993-1-5, which mentions, "In calculating longitudinal stresses, account should be taken of the 
combined effect of shear lag and plate buckling using the effective areas" [1].  
 

1.2 Problem definition  
In bridge application, the overall buckling in the form of pure column-like buckling is a common buckling 
failure mode. Moreover, the longitudinal stiffeners are relatively dense and close to each other in the 
compression deck. The deck of the steel box girders in the bridge application has common 
configurations defined bellow.  
 

1) Subpanels in the compression flange of the cross-section have class 3, meaning there is not 
any instability due to local buckling in the subpanels.   

2) The compression flange's buckling failure takes the form of pure column-like buckling, meaning 
the post buckling reserve of the plate is not considered.  

 
The purpose is to address the question whether effective section properties can be used for the accurate 
determination of absolute maximum longitudinal stress in the compression flange of the box girders with 
pure bending moment in this case.  Ultimately, finding the analytical method for determining longitudinal 
stresses that can more accurately assess the longitudinal stress in the compression flange.  
The focus in this study is on evaluation of the plates with only pure column like buckling failure. This 
study will not cover the interaction of the column-like and plate-like buckling. It also does not cover 
combination of the local buckling and plate buckling in the compression flange of the girder. 
 

1.3 Research objectives 
The aim is to obtain a more accurate assessment of the stress in the compression flange of the box 
girders loaded by pure bending moment.  
The main research question is:  

• In the box girder with compression flange featuring class 3 subpanels and overall buckling in the 
form of pure column-like buckling loaded by pure bending moment; can the longitudinal stress 
be determined accurate from effective section properties? 

 
The main research question will be answered with the following sub-questions: 

1. Which section properties represent the stresses resulting from the applied compression force on 
the single stiffened plate with stocky plates and overall buckling in the form of pure column-like 
buckling? Is it the gross section area or the effective section area of the plate? Also, Can the 
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reduction factor for column-like buckling be accurately determined when a stiffened plate is 
vertically supported along the unloaded edges? 

2. In the case of a box girder with pure bending moment, does the neutral line shift towards the 
tension side, leading to an increased compression zone in the cross-section. In other words, 
should yeffective-section be used in the analytical formula 𝑀. 𝑦 𝐼⁄  for determining the longitudinal 
stresses? 

3. When dealing with box girder with a compression flange consist of subpanels of class 3 and 
global buckling in the form of pure column-like buckling combined with a web of class 3, which 
section properties are representative of the compression stresses resulting from bending 
moment? Is it the gross section properties or the effective section properties of the box girder? 

4. What impact does a class 4 web (in girder) and its buckling have on the longitudinal stresses in 
the compression flange of a box girder, and how can this effect be taken into the account? 

5. Are effective section properties applicable when a box girder experiences tension failure? 
 

1.4 Methodology  
 
The effective width method is based on the ultimate resistance models. To be able to accurately address 
the problem, determining the minimum resistance is of major concern. 
The methodology employed is a two-stage approach.  
 
In the first stage, finite element analysis will be performed on individual single stiffened panels to ensure 
that their behavior remain in pure column-like buckling region. Additionally, finding the imperfections 
leading to the lowest resistance. These imperfections will subsequently be applied to the compression 
flange of the girder in the final stage. 
 
In the second stage, the behavior of the stiffened plate, as the compression flange of the box girder, will 
be studied. The finite element analysis will be perform using Abaqus, considering material nonlinearity 
and geometrical nonlinearity with initial imperfection. The obtained results will then be compared with 
the analytical method which is effective cross-section criteria outlined in the EN1993-1-5. 
 
Phase 1: Analytical method  
In the initial step, two Python script (presented in Annex II and III) were developed to compute the 
effective cross-section properties, of a single plat with pure compression and box girder with pure 
bending moment following EN1993-1-5 criteria. These Python scripts were subsequently used to identify 
suitable plate and box girders configurations.  
 
The configurations of interest are: 
In the compressed plate  

• Local buckling is prevented by the application of class 3 subpanels. 
• Global instability failure of the compression plates takes place as pure column-like buckling with 

the 𝜌:reduction factor below 0.85. 
• The aspect ratio(a/b) in the plate is lower than 1. 
• Stiffeners are defined as T shape open stiffeners representative of the stiffeners in the reference 

bridge (Haringvliet) 
 

 
Figure 1:3 Column-like behavior of an unstiffened plate with a small aspect ratio α [1] 

 
In the Box girder  
In defining the configurations of the box girders, the predefined single plates were used as the 
compression flange of the girders.  
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In defining the web and tension flange of the box girder, the purpose was to determine a configuration 
in which the following conditions are met: 
 

• In group A of the box girders, local buckling in the web is prevent by using class 3 subpanels. 
Furthermore, by having overall buckling reduction factor equal to one in the web, it has been 
ensued that it is active with its full area. In this set of analyses, studying only one stability 
problem which is column-like buckling of the compression flange is of concern. 

• In group B of the box girders, the webs or subpanels of the webs have class 4, so that column-
like buckling of the compression flange in combination with the buckling of the web is studied.   

• In group C of the box girders, the failure will be as the result of the tension flange failure.   
 

 
Figure 1:4 Sets analysis A and B with compression failure, set analysis C with tension failure. 

Phase 2: Analysis of the single plates 
In this phase, the load-bearing capacity of the five plates is monitored up to failure, the purpose is to 
control the development of stress in the panels in pure compression up to failure. Column-like buckling 
for plates with an aspect ratio of 0.19, 0.3, 0.4, 0.6, and 0.8 were studied, and the derived reduction 
factor related to column-like buckling from GMNIA analysis was compared to the analytical method. 
Different initial imperfections are applied on these five plates to find the imperfection that leads to the 
lowest compression resistance. The absolute maximum compression stress in the plate is determined 
from GMNIA analysis, and the proper analytical method for determining this stress is introduced.  
 
Phase 3: Analysis of the box girders 
In this phase of the thesis, the whole cross-section of box girders was modeled and GMNIA analysis 
was performed. The position of the neutral line was derived and compared to the EN1993-1-5 criteria 
regarding the effective width method. The indication from previous calculations regarding the 
combination of the initial geometrical imperfection that leads to the lowest resistance is used for applying 
initial imperfection on the compression flange of the girder. These imperfections are combined with 
global initial imperfection in the web of the girder. 
Two sets of models for stiffened and unstiffened webs were considered. Smaller cross-sections are 
defined without longitudinal stiffeners in the web and the larger cross-sections are defined with 
longitudinal stiffeners in the web.  
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1.5 Application 
 
The investigation centers on the Haringvliet bridge specifications, and the thesis question arises from 
the verification of connections between prefabricated steel elements at the deck level in this bridge.  
In the verification of the existing structure of Haringvliet bridge, effective section property is applied to 
assess stresses at the deck level. It becomes evident that the connections between prefabricated steel 
elements at the deck level will suffer elevated normal stresses magnitude comparing to the linear elastic 
analysis by considering the stresses determined from effective section properties. This will lead to the 
conclusion that major part of the connection at the deck level need strengthening.  
Haringvliet bridge is made of plated panels stiffened with bulb-open stiffeners. A significant aspect of 
the bridge that raises questions about the applicability of Eurocode design criteria for determining the 
longitudinal stresses in this structure are class 3 subpanels in the compression deck and buckling in the 
form of pure column-like buckling. 
In the FEM analysis of large structures, the material is usually modeled as elastic. Result of this study 
will reveal whether the stress from linear elastic analysis adequate for further verification of the 
connection or they should be increased by considering the effective section properties. Having a simple 
model that can help to determine the actual stress in the cross-section will save the time-consuming and 
error-sensitive nonlinear calculations. 
 
 

 
Figure 1:5 Cross section of Haringvliet bridge 

  

Python script 

•Determining the compression resistance of the single stiffened
plate based on EN 1993-1-5

•Determining the bending resistance of the plated box girder based
on iterative method of EN1993-1-5

•Finding the proper configuration for studing the plates and box
girders composed of them having pure column-like buckling failure

FEM analysis 
of stiffened 

plate

•Finding combination of initial imperfection that
leads to the lowest resistance in the plate

•Evaluating stress in the plate up to failure

FEM analysis 
of the box 

girder

•Determining absolute maximum compression
stress in the girder and finding proper
analytical method adresses this stress
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1.6 Report outline  
 
The report is structured into several chapters. The contents of the chapters are outlined below.  
Chapter 1: Introduction 
This chapter introduces the master thesis, outlining its purpose and significance. 
Chapter 2: Literature review 
In this chapter, a literature study is outlined providing relevant background information and summarizing 
previous research. The types of failures in stiffened plates under pure compression and the methodology 
for defining effective section properties based on EN1993-1-5 were studied. 
Chapter 3: Finite element model for single plates 
This chapter describes the definition of the finite element model used to analyzed single plates subjected 
to pure compression. 
Chapter 4: Analysis of single plate  
The results of the analysis on single plates are discussed in this chapter. In the end the first research 
objective is addressed. 
Chapter 5: Finite element model for box girders 
This chapter outlines the definition of the finite element model used in the analysis of box girders with 
pure bending moment. 
Chapter 6: Analysis of Box Girders 
Results from the analysis of box girders are presented in three distinct sections, corresponding to the 
outcomes of set analyses A, B, and C. Set analysis A addresses the second and third research 
objectives. Set analysis B addresses the fourth objective and set analysis C provides insights into the 
fifth objective. 
Chapter 7: Conclusions 
In this chapter the answer to the final research is presented. Suggestions for future research are 
introduced in the end. 
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2 
2 State of the art 

 
Box girders have wide thin plates that are mainly stiffened by open or closed stiffeners to deal with the 
stability problem of the thin plates.  
Effective width approach in Eurocode is developed based on the ultimate state models of single plates 
and therefore can predict the ultimate resistance properly, However, the question is to what extent 
effective width can predict the position of the neutral line and actual stress distribution in the ultimate 
state and before the ultimate state in the box girders.   
 

2.1 Previous work 
 
The first work in the field of buckling theory was performed by Euler [2], who derived the linear elastic 
buckling value for an ideal, axially compressed column. The Perry-Robertson [3] approach is based on 
the column model with an initial imperfection, and the first yielding in the extreme fiber is taken as the 
elastic limit load. Their model has been widely used in design codes.  
Caldwell [4] proposed the effective width method as a method for accounting for local plate deflection 
when using the column model on a stiffened plate. Following this, much work has been devoted to 
finding appropriate expressions for the effective width of plating. 
Navier [5] derived the differential equation for the bending of rectangular plates and used trigonometric 
functions to obtain linear elastic buckling values for certain problems.  
Pioneering work on large deflection of plates was performed by Kirchhoff [6],who discovered the 
importance of nonlinear terms for large deflections. The final form of the plate differential equation for 
large deformations was derived by von Karman [7]. 
 

2.2 Slender elements  
 
Structural cross-sections containing slender elements are referred to as class 4 or slender cross-
sections. These cross-sections are characterized by failure due to local buckling. The concept of cross-
section classification as a means of codified treatment for local buckling of cross-sections that are partly 
or fully in compression is developed for an idealized bilinear stress-strain response. Each plate element 
is classified according to its width-to-thickness ratio and will be compared to the limits given in the code 
which are based on boundary conditions (internal, outstand), manufacturing method, and stress 
distribution in the element. In the class 4 cross-section, the failure will occur before reaching yield stress, 
meaning there is no benefit from the spread of plasticity and strain hardening. Cross-sectiona response 
is assumed to be related to the behavior of its most slender plate element, thereby the interaction of 
constituent plate elements i.e., the ability of the less slender elements to provide some resistance 
against local buckling in the slenderer elements is neglected. [8] 
 
The classification criteria are not explicitly defined for stiffened plate elements. In general classification 
of the stiffened panel will be performed on the sub-elements, but the behavior on a global scale is more 
complex.  
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Eurocode introduced two approaches to account for the effects of local buckling in the design of stiffened 
plates. The more conservative method is to determine cross-section resistance by limiting the stress to 
critical buckling stress of the weakest element. In this limit, the stress strain stays linear and elastic along 
the cross-section. A less conservative modified version of the reduced stress method is to take into 
account further straining of the cross-section after buckling of the weakest part up to attaining the critical 
stress limit of the strongest plate element or even the yield strain. This modified approach is not dealt 
with in Eurocode [9]. Another method is named the effective width method in which the reduction of the 
strength and stiffness is reflected in reducing the width of the compression parts. For the tension part, 
only reduction from the shear lag effect is considered.  
 
The effective width method is developed to account for all possible phenomena causing nonlinear stress 
distribution in the cross-section including shear lag, local buckling, and global buckling. The reference 
stress equal to yield stress is chosen and real stress distribution is smeared over an equivalent width 
having the reference stress equal to the yield stress. 
 
The concept of linear strain stress distribution is generally not applicable in the elements when the elastic 
stress or elastic strain exceeds. By effective width concept, nonlinear effects from shear lag and plate 
buckling can be modeled keeping the hypothesis of linear strain distribution and having an easy way to 
determine the cross-section properties, resistance, and the longitudinal stresses [10].  
 
 

2.2.1 Buckling of unstiffened plate  
 
Compression in the plate causes out-of-plane deformation, however, the plate supported in four edges 
is still capable of carrying load after elastic buckling. The region after elastic buckling is named post-
critical buckling resistance. In this region, the stiffness is significantly decreased.  
In general, the nonlinear post-buckling problem for a plate with constant thickness is governed by the 
Von Karman [7] differential equation. 
Equilibrium equation: 
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Compatibility equation: 
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Solutions for plates in the post-critical range fall into two categories. The first category deals with some 
form of solution for the differential equation like the FEM method or folded plate theory. The second 
category deals with some simple solution forms for the equation which are mainly derived from the 
ultimate state models [10]. 
 
Folded plate 
In this theory, the whole element is as an assemble of componence rectangular plate considered. In-
plane effects are analyzed by plane stress theory and bending of each element normal to its plane is 
analyzed by flexural theory. This method is applicable on any cross section whether open or close and 
can deal with various kinds of stresses. This method is advantageous for the analysis of box girder 
bridges [10]. 
 
FEM method:  
the study domain is divided into the elements that are connected in the boundary at discrete nodes. The 
displacement field is expressed by the local values at the nodes which are supposed to be the 
representative of the real field. To model the post-critical behavior of the plates in FEM properly, the 
material should be defined with plastic behavior with an elastic unloading pattern. It also should contain 
the residual stress and the initial imperfections.  The FEM model can include shear lag, torsional and 
restrained effects also cross-sectional distortional effects can be included [10]. 
 
Ultimate state models 
The failure of the panel occurs either by plastic yield or by sudden instability. Plastic yield is a progressive 
collapse failure in the plate. The membrane stresses redistribute over the panel and due to the 
development of the second order effect plastic deformation occurs and exceeds over major parts of the 
plate. Part of the forces is transfer to the boundary elements which maintain their stability. The in-stability 



2 - State of the art    | 9 
 

failures occur suddenly and correspond to the development of the plastic hinges in the plate or related 
boundary element. The disadvantage of the ultimate state models is that they are specified for 
elementary load modes. The solution for these elementary load cases is presented below [10]. 
 
2.2.1.1 Panel in compression   
 
In panels with pure compression, only part of the plate close to the longitudinal edges can attain yield 
stress in the post-critical stage. Due to the bowing effect in the central zone of the panel, the stress will 
be lower. For the design purpose, the non-uniform stress distribution can be replaced by a uniform 
distribution over reduced plate width. The concept of effective width is used for such simplification. The 
reference stress for determining the effective width is equal to the edge stress which is yield stress in 
the collapse limit [10]. Standards also allow to replacement of the effective width by effective plate 
thickness. 

Winter [11]: 9%
9
= $
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C1 − P.((
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E		 𝜆!""" ≥ 0.67	         ( 2-3) 

Faulkner [12]: Q5
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2.2.1.2 Panel with gradient stress 
 
For combined bending and compression generally, the effective width is calculated as a ratio of the 
compressed part.  In comparison to uniform compression, two problems arise in the general case.  
9%
9'
= $
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]          ( 2-6) 

 
a) Definition of value for bc 
The width of the compression zone ( Figure 2-1) will generally vary during loading. As a simplification, 
bc. measured from the neutral axis of the full section of the plate. This assumption is modified in the 
effective width calculation of the girders and bc. measured from the neutral axis of the effective section 
for panels.  
 
b) Distribution of be 
The part of the effective width adjacent to the maximum compression close to the edge will be less than 
0.5 be it also depends on the 𝜓 value(𝜎( 𝜎$F ) [10]. 
 
 0<𝜓 < 1 
For the part close to the edge:𝑏@Y = 𝑏@[0.5 − 0.1(1 − 𝜓)]      ( 2-7) 
For the part close to the neutral line :𝑏@YY = 𝑏@[0.5 + 0.1(1 − 𝜓)]     ( 2-8) 
 
𝜓 < 0 
For the part close to the edge𝑏@$ = 0.4𝑏@       ( 2-9) 
For the part close to the neutral line :𝑏@( = 0.6𝑏@                  (2-10) 
 

 
Figure 2:1 Definition of bc and be 
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2.2.2 Buckling of stiffened Plate  
 
The behavior of the stiffened plate is very complex therefore there are no extensive parametric studies 
performed on stiffened plates compared to the unstiffened plate. The general problem was considered 
an elastic bifurcation problem and was treated as the linear theory of buckling.   
The general theory of stiffened plate was developed by Klopper and Scheer [14] for the stiffeners with 
zero torsional rigidity, his method was limited to one or two longitudinal stiffeners. It was based on the 
representation of the transverse displacement by double Fourier sine series.  

𝑤(𝑥, 𝑦) = ∑ ∑ 𝑎<DZ
D[$

Z
<[$ 𝐴. sin V𝑚. \]

8
X . sin V𝑛. \H

9
X                               ( 2-11) 

The expression was introduced to the condition of neutral equilibrium developed by Rayleigh-Ritz for 
gaining the dimensionless unknown buckling coefficient. Massonnet gives a mathematical solution for 
more general plates with rigid and simple support edges. Usually, plates are stiffened by several 
stiffeners. In plates with more than two stiffeners, the developed mathematical expression by Massonnet 
and Klopper-Scheer will become too complicated to find the buckling coefficient [10]. In that case, these 
stiffeners are smeared over the width of the plate. Therefore, the plate is transformed into a fictitious 
orthotropic plate. 
 
Relative flexural rigidity:𝛾 = %.I,

9.L
                                ( 2-12) 

Relative torsional rigidity:	𝜈 = ^
9.L
	 	 	 	 	 	 													 															( 2-13) 

Relative extensional rigidity:	𝛿 = _,
9.'
					 	 	 	 	 	 				 															( 2-14) 

Klopper, Scheer, and Moller give some typical results and diagrams for these types of plates for different 
aspect ratios and relative rigidities. One assumption in developing the orthotropic plate theory is having 
equally spaced stiffeners and simple supported edges. The differential equation governing the buckling 
of orthotropic plates is: 
 
J 2̀
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+ J 3̀
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+ \𝑞 − 𝑁]

J"K
J2"

−𝑁H
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^ = 0.			                          ( 2-15) 

Most of the previous research was performed on the stiffened plate with zero torsional rigidity (mainly 
stiffeners with open cross-section). In the new research about the stiffened plate, more focus is 
conducted on the stiffeners with close cross sections with higher torsional rigidity.   
 
2.2.2.1 Stiffened Panel in pure compression  
 
For uniformly compressed stiffened plate disregarding the restrains from boundary connected elements 
and shear stress the first approximation for the buckling mode of the structure is: 
𝑤$(𝑥, 𝑦) = 𝐴. sin V\]

8
X . sin V\H

9
X + (1 − 𝐴). sin V<\]

8
X . sin VD\H

9
X                             ( 2-16) 

m: is the number of half-waves in the longitudinal direction that develop between the longitudinal 
ribs 
n: is the number of panels between the stiffeners.  
 

The buckling surface consists of a combination of  
1) the overall buckling mode of the orthotropic plate with smeared stiffeners, 
2) the nodal buckling of plate panels between the longitudinal stiffeners which depends on the rigidity of 
the longitudinal stiffeners (Figure 2-2).  
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Figure 2:2 Stiffened plate scheme b) overall buckling c) nodal buckling d) global interactive buckling [4] 

Different approaches exist for analyzing the uniformly compressed stiffened plate including modified 
linear plate buckling theory, strut approach, and orthotropic plate approach. 
 
Linear plate buckling theory 
This theory indicates that buckling behavior depends on the relative stiffness of the plate and stiffeners. 
The equation describing the critical stress has the same format as the unstiffened plate with different 
buckling coefficients (k) depending on the flexural stiffness of the stiffeners [10]. 

𝜎:> = 𝑘. \".%
$(($*a")

. V'4
9
X
(
                                ( 2-17) 

This method is simple to apply, however, it does not include imperfections, residual stress, and modes 
of failure. 
 
Strut approach 
In this method stiffened plate is replaced by a series of unconnected columns. Provided that the 
longitudinal stiffeners do not collapse by local instability, three modes of failure for struts may be 
considered. This method is basic of the design in many codes and is more realistic if the plate has large 
longitudinal stiffeners [10] .  
In a stiffened plate, providing that the stiffeners do not suffer from local instability, three failure modes 
may be considered:  
1) Failure of the compression plate by plate buckling and yielding of the stiffeners.  
2) Failure of stiffeners by yielding in compression  
3) Tensile yielding on the stiffener outstands. 
The load carrying capacity is then calculated as the sum of the ultimate loads of the struts. 
 
Orthotropic plate approach 
In this method, the stiffness of the stiffeners is smeared over the width of the plate. Maquoi and 
Massonnet [15] were the first to develop a design method that considers the post-critical resistance 
produced by membrane stresses in stiffened panels. The main assumptions in this model are: 
 
1) flexural and extensional rigidity of the stiffeners can be continuously smeared to obtain an orthotropic 
plate that can be analyzed by the non-linear large displacement theory of Von Karman.  
2) The stiffened plate has sinusoidal initial imperfection and displacement develops in the same mode. 
This assumption is shown by Volmir to be accurate if the ratio of the average ultimate stress to critical 
stress does not exceed the value of 1.5.  
3)Collapse is reached when the mean longitudinal membrane stress along the unloaded edge of the 
panel reaches yield stress. 
4) The plate buckling reduction factor between the stiffeners is allowed by using an effective width 
approach [10]. 
The result of their analysis was a global efficiency factor equal to the ultimate load at collapse divided 
by the squash load of a fully effective stiffened plate (𝜌E), the local efficiency of the panel between 
stiffeners is taken into account by an effective width concept developed for unstiffened plates (𝜌$).  
The total efficiency factor is calculated by multiplying these two reduction factors.  
The stiffened plate is safe when mean compression stress does not exceed the value of 𝜌E. 𝜌$. 𝑓H. 
Critic of this model is that it does not take into the account reduction in the rigidity of the stiffened plate.  
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Panel partly in bending stress.  
There is no exact solution for this type of loading in the stiffened plate, practical design approaches are 
proposed to calculate the effective width of the compression part of the panel. Neglecting the tensile 
part of the panel can be a conservative assumption [16].  
 

2.3 Elastic-plastic behavior of stiffened panels 
 
The behavior of plates can be classified by slenderness. In general, a structure can be roughly divided 
into stocky and slender structure which behaves differently to stability phenomena.  
Stocky plates are normally not susceptible to stability failure and the effect of imperfection is in most 
cases negligible. The out-of-plane deformation when reaching the elastic-plastic resistance is normally 
small. Therefore, a geometric linear analysis can be sufficient.  Such a structure can reach elastic or 
elastic-plastic resistance.  
Slender plates that are subjected to compression stress fail before reaching the elastic resistance of 
the perfect system. This happens because, due to imperfection, the compression produces out-of-plane 
deformations and leads to additional bending moments in the system. By increasing the load, the out-
of-plane deformation of the plate increases in a nonlinear manner. 
Classification of the elements for determining their behavior can be found in EN1993-1-5 or EN1993-1-
1.  These criteria are not defined for stiffened plate elements. In general, when a plate becomes slender 
additional stiffeners can be considered. Due to these stiffeners, the local behavior of the part of the 
panel between stiffeners can become stocky if the stiffeners are stiff enough.  
 

2.3.1 Failure modes of plates 
 
Depending on the relative sizes of the plate and stiffeners, failure may occur by panel buckling, by overall 
buckling, or as a complex interaction of the two, and in some cases, this may also be combined with 
lateral-torsional instability of the stiffeners.  
Stiffened plates are often slender and local failure is likely to occur. Local buckling does not imply 
immediate collapse since, in many cases, a reserve of strength will exist. This arises from the ability of 
a section to redistribute loads and the significance of this will depend upon the geometrical properties. 
If the plate dimensions are such that bifurcation occurs in the elastic-plastic range, the capacity for 
redistribution will be small, and rapid unloading will follow. 
However, If the panels are slenderer and buckling occurs in the elastic range, stresses will redistribute 
to stiffer sections of the plate and stability will be maintained. In this case, the ultimate load will not be 
reached until either the rate of unloading exceeds the rate of redistribution, or yielding has occurred in 
the remaining effective areas of the plate. This type of failure represents the collapse pattern when the 
stiffeners are relatively weak. 
The other type of failure in compression panels may happen when both the plate and the stiffeners are 
stocky. In such cases, the plate will reach full yield stress in compression and with increasing the load 
it will squash at constant stress. The stiffeners will develop higher tensile stresses to resist additional 
applied moments and the capacity of the total section will thus decrease [17]. 
Webb and Dowling performed an extensive test on various configurations for plates. They also 
developed a finite element program for predicting the resistance and elastoplastic stress distribution in 
the stiffened panel [18]. They derived the averaged peak stress at the edges of the stiffened panel in 
pure compression and categorized behavior into three zones.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:3 Peak stress in panels with 30<bi/tp<50 and 30<L/R<90 [18] 
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Zone 1) Failure occurs by yielding across the plating before extensive buckling occurs. 
 
In this type of failure, for the case of stocky subpanels (low ratio of  9)

'4
 ) a linear stress-strain relationship 

is seen. The ultimate load is reached soon after first yielding in the plate. Out-of-plane deformations 
remain small and direct stresses are distributed almost uniformly across the plate. At the ultimate state, 
almost full yielding compression is sustained by the plate and additional applied load leads to increased 
deformation with straining of the plate at constant stress. For the cases with higher slenderness (high 
ratio of  9)

'4
), Before the peak load, behavior is similar to that described for stocky subpanels. Beyond this 

point, panel deformations increase rapidly. The small depressions are seen in the stress curves across 
the web are the result of high transverse moments which develop as the panels buckle [18]. 
 

 

 
Zone 2) Failure occurs in an overall mode following the flexural failure of the stiffeners. 
 
This type of failure occurs in geometries with low flexural rigidity of the stiffeners. The consequence is 
that the behavior of the panel is the same as that of an unstiffened section with three times the basic 
panel slenderness [18]. 

 
 
 
 
 
Figure 2:6 Direct stress distribution for stocky subpanel 
in plate loading, low flexural rigidity of the stiffener [18] 

 
 
 
 
Figure 2:7 Direct stress distribution for slender subpanel 
in plate loading, low flexural rigidity of the stiffeners [18] 

 
 
 

 
Zone 3) Failure happened by local panel buckling in a half-wave mode in subpanels. 
 
For all geometries within this zone, the critical panel buckling stress is less than the yield stress. Close 
to the theoretical buckling stress panels, snap-through will occur and a three-half-wave mode develop 
(the panel has two stiffeners).  
The number of half-waves that develop along the span will depend upon the aspect ratio of the panels 
and the degree of clamping afforded by the stiffeners. In the absence of residual stress plasticity 
developed over the stiffeners and hinges will be formed along the panels [17]. 
 
 
 

Figure 2:5 Direct stress distribution for stocky subpanel in plate 
loading [18] 

Figure 2:4 Direct stress distribution for slender subpanel in plate 
loading [18] 
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Other possible types of failure in a stiffened plate are: 
Yielding along the plate-stiffener intersection 
This type of failure normally takes place when the stiffeners are relatively strong so that the stiffeners 
remain straight until the plating between stiffeners buckles or even collapses locally. The stiffened panel 
will eventually reach the ultimate limit state by the failure of stiffeners together with some associated 
plating [19]. 
Local buckling of stiffener web 
This type of failure happens when the ratio of the height to the thickness of the stiffener’s web is 
inadequate to remain straight so that the stiffener web buckles or twists sideways [19]. 
 
2.3.1.1 The effect of Initial imperfection 
 
Significant difference in load carrying capacity can exist depending on whether an overall mode of failure 
occurs towards the plating or the stiffeners. The direction of collapse in a compressed panel will depend 
upon the net eccentricity of the applied load and will therefore be a function of the direction and 
magnitude of an initial bow [17]. 
In stiffened panels, the overall bow will be influenced by the flexural rigidity of the stiffeners. In cases 
where failure is likely to occur by yielding in members, an overall bow towards plating will accelerate this 
process [17]. 
 
2.3.1.1.1 Effect of stiffened plate initial imperfection on the bending 

resistance 
 
Test in the bending resistance and stress pattern in the stiffened box girder is performed by Massonnet 
et. al. Two of their test’s set ups are the pure bending test and they monitor stresses until failure. In 
these test setups, the shear lag effect was driven out of the results. Both tests have the same dimensions 
and boundary conditions. The only difference between this test is the direction of initial imperfection. in 
test number 2, the stiffened plate had initial curvature toward the stiffeners and in test number 1 this 
curvature was towards the plate side [20]. 
 

 

 

 

 

 

Figure 2:8 Development of yielding in test set up 1 and stress distribution in half of the top flange test [20] 

 

Figure 2:9 Development of yielding in test set up 2 and stress distribution in half of the top flange test [20] 
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Their test results prove that the assumed stress in obtaining the effective width is valid when the initial 
imperfection is toward the plate side. In other words, the stress considered in calculating the effective 
width and the resistance will be obtained by imperfection that causes extra tension in the plate and extra 
compression in the stiffeners.  
 
2.3.1.2 The effect of residual stress 
 
Residual stresses resulting from the welding process can have a significant effect on the load-bearing 
capacity of plated structures. 
The influence of residual stress on the load-bearing capacity and buckling stress will largely depend 
upon the geometrical properties. Investigations carried out by Moxham [21] into unstiffened plate 
behavior showed that the effect of residual stress is most severe for panels of intermediate slenderness 
where interaction between local buckling and yielding occurs. Whereas, for plate panels of low 
slenderness, where failure occurs by squashing, residual stresses have a negligible effect, and the 
ultimate load capacity will be similar in magnitude to the residual stress-free case. 
For panels of high slenderness, the presence of residual compression will lower the buckling load, but 
since the edges are initially stressed to yield in tension a larger post-buckling reserve is likely to exist 
than in the equivalent stress-free case.  Therefore, the reduction in ultimate strength is likely to be less 
severe than the reduction in buckling strength.  
In stiffened panels, residual stresses will be present in the stiffeners as well as in the plate, and 
investigations by Hasegawa et al [22] show that the smaller the flexural rigidity of the stiffeners, the 
greater the drop in strength as the result of the residual stress. 
 
2.3.1.3 The effect of loading type and boundary conditions 
 
Loading types can be divided into two categories, those applied in the plane of the plate and those acting 
normal to it. In the first group, forces may be tensile, compressive, or shear and may arise directly from 
application, or indirectly from the overall distortion of a structure. The second category is related to the 
pressure load out of the plate of the panel. The degree of restraint applied to the panel out-of-plane will 
affect the shape of deformation and structure of a given type of loading. In this study, the in-plane loading 
of the panels will be studied, mainly as the result of the pure bending on the box girders.  
 
 

2.4 Eurocode effective width method 
 
The design rules for unstiffened and stiffened flat plates, based on the effective width method, are 
introduced in section 4 of EN 1993-1-5. The Eurocode method for determining the cross-section 
properties and the ultimate resistance is to consider elements as a component of separate panels. For 
each panel, plate-like and column-like buckling and relevant	critical stress 𝜎:>,?,	𝜎:>,: will be determined. 
From the critical stress the relative slenderness is calculated, then a relevance reduction factor 
separately to platelike buckling ( 𝜌) and column-like buckling (𝜒:) will be determined.	Having 𝜌 and 𝜒: 
the final reduction factor will be interpolated by the weighting factor from the plate and column critical 
stresses ratio.		
The Eurocode method in determining the effective width in the elements with stiffened panels is to 
consider the plate in two separate conditions. The reduction can take place in the stiffened plate in the 
format of pure orthotropic plate named plate-like buckling, pure buckling of the most compressed strut 
named column-like buckling. Interaction of them can also happen depending on the ratio of the critical 
stresses for both types of instability. 
Although the stress distribution is non-linear, this method adopted a linear (i.e., uniform) stress 
distribution acting only on the effective parts of the cross-section, whereas the contribution of the buckled 
central parts is completely neglected in the cross-section resistance. Finally, assuming that the stresses 
along the effective parts of the plate (beff) at the ultimate limit state are equal to the yielding stress(fy). 
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2.4.1 Eurocode method for unstiffened plate  
 
In the case of an unstiffened plate depending on the aspect ratio of the panel pure plate-like or pure 
column-like buckling may happen. In the case of plate buckling (𝛼 > 1), The reduction factor depends 
on the slenderness and stress pattern in the section derived from LEA.   
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where kσ,pl is the elastic buckling coefficient for flat plates which depends on the stress pattern in the 
panel.  
 

 
 

Figure 2:10: Plate buckling reduction factor [1] 

 
for aspect ratios 𝛼 < 1 column type of buckling may occur, and the check should be performed using the 
reduction factor ρc. 
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                                   ( 2-20) 

 
The reduction factor χc should be obtained from 6.3.1.2 of EN 1993-1-1. For unstiffened plates buckling 
curve a is applicable. 
 

2.4.2 Eurocode method for stiffened plate  
 
For stiffened panels, the conventional method of classification of the element is not simply applicable. 
The buckling behavior is the complex interaction of the local buckling in the subpanels between 
longitudinal stiffeners and global buckling in the format of plate-buckle, column-buckling, or their 
interaction.  
The local effective width in the stiffened panel is calculated from the local reduction in the subpanels 
based on their slenderness. For determining local reduction factors in the subpanels and stiffeners they 
would be considered as an unstiffened plate. 
First, the effective cross-section would be calculated considering all local reductions. Ac,eff,loc presents 
the effective section areas of all the subpanels and stiffeners that are fully or partially in the compression, 
excluding the parts supported by an adjacent plate element with the width bedge,eff. 
 
𝐴:,@ff,B;: = 𝐴AB,@ff +∑ 𝜌B;:	. 𝑏:,B;:: 	 . 𝑡                             ( 2-21) 
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To consider the global buckling effects, the final reduction factor pc will be calculated by interpolation 
between χc and r 	for column like buckling and plate like buckling respectively.	The	interaction	coefficient	
𝜉	 depends on the column like buckling stress and plate like bucking stress. 	
 
𝜉 = g'0,4

g'0,'
− 1.					0 ≤ 𝜉 ≤ 1.		                               ( 2-22) 

𝜌: = (𝜌 − 𝜒:)𝜉(1 − 𝜉) + 𝜒:                            ( 2-23) 
 

 
 
 
 
plate-like buckling: 
The detailed formula is introduced in the annex A1 of the EN1993-1-5. In part A1, based on the 
equivalent orthotropic plate theory the plate critical buckling stress for the stiffened plate with there or 
more stiffeners can be calculated. Through this method critical buckling coefficient will be calculated. 
The final critical buckling stress is the multiplication of the obtained buckling factor to the linear buckling 
stress. It is worth mentioning the validation criteria for the orthotropic plate theory in annex A 1 of 
EN1993-1-5, is having aspect ratio larger than 0.5. for the lower aspect ratio common procedure is to 
assume aspect ratio to be equal to 0.5.   
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𝛾  is the ratio between the flexural stiffness of the entire stiffened plate and that of the sheet plate alone. 
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𝛿	the ratio between the gross area of the stiffeners and that of the sheet plate alone. 
The method in part A2 of EN1993-1-5 is for panels with less than three stiffeners, which cover the exact 
solution for buckling of such plates.  This solution has been driven by considering a fictitious isolated 
strut supported on an elastic foundation reflecting the plate effect in the direction perpendicular to this 
strut. Critical plate buckling stress is the lowest value of the calculated critical stress for the three 
configurations shown in Figure 2-13. 
 

Figure 2:11 Effective area of a stiffened plate 
under uniform compression [1] 

 

Figure 2:12 Column-like and plate-like bucking interaction [1] 
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Figure 2:13 Plate with two stiffeners in compression [1] 

By having the equivalent plate buckling stress the equivalent slenderness can be calculated for the plate, 
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The final plate-like buckling reduction factor can be now calculated using the criteria defined for the 
unstiffened plate.  
It should be noticed that this buckling stress corresponds to the occurrence of a global mode in the 
stiffened plate. EN1993-1-5 also indicates that appropriate charts or relevant computer simulations could 
be used as an alternative. Attention should be paid to the fact that the first mode is not necessarily the 
same as the global buckling mode of the stiffened plate [23]. 
 
Column-like buckling: 
The column-type behavior is based on a simple assumption that the longitudinal (unloaded) edges are 
not supported so that the critical stress of a plate corresponds to the buckling stress of a column. 
Column-like buckling dealt with the global failure mode of the plate. Column-like buckling will take place 
in the plates with a low aspect ratio or in the plate with large orthotropy. A more severe reduction factor 
than plate buckling (p) relates to column buckling (𝜒:) is required. 
For determining column-like buckling stress, criteria of EN19931-1 are used with a special imperfection 
factor (α) related to the type of stiffeners. 
For a stiffened plate σcr,c may be determined from the elastic critical column buckling stress σcr,sl of the 
stiffener closest to the panel edge with the highest compressive stress. 
 
𝜎:>,AB =

\".%.I,>,@
_,>,@.8"

                          ( 2-29) 
 
In the EN1993-1-5, it is mentioned that for the stiffened plate with gradual stress distribution critical 
column-like buckling of the plate may be determined by extrapolation with respect to the width of the 
compression part. 
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To determine the final column-like reduction factor, the imperfection is adjusted by equation 2-31. 

𝛼@ = 𝛼 + P.Pr
C/@
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                                                   ( 2-31) 

 
 
 
 
where α is the imperfection factor (α = 0.34 for closed cross-section stiffeners and α = 0.49 for open 
cross-section stiffeners), and e is the larger of distances e1 (between the center of gravity of the stiffener 
alone Gst and the entire stiffener with the adjacent plate Gsl) and e2 (between the adjacent plating alone 
Gp and the entire stiffener with the adjacent plate Gsl). 
The final reduction factor χc for this instability mode can be calculated as a function of slenderness. 
 
𝜙 = 0,5 V1 + 𝛼@k�̅�: − 0,2l + �̅�:

(X                              ( 2-32) 

Figure 2:14 Definition of e1 and e2 
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2.4.3 Effective width from shear lag nonlinearity 
 
Although normal stress in the longitudinal direction caused by bending deformation is assumed to be 
uniform across flange width in the elementary beam theory, in the case of a beam cross-section with a 
wide flange the stress distribution will not be uniform. The longitudinal displacements in the parts of the 
flanges far from the web lag behind those near the web due to the action of in-plane shear strain. In the 
web flange interaction zone, longitudinal stress is much higher and Euler Bernoulli beam theory 
underestimates the stress in that part of the flange. By using an effective width method, the nonlinear 
stress distribution of the flange will be modeled as a linear stress distribution over the effective width 
with the stress equal to the highest normal stress [24]. 
𝐵@ =

$
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P                                 ( 2-34) 

Solution for this equation leads to definition of a reduction factor 𝛽 outlined in part 3 of EN1993-1-5 [1]. 
beff = β	b0                                ( 2-35) 
 
 

2.4.4 Effective width method in bending 
 
The behavior of the class 4 cross-section can be explained in bending by following Figure 2-15. Euro 
code indicates that the development of plate buckling starts with the stress distribution obtained on the 
gross cross-section.  
 

 
Figure 2:15 Development of the strength and eccentricity versus compression strain in the compression flange [9] 

Cross-sections of prismatic members are remodeled as a set of separate plate elements that can be 
subjected to uniform or gradient compression. Each plate element has a buckling strength. 
Level 1 is the end of the elastic stage and coincides with the buckling of the slenderest plate. Effective 
width method allows the benefit of higher resistance, by considering the resistance of the cross section 
after the buckling of the weakest part. Therefore, the resistance still increases even after buckling of the 
le slender element. The ultimate bending resistance is defined at the time that the plate gets the yield 
stress at the most compressed fiber. To gain the effective width reduction of the flange can be done in 
one iteration, however, reduction in the web is an iterative process that depends on the maximum and 
minimum stress ratio. The eccentricity ΔeM for girder in bending resulting from the equilibrium of stress 
distributions in the cross-section leads to this iterative procedure for determining the final neutral axis of 
the cross-section. The point of attention is that this eccentricity does not cause any additional moment 
from 𝑁. ∆𝑒G and the additional moment should be calculated based on the shifted position of the neutral 
line in the effective section reduced having pure compression	∆𝑀 = 𝑁. ∆𝑒w.   
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The code suggests using a stress pattern from 𝜎 = 𝑀%=/𝑊@ff and keep doing iteration until having a 
constant stress pattern on the web of the reduced cross-section.   
𝜎xC<C' = 𝜌. 𝑓H 
𝜎xC<C': is the mean value of a stress distribution resulting from buckling of the plate element. 

𝜌: is the plate buckling reduction factor depending on the plate's slenderness   �̅�? = d f3
g'0)(

 

 
Figure 2:16 Distribution of stress caused by local buckling w of plate elements subject to compression strain [9]. 

For the plate element in pure compression, there is an equivalence between the resistance calculated 
with the reduced stress σlimit or calculated with the reduced section beff. 
 
𝑅FB' = 𝑓H. 𝑏@ff . 𝑡 = 𝑏. 𝑡. 𝜎xC<C'                                 ( 2-36) 
 

 
    

 
 
If the verification of the cross-section is going to be performed based on the criteria of the EN1993-1-5, 
The code allows for the reduction of the slenderness based on the maximum design compressive stress 
when it is lower than yield stress and therefore increases the buckling reduction factor. 
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However, this reduction is mentioned to be conservative in the design. An alternative approach to 
consider the effective width for stress levels lower than yield stress is introduced in annex E of EN1993-
1-5.  
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for outstand compression elements: 
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Figure 2:17 Equivalent effective width [9] 
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3 
3 Definition of finite element 

model of the stiffened plate 
 
Within an isolated stiffened panel interaction may take place between adjacent plate and stiffener 
elements. The degree of interaction will depend upon the geometrical properties and instability within 
one element that may accelerate the collapse of another plate. 
A stiffened panel is usually part of a larger structure, and it is therefore not obvious how to define the 
boundary conditions of an isolated panel. A common assumption is to consider the edges as simply 
supported, and free to move in-plane but forced to remain straight [25] [26].  
The analysis of the understudied panels is performed through geometrical and material nonlinear 
analysis using Abaqus.  Details of the model including the definition of the material, boundary conditions 
and loading, definition of mesh, and solving method are illustrated in this part of the report.  
 

3.1 Material properties  
 
Material is modeled elastic-plastic with strain hardening according to EN1993-1-1. The hardening is 
equal to E/100 and the yield stress is equal to 355 N/mm2. True stress-logarithmic strain material 
property is defined in numerical simulations. Young’s modulus is equal to 210000 MPa and the Poisson 
ratio is equal to 0.3 for steel. 
When defining plasticity data in Abaqus, true stress, and true strain must be used. ABAQUS requires 
these values to interpret the data in the input file correctly. However, quite often material test data are 
supplied using values of nominal stress and strain. In such situations, the plastic material data from 
nominal stress and strain to true stress and strain must be converted [27]. 
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The relationship between true strain and nominal strain is established by expressing the nominal strain 
from equation 3-1.  
  
𝜀2345 = 𝐿𝑛(1 + 𝜀)      𝜎2345 = 𝜎(1 + 𝜀)       ( 3-1) 
 

3.2 Imperfection  
 
Where imperfections need to be included in the finite element model to account for the geometrical 
deviation from the perfect shape. These imperfections should include both geometric and structural 
imperfections.  
 
Imperfection can be applied in two different ways: 
1) Measuring the geometrical imperfection and residual stress due to the fabrication process.  
2) Using equivalent imperfection which will also allow to introduce residual stress in the section as an 
equivalent imperfection. There are two ways to define the equivalent initial imperfection. One method is 
to apply imperfection based on a predefined standardized function, and the other method is to modify 
the imperfection shape of the structural element by taking displacement driven from linear buckling 
analysis. The manually defined imperfection is more complex, but it usually leads to more robust and 
reliable models. Application of the eigenmode imperfection usually leads to a safe design [28]. 
 
In the case of large structures like box sections of the bridge structure with numbers of the longitudinal 
and transverse stiffeners measuring the imperfection and residual stress is not a realistic approach. In 
the case of applying equivalent initial imperfection in nonlinear analysis, different directions of 
imperfection should be chosen to identify the lowest resistance. If more than one equivalent imperfection 
is used, a combination of those should additionally be considered. 
 

3.2.1 Equivalent geometrical imperfection 
 
Equivalent geometrical imperfection can be categorized into four subgroups [29]. 

1) Equivalent geometrical imperfection for global structures(frame) 
2) Equivalent geometrical imperfection for structural members 
3) Equivalent geometrical imperfection for cross sections(plates) 
4) Equivalent geometrical imperfection for shell structures 
 

When equivalent geometrical imperfection is a combination of the imperfection from different sub-
groups, each imperfection should have its maximum value and they should be linearly added [28]. For 
equivalent cross-section imperfection in plated structures, considering the combination of imperfection 
is necessary. First, the leading imperfection should be chosen with the accompanying imperfection at 
an amplitude reduced to 70% [1]. The direction of the applied imperfection should be such that the 
lowest resistance is obtained.  
Geometric imperfections amplitudes are given in the National Annex of EN1993-1-5. These 
standardized imperfections represent the most observed imperfections during the manufacturing 
process.  

 
Table 3-1Initial imperfection magnitude [1] 

One of the most used hypotheses is to assume this pattern given by the eigenmodes of a perfect element 
obtained by a linear buckling analysis (LBA) as initial imperfection. These imperfections must cover the 
effects of other imperfections like load eccentricities, residual stresses, etc. It is known that multiple 
eigenmodes and different interactions corresponding to the desired deformation for local and global 
panel imperfection and stiffener imperfection should be considered. This is because the first buckling 
mode is not necessarily always the most disadvantageous one.  
In wide stiffened panels, the global buckling mode appears sometimes only after tens of eigenmodes. 
Moreover, in the eigenmodes, the deformation of the stiffeners is combined with the deformation of the 
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panel, in most cases, which makes it impossible to define the correct amplitude for each type of 
imperfection separately. For this reason, the imperfections are introduced to the model as the external 
file.  
 

3.2.2 Applied Imperfection on the plates 
 
For dense stiffened panels, local buckling effects are important when the relative rigidity of the stiffeners 
is high. In the case of having stiffeners with low relative stiffness, the global imperfection is going to be 
the leading initial imperfection. Global deflection must be accounted for with the interaction with local 
buckling mode. In this study local initial imperfection between subpanel and bow imperfection in the 
stiffeners and their combinations are defined for analysis of each plate and the imperfection is applied 
as the external file to the FEM model. The applied initial imperfection is visualized below by plotting the 
deflection in the nodes for the case that the initial imperfection is towards the stiffeners (negative initial 
imperfection) for model number 1.   
 

• Stiffener imperfections  
The amplitude for stiffener imperfections has its shape represented in Figure 3-3 and is defined by 
equation 3-2.  The direction of the initial imperfection in the longitudinal stiffeners is defined compatible 
with the global initial imperfection shape.  
 
𝑒](𝑦, 𝑧) = 𝑒PA × cos	(
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                                       ( 3-2) 

 
 

Figure 3:3 Left: Imperfection in one stiffener [26] Right: imperfection in all stiffeners 

 
Figure 3:4 Stiffeners imperfection node fil in transverse direction    Figure 3:5 Stiffeners imperfection in 

longitudinal direction 

• Global Imperfection  
This type of deformation occurs generally when the stiffeners have low inertia (overall buckling mode). 
The modeling of global imperfections is given by:  
𝑒](𝑦, 𝑧) = 𝑒PA × cos	(
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 Figure 3:6 Global imperfection mode in panels [26] 
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In the design of stiffened plates, the current EN1993-1-5 considers that for certain geometries the 
behavior is column-like, for certain other geometries, the behavior is plate-like, while for the remaining 
geometries, the behavior is in between the plate-like and column-like behavior modes. The behavior is 
to be called pure column-like when the whole model behaves as a compressed column. The given 
criteria as initial global imperfection in the annex C5 of EN1993-1-5 is more representative of the plate-
like buckling Figure 3-7 B. However, for the case of the column-like behavior of the plates, deformation 
is more like a half sin wave in the longitudinal direction [30] . 

 
A) B)  

 

 
 

C)      D)  
Figure 3:7 A)Pure column- like buckling behavior,  B) plate- like buckling behavior, C) Interaction behavior, D) 

Dominant column-like behavior [30] 

With the supports at the longitudinal edges, the behavior can never exactly reach the pure column-like 
behavior, thus, this behavior could be called dominantly column-like behavior Figure 3-7 D. In practice, 
the pure column-like buckling will be observed after a certain transition length along the width of the 
plate.  
 

 
Figure 3:8 Dominant column-like buckling plate side. 

 
Figure 3:9 Dominant column-like buckling stiffeners side. 
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Figure 3:10 Global imperfection node file transverse direction     Figure 3:11Global deflection node file in 
longitudinal direction 

Since the failure behavior of the studied stiffened plates is pure column-like buckling (dominant column-
like buckling), the global initial imperfection is defined as only a half-sine wave in the longitudinal 
direction. Allowance has been made for the transition length, and this has been equal to the width of 
two subpanels. In the transition length, imperfection increases from zero at the longitudinal edges to the 
maximum initial imperfection of min (a, b)/400 at the second side stiffeners. 
 

• Local imperfections  
Local imperfection is defined on a subpanel that corresponds to the part of the panel between stiffeners 
as represented in Figure 3-12. The local initial imperfections which are a function of the number of 
stiffeners are given by equations 3-4. 
 
𝑒](𝑦, 𝑧) = 𝑒PA × cos	(
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𝑏C =
𝑏
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The number of half-waves is different for each panel, and it depends on the number of longitudinal 
stiffeners. The methodology for defining the number of half-sine waves in the longitudinal direction 
involves having local half-sin waves close to the number of local half-sin waves in the transverse 
direction. When the number of half-sin waves in the longitudinal direction includes a fraction, the two 
closest integer number of longitudinal half sin-waves are considered.  
 
𝑛C = 	𝑖𝑛𝑡 V8

9C
X − 1										𝑛z = 	𝑖𝑛𝑡 V8

9C
X + 1         ( 3-5)  

 
Figure 3:13 Local imperfection node file in the transverse direction 

Figure 3:12local imperfection in subpanels 
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Figure 3:14 Local imperfection node file in the longitudinal direction with 10 half-sine waves 

 
Figure 3:15 Local imperfection node file in the longitudinal direction with 9 half-sine waves 

For each plate twenty-three different types of imperfection and combination are defined, including the 
global imperfection and local imperfection with different lengths of the half sin waves in the longitudinal 
direction. Results of the analysis of each plate is presented for each combination of initial imperfections 
is presented in the annex I of the report.   
 
 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3-2 Combination of the initial imperfection 

Imperfection 
code 

Imperfection type 

combination1 global mode   with magnitude of -min(a,b)/400. (IPg) 

combination2 global mode   with magnitude of min(a,b)/400. (IPg) 

combination3 local i longitudinal sin waves with a magnitude of min(ai,bi)/200 (IPl-i) 

combination4 local i longitudinal sin waves with a magnitude of -min(ai,bi)/200. (IPl-i) 

combination5 local j longitudinal sin waves with a magnitude of min(ai,bi)/200. (IPl-j) 

combination6 local j longitudinal sin waves with a magnitude of -min(ai,bi)/200 (IPl-j) 

combination7 longitudinal stiffeners with a magnitude of h/50 following the form of global imperfection (IPs) 

combination8 - IPg +0.7 IPs +0.7  IPl-j 

combination9 - IPg +0.7 IPl-j 

combination10 - IPg +0.7 IPs -0.7 IPl-j 

combination11 - IPg -0.7 IPl-j 

combination12 - IPg +0.7 IPs +0.7  IPl-i 

combination13 - IPg +0.7  IPl-i 

combination14 - IPg +0.7 IPs -0.7  IPl-i 

combination15 - IPg -0.7  IPl-i 

combination16 IPg -0.7  IPs +0.7  IPl-j 

combination17 IPg -0.7  IPl-j 

combination18 IPg -0.7 IPs +0.7  IPl-j 

combination19 IPg +0.7  IPl-j 

Combination20 IPg -0.7I IPs -0.7  IPl-i 

Combination21 IPg -0.7  IPl-i 

Combination22 IPg -0.7 IPs +0.7  IPl-i 

Combination23 IPg +0.7  IPl-i 
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3.2.3 Analysis type and evaluation strategy 
 
Two types of analysis are performed on the structures:  
 
Linear elastic analysis (LEA) to determine whether the loading and boundary conditions do not impose 
deformation in the structure. The LEA analysis has been evaluated by controlling the stress in the panel. 
In this analysis, no stress deviation in the panel should be caused. Geometrical and material nonlinear 
analysis(GMNIA) to determine the resistance of the panels and stress in the panels during loading.    
 
The structural resistance can be determined by the evaluation of the calculated load-deformation path 
by taking the lowest resistance from the following two 
criteria[28]: 

 
C1) The maximum load level of the computed load-deflection 
path(maximum load limit 
 
C2) The largest tolerable deformation or strain, in cases where 
this happens during the loading path before reaching the limit 
load.  The recommended limiting value of the principal 
membrane strain is 0.05. this criterion is also relevant for panels 
in compression. [23] 

 
 
 

3.3 Solving method 
 
The ultimate resistance is considered as the maximum load factor on the load-deformation curve, 
obtained by the arc-length Riks method, which is particularly suitable for numerical problems where non-
linear static equilibrium solutions are sought with descending load level and/or displacement along the 
loading path. 
 

3.4 Boundary condition  
 
In the analysis of the built-up section including the longitudinal stiffeners, support and boundary 
conditions should be defined with extra care. To prevent additional eccentricity to the structure which 
will influence the failure mode and the structural behavior. 
As shown in Figure3-17, the model has vertical support on four edges of the plate sheet. One support 
in the transverse direction is applied in the middle of the loaded edge to prevent the rigid body motion 
in the transverse direction. Two supports in the longitudinal direction are applied to prevent in-plane 
rotation and rigid body motion in the longitudinal direction. By defining an equation constrain between 
as equation 3-6 the edge nodes of the plate sheet and a reference point in the middle of it, the relative 
displacements between the points of the edge are prevented. In the other words, the nodes in the loaded 
edges of the plate sheet are constrained to move uniformly in the longitudinal direction. 
The ability of the loaded edge to deform freely in the longitudinal direction has an influence on the 
ultimate resistance. In practice, the plate is always part of a structure; therefore, a constraint that 
maintains uniform stress introduction aligns better with reality. This constrain can be implemented in the 
model either by applying a load as a displacement, defining an equation constraint, or by specifying a 
rigid body constraint between the loaded edge and a reference point in the center of the mass. In terms 
of the resistance and the behavior of a single plate prone to column-like buckling failure, the introduction 
of edge equation constrain shows better compatibility with analytical results in terms of resistance and 
the longitudinal stress in the plate. 
𝐷𝑂𝐹FV,EB;98B	,D;=@A −𝐷𝑂𝐹F,V,EB;98B	,>@f>@D:@	?;C' = 0         ( 3-6) 
 

Figure 3:16 Evaluation strategy for ultimate resistance [28] 
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3.5 Validation of the model  
 
Validation is comparing the obtained result with the experimental data or known accurate numerical 
model. In this study, two validations have been performed both for single unstiffened plate and the 
stiffened plate with the boundary conditions outlined in part 3-4. 
The model is validated for the unstiffened plate regarding the resistance and buckling stress. The 
reference for the validation is the book ‘Design of Steel Plated Structures with Finite Elements’ [31]. The 
configuration of the plate is as follows: 
 
b=1200 mm, a=1000mm, tp=12 mm, fy=355 N/mm2 ,𝜎Ed=100 N/mm2.  
The first global mode from eigenmodes was selected as the initial imperfection ,with an amplitude of 
min (a/400;b/400) ,to be applied on the model .  
 

 Design of Steel Plated Structures 
with Finite Elements’ [31] Own FEM analysis differences 

First 
buckling 

mode 

 
 

0% 

Resistance 177.25 MPa 178.60 +0.76% 
 

Table 3-3 Validation of the model for unstiffened plate 

Validation of the stiffened plated has been performed by using configuration of the model used by Tran 
[32]. The direction of the applied initial imperfection is towards the plate side and has the shape of first 
global bucking mode.  The stiffened panels included 8 equally spaced flat stiffeners. The load is applied 
as shell edge load causing a uniform stress distribution equal to 100 MPa in the whole plate.   
 
with ts=16 mm, hs=150 mm, tp=12 mm, b=4800mm, ,𝜎Ed=100 N/mm2.  

 
Figure 3:18 Configuration of the stiffened plate for validation of the model 

Aspect ratio Resistance Tran [32] Resistance Own FEM analysis Difference 
0.5 16.9 17.13 1.36 
1 8.2 8.33 1.58 
1.5 7.7 7.61 -1.16 

Table 3-4 Validation of the model for stiffened plate 

Figure 3:17 Boundary condition for plate with support in all direction 
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𝛼 = 0.5  𝛼 = 1  𝛼 = 1.5 

   
Global buckling eigenvalue from LBA 

 
  

LEA without excentricity 

   

GMNIA longitudinal stress distribution 

 
Compression resistance-deflection  

Table 3-5 Results of LBA, LEA and GMNIA analysis. 

Model is validated for the stiffened plate with three different aspect ratio. Aspect ratio 0.5 present the 
pure column like buckling, aspect ratio 1 present the interaction of column-like and plate-like buckling 
and aspect ratio 1.5 present the pure plate-like buckling.  
 
The model does not include any eccentricity from loading condition as it is clear from the stress pattern 
in the linear elastic analysis. It can accurately determine the resistance comparing to the resistance 
determined by the reference and is able to capture differences between stress distribution in plate-like 
buckling and column-like buckling and the interaction buckling.   
 

3.6 Mesh  
 
For model discretization, four-node shell elements with reduced integration (S4R) are utilized, featuring 
a mesh size of approximately 25 x 25 mm. The Simpson method is employed for integration along the 
thickness, and all shell elements are defined having 7 integration points along the thickness. The mesh 
elements are quadratic linear elements, and the reduced integration technique is employed in shell 
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definition. This method of integration reduces computational effort for the assembly of system matrices 
and enhance the accuracy of finite element results. 

 
Figure 3:19 FEM mesh in model number 3 

3.7 Verification of the model  
 
Verification checks and the sensitivity analysis of the model to the discretization prove the correct 
application of the numerical model and analysis. In this study verification control has been performed by 
using finer mesh elements.  
Verification control has been performed by controlling.  

a) Discretization error checks 
b) Sensitivity checks of the input parameters and mesh size. 

A mesh density corresponding with less than a 5% difference within the obtained result compared to the 
larger mesh, generally provides a good approximation of the results [23]. 

 

Mesh size 50 25 10 
Ultimate resistance 100% 99.64% 99.4% 

deflection 100% 99.04% 98.1% 
    

Table 3-6 Mesh sensitivity analysis
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4 
4 Elastoplastic behavior of 
stiffened panels with pure 

column-like buckling failure 
To obtain an indication of the stress pattern in wide stiffened panels with an aspect ratio lower than 1, 
prone to buckling failure in the form of pure column-like buckling, GMNIA analysis of five panels has 
been performed. Column-like buckling failure is the common buckling mode in bridge applications, as 
the most economical design for a bridge application is achieved when the aspect ratio of the 
compression panel falls within the range of 0.2 to 0.3 [10]. In this study, pure column-like buckling is of 
interest. Plate with aspect ratio equal to 0.19 is representative of the deck of the Haringvliet bridge 
buckling failure mode.  
The plate configurations are considered in a way to study failure of the wide stiffened plate with relative 
weak stiffeners. In the end the analytical method for addressing absolute maximum compression stress 
in plate is introduced.    
 

4.1 Parametric study of the elastic-plastic behavior of wide 
stiffened panels.  

 
The configuration of the panel is chosen to induce pure column-like buckling failure in different stiffened 
plate with aspect ratios lower than1. The original stiffeners in the Haringsvliet bridge are double-side 
bulb stiffeners with a height of 160 mm and a web thickness of 8 mm, as shown in table 4-1. To use 
shell elements in the FEM model, these stiffeners are modeled as T-shaped stiffeners with the 
equivalent area and second moment of inertia. 

Properties Bulb stiffener T shape stiffener 

Area(mm2) 1710 1705.6 

eccentricities(mm) 93.30 93.30 

Second moment of 
Inertia(mm4) 

4440000 4455381 

Dimensions(mm) 

 
 

Table 4-1  The equivalent stiffener dimension 

The panels are chosen to have different aspect ratios lower than 1 while maintaining a substantial 
reduction factor (pc)as the result of global buckling in form of pure column-like buckling. In the parametric 
study, it becomes clear that shorter panels barely experience any reduction. Subnational reduction is 
needed to be able to accurately address the ability of effective section properties in determining the 
stresses. Having aspect ratio lower than 0.5 was also of major interest. Reducing the length and keeping 
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the width constant for gaining lower aspect ratio will lead to have stocky plate that is fully active is 
resisting the compression stress. For this reason, in panels with a lower aspect ratio, the width has been 
increased instead of the length.  
The plate configuration is chosen in a way that the global reduction factor from plate and column-like 
buckling is less than 0.85. 
 

stiffened compression plate dimension 

number unloaded 
length 

(a) 

width 
(b) 

Subpanel 
(bi) 

plate 
thickness 

number of 
stiffeners 

stiffeners 
thickness 

stiffeners height 

 
mm mm mm mm 

 
mm mm 

1 2760 3450 287.5 10 11 8 160 

2 2070 3450 287.5 10 11 8 160 

3 2760 6900 300.0 10 22 8 160 

4 2070 6900 300.0 10 22 8 160 

5 2192 11500 302.6 10 37 8 160 

Table 4-2 Dimension of stiffened plate 

Compression plate critical buckling stress 

number Relative 
bending 
stiffness 
𝛾!",$ 

𝜒: 𝜌: 𝜌 𝜎𝑐𝑟,7  𝜎73,8 ξ a/b Plate 
resistance 

EN1993-1-5 

  
 

  MPa MPa 
  

MN 

1 46 0.734 0.734 1.0 880.51 854.4 -0.029 0.8 14.14 
2 46 0.833 0.833 1.0 1565.30 1517 -0.031 0.6 15.92 

3 22.9 0.720 0.720 0.901 845.21 545.7 -0.354 0.4 27.7 
4 22.9 0.830 0.830 0.901 1502.6 545.7 -0.639 0.3 31.4 
5 13.74 0.795 0.795 0.623 1247.2 197.1 -0.859 0.19 50.50 

Table 4-3 Critical buckling stress 

For the defined configurations of the panels local buckling in the subpanels and the web of stiffeners will 
not happen and subpanels get class 3.  
Classification has been performed based on the criteria of table 5-2 EN1993-1-1. All subpanels belong 
to the category of inner part and the limit defined for the inner elements are used for the classification 
of the subpanels. 
For flange sub-panels in pure compression, the criteria 4-1 should be met to have subpanels of class 3. 
:
'
≤ 42	𝜀	           ( 4-1) 

 
Table 4-4 Internal compression part classification [33] 
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4.2 Result of the GMNIA analysis   
 
In the analysis of the plates, several imperfections and their combinations are considered. The 
imperfections defined for GMNIA analysis of these plates can be found in Table 3-2. The ultimate 
resistance result of each imperfection combination is presented in Annex I. Graphical results for three 
cases of the combinations of initial imperfection are presented in this chapter. They represent the results 
that led to the lowest resistance for cases of combination of initial imperfection, where the global 
imperfection direction is towards the plate side, towards the stiffeners side and in the third case, only 
having the global initial imperfection towards the plate is considered.  
Positive initial imperfection is defined as having the initial global imperfection towards the plate in the 
combination with other local initial imperfection that leads to the lowest resistance, while negative global 
imperfection is defined as having the global initial imperfection in the direction of the stiffeners. The 
imperfection direction not only influences the ultimate resistance but also the stress pattern in the section 
due to the bowing effect in the middle of the section. The development of the longitudinal stress is 
observed in the middle of the plate, with stress being measured at the point with zero faction ratio (middle 
of the plate thickness). For introducing the analytical method maximum magnitude of the compression 
stress in the plate sheet with minimum resistance is studied.  
 

4.2.1 Failure behavior 
 
Column-like buckling is determined by considering the most compressed fiber yielding, based on 
EN1993-1-1. Investigation of the stress reveals that at point A in Figure 4-1, the compression stress will 
reach the yield stress in the stiffeners. After this load step, plastic strain rapidly develops in the stiffeners 
of the stiffened plate. Despite the appearance of the first plastic strain, the plate is still capable of 
resisting the applied load. Due to material hardening and boundary conditions, the stiffened plate can 
reach a higher resistance, up to limit B. This extra resistance aligns with the yielding of stiffeners and 
development of plastic strain in them. The analysis of the stiffened panel with weak stiffeners where 
failure of stiffeners occurs prior to buckling of plating normally overall buckling occurs in the elastic 
region.  
While the stiffened panel with orthotropic behavior, can sustain further loading even after overall buckling 
in the elastic region occurs. Their ultimate strength is eventually will reach by formation of a large yield 
region inside the panel and/or along the panel edges. The observation of the failure was based on the 
expectation. The plate failed in elastic region without any yielding in the plate sheet as it is shown in 
Figure 4-2 and 4-3. 

 
Figure 4:1 Load deflection diagram model 1 at failure 

 
 

Figure 4:2 Longitudinal stress at point A  Figure 4:3 Longitudinal stress at point B 
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4.2.2 Resistance 
 
The results prove that all chosen panel configurations will present failure in the form of pure column-like 
buckling and the configuration chosen for the panel can be used for further investigation of the panel 
with pure column-like buckling as the compression flange of the box girder. As it is clear from the stress 
and the determined ultimate resistance there does not exist any post-buckling resistance, which is one 
feature of the panel with pure column-like buckling failure.   
There is a significant difference between the resistance depending on the direction of the initial 
imperfection. In general, the panel with imperfection towards the plate side which is positively named in 
this report leads to the lowest resistance. This conclusion regarding the direction of the initial 
imperfection is compatible with the result of Manco [26]. They find that in 97% of the cases in the flat 
stiffened panel imperfection towards the plate will lead to the lowest resistance.  
Considering the edge stress equal to the yield stress in the analytical method is not compatible with the 
actual stress magnitude at the edges (shown in figures 4-11) when the failure is pure column like 
buckling. This will cause an overestimation of the resistance in the pure compressed plate with such a 
failure. 
Considering local initial imperfection in combination with global initial imperfection in the plate with pure 
column like buckling, have influence on the loads level in which the first yielding will occurs.  
The first kink in the load-deflection diagram takes place at the load level equal to 𝜒:,fC>A'	?B8A'C:	. 𝑓H. 𝐴E. In 
the plate with shorter length this limit was lower than the analytical limit from EN1993-1-1. The 
explanation for that is the resistance and the reduction factor in analytical method is based on having 
initial imperfection in the form of only half sine wave in the longitudinal direction. In this study the local 
imperfections were also included combined with global imperfection, and the observation was that local 
imperfection will show effect on the plates with shorter length . Their influence was lowering the loading 
step in which the first plastic strain was appeared.  The ultimate resistance was in all cased higher than 
the appearance of the first plastic strain. As the result of material hardening, the plates were able to 
resist higher resistance trough yielding of the stiffeners. The extra resistance that the plate gained 
through yielding of the stiffeners was higher in the shorter plates.  
If only the ultimate resistance is of concern, it was observed that the reduction factor from GMNIA 
analysis is. almost comparable with the column buckling factor (𝜒:)from  the EN1993-1-1; however, 
considering the edge stress equal to yield stress will cause overestimation of the resistance following 
EN1993-1-5 criteria. It is observable in the plate with pure column like buckling deflection of the plates 
is relatively low.   
  

Resistance 
EN1993-1-5 

Resistance 
GMNIA   

difference 𝜒"  
EN1993-1-1 

𝜒" 
First plastic 

strain 

difference 𝜒", 𝑛𝑢𝑚 
Ultimate 

resistance 

difference 

 
MN MN %   %  % 

model1
𝛼 = 0.8 14.14 14.46 2.26 0.734 0.726 -1.09 0.765 4.223 
model2 
𝛼 = 0.6 15.92 15.73 -1.19 0.833 0.744 -10.68 0.832 -0.120 
model3 
𝛼 = 0.4 27.67 28.28 2.20 0.72 0.718 -0.28 0.748 3.889 
model4 
𝛼 = 0.3 31.43 30.48 -3.02 0.83 0.752 -9.40 0.825 -0.60 
model5 
𝛼 = 0.19 50.50 51.27 1.52 0.795 0.797 0.25 0.811 2.013 

Table 4-5 GMNIA analysis of ultimate resistance 

 
Figure 4:4 Aspect ratio 0.8 b=2760   Figure 4:5 Aspect ratio 0.6 b=2070 
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Figure 4:6 Aspect ratio 0.4 b=2760   Figure 4:7 Aspect ratio 0.3 b=2070 

 
Figure 4:8 Aspect ratio 0.2 b=2192 

4.2.3 Initial imperfection 
 
In this study, several imperfections with different directions are considered for the GMNIA analysis. 
Comparing local, global, and bow imperfections in the stiffeners, it was observed that the global 
imperfection and its direction has the most significant effect on the resistance and the behavior of the 
stiffened plate with column-like buckling failure having relative weak stiffeners. In all cases, the 
combination of the initial imperfection having the contribution of the global imperfection with its direction 
towards the plate side, has leaded to the lowest resistance. Having the global initial imperfection towards 
the stiffeners will cause gaining resistance up to 20% higher than the analytical resistance from EN1993-
1-5.  
As the result of having a combination of imperfections the appearance of first plastic strain in the most 
compressed fiber was lower than the buckling stress limit determined from EN1993-1-1 criteria in shorter 
plates. However, considering the ultimate reduction factor obtained from the GMNIA analysis, resistance 
and reduction was comparable to the reduction factor  determined from EN1993-1-1 [33]criteria.  
In determining the ultimate resistance considering only global imperfection in the GMNIA analysis will 
provide accurate enough exact resistance. As it is clear in figure 4-8, the resistance of the models with 
only half sin initial imperfection is very close to the ultimate resistance from the same model including 
global and local initial imperfections. The major influence of the local initial imperfections was observed 
in the model with shorter length meaning models with aspect ratio equal to 0.3 and 0.6 and the length 
of 2070mm. 
   

4.2.4 Stress 
Generally, the longitudinal stress in the middle of the plate sheet is lower than at the edges when the 
panel is bowing towards the plate side. The longitudinal stress in the middle of the plate sheet will have 
a higher value when the deflection of the stiffened plate is towards the stiffeners. The local deflection 
shows an influence on the stress pattern in most outer integration points through the thickness. Stress 
is studied further in the integration point in the middle of the thickness.  

 
Figure 4:9 Stress in the middle strut having initial imperfection towards stiffeners 
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Figure 4:10 Stress in the middle strut having initial imperfection towards plate 

In general, when the behavior is elastic the stress in the middle can be determined from equation (4.2), 
in which the stress resulting from an additional moment in the middle of the plate will be accounted for. 
𝜎:;<?>@AAC;D	 =

{'
|
+ {'×=@fB@:'C;D

~
           ( 4-2) 

The stress in the edges does not have any influence from the bowing effect, therefore it can be 
calculated from equation 4-3. 
𝜎:;<?>@AAC;D	 =

{'
_

          ( 4-3) 
Figure 4-11 shows the development of the stress in the compressed stiffened plate sheet. Since the 
plate will reach minimum resistance by bowing towards the plate side, the stress in the middle will be 
lower. Stress in the plate sheet is more uniform in the plates with shorter length than in the plates with 
longer length when comparing Figure4-11, A and B to Figure B and D. All plates failed by having stress 
at the edges lower than the yield stress. 

 
A)       B) 

 
C)       D) 

 
 

E) 
Figure 4:11 Development of the longitudinal stress from GMNIA analysis on the plate A) aspect ratio 0.8, 

B)aspect ratio0.6,C)aspectration0.4,D)aspect ratio 0.3 E)aspect ratio 0.2 
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The question to be answered was which section area is representative of the stress in equation 4-3, the 
gross section area or the effective section area. To answer this question, the compression stress from 
GMNIA analysis is derived from the FEM model. In Figure 4-12, the GMNIA compression stress is shown 
with the blue line. The red line represents the stress determined by dividing the applied force by the 
gross section area. The value of the compression stress from GMNIA analysis is comparable to the 
stress from the analytical method in which the gross section area is used for stress determination.
    

 
A)       B) 

 
C)       D) 

 
E) 

Figure 4:12 Stress from GMNIA analysis compared to stress from gross section properties A) aspect ratio 0.8, B) 
aspect ratio0.6,C)aspectration0.4,D)aspect ratio 0.3 E)aspect ratio 0.2 

Diagram 4-12 shows that the gross section properties are representative of the maximum stress in the 
plate sheet. Moreover, the deflections are relatively low. It reveals that, up to column-like buckling 
resistance limit, the behavior of the panel is linear elastic since the increase of the stress flows a linear 
line and the deflections do not cause enormous second order effects.  
The maximum stress magnitude at the edges is comparable to the value of pc.fy in all five plates. In 
Diagram 4-13, the maximum compression stress occurring at both edges of the plate at failure is plotted 
against the buckling reduction factor. The stress is limited to the maximum stress magnitude equal to 
pc.fy. Since the behavior is purely column-like buckling, the edge stress did not reach the yield stress 
limit. 
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Figure 4:13 Stress at the edges 

4.3 Comparing resistance with criteria of a new draft of 
EN1993-1-5: 

 

4.3.1 Alternative interaction formula: 
 
The draft of the new EN 1993-1-5 (2022) introduces an alternative method for determining the interaction 
behavior of the stiffened panels. For orthotropic plates with at least three identical stiffeners, the 
weighting factor 𝜉 may be obtained by equation4-4 and 4-5. 
 
𝜉 = 𝑘g,? V
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9
< √𝛾1        ( 4-5) 

 
The validity criteria for using this alternative method is not met for three of the under-studied plate 
configurations. However, it was still used to limit the 8

9
	 to the minimum value of 0.5. What is markable in 

this method is that for panels in pure compression, the 𝜉 factor will always be higher than zero. 
Therefore, the categorizing of the stiffened panels behavior in the form of pure column-like buckling is 
missed. 𝜌: determined from the alternative method is comparable to the existing method since the 𝜉 
factor is almost zero. 
 
 
 𝜉 𝜌:,8B'@>D8'Cp@ 
model1 0.0032 0.75 
model2 0.0016 0.84 
model3 0.0024 0.74 
model4 0.0024 0.84 
model5 0.0011 0.81 

 
 

 

Figure 4:14 pc, numerical and pc, analytical  

4.3.2 Resistance 
 
Based on the new research, the stiffness in the stiffened plates should have relative flexural rigidity 
higher than a specified value to be able to form a nodal buckling shape. Plates having weak longitudinal 
stiffeners should be considered unstiffened plates regarding their resistance to direct stresses. 	
In the draft of the new EN1993-1-5(2022), There is a minimum stiffness criterion defined for the 
longitudinal stiffener. In the draft of EN1993-1-5, it is mentioned to use the criteria of the unstiffened 
plate for determining the resistance of the panel with weak longitudinal stiffeners. The minimum stiffness 
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criteria is relative to the panel width defined, therefore having the same stiffeners, in the wider panel 
minimum stiffness criteria of 25 will not wile for narrower plates the criteria will be met.   

𝛾AB,C∗ =
%.I,>,)∗

9L
> 25.	           ( 4-6) 

In which  
𝐼AB,C∗: is the second moment of area of the stiffener for out-of-plane bending, its cross-section including 

a participating width of the plate of 10tp on each side of each stiffener-to-plate junction. 
If the relative bending stiffness of each stiffener	γ	* is less than 25,	the resistance of the stiffened panel 
may be determined from the criteria of an unstiffened panel.  
For the unstiffened panel with aspect ratios lower than 1, a column type of buckling can occur, and the 
check should be performed on the interaction criteria between column-like and plate-like buckling to 
determine the final reduction factor pc. 
Column-like buckling stress of the unstiffened plate can be determined from equation 4-7. 
 

𝜎:>,: =
\"%'"

$(($*+")		8"
						 , 𝜆:+ = d

f3
g'0,'

            ( 4-7) 

 
Plate-like buckling stress for unstiffened panels can be determined from equation4-8. For panels in pure 
compression the buckling factor 𝑘g is equal to 4. 
 
𝜎:>,? = 𝑘g

\"%'"

$(($*+")		9O"
	                          ( 4-8) 

 
Following the criteria of the unstiffened plate for the panel with weak stiffeners, with relative stiffness 
lower than 25 will lead to the lower resistance determination for the panels 3,4 and 5.  

 
 

number 𝜌: 𝜌 𝜒: 𝜎:>,? 𝜎:>,:  ξ a/b Plate resistance EN 1993-1-5 

  
  

MPa MPa 
  

MN 

1 0.734 1.0 0.734 916.42 943.87 -0.029 0.8 14.43 

2 0.833 1.0 0.833 1626 1678 -0.031 0.6 15.80 

3 0.066 0.066 0.068 1.60 25.63 -0.94 0.40 2.50 

4 0.066 0.066 0.011 1.60 4.14 -0.61 0.30 2.50 

5 0.040 0.040 0.010 0.57 3.69 -0.84 0.19 2.52 

 

Table 4-6 Stiffened plate resistance based on the criteria of minimum rigidity of the stiffener. 

The resistance determined based on the criteria of the draft of new EN1993-1-5 is unrealistic less than 
the resistance based on the criteria of the current EN1993-1-5.  Comparing the resistance to the 
resistance of the plates from GMNIA analysis in table 4-5 the same was concluded. 
 

4.4 Summary of the result 
 
The plates were vertically supported in four edges in this analysis, which has deviation with the 
assumption of the Eurocode for determining the column buckling resistance of the plate. The longitudinal 
support at the unloaded edges did not have a significant effect on the failure behavior of the compressed 
plate when the behavior was pure column-like buckling.  
EN1993-1-5 assumes that the stress in the edges is equal to the yield stress, however, it was observed 
that the edge of the panel will get stress equal to pcfy. The assumption of reaching yield stress is not 
valid in all cases of the plate’s failure. Reaching yield stress limit at the edges of plate is one of the 
features of the plates with orthotropic behavior.  
The column approach is often used for buckling assessment in design codes. These formulations have 
the advantage of being relatively simple and provide quick strength estimate. Looking at the deflection 
mode of the actual stiffened panel, it becomes clear that the columns approach provides the 
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representation of the real structural response most accurately in the cases that the length of the panel 
is relatively high.  
The longitudinal edges are usually supported in panels; therefore, pure column-like buckling does not 
exist. Still, it can be observed that if the σcr,p/σcr ratio is small, it can be concluded that pure column-like 
buckling can exist in a single panel, independent of the longitudinal boundary condition. The boundary 
condition will have an influence on the deflection; however, the behavior is still pure column-like buckling 
in terms of resistance with a significant feature of no existence of yield region in the plate sheet. 
For better understanding of the behavior of the panel, always the stress pattern in which the failure takes 
place should be controlled in combination with the load deflection diagram.  
In plates with stocky behavior having pure column like buckling, the stress pattern is almost constant, 
up to failure and the stress from local effects is negligible if the stiffeners are relative weak, especially 
for lower unity checks. A study on the pure column-like behavior of the stiffened panel showed that in 
100% of cases, the direction of the global imperfection that led to the lowest resistance was in the plate 
direction. Comparing to the global initial imperfection, the effect of local imperfection was almost 
negligible in panels with a higher length. The local imperfection effect will become more visible and 
dominant in panels with a shorter length. 
The stiffened panel with weak stiffeners where failure of stiffeners occurs prior to buckling of plating 
normally, overall buckling occurs in the elastic region. For determining the stress on the single panel 
with stocky behavior and pure column-like buckling failure using gross section properties can be 
representative of the absolute maximum compression stress in the plate. 
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5 
5 Definition of the FEM model of 

steel box girders  
 
Despite the wide application of stiffened plates in practice, relatively little is known about their true 
behavior, and much design work is based on small-scale experiments. To develop reliable design 
criteria, it is necessary to obtain a complete analytical understanding of the problem. Therefore, it is 
essential not only to consider factors such as geometric and material properties, imperfections, and 
loading conditions but also the effect of interaction between adjacent elements. 
The maximum load that a plate can carry, while important for design purposes, cannot be indicative of 
the true behavior of the structures. Many structures may become unsatisfactory in use before the 
ultimate load is reached due to the violation of serviceability requirements. Therefore, a complete 
understanding of the behavior up to collapse is essential. 
The purpose is to find how the compression stress can be determined most accurately through an 
analytical method. To answer this question, the location of the neutral line in the cross-section was 
controlled, and the maximum stress from GMNIA analysis was compared to the possible analytical 
method. 
The analysis of the studied boxes is performed through geometric and material nonlinear properties 
using Abaqus. The details of the modeling, including the definition of the material, solving method, and 
imperfections, were discussed in part 3. 
The boundary conditions and definition of meshes for the boxes are illustrated in this part of the report. 
 

5.1 Box girders configurations 
 
Box numbers 1 and 2, which have smaller cross-sections, are considered with unstiffened panels in the 
web. Box numbers 3 and 4, which have larger cross-sections, are considered to have four equally 
spaced stiffeners in the web of the section. Motivation for considering two types of cross section was to 
have also have a geometry containing longitudinal stiffeners in the web. This will be closer to the real 
configuration of the box girder in the bridge application. 
The tension flange thickness and the web thickness of the girders are defined in three categories: A, B, 
and C. In each category, a specific behavior is of concern. In categories A and B, the assumption of the 
code that the most compressed fiber reaches the yield stress is valid; therefore, the effective width 
criteria are applicable for determining the resistance. In type C of the box girder, the tension flange is 
defined as thin enough to reach the yield stress at the tension flange in the elastic analysis . The 
compression flange will not reach the yield stress limit, and the stress stays below the critical buckling 
stress based on linear elastic analysis.  
The thickness of the tension flange and the web of the girder per set of the analysis is defined in a 
related part. 
The box girders are composed of the compression flange defined and analyzed in part 4-1. The same 
scaling dimension used for defining the width of the compression flange is used in defining the height of 
the web with reference to the Haringvliet bridge.  
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Keeping the global deflection effect constant, all the girders are modeled with almost equal length to 
ensure comparable behavior on a global scale. Therefore, the girders composed of the stiffened panel 
with a length of 2070 mm are modeled with six transverse stiffeners (7 panels in total), and the stiffened 
panel with a length of 2760 mm is modeled with 4 transverse stiffeners (5 panels in total). 
 

Model height (b) width (b) transverse stiffeners distance length of the girder 
 mm mm mm mm 

1 1605 3450 2760 13800 
2 1605 3450 2070 14490 
3 3210 6900 2760 13800 
4 3210 6900 2070 14490 

Table 5-1 Dimension of the girder 

5.2 Imperfection 
 
The two imperfection combinations that lead to the lowest resistance, with the global initial imperfection 
towards the plate side and stiffeners sided in the single panel analysis, are chosen to be applied as the 
initial imperfection file on the compression flange of the box girders.  
Figure 5-1 shows the applied initial global imperfection direction on the whole girders. The imperfection 
on the cross-section is defined as an external file. The imperfection in the compression flange is 
combined with the local imperfection that leads to the lowest resistance in the analysis of the single 
stiffened plate in part 4.2. 
For the web, only global imperfection is considered, and the tension flange is without any imperfection 
defined. The imperfection that has the contribution of the global initial imperfection in the middle field of 
the girder towards the plate is positively named and shown in figure 5-1. The negative imperfection is 
defined with a contribution of the global initial imperfection in the middle field of the compression flange 
towards the stiffeners side. 

 
 

 
 

 
 

 
 
 
 
 

Figure 5:1 Definition of combination of positive initial imperfection 
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5.3 Definition of boundary conditions 
 
The recommended solution for modeling support in the built-up section is to apply the support and load 
using a reference point defined at the center of mass on two sides of the girder. In this case, an extra 
node should be defined at the center of gravity of the cross-section, and all other nodes at the edges of 
the cross-section should be coupled to the defined node. Coupling can be achieved through rigid 
elements or constrained equations. This ensures that the end cross-section is maintained as a plane. 
This method of modeling the boundary supports has several advantages, including the ability to achieve 
a pure pinned or fixed connection. The rigid end cross-section functions as a diaphragm, meaning that 
possible local failures at the load introduction zone can be avoided. 
 

 
Figure 5:2 Scheme of the model 

The reference points are defined in the center of gravity in two edges. Load and boundary conditions 
are defined on the reference points. All the edge nodes are connected by the rigid body, that relates all 
6 degrees of freedom (tie) to the reference point on each side.  On one side, all translational degrees of 
freedom are fixed, and only the rotational degree of freedom is constrained. On the other side, the same 
degrees of freedom are fixed, except that the translational degree of freedom in the longitudinal direction 
is kept free. Figure 5-3 shows the modeling of box girder number 1. The transverse stiffeners are thick 
enough to be sure the half-wave can be developed in the compression flange between them. 

 
Figure 5:3 Defining the reference point and the boundary conditions defined on the reference point.   

5.4 Transverse stiffeners 
 
Transverse stiffeners have the same dimension in all analyses. The height of the transverse stiffeners 
in the compression flange is equal to 300 mm and the height of transverse stiffeners in the web is equal 
to 250 mm. Transverse stiffeners have the same thickness equal to 15 mm in all analyses. The tension 
flange is defined without transverse stiffeners.  
In general, to deal with plate buckling the panels are considered as simply supported at all edges. These 
boundary conditions reproduce good boundary conditions of the panels in real scenarios. Besides that, 
these boundary conditions provide results on the safe side where a certain degree of rotational restrain 
exists (partially or totally clamped). It is worth mentioning that the rotational stiffness of the transverse 
stiffeners may influence the behavior of the compressed panel when the plate failure is pure column-
like buckling. To prevent providing additional stiffness to the panel the transverse stiffeners are defined 
relatively with a low second moment of inertial. 
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Figure 5:4 Rotation rigidity from the connecting to the transverse elements in the longitudinal stiffeners 

 

5.1 Solving method 
 
The ultimate resistance is considered as the maximum load factor on the load-deformation curve, 
obtained by the arc-length Riks method, which is particularly suitable for numerical problems where non-
linear static equilibrium solutions are sought with descending load level and/or displacement along the 
loading path. 
 

5.2 Mesh  
 
Quadratic four-node mesh elements with reduced integration (S4R) are employed, with a mesh size of 
approximately 50 x 50 mm. The integration method along the thickness is the Simpson method, and all 
shell elements are defined with 7 integration points along the thickness. The mesh elements are 
quadratic linear elements, and the reduced integration technique is used in shell definition to reduce 
computational effort for the assembly of system matrices and improve the accuracy of the finite element 
results. Verification of the model with the chosen mesh configuration is performed in part 5.2.2. 

 
Figure 5:5 Mesh definition on the box girder 

 

5.2.1 Validation  
 
The used methodology for defining the boundary condition and modeling of the box girder was based 
on the work of Kövesdi and Ljubinković. 
Kövesdi [28] suggest modeling edges of the sub models with the rigid body link between edge nodes to 
the master reference point, he considers the sub models of the box girder with the transverse stiffeners 
in the middle of the girder.  
Ljubinković[ [34] made the simplified model of the tested box girder using the same boundary condition, 
he also consider the transverse stiffener as the rigid body link to the reference point.  
The boundary conditions defined on the edges reference points by Ljubinković is the same as the 
boundary conditions defined by Kövesdi. 
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5.2.2 Verification 
 
Verification checks and the sensitivity analysis of the model to the discretization prove the correct 
application of the numerical model and analysis. In this study verification control has been performed by 
using finer mesh elements.  
Verification control has been performed by controlling.  

a) Discretization error checks 
b) Sensitivity checks of the input parameters and mesh size. 

A mesh density corresponding with less than a 5% difference within the obtained result compared to the 
larger mesh, generally provides a good approximation of the results. 
The mesh size of 50 mm shows less than5% deviation.  
Results of the analysis for the girder with the mesh size of 100,50 and 25 are presented in the table 5-
2. The results are normalized to the resistance and deflection of the girder with the mesh size of 
100mm. considering the accuracy of the results and computation time mesh size of 50 mm provides 
enough accurate results.  

 
Figure 5:6 Mesh sensitivity analysis of the box girder 

 
100 50 25 

Ultimate resistance 100 97.86 96.82 
maximum deflection 100 76.88 72.69 

Table 5-2 Mesh sensitivity analysis 

 

5.3 Shear-lag effect 
 
A rigid body is applied along the load introduction place of the model to ensure a realistic uniform stress 
distribution against actual loading. This definition of the load and boundary condition ensures an 
equivalent internal force distribution on the defined sub-model as part of the larger structure. When 
determining the effective cross-section properties, reductions as the result of shear lag in tension and 
compression regions should be considered. 
By performing the linear elastic analysis, it was confirmed that the model does not exhibit nonlinear 
stress distribution as a result of shear lag. Since the linear elastic analysis demonstrates uniform 
compression and tension stress distribution in the flanges of the girder, it was justified that further 
reduction due to the shear lag effect in the control of the results trough analytical method EN1993-1-5, 
is not needed. 
 

  
 

Figure 5:7 Stress distribution from LEA of the model 
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5.4 Point for monitoring the stress   
 
By focusing on the stress in the girder, it is observed that stress in the middle of the plate is depended 
on the deflection and second order effects as shown Figure 5-8. Since effective section properties are 
based on the failure modes and the maximum compression stress in the plate field where the failure 
happens will be at the edge of the plate ,stress at the marked edges of the plated will be studied in the 
section6.  
Choosing the point at edges will help studying stress purely as the results of plate buckling and not the 
second order effects in the middle of the girder. 

    a)                 b) 
Figure 5:8 Longitudinal stress a) negative global imperfection b) positive global imperfection 
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6 
6 Behavior of box girders   

Methodology to deal with buckling of the plated cross sections is to consider them as separate plate and 
determine reduced area of each single plate . To be able to study interaction between connected plate 
parts in the flanges and in the webs, in this section the box girder as a whole is analyzed.  
Box girders are analyzed in three categories. All categories have the same compression flange, height 
and width; however, the thickness of the web and thickness of tension flange differs in set analysis A, B 
and C to get favorable type of failure.  
The development of the stress and the position of neutral line are monitored in each analysis to find the 
proper analytical method addressing the maximum compression stress in the girder.  
 

6.1 Model A 
 
In this set of analyses, all other stability failures, such as local and overall buckling of the web in the box 
girder, are prevented. The reduction of the cross-section area only occurs in the compression flange, 
determined by the column-like buckling reduction factor using the EN1993-1-5 effective width method.  
The compressed part of the web is defined to have class 3 in the section with the unstiffened web. In 
the section with the stiffened web, by having subpanels of class 3 and pc reduction factor as the 
combination of plate-like and column-like buckling equal to 1, it has been ensured that there is not any 
instability in the web of the box girder, as shown in table 6-1 and 6-2. 
The tension flange thickness is defined as thick enough to get failure in the compression flange. In other 
words, to be capable of reaching the yield stress in the compression flange while stress in the tension 
flange stays below the yield stress limit in the linear elastic analysis.  
 

number width thickness of web thickness of tension flange 𝜌: . 𝑓;<=>?@A 𝜌=B:>=,CAD 
 

mm mm mm MPa 
 

1-a 3450 20 15 260.67 1 

2-a 3450 20 20 295.71 1 

 

Table 6-1 Box girder with the unstiffened web model 1 and 2 category A 

 
 

number width  Number 
of web 

stiffeners 

thickness 
of web 

thickness of 
tension flange 

𝜌: . 𝑓;<=>?@A 𝜌: .CAD 𝜌=B:>=,CAD 

 
mm   mm mm MPa  

 

3-a 6900  4 20 15 255.60 1 1 
4-a 6900  4 20 20 294.65 1 1 

 

Table 6-2 Box girder with stiffened web model 3 and 4 category A 
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6.1.1 Detecting failure  
 
Detecting the location of the failure is important to correctly study the behavior of the plate as the 
compression flange of the girder. 
 
To comprehend the behavior of the girder composed of the several stiffened plated elements it is 
important to understand the failure behavior of the single stiffened panel. From the analysis of the single 
isolated panel, it becomes evident that the behavior of the panel is elastic, and the failure will take place 
soon after reaching the yield stress in the most compressed fiber of the stiffened plate. Furthermore, it 
becomes clear the imperfection combinations that includes the global initial imperfection towards the 
plate side will cause maximum compression in the longitudinal stiffeners. Therefore, the lowest 
resistance was obtained when the global initial imperfection was towards the plate side which caused 
additional moments that provided the longitudinal stiffeners with additional compression stress. The sign 
of failure was a negligible plastic strain in the longitudinal stiffeners.  
 
The girders’ webs have class 3 therefore the stability failure will take place only in the compression 
flange. The compression flange failure behavior is pure column-like buckling. By the failure of one panel, 
the whole box girder will fail since there is not any post-buckling reserve and redistribution of the stress. 
The feature of the column-like buckling is that the element will fail by gaining the yield stress in the most 
compressed fiber and there is not any post-buckling reserve. Figures 6-1 to 6-4 show the plastic strain 
in the girders cut in the middle. As it is clear from figure number 6-1 to 6-4 the development of the first 
plastic strain takes place exactly at the same location of the single panel i.e., in the middle of the panel 
in the longitudinal stiffeners.  
 
In set one of the combinations of initial imperfection global deflection in the middle panel is defined 
towards the plate. This set of initial imperfections is positive named in the report and is shown in the 
Figure 6-1 to 6-4 left. In set two of the analysis the global initial imperfection in the middle panel is toward 
stiffeners. This set of initial imperfections is negative named in the report and is shown in the Figure 6-
1 to 6-4 right. 
In models number 1 to 3, the point of failure was in the middle of the girder and was achieved by applying 
positive initial imperfection. The girder has the highest bending moment as the result of the second-
order effect in the middle of the section, so this observation was based on the expectation. 
 
However, in box number 4, Figure 6-4, the point of failure was not in the middle of the panel by having 
positive initial imperfection but in the panel closer to the side of the girder with lower global deflection of 
girder. The explanation for this behavior is that the global deflection of the girder is in a favorable 
direction on the other side of applied initial imperfection. This global deflection has higher magnitude in 
the girders with wider compression flange. Interaction of the global deflection of the girder towards the 
stiffeners with the tendency of the plate to fail in the plating direction which is in the other side of the 
global deflection has caused this deviation of the behavior. 
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Figure 6:1 Plastic strain at failure of the box number 1 left) global deflection in the middle panel towards plate 
right) global deflection in the middle panel towards stiffeners 

 
Figure 6:2  Plastic strain at failure of the box number 2 left) global deflection in the middle panel towards plate 

right) global deflection in the middle panel towards stiffeners 

 
 

Figure 6:3 Plastic strain at failure of the box number 3 left) global deflection in the middle panel towards plate 
right) global deflection in the middle panel towards stiffeners 

 

 
Figure 6:4Plastic strain at failure of the box number 4 left) global deflection in the middle panel towards plate right) 

global deflection in the middle panel towards stiffeners 
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6.1.2 Resistance of the girder 
 
In Figure 6-5, the moment-deflection diagram is plotted for the point in the middle of the girder in model 
numbers 1a to 3a. In model 4a, for both types of applied initial imperfections, the moment-deflection 
diagrams have been plotted for the failure point, meaning the middle of second side panel for positive 
imperfection, and in the middle of third side panel in the case of negative imperfection. 
 
Model 1-a (Figure 6-5-A) is the model with a transverse span equal to 2760 mm and an aspect ratio 
equal to 0.8. The ratio of 𝜉 in the compression flange is -0.029 meaning the pure column-like buckling 
is the dominant failure following analytical method and the GMNIA analysis in part 4 of the report. The 
bending moment determined by EN 1993-1-5 criteria is also plotted for comparison. As it is clear in 
(Figure 6-5-A), when the compression flange begins to buckle and deflect towards the plate side i.e. the 
load step in which the slope of the moment deflection begins to change, the resistance from GMNIA 
analysis of the girders coincide with the resistance that can be determined from EN1993-1-5.  
 
In model 2-a (Figure 6-5-B) the distance between the transverse stiffeners is less and equal to 2070 
mm. The compression panel has an aspect ratio equal to 0.6 and the 𝜉 interaction factor in the 
compression flange is -0.030. For box number 2 the buckling stress level is higher than the resistance 
from the EN1993-1 this can be as the result of having global deflection in favorable direction. In the 
single plate analysis, it becomes clear that the plate numbers 2 and 4 with the span length equal to 2070 
mm, the resistance is more sensitive to the local initial imperfection. In the analysis of the box girders 
composed of this panel, it becomes clear that they also show sensitivity to the global deflection of the 
whole girder and are under-influenced of it. Since the deflection of the girder is in the favorable direction 
(toward stiffeners) the middle panel was able to resist higher bending moments. 
 
Box number 3 (Figure 6-5-C) is the larger box compared to the girder number 1 and 2. It has four 
stiffeners in the web. The 𝜉 factor is equal to -0.357 and the aspect ratio is equal to 0.4. In this girder 
resistance determined from the GMNIA analysis has the best combability with the resistance determined 
from EN1993-1-5.  
Box number 4 (Figure 6-5-D) has the lowest aspect ratio equal to 0.3 with the 𝜉	interaction factor equal 
to -0.84. Only in this girder, middle field was not the critical field. The load-deflection diagram is not 
plotted for the middle of the girder in model 4-a but in the middle of the panels in which plastic stains 
appear. 
 
As shown in table 6-3 the ultimate resistance is higher than the resistance from analytical method in all 
cases.  
 
  

maximum bending resistance/Mel 
(EN1993-1-5) 

bending /Mel 
first plastic 

strain 
(GMNIA) 

maximum bending resistance/Mel 
(GMNIA) 

Difference 
Maximum resistance GMNIA and  

EN1993-1-5 
% 

1-a 0.863 0.854 0.937 8.57 

2-a 0.881 0.987 0.994 12.03 

3-a 0.849 0.851 0.878 3.42 

4-a 0.895 0.915 0.957 6.93 

Table 6-3 Resistance of the girders set A 

 
Resistance that can be determined from the analytical method from EN1993-1-5 is plotted by black line 
in Figure 6-5. It exactly coincides with the point when the slope of the moment-deflection diagram begins 
to change in Figures6-5 A and C. The behavior after this limit differs in plates depending on their aspect 
ratios. For the compression plate with an aspect ratio higher than 0.5, the plates showed the ability to 
resist more bending moment. For plates with an aspect ratio lower than 0.5, this ability was almost 
negligible.  
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   A)       B) 

 
   C)       D) 

Figure 6:5 Moment deflection diagram from GMNIA analysis A) Model 1a, B)model2a, C)model3 a, D)model4a 

 

6.1.3 Development of the stress in the flange of the girder 
 
The behavior of girders' is studied considering in couple of points on the moment-deflection diagram to 
monitor the stresses in the web and the flange at the loading level in these points. In Figures 6-6A and 
B, from point A to C, the behavior of girder is in the elastic stage, and the compression in the flange is 
lower than the buckling resistance limit(pc.fy). Point D marks the end of elastic behavior and coincides 
with reaching the column buckling resistance in the compression flange. From point D, the behavior 
begins to change. Against the expectation, the stress level at which the compression flange begins to 
buckle was not the same as stress level at which the buckling resistance of the single compressed plate 
was reached. The behavior after this point was the same in models 1 and 2; however, both showed 
differences compared to models 3 and 4. In models 1 and 2(Figures 6-6 A and B), the aspect ratios 
were 0.8 and 0.6, respectively, and the 𝜉  was very close to zero. Up to load step D, the stress in the 
panel was almost uniform. From step D to E, the stress in the compression flange increased, by resisting 
more bending moment. From point E to F, stress suddenly is transferred to the two sides of the edges 
connected to the web, and ultimately, the resistance was reached when the stress in the edges reached 
the value close to fy. In this region, the edge stress increased without resisting substantial bending 
moment. Point D coincides with the resistance determined from EN1993-1-5. 
The limit between points D and F is representative of the extra bending resistance of the girder and 
deviation from pure column-like buckling. This additional resistance was achieved for several reasons, 
including the geometry of the plates i.e an 𝜉 interaction ratio between plate and column-like buckling 
close to zero, rotational fixity in the connection zone of the longitudinal stiffeners to the transverse 
stiffeners, and, most importantly, introducing the compression stress gradient on the compression flange 
as the side effect of applied bending moment.  
 
The behavior in the box number 3 and 4(Figures 6-6-C and D) was different after reaching column 
buckling resistance at point D ,with the previous models. They have lower aspect ratio equal to 0.4 and 
0.3 and the 𝜉  interaction ratio is closer to -1. The stress after point D stays almost unchanged meaning 
the cross section is not able to resist any more stress. The compression flange ultimately failed without 
reaching the yield stress limit. In these analyses it was again observed that the stress in the compression 
flange reach higher stress compared to the single compressed plate. 
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A) 

 

     
B) 

 

        
C) 

 

     
D) 

 
Figure 6:6 Development of the stress in the compression flange GMNIA analysis A) Model 1a,  B) model2a, C) 

model3 a, D)model4a 

Figure 6-7 A and B shows the longitudinal stress in the girder in the field where failure take place. As it 
is clear the model 1a and 2a, with higher aspect ratio, show an increase of the stress at the edges and 
decrees of the stress in the middle of the compression flange at failure. While in the model 3a and 4a 
the stress was more uniform whiteout sudden increase.  
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A)       B) 

 
C)       D) 

 
Figure 6:7Development of the stress in the girder A) Model 1a, B) model2a, C) model3 a, D)model4a 

6.1.4 Development of stress in the web of the girder 
 
The development of stress in the web of the box girder is plotted for the same load step as described in 
part 6-1-3. Since there are no local instabilities in the subpanel of the webs of girders, the stresses in 
the web remain linear. 
Before the buckling of the compression flange which takes place in the load level D in box numbers 1 
and 2, as shown in Figure 6-8 A and B, the neutral line position coincides with the position of gross 
section neutral line.  After buckling of the compression flange in figure 6-8A and B, the neutral line 
position begins to shift towards the tension side. This occurs because of a sudden increase of the 
longitudinal stress at the edges of the compression flanges in these girders. Ultimately, the compression 
flange of the box girder fails with a neutral line very close to the neutral line of the effective cross-section. 
Prior to point D, when there was no sign of buckling in the girder, the position of the neutral line remains 
unchanged. Results show that the shift in the position of the neutral line may take place when the 
structure has sudden increase of the stress at the edges and resistance limit beyond the pure column-
like buckling resistance.  
In the analysis of box numbers 3 and 4 figures6-8 C and D, some nonlinearities at the location of the 
longitudinal stiffeners in the web were observed; however, the behavior was based on the expectation 
linear elastic. The neutral line with zero longitudinal stress coincides with the neutral line of the gross 
cross-section. Before the column-like buckling limit, which is ultimate resistance limit based on the 
analytical method of EN1993-1-5, there was no sign of a change in the height of compression zone and 
shifting of the neutral line. By doing this, the answer to objective number 2 was found. Before the column-
like buckling resistance limit, the neutral line does not shift towards the tension side, and the location of 
the neutral line coincides with the location of the gross section neutral line. 
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     A)                    B) 

 
     C)                    D) 

 
Figure 6:8 Development of the stress in the web of girder GMNIA analysis A) Model 1a, B) Model2a, C) Model3a, 

D) Model4-a 

6.1.5 Section properties representative of the stress 
 
The maximum value of the compression stress in the compression flange is derived from GMNIA 
analysis. This stress is compared to the stress that can be determined from gross section properties 
and from effective section properties.  
As shown in Figure 6-8, up to a certain limit in all girders, which was found to be the limit of buckling in 
the compression flange, the stress in the flange derived from GMNIA analysis is completely compatible 
with the stresses derived from gross section properties. 
Only close to the ultimate state, longitudinal stress from the GMNIA analysis has a significant increase 
in box numbers 1 and 2 as shown in Figures6-9 A and B. These girders present higher resistance than 
the EN1993-1-5 effective width methods. The part containing a sudden increase in stress is not 
considered in the resistance limit based on EN1993-1-5 method. The sudden increase that takes place 
in the longitudinal stress from GMNIA analysis coincides with the increase of stress from point D to F in 
the moment deflection diagram in Figure 6-6 A and B. The conclusion is that at this extra resistance 
region the behavior is not pure column like buckling anymore and the behavior is more representative 
of the interaction behavior between column like buckling and plate like buckling.  
 
In boxes numbers 3 and 4, Figures6-9 C and D, without substantial extra resistance after column-like 
buckling limit, longitudinal compression stress determined from gross section properties was 
comparable with GMNIA longitudinal stress up to failure. The failure behavior was a sudden collapse 
after reaching buckling resistance limit.   
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A)                    B) 

 

 
C)                    D) 

 
Figure 6:9 Section properties representative of the longitudinal stresses versus GMNIA stress A) Model 1a,  B) 

model2a, C) model3 a, D)model4-a 

By doing this, objective number 3 was obtained. The result shows that until column-like buckling 
resistance of the compression flange in the girder, which coincides with the resistance that can be 
determined from EN1993-1-5, the gross section area of the compression flange is applicable for 
determining the section properties with which stress can be determined.  
However, It was observed that the stress in the panel, as the compression flange of the girder, has 
higher magnitudes at the ultimate bending resistance comparing to the single isolated compressed plate 
analyzed in part4-2-4. This has been justified in section 6-1-6. 
 

6.1.6 Single plate versus plate as the compression flange of the 
girder in bending 

 
To compare the load-deflection diagram of the single panel in compression to the moment-deflection 
diagram of the compression flange of the girder, the point in the middle of the failed panel is monitored. 
By removing the global deflection from this point in the girder, which can be determined from the 
deflection at the edges of the panel as shown in equation 6-1, pure deflection of the compression flange 
in the middle of failed field was determined. 
 
𝛥 = 𝛥EFGGHI	JK	LMH	NOPHI	 − 𝛥QFGH	JK	LMH	NOPHI        ( 6-1) 

Final moment deflection of the compression flange of the girder and load deflection of the plate is shown 
in figure 6-10. It is worth mentioning, the coefficient of 𝑀�GwI_

𝑊E. 𝑓𝑦	�   is in this case also representative 

of the compression resistance of the flange. Since the failure take place as the column buckling of the 
flange and no other type of failures are involved.  
 
The deflection of the panel in the middle of the girder has also the contribution of the global effects; for 
this reason, the deflection is not completely compatible with the deflection of the single plate, especially 
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in girders with a wider flange, Figures 6-1C and D. In terms of deflection, they are not comparable to 
each other; however valuable information in terms of resistance and stress up to failure can be achieved.  
Although reaching the compression load level of  pc.fy in the single plate coincides with the buckling and 
reaching the ultimate resistance, the panel as part of the girder shows the ability to reach the resistance 
having a stress magnitude higher than pc.fy. This is also considered in the effective width method and 
one of the features of this method is the capability to determine resistance after buckling resistance limit. 
𝑀�=,8D8BH'C:8B = 	𝑓H 	× 𝑊@ff@:'Cp@	A@:'C;D         ( 6-2) 
GF$,D.D>3()'D>

�/
> 𝜌: . 𝑓H           ( 6-3) 

 
The additional resistance and extra longitudinal stress in the compression flange mainly result from the 
introduction of gradient stress into the flange of the box girder with pure bending. This has been justified 
by analyzing single plates defined in section 4-1 with gradient stress resulting from the bending moment 
on the compression flange of the girders defined in part 6-1. The results are presented in section 6-1-7. 

 
     A)                    B) 

 

 
     C)                    D) 

Figure 6:10resistnce behavior difference in a single plate comparing top late as the compression element of the 
box girder analysis A) Model 1a, B) Model2a, C) Model3 a, D)Model4-a 

6.1.7 Effect of gradient stress introduction  
 
As discussed in part 4-3, the boundary conditions significantly affect the behavior of the panel. In the 
box girder, the compression flange is connected to the webs providing rotational and transverse stiffness 
to the compression panel. Additionally, due to bending moments, stresses are introduced with a gradient 
distribution on the compression flange and the longitudinal stiffeners. These two factors contribute to an 
increase in the buckling stress resistance of the panel as the compression flange of the girder, compared 
to a single panel with simple boundary conditions and uniform loading. 
The major reason for the differences in the buckling behavior between a single stiffened plate and the 
stiffened plate as the compression flange of the girder is the introduction of gradient stress in the 
compression flange of the girder as the result of loading girder by pure bending moment. 
From the analysis performed on the stiffened single plate with uniform compression, it was clear that at 
failure, stress at the edges was equal to pc⋅fy.  
Performing GMNIA analysis on the isolated single-plate model of the compression flange with gradient 
stress, as shown in Figure 6-12B, and comparing it with the gradient stress on the compression flange 
of the girder, proves that this is the major reason for higher buckling resistance, as evident in Figure 6-
11. The isolated plates with gradient stress exhibit higher resistance, a higher buckling stress limit, and 
higher stress at both edges of the plate. 
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     A)                    B) 

 
     C)                    D) 

Figure 6:11 Effect of gradient loading on the resistance A) Model 1a, B) Model2a, C) Model3 a, D) Model4a 

Figure 6-12 illustrates stresses at the edge strut during the failure stage. In both cases, the plate will  
reach the higher stress limit at the stiffeners. However, the introduction of gradient stress will delay 
reaching the yield stress limit in the longitudinal stiffeners and enhance the plate ability to resist 
compression stress. 

 
A) 

 
B) 
 

Figure 6:12 A) Stress in the strut of the plate with uniform compression stress b) stress in the strut of the plate 
with gradient compression stress  

The increase in the stress at the compression flange has not been caused by nonlinearity in the 
structure; this occurs because the girder can resist more compression if the stress is applied gradient, 
because of the bending moment. This has been confirmed by modeling plates with gradient stress and 
comparing the stress at the failure stage to the stress in the compression flange of the girder. 
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6.2 Model B 
 
In Type B of the analysis, both the compression flange and the tension flange maintain the same 
configuration as in analysis A. However, by reducing the thickness of the webs, the sections are 
categorized as class 4. Before reaching the buckling resistance limit in the compression flange, the web 
has reached its buckling resistance limit.  
 

number width thickness of web thickness of flange 𝜌: . 𝑓;<=>?@A 𝜌=B:>=,CAD 
 

mm mm mm MPa 
 

1-b 3450 10 15 260.57 0.543 

2-b 3450 10 20 295.71 0.516 

 

Table 6-4 Box girder with the unstiffened web model 1 and 2 category b 

number width Number of 
stiffeners 

thickness of web thickness of tension flange 𝜌: . 𝑓;<=>?@A 𝜎:,R>S,A=>TUV: 𝜌=B:>=,CAD 𝜌: .CAD 

 
mm  

 
mm MPa MPa   

3-b 6900 4 8 15 255.6 355 0.552 0.86 
4-b 6900 4 7 20 294.6 355 0.489 0.92 

 
Table 6-5  Box girder with the stiffened web model 3 and 4 category b 

6.2.1 Resistance of the girder 
 
As shown in figure 6-13, The resistance determined from EN1993-1-5 is lower than the resistance from 
analytical method. This indicates that the method of reducing the web is relatively conservative by 
neglecting the positive effect of the tension region in the web or iterative reduction in combination with 
compression flange with pure column like buckling. Discussing about the reduced area of the web with 
gradient stress is not an objective of this research. 
  

maximum bending resistance (EN1993-1-5)/Mel maximum bending resistance (GMNIA)/Mel Difference% 

1-b 0.825 0.917 11.18 

2-b 0.881 0.956 8.62 

3-b 0.810 0.882 8.86 

4-b 0.848 0.942 11.03 

Table 6-6 Box girder resistance type B 

 
 
 

 
     A)                    B) 
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C)                    D) 

Figure 6:13 Moment deflection diagram from GMNIA analysis A) Model 1b, B) model2b, C) model3 b, D) model4b 

6.2.2 Development of stress in the web of the girder 
 
The type A models had a web of class 3, and the only buckling failure will take place in the compression 
flange. In the type B analysis, the web of the girders has class 4. As a result, a nonlinear stress 
distribution will develop in the web of the section as shown in figure 6-14. This nonlinear stress 
distribution will cause the increase of stress at the edge of the compression flange plate. However, the 
nonlinear stress did not demonstrate the ability to cause change in the stress distribution in the tension 
part. Therefore, the height of the tension zone in the cross-section remains unchanged. 
 

 
A) 

 
B) 
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C) 

 

 
D) 

 
Figure 6:14 Development of the stress in the web of the girder from GMNIA set analysis b.  A) Model 1b, B) 

Model2b, C)Model3 b, D)Model4-b 

 
In general, it was observed that the tension part will stays in tension and the compression part will stay 
having compression stress, in this analysis. The position of the line with zero stress stays almost 
unchanged. Since the influence of the web in the repositioning of the neutral line either in the gross 
section or effective section is negligible. Moreover, in this study, shifting of neutral line as the result of 
column-like buckling of the compression flange is of concern.  
 

6.2.3 Section properties representative of the stress 
 
When there are instabilities in the web of the section depending on the slenderness and magnitude of 
the nonlinearities as the result of the buckling in the slenderest element, web in this case, the gross 
section properties cannot be used to determine the internal stresses anymore. Transfer of the stress 
towards the compression flange as the result of buckling of the web will cause having higher stress in 
the compression flange edges. The stress from GMNIA analysis is compared to the stress that can be 
determined from gross section, effective section with the reduction in the web and in the flange and 
effective width determined only from web reduction in Figure 6-15. It becomes clear that section 
properties determined from reducing the web can be representative of the stresses prior to the buckling 
of the flange and after buckling of the web In the girders with column-like buckling failure.  
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A)      B) 
 

 
C)      D) 

 
Figure 6:15Section properties representative of the maximum stress GMNIA set analysis.  A) Model 1b, B) 

Model2b, C)Model3 b, D)Model4-b 

  



6 -  B e h a v i o r  o f  b o x  g i r d e r       | 62 
 

6.1 Model C 
 
Most of the plated box girders in bridge applications have unsymmetric sections with a wider stiffened 
compression deck, similar to the cross-section of the Haringvliet bridge. This causes the gross section 
neutral line to be closer to the compression deck of the girder. As a result, tension failure can become 
the determining criteria limiting the bending resistance of the girder. 
In Type C of the box girders, the bottom tension flange is thin enough to meet the yield stress limit. The 
compression flange will not reach the yield stress limit, and the stress remains below the critical buckling 
stress. Classification of the section can be performed based on EN1993-1-1 Table 5-2 [33].  
It is mentioned in this table when the compression stress in lower than the yield stress criteria of 𝜓 <
−1	, should be applied. 
𝑙𝑖𝑚𝑖𝑡	𝑓𝑜𝑟	𝑐𝑙𝑎𝑠𝑠3 ∶ 	𝜓 < −1:	 :

'
< 62	𝜀(1 − 𝜓) × �−(𝜓)      ( 6-4) 

 
Figure 6:16 Classification of the part with gradient stress 

Following this criterial subpanel of the web were determined to have class 4 in all girders and therefore 
using effective section properties was essential.  
The major assumption in the classification of the section is to have the yield stress at the most 
compressed fiber. According to EN1993-1-5, when the compression stress is below the yielding stress, 
the slenderness of the plate element can be reduced using Equation 6-5.  The final reduction factor for 
the reduced slenderness can eider be determined from annex E of EN1993-1-5 or by replacing �̅�?	  with 
�̅�?,>@=. 

�̅�?,>@= = �̅�?. v
g'-A,#$

&3
BC7

           ( 6-5) 

 
number height thickness of web thickness of flange 𝜌: . 𝑓;<=>?@A 𝜌=B:>=,CAD,WAXY:AX	T=A?XAW?ATT 𝜎:,R>S,A=>TUV: 

 
mm mm mm MPa 

 
MPa 

1-c 1605 8 8 260.57 1 228.1 

2-c 1605 8 8 295.71 1 228.1 

       

Table 6-7 Box girder with the unstiffened web model 1 and 2 category C 

 
 
number height  Number 

of 
stiffeners 

thickness 
of web 

thickness of 
tension flange 

𝜌: . 𝑓;<=>?@A 𝜎:,R>S,A=>TUV: 𝜌: .CAD 𝜌=B:>=,CAD,RV?,W 

 
mm   mm mm MPa MPa  

 

3-c 3210  4 8 8 255.60 230 0.95 0.579 
4-c 3210  4 8 8 294.65 230 0.89 0.579 

          
Table 6-8 Box girder with the unstiffened web model 3 and 4 category C 

Following the criteria of the reduced slenderness method, the girder with an unstiffened web receives a 
local reduction factor equal to 1, meaning being full active and the absence of a nonlinear stress 
distribution. Conversely, the larger girders with the stiffened webs have been determined to get both 
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local and global reduction factors therefor it was expected to observe nonlinear stress distribution in the 
web of these girders. Coefficients of the plate buckling reduction factor for the reduced slenderness is 
presented in table 6-7 and 6-8. For the compression flange, such criteria of the reduced slenderness 
method is not defined since it has column like buckling failure. 
 

6.1.1 Resistance of the girder 
 
In the analysis of the single plate, it was observed that having an initial imperfection towards the 
stiffeners leads to higher compression resistance, while having an initial imperfection towards the plate 
side leads to the lowest compression resistance. The same conclusion was reached in the analysis of 
box girders composed of these plates, regarding the bending moment, when the box girder fails in 
tension part, the imperfection of the compression part does not have a significant influence on the 
resistance, as shown in Figure 6-17. All plated girders exhibited plastic resistance. In the plastic region, 
the deflection of the girder increases significantly. In sections with slender elements, it is not allowed to 
consider the plastic resistance of the girders based on EN1993-1-1. For this reason, only behavior prior 
to elastic resistance is further studied. 
 
Criteria of the reduced slenderness method is not defined for the plates with column like buckling failure. 
The observation was that if the compression stress from linear elastic analysis is lower than the column 
like buckling resistance of the compression flange (𝜌: . 𝑓;<=>?@A)	,no sign of failures in the compression 
flange will be observed, before elastic bending resistance of the girder. Following the criteria of the 
effective width method need extra care in this case. Since trough the iteration process and the reduction 
of the compression part even higher resistance can be determined, if in the reduced section again the 
tension failure is the governing failure. The conclusion is that, in plated box girders with tension failure, 
the elastic bending moment resistance can be the actual representative of the bending resistance in this 
case. Considering elastic resistance will be conservative by neglecting the plastic bending resistance of 
the girder. 

 

 
A)      B) 

 
 

               
C)      D) 

Figure 6:17 Resistance of the girder type c. A) Model 1c, B) Model2c, C) Model3 c, D)Model4c 
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6.1.2 Development of the stress in the web  
Monitoring the stress in the web of the section shows a linear stress distribution in the girder's web, as 
shown in figure 6-18. Although the web was determined to have reduction as the result of  nonlinearities 
in boxes number 3 and 4 by following the reduced slenderness method no sign of nonlinearity was 
observed in the web of the section. 

 
 

 
A) 

 
B) 

 
C) 

 
D) 

Figure 6:18 Type C analysis stress in the web of the girder A) Model 1c,  B)Model2c, C)Model3 c, D)Model4c 
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6.1.3 Section properties presentative of the stresses  
 
Stress at the reference point define in section 5-4 on the edges of the compression flange and another 
point below it in the tension flange is monitored in the GMNIA Analysis. Comparing the stress to the 
stress that can be determined from gross section properties, shown in Figure 6-19, reveals that up 
elastic bending moment resistance behavior is linear and elastic. For this reason, the stress determined 
from LEA can be representative of the edge stresses. 
 
 

 
A)      B) 

 

 
C)      D) 

 
Figure 6:19type C analysis compression and tension in the flange of the box girder A) Model 1c,  B)Model2c, 

C)Model3 c, D)Model4c 

6.2 Summary of the results 
 
In the compression flange containing stiffened plate with 𝜉 interaction ratio close to zero and the aspect 
ratio above 0.5, the compression flange exhibited the ability to resist extra bending moment. In this extra 
resistance limit, the maximum stress at the edges of the flange sheet experienced a sudden increase, 
which happened in the resistance limit above column-like buckling resistance limit. Depending on the 
geometry, the ability of the girder to reach higher bending resistance differs. So that, when the 
𝜉	interaction ratio was close to -1 and the aspect ratio bellow 0.5, compression flange and consequently 
girder in bending failed with a sudden failure without sustaining substantial extra bending moment. In 
this case the stress at the edges of the compression flange sheet did not experience any sudden 
increase close to failure. 
Most of the plated girders in bridge application have aspect ratio between 0.2 to 0.3 for economic 
reasons [10]. The failure of box girders with such configurations happens mainly in a sudden manner in 
the form of pure column-like buckling. The result of analysis shows performing GMNIA analysis barely 
shows extra resistance comparing to the analytical method for such configuration. If GMNIA analysis is 
going to be performed for determining the resistance of girders with such configuration the possible 
phenomena having favorable effect in resisting more force should be accurately addressed in the FEM 
model otherwise the resistance will be overestimated.  



6 -  B e h a v i o r  o f  b o x  g i r d e r       | 66 
 

In general buckling resistance of the plate as the compression flange of girder with bending moment 
was higher than the buckling resistance of a single isolated compressed panel regarding. Single plate 
loaded by uniform compression stress failed with the maximum stress at the edge equal to pc.fy 
;however, the plate as the compression flange of the girder failed by having  higher compression stress 
magnitude at the edges of flange sheet. 
This occurs mainly as a result of gradient stress introduction in the compressed flange, as a side effect 
of the bending moment on the girder. The effective width method can consider the ability of the 
compression flange in gaining extra compression stress. Although the magnitude of compression stress 
at edges was higher than pc.fy, the behavior of the plate was still linear-elastic.  
 
When the buckling behavior is in the form of pure column-like buckling, there is no instability prior to 
buckling. When there is no other instability problem involved in the cross section the stress determined 
from elastic analysis is representative of the actual stress in the plated structure. Since the nature of the 
behavior before column-like buckling in the plate is linear-elastic, using effective section properties by 
reducing the compression flange area with pure column-like buckling reduction for determining the 
internal stresses will cause a significant overestimation of the internal stresses. 
 
This was confirmed by controlling the position of the neutral line and controlling the maximum 
compression stress in the flange, which occurs on both sides of the flange edge. When the post-buckling 
reserve is not considered in the resistance and the plate fails with sudden column-like buckling behavior, 
the position of the neutral line stays on the location of gross section neutral line.  
 
GMNIA longitudinal stresses in the girder shows better compatibility with the stresses determined from 
section properties containing gross section area of the compression flange with column-like buckling 
failure. The reason is that before column-like buckling limit, the behavior is elastic in the plate. 
 
The stocky compression flange can be combined with the slender web. When the web of the box girders 
has a slender element, buckling of this element will cause extra stress in the compression flange of the 
girder. In this case, this extra stress should be considered in the design. It was observed by using the 
gross area of the compression flange and the effective area of the compressed part of the web this 
effect can be considered. 
 
By focusing on the tension failure, it was observed that the resistance can be increased up 20%. In 
plastic region. In the criteria of the effective width method of Eurocode it is mentioned that the effective 
width method is applicable when the compression flange reaches the yield stress. Suggestion for the 
deviation from this assumption is to use reduce slenderness method. This find to be conservative, 
moreover, it is not general since it does not cover the situation when the compression flange has overall 
buckling in the form of pure column-like buckling.    
It was observed when the elastic resistance can be determined by tension failure and the stress in the 
compression flange are bellow buckling stress limit, elastic bending resistance will be a safe estimation 
of the bending resistance.    
 

6.3 Discussion  
 
The study has provided valuable insights into the column-like behavior of the stiffened plates under 
various conditions and the analytical method addressing the maximum longitudinal stress in the stiffened 
plate.  
 
Initially, the column-like buckling of single isolated plates under pure compression load was studied. The 
failure of stocky plates with relatively weak stiffeners experiencing pure column-like buckling failure 
begins with the yielding of the longitudinal stiffeners. Without any development of yield region in the 
plate sheet the ultimate resistance will be reached. 
In terms of ultimate resistance, the plates with pure column-like buckling are considered to have free 
longitudinal edges. The study shows that the plate will not benefit from having vertical supports at 
unloaded edges in resisting more compression force. The exact reduction factor can be determined from 
the analytical method based on EN1993-1-1.  
However, it was observed that the resistance from GMNIA can be lower than the resistance from the 
analytical method based on EN1993-1-5.  



6 -  B e h a v i o r  o f  b o x  g i r d e r       | 67 
 

EN1993-1-5 assumes that the stress at the edges is equal to the yield stress; however, it was observed 
that the edges of the panel will experience stress equal to 𝑝: . 𝑓H in the plates with column-like buckling 
without any local buckling in the subpanels. In fact, reaching yield stress at side edges is one of the 
features of the plates with orthotropic behavior. Considering stress at side edges equal to yield stress 
in all cases of the plate failure, will cause over estimation of the resistance. The observation in the case 
of plate with pure column-like buckling failure was that considering edges stress equal to 𝑓H. 𝑝: will 
provide a better presentation of the real stress in the plate edges.  
For a better understanding of the panel's behavior, it is crucial to control the stress pattern in the failure 
step. Doing this will provide valuable information about type of failure in the plate. The stiffeners reached 
yield stress limit; however, the location of the maximum absolute compression stress in the plate sheet 
was at side edges with maximum magnitude of 𝑓H. 𝑝:. 
 
The stiffened plate as the compression flange of the girder under pure bending will not exhibit exact the 
same behavior as the single isolated plate, meaning it will not fail by reaching  𝑝: . 𝑓H at failure stage. The 
reasons for this different behavior can be categorized into two main factors, the influence of the geometry 
and the influence of the gradient load introduction into the flange of the box girder with pure bending 
moment. 
The gradient load introduction showed the major influence causing deviation of the behavior comparing 
to single isolated plate. Failure of the plate, in both isolated plate and the plate as the compression 
flange of the girder begin by reaching yielding stress at the longitudinal stiffeners. In the plates with 
gradient stress introduction, by having higher stress magnitude at the plate sheet and lower stress 
magnitude in the longitudinal stiffeners the column-like buckling limit will increase. Therefore, the plate 
will fail by gaining stress higher than 𝑝: . 𝑓H at failure stage.  
Effective width method can consider this extra resistance in the girder. The ultimate bending resistance 
that can be determined from the effective width method when only column-like buckling reduction of the 
compression flange is involved in the effective section (meaning all other reduction factors are equal to 
1), is exactly equal to the buckling limit of the compression flange with gradient stress. 
Extra resistance after this point is observed in some cases depending on the geometrical configuration 
of the girder.  
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7 Conclusion  
This section presents the conclusions, which address the research objectives aimed at achieving a more 
accurate assessment of stress in the compression flange of box girders subjected to bending moment 
when the compression flange is stocky and experiences pure column-like buckling failure. 
 

7.1 Conclusions  
 
Determining longitudinal stress in the plate through an analytical method was the major interest of this 
research. 
In the single stiffened plate, the observation was using gross section properties in equation 7-1 for 
determining the stress on the compressed plate can be representative of the absolute maximum 
compression stress in it. The location of the maximum absolute compression stress was at side edges. 
The deflection up to failure was relatively low. Looking at the stress from the analytical method and 
relatively low deflection in the plate, can be indicative that LEA can be suffice for finding the maximum 
stress in the plate sheet. 
 
𝜎�GwI_,B;DEC'F=CD8B =

{#$
_/

          ( 7-1) 
The longitudinal stiffeners in this case will experience higher stress magnitude and they will reach yield 
stress in the ultimate limit state.  
 
The analytical method for addressing the compression stress at failure location in the flange of the girder, 
has contributions from the distance between the compression flange to the neutral line and the second 
moment of inertia. If the compression flange fails due to pure column-like buckling and features 
subpanels of class 3, it is observed that the neutral line of the section aligns with the gross section 
neutral line up to column-like buckling failure of the compression flange. 
 
Up to level 1 which is buckling of limit of the web the behavior of the whole girder is elastic and stress 
can be determined from gross section area of the girder. In the resistance limit after level 1 in which the 
post buckling resistance of the web is considered the stress should be determined from effective section 
properties determined by reduced web area and the gross section area of the compression flange. Level 
2 coincides with the buckling of the compression flange. If the compression flange fails by pure column-
like buckling and the subpanels have calss3, the further reduction of the compression by column like 
buckling reduction factor is not needed for determining the longitudinal stress.  

f
𝑙𝑒𝑣𝑒𝑙1: 𝜎�GwI_,B;DEC'F=CD8B	 =

G.H/0-,,	,%'()-.
I/0-,,	,%'()-.

														

𝑙𝑒𝑣𝑒𝑙2: 𝜎�GwI_,B;DEC'F=CD8B	 =
G.H%&&%'()*%GH%;	0%$I'%$
I%&&%'()*%GH%;	0%$I'%$

      ( 7-2) 

 
In general criteria of effective width method is not valid in the box girder that have tension failure.  
In case of the tension failure modification is needed for classification of section and determining the 
slenderness.  
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If the girder fails due to tension failure of the tension flange and the stress at the compression flange is 
lower than the column-like critical buckling stress limit, it was observed that the compression flange is 
active with its full area in resisting the stress from bending moment. For the web although reduction was 
determined in the girders with the stiffened plate, no sign of nonlinearity or sign of deviation from linear 
elastic theory was observed up to elastic bending resistance.  This reveals that the criteria of the reduced 
slenderness method can be conservative, and even in the EN1993-1-5 it is also mentioned to be 
conservative.  
In the girders with tension failure due to the development of a tension block, the resistance will exceed 
the elastic bending resistance. In this resistance region, the stiffness of the girder will significantly 
decrease, and consequently, the deflection will increase. In the girders will slender elements considering 
plastic bending resistance is not allowed based on the current EN1993-1-1.  
 

7.2 Future research 
 
Based on the results gathered in this report, certain subjects can be further studied to have a complete 
analytical method addressing the maximum compression stress at the compression flange.  
The expectation is that the compression flange with class 4 subpanels and pure column-like buckling 
failure of the compression flange, the reduction of the compression flange area by column-like buckling 
reduction factor will also lead to the conservative longitudinal stress estimation. The analytical method 
for addressing the stress magnitude in such cases needs further investigation. 
 
In the plates with interaction behavior between plate-like and column-like buckling, the magnitude of 
compression stress at the side edges of the plate needs further study. The expectation is that in such 
configurations, the compression stress at the edge will have a magnitude between pc.fy and fy. 
 
In this study, the open T-shape stiffeners are relatively weak considered. For closed stiffeners or the 
stiffeners with higher relative bending stiffness, the applicability of the finding needs further 
investigations. These investigations should be focused on addressing whether the pure column-like 
buckling exists in plates with such configurations and whether the gross section of the plate can be used 
for addressing the maximum compression stress. 
 
It was observed that in the plate with gradient stress introduction, the column-like buckling resistance 
can be higher. Further research can be performed on this type of loading regarding plate-like buckling 
and interaction of plate and column buckling. Result of such research can be guided to the less 
conservative estimation of the resistance based on reduced slenderness method.  
 
In case of the tension failure, future research focused on determining less conservative method than the 
reduced slenderness method is of interest.  
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In this appendix of the report result from GMNIA analysis of the stiffened plates with 26 combinations of  
initial imperfection are presented in the tables.  
 
Plate number 1 
 

Imperfection name Imperfection 
type 

Imperfection magnitude resistance (MN) Resistance 
(MN) 

difference% 

   
GMNIA EN1993-1-5 

 

combination1 Global mode -6.90 16.978 14.143 20.05 

combination2 Global mode 6.90 14.500 14.143 2.52 

combination3 local 9 sin waves 1.44 18.368 14.143 29.87 

combination4 local 9 sin waves -1.44 18.368 14.143 29.87 

combination5 local 10 sin waves 1.38 18.245 14.143 29.00 

combination6 local 10 sin waves -1.38 18.245 14.143 29.00 

combination7 stiffeners h/50 18.703 14.143 32.24 

combination8 - IPg +0.7 IPs +0.7  IPl-j 
 

16.818 14.143 18.91 

combination9 - IPg +0.7 IPl-j 
 

16.797 14.143 18.77 

combination10 - IPg +0.7 IPs -0.7 IPl-j 
 

16.818 14.143 18.91 

combination11 - IPg -0.7 IPl-j 
 

16.839 14.143 19.06 

combination12 - IPg +0.7 IPs +0.7  IPl-i 
 

16.781 14.143 18.65 

combination13 -IMP3+0.7  IPl-i h/50 16.797 14.143 18.77 

combination14 - IPg +0.7 IPs -0.7  IPl-i 
 

16.781 14.143 18.65 

combination15 - IPg -0.7  IPl-i 
 

16.797 14.143 18.77 

combination16 IPg -0.7  IPs -0.7  IPl-j 
 

14.461 14.143 2.25 

combination17 IPg -0.7  IPl-j 
 

14.492 14.143 2.47 

combination18 IPg -0.7 IPs +0.7  IPl-j 
 

14.460 14.143 2.24 

combination19 IPg +0.7  IPl-j 
 

14.492 14.143 2.47 

Combination20 IPg -0.7I IPs -0.7  IPl-i 
 

14.510 14.143 2.59 

Combination21 IPg -0.7  IPl-i 
 

14.505 14.143 2.56 

Combination22 IPg -0.7 IPs +0.7  IPl-i 
 

14.490 14.143 2.45 

Combination23 IPg +0.7  IPl-i 
 

14.505 14.143 2.56 
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Plate number 2 
 

Imperfection name Imperfection type Imperfection magnitude resistance (MN) Resistance 
(MN) 

 
difference% 

 
  

GMNIA EN1993-1-5 
 

combination1 global mode (IPg) -5.175 17.691 15.923 11.103 
combination2 global mode. (IPg) 5.175 16.108 15.923 

1.162 
combination3 local 7 sin waves (IPl-j) 1.479 18.410 15.923 

15.619 
combination4 local 7 sin waves (IPl-j) -1.479 18.410 15.923 15.619 
combination5 local 8 sin waves(IPl-i) 1.438 18.256 15.923 

14.652 
combination6 local 8 sin waves(IPl-i) -1.438 18.261 15.923 14.683 
combination7 Stiffeners (IPs) h/50 18.746 15.923 

17.729 
combination8 - IPg +0.7 IPs +0.7  IPl-j 

 
17.558 15.923 

10.268 
combination9 - IPg +0.7 IPl-j 

 
17.585 15.923 10.438 

combination10 - IPg +0.7 IPs -0.7 IPl-j 
 

17.558 15.923 
10.268 

combination11 - IPg -0.7 IPl-j 
 

17.585 15.923 
10.438 

combination12 - IPg +0.7 IPs +0.7  IPl-i 
 

17.468 15.923 9.703 
combination13 - IPg +0.7  IPl-i 

 
17.489 15.923 

9.835 
combination14 - IPg +0.7 IPs -0.7  IPl-i 

 
17.468 15.923 9.703 

combination15 - IPg -0.7  IPl-i 
 

17.489 15.923 
9.835 

combination16 IPg -0.7  IPs -0.7  IPl-j 
 

15.815 15.923 -0.678 
combination17 IPg -0.7  IPl-j 

 
15.796 15.923 

-0.798 
combination18 IPg -0.7 IPs+0.7  IPl-j 

 
15.731 15.923 

-1.206 
combination19 IPg +0.7  IPl-j 

 
15.796 15.923 -0.798 

Combination20 IPg -0.7I IPs -0.7  IPl-i 
 

15.799 15.923 
-0.779 

Combination21 IPg -0.7  IPl-i 
 

15.824 15.923 -0.622 
Combination22 IPg -0.7 IPs +0.7  IPl-i 

 
15.837 15.923 

-0.540 
Combination23 IPg +0.7  IPl-i 

 
15.824 15.923 

-0.622 
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Plate number 3 
 

Imperfection code Imperfection type Imperfection magnitude resistance (MN) Resistance 
(MN) 

 
difference%    

GMNIA EN1993-1-5 
 

combination1 global mode 6.9 28.389 27.673 2.587 

combination2 global mode -6.9 33.954 27.673 22.697 

combination3 local 9 sin waves 1.5 36.463 27.673 31.764 

combination4 local 9 sin waves -1.5 36.474 27.673 31.804 

combination5 local 10 sin waves 1.38 36.175 27.673 30.723 

combination6 local 10 sin waves -1.38 36.175 27.673 30.723 

combination7 stiffeners h/50 37.549 27.673 35.688 

combination8 - IPg +0.7 IPs +0.7  IPl-j 
 

33.459 27.673 20.908 

combination9 - IPg +0.7 IPl-j 
 

33.491 27.673 21.024 

combination10 - IPg +0.7 IPs -0.7 IPl-j 
 

33.459 27.673 20.908 

combination11 - IPg -0.7 IPl-j 
 

33.491 27.673 21.024 

combination12 - IPg +0.7 IPs +0.7  IPl-i 
 

33.331 27.673 20.446 

combination13 -IMP3+0.7  IPl-i 
 

33.371 27.673 20.590 

combination14 - IPg +0.7 IPs -0.7  IPl-i 
 

33.331 27.673 20.446 

combination15 - IPg -0.7  IPl-i 
 

33.371 27.673 20.590 

combination16 IPg -0.7  IPs -0.7  IPl-j 
 

28.282 27.673 2.201 

combination17 IPg -0.7  IPl-j 
 

28.453 27.673 2.819 

combination18 IPg -0.7 IPs +0.7  IPl-j 
 

28.326 27.673 2.360 

combination19 IPg +0.7  IPl-j 
 

28.453 27.673 2.819 

Combination20 IPg -0.7I IPs -0.7  IPl-i 
 

28.413 27.673 2.674 

Combination21 IPg -0.7  IPl-i 
 

28.499 27.673 2.985 

Combination22 IPg -0.7 IPs +0.7  IPl-i 
 

28.499 27.673 2.985 

Combination23 IPg +0.7  IPl-i 
 

28.413 27.673 2.674 
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Plate number 4 
 

Imperfection name Imperfection type Imperfection magnitude resistance (MN) Resistance 
(MN) 

difference% 

   
GMNIA EN1993-1-5 

 

combination1 global mode 5.175 31.897 31.430 1.486 

combination2 global mode -5.175 35.632 31.430 13.369 

combination3 local 7 sin waves -1.478571429 36.665 31.430 16.656 

combination4 local 7 sin waves 1.478571429 36.708 31.430 16.793 

combination5 local 6 sin waves 1.5 36.495 31.430 16.115 

combination6 local 6 sin waves -1.5 36.495 31.430 16.115 

combination7 stiffeners h/50 36.495 31.430 16.115 

combination8 - IPg +0.7 IPs +0.7  IPl-j 
 

37.507 31.430 19.335 

combination9 - IPg +0.7 IPl-j 
 

35.355 31.430 12.488 

combination10 - IPg +0.7 IPs -0.7 IPl-j 
 

34.801 31.430 10.725 

combination11 - IPg -0.7 IPl-j 
 

34.806 31.430 10.741 

combination12 - IPg +0.7 IPs +0.7  IPl-i 
 

34.626 31.430 10.169 

combination13 -IMP3+0.7  IPl-i 
 

35.174 31.430 11.912 

combination14 - IPg +0.7 IPs -0.7  IPl-i 
 

34.620 31.430 10.150 

combination15 - IPg -0.7  IPl-i 
 

35.174 31.430 11.912 

combination16 IPg -0.7  IPs -0.7  IPl-j 
 

30.491 31.430 -2.987 

combination17 IPg -0.7  IPl-j 
 

30.490 31.430 -2.990 

combination18 IPg -0.7 IPs +0.7  IPl-j 
 

30.500 31.430 -2.960 

combination19 IPg +0.7  IPl-j 
 

30.590 31.430 -2.672 

Combination20 IPg -0.7I IPs -0.7  IPl-i 
 

30.589 31.430 -2.676 

Combination21 IPg -0.7  IPl-i 
 

30.586 31.430 -2.685 

Combination22 IPg -0.7 IPs +0.7  IPl-i 
 

30.485 31.430 -3.007 

Combination23 IPg +0.7  IPl-i 
 

30.491 31.430 -2.988 
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Plate number 5 
 

Imperfection code Imperfection type Imperfection magnitude resistance (MN) Resistance 
(MN) 

 
difference%    

GMNIA EN1993-1-5 
 

combination1 global mode -5.48 52.299 50.50 3.562 

combination2 global mode 5.48 59.064 50.50 16.958 

combination3 local 7 sin waves 1.57 60.399 50.50 19.602 

combination4 local 7 sin waves -1.57 60.399 50.50 19.602 

combination5 local 8 sin waves 1.51 60.549 50.50 19.899 

combination6 local 8 sin waves -1.51 60.549 50.50 19.899 

combination7 stiffeners h/50 62.638 50.50 24.036 

combination8 - IPg +0.7 IPs +0.7  IPl-j 
 

58.155 50.50 15.158 

combination9 - IPg +0.7 IPl-j 
 

58.179 50.50 15.206 

combination10 - IPg +0.7 IPs -0.7 IPl-j 
 

57.943 50.50 14.739 

combination11 - IPg -0.7 IPl-j 
 

57.967 50.50 14.786 

combination12 - IPg +0.7 IPs +0.7  IPl-i 
 

58.394 50.50 15.632 

combination13 -IMP3+0.7  IPl-i 
 

58.412 50.50 15.667 

combination14 - IPg +0.7 IPs -0.7  IPl-i 
 

58.394 50.50 15.632 

combination15 - IPg -0.7  IPl-i 
 

58.412 50.50 15.667 

combination16 IPg -0.7  IPs -0.7  IPl-j 
 

52.393 50.50 3.749 

combination17 IPg -0.7  IPl-j 
 

52.724 50.50 4.404 

combination18 IPg -0.7 IPs +0.7  IPl-j 
 

51.291 50.50 1.566 

combination19 IPg +0.7  IPl-j 
 

52.850 50.50 4.653 

Combination20 IPg -0.7I IPs -0.7  IPl-i 
 

51.283 50.50 1.550 

Combination21 IPg -0.7  IPl-i 
 

52.724 50.50 4.404 

Combination22 IPg -0.7 IPs +0.7  IPl-i 
 

51.270 50.50 1.525 

Combination23 IPg +0.7  IPl-i 
 

52.724 50.50 4.404 
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The python script for determining the ultimate resistance of the stiffened plate. The code is able to 
determine the critical plate-like buckling stress, critical column-like buckling stress and the ultimate 
resistance of the single stiffened plate base on the criteria of the EN1993-1-5. The code is verified with 
an example from the Guidance book Eurocodes 3 and 4 – “Application to steel- concrete composite 
road bridges”, pages 162-168. [35] 

 
Input  Unit 

Width of the plate 5600 mm 
Length of the plate 4000 mm 

Thickness of the plate 40 mm 
Number of the stiffeners 5  

Area of one stiffener 15000 mm2 
Second moment inertia of one 

stiffeners 
113125000 mm4 

Eccentricity from the plate inner edge 195 mm 
 
Out put reference [35] Python script 
Plate-like buckling factor 127.83 127.7 
𝜎9 9.68 9.68 
Critical plate-like buckling stress 1237.4 1236.9 
Critical column-like buckling stress 1383 1383.2 
𝜉 0 0 
𝑝 1 1 
𝜒7 0.808 0.804 
𝑝7 0.808 0.804 
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The python script for determining the ultimate bending resistance of the box girder is presented in this 
annex. The code is able to determine the bending resistance base on the criteria of the EN1993-1-5. 
 
 
 
%matplotlib inline 
import numpy as np 
import matplotlib.pyplot as plt 
import pandas as pd 
 
#The outerest coordinate of the plate  
x1=0;x2=5600 
#Thickness of the plate 
ttf=40 
#yield stress of the stell  
fy=355 
#length of the plate 
a=4000 
E=2.1* 10**5 
epsilon=(235/fy)**0.5 
v=0.3 
#number of the stiffeners 
nf=4; 
#dimention of the web of the stiffeners  
t_stf=30 ;h_stf=250; 
#section properties of a single stiffner 
I_flange_stiffeners=113125000 
A_flange_stiffeners=15000 
e_flange_stiffeners=195 
Ag = (x2  - x1) * ttf + nf * A_flange_stiffeners  
di=(x2 - x1) * ttf**2 / 2  + nf*A_flange_stiffeners*(e_flange_stiffeners+ttf) 
nlg=di/Ag 
Ig=(x2-x1)*ttf **3/12+(x2-x1)*ttf*(nlg-ttf/2)**2 +  nf*I_flange_stiffeners+ (nf*A_flange_stiffeners) * (e_flange_stiffeners+ttf-nlg)**2 
A_sl_star=A_flange_stiffeners+ (10*ttf*2 +t_stf ) * ttf 
di_star = (A_flange_stiffeners * (e_flange_stiffeners+ ttf) +( 10*ttf*2 +t_stf ) * ttf * ttf/ 2)/ A_sl_star 
I_sl_star = I_flange_stiffeners+ ( 10*ttf*2 +t_stf ) * ttf**3 / 12 + ( 10*ttf*2 +t_stf ) * ttf * (di_star - ttf / 2) ** 2+ A_flange_stiffeners * 
(e_flange_stiffeners+ttf-di_star)**2  
#Minimum stiffness of the stiffeners based on the criteria of the draft of new EN1993-1-5  
Relative_bending_stiffness=E* I_sl_star/(x2  - x1)/(E*ttf**3/12/(1-v**2)) 
if Relative_bending_stiffness>25: 
    print('Relative bending stiffness=',Relative_bending_stiffness, 'requirement satisfied') 
else: 
    print('Relative bending stiffness=',Relative_bending_stiffness, 'requirement not satisfied') 
    #Classification of the  plate  
# ψ used in Table 4.2 for web should be obtained using a stress distribution based on the effective area of the compression 
flange and the gross area of the web. 
# ψ used in Table 4.2-EN1993-1-5 for flange should be obtained using a stress distribution based on the gross area of the 
section. 
ULS=1 
if (x2-x1 - nf *t_stf)/ttf/(nf+1)> 42:  
    labda_bar_p=(x2-x1- nf *t_stf)*ULS/ttf/(nf+1)/28.4/epsilon/4**0.5 
    if labda_bar_p >0.673: 
        p_local=(labda_bar_p-0.055*(1+3))/(labda_bar_p)**2 
        if p_local>1: 
            p_local=1 
    if labda_bar_p <=0.673: 
        p_local=1 
    print ('distance between stiffeners has class 4 reduce the element by',p_local ) 
    local_buckling_plate=p_local 
else:  
    print('flange subpanels have class 3') 
    local_buckling_plate=1     
# classification of the stiffeners in plate 
if ((h_stf)/t_stf)> 42* epsilon:  
    si=1 
    k_sigma=0.578/(0.34+si) 
    labda_bar_p=(h_stf)/t_stf/28.4/epsilon/k_sigma**0.5 
     
    if labda_bar_p >0.5+(0.085-0.055*si)**0.5: 
        p_local=(labda_bar_p-0.188)/(labda_bar_p)**2 
        if p_local>1: 
            p_local=1 
    if labda_bar_p <=0.5+(0.085-0.055*si)**0.5: 
        p_local=1 
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    print ('stiffeners has class 4 reduce the element by',p_local ) 
    local_buckling_stiffeners=p_local 
else:  
    print('stiffeners have class 3') 
    local_buckling_stiffeners=1.0 
#Plate-like buckling in plate with pure compression  
if nf==0: 
    sigma_cr_p=4*(np.pi**2*E*ttf**2)/(12*(1-v**2)*(x2 - x1 )**2) 
    beta_a_c=1 
    print(sigma_cr_p) 
if 0<nf<=2: 
    b1=(x2-x1)/(nf+1) 
    b2=b1 
    di=(A_flange_stiffeners*(e_flange_stiffeners+ttf)+(b1+b2)/2*ttf**2/2)/(A_flange_stiffeners+(b1+b2)/2*ttf) 
    Asl=A_flange_stiffeners+(b1+b2)/2*ttf 
    I_sl_i=I_flange_stiffeners+((b1+b2)/2)/12*ttf**3+(b1+b2)/2*ttf*(di-ttf/2)**2+A_flange_stiffeners*(e_flange_stiffeners+ttf-di)**2 
    print(I_sl_i) 
    a_c=4.33*(I_sl_i*b1**2*b2**2/ttf**3/(x2-x1-2))**0.25 
    if a>= a_c: 
        sigma_cr_sl=1.05*E/Asl*(I_sl_i*ttf**3*(x2-x1))**0.5/b1/b2 
    elif a< a_c:   
        sigma_cr_sl=np.pi**2*E* I_sl_i/Asl/a**2+(E*ttf**3*(x2-x1)*a**2)/(4*(np.pi)**2*(1-v**2)*Asl*b1**2*b2**2) 
    Asl_lumped= 2*Asl 
    I_sl_lumped =2*I_sl_i 
    b1=b2=(x2-x1)/2 
    a_c=4.33*(I_sl_lumped*b1**2*b2**2/ttf**3/(x2-x1))**0.25 
    if a>= a_c: 
        sigma_cr_sl_lumped=1.05*E/Asl_lumped*( I_sl_lumped*ttf**3*(x2-x1))**0.5/b1/b2 
    elif a< a_c:   
        sigma_cr_sl_lumped=np.pi**2*E*  I_sl_lumped /Asl_lumped/a**2+(E*ttf**3*(x2-x1)*a**2)/(4*(np.pi)**2*(1-
v**2)*Asl_lumped*b1**2*b2**2) 
    sigma_cr_p=min( sigma_cr_sl_lumped, sigma_cr_sl) 
elif nf>2: 
    Asl_p = A_flange_stiffeners * nf + (x2 - x1  ) * ttf 
    di =(A_flange_stiffeners* nf * (e_flange_stiffeners  + ttf) +(x2 - x1 ) * ttf** 2/ 2)/ Asl_p 
    I_sl = I_flange_stiffeners * nf + (x2-x1) / 12 * ttf**3 + (x2 - x1 ) * ttf * (di - ttf / 2) ** 2+ A_flange_stiffeners * 
(e_flange_stiffeners+ttf-di)**2 * nf 
    Ip=(x2-x1)*ttf**3/10.92 
    Asl=A_flange_stiffeners  
    gamma= I_sl/Ip; delta=(Asl)*nf/((x2-x1)*ttf) 
    alpha= max(a/(x2-x1), 0.5) 
    if alpha <= (gamma)**0.25: 
        k_p =2* ((1+alpha**2)**2 +gamma -1)/(alpha**2*2*(1+delta)) 
    elif alpha > (gamma)**0.25: 
        k_p= (4* (1+gamma**0.5))/(2*(1+delta)) 
    sigma_cr_p =k_p * np.pi**2 * E * (ttf/(x2-x1))**2 /12 / (1-v**2) 
beta_a_c=1 
labda_bar_p=(beta_a_c*fy/sigma_cr_p)**0.5 
if labda_bar_p >0.673: 
    p_plate=(labda_bar_p-0.055*(1+3))/(labda_bar_p)**2 
elif labda_bar_p <=0.673: 
    p_plate=1 
p_plate= min(1,p_plate ) 
print ('critical plate-like buckling stress=',sigma_cr_p,'plate-like buckling reduction factor=',p_plate ) 
p_cr=sigma_cr_p*(x2-x1)*ttf/1000*local_buckling_plate 
print(f'Sigma_E = {np.pi**2 * E * (ttf/(x2-x1))**2 /12 / (1-v**2):0.5}') 
 
#Column-like buckling in plate with pure compression  
Asl_1 = A_flange_stiffeners + (x2 - x1 ) / (nf + 1) * ttf 
Asl_1_eff=A_flange_stiffeners+ (x2 - x1 ) / (nf + 1) * ttf*local_buckling_plate 
beta_a_c=Asl_1_eff/Asl_1 
di=(A_flange_stiffeners*(e_flange_stiffeners+ttf)+(x2-x1)/(nf+1)*ttf ** 2 /2 * p_plate)/ Asl_1 
I_sl_1=I_flange_stiffeners+(x2-x1)*p_plate/(nf+1)/12*ttf**3+((x2-x1)*p_plate/(nf+1))*ttf*(di-
ttf/2)**2+A_flange_stiffeners*(e_flange_stiffeners+ttf-di)**2 
i=(I_sl_1/Asl_1)**0.5 
e=max(np.abs(di-ttf/2),np.abs(e_flange_stiffeners+ttf-di)) 
beta_a_c=1 
sigma_cr_c=(np.pi ** 2 * E * I_sl_1)/(Asl_1 * a**2) 
labda_bar_c=(beta_a_c*fy/sigma_cr_c)**0.5 
alpha_e=0.49+0.09 / (i/e) 
phi=0.5*(1+alpha_e*(labda_bar_c-0.2)+labda_bar_c**2) 
chi_c=1/(phi+(phi**2-labda_bar_c**2)**0.5) 
epsi=sigma_cr_p/sigma_cr_c -1 
print(f'critical stress coloumn like buckling = {sigma_cr_c:0.05}  coloumn like buckling reduction factor= {chi_c:0.2}') 
#plate-like and column-like reduction factor   
print(epsi) 
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if epsi < 0: 
    epsi=0 
    print('ξ<0 behavioue pure coloumn like buckling') 
elif epsi>1: 
    epsi=1 
    print('ξ>1 behavioue pure plate-like buckling') 
else: 
    print('global buckling is combination of coloumn like and plate-like') 
pc_flange=(p_plate -chi_c)*(epsi)*epsi*(2-epsi)+chi_c 
pc_flange=min(pc_flange,1)  
print(f'plate and coloumn like buckling reduction factor in top flange{pc_flange:0.03}') 
# effective area of the compression flange and ultimate resistanc ebased on EN1993-1-5 
A_c_eff=(x2  - x1) * ttf/(nf+1)*ULS*local_buckling_plate+pc_flange*(A_flange_stiffeners *local_buckling_stiffeners*nf+ (x2  - x1) 
* ttf* (nf)/(nf+1)*ULS*local_buckling_plate) 
F_ULTIMATE=A_c_eff*fy/10**6 
print(f'ultimate compression resistance= {F_ULTIMATE:0.5} MN') 
print(A_c_eff) 
print('ratio=',F_ULTIMATE* 10**6/fy/Ag)   
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Annex III 
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Python script for determining the bending resistance of the plated girder. 
 
 
#Plate-like buckling in flange with pure compression  
sigma_E=Mel/Ig*(nlg) 
for itteration in range (5): 
    print('begining of itteration ',itteration+1,'in the whole section ') 
    if (x2-x1-2*tw - nf *t_stf)/ttf/(nf+1)> 42:  
        labda_bar_p=(x2-x1-2*tw- nf *t_stf)*ULS/ttf/(nf+1)/28.4/epsilon/4**0.5 
        labda_bar_p=(sigma_E/fy)**0.5 *labda_bar_p 
        if labda_bar_p >0.673: 
            p_local=(labda_bar_p-0.055*(1+3))/(labda_bar_p)**2 
            if p_local>1: 
                p_local=1 
        if labda_bar_p <=0.673: 
            p_local=1 
        print (f'distance between stiffeners has class 4 reduce the element by {p_local:0.4}' ) 
        local_buckling_plate=p_local 
    else:  
        print('flange subpanels have class 3') 
        local_buckling_plate=1 
     
#Stiffeners classification in flange  
 
    if ((h_stf)/t_stf)> 42* epsilon:  
        si=1 
        k_sigma=0.578/(0.34+si) 
        labda_bar_p=(h_stf)/t_stf/28.4/epsilon/k_sigma**0.5 
     
        if labda_bar_p >0.5+(0.085-0.055*si)**0.5: 
            p_local=(labda_bar_p-0.188)/(labda_bar_p)**2 
            if p_local>1: 
                p_local=1 
        if labda_bar_p <=0.5+(0.085-0.055*si)**0.5: 
            p_local=1 
        print (f'stiffeners has class 4 reduce the element by  {p_local:0.4 }') 
        local_buckling_stiffeners=p_local 
    else:  
        print('stiffeners have class 3') 
        local_buckling_stiffeners=1.0 
     
 
    if nf==0: 
        sigma_cr_p=4*(np.pi**2*E*tw**2)/(12*(1-v**2)*(x2 - x1 -2 * tw)**2) 
         
    if 0<nf<2: 
        beta_a_c=1 
        b1=(x2-x1-2*tw)/(nf+1) 
        b2=b1 
        di=(A_flange_stiffeners*(e_flange_stiffeners+ttf)+(b1+b2)/2*ttf**2/2)/(A_flange_stiffeners+(b1+b2)/2*ttf) 
        Asl=A_flange_stiffeners+(b1+b2)/2*ttf 
        I_sl_i=I_flange_stiffeners+((b1+b2)/2)/12*ttf**3+(b1+b2)/2*ttf*(di-ttf/2)**2+A_flange_stiffeners*(e_flange_stiffeners+ttf-di)**2 
        a_c=4.33*(I_sl_i*b1**2*b2**2/ttf**3/(x2-x1-2*tw))**0.25 
        if a>= a_c: 
            sigma_cr_sl=1.05*E/Asl*(I_sl_i*ttf**3*(x2-x1-2*tw))**0.5/b1/b2 
        elif a< a_c:   
            sigma_cr_sl=np.pi**2*E* I_sl_i/Asl/a**2+(E*ttf**3*(x2-x1-2*tw)*a**2)/(4*(np.pi)**2*(1-v**2)*Asl*b1**2*b2**2) 
        Asl_lumped= 2*Asl 
        I_sl_lumped =2*I_sl_i 
        b1=b2=(x2-x1-2*tw)/2 
        a_c=4.33*(I_sl_lumped*b1**2*b2**2/ttf**3/(x2-x1-2*tw))**0.25 
        if a>= a_c: 
            sigma_cr_sl_lumped=1.05*E/Asl_lumped*( I_sl_lumped*ttf**3*(x2-x1-2*tw))**0.5/b1/b2 
        elif a< a_c:   
            sigma_cr_sl_lumped=np.pi**2*E*  I_sl_lumped /Asl_lumped/a**2+(E*ttf**3*(x2-x1-2*tw)*a**2)/(4*(np.pi)**2*(1-v**2)*Asl_lumped*b1**2*b2**2) 
        sigma_cr_p=min( sigma_cr_sl_lumped, sigma_cr_sl) 
    elif nf>=2: 
        Asl_p = A_flange_stiffeners * nf + (x2 - x1 -2 * tw ) * ttf 
        di =(A_flange_stiffeners * nf * (e_flange_stiffeners + ttf) +(x2 - x1 - 2 * tw) * ttf** 2/ 2)/ Asl_p 
        I_sl = I_flange_stiffeners * nf + (x2-x1-2*tw) / 12 * ttf**3 + (x2 - x1 - 2 * tw) * ttf * (di - ttf / 2) ** 2+ A_flange_stiffeners * (e_flange_stiffeners+ttf-di)**2 * nf 
        Ip=(x2-x1-2*tw)*ttf**3/10.92 
        Asl=A_flange_stiffeners 
        gamma= I_sl/Ip; delta=(Asl)*nf/((x2-x1)*ttf) 
        alpha= max(a/(x2-x1), 0.5) 
        if alpha <= (gamma)**0.25: 
            k_p =2* ((1+alpha**2)**2 +gamma -1)/(alpha**2*2*(1+delta)) 
        elif alpha > (gamma)**0.25: 
            k_p= (4* (1+gamma**0.5))/(2*(1+delta)) 
        sigma_cr_p =k_p * np.pi**2 * E * (ttf/(x2-x1))**2 /12 / (1-v**2) 
     
    beta_a_c=1 
    labda_bar_p=(beta_a_c*fy/sigma_cr_p)**0.5 
    original= labda_bar_p 
    if sigma_E<355: 
        labda_bar_p=(sigma_E/fy)**0.5 *labda_bar_p 
        p_plate=min((1-0.055*4/labda_bar_p)/labda_bar_p+0.18*(original-labda_bar_p)/(original-0.6),1) 
    elif labda_bar_p >0.673: 
        p_plate=(labda_bar_p-0.055*(1+3))/(labda_bar_p)**2 
    elif labda_bar_p <=0.673: 
        p_plate=1.0000 
    p_plate= min(1,p_plate ) 
    print(f'critical plate-like buckling stress= {sigma_cr_p:0.4} plate-like buckling reduction factor= {p_plate}') 
    p_cr=sigma_cr_p*(x2-x1)*ttf/1000*local_buckling_plate 
 
#coloumn like buckling for flange with pure compression  
    A_sl_star=A_flange_stiffeners + (10*ttf*2 +t_stf ) * ttf 
    di_star = (A_flange_stiffeners * (e_flange_stiffeners + ttf) +( 10*ttf*2 +t_stf ) * ttf * ttf/ 2)/ A_sl_star 
    I_sl = I_flange_stiffeners  + ( 10*ttf*2 +t_stf ) * ttf**3 / 12 + ( 10*ttf*2 +t_stf ) * ttf * (di_star - ttf / 2) ** 2+ A_flange_stiffeners * (e_flange_stiffeners+ttf-di_star)**2  
 
 
    Relative_bending_stiffness=E* I_sl/(x2 - 2 * tw - x1)/(E*ttf**3/12/(1-v**2)) 
 
    Asl_1 = A_flange_stiffeners + (x2 - x1 -2*tw) / (nf + 1) * ttf 
    Asl_1_eff=A_flange_stiffeners+ (x2 - x1-2*tw ) / (nf + 1) * ttf*local_buckling_plate 
    beta_a_c=Asl_1_eff/Asl_1 
    di=(A_flange_stiffeners*(e_flange_stiffeners+ttf)+(x2-x1-2*tw)/(nf+1)*ttf**2/2*p_plate)/Asl_1 
    I_sl_1=I_flange_stiffeners+(x2-x1-2*tw)*p_plate/(nf+1)/12*ttf**3+((x2-x1-2*tw)*p_plate/(nf+1))*ttf*(di-ttf/2)**2+A_flange_stiffeners*(e_flange_stiffeners+ttf-di)**2 
    i=(I_sl_1/Asl_1)**0.5 
    e=max(np.abs(di-ttf/2),np.abs(e_flange_stiffeners+ttf-di)) 
 
    sigma_cr_c=(np.pi ** 2 * E * I_sl_1)/(Asl_1 * a**2) 
    labda_bar_c=(beta_a_c*fy/sigma_cr_c)**0.5 
    alpha_e=0.49+0.09/(i/e) 
    phi=0.5*(1+alpha_e*(labda_bar_c-0.2)+labda_bar_c**2) 
    chi_c=1/(phi+(phi**2-labda_bar_c**2)**0.5) 
    epsi=sigma_cr_p/sigma_cr_c -1 
 
    print(f'critical stress coloumn like buckling {sigma_cr_c:0.4} coloumn like buckling reduction factor {chi_c:0.4}') 
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#combination  
    print(f'ξ=  {epsi:0.4}') 
 
    epsi=sigma_cr_p/sigma_cr_c -1 
    if sigma_cr_p/sigma_cr_c -1 < 0: 
        epsi=0 
        print('epsi=0 behavioue pure coloumn like buckling') 
    elif sigma_cr_p/sigma_cr_c -1>1: 
        epsi=1 
        print('epsi>1 behavioue pure plate-like buckling') 
    else: 
        print('global buckling is combination of coloumn like and plate-like') 
    pc_flange=(p_plate -chi_c)*(epsi)*epsi*(2-epsi)+chi_c 
     
    print(f'plate and coloumn like buckling reduction factor in top flange {pc_flange:0.4}') 
     
 
 
###################################################################################################################################################################
########### 
 
# cross section with effective compression flange for wb classifications 
 
    Ae = (local_buckling_stiffeners*nf * A_flange_stiffeners + (((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) * ttf*ULS*local_buckling_plate))*pc_flange+(x2 - 2 * tw - x1)/(nf+1) * 
ttf*local_buckling_plate+(x3 - x4 - 2 * tw) *ULS * tbf+(y1 - y4) * tw * 2 +(nw - 1) * A_WEB_stiffeners *2 
    di=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate * (ttf**2) / 2*ULS*pc_flange +(x2 - 2 * tw - x1)/(nf+1) * (ttf**2)/2 *local_buckling_plate+ (y1-y4)**2/2*tw * 2 + (x3-x4-
2*tw)*tbf*ULS*(y1-y4-tbf/2) + local_buckling_stiffeners*nf*A_flange_stiffeners*((e_flange_stiffeners+ttf))*pc_flange 
    sumation=0 
    for i in range(nw-1 ): 
        sumation = 2* A_WEB_stiffeners*(y1-y4)/nw * ( i +1 ) 
        di=di+sumation 
    nle=di/Ae 
    Ie=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ttf**3/12*ULS*pc_flange+((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ULS*pc_flange*ttf*(nlg-ttf/2)**2 + 
(y1-y4)**3*tw * 2/12+ 2*(y1-y4)*tw*((y1-y4)/2-nlg)**2+ ULS*(x3-x4-2*tw)*tbf**3/12+(x3-x4-2*tw)*ULS*tbf*(y1-y4-tbf/2-nlg)**2 +local_buckling_stiffeners* nf*I_flange_stiffeners*pc_flange+ 
nf*A_flange_stiffeners*(e_flange_stiffeners+ttf-nlg)**2 *local_buckling_stiffeners+(x2 - 2 * tw - x1)/(nf+1) * (ttf**3)/12*local_buckling_plate+(x2 - 2 * tw - x1)/(nf+1) * ttf*local_buckling_plate*(nlg-
ttf/2)**2 
    sumation =0 
    for i in range(nw-1): 
        sumation =2* I_WEB_stiffeners+2* A_WEB_stiffeners*((y1-y4)/nw*(i+1)-nlg)**2 
        Ie=Ie+sumation 
    We= min(Ie/nle,Ie/(y1-nle)) 
    Mel= fy*We/10**9 
    print('effective section properties reduced by flange effective width:') 
    print(f'we={We:0.4} mm3 ; Ae={Ae:0.4} mm2; Ie={Ie:0.4} mm4; neutral line from top ={nle:0.4} mm') 
    print(f'Mel= {fy*We/10**9:0.4} GN.mm- MN.m') 
    print(f'tension stress= {Mel/Ie*(y1-nle)*10**9:0.4} compression stress={ Mel/Ie*(nle)*10**9:0.4}') 
     
         
     
     
     
    if nw>1: 
        for j in range(5): 
            print('web subpanels class from top to bottom')    
            panel_in_compression= int(nle/ ((y1-y4-ttf-tbf)/nw)+1) 
            sub_panel=np.zeros((nw, 3)) 
            for i in range(panel_in_compression):  
                si=(nle-ttf-(i+1)*(y1-y4-ttf-tbf)/nw)/((nle-ttf-(i)*(y1-y4-ttf-tbf)/nw)) 
                if si>=0: 
                    state= 42*epsilon 
                    if i==0: 
                        sub_panel[(i,1)]=(y1-y4-ttf-tbf)/nw-(3-si)/(5-si)*y1/nw 
                        sub_panel[(i,2)]=(3-si)/(5-si)*y1/nw 
                    else: 
                        sub_panel[(i,1)]=(2)/(5-si)*y1/nw   
                        sub_panel[(i,2)]=(3-si)/(5-si)*y1/nw           
                elif -1<si<0: 
                    state= 42*epsilon/(0.67+0.33*si) 
                    sub_panel[(i,1)]=0.4*(nle-ttf-(i)*(y1-y4-ttf-tbf)/nw) 
                    sub_panel[(i,2)]=y1/nw-(nle-ttf-(i)*(y1-y4-ttf-tbf)/nw) 
                elif si<-1:  
                    state=62*epsilon*(1-si)*(-si)**0.5 
                    sub_panel[(i,1)]=0.4*(nle-ttf-(i)*(y1-y4-ttf-tbf)/nw) 
                    sub_panel[(i,2)]=y1/nw-(nle-ttf-(i)*(y1-y4-ttf-tbf)/nw) 
                if ((y1-y4-ttf-tbf)/nw) /tw > state: 
                    if 0<=si<=1: 
                        k_p=8.2/(1.05+si) 
                    if -3<=si<=-1: 
                        k_p=5.98/(1-si)**2 
                    sigma_cr_web=np.pi**2*E*tw**2 /12/((y1 - y4)-ttf-tbf)**2/(1-v**2)*k_p 
                    labda_bar_web=((y1-y4-ttf-tbf)/tw/nw)/(28.2*epsilon*k_p**0.5) 
                    if labda_bar_web >0.673: 
                        p_local_web=(labda_bar_web-0.055*(si+3))/(labda_bar_web)**2 
                    elif labda_bar_web <=0.673: 
                        p_local_web=1 
                    local_buckling_web=min( p_local_web,1) 
                    print('subpanel',i+1,'has claas 4', 'ψ=',si,' p_local_web=', local_buckling_web) 
                    sub_panel[(i,0)]=local_buckling_web    
                else: 
                    p_local_web=1 
                    print('subpanel',i+1,'has claas 3','ψ=',si,' p_local_web=', p_local_web) 
                    sub_panel[(i,0)]=p_local_web 
                if p_local_web==1: 
                    sub_panel[(i,1)]=y1/nw/2 
                    sub_panel[(i,2)]=y1/nw/2 
                     
            for i in range(panel_in_compression,nw):  
                print(f'subpanel {i+1}','is in tension') 
                sub_panel[(i,0)]= 1 
                sub_panel[(i,1)]=y1/nw/2 
                sub_panel[(i,2)]=y1/nw/2 
    #         print('gross section width=') 
    #         print(sub_panel) 
            sub_panel_local=sub_panel 
            sub_panel_local[:,1]=sub_panel[:,0]*sub_panel[:,1] 
            sub_panel_local[:,2]=sub_panel[:,0]*sub_panel[:,2] 
            print('local section width=') 
            print(sub_panel_local) 
      
 
            if int(nle/ ((y1-y4-ttf-tbf)/nw)+1)>2: 
                Asl_p = A_WEB_stiffeners * (nw-1) + (y1 ) * tw 
                di =(A_WEB_stiffeners * (nw-1) * (e_WEB_stiffeners + tw) +(y1 ) * tw ** 2/ 2)/ Asl_p 
                I_sl = I_WEB_stiffeners * (nw-1) + (y1 ) / 12 * tw**3 + (y1 ) * tw * (di - tw / 2) ** 2+ A_WEB_stiffeners * (e_WEB_stiffeners+tw-di)**2 * (nw-1) 
                Ip=(y1  )*ttf**3/10.92 
                si_w=max(nle/ (nle-(y1)), 0.5) 
                Asl=A_WEB_stiffeners 
                gamma= I_sl/Ip; delta=(Asl)*(nw-1)/((y1  )*tw) 
                alpha= max(a/(y1 ), 0.5) 
     
                if alpha <= (gamma)**0.25: 
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                    k_p =2* ((1+alpha**2)**2 +gamma -1)/(alpha**2*(si_w+1)*(1+delta)) 
                elif alpha > (gamma)**0.25: 
                    k_p= (4* (1+gamma**0.5))/((si_w+1)*(1+delta)) 
                sigma_cr_p =k_p * np.pi**2 * E * (tw/(y1 ))**2 /12 / (1-v**2) 
 
 #########                
                 
            beta_a_c=(A_WEB_stiffeners + (y1 )/nw *sub_panel[(0,0)]*tw  ) / (A_WEB_stiffeners + (y1 )/nw * tw ) 
            labda_bar_p=(beta_a_c*fy/sigma_cr_p)**0.5 
            labda_bar_p=(sigma_E/fy)**0.5 *labda_bar_p 
 
            if labda_bar_p >0.673: 
                p_web=(labda_bar_p-0.055*(1+3))/(labda_bar_p)**2 
            elif labda_bar_p <=0.673: 
                p_web=1 
            p_web= min(1,p_web) 
            print ('critical plate-like buckling stress=',sigma_cr_p,'plate-like buckling reduction factor=',p_web ) 
            p_cr=sigma_cr_p*(x2-x1)*ttf/1000*local_buckling_plate 
 
 
#column-like buckling  
 
 
     
            Asl_1 = A_WEB_stiffeners +( sub_panel[(0,2)]+ sub_panel[(0,1)] )* tw 
            Asl_1_eff= A_WEB_stiffeners + sub_panel_local[(0,2)]+ sub_panel_local[(0,1)] * tw 
            beta_a_c=Asl_1_eff/Asl_1 
            di=(A_WEB_stiffeners*(e_WEB_stiffeners+tw)+( sub_panel[(0,2)]+ sub_panel[(0,1)])*tw**2)/Asl_1 
            I_sl_1=I_WEB_stiffeners+(sub_panel[(0,2)]+ sub_panel[(0,1)])/12*tw**3+(( sub_panel[(0,2)]+ sub_panel[(0,1)]))*tw*(di-tw/2)**2+A_WEB_stiffeners*(e_WEB_stiffeners+tw-di)**2 
            i=(I_sl_1/Asl_1)**0.5 
            e=max(np.abs(di-tw/2),np.abs(e_WEB_stiffeners+tw-di)) 
 
            sigma_cr_sl=(np.pi ** 2 * E * I_sl_1)/(Asl_1 * a**2) 
            sigma_cr_c=sigma_cr_sl*nle/(nle-y1/nw) 
            labda_bar_c=(beta_a_c*fy/sigma_cr_c)**0.5 
            alpha_e=0.49+0.09/(i/e) 
            phi=0.5*(1+alpha_e*(labda_bar_c-0.2)+labda_bar_c**2) 
            chi_c=1/(phi+(phi**2-labda_bar_c**2)**0.5) 
            epsi=sigma_cr_p/sigma_cr_c -1 
 
            print('critical stress coloumn like buckling',sigma_cr_c,'coloumn like buckling reduction factor',chi_c) 
            epsi=sigma_cr_p/sigma_cr_c -1 
            print(f'ξ={epsi:0.5}') 
            if sigma_cr_p/sigma_cr_c -1 < 0: 
                epsi=0 
                print('epsi=0 behavioue pure coloumn like buckling') 
            elif sigma_cr_p/sigma_cr_c -1>1: 
                epsi=1 
                print('epsi>1 behavioue pure plate-like buckling') 
            else: 
                print('global buckling is combination of coloumn like and plate-like') 
            pc_web=(p_web -chi_c)*(epsi)*epsi*(2-epsi)+chi_c 
            print('plate and coloumn like buckling reduction factor in web',pc_web) 
         
 
 
            di=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate * (ttf**2) / 2*ULS*pc_flange +(x2 - 2 * tw - x1)/(nf+1) * (ttf**2)/2 *local_buckling_plate+ (x3-x4-2*tw)*tbf*ULS*(y1-y4-tbf/2) + 
local_buckling_stiffeners*nf*A_flange_stiffeners*((e_flange_stiffeners+ttf))*pc_flange 
            Ae = (local_buckling_stiffeners*nf * A_flange_stiffeners + (((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) * ttf*ULS*local_buckling_plate))*pc_flange+(x2 - 2 * tw - x1)/(nf+1) * 
ttf*local_buckling_plate+(x3 - x4 - 2 * tw) *ULS * tbf +(nw - 1) * A_WEB_stiffeners *2 
 
            for i in range(panel_in_compression): 
                Ae =Ae + (sub_panel_local[(i,2)]+sub_panel_local[(i,1)])*tw *2*pc_web 
                if i==0: 
                    Ae=Ae-sub_panel_local[(i,1)]*tw *2*pc_web+sub_panel_local[(i,1)]*tw *2 
                di=di+sub_panel_local[(i,1)]*tw * 2*(y2/nw*i+sub_panel_local[(i,1)]/2)*pc_web + sub_panel_local[(i,2)]*tw * (2*y2/nw*(i+1)-sub_panel_local[(i,2)]/2)*pc_web 
                if i==0: 
                     di=di-sub_panel_local[(i,1)]*tw * 2*(y2/nw*i+sub_panel_local[(i,1)]/2)*pc_web+sub_panel_local[(i,1)]*tw * 2*(y2/nw*i+sub_panel_local[(i,1)]/2) 
            for i in range(panel_in_compression,nw): 
                Ae =Ae + (sub_panel_local[(i,2)]+sub_panel_local[(i,1)])*tw *2 
                di=di+sub_panel_local[(i,1)]*tw * 2*(y2/nw*i+sub_panel_local[(i,1)]/2)+ sub_panel_local[(i,2)]*tw * (2*y2/nw*(i+1)-sub_panel_local[(i,2)]/2) 
 
            sumation=0 
            for i in range(panel_in_compression-1 ): 
                sumation =sumation+ 2* A_WEB_stiffeners*(y1-y4)/nw * ( i +1 )*pc_web 
            for i in range(panel_in_compression-1,nw-1): 
                sumation =sumation+ 2* A_WEB_stiffeners*(y1-y4)/nw * ( i +1 ) 
            di=di+sumation 
            nle=di/Ae 
            Ie=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ttf**3/12*ULS*pc_flange+ ((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ULS*pc_flange*ttf*(nlg-
ttf/2)**2 + ULS*(x3-x4-2*tw)*tbf**3/12+(x3-x4-2*tw)*ULS*tbf*(y1-y4-tbf/2-nlg)**2 +local_buckling_stiffeners* nf*I_flange_stiffeners*pc_flange+nf*A_flange_stiffeners*(e_flange_stiffeners+ttf-
nlg)**2 *local_buckling_stiffeners+(x2 - 2 * tw - x1)/(nf+1) * (ttf**3)/12*local_buckling_plate+(x2 - 2 * tw - x1)/(nf+1) * ttf*local_buckling_plate*(nlg-ttf/2)**2 
             
            for i in range(panel_in_compression): 
                Ie=Ie+pc_web* (sub_panel_local[(i,1)]**3) * tw * 2 /12 + pc_web* (sub_panel_local[(i,2)]**3) * tw * 2 /12+ pc_web* sub_panel_local[(i,1)]*tw * 2* (nle-(y2/nw * i 
+sub_panel_local[(i,1)]/2))**2 +pc_web* sub_panel_local[(i,2)]*tw *2* (nle-(y2/nw*(i+1)+sub_panel_local[(i,2)]/2))**2 
                if i==0: 
                    Ie=Ie-pc_web* (sub_panel_local[(i,1)]**3) * tw * 2 /12 + (sub_panel_local[(i,1)]**3) * tw * 2 /12 -pc_web* sub_panel_local[(i,1)]*tw * 2* (nle-(y2/nw * i +sub_panel_local[(i,1)]/2))**2+ 
sub_panel_local[(i,1)]*tw * 2* (nle-(y2/nw * i +sub_panel_local[(i,1)]/2))**2 
            sumation=0        
            for i in range(panel_in_compression): 
                sumation =2* I_WEB_stiffeners*pc_web+2* A_WEB_stiffeners*((y1-y4)/nw*(i+1)-nlg)**2*pc_web 
                Ie=Ie+sumation 
            sumation=0  
            for m in range(panel_in_compression-1,nw-1): 
                sumation =2* I_WEB_stiffeners+2* A_WEB_stiffeners*((y1-y4)/nw*(m+1)-nlg)**2 
                Ie=Ie+sumation 
            for i in range(panel_in_compression-1,nw-1): 
                Ie=Ie+(sub_panel_local[(i,1)]**3) * tw * 2 /12+(sub_panel_local[(i,2)]**3) * tw * 2 /12+ sub_panel_local[(i,1)]*tw * 2*((nle-(y2/nw * i+1 
+sub_panel_local[(i,1)]/2)))**2+sub_panel_local[(i,2)]*tw *2* (nle-(y2/nw*(i+2)+sub_panel_local[(i,2)]/2))**2 
            We= np.abs(min(Ie/nle,Ie/(y1-nle))) 
            Meff=fy*We/10**9 
            print(f'In iteration {j+1} we={We:0.4} mm3 ; Ae={Ae:0.4} mm2; Ie={Ie:0.4} mm4; neutral line from top ={nle:0.4} mm ;momet resistace{Meff:0.4}') 
            sigma_E=np.abs(min(Meff*10**9/Ie*nle, 355)) 
            print('sigma_E=',sigma_E) 
            print('---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------') 
 
    if nw==1: 
        for i in range(5): 
            si= (nle+tbf-y1)/(nle-ttf) 
            if -1<si<0: 
                k_p=7.81-6.29*si+9.78*si**2 
            elif -3<si<= -1: 
                k_p=5.98*(1-si)**2 
            sigma_cr_web=np.pi**2*E*tw**2 /12/((y1 - y4)-ttf-tbf)**2/(1-v**2)*k_p 
            labda_bar_web=((y1 - y4)-ttf-tbf)/tw/(28.4*epsilon*(k_p**0.5)) 
            if si > -1: 
                state = 42*epsilon/(0.67+0.33*si) 
            elif si <= - 1:  
                state=62*epsilon*(1-si)*(-si)**0.5     
            if (y1-y4-ttf-tbf)/tw >state: 
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                if labda_bar_web >0.673: 
                    p_local=(labda_bar_web-0.055*(1+3))/(labda_bar_web)**2 
                elif labda_bar_web <=0.673: 
                    p_local=1 
                local_buckling_web=min(p_local,1) 
                print ('unstiffend web has section 4 local buckling=',local_buckling_web ) 
                local_buckling_web=p_local    
            else: 
                print('whole web is active and has class 3') 
                local_buckling_web=1 
            b_effective_web_compression=local_buckling_web*(nle-ttf) 
            b_e_1_web = 0.4*b_effective_web_compression 
            b_e_2_web = 0.6*b_effective_web_compression 
            b_effective_web_tension=(y1-y4)-(nle-ttf) 
 
            Ae = (local_buckling_stiffeners*nf * A_flange_stiffeners + (((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) * ttf*ULS*local_buckling_plate))*pc_flange+(x2 - 2 * tw - x1)/(nf+1) * 
ttf*local_buckling_plate+(x3 - x4 - 2 * tw) *ULS * tbf +(nw - 1) * A_WEB_stiffeners *2+b_effective_web_tension * tw * 2+ (b_e_1_web+b_e_2_web)*tw *2 
            di=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate * (ttf**2) / 2*ULS*pc_flange +(x2 - 2 * tw - x1)/(nf+1) * (ttf**2)/2 *local_buckling_plate+ (x3-x4-2*tw)*tbf*ULS*(y1-y4-tbf/2) + 
local_buckling_stiffeners*nf*A_flange_stiffeners*((e_flange_stiffeners+ttf))*pc_flange +b_effective_web_tension *(-b_effective_web_tension/2+(y1-y4))*tw * 2 +b_e_1_web*(b_e_1_web/2)*tw 
*2+b_e_2_web*(b_effective_web_compression-b_e_2_web/2)*tw *2 
            sumation=0 
            for i in range(nw-1 ): 
                sumation = 2* A_WEB_stiffeners*(y1-y4)/nw * ( i +1 ) 
                di=di+sumation 
            nle=di/Ae 
            Ie=((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ttf**3/12*ULS*pc_flange+((x2 - 2 * tw - x1)-(x2 - 2 * tw - x1)/(nf+1)) *local_buckling_plate *ULS*pc_flange*ttf*(nlg-ttf/2)**2 
+ ULS*(x3-x4-2*tw)*tbf**3/12+(x3-x4-2*tw)*ULS*tbf*(y1-y4-tbf/2-nlg)**2 +local_buckling_stiffeners* nf*I_flange_stiffeners*pc_flange+ nf*A_flange_stiffeners*(e_flange_stiffeners+ttf-nlg)**2 
*local_buckling_stiffeners+(x2 - 2 * tw - x1)/(nf+1) * (ttf**3)/12*local_buckling_plate+(x2 - 2 * tw - x1)/(nf+1) * ttf*local_buckling_plate*(nlg-ttf/2)**2+ (b_effective_web_tension**3) * tw * 2 /12+ 
2*(b_effective_web_tension)*tw*(-b_effective_web_tension/2+(y1-y4)-nlg)**2+(b_e_1_web**3)*tw/12 *2+(b_e_1_web)*tw*((nlg-b_e_1_web/2)**2) *2+(b_e_2_web**3)*tw/12 *2+(b_e_2_web*tw 
*2)*((b_effective_web_compression-b_e_2_web/2)-nlg)**2 
            sumation =0 
            for i in range(nw-1): 
                sumation =2* I_WEB_stiffeners+2* A_WEB_stiffeners*((y1-y4)/nw*(i+1)-nlg)**2 
                Ie=Ie+sumation 
            We= min(Ie/nle,Ie/(y1-nle)) 
            Meff=fy*We/10**9 
            print(f'In iteration {i+1} we={We:0.4} mm3 ; Ae={Ae:0.4} mm2; Ie={Ie:0.4} mm4; neutral line from top ={nle:0.4} mm  Meff={Meff:0.4}') 
            print(f'tension stress={Meff/Ie*(y1-nle)*10**9:0.4} compression stress= {Meff/Ie*(-nle)*10**9:0.4}') 
            sigma_E=np.abs(min(Meff*10**9/Ie*nle, 355)) 
            print(We) 
            print(Meff) 
            print('---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------') 
    print('end itteration ',itteration+1,'in the whole section ',local_buckling_web) 
    print('*************************************************************************************************************************************************************************') 
#1  shear lag effect for sagging moment 
 
if nf==0: 
    alfa_zero=1 
else: 
    alfa_zero=(1+A_flange_stiffeners*nf/((x2-x1-2*tw)*ttf))**0.5 
     
kappa= alfa_zero*(x2-x1-2*tw)/Le 
     
if kappa <= 0.02: 
    beta=1.0 
elif 0.02<kappa <0.70: 
    beta=1/(1+6.4*kappa**2) 
elif kappa>0.7: 
    beta=1/(8.6*kappa) 
 
Asl_p = A_flange_stiffeners * nf + (x2 - x1 -2 * tw ) * ttf 
combi=beta 
 
#combined effects of shear lag and of plate buckling = same as elastic if it is class 3  
 
#Elastic-plastic shear lag effects allowing for limited plastic strains may be taken into account using Aeff as follows 
ULS=max(beta**kappa,beta) 
print('reduction by elastic shear lag in SLS',combi) 
print('reduction by plastic shear lag in ULS=',ULS) 
beta_a_p = (h_stf*t_stf*nf*combi+((x2-x1-2*tw)*ttf*combi))/Asl_p 
#ttf=ttf*beta**kappa 
Asl_1 = h_stf * t_stf + (x2 - x1 - 2 * tw) / (nf + 1) * ttf 
Asl_1_eff_local =combi * (x2 - x1 - 2 * tw) / (nf + 1) * ttf + h_stf * t_stf *combi 
beta_a_c =Asl_1_eff_local / Asl_1 
 
#Only panels 
ULS=1 
A_lag = (x2 - 2 * tw - x1) * ttf *beta+ (y1 - y4) * tw * 2 + (x3 - x4 - 2 * tw)  * tbf* beta +nf* A_flange_stiffeners *beta+ (nw - 1) * A_WEB_stiffeners *2 
di_lag=(x2 - 2 * tw - x1) * (ttf**2)*beta / 2 + ((y1-y4)**2)/2*tw * 2 + (x3-x4-2*tw)*tbf*(y1-y4-tbf/2)*beta + nf*A_flange_stiffeners*beta*(e_flange_stiffeners+ttf) 
sumation =0 
for i in range(nw-1 ): 
    sumation = 2* A_WEB_stiffeners*(y1-y4)/nw * ( i +1 ) 
    di_lag=di_lag+sumation 
 
nl_lag=di/A_lag 
I_lag=(x2-2*tw-x1)*beta*ttf**3/12+(x2-2*tw-x1)*ttf*(nl_lag-ttf/2)**2 + ((y1-y4)**3)*tw * 2/12+ 2*(y1-y4)*tw* ((y1-y4)/2-nl_lag)**2+ (x3-x4-2*tw)*beta*(tbf**3)/12+(x3-x4-2*tw)*tbf*((y1-y4-tbf/2-nl_lag)**2) 
+ nf*I_flange_stiffeners *beta+ nf*A_flange_stiffeners*beta*(h_stf/2+ttf-nl_lag)**2 
sumation =0 
for i in range(nw-1): 
    sumation =2* I_WEB_stiffeners+2* A_WEB_stiffeners*((y1-y4)/nw*(i+1)-nlg)**2 
    I_lag=I_lag+sumation 
W_lag= np.abs(min(I_lag/nl_lag,I_lag/(y1-nl_lag))) 
print('elastic shearlag  section properties') 
print(f'w-shearlag={W_lag:0.4}mm3   A-shearlag={A_lag:0.4}mm2  I-shearlag,{I_lag:0.4}mm4  neutral line from top {nl_lag:0.4} mm' ) 
print(f'M-elastic={W_lag*fy:0.4}') 
 
 
 
 


