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 Preface 
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implementing the design model in an applet using Java SE Development Kit (JDK) [ 14 ], 
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work that I have done in TurboPascal using Borland Delphi [ 13 ]. Therefore, this 
graduation report is rather brief. For those readers, who are interested in using the applet, 
please refer to the following web address: http://www.mechanics.citg.tudelft.nl/pca. 

 
Hereby I would like to thank ir. H.J.A.M. Geers (Faculty of Electrical Engineering, 
Mathematics and Computer Science at Delft University of Technology) for his advice 
during the design and implementation of the applet. Many thanks also to ir. J.A. den Uijl 
for his contribution with Atena 3D. And last but not least, I would like to thank dr.ir. 
P.C.J. Hoogenboom for his support and suggestions during this project. 
 
 
 
Delft, December 12, 2006 
 
Anne van de Graaf
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 Summary 

Many foundations in The Netherlands, mainly those in coastal areas, are on piles. These 
piles are often over 15 m long at distances of 1 to 4 m. If possible, these piles are driven 
into the soil at the positions of walls and columns of a building. The presence of piles of a 
previous building may hamper a free choice of the new pile positions. Removing the old 
piles is not a solution, because this leaves holes in deep clay layers through which saline 
groundwater may penetrate into the upper soil. Moreover, the old piles cannot be reused 
because their quality cannot be guaranteed. As a consequence, pile caps often have to 
cover piles that are positioned in an irregular pattern. 
 
The objective of this Master of Science Project was to develop a design model for 
calculating the pile loading and reinforcement stresses for pile caps on irregularly 
positioned foundation piles. This model has been based on the strut-and-tie method, 
however, the ties have been replaced by another model consisting of stringer elements and 
shear panel elements. This model predicts vertical pile reactions, reinforcement stresses 
and shear stresses in concrete. For practical application, it has been implemented in a 
computer program called Pile Cap Applet (PCA). This applet was designed to be user-
friendly, to require only a moderate amount of data and to execute fast. 
 
PCA has been tested and validated in two ways. Firstly, it has been shown that the design 
model meets all equilibrium requirements. This has been tested for two pile caps. Both 
cases revealed that the design model complies with horizontal and vertical force 
equilibrium and moment equilibrium. From the theory of plasticity it then follows that this 
model gives a safe approximation of the ultimate load. Secondly, the ultimate load 
predicted by PCA has been compared to the ultimate load predicted by a non-linear finite 
element analysis. This comparison yielded several interesting conclusions whereof the 
most important ones are included in this summary. 
The ultimate load predicted by PCA is very conservative. Clearly, the real structure can 
carry the load in more ways than an equilibrium system (PCA) assumes. Furthermore, for 
the considered pile cap the design model predicted another failure mechanism than the 
finite element analysis. PCA predicted that the considered pile cap ‘collapsed’ because of 
reaching the yield strength in one of the reinforcing bars. In the finite element analysis, the 
pile cap collapsed because of a shear failure. This failure mechanism cannot be predicted 
by PCA. For the considered pile cap the vertical pile reactions predicted by PCA are 
approximately equal to those predicted by the non-linear finite element analysis. However, 
the reinforcement stresses at serviceability load according to PCA are much higher than 
those determined by the finite element analysis. This implies that the stresses calculated by 
PCA are not useful for checking the maximum crack width. 
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ν  Poisson’s ratio [-] 

σ  normal stress [N/mm2] 
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1 Introduction 

It is well-known that many buildings in The Netherlands, mainly those in coastal areas, are 
founded on piles. These piles can easily reach a length of over 15 m and are usually spaced 
at distances of 1 to 4 m. If possible, these piles are driven into the soil at the positions of 
walls and columns. Unfortunately, a structural designer is not always free in this choice, 
because piles of a previous building may be present. Removing these old piles is not a 
solution, since this leaves holes in deep clay layers through which saline groundwater may 
penetrate into the upper soil. Reusing the old piles is not an option either, because their 
quality cannot be guaranteed. These restrictions often result in irregular pile patterns, 
which makes calculation of pile caps by hand difficult if not impossible. 
 
The objective of this Master of Science Project is to develop a design model for 
calculating the pile loading and reinforcement stresses for pile caps on irregularly 
positioned foundation piles. This design method is based on the strut-and-tie method 
extended with the stringer-panel method. The model is implemented in an applet and can 
be used for structural design. 
 
The composition of this report is as follows. Chapter 2 gives a problem definition, 
discusses the model constitution and outlines the research. Chapter 3 considers the 
mathematical description of stringer elements, shear panel elements and strut elements. 
These are used as building blocks for the design model. In Chapter 4 it is explained how 
to assemble the system starting from the mathematical element descriptions given in the 
previous chapter. Furthermore, this chapter includes processing the boundary conditions 
and solving the obtained system of linear equations. Chapter 5 discusses the design of the 
applet and three important procedures, namely the preprocessor, the kernel and the 
postprocessor. In Chapter 6 the Java implementation is tested by checking equilibrium 
requirements in two specific cases. Chapter 7 compares the ultimate load predicted by the 
applet with a non-linear finite element analysis. Finally, Chapter 8 presents the conclusions 
and recommendations. 
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2 Design problem of the reinforced concrete pile cap 

This chapter defines the design problem that was introduced in Chapter 1. Section 2.1 
gives a description of the problem to be solved. Section 2.2 explains which elements are 
used and how these elements constitute the pile cap model. Section 2.3 gives an outline of 
the research area including aspects that are not taken into account. In the next chapter, 
Chapter 3, the elements which constitute the model presented in this chapter are 
mathematically described. 

2.1 Problem description 

The problem to be solved is to develop a design 
model for determining the pile loading and the 
reinforcement stresses for pile caps on irregularly 
positioned foundation piles in buildings (Figure 1). 
One way of calculating pile caps is to create a model 
in a 3D finite element package. An important 
disadvantage of this approach is that it is time-
consuming. Creating the computer model as well as 
performing an advanced calculation requires a lot of 
time. Another method for solving this problem is to use rough models, which may be 
calculated by hand. But since these rough models introduce a lot of uncertainty, a large 
safety factor is required. Clearly, structural designers need a reliable and rational 
calculation method, which can be carried out easily. 

2.2 Modeling the pile cap 

For stocky structures loaded by concentrated forces, the 
strut-and-tie method is commonly adopted [ 10 ]. This 
method uses solely compression members (struts) and 
tension members (ties). In Figure 2 a strut-and-tie model 
has been drawn for the example pile cap given in Figure 1. 
Compression members have been drawn in green and 
tension members have been drawn in red. If reinforcing 
bars are put in the directions of the ties the result would 
be very impractical to make. Moreover, if a pile cap consists of more piles and columns 
the reinforcement patterns would be even more complicated and therefore labor-intensive 
and prone to error. Orthogonal reinforcement patterns with fixed center-to-center 
distances are far more practical. But then, the above mentioned strut-and-tie method is 
not convenient anymore. Therefore, the ties are replaced by another model (Figure 3), 
consisting of stringer elements and shear panel elements ([ 1 ], [ 2 ]). In this renewed 
model, the stringer elements represent the reinforcing bars, while the shear panel elements 

Figure 1  Example pile cap 

 
Figure 2  Strut-and-tie model for 
the example pile cap of Figure 1
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represent the concrete in between. From Figure 3 it can be seen that the load is carried by 
strut elements that are hold in place by a combination of stringer elements and shear panel 
elements. 

2.3 Research outline 

Some restrictions need to be 
introduced to arrive at a 
practical design model. 
 
The first restriction is that 
columns can only transfer 
normal (vertical) loads. A 
column load is represented by 
a concentrated force, which is 
applied at the center of gravity 
of the column (Figure 3). 
Therefore, moments in the 
columns cannot be included. Horizontal loads and bending moments are excluded from 
this research. Since the piles are modeled as strut elements, they can only transfer normal 
loads. Furthermore, it is assumed that the tip of the pile is restrained in all directions. The 
behavior of the soil in which the piles are embedded is not taken into consideration, which 
also means that no pile-soil interaction is taken into account. For the axial stiffness of the 
stringer elements, only the extensional stiffness of the reinforcing bars is taken into 
account. This means it is assumed that the concrete does not contribute to the transfer of 
tensile forces and that effects like tension-stiffening are not taken into consideration. Only 
main reinforcement is considered, which means that shear reinforcement and other kinds 
of reinforcement are excluded from the model. In both directions, only one layer of 
reinforcing bars is taken into account. Another restriction is that the dead weight of the 
pile cap is not taken into consideration. This is acceptable since the dead weight of the pile 
cap is only a fraction of the load that is carries. 
 
The implementation of the design model in an applet also poses 
a few restrictions. To ensure an orderly Graphical User Interface 
(GUI) it is decided to limit the maximum number of columns to 
four and the maximum number of piles to six. The minimum 
number of piles is set to three to ensure a kinematical 
determinate system. The center-to-center distances of the 
reinforcing bars are equal per direction. Only one reinforcing bar 
diameter can be specified per direction. 
 

stringer elements

shear panel elements

strut elements

column load

strut element

stringer elements

shear panel elements

strut elements

column load

strut element

Figure 3  Strut-and-tie model extended with a stringer-panel model 

 
Figure 4  Pier on a pile cap
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The design problem discussed in this graduation report is mainly aimed at pile caps used 
in buildings. But the general nature of the design model to be discussed makes its 
application also suitable for use in for example piers on pile caps (Figure 4). 
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3 Mathematical description of the used elements 

In Chapter 2 it was explained that the model which represents the pile cap consists of 
three different elements, namely stringer elements, shear panel elements and strut 
elements. This chapter describes the structural behavior of these elements in a 
mathematical way. First, Section 3.1 gives the general agreements concerning local and 
global co-ordinate systems and notations. Then, in Section 3.2, the stiffness relation for a 
stringer element is derived, based on the graduation work of Hoogenboom (1993) [ 6 ]. In 
Section 3.3 the stiffness relation for a shear panel element is derived using the work of 
Blaauwendraad (2004) [ 4 ]. Finally, in Section 3.4 a description of the strut element is 
given, which has been based on the work of Nijenhuis (1973) [ 8 ] and Hartsuijker (2000)  
[ 5 ]. In the next chapter, Chapter 4, these descriptions are used to formulate the structural 
behavior of the pile cap. 

3.1 Co-ordinate systems and notations 

The global co-ordinate system xyz  for the pile cap 
is indicated in Figure 5. In the next sections, local 
co-ordinate systems xyz  are defined. In the case of 
stringer elements and shear panel elements, the 
orientation of the local co-ordinate axes is in the 
same direction as the global co-ordinate system 
(Figure 5). This implies that for these elements a 
rotation matrix is not needed. Because strut 
elements have a three dimensional orientation 
(Figure 3) and their local co-ordinate system is 
chosen according to the orientation of the element, a rotation matrix is necessary. 
Therefore, Section 3.4 is divided in two subsections. Subsection 3.4.1 gives the 
mathematical description of the strut element. In subsection 3.4.2 the rotation matrix is 
derived. In the next sections, the following (common) convention is used: scalars are not 
underlined, vectors are underlined and matrices are doubly underlined. The derivations in 
this chapter are valid for single elements only. To be formally correct a superscript 
( )e should be used, but for the sake of convenience this superscript is left out. 

3.2 Stringer element 

The stringer element consists of a bar with length  and extensional stiffness EA  and 
possesses three degrees of freedom (DOF): 1xu , 2xu  and 3xu  (Figure 6). The DOF at the 
ends of the element are called 1xu  and 3xu  respectively. The intermediate DOF is named 

2xu . The element is loaded by two concentrated forces at the ends of the bar, which are 
called 1xF  and 3xF , and an evenly distributed shear force tτ  along the bar axis. This 
distributed shear force is a result of interaction with adjacent shear panel elements, which 

Figure 5  Global co-ordinate system

x  y

z  
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are described in Section 3.3. The sum of the distributed shear force over the length  is 
equal to 2xF . 

The normal force ( )N x  in the bar can be described by 

( ) ( )1 1 2
xN x N N N= − − . ( 1 )

From equilibrium of the bar ends (Figure 7) it may be concluded that 

1 1xF N= −  and 3 2xF N= . ( 2 )

2xF  can be expressed as 

1 2
2 1 2x

N N
F N N t tτ τ

−
= − = ⇔ = . ( 3 )

The stiffness relation for the stringer element is derived using complementary energy. The 
expression for the complementary energy of the bar reads [ 6 ] 

( )
2

1
compl 1 1 3 32

0 0
x x x x x

x x

NE dx F u F u tu x dx
EA

τ
= =

= − − −∫ ∫ . ( 4 )

Substitution of equations ( 1 ), ( 2 ) and ( 3 ) in the expression for the complementary 
energy ( 4 ) gives 

 

1xu
1xF  

3xu

tτ
3xF

x  

0x =  x =

( )N x1N
2N

EA  

2xu

Figure 6  Stringer element in a local co-ordinate system xyz  [figure taken from Hoogenboom [ 6 ]] 

 

( )1 1 1 10
lim 0x xx

F N t x F Nτ
Δ →

+ + Δ = + = ( )2 3 2 30
lim 0x xx

N F t x N Fτ
Δ →

− + + Δ = − + =

xΔ

1xF  1N  

tτ  

xΔ  

tτ

2N 3xF  

Figure 7  Equilibrium consideration of the end parts of the stringer element 
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( )
2

1 2 1 2
compl 1 1 1 2 3

0 0

1
2 x x x

x x

N N N N
E N x dx N u N u u x dx

EA= =

− −⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠∫ ∫ . ( 5 )

The intermediate DOF 2xu  is now defined as [ 6 ] 

2
0

2 ( )x x
x

u u x dx
=

= ∫ , ( 6 )

which may be interpreted as the mean displacement of the stringer element. Further 
elaboration of expression ( 5 ) using equation ( 6 ) leads to 

complE ( )
22

2 21 1 2 1 2
1 1 1 2 3 1 2 2

0

1 2
2 x x x

x

N N N N N
N x x dx N u N u N N u

EA=

⎛ ⎞− −⎛ ⎞= − + + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫  

 22
2 2 31 1 2 1 21

1 1 1 2 3 1 2 2 23

0

2 2 2 21
1 1 1 2 1 1 2 2 1 1 2 3 1 2 2 23

2 21 1 1
1 2 1 2 1 1 2 3 1 2 2 23 3 3

1
2

1 ( ) ( 2 )
2

1
2

6

x x x x

x

x x x x

x x x x

N N N N N
N x x x N u N u N u N u

EA

N N N N N N N N N u N u N u N u
EA

N N N N N u N u N u N u
EA

=

⎡ ⎤− −⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤= − − + − + + − − +⎣ ⎦

⎡ ⎤= + + + − − +⎣ ⎦

= 2 2
1 1 2 2 1 1 2 3 1 2 2 2 .x x x xN N N N N u N u N u N u

EA
⎡ ⎤+ + + − − +⎣ ⎦

 

The complementary energy should be stationary in relation to variations of the stresses, 
meaning that the derivatives with respect to 1N  and 2N  need to be equal to zero [ 6 ] 

( )

( )

compl
1 2 1 2

1

compl
1 2 3 2

2

2 0,
6

2 0.
6

x x

x x

E
N N u u

N EA
E

N N u u
N EA

∂
= + + − =

∂
∂

= + − + =
∂

 

In matrix notation these equations read  

1
1

2
2

3

2 1 1 1 0
1 2 0 1 16

x

x

x

u
N

u
NEA

u

⎡ ⎤
−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

, ( 7 )

where the dot implies matrix multiplication. 
Pre-multiplication of equation ( 7 ) by the inverse of the left hand side matrix of equation  
( 7 ), gives 

1
1

2
2

3

4 2 2 1 4 2 1 1 0
2 4 1 2 2 4 0 1 16

x

x

x

u
NEA EA u
NEA

u

⎡ ⎤
− − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⇒⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦
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1
1 1

2
2 2

3

1 0 4 6 2
0 1 2 6 4

x

x

x

u
N N EA u
N N

u

⎡ ⎤
− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ = = ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

. ( 8 )

From equations ( 2 ) and ( 3 ) it follows that the relation between the internal forces 1N  
and 2N  and external loads 1xF , 2xF  and 3xF  can be described by 

1
1

2
2

3

1 0
1 1
0 1

x

x

x

F
N

F
N

F

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. ( 9 )

The final step in the derivation of the stiffness relation for a stringer element, is to 
substitute equation ( 8 ) into equation ( 9 ), which leads to 

1 1 1

2 2 2

3 3 3

1 0 4 6 2
4 6 2

1 1 6 12 6
2 6 4

0 1 2 6 4

x x x

x x x

x x x

F u u
EA EAF u u

F u u

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
− −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⋅ ⋅ ⋅ = ⋅ − − ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

As explained in Section 3.1, a rotation matrix is not needed. So the above relation also 
holds for the global co-ordinate system and reads 

1 1

2 2

3 3

4 6 2
6 12 6

2 6 4

x x

x x

x x

F u
EAF u

F u

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ − − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

. ( 10 )

 
As stated in Section 2.3, for the axial stiffness of the stringer elements, only the 
extensional stiffness of the reinforcing bars is taken into account. Therefore, the 
extensional stiffness EA  in equation ( 10 ) can be calculated from the Young’s modulus of 
the reinforcement rebarE  and the cross-sectional area of a reinforcing bar. The length  in 
equation ( 10 ) is equal to the length or width of the adjacent shear panel element. 
Generating the stringer elements in the applet and the global numbering of the stringer 
element DOF is explained in Appendix A1. Once the displacements 1xu , 2xu  and 3xu  are 
known, the normal forces 1N  and 2N  acting at the ends of the stringer element can be 
calculated by using equation ( 8 ). 

3.3 Shear panel element 

A shear panel element is a rectangular element that is meant for transmitting an evenly 
distributed shear force tτ  (Figure 8). At its edges this shear stress interacts with adjacent 
stringer elements. A shear panel element has a length a , a width b  and an effective depth 
t . Determining  this effective depth is explained at the end of this section. The shear 
panel element possesses a shear stiffness cap concreteG , which can be calculated from the 
well-known expression 
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( )2 1
cap concrete

cap concrete

E
G

ν
=

+
, 

where cap concreteE  represents the Young’s modulus of the cap concrete and ν  represents 
Poisson’s ratio. 

Since the shear stress tτ  is constant, the shear angle xyγ  will also be constant. Moreover, 
the edges of the deformed shear panel element remain straight and do not elongate. 
Therefore, the deformation of the shear panel element can be described by four DOF: 

1xu , 2xu , 1yu  and 2yu , which are chosen halfway each edge. 
The resulting shear forces along the edges can be calculated as 

1xF taτ= −  and 2xF taτ= , 

1yF tbτ= −  and 2yF tbτ= . 
( 11 )

From the constitutive relation it is known that 

xyt Gtτ γ= . ( 12 )

The shear angle xyγ can be determined from Figure 9 

2 12 1y y yx x x
xy

u u uu u u
b a b a

γ
Δ −Δ −

= + = + . ( 13 )

Substitution of equation ( 13 ) into equation ( 12 ) gives 

 

x1u

x2u
y2uy1u  

tτ  

tτ  tτ

tτ  

a

b
x  

y

x2F

x1F

y2Fy1F

Figure 8  Shear panel element in a local co-ordinate system xyz  

yuΔ

xuΔ  

a  

b  

 
Figure 9  Deformed shear panel element 



Structural design of reinforced concrete pile caps A.V. van de Graaf 

12 

2 12 1 y yx x u uu u
t Gt

b b a a
τ

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
. ( 14 )

Substitution of equation ( 14 ) into equations ( 11 ) yields the following stiffness relation 

2 12 1 2 1
1 2 1

2 12 1 2 1
2 2 1

2 1 2 12 1
1 2 1

2
2

,

,

,

y yx x x x
x y y

y yx x x x
x y y

y y y yx x
y x x

x
y

u uu u u a u a
F Gta Gt u u

b b a a b b

u uu u u a u a
F Gta Gt u u

b b a a b b

u u u b u bu u
F Gtb Gt u u

b b a a a a

u u
F Gtb

b

⎛ ⎞ ⎛ ⎞= − − + − = − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − − + − = − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − 2 1 2 11
2 1 .y y y yx

x x

u u u b u b
Gt u u

b a a a a
⎛ ⎞ ⎛ ⎞

+ − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( 15 )

For convenience, the following dimensionless parameters are defined 

a
b

α =  and 1 b
a

β α −= = . ( 16 )

By using the dimensionless parameters α  and β  from ( 16 ) and by writing equations      
( 15 ) in matrix form, the element stiffness relation is obtained 

1 1

2 2

1 1

2 2

1 1
1 1

.
1 1
1 1

x x

x x

y y

y y

F u
F u

Gt
F u
F u

α α
α α

β β
β β

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 

As explained in Section 3.1, a rotation matrix is not needed. Therefore, the above relation 
also holds in the global co-ordinate system 

1 1

2 2

1 1

2 2

1 1
1 1

.
1 1
1 1

x x

x x

y y

y y

F u
F u

Gt
F u
F u

α α
α α

β β
β β

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 ( 17 )

 
The effective depth t  from 
equation ( 17 ) can be 
determined from the concrete 
cover c , the center-to-center 
distance of the reinforcing bars 
in x -direction xd , the center-
to-center distance of the 
reinforcing bars in y -direction 

yd  and the reinforcing bar 

t

reinforcing bar

 
Figure 10  Shear stress trajectories between reinforcing bars 
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diameters xφ  and yφ . For determining t  the following scheme is used (which is based on 
the stress flow in Figure 10) 

( ) ( )
4 4

x y x yd d
t c

φ φ+ +
= + + . 

But if this formula delivers a value for t  which exceeds ( ) 2x yd d+  then the value for t  
is set to ( ) 2x yd d+ . This only occurs in the rare case of a very large concrete cover. Of 
course, it also has to be checked that the effective depth t  is not larger than the real pile 
cap depth h . Generating the shear panel elements in the applet and the global numbering 
of the shear panel element DOF is explained in Appendix A2. Once the displacements 

1xu , 2xu , 1yu  and 2yu  are solved, the shear stress τ  acting on the shear panel element can 
be determined by using equation ( 14 ). 
 
It is noticed that in the stringer-panel method two slight incompatibilities occur. The 
normal force in a stringer element is assumed to be linear (Figure 6), which implies that 
the displacements of this element are quadratic. These displacements are not compatible 
with the displacements of a shear panel element. Moreover, the DOF of the shear panel 
element are situated halfway each side, while the intermediate DOF of the stringer 
element is interpreted as the mean displacement, which needs not to be necessarily 
halfway the stringer element. But as already mentioned, these are small incompatibilities. 
 
One last remark is made concerning the structural behavior of the shear panel element 
after the first crack occurs. In this report it is assumed that cracking of the element does 
not influence its structural behavior, while in reality the stiffness of the element reduces. 
Although the shear panel element is used in the design model, an alternative can be used 
consisting of two diagonal elements (Figure 11). If in a diagonal element the tensile 
strength is exceeded, it should be left out in further analysis. This implies that the 
structural analysis then becomes an iterative process which ends when all diagonal 
elements are in compression or in tension but not cracked. 
 

tτ

tτtτ

tτ

a  

b

a  

b

solid element 
diagonal element 

Figure 11  Shear panel element versus an element containing of two diagonal elements 
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3.4 Strut element 

3.4.1 Element description 

First, the mathematical description of the strut element is derived in a local co-ordinate 
system xyz , in which the x -axis coincides with the centerline of the element. Later on, 
this description is transformed to the global co-ordinate system xyz . 
A strut element consists of two nodes, called node 1 and node 2, which are connected 
through a straight bar. The length of a strut element is denoted by  and its extensional 
stiffness is denoted by EA . Two concentrated forces, 1xF  and 2xF , are acting on nodes 1 
and 2 respectively (Figure 12). The relation between forces and displacements is well-
known 

F K u= ⋅ , ( 18 )

where F  is the force vector, K  is the element stiffness matrix and u  is the displacement 
vector. 

This stiffness relation has been elaborated in many textbooks (Hartsuijker (2000) [ 5 ]) 

1 1

2 2

1 1
1 1

x x

x x

F uEA
F u

+ −⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥− +⎣ ⎦⎣ ⎦ ⎣ ⎦

, ( 19 )

where EA  is the strut element axial stiffness and  is the strut element length. 
 
Since each node possesses three DOF, relation ( 19 ) needs to be expanded to include the 
y -direction and the z -direction 

 

x
y  

z  

1 2

1xF
1xu  2xu

2xF

EA

Figure 12  Strut element in a local co-ordinate system xyz  
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1 1

1 1

1 1

2 2

2 2

2 2

1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

x x

y y

z z

x x

y y

z z

F u
F u
F uEA
F u
F u
F u

+ −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

= ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
− +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

. 

The foregoing formulation has been derived, as already mentioned, in a local co-ordinate 
system. To transform this formulation to the global co-ordinate system xyz , the 
displacements as well as the forces have to be rotated. 

3.4.2 Element rotation 

First, the displacements are considered. The displacements iu  of node i  ( )1,2i =  in the 
local co-ordinate system xyz  is expressed in terms of the displacements iu  of node i  
( )1,2i =  in the global co-ordinate system xyz . Figure 13 shows the strut element, 
including the positive definitions of the displacements in the local co-ordinate system xyz  
and the global co-ordinate system xyz . 

The projection of the element on the Oxy -plane is at an angle α  with the positive x -
axis. The centerline of the strut element passes through the Oxy -plane at an angle β . The 
directions of the y -axis and z -axis in relation to the global co-ordinate system are of no 
importance for the stress and strain behavior of the element, since the strain only occurs 
in the x -direction. Therefore, the z -axis is chosen parallel to a vertical plane through the 
z -axis, and so, the two rotations over the angles α  and β  are sufficient. The 
relationship between the displacements in the local co-ordinate system xyz  and the 
displacements in the global co-ordinate system xyz  can be derived by performing these 
rotations consecutively. This is done by using an intermediate co-ordinate system. 
 

 

β  

xF xu
yF  

α

O x
yu  

z

zF

zu

y  

1 
1xu

1yu
1zu

2yu

2xu

2zu

2 

, EA  

1x
2x

1y
2y

1z
2z

 
Figure 13  Strut element in a three dimensional space [figure based on Nijenhuis [ 8 ]] 



Structural design of reinforced concrete pile caps A.V. van de Graaf 

16 

First, rotation α  is considered. Therefore, 
a new co-ordinate system x y zα α α  has 
been constructed, as can be seen from 
Figure 14. The xα -axis is positioned in the 
Oxy -plane and points in the direction of 
the projection of the strut element onto 
the Oxy -plane. The yα -axis is also 
situated in the Oxy -plane. From this, it 
follows that the zα -axis coincides with the 
z -axis. The displacements ,x iu  and ,y iu  
can be decomposed along the xα -axis and 
yα -axis 

, , ,1 , ,2 , ,

, , ,1 , ,2 , ,

cos sin ,

sin cos .
x i x i x i x i y i

y i y i y i x i y i

u u u u u

u u u u u
α α α

α α α

α α

α α

= + = +

= + = − +
( 20 )

Since the rotation takes place about the z -axis, it is concluded that 

z zu u
α
= . ( 21 )

Equations ( 20 ) and ( 21 ) may also be written in matrix notation 

, ,

, , , ,

,,

cos sin 0
sin cos 0
0 0 1

x i x i

i y i y i ii

z iz i

u u
u u u R u

uu

α

α

α

α α

α α
α α

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = − ⋅ = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. 

 
Now, rotation β  is introduced (Figure 15). The displacements ,x iu

α
 and ,z iu

α
 are 

decomposed along the x -axis and z -axis 

, , ,1 , ,2 , ,

, , ,1 , ,2 , ,

cos sin ,

sin cos .
x i x i x i x i z i

z i z i z i x i z i

u u u u u

u u u u u
α α

α α

β β

β β

= + = −

= + = +
( 22 )

 , ,1y iu
α

x  

xα  

α  

yyα

,x iu

,y iu
, ,2y iu

α

, ,2x iu
α

, ,1x iu
α

O 

Figure 14  Decomposition of displacements in the 
global co-ordinate system in displacements in the 
x y zα α α  co-ordinate system [figure based on 

Nijenhuis [ 8 ]] 

x

z  

xα
β  

,x iu
α

 

,z iu
α

 

, ,1x iu

, ,2x iu  

, ,1z iu

, ,2z iu

zα  

O 

 
Figure 15  Decomposition of displacements in the x y zα α α  co-ordinate system in displacements in 
the local co-ordinate system [figure based on Nijenhuis [ 8 ]] 
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Since the rotation takes place about the yα -axis, it is concluded that 

, ,y i y iu u
α

= . ( 23 )

Equations ( 22 ) and ( 23 ) may also be written in matrix notation 

,,

, , ,,

, ,

cos 0 sin
0 1 0

sin 0 cos

x ix i

i y i y i ii

z i z i

uu
u u u R u

u u

α

α

α

αβ

β β

β β

⎡ ⎤⎡ ⎤ −⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

Now, the transformation from the global co-ordinate system to the local co-ordinate 
system can be written as 

( ),, , , , ,i i i i ii i i i i i
u R u R R u R R u R uαβ β α β α

= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ . 

Elaboration of 
i

R  gives 

cos 0 sin cos sin 0 cos cos sin cos sin
0 1 0 sin cos 0 sin cos 0

sin 0 cos 0 0 1 cos sin sin sin cos
i

R
β β α α α β α β β

α α α α
β β α β α β β

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

This is the rotation matrix for a single node. Since a strut element consists of two nodes, 
the above matrix has to be used twice 

11 1

2 22

0

0

Ru u
u R u

u uR

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. ( 24 )

Since the angles α  and β  are the same for node 1 and node 2, 
1

R  should be equal to 

2
R . This gives the following rotation matrix R  for displacements of a strut element 

cos cos sin cos sin 0 0 0
sin cos 0 0 0 0

cos sin sin sin cos 0 0 0
0 0 0 cos cos sin cos sin
0 0 0 sin cos 0
0 0 0 cos sin sin sin cos

R

α β α β β
α α

α β α β β
α β α β β

α α
α β α β β

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

The goniometric ratios sinα , cosα , sin β  and cosβ  can be calculated from 

( ) ( )
2 1

2 2
2 1 2 1

sin
y y

x x y y
α

−
=

− + −
, 

( ) ( )
2 1

2 2
2 1 2 1

cos
x x

x x y y
α

−
=

− + −
, 

1 2sin
z z

β
−

= , 
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( ) ( )2 2
2 1 2 1cos

x x y y
β

− + −
= , 

where 

( ) ( ) ( )2 2 2
2 1 2 1 1 2x x y y z z= − + − + − . 

 
The next step is to derive in the same 
manner a rotation matrix for the forces 
acting on the strut element. The forces iF  
acting in the global co-ordinate system 
xyz  on node i  ( )1,2i =  are expressed in 
terms of the forces iF  acting in the local 
co-ordinate system xyz  on node i  
( )1,2i = . So, β  is the first rotation to be 
considered (Figure 16) 

, , ,

, , ,

cos sin ,

sin cos .
x i x i z i

z i x i z i

F F F

F F F
α

α

β β

β β

= +

= − +
 ( 25 )

Since the rotation takes place about the yα -axis it is concluded that 

, ,y i y iF F
α

= . ( 26 )

Equations ( 25 ) and ( 26 ) may also be written in matrix form 

, ,

, , , ,

,,

cos 0 sin
0 1 0

sin 0 cos

x i x i
T

i iy i y i i

z iz i

F F
F F F R F

FF

α

α

α

α β

β β

β β

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⋅ = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

. 

It can be checked that the formed matrix is 
the transposed of the matrix 

,i
R

β
, what is 

indicated by the superscript T . 
 
Now, consider rotation α  (Figure 17). 
This gives the following relations 

x  

xα  
β  

zzα

, ,2z iF
α

, ,1z iF
α

,z iF

,x iF

, ,2x iF
α

 

, ,1x iF
α

 

 
Figure 16  Decomposition of forces in the local co-
ordinate system in forces in the co-ordinate system 

x y zα α α  [figure based on Nijenhuis [ 8 ]] 

x

xα

α  

yyα

, ,1x iF  , ,2x iF

,y iF
α

,x iF
α

 

, ,1y iF  

, ,2y iF  

Figure 17  Decomposition of forces in the co-ordinate 
system x y zα α α  in forces in the global co-ordinate 
system [figure based on Nijenhuis [ 8 ]] 
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, , ,

, , ,

cos sin ,

sin cos .
x i x i y i

y i x i y i

F F F

F F F
α α

α α

α α

α α

= −

= +
 ( 27 )

Since the rotation takes place about the zα -axis, it is concluded that 

, ,z i z iF F
α

= . ( 28 )

In matrix notation equations ( 27 ) and ( 28 ) read 

,,

,, , ,

, ,

cos sin 0
sin cos 0

0 0 1

x ix i
T

i iy i y i i

z i z i

FF
F F F R F

F F

α

α

α

αα

α α
α α

⎡ ⎤⎡ ⎤ −⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

. 

Again, the formed matrix is the transposed of an earlier found matrix, namely 
,i

R
α

. 

Now, the transformation from the local co-ordinate system to the global co-ordinate 
system can be described by 

( ),, , , , ,

T T T T T T
i i i i ii i i i i i

F R F R R F R R F R Fαα α β α β
= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ . 

Elaboration of T

i
R  gives 

T

i
R  

cos sin 0 cos 0 sin
sin cos 0 0 1 0

0 0 1 sin 0 cos

α α β β
α α

β β

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 

 cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

α β α α β
α β α α β

β β

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. ( 29 )

As can be verified, this matrix is indeed the transposed of the earlier found rotation matrix 

i
R . 
 
Just like in the case of the rotation matrix for displacements, this rotation matrix for forces 
has been derived for a single node. Since a strut element consists of two nodes, matrix 
( 29 ) is used twice 

11 1

2 22

0

0

T

T

T

RF F
F R F

F FR

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= = ⋅ = ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. ( 30 )

Since the angles α  and β  are the same for node 1 and node 2, 
1

TR  should be equal to 

2

TR . This gives the following transposed transformation matrix TR  for forces in a strut 
element 
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cos cos sin cos sin 0 0 0
sin cos cos sin sin 0 0 0

sin 0 cos 0 0 0
0 0 0 cos cos sin cos sin
0 0 0 sin cos cos sin sin
0 0 0 sin 0 cos

TR

α β α α β
α β α α β

β β
α β α α β
α β α α β

β β

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

. 

 
The final step to arrive at the stiffness relation for the strut element in the global co-
ordinate system is to combine equations ( 30 ), ( 18 ) and ( 24 ) 

T T TF R F R K u R K R u K u= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ , 

in which TK R K R= ⋅ ⋅ . 
 
Fully written, this leads to 

2 2 2 2 2 2
1

2 2 2 2 2 2
1

1

2

2

2

cos cos cos cos sin cos cos sin cos cos cos cos sin cos cos sin
cos cos sin sin cos sin cos sin cos cos sin sin cos sin cos sin

cos cos sin

x

y

z

x

y

z

F
F
F EA
F
F
F

α β α β α α β β α β α β α α β β
α β α α β α β β α β α α β α β β
α β

⎡ ⎤ − − −
⎢ ⎥ − − −⎢ ⎥
⎢ ⎥ −

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 2

2 2 2 2 2 2

2 2 2 2 2 2

sin cos sin sin cos cos sin sin cos sin sin
cos cos cos cos sin cos cos sin cos cos cos cos sin cos cos sin

cos cos sin sin cos sin cos sin cos cos sin sin cos sin cos sin
cos c

β α β β β α β β α β β β
α β α β α α β β α β α β α α β β

α β α α β α β β α β α α β α β β
α

− −
− − −

− − −

1

1

1

2

2
2 2

2os sin sin cos sin sin cos cos sin sin cos sin sin

x

y

z

x

y

z

u
u
u
u
u
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( 31 )

 
In the case of vertical strut elements, which is for example the case with foundation piles, 
angle α  is not defined (Figure 13). This means that equation ( 31 ) cannot be used. 
Instead, the element stiffness matrix is redefined, based on equation ( 19 ). The difference 
is that in this case the strut element is not oriented along the x -axis, but along the z -axis. 
Therefore, the stiffness relation for a vertical strut element reads 

1 1

1 1

1 1
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z z
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u F
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⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

Global numbering of strut elements and their DOF and generating strut elements in the 
applet, is discussed in Appendix A3. Once the displacements 1xu  and 2xu  are known, the 
normal force in the strut element can be calculated from 

( )1 1 2x x x
EAN F u u= − = − − , 

which has been derived from equation ( 19 ). The displacements 1xu  and 2xu  can be 
calculated from the earlier derived rotation matrix R  and the displacements 1xu , 2xu , 1yu , 

2yu , 1zu  and 2zu . If this is done, the normal force in the strut element can be calculated 
from 
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( ) ( ) ( )( )1 2 1 2 1 2cos cos sin cos sinx x y y z z
EAN u u u u u uα β α β β= − − + − − − . 

For vertical strut elements, calculating the normal force is easier. Since only displacements 
in z -direction are needed and this direction coincides with the z -direction, the normal 
force can be calculated from 

( ) ( )1 1 2 1 2z z z z z
EA EAN F u u u u= − = − − = − − .
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4 Assembling the model and solving the system 

In Chapter 3 the behavior of the elements to be used was described. In this chapter it is 
explained how to describe the behavior of the structure, which is composed of these 
elements and how to solve the resulting system of linear equations. In Section 4.1 it is 
explained how to assemble the system stiffness matrix starting from the element stiffness 
matrices. In Section 4.2 it is discussed how to process the imposed forces. Section 4.3 
explains how to make use of so-called tying. Section 4.4 discusses processing the supports, 
which may be regarded as imposed displacements. Finally, Section 4.5 contains a brief 
description of how to solve the obtained system of linear equations by using the method 
of LU decomposition. 

4.1 Assembling the system stiffness matrix 

Assume that the considered system has n  degrees of freedom. The system stiffness matrix 
will then have dimensions of n n× . The most important part in assembling the system 
stiffness matrix is to find the corresponding local and global degrees of freedom (DOF). 
In this way, the entries of the element stiffness matrices are added to the correct entries of 
the system stiffness matrix. This procedure has been visualized for a stringer element in 
Figure 18. Consider an arbitrary stringer element with element number i . From Section 
3.1 it is known that a stringer element possesses three DOF. Locally, these are called 1, 2 
and 3, but globally these may be called j , k  and l . If the corresponding entries have 
been found, a summation of the entry of the element stiffness matrix and the entry of the 
system stiffness matrix takes place. 

The same procedure may be applied to strut elements and shear panel elements, with the 
difference that the element stiffness matrices have different sizes. In Appendix B1, the 
source code for this procedure is given. 
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system stiffness matrix

element 
stiffness
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Figure 18  Assembling the system stiffness matrix
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4.2 Processing imposed forces 

Processing the imposed forces comes down to nothing more than assigning the column 
normal forces to the correct entries of the force vector. No more work has to be 
performed in this step, since the column normal forces are the only loads applied to the 
pile cap. The implementation of this procedure is given in Appendix B2. 

4.3 Processing tying 

Since strut elements are attached to the interior of shear panel elements, so-called tying is 
needed. This means that the normal forces in the stringer elements adjacent to these shear 
panel elements are not independent, but related to the horizontal components of the strut 
element normal forces. In a similar way it can be said that the horizontal displacements of 
a strut element end are not independent, but related to the displacements of the shear 
panel elements. These displacements are equal to the displacements of the adjacent 
stringer elements. 
 
Consider a shear panel element to which a strut element is attached (Figure 19). 

Since strut elements can only transfer normal forces (Section 3.4) and since the piles have 
been modeled as strut elements, it is clear that the piles can only accommodate the vertical 
components of the strut element normal forces. In the general case, a strut element 
normal force is composed of one vertical force component and two horizontal force 
components. Since these horizontal force components cannot be transferred to the piles, 
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2xF

1yF  
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strut element 
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= 3xF  

2
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bF
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1
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bF
b

 

=

3yF

1
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aF
a2

3y
aF
a

 

Figure 19  Relations between horizontal force components of the strut element normal force and the shear 
forces acting on the edges of the shear panel element
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these need to be transferred to the stringer elements adjacent to the considered shear 
panel element. Since it is not unambiguously established how the horizontal force 
components of the strut element normal force are distributed over the adjacent stringer 
elements, linear relations are assumed. For the forces in x -direction these relations read 

2
1 3x x

b
F F

b
= ⋅  and 1

2 3x x
b

F F
b

= ⋅ . 

For the forces in y -direction these relations read 

2
1 3y y

a
F F

a
= ⋅  and 1

2 3y y
a

F F
a

= ⋅ . 

The introduction of these force components into the stringer elements leads to a certain 
displacement field for the stringer elements and the shear panel elements. Since the strut 
elements are attached to the interior of the shear panel elements, this indicates that the 
horizontal displacements of the strut element ends are related to the displacements of the 
shear panel element edges. As stated earlier in this section, the displacements of the shear 
panel elements are equal to the displacements of the adjacent stringer elements. Again, 
since it is not unambiguously established how the displacements of the shear panel 
element are related to the horizontal displacements of the strut element end, linear 
relations are assumed (Figure 20). 
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Figure 20  Relations between the displacements of a strut element end and the displacements of a shear 
panel element 
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For the displacements in x -direction, this relation holds 

2 1
3 1 2x x x

b b
u u u

b b
= + . 

For the displacements in y -direction, this relation holds 

1 2
3 2 1y y y

a a
u u u

a a
= + . 

 
Now suppose that the following system stiffness relation was derived after performing the 
steps described in Sections 4.1 and 4.2 

1 11 12 13 14 1 1

2 21 22 23 24 2 2

3 31 32 33 34 3 3

4 41 42 43 44 4 4

5 1 2 3 4

x n x

x n x

x n x

x n x

x n n n n nn xn

F k k k k k u
F k k k k k u
F k k k k k u
F k k k k k u

F k k k k k u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. ( 32 )

To demonstrate in a simple way how tying is processed, only forces and displacements in 
x -direction are considered. It is obvious that this procedure can be extended easily to 
include forces and displacements in y -direction as well. Fully written, matrix equation ( 
32 ) reads: 

1 11 1 12 2 13 3 14 4 1

2 21 1 22 2 23 3 24 4 2

3 31 1 32 2 33 3 34 4 3

4 41 1 42 2 43 3 44 4 4

1 1 2 2 3 3

... ,
... ,
... ,
... ,

x x x x x n xn

x x x x x n xn

x x x x x n xn

x x x x x n xn

xn n x n x n x n

F k u k u k u k u k u
F k u k u k u k u k u
F k u k u k u k u k u
F k u k u k u k u k u

F k u k u k u k

= + + + + +
= + + + + +

= + + + + +
= + + + + +

= + + + 4 4 ... .x nn xnu k u+ +

( 33 )

 
Now suppose that for a certain shear panel element the following relations hold (Figure 
21): 

1 1 3x xF Fβ= , ( 34 )

2 2 3x xF Fβ= , ( 35 )

3 1 1 2 2x x xu u uβ β= + , ( 36 )

where 2
1

b
b

β =  and 1
2

b
b

β = . 
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Equation ( 34 ) states that 1xF  is equal to 3xF  times a factor 1β . The equation for 3xF  can 
be found in the third row of the system of equations ( 33 ). So multiplication of this third 
row with factor 1β  and addition of these terms to row one, inserts equation ( 34 ) into the 
system of equations. In the same manner it can be shown that inserting equation ( 35 ) 
into the system of equations results in the addition of factor 2β  times the third row to the 
second row. The last tying equation ( 36 ) can be inserted into the system of equations by 
rearranging the terms in this equation 

3 1 1 2 2 1 1 2 2 3 0x x x x x xu u u u u uβ β β β= + ⇒ + − = . 

If these operations are carried out, then the following system of equations results 
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. 

 
It has to be noted that a slight incompatibility occurs. Silently it is assumed that for a 
stringer element the mean displacement, which corresponds to the displacement of the 
intermediate DOF, is equal to the displacement in the middle of the stringer element. 
Appendix B3 gives the source code for processing tying. 

4.4 Processing imposed displacements 

The text in this section is based on Blaauwendraad (2000) [ 3 ].  Consider the following 
system stiffness relation for an n  DOF pile cap after performing the steps described in 
Sections 4.1, 4.2 and 4.3 

1xu

1xF

2xF
2xu

1b

2b

b3xu  

3xF  

= 

3xF  

1 2 3x xF Fβ=

2 1 3x xF Fβ=2xu

1xu

2 1xuβ 1 2xuβ  

Figure 21  Tying in x -direction 
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. ( 37 )

A certain number of DOF has to be prescribed, such that rigid body movements are 
restrained. Otherwise the system stiffness matrix K  would be singular, which means that 
the system of equations cannot be solved. Assume that the i -th DOF iu  has been set to a 
value 0

iu . If this value is equal to zero, this means that the pile cap is supported at this 
point in the direction of this DOF. A value 0

iu  unequal to zero occurs for example in the 
case of support settlement. In equation ( 37 ) iF  represents the load applied to the i -th 
DOF. 0

iF  represents the support reaction at the i -th DOF, which is unknown 
beforehand and therefore has to be calculated. 
 
From equation ( 37 ) it follows that the terms in the i -th column of the system stiffness 
matrix are multiplied by a known value 0

iu . This implies that in each row of the system a 
known term will occur. In the first row this term is equal to 0

1i ik u , in the second row this 
term is equal to 0

2i ik u , and so forth. Each term can be removed from the system stiffness 
matrix and added to the right hand side vector. This means that the first row of this vector 
reads 0

1 1i iF k u− , the second row reads 0
2 2i iF k u− , and so forth. This implies that the i -th 

column fills up with zeros. Because 0
iF  in the right hand side vector is still unknown, the 

terms in the i -th row cannot be used in this stage and are therefore replaced by zeros. 
Only the diagonal term is set to 1, which leads to the identity 0 01 i iu u× = . The system of 
equations now reads 

0
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−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 

 
Once the displacements u  are known, the support reactions 0

iF  may be calculated. For 
this, the earlier removed entries of the i -th row are needed again. Therefore, it is 
necessary that these entries are stored elsewhere before they are replaced by zeros. 
Appendix B4 gives the source code for processing imposed displacements. 
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4.5 Solving the obtained system of linear equations 

For solving the obtained system of linear equations, LU decomposition is used. The brief 
description in this section gives a general approach. Therefore, the considered equation 
reads A x b⋅ =  instead of K u F⋅ = . But obviously, the described method is in its entirety 
applicable to the system of equations described in the previous sections. Solving for x  
involves the following three steps: 
 
1. Decompose the obtained matrix A  into a matrix product L U⋅ , where L  is a lower 

triangular matrix and U  is an upper triangular matrix. A lower triangular matrix is a 
matrix which has elements unequal to zero only on the main diagonal and below. An 
upper triangular matrix is a matrix which has elements unequal to zero only on the 
main diagonal and above. The obtained matrix equation now reads ( )L U x b⋅ ⋅ = . 

2. Rewrite the above stated equation to ( )L U x b⋅ ⋅ =  and define a vector y  such that 
L y b⋅ =  and solve for this vector by performing a forward substitution. 

3. Solve for vector x  by using the definition U x y⋅ = . This can be done by performing 
a backward substitution. 

 
These steps including the implementation of LU decomposition and testing this separate 
module are elaborated in Appendix B5. 
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5 Applet design 

In Chapter 4 the setup of the calculation model was discussed. This chapter describes how 
the applet is designed. Section 5.1 gives a short general introduction to applets and 
explains the program setup, which is based on suggestions given at Sun’s Java tutorial 
website [ 16 ]. Section 5.2 goes into the first main procedure: the preprocessor. Section 5.3 
discusses the second main procedure, which is the calculation part of the program: the 
kernel. In the last section, Section 5.4, it is explained how the results calculated by the 
kernel are processed and presented in an user-friendly way. This third and last main 
procedure is called the postprocessor. In the next chapter, Chapter 6, the Java 
implementation is tested. 

5.1 Applet setup and Java basics 

According to Sun’s web pages on applets [ 15 ] an applet can be defined as: ‘… a program 
written in the Java programming language that can be included in an HTML page, …’. 
The advantages of using an applet over a standalone application are threefold. The first 
advantage is that no installation is required. A simple computer with an Internet 
connection and a Java technology-enabled browser to view a page that contains an applet, 
is sufficient. Secondly, an applet which is made available through the Internet is accessible 
from every computer which has an Internet connection at its disposal. The third 
advantage is that applets cannot harm a client’s system, since they have very limited access 
to system resources and system information. 
 
The program consists of several classes and nested classes. In the Java programming 
language, a program is built starting from classes. According to Sun’s lesson on Object-
Oriented Programming Concepts [ 17 ], a class is defined as: ‘…a blueprint or prototype 
from which objects are created.’. An object is defined as: ‘…a software bundle of related 
state and behavior’. It is possible to define a class within another class. Such classes are 
called nested classes. Two advantages 
of nested classes over normal classes 
are that ‘it is a way of logically grouping 
classes that are only used in one place’ 
and that ‘nested classes can lead to 
more readable and maintainable code’. 
The program-specific class 
PileCapApplet and its nested classes 
have been grouped in a package called 
pilecap. A package is a namespace for 
organizing classes (and interfaces) in a 
logical manner.  The remaining classes 

 
package anne 

package pilecap package linalg 

class:
 PileCapApplet 

nested classes: 
 DrawingPanel1 
 DrawingPanel2 
 ImagePanel 
Task

classes: 
 DoubleMatrix 
 DoubleVector 
 IntMatrix 
 IntVector 
 LU_Decomposition

Figure 22  Applet setup in terms of packages and 
(nested) classes 
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have been grouped in a package which holds classes for linear algebra, called linalg. 
These two packages are contained in another package, called anne (Figure 22). The folders 
which contain the .class-files are also organized in this way. The source code of the 
classes DoubleMatrix, DoubleVector, IntMatrix and IntVector is given in Appendix C1. 
 
Inside a class, procedures are defined, which may be called by other procedures or events 
fired by user actions. The applet possesses three main procedures: the preprocessor, the 
kernel and the postprocessor. These procedures are examined in the following sections. 
 
The applet is a graphical application, so that the user does not have to know anything 
about the Java programming language. The Graphical User Interface (GUI) on startup is 
shown in Figure 23. 

The input screen has been divided in two parts: one textual part which consists of text 
fields and combo boxes in which the user can insert data, and one graphical part which 
displays the pile cap plan view. By pressing the ‘Redraw’ button, the user can verify 
graphically that the geometrical parameters are correct. By pressing the ‘Calculate’ button 
the preprocessor is started which reads the entered data and checks the validity of the 
data. If all data has been specified correctly, the kernel is started, which sets up the system 
of equations and solves this system. If the results returned by the kernel are valid, the 

Figure 23  Input screen of PCA at startup 
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postprocessor is started, which calculates all internal stresses and vertical pile reactions and 
displays them graphically. 
If during the analysis an error occurs, the user is warned by a message which shows the 
cause of the error. Processing is then stopped and the user returns to the input screen to 
adjust one or more parameters. If the analysis was successful, the user is automatically 
taken to the results screen, which displays the obtained results in an orderly manner. If the 
user needs more detailed information on the results, use can be made of the ‘Advanced’ 
tab. If any warnings appeared during the analysis, these are collected in the ‘Warnings’ tab 
and the user is notified of these warnings by displaying a message. 

5.2 Preprocessor 

The preprocessor reads all data entered by the user if the ‘Calculate’ button (Figure 23) is 
clicked. Then it prepares these data for calculation. This means that all data is checked and 
if specified in a valid interval, the values are assigned to the appropriate variables. Then 
the model is generated, which means that all elements and their DOF are numbered. If all 
goes well, the startCalculation flag has the value true and a calculation task is created. 
The purpose of creating a separate task is to keep the GUI responsive. If the kernel was 
called directly from the preprocessor, the calculation would be performed on the so-called 
Event Dispatching Thread, which results in a ‘frozen’ GUI for long tasks. Therefore, 
calculations are performed on a separate thread. After the calculation has been started, the 
‘Calculate’ button cannot be clicked anymore and the cursor is set to a ‘wait’ cursor. After 
completing the calculation procedure, these actions are undone. To make the source code 
readable and maintainable, the preprocessor calls other procedures to fulfil the described 
tasks. The names of these procedures are self-explaining. The source code of the 
procedure preprocessor () reads 
 
private void preprocessor () 
{ 
 
    startCalculation = true; 
    showErrorMessage = true; 
    setCapLength (); 
    setCapWidth (); 
    setCapDepth (); 
    setE_CapConcrete (); 
    setG_CapConcrete (); 
    setColumnXY (); 
    setColumnNormalForces (); 
    setPileXY (); 
    setPileLength (); 
    setPileSection (); 
    setE_PileConcrete (); 
    setConcreteCover (); 
    setRebarDiameterX (); 
    setNrOfRebarsX (); 
    setCtcDistanceOfRebarsX (); 
    setRebarDiameterY (); 
    setNrOfRebarsY (); 
    setCtcDistanceOfRebarsY (); 
    setE_Rebars (); 
    generateStringers (); 
    generateShearPanels (); 
    generateStruts (); 
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    generateImposedForces (); 
    generateTyings (); 
    generateImposedDisplacements (); 
 
 
    // if all input has been specified correctly then start the calculation 
 
    if (startCalculation) 
    { 
 
        task = new Task (); 
        task.execute (); 
        calculateButton.setEnabled (false); 
        setCursor (Cursor.getPredefinedCursor (Cursor.WAIT_CURSOR)); 
 
    } 
 
} 

5.3 Kernel 

The kernel is started by an object called task. In the kernel, the system stiffness matrix is 
generated, the boundary conditions are processed and the resulting system of linear 
equations is solved. After solving the displacement field and before starting the 
postprocessor, the displacements are checked on their magnitude. If one or more 
displacements exceed 100 mm, this is an indication for a kinematical indeterminate 
structure. Then further processing is aborted, because the flag showResults is set to 
false. For the same reasons given in Section 5.2, the kernel itself only calls other 
procedures to execute these tasks. Again, the names of these procedures have been chosen 
such that these are self-explaining. The source code of the procedure kernel () reads 
 
private void kernel () 
{ 
 
    showResults = true; 
    initialiseSystemStiffnessMatrix (); 
    assembleStringers (); 
    assembleShearPanels (); 
    assembleStruts (); 
    processImposedForces (); 
    processTyings (); 
    processImposedDisplacements (); 
    solveSystem (); 
 
 
    // if the pile cap appears to be stable then start postprocessing 
 
    if (showResults) 
    { 
 
        postprocessor (); 
 
    } 
 
} 
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5.4 Postprocessor 

If the postprocessor is started, internal stresses and pile reactions are calculated. Moreover, 
the (absolute) maximum values of the stresses are determined, which are of interest for the 
structural designer. Also the stress results are graphically displayed on the screen (Figure 
24). 

Again, this main procedure makes primarily use of procedures that are defined elsewhere 
in the source file. This makes the source code of the postprocessor readable and 
maintainable. The source code of the procedure postprocessor () reads 
 
private void postprocessor () 
{ 
 
    tabbedPane.setEnabledAt (1, true);    // make results tab accessible 
    tabbedPane.setEnabledAt (2, true);    // make warnings tab accessible 
    tabbedPane.setEnabledAt (3, true);    // make advanced tab accessible 
    tabbedPane.setSelectedIndex (1);      // set results tab as selected tab 
    calculateStringerStresses (); 
    calculateShearPanelStresses (); 
    calculateStrutForces (); 
    calculateSupportReactions (); 
    determineMaxValues (); 
 
 
    // if this is the first calculation then create the results GUI, 
    // otherwise refresh the results GUI using the new results 

Figure 24  Screenshot of the ‘Results’ tab 
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    if (firstCalculation) 
    { 
 
        createResultsGUI (); 
 
 
        // create advanced tab 
 
        textArea = new JTextArea (); 
        textArea.setEditable (false); 
        JScrollPane scrollPane = new JScrollPane (textArea); 
        scrollPane.setPreferredSize (new Dimension (880, 700)); 
        panel1c.add (scrollPane); 
 
 
        // create warnings tab 
 
        textArea2 = new JTextArea (); 
        textArea2.setEditable (false); 
        JScrollPane scrollPane2 = new JScrollPane (textArea2); 
        scrollPane2.setPreferredSize (new Dimension (880, 700)); 
        panel1d.add (scrollPane2); 
 
 
        calculateButton.setText ("Recalculate"); 
        firstCalculation = false; 
 
    } 
    else 
    { 
 
        updateLabels (); 
        stressXX_RadioButton.setSelected (true); 
        panel1b.repaint (); 
        textArea.setText (""); 
        textArea2.setText (""); 
 
    } 
 
 
    // add detailed information to advanced tab 
 
    showParameters (); 
    showStringerInfo (); 
    showShearPanelInfo (); 
    showStrutInfo (); 
    showImposedForcesInfo (); 
    showTyingInfo (); 
    showImposedDisplacements (); 
    showSupportReactions (); 
 
 
    // show warning information 
 
    createWarningInfo (); 
 
} 
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6 Equilibrium considerations 

The previous chapter discussed the design of the applet. In this chapter the Java 
implementation is tested by checking equilibrium requirements. Section 6.1 considers a 
symmetrical pile cap which consists of one column and three piles. Section 6.1.1 focuses 
on the equilibrium of the whole structure. This includes vertical equilibrium of forces, 
horizontal equilibrium of forces and moment equilibrium. In Section 6.1.2 two separate 
cuts are made, after which the equilibrium of forces is considered for one part of the 
structure. Section 6.2 involves an asymmetrical pile cap which consists of two columns 
and six piles. Here only the force equilibrium of the whole structure is considered. The 
next chapter discusses checking the ultimate load. 

6.1 Case 1: Symmetrical pile cap consisting of three piles and one column 

Input parameters 

The input parameters which have been used for the calculation are given in Table 1. A 
screenshot of the pile cap plan view is provided in Figure 25. 

Cap configuration 

Cap length (in x -direction): 1600 mm 
Cap width (in y -direction): 1400 mm 
Cap depth (in z -direction): 400 mm 

Young’s modulus of cap concrete: 9000 N/mm2 
Shear modulus of cap concrete: 4500 N/mm2 

Column configuration 

Number of columns: 1 
Column 1: x = 600 mm y = 700 mm N = 200 kN 

Pile configuration 

Number of piles: 3 
Pile 1: x = 250 mm y = 250 mm  
Pile 2: x = 250 mm y = 1150 mm  
Pile 3: x = 1350 mm y = 700 mm  

Pile length: 15000 mm 
Pile section: 40000 mm2 

Young’s modulus of pile concrete: 12000 N/mm2 

Reinforcing bar configuration 

Concrete cover: 40 mm 
Diameter of reinforcing bars in x -direction: 16 mm 
Number of reinforcing bars in x -direction: 7 

Diameter of reinforcing bars in y -direction: 16 mm 
Number of reinforcing bars in y -direction: 8 

Young’s modulus of reinforcing bars: 200000 N/mm2 

Table 1  Pile cap parameters for Case 1 
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6.1.1 Equilibrium consideration of the 
whole structure 

Vertical forces 

The vertical support reactions of the piles can be read from the Results tab after 
performing the calculation. These values have been collected in Table 3. The minus sign 
indicates that the piles are in compression. It is clear that the sum of the vertical pile 
reactions in equilibrium is with the column load. 

Horizontal forces 

The horizontal support reactions 
in x -direction can be read from 
the Advanced tab after 
performing the calculation. These 
values have been collected in 
Table 2. Since no horizontal load 
is applied in x -direction, the sum of the horizontal support reactions in x -direction has 
to be zero, which is true accepting a round-off error. Furthermore, the stresses at the ends 
of the stringer elements near the edges of the pile cap have to be equal to zero. This 
follows from the equilibrium of such a stringer element end. By plotting the reinforcement 
stresses in x -direction, it can be verified that Case 1 complies with this requirement 
(Figure 26). It is important to note that in practice the reinforcement stresses at these 
positions are not equal to zero, and therefore the reinforcing bars have to be anchored in 
some way. Usually this is done by applying hooks. 
 
The horizontal support reactions in y -direction can also be read from the ‘Advanced’ tab. 
These values have been collected in Table 4. Since no horizontal load is applied in y -
direction, the sum of the horizontal support reactions in y -direction has to be zero, 
which is true accepting a round-off error. 

Figure 25  Screenshot of the pile cap geometry in Case 1

Pile 1: -68.18 kN 
Pile 2: -68.18 kN 
Pile 3: -63.64 kN 

Total: -200.0 kN 

Table 3  Vertical pile reactions in Case 1

Support reaction 1: −− ⋅ 116.895 10  kN 
Support reaction 3: −− ⋅ 115.190 10  kN 
Support reaction 4: 0.0 kN 
Support reaction 7: 0.0 kN 
Support reaction 10: 0.0 kN 

Table 2  Horizontal support reactions (in x -direction) in Case 1
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Furthermore, the stresses at the ends of the stringer elements near the edges of the pile 
cap have to be equal to zero. This follows from the equilibrium of such a stringer end. By 
plotting the reinforcement stresses in y -direction, it can be verified that Case 1 complies 
with this requirement, see Figure 
27. Again, it is important to notice 
that in practice the reinforcement 
stresses at these positions are not 
equal to zero. 

Symmetry 

From the input parameters in Table 1 and the screenshot in Figure 25 it is clear that the 
pile cap is symmetrical about the line y = 
700 mm. The stresses in the reinforcing 
bars in x -direction that are symmetrically 
positioned about this line are identical 
(Figure 26). The stresses in the 
reinforcing bars in y -direction are also 
symmetrical about the line y = 700 mm 
(Figure 27). Also the shear stresses are 
symmetrical about this line (Figure 28). 
From Table 3 it follows that the vertical 
pile reactions are also symmetrical. 

Moment equilibrium 

The third and last equilibrium requirement is moment equilibrium of the whole structure. 
First the moment equilibrium about the line x = 250 mm is checked 

( ) ( )× − − × − ≅200 kN  0.600 0.250  m  63.64 kN  1.35 0.250  m  0.00 kNm . 

Figure 26  Reinforcement stresses in x -direction Figure 27  Reinforcement stresses in y -direction 

Figure 28  Shear stresses (in N/mm2) 

Support reaction 2: −⋅ 112,604 10  kN 
Support reaction 5: 0,0 kN 
Support reaction 8: 0,0 kN 
Support reaction 11: 0,0 kN 

Table 4  Horizontal support reactions (in y -direction) in Case 1
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Secondly, the moment equilibrium about the line x  = 1350 mm is checked 

( ) ( ) ( )× − + × − × − ≅200 kN  1.35 0.600  m  2  68.18 kN   1.35 0.250  m  0.00 kNm . 

From these two calculations it is concluded that the moment equilibrium requirements are 
fulfilled. 

6.1.2 Equilibrium consideration of a part of the structure 

First a cut in x -direction is 
made, exactly halfway the 
second row of shear panel 
elements (Figure 29). This cut is 
called cut A-A. By performing 
this cut, not only stringer 
elements and shear panel 
elements are cut, but also one 
strut element (Strut 1). The 
normal forces and shear forces 
acting at the “upper” part of the 
structure, which is considered in 
the remaining of this section, 
have to be in equilibrium, since 
no external load is applied to this part.  

Horizontal force equilibrium in cut A-A 

Now consider the normal forces 
acting at cut A-A (Figure 30). The 
magnitude of these normal forces 
in the stringer elements is 
calculated in Table 5. The values 
for the reinforcement stresses at 
the ends of the concerning 
stringer elements can be read 
from the ‘Advanced’ tab. 
 
The sum of these normal forces is equal to 

( )
=

= + + + + − + + + =∑
8

1

28.29 25.40 12.50 3.539 0.9359 0.2474 5.553 2.102 76.70i
i

N kN. 

For the calculation of yH , see Figure 32 and Table 6. 

Figure 29  Cut A-A for Case 1

A AStrut 1

 
 
 
 

Figure 30  Normal forces in y -direction acting at cut A-A 
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A A

1N 2N

yH
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Now consider the shear forces acting at cut A-A (Figure 31). 

 

strutN
zΔV  projectedH  

yΔ  yH
xΔxH  

 
Figure 32  Similarity between force components and geometry components for a strut element

 
 
 
Figure 31  Shear forces acting at cut A-A 

V =  -68.18 kN zΔ =  400 mm 

H =  -97.17 kN ( ) ( )2 2
projected x y= Δ + Δ =  570,1 mm 

xH =  -59.66 kN xΔ =  350 mm 

yH =  -76.70 kN yΔ =  450 mm 

Table 6  Strut force components and geometric components 

1S 2S 3S 4S 5S 6S  7S  

Stringer element 51: 

2
1

2
2

163.3 N/mm

118.1 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2140.7 N/mmaverageσ =  1 28.29 kNN =  

Stringer element 57: 

2
1

2
2

139.1 N/mm

113.6 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2126.4 N/mmaverageσ =  2 25.40 kNN =  

Stringer element 63: 

2
1

2
2

48.18 N/mm

76.14 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2= 62.16 N/mmaverageσ 3 12.50 kNN =  

Stringer element 69: 

2
1

2
2

9.031 N/mm

26.17 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2=17.60 N/mmaverageσ  4 3.539 kNN =  

Stringer element 75: 

2
1

2
2

0.8935 N/mm

8.416 N/mm

σ

σ

⎫= − ⎪
⎬

= − ⎪⎭

2=-4.655 N/mmaverageσ  5 0.9359 kNN = −  

Stringer element 81: 

2
1

2
2

10.08 N/mm

7.619 N/mm

σ

σ

⎫= ⎪
⎬

= − ⎪⎭
 2=1.231 N/mmaverageσ  6 0.2474 kNN =  

Stringer element 87: 

2
1

2
2

18.19 N/mm

37.05 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2=27.62 N/mmaverageσ  7 5.553 kNN =  

Stringer element 93: 

2
1

2
2

5.519 N/mm

26.43 N/mm

σ

σ

⎫= − ⎪
⎬

= ⎪⎭
 2=10.46 N/mmaverageσ  8 2.102 kNN =  

Table 5  Normal forces acting at cut A-A 
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The values for the shear stresses at the edges of the concerning shear panel elements can 
be read again from the ‘Advanced’ tab. The length a  of a shear panel element is equal to 
the center-to-center distance of the reinforcing bars in y -direction 

1600 2 40 16 214.9
7

a − × −
= =  mm. 

The effective depth t  can be determined from scheme given in Section 3.3. First calculate 
the width b  of a shear panel element 

1400 2 40 16 217.3
6

b − × −
= =  mm. 

The decisive value for the effective depth t  is equal to 

( ) ( )16 16 217.3 214.9
40 156.1

4 4
t

+ +
= + + =  mm. 

From these data the resulting shear forces can be calculated (Table 7). 

The sum of these shear forces is equal to 

7

1
8.994 14.06 8.501 5.092 6.588 10.11 6.354 59.70

i
i

S
=

= + + + + + + =∑  kN. 

From Table 6 it can be seen that xH  is equal to -59.66 kN. If also the support reaction at 
DOF 1 is taken into account, the horizontal force equilibrium can be checked 

1159.70 59.66 6.895 10 0.04000H −= − − × =∑  kN. 

Round-off errors during calculation cause this sum not to be exactly equal to zero. 

Horizontal force equilibrium in x -direction in cut B-B 

Now a cut in y -direction is made (Figure 34). This cut B-B is made exactly halfway the 
second column of shear panel elements. Again, this cut delivers normal forces where 
stringer elements are cut and shear forces where shear panel elements are cut. The left part 
of the structure is taken into consideration. Since no horizontal external load is applied to 
this part of the structure, the normal forces and shear forces have to be in equilibrium 
with each other. 

Shear panel element 8: 0.2681τ = N/mm2 
1 8.994S =  kN 

Shear panel element 9: 0.4191τ =  N/mm2 
2 14.06S =  kN 

Shear panel element 10: 0.2534τ =  N/mm2 
3 8.501S =  kN 

Shear panel element 11: 0.1518τ =  N/mm2 
4 5.092S =  kN 

Shear panel element 12: 0.1964τ =  N/mm2 
5 6.588S =  kN 

Shear panel element 13: 0.3013τ =  N/mm2 
6 10.11S =  kN 

Shear panel element 14: 0.1894τ =  N/mm2 
7 6.354S =  kN 

Table 7  Shear forces acting at cut A-A 
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Consider the normal forces acting perpendicular to cut B-B (Figure 33). The stresses in 
the stringer elements can be read from the ‘Advanced’ tab. The resulting normal forces are 
calculated in Table 8. From this table the symmetry is clear again. The sum of the 
calculated normal forces is equal to 

7

1
24.28 19.36 11.47 9.082 11.47 19.36 24.28 119.3i

i
N

=

= + + + + + + =∑  kN. 

This sum of normal forces has to be in equilibrium with the horizontal force components 
of the cut strut elements and the horizontal support reactions in x -direction. The 
horizontal force component of the cut strut elements can be read from Table 6. The 
horizontal support reactions in x -direction can be read from Table 2. The horizontal 
equilibrium then reads 

 

Figure 34  Cut B-B in Case 1 

Stringer element 2: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

159.8 N/mm

81.67 N/mm
 σ = 2

average 120.7 N/mm  =1 24.28 kNN  

Stringer element 9: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

92.18 N/mm

100.4 N/mm
 σ = 2

average 96.29 N/mm  =2 19.36 kNN  

Stringer element 16: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

33.29 N/mm

80.84 N/mm
 σ = 2

average 57.07 N/mm  =3 11.47 kNN  

Stringer element 23: 
σ

σ

⎞=
⎟⎟= ⎠

2
1

2
2

22.83 N/mm
67.51 N/mm

 σ = 2
average 45.17 N/mm  =4 9.082 kNN  

Stringer element 30: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

33.29 N/mm

80.84 N/mm
 σ = 2

average 57.07 N/mm  =5 11.47 kNN  

Stringer element 37: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

92.18 N/mm

100.4 N/mm
 σ = 2

average 96.29 N/mm  =6 19.36 kNN  

Stringer element 44: 
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

159.8 N/mm
81.67 N/mm

 σ = 2
average 120.7 N/mm  =6 24.28 kNN  

Table 8  Normal forces acting at cut B-B 

 
 

Figure 33  Normal forces acting at cut B-B 
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( ) 11 11119.3 2 59.66 6.895 10 5.190 10 0.00xH − −= + × − − ⋅ − ⋅ ≅∑  kN, 

which is correct. 

Horizontal force equilibrium in y -direction in cut B-B 

Again, the values for the shear stresses at the edges of the concerning shear panel 
elements can be read from the ‘Advanced’ tab. Notice that this time the width b  of a 
shear panel element has to be used, in stead of the length a  of a shear panel element. The 
shear forces have been calculated in Table 9. 

Again, the symmetry can be noticed. The horizontal force components originating from 
the struts point in opposite direction. The magnitude of these forces can be read from 
Table 6. The horizontal support reactions in y -direction can be found in Table 4. 
The resultant force in y -direction is 

( ) ( ) ( ) ( ) ( ) 11
y 15.90 14.22 4.545 4.545 14.22 15.90 76.70 76.70 2,604 10

0.00 kN.

H −= + + + − + − + − + − − − + ⋅

≅
∑

 

6.2 Case 2: Asymmetrical pile cap consisting of six piles and two columns 

Pile cap parameters 

The input parameters which have been used for the calculation are given in Table 11.  A 
screenshot of the pile cap plan view is provided in Figure 35. 

Figure 35  Screenshot of the pile cap geometry in Case 2 

Shear panel element 2: 20.4687 N/mmτ =  1 15.90 kNS =  

Shear panel element 9: 20.4191 N/mmτ =  2 14.22 kNS =  

Shear panel element 16: 20.1340 N/mmτ =  3 4.545 kNS =  

Shear panel element 23: 20.1340 N/mmτ = −  4 4.545 kNS = −  

Shear panel element 30: 20.4191 N/mmτ = −  5 14.22 kNS = −  

Shear panel element 37: 20.4687 N/mmτ = −  6 15.90 kNS = −  

Table 9  Shear forces acting at cut B-B 
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Vertical equilibrium of forces 

The vertical support reactions of the piles can be read 
from the ‘Results’ tab after performing the calculation. 
These values are collected in Table 10. The minus sign 
indicates that the piles are in compression. It is clear that 
the sum of the vertical pile reactions in equilibrium is with 
the sum of the column loads: 215 180 395+ = kN. 

Horizontal equilibrium of forces 

The horizontal support reactions in x -direction can be read from the ‘Advanced’ tab after 
performing the calculation. These values are collected in Table 12. Since no horizontal 
load is applied in x -direction, the sum of the horizontal support reactions in x -direction 
has to be zero, which is true accepting a round-off error. Furthermore, the stresses at the 
ends of the stringer elements near the edges of the pile cap have to be equal to zero. This 
follows from the equilibrium of such a stringer element end. By plotting the reinforcement 

Cap configuration 

Cap length (in x -direction): 2500 mm 
Cap width (in y -direction): 1500 mm 
Cap depth (in z -direction): 450 mm 

Young’s modulus of cap concrete: 9500 N/mm2 
Shear modulus of cap concrete: 4750 N/mm2 

Column configuration 

Number of columns: 2 
Column 1: x = 650 mm y = 800 mm N = 215 kN 
Column 2: x = 1700 mm y = 700 mm N = 180 kN 

Pile configuration 

Number of piles: 6 
Pile 1: x = 250 mm y = 350 mm  
Pile 2: x = 1250 mm y = 250 mm  
Pile 3: x = 2200 mm y = 300 mm  
Pile 4: x = 250 mm y = 1250 mm  
Pile 5: x = 1100 mm y = 1100 mm  
Pile 6: x = 2250 mm y = 1250 mm  

Pile length: 17000 mm 
Pile section: 40000 mm2 

Young’s modulus of pile concrete: 12000 N/mm2 

Reinforcing bar configuration 

Concrete cover: 45 mm 
Diameter of reinforcing bars in x -direction: 16 mm 
Number of reinforcing bars in x -direction: 9 

Diameter of reinforcing bars in y -direction: 16 mm 
Number of reinforcing bars in y -direction: 15 

Young’s modulus of reinforcing bars: 200000 N/mm2 

Table 11  Pile cap parameters for Case 2 

Pile 1: -65.91 kN 
Pile 2: -75.76 kN 
Pile 3: -50.48 kN 
Pile 4: -67.73 kN 
Pile 5: -84.72 kN 
Pile 6: -50.39 kN + 

Total: -395.0 

Table 10  Vertical pile reactions
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stresses in x -direction, it can be 
verified that Case 2 complies with 
this requirement (Figure 36). 
The horizontal support reactions in 
y -direction can also be read from 

the ‘Advanced’ tab. These values 
have been collected in Table 12. 
Since no horizontal load is applied 
in this direction, the sum of the 
horizontal support 
reactions in y -direction 
has to be zero, which is 
true accepting a round-off 
error. Furthermore, the 
reinforcement stresses at 
the ends of the stringer 
elements near the edges 
of the pile cap have to be 
equal to zero again. By 
plotting the normal 
stresses in y -direction, it 
can be verified that Case 
2 complies with this 
requirement (Figure 37). 
 
Considering these two 
cases, it may be 
concluded that all 
equilibrium requirement 
are fulfilled. From the 
theory of plasticity 
(Vrouwenvelder, 2003)  
[ 11 ] it is known that a 
system which is in 
equilibrium gives a safe 
approximation of the ultimate load. 
 
One more interesting conclusion can be drawn by looking at the reinforcement stresses. 
Often the reinforcing bars at the edges of pile caps have higher stresses than other 
reinforcing bars. 

Figure 36  Reinforcement stresses in x -direction 

Figure 37  Reinforcement stresses in y -direction 

Support reaction 1: −⋅ 81.153 10  kN 
Support reaction 3: −− ⋅ 81.003 10  kN 
Support reaction 4: 0.0 kN 
Support reaction 7: 0.0 kN 
Support reaction 10: 0.0 kN 
Support reaction 13: 0.0 kN 
Support reaction 16: 0.0 kN 
Support reaction 19: 0.0 kN 

Table 12  Horizontal support reactions (in x -direction) 
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7 Non-linear finite element analysis 

This chapter presents the second part of the verification process, which entails a 
comparison of the ultimate load predicted by the applet with the ultimate load predicted 
by the finite element package Atena 3D [ 12 ]. Section 7.1 gives the pile cap geometry and 
the material parameters used in this case study. Section 7.2 reveals the ultimate load 
according to the applet. In Section 0 the same pile cap is tested with Atena 3D. In this 
section the results of both analyses are compared and conclusions are drawn.  

7.1 Geometry of the considered pile cap and material parameters 

The considered (asymmetric) pile cap consists of three piles and one column (Figure 38). 
The cap length is 2200 mm, 
the cap width is 2000 mm 
and the cap depth is 500 
mm. The strength class of 
the cap concrete is chosen 
as C30/37. For an analysis 
with the applet, the 
dimensions of the column 
are of no importance, since 
the column load is 
represented as a point load, 
which is applied to a certain 
point on the concrete 
surface. But for a finite 
element analysis, applying a 
point load directly onto the 
concrete surface is not sensible, since this introduces very large if not infinitely large 
stresses directly under this point load. Therefore, it is decided to use a thick steel plate for 
the finite element analysis to simulate the normal force transfer of the column in a better 
way. On top of this steel plate a point load is applied. This gives a disturbed picture of the 
stresses inside the steel plate. But since these stresses are of no importance for the 
analysis, this is good way of applying the column load. The steel plate has sides of 500 mm 
by 500 mm. The foundation piles are chosen to be 16 m long and they are made of 
C50/60 concrete. The reinforcement in x -direction as well as in y -direction consists of 
reinforcing bars with a diameter of 16 mm. The concrete cover is chosen as 45 mm. In x -
direction eleven reinforcing bars are applied, which means that the center-to-center 
distance of these reinforcing bars is equal to 189.4 mm. In y -direction twelve reinforcing 
bars are applied, which means that the center-to-center distance of these reinforcing bars 
is equal to 190.4 mm. The strength class of the reinforcement is FeB500. The positions of 

 

2200 

pile 1 

column 

pile 2 

pile 3 

500

500 2000 

x

y

Figure 38  Plan view of the considered pile cap 
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the foundation piles have been chosen in an irregular pattern with a minimum edge 
distance of 150 mm. All parameters that are needed to perform the structural analysis can 
be found in Table 13. 

7.2 Ultimate load predicted by Pile Cap Applet (PCA) 

The ultimate load is calculated by 
assuming that failure of the pile cap 
occurs when the yield stress is 
reached in one of the reinforcing 
bars. The material parameters that 
have not been specified explicitly in 
Section 7.1, but which are needed for 
applet calculation, have been 
collected in Table 14. The values for 

cap concreteE  and pile concreteE  have been 
taken from Table 3.1 in Eurocode 2 
(EN 1992-1-1:2004). These values 
are also used by Atena 3D. The value 

Figure 39  Screenshot of pile cap plan view 

 
Cap configuration 

Cap length (in x -direction): 2200 mm 
Cap width (in y -direction): 2000 mm 
Cap depth (in z -direction): 500 mm 

Cap concrete: C30/37 

 
Column configuration 

Number of columns: 1 
Column 1: x = 1050 mm y = 1000 mm 

Pile configuration 

Number of piles: 3 
Pile 1: x = 500 mm y = 350 mm 
Pile 2: x = 350 mm y = 1650 mm 
Pile 3: x = 1850 mm y = 1500 mm 

Pile length: 16000 mm 
Pile section: × =400  400  160000 mm2 

Pile concrete: C50/60 

Reinforcement configuration 

Concrete cover: 45 mm 
Diameter of reinforcing bars in x -direction: 16 mm 
Number of reinforcing bars in x -direction: 11 

Diameter of reinforcing bars in y -direction: 16 mm 
Number of reinforcing bars in y -direction: 12 

Young’s modulus of rebar: ⋅ 52,00 10  N/mm2 

Table 13  Pile cap parameters for the considered case 
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for ν  has been taken from Atena 3D. A 
screenshot of the pile cap plan view is 
given in Figure 39. 
After several iterations it is found that a 
load of 404 kN produces a maximum 
reinforcement stress in x -direction of 
434.1 N/mm2. A load of 405 kN produces a 
maximum normal stress in x -direction of 
435.2 N/mm2, which is larger than the 
design yield strength. Therefore, it is decided 
that 404 kN is the ultimate load according to 
Pile Cap Applet (PCA). At this load the pile 
reactions are -182.35 kN for Pile 1, -51.35 
kN for Pile 2 and -170.3 kN for Pile 3. The 
reinforcement stresses xxσ  at this load level 
are given in Figure 40. Figure 41 gives the 
reinforcement stresses yyσ  for the same load 
level. 
To make sure that punching of the column 
or one of the piles is not the decisive failure 
mechanism, an extra check is performed 
using Section 6.4 ‘Punching’ of Eurocode 2 
(EN 1992-1-1:2004). 

Punching of the column 

Punch is checked by using the Dutch code 
NEN 6720. Since no shear reinforcement is 
applied, only the concrete contributes to the 
shear resistance 

3
1 00.8 0.8b d bf k fτ ω= > , 

in which bf  represents the concrete tensile 
strength. For convenience, the lower bound is used first, which means that 1τ  is calculated 
from 0.8 bf . bf  can be determined from the characteristic cubic compression strength '

ckf  

( ) ( )' 2
, 0.7 1.05 0.05 0.7 1.05 0.05 30 1.785 N/mmb rep ckf f= + = + × = , 

, 21.785 1.275 N/mm
1.4 1.4
b rep

b

f
f = = = . 

Now 1τ  can be calculated 

2
1 0.8 1.275 1.02 N/mmτ = × = . 

cap concreteE = 33000 N/mm2 

ν = 0.2 

cap concreteG = 13750 N/mm2 

pile concreteE = 37000 N/mm2 

Table 14  Material parameters for applet calculation 

Figure 40  Reinforcement stresses xxσ  for the 
considered pile cap at a load level of 404 kN 

Figure 41  Normal stresses yyσ  for the 

considered pile cap at a load level of 404 kN 
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The effective thickness of the pile cap can be calculated from 

( )1 20.5d d d= × + . 

1
16500 45 16 431
2

d = − − − =  mm, 

2
16500 45 447
2

d = − − =  mm, 

( )0.5 431 447 439d = + =  mm, 

( )2 500 500 636.6a
π

= + =  mm, 

( ) ( )439 636.6 3379p d aπ π= + = + =  mm, 

3
2 2

1
404 10 0.27 N/mm 1.02 N/mm

3379 439d
F
pd

τ τ×
= = = < =

×
. 

From the above calculations it may be concluded that punching of the column is not 
decisive. 

7.3 Ultimate load predicted by non-linear finite element analysis 

For material input, the 
appropriate concrete strength 
classes can be selected from 
the in-built catalogue. In this 
case design values have been 
used. The reinforcement is 
specified via a direct 
definition. The material type is 
‘reinforcement’, which has a 
bilinear stress-strain relation, 
with a Young’s modulus of 

⋅ 52,00 10  N/mm2 and a 
design yield strength of 435 
N/mm2. 
 
From Figure 42 it can be 
concluded that the pile cap 
collapsed because of a shear 
failure around pile 3. This is a 
completely different failure 
mechanism than PCA 
predicted. 

 

 

 
Figure 42  Vertical displacements of the pile cap after failure 
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Figure 43 shows the load-displacement graph obtained with Atena 3D in blue and the 
ultimate load obtained with the applet in red. It is surprising that the ultimate load 
obtained with Atena 3D is almost a factor 3 larger than the ultimate load obtained with 
PCA. From this it can be concluded that PCA is very conservative. 

Figure 45 shows the reinforcement stresses at a load level of approximately 400 kN. 
According to PCA in one of the reinforcing bars the yield stress is reached. But the finite 
element calculation shows that the maximum stress is not larger than 8.66 N/mm2, which 
is a factor 50 smaller. Therefore, it can be concluded that reinforcement stresses at 
serviceability load according to PCA are much higher than those determined by the finite 
element analysis. This implies that the stresses calculated by PCA are not useful for 
checking the maximum crack width.  

Load
Deflection [m]

-8,87E-03-8,00E-03-7,00E-03-6,00E-03-5,00E-03-4,00E-03-3,00E-03-2,00E-03-1,00E-030,00E+00

Lo
ad

 [
M

N
]

-1,19E+00

-1,16E+00

-1,12E+00

-1,09E+00

-1,05E+00

-1,02E+00

-9,80E-01

-9,45E-01

-9,10E-01

-8,75E-01

-8,40E-01

-8,05E-01

-7,70E-01

-7,35E-01

-7,00E-01

-6,65E-01

-6,30E-01

-5,95E-01

-5,60E-01

-5,25E-01

-4,90E-01

-4,55E-01

-4,20E-01

-3,85E-01

-3,50E-01

-3,15E-01

-2,80E-01

-2,45E-01

-2,10E-01

-1,75E-01

-1,40E-01

-1,05E-01

-7,00E-02

-3,50E-02

0,00E+00

 
Figure 43  Load-displacement graph according to Atena 3D (in blue) and the ultimate load according to  PCA (in red)
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Another point of interest is that the reinforcements stresses near the edge of the pile cap 
are almost equal to zero (Figure 45 and Figure 44). This implies that hooks may not be 
necessary for all reinforcing bars. 

 
To make sure that the serviceability limit state is not normative in the case of PCA, the 
maximum crack width at this load level had to be checked. Since PCA does not give 

Figure 45  Reinforcement stresses at a load level of approximately 400 kN (iso-areas) 

 
Figure 44  Reinforcement stresses at a load level of approximately 400 kN (diagrams) 
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information on crack widths, this information is gathered from the non-linear finite 
element analysis. From the previous section it is known that PCA predicted an ultimate 
load of 404 kN. In practice load factors on dead weight and variable load are applied. 
Since pile caps usually bear a lot of dead weight, the overall load factor is estimated at 
1.35. This means that the maximum crack width at load level 404 1.35 300≅  kN has to be 
considered. According to Atena, the maximum crack width is then approximately equal to 

41.295 10−×  mm, which is far below the limits given in the codes. Based on this single 
value it can be said that the serviceability limit state probably is not normative when pile 
caps are designed using PCA. 
 
Also the serviceability limit state in Atena has to be checked. The ultimate load was 
determined to be 1.19 MN. Considering a load factor of 1.35, this means a service load of 
approximately ( )31.19 10 1.35 880× ≅ kN. At this load level the maximum crack width 
according to Atena is equal to 0.8909 mm which is far more than allowed in codes. An 
impression of the crack pattern at this stage is given in Figure 46. 

Now consider the pile cap at a load level of 1.19 MN, which is the ultimate load according 
to Atena 3D. The stresses in the reinforcing bars are now considerably higher (Figure 47). 
The largest tensile stress is 381 N/mm2, which is still below the yield strength of 435 
N/mm2. By considering these reinforcement stresses, it may be concluded that the 
reinforcement stresses at ultimate load are approximately the same for PCA (404 kN 
ultimate load) and finite element analysis (1.19 MN ultimate load) 
 
 
 

Figure 46  Crack pattern at a load level of approximately 880 kN 
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Now consider the normal strain xxε  in the reinforcing bars after failure (Figure 48). It is 
interesting to notice that only in a few areas plastic strains occurs, i.e. strains larger than 

32.175 10−× .  

 

 
Figure 47  Reinforcement stresses at a load level of approximately 1.19 MN 

 
Figure 48  Normal strain in the reinforcing bars at the last load step 
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One more check can be performed and this is the support reactions of the piles. The piles 
have been modeled as short concrete blocks under the pile cap. To simulate the 
extensional behavior of the piles, these concrete blocks are supported by surface springs. 
The stresses in these surface springs at a load level of approximately 404 kN are shown in 
Figure 49. By estimating the average stress in the surface springs per pile and multiplying 
this stress by the pile section, an estimation for the pile reaction is found 
Pile 1: 31.15 400 400 10 184−× × × = kN (182.35 kN was found earlier), 
Pile 2: 30.35 400 400 10 56−× × × =  kN (51.35 kN was found earlier), 
Pile 3: 31.10 400 400 10 176−× × × =  kN (170.3 kN was found earlier). 
From this it may be concluded that the vertical pile reactions at a load level of 404 kN 
predicted by PCA are approximately equal to those predicted by the non-linear finite 
element analysis. This result is not trivial because the finite element model was externally 
statically indeterminate. 

 
Figure 49  Stresses in the surface springs under the piles 
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8 Conclusions and recommendations 

Conclusions 

 A model for the design of reinforced concrete pile caps on irregularly positioned 
foundation piles has been established based on the use of stringer elements, shear 
panel elements and strut elements. This model predicts vertical pile reactions, 
reinforcement stresses and shear stresses in concrete. For practical application, it has 
been implemented in a computer program called Pile Cap Applet (PCA). This applet is 
user-friendly, requires a moderate amount of data and takes only a few seconds to 
execute. 

 
 The design model meets all equilibrium requirements. This has been tested for two 

specific pile caps: one symmetrical pile cap which was founded on three piles and 
loaded by one column, and one asymmetrical pile cap which was founded on six piles 
and loaded by two columns. In the case of the symmetrical pile cap, the results also 
correctly showed to be symmetrical. 

 
 Comparison of the ultimate load predicted by PCA with a non-linear finite element 

analysis showed that the ultimate load predicted by the design model is very 
conservative. In this specific case, an asymmetrical pile cap consisting of three piles 
and one column was tested. PCA determined that this specific pile cap collapsed at a 
load level of 404 kN, while the same pile cap analyzed with a non-linear finite element 
package showed that 1.19 MN was the ultimate load. Clearly, the real structure can 
carry the load in more ways than an equilibrium system (PCA) assumes. 

 
 For the considered pile cap the design model predicted another failure mechanism 

than the finite element analysis. In the case of PCA, the pile cap ‘collapsed’ because the 
yield strength was reached in one of the reinforcing bars. In the finite element analysis, 
the pile cap collapsed because of a shear failure. This failure mechanism cannot be 
predicted by PCA. 

 
 The vertical pile reactions at a load level of 404 kN predicted by PCA are 

approximately equal to those predicted by the non-linear finite element analysis. This 
result is not trivial because the finite element model was externally statically 
indeterminate. 

 
 The reinforcement stresses at serviceability load according to PCA are much higher 

than those determined by the finite element analysis. This implies that the stresses 
calculated by PCA are not useful for checking the maximum crack width. 
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 The reinforcement stresses at ultimate load are approximately the same for PCA (404 
kN ultimate load) and finite element analysis (1.19 MN ultimate load). 

 
 Often the reinforcing bars at the edges of pile caps have higher stresses than other 

reinforcing bars. 

Recommendations 

 As a future improvement, it is recommended to replace cracked shear panel elements 
by diagonal elements. However, the consequence of this is that the structural analysis 
has to be performed several times and the analysis time increases. 

 
 Alternatively, all shear panel elements can be replaced by diagonal strut elements. In a 

number of analyses the correct (compression) direction of the strut elements need to 
be determined. This might reduce peak stresses in the reinforcing bars. It would also 
show the need for hooks at the reinforcing bar ends and the number of DOFs would 
be reduced. 

 
 Since the design model does not predict the correct failure mechanism, a more refined 

model for the design problem may be considered. For example, a design model based 
on volume elements instead of stringer elements, shear panel elements and strut 
elements. This model would be similar to a three dimensional finite element model. In 
the near future (say within five years), this model probably can be executed in a few 
seconds too. 

 
 For rational calculation of crack widths a better model needs to be developed.
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 Appendix A1: Numbering and generating stringer elements 

This appendix discusses numbering and generating stringer elements in the applet. First, it 
is explained how the degrees of freedom (DOF) are numbered. Then the source code of 
the procedure generateStringers () is given. 

Numbering stringer elements and their DOF 

First, stringer elements in x -direction are numbered. Obviously, the number of stringer 
elements that fits in x -direction is equal to the number of shear panel elements that fits in 
x -direction, which is called xn . The total number of stringer elements in x -direction is 
equal to the product of xn  and the number of reinforcing bars in x -direction. Numbering 
stringer elements is explained on the basis of Figure 50. The reinforcing bars are drawn in 
red, the stringer elements are drawn as grey bar elements. Numbering starts from the 
origin, which has been indicated in blue. The horizontal axis is the x -axis, the vertical axis 
is the y -axis. Continue 
numbering from left to right 
and from top to bottom. 
Then, stringer elements in y -
direction are numbered. 
Obviously, numbering has to 
continue from the last stringer 
element in x -direction. The 
number of stringer elements 
that fits in y -direction is equal 
to the number of shear panel 
elements in y -direction, which 
is called yn . The total number 
of stringer elements in y -
direction can be calculated as 
the product of yn  and the 
number of reinforcing bars in 
y -direction. 

While stringers elements are 
numbered, also their DOF have 
to be numbered (Figure 51). 
From Section 3.2 it is known 
that a stringer element is a 3 DOF element. Moreover, the DOF at the ends of an element 
coincide with those of another stringer element, since they are mutually connected (except 
for elements ending at the pile cap edge). For stringer elements in x -direction the global 
number of the intermediate DOF is first determined, based on stringer element row and 
column. The global numbers of the two remaining DOF can be calculated by subtracting 

 
1 2 3 4 

5 6 7 8 

9 10 11 12 

13

14
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17

18

19 
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22

Figure 50  Numbering stringer elements 

 
2 4 6 8 5 9 1 7 3 

Figure 51  Numbering stringer element DOF for the first row 
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respectively adding 1 to this number. For the stringer elements in y -direction, first the 
last assigned DOF number has to be calculated. Then numbering can continue, again 
based on the stringer element row and column. 

Generating stringer elements 

The global DOF numbers per stringer element are stored in a matrix called stringerDOF. 
Each row corresponds to one stringer element and has three columns. The first column 
holds the global DOF numbers per stringer element corresponding to local DOF number 
1. Similarly, columns 2 and 3 hold the global DOF numbers per stringer element 
corresponding to local DOF numbers 2 respectively 3. While the DOF numbers are 
assigned, also the extensional stiffness EA  and the stringer element length  are 
determined and stored in vectors: stringerEA respectively stringerLength. The source 
code of the procedure generateStringers () reads: 
 
private void generateStringers () 
{ 
 
    // variable declaration 
 
    int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
    int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
 
 
    // determine the number of stringers used in the model 
 
    nrOfStringers = nx * nrOfRebarsX + ny * nrOfRebarsY; 
 
 
    // create a matrix which stores the DOF per stringer 
 
    stringerDOF = new IntMatrix (nrOfStringers, 3); 
 
 
    // create a vector which stores the extensional stiffness per stringer 
    // and one for the length per stringer 
 
    stringerEA = new DoubleVector (nrOfStringers); 
    stringerLength = new DoubleVector (nrOfStringers); 
 
 
    // calculate the extensional stiffness for the stringers in X-direction 
 
    double stringerEA_X = E_Rebars * Math.PI / 4 * rebarDiameterX *  
                          rebarDiameterX; 
 
 
    // number the DOF of the stringers in X-direction 
 
    for (int j = 1; j <= nrOfRebarsX; j++) 
    { 
 
        for (int i = 1; i <= nx; i++) 
        { 
 
            // determine the stringer number, starting from 0 
 
            int stringerNr = (j - 1) * nx + i - 1; 
 
 
            // determine the number of the middle DOF of the stringer 
 
            int n = (j - 1) * (2 * nx + 1) + 2 * i; 
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            // set the entries of the stringerDOF matrix, the stringerEA 
            // vector and the stringerLength vector 
 
            stringerDOF.setEntry (stringerNr, 0, (n - 1)); 
            stringerDOF.setEntry (stringerNr, 1, n); 
            stringerDOF.setEntry (stringerNr, 2, (n + 1)); 
            stringerEA.setEntry (stringerNr, stringerEA_X); 
            stringerLength.setEntry (stringerNr, ctcDistanceOfRebarsY); 
 
         } 
 
    } 
 
 
    // calculate the extensional stiffness for the stringers in Y-direction 
 
    double stringerEA_Y = E_Rebars * Math.PI / 4 * rebarDiameterY *  
                          rebarDiameterY; 
 
 
    // number the DOF of the stringers in Y-direction 
 
    for (int i = 1; i <= nrOfRebarsY; i++) 
    { 
 
        for (int j = 1; j <= ny; j++) 
        { 
 
            // determine the stringer number, starting from 
            // the last number assigned in X-direction 
 
            int stringerNr = nx * nrOfRebarsX + (i - 1) * ny + j - 1; 
 
 
            // determine the number of the middle DOF of the stringer 
 
            int n = (2 * nx + 1) * nrOfRebarsX + (i - 1) * (2 * ny + 1) + 2  
                    * j; 
 
 
            // set the entries of the stringerDOF matrix, the stringerEA 
            // vector and the stringerLength vector 
 
            stringerDOF.setEntry (stringerNr, 0, (n - 1)); 
            stringerDOF.setEntry (stringerNr, 1, n); 
            stringerDOF.setEntry (stringerNr, 2, (n + 1)); 
            stringerEA.setEntry (stringerNr, stringerEA_Y); 
            stringerLength.setEntry (stringerNr, ctcDistanceOfRebarsX); 
 
        } 
 
    } 
 
}
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Appendix A2: Numbering and generating shear panel 
elements 

This appendix discusses numbering and generating shear panel elements. First, it is 
explained how the degrees of freedom (DOF) are numbered. Then the source code of the 
procedure generateShearPanels () is given. 

Numbering shear panel elements and their DOF 

Since the stringer elements and their DOF already have been numbered (Appendix A1), 
no “new” DOF numbers need to be assigned. It is sufficient to find the correct 
intermediate DOF numbers of the adjacent stringer elements, because these DOF 
coincide (Section 3.3). Numbering shear panel elements is analogous to numbering 
stringer elements (Appendix 
A1): start from the shear panel 
element closest to the origin, 
from left to right and from top 
to bottom. This is demonstrated 
in Figure 53. The origin is 
indicated in blue. The horizontal 
axis is the x -axis, the vertical 
axis is the y -axis. While the 
shear panel elements are 

numbered, their DOF have to 
be numbered as well (Figure 
52). The number of shear panel 
elements that fits in x -direction 
is called xn , the number of 
shear panel elements that fits in 
y -direction is called yn . These 

numbers are determined by the 
number of reinforcing bars 
specified by the user. The global 
DOF number for local DOF 1 
can be determined based on the shear panel element row and column. Obviously, the 
global DOF number for local DOF 2 is determined by adding 2 1xn× +  (the number of 
DOF per stringer element row) to this number. The same applies to determining the 
global DOF numbers for local DOF 3 and 4. Once the global DOF number for local 
DOF 3 has been determined, which can be done based on the shear panel element row 
and column and the number of DOF already assigned in x -direction, the global DOF 
number for local DOF 4 is determined by adding 2 1yn× +  to this number. 

 

1 2 3 4 

5 6 7 8 

Figure 53  Numbering shear panel elements 
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Figure 52  Numbering shear panel element DOF for the first row 
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Generating shear panel elements 

The global DOF numbers per shear panel element are stored in a matrix called 
shearPanelDOF. Each row corresponds to one shear panel element and has four columns. 
The first column holds the global DOF numbers per shear panel element corresponding 
to local DOF number 1. Similarly, columns 2, 3 and 4 hold the global DOF numbers per 
shear panel element corresponding to local DOF numbers 2 and 3 respectively 4. The 
effective depth and the corresponding shear stiffness is determined in this procedure as 
well. The source code of the procedure generateShearPanels () reads: 
 
private void generateShearPanels () 
{ 
 
    // variable declaration 
 
    int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
    int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
    double t; 
 
 
    // determine the number of shear panels used in the model 
 
    nrOfShearPanels = nx * ny; 
 
 
    // create a matrix which stores the DOF per shear panel 
 
    shearPanelDOF = new IntMatrix (nrOfShearPanels, 4); 
 
 
    // determine the shear stiffness of a shear panel 
 
    t = concreteCover + (rebarDiameterX + rebarDiameterY) / 4 +  
        (ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 4; 
 
 
    if (t > ((ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 2)) 
    { 
 
        t = (ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 2; 
 
    } 
 
 
    if (t > capDepth) 
    { 
 
        t = capDepth; 
 
    } 
 
 
    Gt = G_CapConcrete * t; 
 
 
    // number the DOF per shear panel 
 
    for (int j = 1; j <= ny; j++) 
    { 
 
        for (int i = 1; i <= nx; i++) 
        { 
 
            // determine the shear panel number, starting from 0 
 
            int shearPanelNr = (j - 1) * nx + i - 1; 
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            int n = (j - 1) * (2 * nx + 1) + 2 * i; 
            shearPanelDOF.setEntry (shearPanelNr, 0, n); 
            n = j * (2 * nx + 1) + 2 * i; 
            shearPanelDOF.setEntry (shearPanelNr, 1, n); 
            n = (2 * nx + 1) * nrOfRebarsX + (i - 1) * (2 * ny + 1) + 2 * j; 
            shearPanelDOF.setEntry (shearPanelNr, 2, n); 
            n = (2 * nx + 1) * nrOfRebarsX + i * (2 * ny + 1) + 2 * j; 
            shearPanelDOF.setEntry (shearPanelNr, 3, n); 
 
        } 
 
    } 
 
} 
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 Appendix A3: Numbering and generating strut elements 

This appendix discusses numbering and generating strut elements. First, it is explained 
how strut elements and their degrees of freedom (DOF) are numbered. Then the source 
code of the procedure generateStruts () is given. 

Numbering strut elements and their DOF 

First, the ‘internal’ strut elements are numbered. The strut element from column 1 to pile 
1 receives strut element 1, the strut element from column 1 to pile 2 is called strut element 
2, and so on (Figure 55). 
This process is repeated 
for all piles and columns. 
Then the piles, which are 
also strut elements, are 
numbered in the pile 
number order starting 
from the strut element 
number which was 
assigned last to an 
‘internal’ strut element. 
Simultaneously, the 
global DOF numbers are 
assigned (Figure 54). For 
the ‘internal’ strut 
elements, first the DOF 
at the pile side are 
numbered. In Figure 54 
the concerning strut 
element ends are 
numbered 1, 2 and 3. 
Then the DOF at the 
column side of these 
strut element are 
numbered (4 in Figure 
54). For the piles, first 
the DOF at the shear 
panel element side are numbered (1, 2 and 3 in Figure 54), then the DOF at the column 
tip side (5, 6 and 7 in Figure 54). Note that the DOF of the ‘internal’ struts at the shear 
panel element side coincide with the DOF of the corresponding piles at the same side. Per 
strut element end, 3 DOF need to be numbered. First the DOF pointing in x -direction is 

 

Plane consisting of 
stringer elements and 
shear panel elements 

Column 1 (normal force) 
Strut element 1

Strut element 2

Strut element 3 

Pile 1 / 
Strut element 4

Pile 2 / 
Strut element 5

Pile 3 / 
Strut element 6 

Figure 55  Numbering strut elements 

 

1 

2 

3 

4 

5 
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7 

Figure 54  Order of numbering strut element DOF 
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numbered, then the DOF pointing in y -direction and finally the DOF pointing in z -
direction. 

Generating strut elements 

The global DOF numbers per strut element are stored in a matrix called strutDOF. Each 
row corresponds to one strut element and has six columns. The first column holds the 
global DOF numbers per strut element corresponding to local DOF number 1. Similarly, 
columns 2, 3, 4, 5 and 6 hold the global DOF numbers per strut element corresponding to 
local DOF numbers 2, 3, 4, 5 respectively 6. While the DOF numbers are assigned, also 
the extensional stiffness EA  and the strut element length  are determined and stored in 
vectors: strutEA respectively strutLength. Another matrix, strutGonio, holds the values 
for sinα , cosα , sin β , cosβ  and β . For the definition of angles α  and β , refer to 
Section 3.4. The source code of the procedure generateStruts () reads: 
 
private void generateStruts () 
{ 
 
    // variable declaration 
 
    int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
    int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
    int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY; 
    int l = k + 3 * nrOfPiles + 3 * nrOfColumns; 
 
 
    // determine the number of struts used in the model 
 
    nrOfStruts = (nrOfColumns + 1) * nrOfPiles; 
 
 
    // create a matrix which stores the DOF per strut 
 
    strutDOF = new IntMatrix (nrOfStruts, 6); 
 
 
    // create a vector which stores the extensional stiffness per strut 
    // and one for the length per strut 
 
    strutEA = new DoubleVector (nrOfStruts); 
    strutLength = new DoubleVector (nrOfStruts); 
 
 
    // create a matrix which stores sin(Alpha), cos(Alpha), 
    // sin(Beta), cos(Beta) and Beta per strut 
 
    strutGonio = new DoubleMatrix (nrOfStruts, 5); 
 
 
    // calculate the extensional stiffness of a pile 
 
    pileEA = E_PileConcrete * pileSection; 
 
 
    // number the DOF of the internal struts 
 
    for (int i = 1; i <= nrOfColumns; i++) 
    { 
 
        for (int j = 1; j <= nrOfPiles; j++) 
        { 
 
            // determine the strut number, starting from 0 
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            int strutNr = (i - 1) * nrOfPiles + j - 1; 
 
 
            int n = k + 3 * j - 2; 
            strutDOF.setEntry (strutNr, 0, n); 
            n = k + 3 * j - 1; 
            strutDOF.setEntry (strutNr, 1, n); 
            n = k + 3 * j; 
            strutDOF.setEntry (strutNr, 2, n); 
            n = k + 3 * nrOfPiles + 3 * i - 2; 
            strutDOF.setEntry (strutNr, 3, n); 
            n = k + 3 * nrOfPiles + 3 * i - 1; 
            strutDOF.setEntry (strutNr, 4, n); 
            n = k + 3 * nrOfPiles + 3 * i; 
            strutDOF.setEntry (strutNr, 5, n); 
 
 
            // get column co-ordinates and pile co-ordinates 
 
            double columnX = columnXY.getEntry ((i - 1), 0); 
            double columnY = columnXY.getEntry ((i - 1), 1); 
            double pileX = pileXY.getEntry ((j - 1), 0); 
            double pileY = pileXY.getEntry ((j - 1), 1); 
 
 
            // determine the projected strut length, the strut length and 
            // the extensional stiffness of the strut 
 
            double deltaX = columnX - pileX; 
            double deltaY = columnY - pileY; 
            double deltaZ = capDepth; 
            double projectedStrutLength = Math.sqrt (deltaX * deltaX +  
                                          deltaY * deltaY); 
            double strutL = Math.sqrt (deltaZ * deltaZ +  
                            projectedStrutLength * projectedStrutLength); 
            strutLength.setEntry (strutNr, strutL); 
            strutEA.setEntry (strutNr, pileEA); 
 
 
            // determine sin(Alpha), cos(Alpha), sin(Beta), cos(Beta) and 
            // Beta and store these values in strutGonio 
 
            if ((columnX == pileX) && (columnY == pileY)) 
            { 
 
                // the strut has a vertical orientation, which means that  
                // Alpha is not defined 
                // in this case the goniometric values are not important,  
                // so fill the first four entries with zeros 
 
                strutGonio.setEntry (strutNr, 0, 0.0); 
                strutGonio.setEntry (strutNr, 1, 0.0); 
                strutGonio.setEntry (strutNr, 2, 0.0); 
                strutGonio.setEntry (strutNr, 3, 0.0); 
                strutGonio.setEntry (strutNr, 4, 90.0); 
 
            } 
            else 
            { 
 
                double sinAlpha = deltaY / projectedStrutLength; 
                strutGonio.setEntry (strutNr, 0, sinAlpha); 
                double cosAlpha = deltaX / projectedStrutLength; 
                strutGonio.setEntry (strutNr, 1, cosAlpha); 
                double sinBeta = deltaZ / strutL; 
                strutGonio.setEntry (strutNr, 2, sinBeta); 
                double cosBeta = projectedStrutLength / strutL; 
                strutGonio.setEntry (strutNr, 3, cosBeta); 
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                double Beta = Math.toDegrees (Math.asin (deltaZ / strutL)); 
                strutGonio.setEntry (strutNr, 4, Beta); 
 
            } 
 
        } 
 
    } 
 
 
    // number the DOF of the piles 
 
    for (int i = 1; i <= nrOfPiles; i++) 
    { 
 
        // determine the strut number, starting from the last number  
        // assigned 
 
        int strutNr = nrOfPiles * nrOfColumns + i - 1; 
 
 
        int n = k + 3 * i - 2; 
        strutDOF.setEntry (strutNr, 0, n); 
        n = k + 3 * i - 1; 
        strutDOF.setEntry (strutNr, 1, n); 
        n = k + 3 * i; 
        strutDOF.setEntry (strutNr, 2, n); 
        n = l + 3 * i - 2; 
        strutDOF.setEntry (strutNr, 3, n); 
        n = l + 3 * i - 1; 
        strutDOF.setEntry (strutNr, 4, n); 
        n = l + 3 * i; 
        strutDOF.setEntry (strutNr, 5, n); 
 
 
        // determine and store the strut extensional stiffness and length 
 
        strutEA.setEntry (strutNr, pileEA); 
        strutLength.setEntry (strutNr, pileLength); 
 
 
        // set the pile gonio 
 
        strutGonio.setEntry (strutNr, 0, 0.0); 
        strutGonio.setEntry (strutNr, 1, 0.0); 
        strutGonio.setEntry (strutNr, 2, 0.0); 
        strutGonio.setEntry (strutNr, 3, 0.0); 
        strutGonio.setEntry (strutNr, 4, 90.0); 
 
    } 
 
} 
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 Appendix B1: Assembling the elements 

This appendix gives the source code for assembling the three different elements. 

Assembling stringer elements 

 
private void assembleStringers () 
{ 
 
    // create an element stiffness matrix 
 
    DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (3, 3); 
 
 
    // set the entries of the element stiffness matrix 
 
    elementStiffnessMatrix.setEntry (0, 0, 4.0); 
    elementStiffnessMatrix.setEntry (0, 1, -6.0); 
    elementStiffnessMatrix.setEntry (0, 2, 2.0); 
    elementStiffnessMatrix.setEntry (1, 0, -6.0); 
    elementStiffnessMatrix.setEntry (1, 1, 12.0); 
    elementStiffnessMatrix.setEntry (1, 2, -6.0); 
    elementStiffnessMatrix.setEntry (2, 0, 2.0); 
    elementStiffnessMatrix.setEntry (2, 1, -6.0); 
    elementStiffnessMatrix.setEntry (2, 2, 4.0); 
 
 
    // assemble the stringers into the system stiffness matrix 
 
    for (int stringerNr = 0; stringerNr < nrOfStringers; stringerNr++) 
    { 
 
        double k = stringerEA.getEntry (stringerNr) / 
stringerLength.getEntry (stringerNr); 
 
 
        for (int ii = 0; ii < 3; ii++) 
        { 
 
            int i = stringerDOF.getEntry (stringerNr, ii) - 1; 
 
 
            for (int jj = 0; jj < 3; jj++) 
            { 
 
                int j = stringerDOF.getEntry (stringerNr, jj) - 1; 
                double temp = systemStiffnessMatrix.getEntry (i, j) 
                              + k * elementStiffnessMatrix.getEntry (ii, 
jj); 
                systemStiffnessMatrix.setEntry (i, j, temp); 
 
            } 
 
        } 
 
    } 
 
} 
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Assembling shear panel elements 

 
private void assembleShearPanels () 
{ 
 
    // create an element stiffness matrix 
 
    DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (4, 4); 
 
 
    // calculate length-to-width ratio and width-to-length ratio 
 
    double alpha = ctcDistanceOfRebarsY / ctcDistanceOfRebarsX; 
    double beta = ctcDistanceOfRebarsX / ctcDistanceOfRebarsY; 
 
 
    // fill the entries of the element stiffness matrix 
 
    elementStiffnessMatrix.setEntry (0, 0, alpha); 
    elementStiffnessMatrix.setEntry (0, 1, -alpha); 
    elementStiffnessMatrix.setEntry (0, 2, 1.0); 
    elementStiffnessMatrix.setEntry (0, 3, -1.0); 
    elementStiffnessMatrix.setEntry (1, 0, -alpha); 
    elementStiffnessMatrix.setEntry (1, 1, alpha); 
    elementStiffnessMatrix.setEntry (1, 2, -1.0); 
    elementStiffnessMatrix.setEntry (1, 3, 1.0); 
    elementStiffnessMatrix.setEntry (2, 0, 1.0); 
    elementStiffnessMatrix.setEntry (2, 1, -1.0); 
    elementStiffnessMatrix.setEntry (2, 2, beta); 
    elementStiffnessMatrix.setEntry (2, 3, -beta); 
    elementStiffnessMatrix.setEntry (3, 0, -1.0); 
    elementStiffnessMatrix.setEntry (3, 1, 1.0); 
    elementStiffnessMatrix.setEntry (3, 2, -beta); 
    elementStiffnessMatrix.setEntry (3, 3, beta); 
 
 
    // assemble the shear panels into the system stiffness matrix 
 
    for (int shearPanelNr = 0; shearPanelNr < nrOfShearPanels; 
shearPanelNr++) 
    { 
 
        for (int ii = 0; ii < 4; ii++) 
        { 
 
            int i = shearPanelDOF.getEntry (shearPanelNr, ii) - 1; 
 
 
            for (int jj = 0; jj < 4; jj++) 
            { 
 
                int j = shearPanelDOF.getEntry (shearPanelNr, jj) - 1; 
                double temp = systemStiffnessMatrix.getEntry (i, j) 
                              + Gt * elementStiffnessMatrix.getEntry (ii, 
jj); 
                systemStiffnessMatrix.setEntry (i, j, temp); 
 
            } 
 
        } 
 
    } 
 
} 
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Assembling strut elements 

 
private void assembleStruts () 
{ 
 
    // create an element stiffness matrix 
 
    DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (6, 6); 
 
 
    // process the internal struts first 
 
    for (int columnNr = 0; columnNr < nrOfColumns; columnNr++) 
    { 
 
        for (int pileNr = 0; pileNr < nrOfPiles; pileNr++) 
        { 
 
            int strutNr = columnNr * nrOfPiles + (pileNr + 1) - 1; 
            double k = strutEA.getEntry (strutNr) / strutLength.getEntry 
(strutNr); 
            double columnX = columnXY.getEntry (columnNr, 0); 
            double columnY = columnXY.getEntry (columnNr, 1); 
            double pileX = pileXY.getEntry (pileNr, 0); 
            double pileY = pileXY.getEntry (pileNr, 1); 
 
 
            // if the strut has a vertical orientation then use the same 
            // element stiffness matrix as for the piles 
 
            if ((columnX == pileX) && (columnY == pileY)) 
            { 
 
                elementStiffnessMatrix.setEntry (0, 0, 0.0); 
                elementStiffnessMatrix.setEntry (0, 1, 0.0); 
                elementStiffnessMatrix.setEntry (0, 2, 0.0); 
                elementStiffnessMatrix.setEntry (0, 3, 0.0); 
                elementStiffnessMatrix.setEntry (0, 4, 0.0); 
                elementStiffnessMatrix.setEntry (0, 5, 0.0); 
                elementStiffnessMatrix.setEntry (1, 0, 0.0); 
                elementStiffnessMatrix.setEntry (1, 1, 0.0); 
                elementStiffnessMatrix.setEntry (1, 2, 0.0); 
                elementStiffnessMatrix.setEntry (1, 3, 0.0); 
                elementStiffnessMatrix.setEntry (1, 4, 0.0); 
                elementStiffnessMatrix.setEntry (1, 5, 0.0); 
                elementStiffnessMatrix.setEntry (2, 0, 0.0); 
                elementStiffnessMatrix.setEntry (2, 1, 0.0); 
                elementStiffnessMatrix.setEntry (2, 2, 1.0); 
                elementStiffnessMatrix.setEntry (2, 3, 0.0); 
                elementStiffnessMatrix.setEntry (2, 4, 0.0); 
                elementStiffnessMatrix.setEntry (2, 5, -1.0); 
                elementStiffnessMatrix.setEntry (3, 0, 0.0); 
                elementStiffnessMatrix.setEntry (3, 1, 0.0); 
                elementStiffnessMatrix.setEntry (3, 2, 0.0); 
                elementStiffnessMatrix.setEntry (3, 3, 0.0); 
                elementStiffnessMatrix.setEntry (3, 4, 0.0); 
                elementStiffnessMatrix.setEntry (3, 5, 0.0); 
                elementStiffnessMatrix.setEntry (4, 0, 0.0); 
                elementStiffnessMatrix.setEntry (4, 1, 0.0); 
                elementStiffnessMatrix.setEntry (4, 2, 0.0); 
                elementStiffnessMatrix.setEntry (4, 3, 0.0); 
                elementStiffnessMatrix.setEntry (4, 4, 0.0); 
                elementStiffnessMatrix.setEntry (4, 5, 0.0); 
                elementStiffnessMatrix.setEntry (5, 0, 0.0); 
                elementStiffnessMatrix.setEntry (5, 1, 0.0); 
                elementStiffnessMatrix.setEntry (5, 2, -1.0); 
                elementStiffnessMatrix.setEntry (5, 3, 0.0); 
                elementStiffnessMatrix.setEntry (5, 4, 0.0); 
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                elementStiffnessMatrix.setEntry (5, 5, 1.0); 
 
            } 
            else 
            { 
 
                double sinAlpha = strutGonio.getEntry (strutNr, 0); 
                double cosAlpha = strutGonio.getEntry (strutNr, 1); 
                double sinBeta = strutGonio.getEntry (strutNr, 2); 
                double cosBeta = strutGonio.getEntry (strutNr, 3); 
 
 
                elementStiffnessMatrix.setEntry (0, 0, (cosAlpha * cosAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (0, 1, (cosAlpha * cosBeta * 
cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (0, 2, (-cosAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (0, 3, (-cosAlpha * cosAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (0, 4, (-cosAlpha * cosBeta 
* cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (0, 5, (cosAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (1, 0, (cosAlpha * cosBeta * 
cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (1, 1, (sinAlpha * sinAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (1, 2, (-sinAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (1, 3, (-cosAlpha * cosBeta 
* cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (1, 4, (-sinAlpha * sinAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (1, 5, (sinAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 0, (-cosAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 1, (-sinAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 2, (sinBeta * sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 3, (cosAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 4, (sinAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (2, 5, (-sinBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (3, 0, (-cosAlpha * cosAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (3, 1, (-cosAlpha * cosBeta 
* cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (3, 2, (cosAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (3, 3, (cosAlpha * cosAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (3, 4, (cosAlpha * cosBeta * 
cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (3, 5, (-cosAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (4, 0, (-cosAlpha * cosBeta 
* cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (4, 1, (-sinAlpha * sinAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (4, 2, (sinAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (4, 3, (cosAlpha * cosBeta * 
cosBeta * sinAlpha)); 
                elementStiffnessMatrix.setEntry (4, 4, (sinAlpha * sinAlpha 
* cosBeta * cosBeta)); 
                elementStiffnessMatrix.setEntry (4, 5, (-sinAlpha * cosBeta 
* sinBeta)); 



A.V. van de Graaf Structural design of reinforced concrete pile caps 

77 

                elementStiffnessMatrix.setEntry (5, 0, (cosAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (5, 1, (sinAlpha * cosBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (5, 2, (-sinBeta * 
sinBeta)); 
                elementStiffnessMatrix.setEntry (5, 3, (-cosAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (5, 4, (-sinAlpha * cosBeta 
* sinBeta)); 
                elementStiffnessMatrix.setEntry (5, 5, (sinBeta * sinBeta)); 
 
            } 
 
 
            for (int ii = 0; ii < 6; ii++) 
            { 
 
                int i = strutDOF.getEntry (strutNr, ii) - 1; 
 
 
                for (int jj = 0; jj < 6; jj++) 
                { 
 
                    int j = strutDOF.getEntry (strutNr, jj) - 1; 
                    double temp = systemStiffnessMatrix.getEntry (i, j) 
                                  + k * elementStiffnessMatrix.getEntry (ii, 
jj); 
                    systemStiffnessMatrix.setEntry (i, j, temp); 
 
                } 
 
            } 
 
        } 
 
    } 
 
 
    // process the piles 
 
    elementStiffnessMatrix.setEntry (0, 0, 0.0); 
    elementStiffnessMatrix.setEntry (0, 1, 0.0); 
    elementStiffnessMatrix.setEntry (0, 2, 0.0); 
    elementStiffnessMatrix.setEntry (0, 3, 0.0); 
    elementStiffnessMatrix.setEntry (0, 4, 0.0); 
    elementStiffnessMatrix.setEntry (0, 5, 0.0); 
    elementStiffnessMatrix.setEntry (1, 0, 0.0); 
    elementStiffnessMatrix.setEntry (1, 1, 0.0); 
    elementStiffnessMatrix.setEntry (1, 2, 0.0); 
    elementStiffnessMatrix.setEntry (1, 3, 0.0); 
    elementStiffnessMatrix.setEntry (1, 4, 0.0); 
    elementStiffnessMatrix.setEntry (1, 5, 0.0); 
    elementStiffnessMatrix.setEntry (2, 0, 0.0); 
    elementStiffnessMatrix.setEntry (2, 1, 0.0); 
    elementStiffnessMatrix.setEntry (2, 2, 1.0); 
    elementStiffnessMatrix.setEntry (2, 3, 0.0); 
    elementStiffnessMatrix.setEntry (2, 4, 0.0); 
    elementStiffnessMatrix.setEntry (2, 5, -1.0); 
    elementStiffnessMatrix.setEntry (3, 0, 0.0); 
    elementStiffnessMatrix.setEntry (3, 1, 0.0); 
    elementStiffnessMatrix.setEntry (3, 2, 0.0); 
    elementStiffnessMatrix.setEntry (3, 3, 0.0); 
    elementStiffnessMatrix.setEntry (3, 4, 0.0); 
    elementStiffnessMatrix.setEntry (3, 5, 0.0); 
    elementStiffnessMatrix.setEntry (4, 0, 0.0); 
    elementStiffnessMatrix.setEntry (4, 1, 0.0); 
    elementStiffnessMatrix.setEntry (4, 2, 0.0); 
    elementStiffnessMatrix.setEntry (4, 3, 0.0); 
    elementStiffnessMatrix.setEntry (4, 4, 0.0); 
    elementStiffnessMatrix.setEntry (4, 5, 0.0); 
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    elementStiffnessMatrix.setEntry (5, 0, 0.0); 
    elementStiffnessMatrix.setEntry (5, 1, 0.0); 
    elementStiffnessMatrix.setEntry (5, 2, -1.0); 
    elementStiffnessMatrix.setEntry (5, 3, 0.0); 
    elementStiffnessMatrix.setEntry (5, 4, 0.0); 
    elementStiffnessMatrix.setEntry (5, 5, 1.0); 
 
 
    for (int strutNr = nrOfStruts - nrOfPiles; strutNr < nrOfStruts; 
strutNr++) 
    { 
 
        double k = strutEA.getEntry (strutNr) / strutLength.getEntry 
(strutNr); 
 
 
        for (int ii = 0; ii < 6; ii++) 
        { 
 
            int i = strutDOF.getEntry (strutNr, ii) - 1; 
 
 
            for (int jj = 0; jj < 6; jj++) 
            { 
 
                int j = strutDOF.getEntry (strutNr, jj) - 1; 
                double temp = systemStiffnessMatrix.getEntry (i, j) 
                              + k * elementStiffnessMatrix.getEntry (ii, 
jj); 
                systemStiffnessMatrix.setEntry (i, j, temp); 
 
            } 
 
        } 
 
    } 
 
} 
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 Appendix B2: Generating and processing imposed forces 

This appendix gives the source code for generating and processing the imposed forces. 

Generating imposed forces 

 
private void generateImposedForces () 
{ 
 
    // variable declaration 
 
    int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
    int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
    int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY; 
 
 
    // create a vector which stores the degrees of freedom per imposed 
normal force 
 
    loadingDOF = new IntVector (nrOfColumns); 
 
 
    // determine on which degrees of freedom a force is applied 
 
    for (int i = 0; i < nrOfColumns; i++) 
    { 
 
        int n = k + 3 * nrOfPiles + 3 * (i + 1); 
        loadingDOF.setEntry (i, n); 
    } 
 
} 
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Processing imposed forces 

 
private void processImposedForces () 
{ 
 
    // create the force vector 
 
    forceVector = new DoubleVector (nrOfDOF); 
 
 
    // initialise the force vector 
 
    for (int i = 0; i < nrOfDOF; i++) 
    { 
 
        forceVector.setEntry (i, 0.0); 
 
    } 
 
 
    // process the normal forces imposed by the columns 
 
    for (int i = 0; i < nrOfColumns; i++) 
    { 
 
        int n = loadingDOF.getEntry (i) - 1; 
        double temp = forceVector.getEntry (i) + columnNormalForces.getEntry 
(i); 
        forceVector.setEntry (n, temp); 
 
    } 
 
} 
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 Appendix B3: Generating and processing tying 

This appendix gives the source code for generating and processing tying. 

Generating tying 

 
private void generateTyings () 
{ 
 
    // variable declaration 
 
    int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
    int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
    int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY; 
 
 
    // determine the number of tyings 
 
    nrOfTyings = 2 * nrOfPiles; 
 
 
    // create a matrix which stores the degrees of freedom per tying 
    // the first entry stores the degree of freedom of master1 
    // the second entry stores the degree of freedom of master2 
    // the third entry stores the degree of freedom of slave 
 
    tyingDOF = new IntMatrix (nrOfTyings, 3); 
 
 
    // create a matrix which stores the tying factors 
    // the first entry stores factor1 
    // the second entry stores factor2 
 
    tyingFactors = new DoubleMatrix (nrOfTyings, 2); 
 
 
    for (int i = 0; i < nrOfPiles; i++) 
    { 
 
        double temp = (pileXY.getEntry (i, 0) - concreteCover - 
(rebarDiameterY / 2)) / ctcDistanceOfRebarsY; 
        int nxTying = (int) Math.floor (temp); 
        temp = (pileXY.getEntry (i, 1) - concreteCover - (rebarDiameterX / 
2)) / ctcDistanceOfRebarsX; 
        int nyTying = (int) Math.floor (temp); 
 
 
        // tying in X-direction 
 
        int tyingNr = 2 * i; 
        int n = nyTying * (2 * nx + 1) + (nxTying + 1) * 2; 
        tyingDOF.setEntry (tyingNr, 0, n); 
        n = (nyTying + 1) * (2 * nx + 1) + (nxTying + 1) * 2; 
        tyingDOF.setEntry (tyingNr, 1, n); 
        n = k + 3 * (i + 1) - 2; 
        tyingDOF.setEntry (tyingNr, 2, n); 
        temp = ((nyTying + 1) * ctcDistanceOfRebarsX + concreteCover + 
(rebarDiameterX / 2) 
               - pileXY.getEntry (i, 1)) / ctcDistanceOfRebarsX; 
        tyingFactors.setEntry (tyingNr, 0, temp); 
        tyingFactors.setEntry (tyingNr, 1, (1 - temp)); 
 
 
        // tying in Y-direction 



Structural design of reinforced concrete pile caps A.V. van de Graaf 

82 

 
        tyingNr = 2 * i + 1; 
        n = (2 * nx + 1) * nrOfRebarsX + nxTying * (2 * ny + 1) + (nyTying + 
1) * 2; 
        tyingDOF.setEntry (tyingNr, 0, n); 
        n = (2 * nx + 1) * nrOfRebarsX + (nxTying + 1) * (2 * ny + 1) + 
(nyTying + 1) * 2; 
        tyingDOF.setEntry (tyingNr, 1, n); 
        n = k + 3 * (i + 1) - 1; 
        tyingDOF.setEntry (tyingNr, 2, n); 
        temp = ((nxTying + 1) * ctcDistanceOfRebarsY + concreteCover + 
(rebarDiameterY / 2) 
               - pileXY.getEntry (i, 0)) / ctcDistanceOfRebarsY; 
        tyingFactors.setEntry (tyingNr, 0, temp); 
        tyingFactors.setEntry (tyingNr, 1, (1 - temp)); 
 
    } 
 
} 
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Processing tying 

 
private void processTyings () 
{ 
 
    for (int tyingNr = 0; tyingNr < nrOfTyings; tyingNr++) 
    { 
 
        int master1DOF = tyingDOF.getEntry (tyingNr, 0) - 1; 
        int master2DOF = tyingDOF.getEntry (tyingNr, 1) - 1; 
        int slaveDOF = tyingDOF.getEntry (tyingNr, 2) - 1; 
        double factor1 = tyingFactors.getEntry (tyingNr, 0); 
        double factor2 = tyingFactors.getEntry (tyingNr, 1); 
 
 
        for (int j = 0; j < nrOfDOF; j++) 
        { 
 
            double temp = systemStiffnessMatrix.getEntry (master1DOF, j) 
                          + factor1 * systemStiffnessMatrix.getEntry 
(slaveDOF, j); 
            systemStiffnessMatrix.setEntry (master1DOF, j, temp); 
            temp = systemStiffnessMatrix.getEntry (master2DOF, j) 
                   + factor2 * systemStiffnessMatrix.getEntry (slaveDOF, j); 
            systemStiffnessMatrix.setEntry (master2DOF, j, temp); 
            systemStiffnessMatrix.setEntry (slaveDOF, j, 0.0); 
 
        } 
 
 
        systemStiffnessMatrix.setEntry (slaveDOF, master1DOF, factor1); 
        systemStiffnessMatrix.setEntry (slaveDOF, master2DOF, factor2); 
        systemStiffnessMatrix.setEntry (slaveDOF, slaveDOF, -1.0); 
        double temp = forceVector.getEntry (master1DOF) 
                      + factor1 * forceVector.getEntry (slaveDOF); 
        forceVector.setEntry (master1DOF, temp); 
        temp = forceVector.getEntry (master2DOF) 
               + factor2 * forceVector.getEntry (slaveDOF); 
        forceVector.setEntry (master2DOF, temp); 
        forceVector.setEntry (slaveDOF, 0.0); 
 
    } 
 
} 
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Appendix B4: Generating and processing imposed 
displacements 

This appendix contains the source code which implements the processing of the imposed 
displacements. 
 
The source code of the procedure generateImposedDisplacements () reads: 
 
     // method which generates the imposed displacements 
 
     private void generateImposedDisplacements () 
     { 
 
         // variable declaration 
 
         int nx = nrOfRebarsY - 1;  // number of shear panels in X-direction 
         int ny = nrOfRebarsX - 1;  // number of shear panels in Y-direction 
         int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY; 
         int l = k + 3 * nrOfPiles + 3 * nrOfColumns; 
 
 
         // determine the number of fixed degrees of freedom 
 
         nrOfFixedDOF = 3 + 3 * nrOfPiles; 
 
 
         // create a vector which stores the degree of freedom number per 
fixed degree of freedom 
         // and one which stores the magnitude of the imposed displacements 
 
         fixedDOF = new IntVector (nrOfFixedDOF); 
         prescribedDisplacements = new DoubleVector (nrOfFixedDOF); 
 
 
         // determine which degrees of freedom are fixed 
 
         fixedDOF.setEntry (0, 1); 
         prescribedDisplacements.setEntry (0, 0.0); 
         int n = (2 * nx + 1) * nrOfRebarsX + 1; 
         fixedDOF.setEntry (1, n); 
         prescribedDisplacements.setEntry (1, 0.0); 
         n = (2 * nx + 1) * (nrOfRebarsX - 1) + 1; 
         fixedDOF.setEntry (2, n); 
         prescribedDisplacements.setEntry (2, 0.0); 
 
 
         for (int i = 1; i <= nrOfPiles; i++) 
         { 
 
             n = l + 3 * i - 2; 
             fixedDOF.setEntry ((3 * i), n); 
             prescribedDisplacements.setEntry ((3 * i), 0.0); 
             n = l + 3 * i - 1; 
             fixedDOF.setEntry ((3 * i + 1), n); 
             prescribedDisplacements.setEntry ((3 * i + 1), 0.0); 
             n = l + 3 * i; 
             fixedDOF.setEntry ((3 * i + 2), n); 
             prescribedDisplacements.setEntry ((3 * i + 2), 0.0); 
 
         } 
 
     } 
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The source code of the procedure processImposedDisplacements () reads: 
 
     // method which processes the imposed displacements (fixed degrees of 
freedom) 
 
     private void processImposedDisplacements () 
     { 
 
         // create a matrix which stores the entries from lines that will be 
removed 
         // from the system stiffness matrix 
 
         removedLines = new DoubleMatrix (nrOfFixedDOF, nrOfDOF); 
 
 
         for (int fixedDOF_Nr = 0; fixedDOF_Nr < nrOfFixedDOF; 
fixedDOF_Nr++) 
         { 
 
             int n = fixedDOF.getEntry (fixedDOF_Nr) - 1; 
 
 
             for (int j = 0; j < nrOfDOF; j++) 
             { 
 
                 double temp = systemStiffnessMatrix.getEntry (n, j); 
                 removedLines.setEntry (fixedDOF_Nr, j, temp); 
                 systemStiffnessMatrix.setEntry (n, j, 0.0); 
 
             } 
 
 
             systemStiffnessMatrix.setEntry (n, n, 1.0); 
             double temp = prescribedDisplacements.getEntry (fixedDOF_Nr); 
             forceVector.setEntry (n, temp); 
 
         } 
 
     } 
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 Appendix B5: Detailed consideration on LU decomposition 

This appendix gives a detailed consideration on how to solve for vector x  in the system 
A x b⋅ = , given matrix A  and vector b . The first three parts of this appendix are an 

elaboration on the steps presented in Section 4.5. This means that part one considers the 
theory of the actual decomposition of matrix A  in matrices L  and U . Then part two 
explains how to solve for vector y  starting from matrix L  and vector b . Part three 
discusses how to solve for vector x  starting from matrix U  and vector y . The fourth 
part of this appendix gives the source code of the class which implements the solution 
procedure. For reusability reasons this procedure has been implemented in a separate 
module. Therefore, separate testing of this module is possible, which has been elaborated 
in the fifth and final part of this appendix. The text in this appendix, accept for the part 
that concerns testing, has been based on Press (1988) [ 9 ]. 

Decomposition of matrix A  in matrices L  and U  

The basis of LU decomposition is that matrix A  may be written as the product of two 
matrices, namely a lower triangular matrix and an upper triangular matrix: 

11 11 12 13 1 11 12 13 1

21 22 22 23 2 21 22 23 2

31 32 33 33 3 31 32 33 3

1 2 3 1 2 3

0 0 0
0 0 0

0 0 0

0 0 0

n n

n n

n n

n n n nn nn n n n nn

a a a a
a a a a
a a a a

a a a a

α β β β β
α α β β β
α α α β β

α α α α β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

where all ijα  and ijβ  are to be determined and all ija  are known. An arbitrary element ija  
can be calculated from the following formula: 

1 1 2 2 ...ij i j i j in nja α β α β α β= + + + . 

However, since the lower triangular and upper triangular matrices contain many zeros, it is 
better to leave the multiplication terms containing one or more zeros out. To do this, 
three different cases have to be distinguished: 

:i j<  1 1 2 2 ...i j i j ii ij ijaα β α β α β+ + + =  ( 38 )

:i j=  1 1 2 2 ...i i i i ii ii iiaα β α β α β+ + + =  ( 39 )

:i j>  1 1 2 2 ...i j i j ij jj ijaα β α β α β+ + + = ( 40 )

The number of unknowns in the lower triangular matrix is equal to ( )2 2n n n− + . The 
same applies to the number of unknowns in the upper triangular matrix. Therefore, the 
total number of unknowns in both matrices comes down to 2n n+ . But only 2n  
equations (the number of elements in A ) can be formulated for these unknowns. This 
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means that n  unknowns may be specified arbitrarily and then try to solve for the 
remaining unknowns. Press (1988) [ 9 ] states that it is always possible to take: 

1iiα ≡  for 1, 2,...,i n= . 

The remaining unknowns are solved using Crout’s algorithm. This method decomposes 
matrix A  column by column. For a certain column j  two procedures have to be carried 
out. First for 1, 2,...,i j= : 

1

1

i

ij ij ik kj
k

aβ α β
−

=

= −∑ ( 41 )

This formulation can be deduced from equations ( 38 ) and ( 39 ): 

( )
1

1
1 1 2 2 ( 1) ( 1)

1

1 ... ii
i

ij ij i j i j i i i j ij ij ik kj
kii

a aαβ α β α β α β β α β
α

−
=

− −
=

⎡ ⎤= − + + + ⎯⎯⎯→ = −⎣ ⎦ ∑  

Secondly, calculate for 1, 2,...,i j j n= + +  

1

1

1 j

ij ij ik kj
kjj

aα α β
β

−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ ( 42 )

This formulation can be deduced from equation ( 40 ): 

( )
1

1 1 2 2 ( 1) ( 1)
1

1 1...
j

ij ij i j i j i j j j ij ij ik kj
kjj jj

a aα α β α β α β α α β
β β

−

− −
=

⎡ ⎤⎡ ⎤= − + + + ⎯⎯→ = −⎢ ⎥⎣ ⎦ ⎣ ⎦
∑  

By doing the above calculations by hand for a few elements reveals that all α ’s and β ’s 
needed for a certain calculation are already determined by the time they are needed. 
Furthermore it can be seen that every ija  is used only once and never again. This means 
that the corresponding ijα  or ijβ  can be stored in the location that a  used to occupy. 
This is advantageous with the computer implementation in mind: only one array is needed 
to perform the decomposition, since A  is destroyed while simultaneously LU  is 
produced. Moreover, L  and U  can be stored in same matrix, because of their triangular 
forms: 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

n n n nn

β β β β
α β β β
α α β β

α α α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 
Since 1iiα =  for 1, 2,...,i n= , these values do not need to be stored. 
 
One more attention point is the stability of Crout’s algorithm. Just like other numerical 
methods for solving systems of linear equations, pivoting is essential. This can be done by 
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picking the largest absolute value that occurs in a column. That is, only the element on the 
main diagonal or the elements below may be selected. If this element is not on the main 
diagonal, the corresponding rows should be swapped. This procedure is called partial 
pivoting. Of course, if rows in matrix A  are swapped, the same should be done to vector 
b . It is important to notice that in the case of i j=  equation ( 41 ) is exactly the same as 
equation ( 42 ) except for the division by jjβ  in the latter equation. The upper limit of the 
sum is in both cases equal to 1j − . 
Choosing the pivot element by simply picking the largest absolute value is obviously not 
the best way, because scaling a certain row is always allowed. If for example a certain row 
is multiplied by a million, then it is almost certain that this row will deliver the pivot 
element. To avoid this problem use is made of implicit pivoting. The idea of implicit 
pivoting is as follows: calculate per row the scaling factor that is needed to obtain 1 as the 
largest absolute coefficient. Then calculate per element the product of this scaling factor 
and the real value of the element. Picking the largest absolute value after performing this 
operation gives a good choice for the pivot element. It is recalled that only elements on 
the main diagonal or in the same column below it can be chosen. Choosing an element 
above the main diagonal element destroys the already formed part of the decomposed 
matrix. If the largest element is not on the main diagonal, the two corresponding rows 
have to be swapped. Now knowing the value of the pivot element, the division from 
equation ( 42 ) can be carried out. 

Solving for vector y  

Now that matrix A  has been decomposed in matrices L  and U , use can be made of the 
fact that triangular matrices can be solved in a simple way. Writing L y b⋅ =  gives: 

11 1 1

21 22 2 2

31 32 33 3 3

1 2 3

0 0 0
0 0

0

n n n nn n n

y b
y b
y b

y b

α
α α
α α α

α α α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

( 43 )

These equations can be solved by forward substitution: 

1
1

11

b
y

α
= , 

[ ]2 21 1
2 2 21 1

22 22

1b y
y b y

α
α

α α
−

= = − , 

( )3 31 1 32 2
3 3 31 1 32 2

33 33

1b y y
y b y y

α α
α α

α α
− −

= = − +⎡ ⎤⎣ ⎦ , 

and so forth. 
In general, for element iy  it holds that: 
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1

1

1 i

i i ij j
jii

y b yα
α

−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑  for 1, 2,...,i n= . 

Solving for vector x  

In a similar manner as for the system L y b⋅ = , the system U x y⋅ =  can be solved. But 
this time the procedure is called backward substitution. Writing U x y⋅ =  gives: 

11 12 13 1 1 1

22 23 2 2 2

33 3 3 3

0
0 0

0 0 0

n

n

n

nn n n

x y
x y
x y

x y

β β β β
β β β

β β

β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Vector x  can now be solved as follows: 

n
n

nn

y
x

β
= , 

1 ( 1)
1 1 ( 1)

( 1)( 1) ( 1)( 1)

1n n n n
n n n n n

n n n n

y x
x y x

β
β

β β
− −

− − −
− − − −

⎡ ⎤= = −⎣ ⎦ , 

( )2 ( 2)( 1) 1 ( 2)
2 2 ( 2)( 1) 1 ( 2)

( 2)( 2) ( 2)( 2)

1n n n n n n n
n n n n n n n n

n n n n

y x x
x y x x

β β
β β

β β
− − − − −

− − − − − −
− − − −

− −
⎡ ⎤= = − +⎣ ⎦ , 

and so forth. 
In general, for element ix  it holds that: 

1

1 n

i i ij j
j iii

x y xβ
β = +

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑  for 1, 2,...,1i n n= − − . 

Source code of class LU_Decomposition.java 

The solution procedure has been implemented as follows: 
 
// include this source file to the linear algebra package 
 
package anne.linalg; 
 
 
 
final public class LU_Decomposition 
{ 
 
    public static DoubleVector solve (DoubleMatrix A, DoubleVector b) 
    { 
 
        // constants declaration 
 
        final int N;    // number of rows of the square matrix 
        final double TINY_NUMBER = 1.0E-20; 
 
 
        // variable declaration 
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        int pivotRow = 0; 
        DoubleMatrix LU;              // decomposed matrix 
        DoubleVector y;               // solution vector 
        DoubleVector scaleFactors;    // vector which stores the implicit  
                                      // scaling of each row of A 
 
 
        // check the dimensions of matrix A and vector b 
 
        if (A.getNumRows () != A.getNumCols ()) 
        { 
 
            throw new RuntimeException ("Error: matrix in module  
                                         LU_Decomposition is not square."); 
 
        } 
 
 
        if (A.getNumCols () != b.getNumEntries ()) 
        { 
 
            throw new RuntimeException ("Error: number of columns in matrix  
                                         does not match number of entries in  
                                         vector in module  
                                         LU_Decomposition."); 
 
        } 
 
 
        // make a copy of matrix A and vector b 
 
        LU = new DoubleMatrix (A); 
        y = new DoubleVector (b); 
 
 
        // create an empty scale factor vector 
 
        N = y.getNumEntries (); 
        scaleFactors = new DoubleVector (N); 
 
 
        // calculate implicit scale factor for each row of A 
 
        for (int i = 0; i < N; i++) 
        { 
 
            double largest = 0.0; 
 
 
            for (int j = 0; j < N; j++) 
            { 
 
                double temp = Math.abs (LU.getEntry (i, j)); 
                if (temp > largest) 
                { 
 
                    largest = temp; 
 
                } 
 
            } 
 
 
            if (largest == 0.0) 
            { 
 
                throw new RuntimeException ("Error: matrix in module  
                                             LU_Decomposition is  
                                             singular."); 
 
            } 
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            else 
            { 
 
                double temp = 1.0 / largest; 
                scaleFactors.setEntry (i, temp); 
 
            } 
 
        } 
 
 
        // perform decomposition of A in L and U 
 
        for (int j = 0; j < N; j++) 
        { 
 
            for (int i = 0; i < j; i++) 
            { 
 
                double sum = LU.getEntry (i, j); 
 
 
                for (int k = 0; k < i; k++) 
                { 
 
                    sum = sum - LU.getEntry (i, k) * LU.getEntry (k, j); 
 
                } 
 
 
                LU.setEntry (i, j, sum); 
 
            } 
 
 
            double largest = 0.0; 
 
 
            for (int i = j; i < N; i++) 
            { 
 
                double sum = LU.getEntry (i, j); 
 
 
                for (int k = 0; k < j; k++) 
                { 
 
                    sum = sum - LU.getEntry (i, k) * LU.getEntry (k, j); 
 
                } 
 
 
                LU.setEntry (i, j, sum); 
                double temp = scaleFactors.getEntry (i) * Math.abs (sum); 
 
 
                if (temp >= largest) 
                { 
 
                    largest = temp; 
                    pivotRow = i; 
 
                } 
 
            } 
 
 
            if (j != pivotRow) 
            { 
 
                LU = LU.swapRows (pivotRow, j); 
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                y = y.swapEntries (pivotRow, j); 
 
            } 
 
 
            if (LU.getEntry (j, j) == 0.0) 
            { 
 
                LU.setEntry (j, j, TINY_NUMBER); 
 
            } 
 
 
            if (j != (N - 1)) 
            { 
 
                double temp = 1.0 / LU.getEntry (j, j); 
 
 
                for (int i = (j + 1); i < N; i++) 
                { 
 
                    double temp2 = LU.getEntry (i, j) * temp; 
                    LU.setEntry (i, j, temp2); 
 
                } 
 
            } 
 
        } 
 
 
        // calculate solution vector 
 
        for (int i = 0; i < N; i++) 
        { 
 
            double sum = y.getEntry (i); 
 
 
            for (int j = 0; j <= (i - 1); j++) 
            { 
 
                sum = sum - LU.getEntry (i, j) * y.getEntry (j); 
 
            } 
 
 
            y.setEntry(i, sum); 
 
        } 
 
 
        for (int i = (N - 1); i >= 0; i--) 
        { 
 
            double sum = y.getEntry (i); 
 
 
            for (int j = (i + 1); j < N; j++) 
            { 
 
                sum = sum - LU.getEntry (i, j) * y.getEntry (j); 
 
            } 
 
 
            double temp = sum / LU.getEntry (i, i); 
            y.setEntry (i, temp); 
 
        } 
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        return y; 
 
    } 
 
} 

Testing module LU_Decomposition 

The module LU_Decomposition was tested by calculating example systems of linear 
equations taken from literature. Two small examples are given here. The first example is 
taken from Lay (2000) [ 7 ]. Consider the system A x b⋅ = , where 

1 2 1
0 2 8
4 5 9

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 and 
0
8
9

b
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

The module LU_Decomposition gives the following solution 

29.000000000000018
16.00000000000001
3.000000000000027

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

, 

which is correct accepting a small round-off error. 
The second example (taken from [ 19 ]) tests partial pivoting explicitly. Let 

410 1
1 1

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and 
1
2

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

and consider the system A x b⋅ = . The solution provided by the module is 

1.0001000100010002
0.9998999899989999

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

which is correct and proves that the used algorithm is stable [ 19 ].
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 Appendix C: Matrix and vector classes in Java 

This appendix provides the source code for the classes DoubleMatrix, DoubleVector, 
IntMatrix and IntVector. Since variable types have to be specified inside a class, a 
distinction has been made in matrices which contain double-precision numbers and which 
contain integer numbers. The same applies to the Vector classes. The source code in this 
appendix is inspired by [ 18 ]. 

Source code of class DoubleMatrix 
// include this source file to the linear algebra package 
 
package anne.linalg; 
 
 
 
final public class DoubleMatrix 
{ 
 
    private final double[][] array;    // the 2D array 
    private final int numRows;         // number of rows 
    private final int numCols;         // number of columns 
 
 
 
    // constructor for creating an empty matrix 
 
    public DoubleMatrix(int numRows, int numCols) 
    { 
 
        this.numRows = numRows; 
        this.numCols = numCols; 
        this.array = new double[numRows][numCols]; 
 
    } 
 
 
 
    // constructor for creating a matrix from an array 
 
    public DoubleMatrix(double[][] matrix) 
    { 
 
        this.numRows = matrix.length; 
        this.numCols = matrix[0].length; 
        this.array = new double[numRows][numCols]; 
        for(int i = 0; i < numRows; i++) 
        { 
 
            for(int j = 0; j < numCols; j++) 
            { 
 
                this.array[i][j] = matrix[i][j]; 
 
            } 
 
        } 
 
    } 
 
 
 
    // copy constructor 
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    public DoubleMatrix (DoubleMatrix matrix) 
    { 
 
        this.numRows = matrix.numRows; 
        this.numCols = matrix.numCols; 
        this.array = new double[numRows][numCols]; 
        for(int i = 0; i < numRows; i++) 
        { 
 
            for(int j = 0; j < numRows; j++) 
            { 
 
                this.array[i][j] = matrix.array[i][j]; 
 
            } 
 
        } 
 
    } 
 
 
 
    // method for getting number of rows 
 
    public int getNumRows() 
    { 
 
        return this.numRows; 
 
    } 
 
 
 
    // method for getting number of columns 
 
    public int getNumCols() 
    { 
 
        return this.numCols; 
 
    } 
 
 
 
    // method for setting the value of an entry 
 
    public void setEntry(int i, int j, double value) 
    { 
 
        this.array[i][j] = value; 
 
    } 
 
 
 
    // method for getting the value of an entry 
 
    public double getEntry(int i, int j) 
    { 
 
        return this.array[i][j]; 
 
    } 
 
 
 
    // method for writing the matrix to the standard output 
 
    public void showMatrix() 
    { 
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        for(int i = 0; i < this.numRows; i++) 
        { 
 
            for(int j = 0; j < this.numCols; j++) 
            { 
 
                System.out.print(this.array[i][j] + "   "); 
 
            } 
            System.out.println(); 
 
        } 
 
    } 
 
 
 
    // method for interchanging two rows 
 
    public DoubleMatrix swapRows(int i, int j) 
    { 
 
        DoubleMatrix matrix = new DoubleMatrix(this); 
        double[] temp = matrix.array[i]; 
        matrix.array[i] = matrix.array[j]; 
        matrix.array[j] = temp; 
        return matrix; 
 
    } 
 
} 



Structural design of reinforced concrete pile caps A.V. van de Graaf 

98 

Source code of class DoubleVector 
// include this source file to the linear algebra package 
 
package anne.linalg; 
 
 
 
final public class DoubleVector 
{ 
 
    private final double[] array;     // the 1D array 
    private final int numEntries;     // number of entries 
 
 
 
    // constructor for creating a vector 
 
    public DoubleVector(int numEntries) 
    { 
 
        this.numEntries = numEntries; 
        this.array = new double[numEntries]; 
 
    } 
 
 
 
    // constructor for creating a vector from an array 
 
    public DoubleVector(double[] vector) 
    { 
 
        this.numEntries = vector.length; 
        this.array = new double[numEntries]; 
        for(int i = 0; i < numEntries; i++) 
        { 
 
            this.array[i] = vector[i]; 
 
        } 
 
    } 
 
 
 
    // copy constructor 
 
    public DoubleVector(DoubleVector vector) 
    { 
 
        this.numEntries = vector.numEntries; 
        this.array = new double[numEntries]; 
        for(int i = 0; i < numEntries; i++) 
        { 
 
            this.array[i] = vector.array[i]; 
 
        } 
 
    } 
 
 
 
    // method for getting number of entries 
 
    public int getNumEntries() 
    { 
 
        return this.numEntries; 



A.V. van de Graaf Structural design of reinforced concrete pile caps 

99 

 
    } 
 
 
 
    // method for setting the value of an entry 
 
    public void setEntry(int i, double value) 
    { 
 
        this.array[i] = value; 
 
    } 
 
 
 
    // method for getting the value of an entry 
 
    public double getEntry(int i) 
    { 
 
        return this.array[i]; 
 
    } 
 
 
 
    // method for writing the vector to the standard output 
 
    public void showVector() 
    { 
 
        for(int i = 0; i < this.numEntries; i++) 
        { 
 
            System.out.println(this.array[i]); 
 
        } 
 
    } 
 
 
 
    // method for interchanging two entries 
 
    public DoubleVector swapEntries(int i, int j) 
    { 
 
        DoubleVector vector = new DoubleVector(this); 
        double temp = vector.array[i]; 
        vector.array[i] = vector.array[j]; 
        vector.array[j] = temp; 
        return vector; 
 
    } 
 
} 
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Source code of class IntMatrix 
// include this source file to the linear algebra package 
 
package anne.linalg; 
 
 
 
final public class IntMatrix 
{ 
 
    private final int[][] array;    // the 2D array 
    private final int numRows;      // number of rows 
    private final int numCols;      // number of columns 
 
 
 
    // constructor for creating an empty matrix 
 
    public IntMatrix(int numRows, int numCols) 
    { 
 
        this.numRows = numRows; 
        this.numCols = numCols; 
        this.array = new int[numRows][numCols]; 
 
    } 
 
 
 
    // constructor for creating a matrix from an array 
 
    public IntMatrix(int[][] matrix) 
    { 
 
        this.numRows = matrix.length; 
        this.numCols = matrix[0].length; 
        this.array = new int[numRows][numCols]; 
        for(int i = 0; i < numRows; i++) 
        { 
 
            for(int j = 0; j < numCols; j++) 
            { 
 
                this.array[i][j] = matrix[i][j]; 
 
            } 
 
        } 
 
    } 
 
 
 
    // copy constructor 
 
    public IntMatrix (IntMatrix matrix) 
    { 
 
        this.numRows = matrix.numRows; 
        this.numCols = matrix.numCols; 
        this.array = new int[numRows][numCols]; 
        for(int i = 0; i < numRows; i++) 
        { 
 
            for(int j = 0; j < numRows; j++) 
            { 
 
                this.array[i][j] = matrix.array[i][j]; 
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            } 
 
        } 
 
    } 
 
 
 
    // method for getting number of rows 
 
    public int getNumRows() 
    { 
 
        return this.numRows; 
 
    } 
 
 
 
    // method for getting number of columns 
 
    public int getNumCols() 
    { 
 
        return this.numCols; 
 
    } 
 
 
 
    // method for setting the value of an entry 
 
    public void setEntry(int i, int j, int value) 
    { 
 
        this.array[i][j] = value; 
 
    } 
 
 
 
    // method for getting the value of an entry 
 
    public int getEntry(int i, int j) 
    { 
 
        return this.array[i][j]; 
 
    } 
 
 
 
    // method for writing the matrix to the standard output 
 
    public void showMatrix() 
    { 
 
        for(int i = 0; i < this.numRows; i++) 
        { 
 
            for(int j = 0; j < this.numCols; j++) 
            { 
 
                System.out.print(this.array[i][j] + "   "); 
 
            } 
            System.out.println(); 
 
        } 
 
    } 
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    // method for interchanging two rows 
 
    public IntMatrix swapRows(int i, int j) 
    { 
 
        IntMatrix matrix = new IntMatrix(this); 
        int[] temp = matrix.array[i]; 
        matrix.array[i] = matrix.array[j]; 
        matrix.array[j] = temp; 
        return matrix; 
 
    } 
 
} 
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Source code of class IntVector 
// include this source file to the linear algebra package 
 
package anne.linalg; 
 
 
 
final public class IntVector 
{ 
 
    private final int[] array;        // the 1D array 
    private final int numEntries;     // number of entries 
 
 
 
    // constructor for creating a vector 
 
    public IntVector(int numEntries) 
    { 
 
        this.numEntries = numEntries; 
        this.array = new int[numEntries]; 
 
    } 
 
 
 
    // constructor for creating a vector from an array 
 
    public IntVector(int[] vector) 
    { 
 
        this.numEntries = vector.length; 
        this.array = new int[numEntries]; 
        for(int i = 0; i < numEntries; i++) 
        { 
 
            this.array[i] = vector[i]; 
 
        } 
 
    } 
 
 
 
    // copy constructor 
 
    public IntVector(IntVector vector) 
    { 
 
        this.numEntries = vector.numEntries; 
        this.array = new int[numEntries]; 
        for(int i = 0; i < numEntries; i++) 
        { 
 
            this.array[i] = vector.array[i]; 
 
        } 
 
    } 
 
 
 
    // method for getting number of entries 
 
    public int getNumEntries() 
    { 
 
        return this.numEntries; 
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    } 
 
 
 
    // method for setting the value of an entry 
 
    public void setEntry(int i, int value) 
    { 
 
        this.array[i] = value; 
 
    } 
 
 
 
    // method for getting the value of an entry 
 
    public int getEntry(int i) 
    { 
 
        return this.array[i]; 
 
    } 
 
 
 
    // method for writing the vector to the standard output 
 
    public void showVector() 
    { 
 
        for(int i = 0; i < this.numEntries; i++) 
        { 
 
            System.out.println(this.array[i]); 
 
        } 
 
    } 
 
 
 
    // method for interchanging two entries 
 
    public IntVector swapEntries(int i, int j) 
    { 
 
        IntVector vector = new IntVector(this); 
        int temp = vector.array[i]; 
        vector.array[i] = vector.array[j]; 
        vector.array[j] = temp; 
        return vector; 
 
    } 
 
} 


