
 Structural design of reinforced concrete pile caps
The strut-and-tie method extended with the stringer-panel method

A.V. van de GraafDecember 2006

Faculty of Civil Engineering and Geosciences
Section Structural Mechanics

stringer elements

shear panel elements

strut elements

column load

strut element

stringer elements

shear panel elements

strut elements

column load

strut element

A.V. van de Graaf Structural design of reinforced concrete pile caps

 i

A.V. van de Graaf

Delft, December 2006

Delft University of Technology
Faculty of Civil Engineering and Geosciences
Section Structural Mechanics

Structural design of reinforced concrete pile caps
The strut-and-tie method extended with the stringer-panel method

A.V. van de Graaf Structural design of reinforced concrete pile caps

 iii

 Personalia

STUDENT

Anne Vincent van de Graaf

1040626
annevandegraaf@yahoo.com
+ 31 (0)6 12 29 61 32

GRADUATION COMMITTEE

prof.dr.ir. J.G. Rots (supervisor graduation committee)

Delft University of Technology
Faculty of Civil Engineering and Geosciences – Section Structural Mechanics
j.g.rots@bk.tudelft.nl
+ 31 (0)15 278 44 90

dr.ir. P.C.J. Hoogenboom (daily supervisor)

Delft University of Technology
Faculty of Civil Engineering and Geosciences – Section Structural Mechanics
p.hoogenboom@citg.tudelft.nl
+ 31 (0)15 278 80 81

ir. W.J.M. Peperkamp

Delft University of Technology
Faculty of Civil Engineering and Geosciences – Section Concrete Structures
w.peperkamp@citg.tudelft.nl
+ 31 (0)15 278 45 76

ir. J.W. Welleman

Delft University of Technology
Faculty of Civil Engineering and Geosciences – Section Structural Mechanics
j.w.welleman@citg.tudelft.nl
+ 31 (0)15 278 48 56

ir. L.J.M. Houben (graduation coordinator)

Delft University of Technology
Faculty of Civil Engineering and Geosciences – Section Road & Railway Engineering
l.j.m.houben@tudelft.nl
+ 31 (0)15 278 49 17

A.V. van de Graaf Structural design of reinforced concrete pile caps

 v

 Preface

This graduation report has been written within the framework of a Master of Science
Project originally entitled WWW Design of Reinforced Concrete Pile Caps. This project
was put forward by the Structural Mechanics Section of the Faculty of Civil Engineering
and Geosciences at Delft University of Technology.

Although I spent a lot of time in mastering the Java programming language and
implementing the design model in an applet using Java SE Development Kit (JDK) [14],
not much of this work can be found directly in this report. The same applies to the initial
work that I have done in TurboPascal using Borland Delphi [13]. Therefore, this
graduation report is rather brief. For those readers, who are interested in using the applet,
please refer to the following web address: http://www.mechanics.citg.tudelft.nl/pca.

Hereby I would like to thank ir. H.J.A.M. Geers (Faculty of Electrical Engineering,
Mathematics and Computer Science at Delft University of Technology) for his advice
during the design and implementation of the applet. Many thanks also to ir. J.A. den Uijl
for his contribution with Atena 3D. And last but not least, I would like to thank dr.ir.
P.C.J. Hoogenboom for his support and suggestions during this project.

Delft, December 12, 2006

Anne van de Graaf

A.V. van de Graaf Structural design of reinforced concrete pile caps

 vii

 Table of contents

Personalia .. iii

Preface .. v

Summary.. ix

List of symbols .. xi

1 Introduction ...1

2 Design problem of the reinforced concrete pile cap ... 3

2.1 Problem description ..3
2.2 Modeling the pile cap..3
2.3 Research outline...4

3 Mathematical description of the used elements.. 7

3.1 Co-ordinate systems and notations...7
3.2 Stringer element ...7
3.3 Shear panel element...10
3.4 Strut element...14

3.4.1 Element description ...14
3.4.2 Element rotation...15

4 Assembling the model and solving the system ... 23

4.1 Assembling the system stiffness matrix ...23
4.2 Processing imposed forces...24
4.3 Processing tying ...24
4.4 Processing imposed displacements...27
4.5 Solving the obtained system of linear equations ..29

5 Applet design..31

5.1 Applet setup and Java basics..31
5.2 Preprocessor ...33
5.3 Kernel ..34
5.4 Postprocessor ...35

6 Equilibrium considerations... 37

6.1 Case 1: Symmetrical pile cap consisting of three piles and one column37
6.1.1 Equilibrium consideration of the whole structure ..38
6.1.2 Equilibrium consideration of a part of the structure..40

6.2 Case 2: Asymmetrical pile cap consisting of six piles and two columns44

Structural design of reinforced concrete pile caps A.V. van de Graaf

viii

7 Non-linear finite element analysis... 47

7.1 Geometry of the considered pile cap and material parameters 47
7.2 Ultimate load predicted by Pile Cap Applet (PCA)... 48
7.3 Ultimate load predicted by non-linear finite element analysis 50

8 Conclusions and recommendations .. 57

References... 59

Appendix A1: Numbering and generating stringer elements................................. 61

Appendix A2: Numbering and generating shear panel elements........................... 65

Appendix A3: Numbering and generating strut elements...................................... 69

Appendix B1: Assembling the elements ... 73

Appendix B2: Generating and processing imposed forces..................................... 79

Appendix B3: Generating and processing tying... 81

Appendix B4: Generating and processing imposed displacements 85

Appendix B5: Detailed consideration on LU decomposition................................. 87

Appendix C: Matrix and vector classes in Java... 95

A.V. van de Graaf Structural design of reinforced concrete pile caps

 ix

 Summary

Many foundations in The Netherlands, mainly those in coastal areas, are on piles. These
piles are often over 15 m long at distances of 1 to 4 m. If possible, these piles are driven
into the soil at the positions of walls and columns of a building. The presence of piles of a
previous building may hamper a free choice of the new pile positions. Removing the old
piles is not a solution, because this leaves holes in deep clay layers through which saline
groundwater may penetrate into the upper soil. Moreover, the old piles cannot be reused
because their quality cannot be guaranteed. As a consequence, pile caps often have to
cover piles that are positioned in an irregular pattern.

The objective of this Master of Science Project was to develop a design model for
calculating the pile loading and reinforcement stresses for pile caps on irregularly
positioned foundation piles. This model has been based on the strut-and-tie method,
however, the ties have been replaced by another model consisting of stringer elements and
shear panel elements. This model predicts vertical pile reactions, reinforcement stresses
and shear stresses in concrete. For practical application, it has been implemented in a
computer program called Pile Cap Applet (PCA). This applet was designed to be user-
friendly, to require only a moderate amount of data and to execute fast.

PCA has been tested and validated in two ways. Firstly, it has been shown that the design
model meets all equilibrium requirements. This has been tested for two pile caps. Both
cases revealed that the design model complies with horizontal and vertical force
equilibrium and moment equilibrium. From the theory of plasticity it then follows that this
model gives a safe approximation of the ultimate load. Secondly, the ultimate load
predicted by PCA has been compared to the ultimate load predicted by a non-linear finite
element analysis. This comparison yielded several interesting conclusions whereof the
most important ones are included in this summary.
The ultimate load predicted by PCA is very conservative. Clearly, the real structure can
carry the load in more ways than an equilibrium system (PCA) assumes. Furthermore, for
the considered pile cap the design model predicted another failure mechanism than the
finite element analysis. PCA predicted that the considered pile cap ‘collapsed’ because of
reaching the yield strength in one of the reinforcing bars. In the finite element analysis, the
pile cap collapsed because of a shear failure. This failure mechanism cannot be predicted
by PCA. For the considered pile cap the vertical pile reactions predicted by PCA are
approximately equal to those predicted by the non-linear finite element analysis. However,
the reinforcement stresses at serviceability load according to PCA are much higher than
those determined by the finite element analysis. This implies that the stresses calculated by
PCA are not useful for checking the maximum crack width.

A.V. van de Graaf Structural design of reinforced concrete pile caps

 xi

 List of symbols

Latin symbols

a length of a shear panel element [mm]

b width of a shear panel element [mm]

c concrete cover [mm]

xd center-to-center distance of reinforcing bars in x -direction [mm]

yd center-to-center distance of reinforcing bars in y -direction [mm]

cap concreteE Young’s modulus of the cap concrete [N/mm2]

complE complementary energy [Nmm]

pile concreteE Young’s modulus of the pile concrete [N/mm2]

rebarE Young’s modulus of the reinforcement [N/mm2]

EA extensional stiffness [N]

F external force [N]

cap concreteG shear modulus of cap concrete [N/mm2]

h depth of the pile cap [mm]

N normal force [N]

S shear force [N]

t effective depth of the pile cap with regard to shear stresses [mm]

iu displacement in direction i [mm]

Greek symbols

xyγ shear angle [rad]

ν Poisson’s ratio [-]

σ normal stress [N/mm2]

τ shear stress [N/mm2]

xφ reinforcing bar diameter in x -direction [mm]

yφ reinforcing bar diameter in y -direction [mm]

Remaining symbol

 length of a stringer element or strut element [mm]

A.V. van de Graaf Structural design of reinforced concrete pile caps

1

1 Introduction

It is well-known that many buildings in The Netherlands, mainly those in coastal areas, are
founded on piles. These piles can easily reach a length of over 15 m and are usually spaced
at distances of 1 to 4 m. If possible, these piles are driven into the soil at the positions of
walls and columns. Unfortunately, a structural designer is not always free in this choice,
because piles of a previous building may be present. Removing these old piles is not a
solution, since this leaves holes in deep clay layers through which saline groundwater may
penetrate into the upper soil. Reusing the old piles is not an option either, because their
quality cannot be guaranteed. These restrictions often result in irregular pile patterns,
which makes calculation of pile caps by hand difficult if not impossible.

The objective of this Master of Science Project is to develop a design model for
calculating the pile loading and reinforcement stresses for pile caps on irregularly
positioned foundation piles. This design method is based on the strut-and-tie method
extended with the stringer-panel method. The model is implemented in an applet and can
be used for structural design.

The composition of this report is as follows. Chapter 2 gives a problem definition,
discusses the model constitution and outlines the research. Chapter 3 considers the
mathematical description of stringer elements, shear panel elements and strut elements.
These are used as building blocks for the design model. In Chapter 4 it is explained how
to assemble the system starting from the mathematical element descriptions given in the
previous chapter. Furthermore, this chapter includes processing the boundary conditions
and solving the obtained system of linear equations. Chapter 5 discusses the design of the
applet and three important procedures, namely the preprocessor, the kernel and the
postprocessor. In Chapter 6 the Java implementation is tested by checking equilibrium
requirements in two specific cases. Chapter 7 compares the ultimate load predicted by the
applet with a non-linear finite element analysis. Finally, Chapter 8 presents the conclusions
and recommendations.

A.V. van de Graaf Structural design of reinforced concrete pile caps

3

2 Design problem of the reinforced concrete pile cap

This chapter defines the design problem that was introduced in Chapter 1. Section 2.1
gives a description of the problem to be solved. Section 2.2 explains which elements are
used and how these elements constitute the pile cap model. Section 2.3 gives an outline of
the research area including aspects that are not taken into account. In the next chapter,
Chapter 3, the elements which constitute the model presented in this chapter are
mathematically described.

2.1 Problem description

The problem to be solved is to develop a design
model for determining the pile loading and the
reinforcement stresses for pile caps on irregularly
positioned foundation piles in buildings (Figure 1).
One way of calculating pile caps is to create a model
in a 3D finite element package. An important
disadvantage of this approach is that it is time-
consuming. Creating the computer model as well as
performing an advanced calculation requires a lot of
time. Another method for solving this problem is to use rough models, which may be
calculated by hand. But since these rough models introduce a lot of uncertainty, a large
safety factor is required. Clearly, structural designers need a reliable and rational
calculation method, which can be carried out easily.

2.2 Modeling the pile cap

For stocky structures loaded by concentrated forces, the
strut-and-tie method is commonly adopted [10]. This
method uses solely compression members (struts) and
tension members (ties). In Figure 2 a strut-and-tie model
has been drawn for the example pile cap given in Figure 1.
Compression members have been drawn in green and
tension members have been drawn in red. If reinforcing
bars are put in the directions of the ties the result would
be very impractical to make. Moreover, if a pile cap consists of more piles and columns
the reinforcement patterns would be even more complicated and therefore labor-intensive
and prone to error. Orthogonal reinforcement patterns with fixed center-to-center
distances are far more practical. But then, the above mentioned strut-and-tie method is
not convenient anymore. Therefore, the ties are replaced by another model (Figure 3),
consisting of stringer elements and shear panel elements ([1], [2]). In this renewed
model, the stringer elements represent the reinforcing bars, while the shear panel elements

Figure 1 Example pile cap

Figure 2 Strut-and-tie model for
the example pile cap of Figure 1

Structural design of reinforced concrete pile caps A.V. van de Graaf

4

represent the concrete in between. From Figure 3 it can be seen that the load is carried by
strut elements that are hold in place by a combination of stringer elements and shear panel
elements.

2.3 Research outline

Some restrictions need to be
introduced to arrive at a
practical design model.

The first restriction is that
columns can only transfer
normal (vertical) loads. A
column load is represented by
a concentrated force, which is
applied at the center of gravity
of the column (Figure 3).
Therefore, moments in the
columns cannot be included. Horizontal loads and bending moments are excluded from
this research. Since the piles are modeled as strut elements, they can only transfer normal
loads. Furthermore, it is assumed that the tip of the pile is restrained in all directions. The
behavior of the soil in which the piles are embedded is not taken into consideration, which
also means that no pile-soil interaction is taken into account. For the axial stiffness of the
stringer elements, only the extensional stiffness of the reinforcing bars is taken into
account. This means it is assumed that the concrete does not contribute to the transfer of
tensile forces and that effects like tension-stiffening are not taken into consideration. Only
main reinforcement is considered, which means that shear reinforcement and other kinds
of reinforcement are excluded from the model. In both directions, only one layer of
reinforcing bars is taken into account. Another restriction is that the dead weight of the
pile cap is not taken into consideration. This is acceptable since the dead weight of the pile
cap is only a fraction of the load that is carries.

The implementation of the design model in an applet also poses
a few restrictions. To ensure an orderly Graphical User Interface
(GUI) it is decided to limit the maximum number of columns to
four and the maximum number of piles to six. The minimum
number of piles is set to three to ensure a kinematical
determinate system. The center-to-center distances of the
reinforcing bars are equal per direction. Only one reinforcing bar
diameter can be specified per direction.

stringer elements

shear panel elements

strut elements

column load

strut element

stringer elements

shear panel elements

strut elements

column load

strut element

Figure 3 Strut-and-tie model extended with a stringer-panel model

Figure 4 Pier on a pile cap

A.V. van de Graaf Structural design of reinforced concrete pile caps

5

The design problem discussed in this graduation report is mainly aimed at pile caps used
in buildings. But the general nature of the design model to be discussed makes its
application also suitable for use in for example piers on pile caps (Figure 4).

A.V. van de Graaf Structural design of reinforced concrete pile caps

7

3 Mathematical description of the used elements

In Chapter 2 it was explained that the model which represents the pile cap consists of
three different elements, namely stringer elements, shear panel elements and strut
elements. This chapter describes the structural behavior of these elements in a
mathematical way. First, Section 3.1 gives the general agreements concerning local and
global co-ordinate systems and notations. Then, in Section 3.2, the stiffness relation for a
stringer element is derived, based on the graduation work of Hoogenboom (1993) [6]. In
Section 3.3 the stiffness relation for a shear panel element is derived using the work of
Blaauwendraad (2004) [4]. Finally, in Section 3.4 a description of the strut element is
given, which has been based on the work of Nijenhuis (1973) [8] and Hartsuijker (2000)
[5]. In the next chapter, Chapter 4, these descriptions are used to formulate the structural
behavior of the pile cap.

3.1 Co-ordinate systems and notations

The global co-ordinate system xyz for the pile cap
is indicated in Figure 5. In the next sections, local
co-ordinate systems xyz are defined. In the case of
stringer elements and shear panel elements, the
orientation of the local co-ordinate axes is in the
same direction as the global co-ordinate system
(Figure 5). This implies that for these elements a
rotation matrix is not needed. Because strut
elements have a three dimensional orientation
(Figure 3) and their local co-ordinate system is
chosen according to the orientation of the element, a rotation matrix is necessary.
Therefore, Section 3.4 is divided in two subsections. Subsection 3.4.1 gives the
mathematical description of the strut element. In subsection 3.4.2 the rotation matrix is
derived. In the next sections, the following (common) convention is used: scalars are not
underlined, vectors are underlined and matrices are doubly underlined. The derivations in
this chapter are valid for single elements only. To be formally correct a superscript
()e should be used, but for the sake of convenience this superscript is left out.

3.2 Stringer element

The stringer element consists of a bar with length and extensional stiffness EA and
possesses three degrees of freedom (DOF): 1xu , 2xu and 3xu (Figure 6). The DOF at the
ends of the element are called 1xu and 3xu respectively. The intermediate DOF is named

2xu . The element is loaded by two concentrated forces at the ends of the bar, which are
called 1xF and 3xF , and an evenly distributed shear force tτ along the bar axis. This
distributed shear force is a result of interaction with adjacent shear panel elements, which

Figure 5 Global co-ordinate system

x y

z

Structural design of reinforced concrete pile caps A.V. van de Graaf

8

are described in Section 3.3. The sum of the distributed shear force over the length is
equal to 2xF .

The normal force ()N x in the bar can be described by

() ()1 1 2
xN x N N N= − − . (1)

From equilibrium of the bar ends (Figure 7) it may be concluded that

1 1xF N= − and 3 2xF N= . (2)

2xF can be expressed as

1 2
2 1 2x

N N
F N N t tτ τ

−
= − = ⇔ = . (3)

The stiffness relation for the stringer element is derived using complementary energy. The
expression for the complementary energy of the bar reads [6]

()
2

1
compl 1 1 3 32

0 0
x x x x x

x x

NE dx F u F u tu x dx
EA

τ
= =

= − − −∫ ∫ . (4)

Substitution of equations (1), (2) and (3) in the expression for the complementary
energy (4) gives

1xu
1xF

3xu

tτ
3xF

x

0x = x =

()N x1N
2N

EA

2xu

Figure 6 Stringer element in a local co-ordinate system xyz [figure taken from Hoogenboom [6]]

()1 1 1 10
lim 0x xx

F N t x F Nτ
Δ →

+ + Δ = + = ()2 3 2 30
lim 0x xx

N F t x N Fτ
Δ →

− + + Δ = − + =

xΔ

1xF 1N

tτ

xΔ

tτ

2N 3xF

Figure 7 Equilibrium consideration of the end parts of the stringer element

A.V. van de Graaf Structural design of reinforced concrete pile caps

9

()
2

1 2 1 2
compl 1 1 1 2 3

0 0

1
2 x x x

x x

N N N N
E N x dx N u N u u x dx

EA= =

− −⎛ ⎞= − + − −⎜ ⎟
⎝ ⎠∫ ∫ . (5)

The intermediate DOF 2xu is now defined as [6]

2
0

2 ()x x
x

u u x dx
=

= ∫ , (6)

which may be interpreted as the mean displacement of the stringer element. Further
elaboration of expression (5) using equation (6) leads to

complE ()
22

2 21 1 2 1 2
1 1 1 2 3 1 2 2

0

1 2
2 x x x

x

N N N N N
N x x dx N u N u N N u

EA=

⎛ ⎞− −⎛ ⎞= − + + − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
∫

 22
2 2 31 1 2 1 21

1 1 1 2 3 1 2 2 23

0

2 2 2 21
1 1 1 2 1 1 2 2 1 1 2 3 1 2 2 23

2 21 1 1
1 2 1 2 1 1 2 3 1 2 2 23 3 3

1
2

1 () (2)
2

1
2

6

x x x x

x

x x x x

x x x x

N N N N N
N x x x N u N u N u N u

EA

N N N N N N N N N u N u N u N u
EA

N N N N N u N u N u N u
EA

=

⎡ ⎤− −⎛ ⎞= − + + − − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎡ ⎤= − − + − + + − − +⎣ ⎦

⎡ ⎤= + + + − − +⎣ ⎦

= 2 2
1 1 2 2 1 1 2 3 1 2 2 2 .x x x xN N N N N u N u N u N u

EA
⎡ ⎤+ + + − − +⎣ ⎦

The complementary energy should be stationary in relation to variations of the stresses,
meaning that the derivatives with respect to 1N and 2N need to be equal to zero [6]

()

()

compl
1 2 1 2

1

compl
1 2 3 2

2

2 0,
6

2 0.
6

x x

x x

E
N N u u

N EA
E

N N u u
N EA

∂
= + + − =

∂
∂

= + − + =
∂

In matrix notation these equations read

1
1

2
2

3

2 1 1 1 0
1 2 0 1 16

x

x

x

u
N

u
NEA

u

⎡ ⎤
−⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

, (7)

where the dot implies matrix multiplication.
Pre-multiplication of equation (7) by the inverse of the left hand side matrix of equation
(7), gives

1
1

2
2

3

4 2 2 1 4 2 1 1 0
2 4 1 2 2 4 0 1 16

x

x

x

u
NEA EA u
NEA

u

⎡ ⎤
− − −⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ ⋅ ⇒⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

Structural design of reinforced concrete pile caps A.V. van de Graaf

10

1
1 1

2
2 2

3

1 0 4 6 2
0 1 2 6 4

x

x

x

u
N N EA u
N N

u

⎡ ⎤
− −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⋅ = = ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦

. (8)

From equations (2) and (3) it follows that the relation between the internal forces 1N
and 2N and external loads 1xF , 2xF and 3xF can be described by

1
1

2
2

3

1 0
1 1
0 1

x

x

x

F
N

F
N

F

−⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥= − ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. (9)

The final step in the derivation of the stiffness relation for a stringer element, is to
substitute equation (8) into equation (9), which leads to

1 1 1

2 2 2

3 3 3

1 0 4 6 2
4 6 2

1 1 6 12 6
2 6 4

0 1 2 6 4

x x x

x x x

x x x

F u u
EA EAF u u

F u u

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
− −⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= − ⋅ ⋅ ⋅ = ⋅ − − ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

As explained in Section 3.1, a rotation matrix is not needed. So the above relation also
holds for the global co-ordinate system and reads

1 1

2 2

3 3

4 6 2
6 12 6

2 6 4

x x

x x

x x

F u
EAF u

F u

−⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ − − ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦⎣ ⎦ ⎣ ⎦

. (10)

As stated in Section 2.3, for the axial stiffness of the stringer elements, only the
extensional stiffness of the reinforcing bars is taken into account. Therefore, the
extensional stiffness EA in equation (10) can be calculated from the Young’s modulus of
the reinforcement rebarE and the cross-sectional area of a reinforcing bar. The length in
equation (10) is equal to the length or width of the adjacent shear panel element.
Generating the stringer elements in the applet and the global numbering of the stringer
element DOF is explained in Appendix A1. Once the displacements 1xu , 2xu and 3xu are
known, the normal forces 1N and 2N acting at the ends of the stringer element can be
calculated by using equation (8).

3.3 Shear panel element

A shear panel element is a rectangular element that is meant for transmitting an evenly
distributed shear force tτ (Figure 8). At its edges this shear stress interacts with adjacent
stringer elements. A shear panel element has a length a , a width b and an effective depth
t . Determining this effective depth is explained at the end of this section. The shear
panel element possesses a shear stiffness cap concreteG , which can be calculated from the
well-known expression

A.V. van de Graaf Structural design of reinforced concrete pile caps

11

()2 1
cap concrete

cap concrete

E
G

ν
=

+
,

where cap concreteE represents the Young’s modulus of the cap concrete and ν represents
Poisson’s ratio.

Since the shear stress tτ is constant, the shear angle xyγ will also be constant. Moreover,
the edges of the deformed shear panel element remain straight and do not elongate.
Therefore, the deformation of the shear panel element can be described by four DOF:

1xu , 2xu , 1yu and 2yu , which are chosen halfway each edge.
The resulting shear forces along the edges can be calculated as

1xF taτ= − and 2xF taτ= ,

1yF tbτ= − and 2yF tbτ= .
(11)

From the constitutive relation it is known that

xyt Gtτ γ= . (12)

The shear angle xyγ can be determined from Figure 9

2 12 1y y yx x x
xy

u u uu u u
b a b a

γ
Δ −Δ −

= + = + . (13)

Substitution of equation (13) into equation (12) gives

x1u

x2u
y2uy1u

tτ

tτ tτ

tτ

a

b
x

y

x2F

x1F

y2Fy1F

Figure 8 Shear panel element in a local co-ordinate system xyz

yuΔ

xuΔ

a

b

Figure 9 Deformed shear panel element

Structural design of reinforced concrete pile caps A.V. van de Graaf

12

2 12 1 y yx x u uu u
t Gt

b b a a
τ

⎛ ⎞
= − + −⎜ ⎟

⎝ ⎠
. (14)

Substitution of equation (14) into equations (11) yields the following stiffness relation

2 12 1 2 1
1 2 1

2 12 1 2 1
2 2 1

2 1 2 12 1
1 2 1

2
2

,

,

,

y yx x x x
x y y

y yx x x x
x y y

y y y yx x
y x x

x
y

u uu u u a u a
F Gta Gt u u

b b a a b b

u uu u u a u a
F Gta Gt u u

b b a a b b

u u u b u bu u
F Gtb Gt u u

b b a a a a

u u
F Gtb

b

⎛ ⎞ ⎛ ⎞= − − + − = − + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞= − + − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
= − − + − = − + − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= − 2 1 2 11
2 1 .y y y yx

x x

u u u b u b
Gt u u

b a a a a
⎛ ⎞ ⎛ ⎞

+ − = − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(15)

For convenience, the following dimensionless parameters are defined

a
b

α = and 1 b
a

β α −= = . (16)

By using the dimensionless parameters α and β from (16) and by writing equations
(15) in matrix form, the element stiffness relation is obtained

1 1

2 2

1 1

2 2

1 1
1 1

.
1 1
1 1

x x

x x

y y

y y

F u
F u

Gt
F u
F u

α α
α α

β β
β β

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

As explained in Section 3.1, a rotation matrix is not needed. Therefore, the above relation
also holds in the global co-ordinate system

1 1

2 2

1 1

2 2

1 1
1 1

.
1 1
1 1

x x

x x

y y

y y

F u
F u

Gt
F u
F u

α α
α α

β β
β β

− −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎢ ⎥ ⎢ ⎥⎢ ⎥= ⋅ ⋅
⎢ ⎥ ⎢ ⎥⎢ ⎥− −
⎢ ⎥ ⎢ ⎥⎢ ⎥

− −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (17)

The effective depth t from
equation (17) can be
determined from the concrete
cover c , the center-to-center
distance of the reinforcing bars
in x -direction xd , the center-
to-center distance of the
reinforcing bars in y -direction

yd and the reinforcing bar

t

reinforcing bar

Figure 10 Shear stress trajectories between reinforcing bars

A.V. van de Graaf Structural design of reinforced concrete pile caps

13

diameters xφ and yφ . For determining t the following scheme is used (which is based on
the stress flow in Figure 10)

() ()
4 4

x y x yd d
t c

φ φ+ +
= + + .

But if this formula delivers a value for t which exceeds () 2x yd d+ then the value for t
is set to () 2x yd d+ . This only occurs in the rare case of a very large concrete cover. Of
course, it also has to be checked that the effective depth t is not larger than the real pile
cap depth h . Generating the shear panel elements in the applet and the global numbering
of the shear panel element DOF is explained in Appendix A2. Once the displacements

1xu , 2xu , 1yu and 2yu are solved, the shear stress τ acting on the shear panel element can
be determined by using equation (14).

It is noticed that in the stringer-panel method two slight incompatibilities occur. The
normal force in a stringer element is assumed to be linear (Figure 6), which implies that
the displacements of this element are quadratic. These displacements are not compatible
with the displacements of a shear panel element. Moreover, the DOF of the shear panel
element are situated halfway each side, while the intermediate DOF of the stringer
element is interpreted as the mean displacement, which needs not to be necessarily
halfway the stringer element. But as already mentioned, these are small incompatibilities.

One last remark is made concerning the structural behavior of the shear panel element
after the first crack occurs. In this report it is assumed that cracking of the element does
not influence its structural behavior, while in reality the stiffness of the element reduces.
Although the shear panel element is used in the design model, an alternative can be used
consisting of two diagonal elements (Figure 11). If in a diagonal element the tensile
strength is exceeded, it should be left out in further analysis. This implies that the
structural analysis then becomes an iterative process which ends when all diagonal
elements are in compression or in tension but not cracked.

tτ

tτtτ

tτ

a

b

a

b

solid element
diagonal element

Figure 11 Shear panel element versus an element containing of two diagonal elements

Structural design of reinforced concrete pile caps A.V. van de Graaf

14

3.4 Strut element

3.4.1 Element description

First, the mathematical description of the strut element is derived in a local co-ordinate
system xyz , in which the x -axis coincides with the centerline of the element. Later on,
this description is transformed to the global co-ordinate system xyz .
A strut element consists of two nodes, called node 1 and node 2, which are connected
through a straight bar. The length of a strut element is denoted by and its extensional
stiffness is denoted by EA . Two concentrated forces, 1xF and 2xF , are acting on nodes 1
and 2 respectively (Figure 12). The relation between forces and displacements is well-
known

F K u= ⋅ , (18)

where F is the force vector, K is the element stiffness matrix and u is the displacement
vector.

This stiffness relation has been elaborated in many textbooks (Hartsuijker (2000) [5])

1 1

2 2

1 1
1 1

x x

x x

F uEA
F u

+ −⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥− +⎣ ⎦⎣ ⎦ ⎣ ⎦

, (19)

where EA is the strut element axial stiffness and is the strut element length.

Since each node possesses three DOF, relation (19) needs to be expanded to include the
y -direction and the z -direction

x
y

z

1 2

1xF
1xu 2xu

2xF

EA

Figure 12 Strut element in a local co-ordinate system xyz

A.V. van de Graaf Structural design of reinforced concrete pile caps

15

1 1

1 1

1 1

2 2

2 2

2 2

1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 1 0 0

0 0 0 0 0 0
0 0 0 0 0 0

x x

y y

z z

x x

y y

z z

F u
F u
F uEA
F u
F u
F u

+ −⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

= ⋅ ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
− +⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

.

The foregoing formulation has been derived, as already mentioned, in a local co-ordinate
system. To transform this formulation to the global co-ordinate system xyz , the
displacements as well as the forces have to be rotated.

3.4.2 Element rotation

First, the displacements are considered. The displacements iu of node i ()1,2i = in the
local co-ordinate system xyz is expressed in terms of the displacements iu of node i
()1,2i = in the global co-ordinate system xyz . Figure 13 shows the strut element,
including the positive definitions of the displacements in the local co-ordinate system xyz
and the global co-ordinate system xyz .

The projection of the element on the Oxy -plane is at an angle α with the positive x -
axis. The centerline of the strut element passes through the Oxy -plane at an angle β . The
directions of the y -axis and z -axis in relation to the global co-ordinate system are of no
importance for the stress and strain behavior of the element, since the strain only occurs
in the x -direction. Therefore, the z -axis is chosen parallel to a vertical plane through the
z -axis, and so, the two rotations over the angles α and β are sufficient. The
relationship between the displacements in the local co-ordinate system xyz and the
displacements in the global co-ordinate system xyz can be derived by performing these
rotations consecutively. This is done by using an intermediate co-ordinate system.

β

xF xu
yF

α

O x
yu

z

zF

zu

y

1
1xu

1yu
1zu

2yu

2xu

2zu

2

, EA

1x
2x

1y
2y

1z
2z

Figure 13 Strut element in a three dimensional space [figure based on Nijenhuis [8]]

Structural design of reinforced concrete pile caps A.V. van de Graaf

16

First, rotation α is considered. Therefore,
a new co-ordinate system x y zα α α has
been constructed, as can be seen from
Figure 14. The xα -axis is positioned in the
Oxy -plane and points in the direction of
the projection of the strut element onto
the Oxy -plane. The yα -axis is also
situated in the Oxy -plane. From this, it
follows that the zα -axis coincides with the
z -axis. The displacements ,x iu and ,y iu
can be decomposed along the xα -axis and
yα -axis

, , ,1 , ,2 , ,

, , ,1 , ,2 , ,

cos sin ,

sin cos .
x i x i x i x i y i

y i y i y i x i y i

u u u u u

u u u u u
α α α

α α α

α α

α α

= + = +

= + = − +
(20)

Since the rotation takes place about the z -axis, it is concluded that

z zu u
α
= . (21)

Equations (20) and (21) may also be written in matrix notation

, ,

, , , ,

,,

cos sin 0
sin cos 0
0 0 1

x i x i

i y i y i ii

z iz i

u u
u u u R u

uu

α

α

α

α α

α α
α α

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = − ⋅ = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

.

Now, rotation β is introduced (Figure 15). The displacements ,x iu

α
 and ,z iu

α
 are

decomposed along the x -axis and z -axis

, , ,1 , ,2 , ,

, , ,1 , ,2 , ,

cos sin ,

sin cos .
x i x i x i x i z i

z i z i z i x i z i

u u u u u

u u u u u
α α

α α

β β

β β

= + = −

= + = +
(22)

 , ,1y iu
α

x

xα

α

yyα

,x iu

,y iu
, ,2y iu

α

, ,2x iu
α

, ,1x iu
α

O

Figure 14 Decomposition of displacements in the
global co-ordinate system in displacements in the
x y zα α α co-ordinate system [figure based on

Nijenhuis [8]]

x

z

xα
β

,x iu
α

,z iu
α

, ,1x iu

, ,2x iu

, ,1z iu

, ,2z iu

zα

O

Figure 15 Decomposition of displacements in the x y zα α α co-ordinate system in displacements in
the local co-ordinate system [figure based on Nijenhuis [8]]

A.V. van de Graaf Structural design of reinforced concrete pile caps

17

Since the rotation takes place about the yα -axis, it is concluded that

, ,y i y iu u
α

= . (23)

Equations (22) and (23) may also be written in matrix notation

,,

, , ,,

, ,

cos 0 sin
0 1 0

sin 0 cos

x ix i

i y i y i ii

z i z i

uu
u u u R u

u u

α

α

α

αβ

β β

β β

⎡ ⎤⎡ ⎤ −⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

.

Now, the transformation from the global co-ordinate system to the local co-ordinate
system can be written as

(),, , , , ,i i i i ii i i i i i
u R u R R u R R u R uαβ β α β α

= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ .

Elaboration of
i

R gives

cos 0 sin cos sin 0 cos cos sin cos sin
0 1 0 sin cos 0 sin cos 0

sin 0 cos 0 0 1 cos sin sin sin cos
i

R
β β α α α β α β β

α α α α
β β α β α β β

− −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= ⋅ − = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

This is the rotation matrix for a single node. Since a strut element consists of two nodes,
the above matrix has to be used twice

11 1

2 22

0

0

Ru u
u R u

u uR

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. (24)

Since the angles α and β are the same for node 1 and node 2,
1

R should be equal to

2
R . This gives the following rotation matrix R for displacements of a strut element

cos cos sin cos sin 0 0 0
sin cos 0 0 0 0

cos sin sin sin cos 0 0 0
0 0 0 cos cos sin cos sin
0 0 0 sin cos 0
0 0 0 cos sin sin sin cos

R

α β α β β
α α

α β α β β
α β α β β

α α
α β α β β

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥−
⎢ ⎥
⎢ ⎥⎣ ⎦

.

The goniometric ratios sinα , cosα , sin β and cosβ can be calculated from

() ()
2 1

2 2
2 1 2 1

sin
y y

x x y y
α

−
=

− + −
,

() ()
2 1

2 2
2 1 2 1

cos
x x

x x y y
α

−
=

− + −
,

1 2sin
z z

β
−

= ,

Structural design of reinforced concrete pile caps A.V. van de Graaf

18

() ()2 2
2 1 2 1cos

x x y y
β

− + −
= ,

where

() () ()2 2 2
2 1 2 1 1 2x x y y z z= − + − + − .

The next step is to derive in the same
manner a rotation matrix for the forces
acting on the strut element. The forces iF
acting in the global co-ordinate system
xyz on node i ()1,2i = are expressed in
terms of the forces iF acting in the local
co-ordinate system xyz on node i
()1,2i = . So, β is the first rotation to be
considered (Figure 16)

, , ,

, , ,

cos sin ,

sin cos .
x i x i z i

z i x i z i

F F F

F F F
α

α

β β

β β

= +

= − +
 (25)

Since the rotation takes place about the yα -axis it is concluded that

, ,y i y iF F
α

= . (26)

Equations (25) and (26) may also be written in matrix form

, ,

, , , ,

,,

cos 0 sin
0 1 0

sin 0 cos

x i x i
T

i iy i y i i

z iz i

F F
F F F R F

FF

α

α

α

α β

β β

β β

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= = ⋅ = ⋅⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

.

It can be checked that the formed matrix is
the transposed of the matrix

,i
R

β
, what is

indicated by the superscript T .

Now, consider rotation α (Figure 17).
This gives the following relations

x

xα
β

zzα

, ,2z iF
α

, ,1z iF
α

,z iF

,x iF

, ,2x iF
α

, ,1x iF
α

Figure 16 Decomposition of forces in the local co-
ordinate system in forces in the co-ordinate system

x y zα α α [figure based on Nijenhuis [8]]

x

xα

α

yyα

, ,1x iF , ,2x iF

,y iF
α

,x iF
α

, ,1y iF

, ,2y iF

Figure 17 Decomposition of forces in the co-ordinate
system x y zα α α in forces in the global co-ordinate
system [figure based on Nijenhuis [8]]

A.V. van de Graaf Structural design of reinforced concrete pile caps

19

, , ,

, , ,

cos sin ,

sin cos .
x i x i y i

y i x i y i

F F F

F F F
α α

α α

α α

α α

= −

= +
 (27)

Since the rotation takes place about the zα -axis, it is concluded that

, ,z i z iF F
α

= . (28)

In matrix notation equations (27) and (28) read

,,

,, , ,

, ,

cos sin 0
sin cos 0

0 0 1

x ix i
T

i iy i y i i

z i z i

FF
F F F R F

F F

α

α

α

αα

α α
α α

⎡ ⎤⎡ ⎤ −⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = ⋅ = ⋅⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

.

Again, the formed matrix is the transposed of an earlier found matrix, namely
,i

R
α

.

Now, the transformation from the local co-ordinate system to the global co-ordinate
system can be described by

(),, , , , ,

T T T T T T
i i i i ii i i i i i

F R F R R F R R F R Fαα α β α β
= ⋅ = ⋅ ⋅ = ⋅ ⋅ = ⋅ .

Elaboration of T

i
R gives

T

i
R

cos sin 0 cos 0 sin
sin cos 0 0 1 0

0 0 1 sin 0 cos

α α β β
α α

β β

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= ⋅⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

 cos cos sin cos sin
sin cos cos sin sin

sin 0 cos

α β α α β
α β α α β

β β

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

. (29)

As can be verified, this matrix is indeed the transposed of the earlier found rotation matrix

i
R .

Just like in the case of the rotation matrix for displacements, this rotation matrix for forces
has been derived for a single node. Since a strut element consists of two nodes, matrix
(29) is used twice

11 1

2 22

0

0

T

T

T

RF F
F R F

F FR

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎢ ⎥= = ⋅ = ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦
. (30)

Since the angles α and β are the same for node 1 and node 2,
1

TR should be equal to

2

TR . This gives the following transposed transformation matrix TR for forces in a strut
element

Structural design of reinforced concrete pile caps A.V. van de Graaf

20

cos cos sin cos sin 0 0 0
sin cos cos sin sin 0 0 0

sin 0 cos 0 0 0
0 0 0 cos cos sin cos sin
0 0 0 sin cos cos sin sin
0 0 0 sin 0 cos

TR

α β α α β
α β α α β

β β
α β α α β
α β α α β

β β

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
−⎢ ⎥

⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

.

The final step to arrive at the stiffness relation for the strut element in the global co-
ordinate system is to combine equations (30), (18) and (24)

T T TF R F R K u R K R u K u= ⋅ = ⋅ ⋅ = ⋅ ⋅ ⋅ = ⋅ ,

in which TK R K R= ⋅ ⋅ .

Fully written, this leads to

2 2 2 2 2 2
1

2 2 2 2 2 2
1

1

2

2

2

cos cos cos cos sin cos cos sin cos cos cos cos sin cos cos sin
cos cos sin sin cos sin cos sin cos cos sin sin cos sin cos sin

cos cos sin

x

y

z

x

y

z

F
F
F EA
F
F
F

α β α β α α β β α β α β α α β β
α β α α β α β β α β α α β α β β
α β

⎡ ⎤ − − −
⎢ ⎥ − − −⎢ ⎥
⎢ ⎥ −

=⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

2 2

2 2 2 2 2 2

2 2 2 2 2 2

sin cos sin sin cos cos sin sin cos sin sin
cos cos cos cos sin cos cos sin cos cos cos cos sin cos cos sin

cos cos sin sin cos sin cos sin cos cos sin sin cos sin cos sin
cos c

β α β β β α β β α β β β
α β α β α α β β α β α β α α β β

α β α α β α β β α β α α β α β β
α

− −
− − −

− − −

1

1

1

2

2
2 2

2os sin sin cos sin sin cos cos sin sin cos sin sin

x

y

z

x

y

z

u
u
u
u
u
uβ β α β β β α β β α β β β

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− − − ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

(31)

In the case of vertical strut elements, which is for example the case with foundation piles,
angle α is not defined (Figure 13). This means that equation (31) cannot be used.
Instead, the element stiffness matrix is redefined, based on equation (19). The difference
is that in this case the strut element is not oriented along the x -axis, but along the z -axis.
Therefore, the stiffness relation for a vertical strut element reads

1 1

1 1

1 1

2 2

2 2

2 2

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 1

x x

y y

z z

x x

y y

z z

u F
u F
u FEA
u F
u F
u F

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥+ −

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

− +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

Global numbering of strut elements and their DOF and generating strut elements in the
applet, is discussed in Appendix A3. Once the displacements 1xu and 2xu are known, the
normal force in the strut element can be calculated from

()1 1 2x x x
EAN F u u= − = − − ,

which has been derived from equation (19). The displacements 1xu and 2xu can be
calculated from the earlier derived rotation matrix R and the displacements 1xu , 2xu , 1yu ,

2yu , 1zu and 2zu . If this is done, the normal force in the strut element can be calculated
from

A.V. van de Graaf Structural design of reinforced concrete pile caps

21

() () ()()1 2 1 2 1 2cos cos sin cos sinx x y y z z
EAN u u u u u uα β α β β= − − + − − − .

For vertical strut elements, calculating the normal force is easier. Since only displacements
in z -direction are needed and this direction coincides with the z -direction, the normal
force can be calculated from

() ()1 1 2 1 2z z z z z
EA EAN F u u u u= − = − − = − − .

A.V. van de Graaf Structural design of reinforced concrete pile caps

23

4 Assembling the model and solving the system

In Chapter 3 the behavior of the elements to be used was described. In this chapter it is
explained how to describe the behavior of the structure, which is composed of these
elements and how to solve the resulting system of linear equations. In Section 4.1 it is
explained how to assemble the system stiffness matrix starting from the element stiffness
matrices. In Section 4.2 it is discussed how to process the imposed forces. Section 4.3
explains how to make use of so-called tying. Section 4.4 discusses processing the supports,
which may be regarded as imposed displacements. Finally, Section 4.5 contains a brief
description of how to solve the obtained system of linear equations by using the method
of LU decomposition.

4.1 Assembling the system stiffness matrix

Assume that the considered system has n degrees of freedom. The system stiffness matrix
will then have dimensions of n n× . The most important part in assembling the system
stiffness matrix is to find the corresponding local and global degrees of freedom (DOF).
In this way, the entries of the element stiffness matrices are added to the correct entries of
the system stiffness matrix. This procedure has been visualized for a stringer element in
Figure 18. Consider an arbitrary stringer element with element number i . From Section
3.1 it is known that a stringer element possesses three DOF. Locally, these are called 1, 2
and 3, but globally these may be called j , k and l . If the corresponding entries have
been found, a summation of the entry of the element stiffness matrix and the entry of the
system stiffness matrix takes place.

The same procedure may be applied to strut elements and shear panel elements, with the
difference that the element stiffness matrices have different sizes. In Appendix B1, the
source code for this procedure is given.

() () ()
11 12 13
() () ()
21 22 23
() () ()
31 32 33

el el el

el el el

el el el

k k k
k k k
k k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

() ()
11 1

() () ()

() () ()

() () ()

() ()
1

sys sys
n

sys sys sys
jj jk jl
sys sys sys

kj kk kl
sys sys sys

lj lk ll

sys sys
n nn

k k

k k k
k k k
k k k

k k

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

system stiffness matrix

element
stiffness
matrix

Figure 18 Assembling the system stiffness matrix

Structural design of reinforced concrete pile caps A.V. van de Graaf

24

4.2 Processing imposed forces

Processing the imposed forces comes down to nothing more than assigning the column
normal forces to the correct entries of the force vector. No more work has to be
performed in this step, since the column normal forces are the only loads applied to the
pile cap. The implementation of this procedure is given in Appendix B2.

4.3 Processing tying

Since strut elements are attached to the interior of shear panel elements, so-called tying is
needed. This means that the normal forces in the stringer elements adjacent to these shear
panel elements are not independent, but related to the horizontal components of the strut
element normal forces. In a similar way it can be said that the horizontal displacements of
a strut element end are not independent, but related to the displacements of the shear
panel elements. These displacements are equal to the displacements of the adjacent
stringer elements.

Consider a shear panel element to which a strut element is attached (Figure 19).

Since strut elements can only transfer normal forces (Section 3.4) and since the piles have
been modeled as strut elements, it is clear that the piles can only accommodate the vertical
components of the strut element normal forces. In the general case, a strut element
normal force is composed of one vertical force component and two horizontal force
components. Since these horizontal force components cannot be transferred to the piles,

1xF

2yF

2xF

1yF

1a 2a

1b

2b

a

b3xF

3yF

Interior point,
where the
strut element
is attached to
the shear
panel element

= 3xF

2
3x

bF
b

1
3x

bF
b

=

3yF

1
3y

aF
a2

3y
aF
a

Figure 19 Relations between horizontal force components of the strut element normal force and the shear
forces acting on the edges of the shear panel element

A.V. van de Graaf Structural design of reinforced concrete pile caps

25

these need to be transferred to the stringer elements adjacent to the considered shear
panel element. Since it is not unambiguously established how the horizontal force
components of the strut element normal force are distributed over the adjacent stringer
elements, linear relations are assumed. For the forces in x -direction these relations read

2
1 3x x

b
F F

b
= ⋅ and 1

2 3x x
b

F F
b

= ⋅ .

For the forces in y -direction these relations read

2
1 3y y

a
F F

a
= ⋅ and 1

2 3y y
a

F F
a

= ⋅ .

The introduction of these force components into the stringer elements leads to a certain
displacement field for the stringer elements and the shear panel elements. Since the strut
elements are attached to the interior of the shear panel elements, this indicates that the
horizontal displacements of the strut element ends are related to the displacements of the
shear panel element edges. As stated earlier in this section, the displacements of the shear
panel elements are equal to the displacements of the adjacent stringer elements. Again,
since it is not unambiguously established how the displacements of the shear panel
element are related to the horizontal displacements of the strut element end, linear
relations are assumed (Figure 20).

1xu

2yu

2xu

1yu

1a 2a

1b

2b

a

b3xu

3yu

1xu

2xu

2
1x

bu
b

1
2x

bu
b

2yu
1yu

2
1y

au
a

1
2y

au
a

Interior point,
where the
strut element
is attached to
the shear
panel element

Figure 20 Relations between the displacements of a strut element end and the displacements of a shear
panel element

Structural design of reinforced concrete pile caps A.V. van de Graaf

26

For the displacements in x -direction, this relation holds

2 1
3 1 2x x x

b b
u u u

b b
= + .

For the displacements in y -direction, this relation holds

1 2
3 2 1y y y

a a
u u u

a a
= + .

Now suppose that the following system stiffness relation was derived after performing the
steps described in Sections 4.1 and 4.2

1 11 12 13 14 1 1

2 21 22 23 24 2 2

3 31 32 33 34 3 3

4 41 42 43 44 4 4

5 1 2 3 4

x n x

x n x

x n x

x n x

x n n n n nn xn

F k k k k k u
F k k k k k u
F k k k k k u
F k k k k k u

F k k k k k u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (32)

To demonstrate in a simple way how tying is processed, only forces and displacements in
x -direction are considered. It is obvious that this procedure can be extended easily to
include forces and displacements in y -direction as well. Fully written, matrix equation (
32) reads:

1 11 1 12 2 13 3 14 4 1

2 21 1 22 2 23 3 24 4 2

3 31 1 32 2 33 3 34 4 3

4 41 1 42 2 43 3 44 4 4

1 1 2 2 3 3

... ,
... ,
... ,
... ,

x x x x x n xn

x x x x x n xn

x x x x x n xn

x x x x x n xn

xn n x n x n x n

F k u k u k u k u k u
F k u k u k u k u k u
F k u k u k u k u k u
F k u k u k u k u k u

F k u k u k u k

= + + + + +
= + + + + +

= + + + + +
= + + + + +

= + + + 4 4x nn xnu k u+ +

(33)

Now suppose that for a certain shear panel element the following relations hold (Figure
21):

1 1 3x xF Fβ= , (34)

2 2 3x xF Fβ= , (35)

3 1 1 2 2x x xu u uβ β= + , (36)

where 2
1

b
b

β = and 1
2

b
b

β = .

A.V. van de Graaf Structural design of reinforced concrete pile caps

27

Equation (34) states that 1xF is equal to 3xF times a factor 1β . The equation for 3xF can
be found in the third row of the system of equations (33). So multiplication of this third
row with factor 1β and addition of these terms to row one, inserts equation (34) into the
system of equations. In the same manner it can be shown that inserting equation (35)
into the system of equations results in the addition of factor 2β times the third row to the
second row. The last tying equation (36) can be inserted into the system of equations by
rearranging the terms in this equation

3 1 1 2 2 1 1 2 2 3 0x x x x x xu u u u u uβ β β β= + ⇒ + − = .

If these operations are carried out, then the following system of equations results

1 1 3 11 1 31 12 1 32 13 1 33 14 1 34 1 1 3

2 2 3 21 2 31 22 2 32 23 2 33 24 2 34 2 2 3

1 2

4 41 42 43 44 4

1 2 3 4

0 1 0 0

x x n n

x x n n

x n

xn n n n n nn

F F k k k k k k k k k k
F F k k k k k k k k k k

F k k k k k

F k k k k k

β β β β β β
β β β β β β

β β

+ + + + + +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ + + + + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ −

=⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦

1

2

3

4

x

x

x

x

xn

u
u
u
u

u

⎡ ⎤
⎢ ⎥
⎢ ⎥

⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥
⎥ ⎢ ⎥⎣ ⎦

.

It has to be noted that a slight incompatibility occurs. Silently it is assumed that for a
stringer element the mean displacement, which corresponds to the displacement of the
intermediate DOF, is equal to the displacement in the middle of the stringer element.
Appendix B3 gives the source code for processing tying.

4.4 Processing imposed displacements

The text in this section is based on Blaauwendraad (2000) [3]. Consider the following
system stiffness relation for an n DOF pile cap after performing the steps described in
Sections 4.1, 4.2 and 4.3

1xu

1xF

2xF
2xu

1b

2b

b3xu

3xF

=

3xF

1 2 3x xF Fβ=

2 1 3x xF Fβ=2xu

1xu

2 1xuβ 1 2xuβ

Figure 21 Tying in x -direction

Structural design of reinforced concrete pile caps A.V. van de Graaf

28

11 12 1 1 1 1

21 22 2 2 2 2

0 0
1 2

1 2

i n

i n

i i ii in i i i

n n ni nn n n

k k k k u F
k k k k u F

k k k k u F F

k k k k u F

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⋅ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
+⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. (37)

A certain number of DOF has to be prescribed, such that rigid body movements are
restrained. Otherwise the system stiffness matrix K would be singular, which means that
the system of equations cannot be solved. Assume that the i -th DOF iu has been set to a
value 0

iu . If this value is equal to zero, this means that the pile cap is supported at this
point in the direction of this DOF. A value 0

iu unequal to zero occurs for example in the
case of support settlement. In equation (37) iF represents the load applied to the i -th
DOF. 0

iF represents the support reaction at the i -th DOF, which is unknown
beforehand and therefore has to be calculated.

From equation (37) it follows that the terms in the i -th column of the system stiffness
matrix are multiplied by a known value 0

iu . This implies that in each row of the system a
known term will occur. In the first row this term is equal to 0

1i ik u , in the second row this
term is equal to 0

2i ik u , and so forth. Each term can be removed from the system stiffness
matrix and added to the right hand side vector. This means that the first row of this vector
reads 0

1 1i iF k u− , the second row reads 0
2 2i iF k u− , and so forth. This implies that the i -th

column fills up with zeros. Because 0
iF in the right hand side vector is still unknown, the

terms in the i -th row cannot be used in this stage and are therefore replaced by zeros.
Only the diagonal term is set to 1, which leads to the identity 0 01 i iu u× = . The system of
equations now reads

0
11 12 1 1 1 1

0
21 22 2 2 2 2

0 0

0
1 2

0
0
0

0 0 0 1 0 0
0
0

n i i

n i i

i i

n n nn n n ni i

k k k u F k u
k k k u F k u

u u

k k k u F k u

⎡ ⎤−⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

⋅ = ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

.

Once the displacements u are known, the support reactions 0

iF may be calculated. For
this, the earlier removed entries of the i -th row are needed again. Therefore, it is
necessary that these entries are stored elsewhere before they are replaced by zeros.
Appendix B4 gives the source code for processing imposed displacements.

A.V. van de Graaf Structural design of reinforced concrete pile caps

29

4.5 Solving the obtained system of linear equations

For solving the obtained system of linear equations, LU decomposition is used. The brief
description in this section gives a general approach. Therefore, the considered equation
reads A x b⋅ = instead of K u F⋅ = . But obviously, the described method is in its entirety
applicable to the system of equations described in the previous sections. Solving for x
involves the following three steps:

1. Decompose the obtained matrix A into a matrix product L U⋅ , where L is a lower

triangular matrix and U is an upper triangular matrix. A lower triangular matrix is a
matrix which has elements unequal to zero only on the main diagonal and below. An
upper triangular matrix is a matrix which has elements unequal to zero only on the
main diagonal and above. The obtained matrix equation now reads ()L U x b⋅ ⋅ = .

2. Rewrite the above stated equation to ()L U x b⋅ ⋅ = and define a vector y such that
L y b⋅ = and solve for this vector by performing a forward substitution.

3. Solve for vector x by using the definition U x y⋅ = . This can be done by performing
a backward substitution.

These steps including the implementation of LU decomposition and testing this separate
module are elaborated in Appendix B5.

A.V. van de Graaf Structural design of reinforced concrete pile caps

31

5 Applet design

In Chapter 4 the setup of the calculation model was discussed. This chapter describes how
the applet is designed. Section 5.1 gives a short general introduction to applets and
explains the program setup, which is based on suggestions given at Sun’s Java tutorial
website [16]. Section 5.2 goes into the first main procedure: the preprocessor. Section 5.3
discusses the second main procedure, which is the calculation part of the program: the
kernel. In the last section, Section 5.4, it is explained how the results calculated by the
kernel are processed and presented in an user-friendly way. This third and last main
procedure is called the postprocessor. In the next chapter, Chapter 6, the Java
implementation is tested.

5.1 Applet setup and Java basics

According to Sun’s web pages on applets [15] an applet can be defined as: ‘… a program
written in the Java programming language that can be included in an HTML page, …’.
The advantages of using an applet over a standalone application are threefold. The first
advantage is that no installation is required. A simple computer with an Internet
connection and a Java technology-enabled browser to view a page that contains an applet,
is sufficient. Secondly, an applet which is made available through the Internet is accessible
from every computer which has an Internet connection at its disposal. The third
advantage is that applets cannot harm a client’s system, since they have very limited access
to system resources and system information.

The program consists of several classes and nested classes. In the Java programming
language, a program is built starting from classes. According to Sun’s lesson on Object-
Oriented Programming Concepts [17], a class is defined as: ‘…a blueprint or prototype
from which objects are created.’. An object is defined as: ‘…a software bundle of related
state and behavior’. It is possible to define a class within another class. Such classes are
called nested classes. Two advantages
of nested classes over normal classes
are that ‘it is a way of logically grouping
classes that are only used in one place’
and that ‘nested classes can lead to
more readable and maintainable code’.
The program-specific class
PileCapApplet and its nested classes
have been grouped in a package called
pilecap. A package is a namespace for
organizing classes (and interfaces) in a
logical manner. The remaining classes

package anne

package pilecap package linalg

class:
 PileCapApplet

nested classes:
 DrawingPanel1
 DrawingPanel2
 ImagePanel
Task

classes:
 DoubleMatrix
 DoubleVector
 IntMatrix
 IntVector
 LU_Decomposition

Figure 22 Applet setup in terms of packages and
(nested) classes

Structural design of reinforced concrete pile caps A.V. van de Graaf

32

have been grouped in a package which holds classes for linear algebra, called linalg.
These two packages are contained in another package, called anne (Figure 22). The folders
which contain the .class-files are also organized in this way. The source code of the
classes DoubleMatrix, DoubleVector, IntMatrix and IntVector is given in Appendix C1.

Inside a class, procedures are defined, which may be called by other procedures or events
fired by user actions. The applet possesses three main procedures: the preprocessor, the
kernel and the postprocessor. These procedures are examined in the following sections.

The applet is a graphical application, so that the user does not have to know anything
about the Java programming language. The Graphical User Interface (GUI) on startup is
shown in Figure 23.

The input screen has been divided in two parts: one textual part which consists of text
fields and combo boxes in which the user can insert data, and one graphical part which
displays the pile cap plan view. By pressing the ‘Redraw’ button, the user can verify
graphically that the geometrical parameters are correct. By pressing the ‘Calculate’ button
the preprocessor is started which reads the entered data and checks the validity of the
data. If all data has been specified correctly, the kernel is started, which sets up the system
of equations and solves this system. If the results returned by the kernel are valid, the

Figure 23 Input screen of PCA at startup

A.V. van de Graaf Structural design of reinforced concrete pile caps

33

postprocessor is started, which calculates all internal stresses and vertical pile reactions and
displays them graphically.
If during the analysis an error occurs, the user is warned by a message which shows the
cause of the error. Processing is then stopped and the user returns to the input screen to
adjust one or more parameters. If the analysis was successful, the user is automatically
taken to the results screen, which displays the obtained results in an orderly manner. If the
user needs more detailed information on the results, use can be made of the ‘Advanced’
tab. If any warnings appeared during the analysis, these are collected in the ‘Warnings’ tab
and the user is notified of these warnings by displaying a message.

5.2 Preprocessor

The preprocessor reads all data entered by the user if the ‘Calculate’ button (Figure 23) is
clicked. Then it prepares these data for calculation. This means that all data is checked and
if specified in a valid interval, the values are assigned to the appropriate variables. Then
the model is generated, which means that all elements and their DOF are numbered. If all
goes well, the startCalculation flag has the value true and a calculation task is created.
The purpose of creating a separate task is to keep the GUI responsive. If the kernel was
called directly from the preprocessor, the calculation would be performed on the so-called
Event Dispatching Thread, which results in a ‘frozen’ GUI for long tasks. Therefore,
calculations are performed on a separate thread. After the calculation has been started, the
‘Calculate’ button cannot be clicked anymore and the cursor is set to a ‘wait’ cursor. After
completing the calculation procedure, these actions are undone. To make the source code
readable and maintainable, the preprocessor calls other procedures to fulfil the described
tasks. The names of these procedures are self-explaining. The source code of the
procedure preprocessor () reads

private void preprocessor ()
{

 startCalculation = true;
 showErrorMessage = true;
 setCapLength ();
 setCapWidth ();
 setCapDepth ();
 setE_CapConcrete ();
 setG_CapConcrete ();
 setColumnXY ();
 setColumnNormalForces ();
 setPileXY ();
 setPileLength ();
 setPileSection ();
 setE_PileConcrete ();
 setConcreteCover ();
 setRebarDiameterX ();
 setNrOfRebarsX ();
 setCtcDistanceOfRebarsX ();
 setRebarDiameterY ();
 setNrOfRebarsY ();
 setCtcDistanceOfRebarsY ();
 setE_Rebars ();
 generateStringers ();
 generateShearPanels ();
 generateStruts ();

Structural design of reinforced concrete pile caps A.V. van de Graaf

34

 generateImposedForces ();
 generateTyings ();
 generateImposedDisplacements ();

 // if all input has been specified correctly then start the calculation

 if (startCalculation)
 {

 task = new Task ();
 task.execute ();
 calculateButton.setEnabled (false);
 setCursor (Cursor.getPredefinedCursor (Cursor.WAIT_CURSOR));

 }

}

5.3 Kernel

The kernel is started by an object called task. In the kernel, the system stiffness matrix is
generated, the boundary conditions are processed and the resulting system of linear
equations is solved. After solving the displacement field and before starting the
postprocessor, the displacements are checked on their magnitude. If one or more
displacements exceed 100 mm, this is an indication for a kinematical indeterminate
structure. Then further processing is aborted, because the flag showResults is set to
false. For the same reasons given in Section 5.2, the kernel itself only calls other
procedures to execute these tasks. Again, the names of these procedures have been chosen
such that these are self-explaining. The source code of the procedure kernel () reads

private void kernel ()
{

 showResults = true;
 initialiseSystemStiffnessMatrix ();
 assembleStringers ();
 assembleShearPanels ();
 assembleStruts ();
 processImposedForces ();
 processTyings ();
 processImposedDisplacements ();
 solveSystem ();

 // if the pile cap appears to be stable then start postprocessing

 if (showResults)
 {

 postprocessor ();

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

35

5.4 Postprocessor

If the postprocessor is started, internal stresses and pile reactions are calculated. Moreover,
the (absolute) maximum values of the stresses are determined, which are of interest for the
structural designer. Also the stress results are graphically displayed on the screen (Figure
24).

Again, this main procedure makes primarily use of procedures that are defined elsewhere
in the source file. This makes the source code of the postprocessor readable and
maintainable. The source code of the procedure postprocessor () reads

private void postprocessor ()
{

 tabbedPane.setEnabledAt (1, true); // make results tab accessible
 tabbedPane.setEnabledAt (2, true); // make warnings tab accessible
 tabbedPane.setEnabledAt (3, true); // make advanced tab accessible
 tabbedPane.setSelectedIndex (1); // set results tab as selected tab
 calculateStringerStresses ();
 calculateShearPanelStresses ();
 calculateStrutForces ();
 calculateSupportReactions ();
 determineMaxValues ();

 // if this is the first calculation then create the results GUI,
 // otherwise refresh the results GUI using the new results

Figure 24 Screenshot of the ‘Results’ tab

Structural design of reinforced concrete pile caps A.V. van de Graaf

36

 if (firstCalculation)
 {

 createResultsGUI ();

 // create advanced tab

 textArea = new JTextArea ();
 textArea.setEditable (false);
 JScrollPane scrollPane = new JScrollPane (textArea);
 scrollPane.setPreferredSize (new Dimension (880, 700));
 panel1c.add (scrollPane);

 // create warnings tab

 textArea2 = new JTextArea ();
 textArea2.setEditable (false);
 JScrollPane scrollPane2 = new JScrollPane (textArea2);
 scrollPane2.setPreferredSize (new Dimension (880, 700));
 panel1d.add (scrollPane2);

 calculateButton.setText ("Recalculate");
 firstCalculation = false;

 }
 else
 {

 updateLabels ();
 stressXX_RadioButton.setSelected (true);
 panel1b.repaint ();
 textArea.setText ("");
 textArea2.setText ("");

 }

 // add detailed information to advanced tab

 showParameters ();
 showStringerInfo ();
 showShearPanelInfo ();
 showStrutInfo ();
 showImposedForcesInfo ();
 showTyingInfo ();
 showImposedDisplacements ();
 showSupportReactions ();

 // show warning information

 createWarningInfo ();

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

37

6 Equilibrium considerations

The previous chapter discussed the design of the applet. In this chapter the Java
implementation is tested by checking equilibrium requirements. Section 6.1 considers a
symmetrical pile cap which consists of one column and three piles. Section 6.1.1 focuses
on the equilibrium of the whole structure. This includes vertical equilibrium of forces,
horizontal equilibrium of forces and moment equilibrium. In Section 6.1.2 two separate
cuts are made, after which the equilibrium of forces is considered for one part of the
structure. Section 6.2 involves an asymmetrical pile cap which consists of two columns
and six piles. Here only the force equilibrium of the whole structure is considered. The
next chapter discusses checking the ultimate load.

6.1 Case 1: Symmetrical pile cap consisting of three piles and one column

Input parameters

The input parameters which have been used for the calculation are given in Table 1. A
screenshot of the pile cap plan view is provided in Figure 25.

Cap configuration

Cap length (in x -direction): 1600 mm
Cap width (in y -direction): 1400 mm
Cap depth (in z -direction): 400 mm

Young’s modulus of cap concrete: 9000 N/mm2
Shear modulus of cap concrete: 4500 N/mm2

Column configuration

Number of columns: 1
Column 1: x = 600 mm y = 700 mm N = 200 kN

Pile configuration

Number of piles: 3
Pile 1: x = 250 mm y = 250 mm
Pile 2: x = 250 mm y = 1150 mm
Pile 3: x = 1350 mm y = 700 mm

Pile length: 15000 mm
Pile section: 40000 mm2

Young’s modulus of pile concrete: 12000 N/mm2

Reinforcing bar configuration

Concrete cover: 40 mm
Diameter of reinforcing bars in x -direction: 16 mm
Number of reinforcing bars in x -direction: 7

Diameter of reinforcing bars in y -direction: 16 mm
Number of reinforcing bars in y -direction: 8

Young’s modulus of reinforcing bars: 200000 N/mm2

Table 1 Pile cap parameters for Case 1

Structural design of reinforced concrete pile caps A.V. van de Graaf

38

6.1.1 Equilibrium consideration of the
whole structure

Vertical forces

The vertical support reactions of the piles can be read from the Results tab after
performing the calculation. These values have been collected in Table 3. The minus sign
indicates that the piles are in compression. It is clear that the sum of the vertical pile
reactions in equilibrium is with the column load.

Horizontal forces

The horizontal support reactions
in x -direction can be read from
the Advanced tab after
performing the calculation. These
values have been collected in
Table 2. Since no horizontal load
is applied in x -direction, the sum of the horizontal support reactions in x -direction has
to be zero, which is true accepting a round-off error. Furthermore, the stresses at the ends
of the stringer elements near the edges of the pile cap have to be equal to zero. This
follows from the equilibrium of such a stringer element end. By plotting the reinforcement
stresses in x -direction, it can be verified that Case 1 complies with this requirement
(Figure 26). It is important to note that in practice the reinforcement stresses at these
positions are not equal to zero, and therefore the reinforcing bars have to be anchored in
some way. Usually this is done by applying hooks.

The horizontal support reactions in y -direction can also be read from the ‘Advanced’ tab.
These values have been collected in Table 4. Since no horizontal load is applied in y -
direction, the sum of the horizontal support reactions in y -direction has to be zero,
which is true accepting a round-off error.

Figure 25 Screenshot of the pile cap geometry in Case 1

Pile 1: -68.18 kN
Pile 2: -68.18 kN
Pile 3: -63.64 kN

Total: -200.0 kN

Table 3 Vertical pile reactions in Case 1

Support reaction 1: −− ⋅ 116.895 10 kN
Support reaction 3: −− ⋅ 115.190 10 kN
Support reaction 4: 0.0 kN
Support reaction 7: 0.0 kN
Support reaction 10: 0.0 kN

Table 2 Horizontal support reactions (in x -direction) in Case 1

A.V. van de Graaf Structural design of reinforced concrete pile caps

39

Furthermore, the stresses at the ends of the stringer elements near the edges of the pile
cap have to be equal to zero. This follows from the equilibrium of such a stringer end. By
plotting the reinforcement stresses in y -direction, it can be verified that Case 1 complies
with this requirement, see Figure
27. Again, it is important to notice
that in practice the reinforcement
stresses at these positions are not
equal to zero.

Symmetry

From the input parameters in Table 1 and the screenshot in Figure 25 it is clear that the
pile cap is symmetrical about the line y =
700 mm. The stresses in the reinforcing
bars in x -direction that are symmetrically
positioned about this line are identical
(Figure 26). The stresses in the
reinforcing bars in y -direction are also
symmetrical about the line y = 700 mm
(Figure 27). Also the shear stresses are
symmetrical about this line (Figure 28).
From Table 3 it follows that the vertical
pile reactions are also symmetrical.

Moment equilibrium

The third and last equilibrium requirement is moment equilibrium of the whole structure.
First the moment equilibrium about the line x = 250 mm is checked

() ()× − − × − ≅200 kN 0.600 0.250 m 63.64 kN 1.35 0.250 m 0.00 kNm .

Figure 26 Reinforcement stresses in x -direction Figure 27 Reinforcement stresses in y -direction

Figure 28 Shear stresses (in N/mm2)

Support reaction 2: −⋅ 112,604 10 kN
Support reaction 5: 0,0 kN
Support reaction 8: 0,0 kN
Support reaction 11: 0,0 kN

Table 4 Horizontal support reactions (in y -direction) in Case 1

Structural design of reinforced concrete pile caps A.V. van de Graaf

40

Secondly, the moment equilibrium about the line x = 1350 mm is checked

() () ()× − + × − × − ≅200 kN 1.35 0.600 m 2 68.18 kN 1.35 0.250 m 0.00 kNm .

From these two calculations it is concluded that the moment equilibrium requirements are
fulfilled.

6.1.2 Equilibrium consideration of a part of the structure

First a cut in x -direction is
made, exactly halfway the
second row of shear panel
elements (Figure 29). This cut is
called cut A-A. By performing
this cut, not only stringer
elements and shear panel
elements are cut, but also one
strut element (Strut 1). The
normal forces and shear forces
acting at the “upper” part of the
structure, which is considered in
the remaining of this section,
have to be in equilibrium, since
no external load is applied to this part.

Horizontal force equilibrium in cut A-A

Now consider the normal forces
acting at cut A-A (Figure 30). The
magnitude of these normal forces
in the stringer elements is
calculated in Table 5. The values
for the reinforcement stresses at
the ends of the concerning
stringer elements can be read
from the ‘Advanced’ tab.

The sum of these normal forces is equal to

()
=

= + + + + − + + + =∑
8

1

28.29 25.40 12.50 3.539 0.9359 0.2474 5.553 2.102 76.70i
i

N kN.

For the calculation of yH , see Figure 32 and Table 6.

Figure 29 Cut A-A for Case 1

A AStrut 1

Figure 30 Normal forces in y -direction acting at cut A-A

8N 7N6N5N4N3N

A A

1N 2N

yH

A.V. van de Graaf Structural design of reinforced concrete pile caps

41

Now consider the shear forces acting at cut A-A (Figure 31).

strutN
zΔV projectedH

yΔ yH
xΔxH

Figure 32 Similarity between force components and geometry components for a strut element

Figure 31 Shear forces acting at cut A-A

V = -68.18 kN zΔ = 400 mm

H = -97.17 kN () ()2 2
projected x y= Δ + Δ = 570,1 mm

xH = -59.66 kN xΔ = 350 mm

yH = -76.70 kN yΔ = 450 mm

Table 6 Strut force components and geometric components

1S 2S 3S 4S 5S 6S 7S

Stringer element 51:

2
1

2
2

163.3 N/mm

118.1 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2140.7 N/mmaverageσ = 1 28.29 kNN =

Stringer element 57:

2
1

2
2

139.1 N/mm

113.6 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2126.4 N/mmaverageσ = 2 25.40 kNN =

Stringer element 63:

2
1

2
2

48.18 N/mm

76.14 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2= 62.16 N/mmaverageσ 3 12.50 kNN =

Stringer element 69:

2
1

2
2

9.031 N/mm

26.17 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2=17.60 N/mmaverageσ 4 3.539 kNN =

Stringer element 75:

2
1

2
2

0.8935 N/mm

8.416 N/mm

σ

σ

⎫= − ⎪
⎬

= − ⎪⎭

2=-4.655 N/mmaverageσ 5 0.9359 kNN = −

Stringer element 81:

2
1

2
2

10.08 N/mm

7.619 N/mm

σ

σ

⎫= ⎪
⎬

= − ⎪⎭
 2=1.231 N/mmaverageσ 6 0.2474 kNN =

Stringer element 87:

2
1

2
2

18.19 N/mm

37.05 N/mm

σ

σ

⎫= ⎪
⎬

= ⎪⎭
 2=27.62 N/mmaverageσ 7 5.553 kNN =

Stringer element 93:

2
1

2
2

5.519 N/mm

26.43 N/mm

σ

σ

⎫= − ⎪
⎬

= ⎪⎭
 2=10.46 N/mmaverageσ 8 2.102 kNN =

Table 5 Normal forces acting at cut A-A

Structural design of reinforced concrete pile caps A.V. van de Graaf

42

The values for the shear stresses at the edges of the concerning shear panel elements can
be read again from the ‘Advanced’ tab. The length a of a shear panel element is equal to
the center-to-center distance of the reinforcing bars in y -direction

1600 2 40 16 214.9
7

a − × −
= = mm.

The effective depth t can be determined from scheme given in Section 3.3. First calculate
the width b of a shear panel element

1400 2 40 16 217.3
6

b − × −
= = mm.

The decisive value for the effective depth t is equal to

() ()16 16 217.3 214.9
40 156.1

4 4
t

+ +
= + + = mm.

From these data the resulting shear forces can be calculated (Table 7).

The sum of these shear forces is equal to

7

1
8.994 14.06 8.501 5.092 6.588 10.11 6.354 59.70

i
i

S
=

= + + + + + + =∑ kN.

From Table 6 it can be seen that xH is equal to -59.66 kN. If also the support reaction at
DOF 1 is taken into account, the horizontal force equilibrium can be checked

1159.70 59.66 6.895 10 0.04000H −= − − × =∑ kN.

Round-off errors during calculation cause this sum not to be exactly equal to zero.

Horizontal force equilibrium in x -direction in cut B-B

Now a cut in y -direction is made (Figure 34). This cut B-B is made exactly halfway the
second column of shear panel elements. Again, this cut delivers normal forces where
stringer elements are cut and shear forces where shear panel elements are cut. The left part
of the structure is taken into consideration. Since no horizontal external load is applied to
this part of the structure, the normal forces and shear forces have to be in equilibrium
with each other.

Shear panel element 8: 0.2681τ = N/mm2
1 8.994S = kN

Shear panel element 9: 0.4191τ = N/mm2
2 14.06S = kN

Shear panel element 10: 0.2534τ = N/mm2
3 8.501S = kN

Shear panel element 11: 0.1518τ = N/mm2
4 5.092S = kN

Shear panel element 12: 0.1964τ = N/mm2
5 6.588S = kN

Shear panel element 13: 0.3013τ = N/mm2
6 10.11S = kN

Shear panel element 14: 0.1894τ = N/mm2
7 6.354S = kN

Table 7 Shear forces acting at cut A-A

A.V. van de Graaf Structural design of reinforced concrete pile caps

43

Consider the normal forces acting perpendicular to cut B-B (Figure 33). The stresses in
the stringer elements can be read from the ‘Advanced’ tab. The resulting normal forces are
calculated in Table 8. From this table the symmetry is clear again. The sum of the
calculated normal forces is equal to

7

1
24.28 19.36 11.47 9.082 11.47 19.36 24.28 119.3i

i
N

=

= + + + + + + =∑ kN.

This sum of normal forces has to be in equilibrium with the horizontal force components
of the cut strut elements and the horizontal support reactions in x -direction. The
horizontal force component of the cut strut elements can be read from Table 6. The
horizontal support reactions in x -direction can be read from Table 2. The horizontal
equilibrium then reads

Figure 34 Cut B-B in Case 1

Stringer element 2:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

159.8 N/mm

81.67 N/mm
 σ = 2

average 120.7 N/mm =1 24.28 kNN

Stringer element 9:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

92.18 N/mm

100.4 N/mm
 σ = 2

average 96.29 N/mm =2 19.36 kNN

Stringer element 16:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

33.29 N/mm

80.84 N/mm
 σ = 2

average 57.07 N/mm =3 11.47 kNN

Stringer element 23:
σ

σ

⎞=
⎟⎟= ⎠

2
1

2
2

22.83 N/mm
67.51 N/mm

 σ = 2
average 45.17 N/mm =4 9.082 kNN

Stringer element 30:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

33.29 N/mm

80.84 N/mm
 σ = 2

average 57.07 N/mm =5 11.47 kNN

Stringer element 37:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

92.18 N/mm

100.4 N/mm
 σ = 2

average 96.29 N/mm =6 19.36 kNN

Stringer element 44:
σ

σ

⎫= ⎪
⎬

= ⎪⎭

2
1

2
2

159.8 N/mm
81.67 N/mm

 σ = 2
average 120.7 N/mm =6 24.28 kNN

Table 8 Normal forces acting at cut B-B

Figure 33 Normal forces acting at cut B-B

B

B

1N

2N

3N

4N

5N

6N

7N

Structural design of reinforced concrete pile caps A.V. van de Graaf

44

() 11 11119.3 2 59.66 6.895 10 5.190 10 0.00xH − −= + × − − ⋅ − ⋅ ≅∑ kN,

which is correct.

Horizontal force equilibrium in y -direction in cut B-B

Again, the values for the shear stresses at the edges of the concerning shear panel
elements can be read from the ‘Advanced’ tab. Notice that this time the width b of a
shear panel element has to be used, in stead of the length a of a shear panel element. The
shear forces have been calculated in Table 9.

Again, the symmetry can be noticed. The horizontal force components originating from
the struts point in opposite direction. The magnitude of these forces can be read from
Table 6. The horizontal support reactions in y -direction can be found in Table 4.
The resultant force in y -direction is

() () () () () 11
y 15.90 14.22 4.545 4.545 14.22 15.90 76.70 76.70 2,604 10

0.00 kN.

H −= + + + − + − + − + − − − + ⋅

≅
∑

6.2 Case 2: Asymmetrical pile cap consisting of six piles and two columns

Pile cap parameters

The input parameters which have been used for the calculation are given in Table 11. A
screenshot of the pile cap plan view is provided in Figure 35.

Figure 35 Screenshot of the pile cap geometry in Case 2

Shear panel element 2: 20.4687 N/mmτ = 1 15.90 kNS =

Shear panel element 9: 20.4191 N/mmτ = 2 14.22 kNS =

Shear panel element 16: 20.1340 N/mmτ = 3 4.545 kNS =

Shear panel element 23: 20.1340 N/mmτ = − 4 4.545 kNS = −

Shear panel element 30: 20.4191 N/mmτ = − 5 14.22 kNS = −

Shear panel element 37: 20.4687 N/mmτ = − 6 15.90 kNS = −

Table 9 Shear forces acting at cut B-B

A.V. van de Graaf Structural design of reinforced concrete pile caps

45

Vertical equilibrium of forces

The vertical support reactions of the piles can be read
from the ‘Results’ tab after performing the calculation.
These values are collected in Table 10. The minus sign
indicates that the piles are in compression. It is clear that
the sum of the vertical pile reactions in equilibrium is with
the sum of the column loads: 215 180 395+ = kN.

Horizontal equilibrium of forces

The horizontal support reactions in x -direction can be read from the ‘Advanced’ tab after
performing the calculation. These values are collected in Table 12. Since no horizontal
load is applied in x -direction, the sum of the horizontal support reactions in x -direction
has to be zero, which is true accepting a round-off error. Furthermore, the stresses at the
ends of the stringer elements near the edges of the pile cap have to be equal to zero. This
follows from the equilibrium of such a stringer element end. By plotting the reinforcement

Cap configuration

Cap length (in x -direction): 2500 mm
Cap width (in y -direction): 1500 mm
Cap depth (in z -direction): 450 mm

Young’s modulus of cap concrete: 9500 N/mm2
Shear modulus of cap concrete: 4750 N/mm2

Column configuration

Number of columns: 2
Column 1: x = 650 mm y = 800 mm N = 215 kN
Column 2: x = 1700 mm y = 700 mm N = 180 kN

Pile configuration

Number of piles: 6
Pile 1: x = 250 mm y = 350 mm
Pile 2: x = 1250 mm y = 250 mm
Pile 3: x = 2200 mm y = 300 mm
Pile 4: x = 250 mm y = 1250 mm
Pile 5: x = 1100 mm y = 1100 mm
Pile 6: x = 2250 mm y = 1250 mm

Pile length: 17000 mm
Pile section: 40000 mm2

Young’s modulus of pile concrete: 12000 N/mm2

Reinforcing bar configuration

Concrete cover: 45 mm
Diameter of reinforcing bars in x -direction: 16 mm
Number of reinforcing bars in x -direction: 9

Diameter of reinforcing bars in y -direction: 16 mm
Number of reinforcing bars in y -direction: 15

Young’s modulus of reinforcing bars: 200000 N/mm2

Table 11 Pile cap parameters for Case 2

Pile 1: -65.91 kN
Pile 2: -75.76 kN
Pile 3: -50.48 kN
Pile 4: -67.73 kN
Pile 5: -84.72 kN
Pile 6: -50.39 kN +

Total: -395.0

Table 10 Vertical pile reactions

Structural design of reinforced concrete pile caps A.V. van de Graaf

46

stresses in x -direction, it can be
verified that Case 2 complies with
this requirement (Figure 36).
The horizontal support reactions in
y -direction can also be read from

the ‘Advanced’ tab. These values
have been collected in Table 12.
Since no horizontal load is applied
in this direction, the sum of the
horizontal support
reactions in y -direction
has to be zero, which is
true accepting a round-off
error. Furthermore, the
reinforcement stresses at
the ends of the stringer
elements near the edges
of the pile cap have to be
equal to zero again. By
plotting the normal
stresses in y -direction, it
can be verified that Case
2 complies with this
requirement (Figure 37).

Considering these two
cases, it may be
concluded that all
equilibrium requirement
are fulfilled. From the
theory of plasticity
(Vrouwenvelder, 2003)
[11] it is known that a
system which is in
equilibrium gives a safe
approximation of the ultimate load.

One more interesting conclusion can be drawn by looking at the reinforcement stresses.
Often the reinforcing bars at the edges of pile caps have higher stresses than other
reinforcing bars.

Figure 36 Reinforcement stresses in x -direction

Figure 37 Reinforcement stresses in y -direction

Support reaction 1: −⋅ 81.153 10 kN
Support reaction 3: −− ⋅ 81.003 10 kN
Support reaction 4: 0.0 kN
Support reaction 7: 0.0 kN
Support reaction 10: 0.0 kN
Support reaction 13: 0.0 kN
Support reaction 16: 0.0 kN
Support reaction 19: 0.0 kN

Table 12 Horizontal support reactions (in x -direction)

A.V. van de Graaf Structural design of reinforced concrete pile caps

47

7 Non-linear finite element analysis

This chapter presents the second part of the verification process, which entails a
comparison of the ultimate load predicted by the applet with the ultimate load predicted
by the finite element package Atena 3D [12]. Section 7.1 gives the pile cap geometry and
the material parameters used in this case study. Section 7.2 reveals the ultimate load
according to the applet. In Section 0 the same pile cap is tested with Atena 3D. In this
section the results of both analyses are compared and conclusions are drawn.

7.1 Geometry of the considered pile cap and material parameters

The considered (asymmetric) pile cap consists of three piles and one column (Figure 38).
The cap length is 2200 mm,
the cap width is 2000 mm
and the cap depth is 500
mm. The strength class of
the cap concrete is chosen
as C30/37. For an analysis
with the applet, the
dimensions of the column
are of no importance, since
the column load is
represented as a point load,
which is applied to a certain
point on the concrete
surface. But for a finite
element analysis, applying a
point load directly onto the
concrete surface is not sensible, since this introduces very large if not infinitely large
stresses directly under this point load. Therefore, it is decided to use a thick steel plate for
the finite element analysis to simulate the normal force transfer of the column in a better
way. On top of this steel plate a point load is applied. This gives a disturbed picture of the
stresses inside the steel plate. But since these stresses are of no importance for the
analysis, this is good way of applying the column load. The steel plate has sides of 500 mm
by 500 mm. The foundation piles are chosen to be 16 m long and they are made of
C50/60 concrete. The reinforcement in x -direction as well as in y -direction consists of
reinforcing bars with a diameter of 16 mm. The concrete cover is chosen as 45 mm. In x -
direction eleven reinforcing bars are applied, which means that the center-to-center
distance of these reinforcing bars is equal to 189.4 mm. In y -direction twelve reinforcing
bars are applied, which means that the center-to-center distance of these reinforcing bars
is equal to 190.4 mm. The strength class of the reinforcement is FeB500. The positions of

2200

pile 1

column

pile 2

pile 3

500

500 2000

x

y

Figure 38 Plan view of the considered pile cap

Structural design of reinforced concrete pile caps A.V. van de Graaf

48

the foundation piles have been chosen in an irregular pattern with a minimum edge
distance of 150 mm. All parameters that are needed to perform the structural analysis can
be found in Table 13.

7.2 Ultimate load predicted by Pile Cap Applet (PCA)

The ultimate load is calculated by
assuming that failure of the pile cap
occurs when the yield stress is
reached in one of the reinforcing
bars. The material parameters that
have not been specified explicitly in
Section 7.1, but which are needed for
applet calculation, have been
collected in Table 14. The values for

cap concreteE and pile concreteE have been
taken from Table 3.1 in Eurocode 2
(EN 1992-1-1:2004). These values
are also used by Atena 3D. The value

Figure 39 Screenshot of pile cap plan view

Cap configuration

Cap length (in x -direction): 2200 mm
Cap width (in y -direction): 2000 mm
Cap depth (in z -direction): 500 mm

Cap concrete: C30/37

Column configuration

Number of columns: 1
Column 1: x = 1050 mm y = 1000 mm

Pile configuration

Number of piles: 3
Pile 1: x = 500 mm y = 350 mm
Pile 2: x = 350 mm y = 1650 mm
Pile 3: x = 1850 mm y = 1500 mm

Pile length: 16000 mm
Pile section: × =400 400 160000 mm2

Pile concrete: C50/60

Reinforcement configuration

Concrete cover: 45 mm
Diameter of reinforcing bars in x -direction: 16 mm
Number of reinforcing bars in x -direction: 11

Diameter of reinforcing bars in y -direction: 16 mm
Number of reinforcing bars in y -direction: 12

Young’s modulus of rebar: ⋅ 52,00 10 N/mm2

Table 13 Pile cap parameters for the considered case

A.V. van de Graaf Structural design of reinforced concrete pile caps

49

for ν has been taken from Atena 3D. A
screenshot of the pile cap plan view is
given in Figure 39.
After several iterations it is found that a
load of 404 kN produces a maximum
reinforcement stress in x -direction of
434.1 N/mm2. A load of 405 kN produces a
maximum normal stress in x -direction of
435.2 N/mm2, which is larger than the
design yield strength. Therefore, it is decided
that 404 kN is the ultimate load according to
Pile Cap Applet (PCA). At this load the pile
reactions are -182.35 kN for Pile 1, -51.35
kN for Pile 2 and -170.3 kN for Pile 3. The
reinforcement stresses xxσ at this load level
are given in Figure 40. Figure 41 gives the
reinforcement stresses yyσ for the same load
level.
To make sure that punching of the column
or one of the piles is not the decisive failure
mechanism, an extra check is performed
using Section 6.4 ‘Punching’ of Eurocode 2
(EN 1992-1-1:2004).

Punching of the column

Punch is checked by using the Dutch code
NEN 6720. Since no shear reinforcement is
applied, only the concrete contributes to the
shear resistance

3
1 00.8 0.8b d bf k fτ ω= > ,

in which bf represents the concrete tensile
strength. For convenience, the lower bound is used first, which means that 1τ is calculated
from 0.8 bf . bf can be determined from the characteristic cubic compression strength '

ckf

() ()' 2
, 0.7 1.05 0.05 0.7 1.05 0.05 30 1.785 N/mmb rep ckf f= + = + × = ,

, 21.785 1.275 N/mm
1.4 1.4
b rep

b

f
f = = = .

Now 1τ can be calculated

2
1 0.8 1.275 1.02 N/mmτ = × = .

cap concreteE = 33000 N/mm2

ν = 0.2

cap concreteG = 13750 N/mm2

pile concreteE = 37000 N/mm2

Table 14 Material parameters for applet calculation

Figure 40 Reinforcement stresses xxσ for the
considered pile cap at a load level of 404 kN

Figure 41 Normal stresses yyσ for the

considered pile cap at a load level of 404 kN

Structural design of reinforced concrete pile caps A.V. van de Graaf

50

The effective thickness of the pile cap can be calculated from

()1 20.5d d d= × + .

1
16500 45 16 431
2

d = − − − = mm,

2
16500 45 447
2

d = − − = mm,

()0.5 431 447 439d = + = mm,

()2 500 500 636.6a
π

= + = mm,

() ()439 636.6 3379p d aπ π= + = + = mm,

3
2 2

1
404 10 0.27 N/mm 1.02 N/mm

3379 439d
F
pd

τ τ×
= = = < =

×
.

From the above calculations it may be concluded that punching of the column is not
decisive.

7.3 Ultimate load predicted by non-linear finite element analysis

For material input, the
appropriate concrete strength
classes can be selected from
the in-built catalogue. In this
case design values have been
used. The reinforcement is
specified via a direct
definition. The material type is
‘reinforcement’, which has a
bilinear stress-strain relation,
with a Young’s modulus of

⋅ 52,00 10 N/mm2 and a
design yield strength of 435
N/mm2.

From Figure 42 it can be
concluded that the pile cap
collapsed because of a shear
failure around pile 3. This is a
completely different failure
mechanism than PCA
predicted.

Figure 42 Vertical displacements of the pile cap after failure

A.V. van de Graaf Structural design of reinforced concrete pile caps

51

Figure 43 shows the load-displacement graph obtained with Atena 3D in blue and the
ultimate load obtained with the applet in red. It is surprising that the ultimate load
obtained with Atena 3D is almost a factor 3 larger than the ultimate load obtained with
PCA. From this it can be concluded that PCA is very conservative.

Figure 45 shows the reinforcement stresses at a load level of approximately 400 kN.
According to PCA in one of the reinforcing bars the yield stress is reached. But the finite
element calculation shows that the maximum stress is not larger than 8.66 N/mm2, which
is a factor 50 smaller. Therefore, it can be concluded that reinforcement stresses at
serviceability load according to PCA are much higher than those determined by the finite
element analysis. This implies that the stresses calculated by PCA are not useful for
checking the maximum crack width.

Load
Deflection [m]

-8,87E-03-8,00E-03-7,00E-03-6,00E-03-5,00E-03-4,00E-03-3,00E-03-2,00E-03-1,00E-030,00E+00

Lo
ad

 [
M

N
]

-1,19E+00

-1,16E+00

-1,12E+00

-1,09E+00

-1,05E+00

-1,02E+00

-9,80E-01

-9,45E-01

-9,10E-01

-8,75E-01

-8,40E-01

-8,05E-01

-7,70E-01

-7,35E-01

-7,00E-01

-6,65E-01

-6,30E-01

-5,95E-01

-5,60E-01

-5,25E-01

-4,90E-01

-4,55E-01

-4,20E-01

-3,85E-01

-3,50E-01

-3,15E-01

-2,80E-01

-2,45E-01

-2,10E-01

-1,75E-01

-1,40E-01

-1,05E-01

-7,00E-02

-3,50E-02

0,00E+00

Figure 43 Load-displacement graph according to Atena 3D (in blue) and the ultimate load according to PCA (in red)

Structural design of reinforced concrete pile caps A.V. van de Graaf

52

Another point of interest is that the reinforcements stresses near the edge of the pile cap
are almost equal to zero (Figure 45 and Figure 44). This implies that hooks may not be
necessary for all reinforcing bars.

To make sure that the serviceability limit state is not normative in the case of PCA, the
maximum crack width at this load level had to be checked. Since PCA does not give

Figure 45 Reinforcement stresses at a load level of approximately 400 kN (iso-areas)

Figure 44 Reinforcement stresses at a load level of approximately 400 kN (diagrams)

A.V. van de Graaf Structural design of reinforced concrete pile caps

53

information on crack widths, this information is gathered from the non-linear finite
element analysis. From the previous section it is known that PCA predicted an ultimate
load of 404 kN. In practice load factors on dead weight and variable load are applied.
Since pile caps usually bear a lot of dead weight, the overall load factor is estimated at
1.35. This means that the maximum crack width at load level 404 1.35 300≅ kN has to be
considered. According to Atena, the maximum crack width is then approximately equal to

41.295 10−× mm, which is far below the limits given in the codes. Based on this single
value it can be said that the serviceability limit state probably is not normative when pile
caps are designed using PCA.

Also the serviceability limit state in Atena has to be checked. The ultimate load was
determined to be 1.19 MN. Considering a load factor of 1.35, this means a service load of
approximately ()31.19 10 1.35 880× ≅ kN. At this load level the maximum crack width
according to Atena is equal to 0.8909 mm which is far more than allowed in codes. An
impression of the crack pattern at this stage is given in Figure 46.

Now consider the pile cap at a load level of 1.19 MN, which is the ultimate load according
to Atena 3D. The stresses in the reinforcing bars are now considerably higher (Figure 47).
The largest tensile stress is 381 N/mm2, which is still below the yield strength of 435
N/mm2. By considering these reinforcement stresses, it may be concluded that the
reinforcement stresses at ultimate load are approximately the same for PCA (404 kN
ultimate load) and finite element analysis (1.19 MN ultimate load)

Figure 46 Crack pattern at a load level of approximately 880 kN

Structural design of reinforced concrete pile caps A.V. van de Graaf

54

Now consider the normal strain xxε in the reinforcing bars after failure (Figure 48). It is
interesting to notice that only in a few areas plastic strains occurs, i.e. strains larger than

32.175 10−× .

Figure 47 Reinforcement stresses at a load level of approximately 1.19 MN

Figure 48 Normal strain in the reinforcing bars at the last load step

A.V. van de Graaf Structural design of reinforced concrete pile caps

55

One more check can be performed and this is the support reactions of the piles. The piles
have been modeled as short concrete blocks under the pile cap. To simulate the
extensional behavior of the piles, these concrete blocks are supported by surface springs.
The stresses in these surface springs at a load level of approximately 404 kN are shown in
Figure 49. By estimating the average stress in the surface springs per pile and multiplying
this stress by the pile section, an estimation for the pile reaction is found
Pile 1: 31.15 400 400 10 184−× × × = kN (182.35 kN was found earlier),
Pile 2: 30.35 400 400 10 56−× × × = kN (51.35 kN was found earlier),
Pile 3: 31.10 400 400 10 176−× × × = kN (170.3 kN was found earlier).
From this it may be concluded that the vertical pile reactions at a load level of 404 kN
predicted by PCA are approximately equal to those predicted by the non-linear finite
element analysis. This result is not trivial because the finite element model was externally
statically indeterminate.

Figure 49 Stresses in the surface springs under the piles

A.V. van de Graaf Structural design of reinforced concrete pile caps

57

8 Conclusions and recommendations

Conclusions

 A model for the design of reinforced concrete pile caps on irregularly positioned
foundation piles has been established based on the use of stringer elements, shear
panel elements and strut elements. This model predicts vertical pile reactions,
reinforcement stresses and shear stresses in concrete. For practical application, it has
been implemented in a computer program called Pile Cap Applet (PCA). This applet is
user-friendly, requires a moderate amount of data and takes only a few seconds to
execute.

 The design model meets all equilibrium requirements. This has been tested for two

specific pile caps: one symmetrical pile cap which was founded on three piles and
loaded by one column, and one asymmetrical pile cap which was founded on six piles
and loaded by two columns. In the case of the symmetrical pile cap, the results also
correctly showed to be symmetrical.

 Comparison of the ultimate load predicted by PCA with a non-linear finite element

analysis showed that the ultimate load predicted by the design model is very
conservative. In this specific case, an asymmetrical pile cap consisting of three piles
and one column was tested. PCA determined that this specific pile cap collapsed at a
load level of 404 kN, while the same pile cap analyzed with a non-linear finite element
package showed that 1.19 MN was the ultimate load. Clearly, the real structure can
carry the load in more ways than an equilibrium system (PCA) assumes.

 For the considered pile cap the design model predicted another failure mechanism

than the finite element analysis. In the case of PCA, the pile cap ‘collapsed’ because the
yield strength was reached in one of the reinforcing bars. In the finite element analysis,
the pile cap collapsed because of a shear failure. This failure mechanism cannot be
predicted by PCA.

 The vertical pile reactions at a load level of 404 kN predicted by PCA are

approximately equal to those predicted by the non-linear finite element analysis. This
result is not trivial because the finite element model was externally statically
indeterminate.

 The reinforcement stresses at serviceability load according to PCA are much higher

than those determined by the finite element analysis. This implies that the stresses
calculated by PCA are not useful for checking the maximum crack width.

Structural design of reinforced concrete pile caps A.V. van de Graaf

58

 The reinforcement stresses at ultimate load are approximately the same for PCA (404
kN ultimate load) and finite element analysis (1.19 MN ultimate load).

 Often the reinforcing bars at the edges of pile caps have higher stresses than other

reinforcing bars.

Recommendations

 As a future improvement, it is recommended to replace cracked shear panel elements
by diagonal elements. However, the consequence of this is that the structural analysis
has to be performed several times and the analysis time increases.

 Alternatively, all shear panel elements can be replaced by diagonal strut elements. In a

number of analyses the correct (compression) direction of the strut elements need to
be determined. This might reduce peak stresses in the reinforcing bars. It would also
show the need for hooks at the reinforcing bar ends and the number of DOFs would
be reduced.

 Since the design model does not predict the correct failure mechanism, a more refined

model for the design problem may be considered. For example, a design model based
on volume elements instead of stringer elements, shear panel elements and strut
elements. This model would be similar to a three dimensional finite element model. In
the near future (say within five years), this model probably can be executed in a few
seconds too.

 For rational calculation of crack widths a better model needs to be developed.

A.V. van de Graaf Structural design of reinforced concrete pile caps

59

 References

Literature

[1] Blaauwendraad, J. and P.C.J. Hoogenboom, ‘Stringer Panel Model for Structural
Concrete Design’, ACI Structural Journal, Vol. 93, No. 3 (1996), pp. 295-305.

[2] Blaauwendraad, J. and P.C.J. Hoogenboom, ‘Stringer Panel Model for Structural
Concrete Design’, ACI Structural Journal, Vol. 94, No. 3 (1997), pp. 336-338.

[3] Blaauwendraad, J., Eindige-ElementenMethode voor Staafconstructies (Dutch). 2nd
edition. Schoonhoven: Academic Service, 2000.

[4] Blaauwendraad, J., Plates and Slabs, Volume 2, Numerical Methods. Delft: 2004.
[5] Hartsuijker, C., and C. F. Vrijman, Mechanica van constructies 2a, statisch

onbepaalde constructies (Dutch). Delft: 2000.
[6] Hoogenboom, P.C.J., Het staaf-paneel-model (Dutch). Delft: 1993.
[7] Lay, D.C., Linear algebra and its applications. 2nd edition. Addison Wesley

Longman, Inc., 2000
[8] Nijenhuis, W., De verplaatsingsmethode, toegepast voor de berekening van

(staaf)constructies (Dutch). Amsterdam/Brussel: Agon Elsevier, 1973.
[9] Press, W.H., et al, Numerical Recipes in C, The Art of Scientific Computing.

Cambridge: Cambridge University Press, 1988.
[10] Schlaich, J., K. Schäfer and M. Jennewein, ‘Toward a Consistent Design of

Structural Concrete’. PCI Journal, Special Report, Vol. 32, No. 3 (1987).
[11] Vrouwenvelder, A.C.W.M., Plasticity, The plastic behaviour and the calculation of

beams and frames subjected to bending. Delft: 2003.

 Software

[12] Atena 3D, Version: Exe 1.4.0.21, Pre: 1.4.0.29, Run: 1.4.0.20, Post: 1.4.0.16.
Cervenka Consulting.

[13] Borland Delphi Enterprise, Version 7.0 (Build 4.453). Borland Software
Corporation.

[14] Java ™ Platform, Standard Edition 6, Version: 1.6.0-rc (build 1.6.0-rc-b104). Sun
Microsystems, Inc.

 Websites

[15] http://java.sun.com/applets/
[16] http://java.sun.com/docs/books/tutorial/
[17] http://java.sun.com/docs/books/tutorial/java/concepts/index.html
[18] http://www.cs.princeton.edu/introcs/95linear/Matrix.java.html
[19] http://www.math.gatech.edu/~bourbaki/math2601/Web-notes/2num.pdf

http://www.math.gatech.edu/~bourbaki/math2601/Web-notes/2num.pdf

A.V. van de Graaf Structural design of reinforced concrete pile caps

61

 Appendix A1: Numbering and generating stringer elements

This appendix discusses numbering and generating stringer elements in the applet. First, it
is explained how the degrees of freedom (DOF) are numbered. Then the source code of
the procedure generateStringers () is given.

Numbering stringer elements and their DOF

First, stringer elements in x -direction are numbered. Obviously, the number of stringer
elements that fits in x -direction is equal to the number of shear panel elements that fits in
x -direction, which is called xn . The total number of stringer elements in x -direction is
equal to the product of xn and the number of reinforcing bars in x -direction. Numbering
stringer elements is explained on the basis of Figure 50. The reinforcing bars are drawn in
red, the stringer elements are drawn as grey bar elements. Numbering starts from the
origin, which has been indicated in blue. The horizontal axis is the x -axis, the vertical axis
is the y -axis. Continue
numbering from left to right
and from top to bottom.
Then, stringer elements in y -
direction are numbered.
Obviously, numbering has to
continue from the last stringer
element in x -direction. The
number of stringer elements
that fits in y -direction is equal
to the number of shear panel
elements in y -direction, which
is called yn . The total number
of stringer elements in y -
direction can be calculated as
the product of yn and the
number of reinforcing bars in
y -direction.

While stringers elements are
numbered, also their DOF have
to be numbered (Figure 51).
From Section 3.2 it is known
that a stringer element is a 3 DOF element. Moreover, the DOF at the ends of an element
coincide with those of another stringer element, since they are mutually connected (except
for elements ending at the pile cap edge). For stringer elements in x -direction the global
number of the intermediate DOF is first determined, based on stringer element row and
column. The global numbers of the two remaining DOF can be calculated by subtracting

1 2 3 4

5 6 7 8

9 10 11 12

13

14

15

16

17

18

19

20

21

22

Figure 50 Numbering stringer elements

2 4 6 8 5 9 1 7 3

Figure 51 Numbering stringer element DOF for the first row

Structural design of reinforced concrete pile caps A.V. van de Graaf

62

respectively adding 1 to this number. For the stringer elements in y -direction, first the
last assigned DOF number has to be calculated. Then numbering can continue, again
based on the stringer element row and column.

Generating stringer elements

The global DOF numbers per stringer element are stored in a matrix called stringerDOF.
Each row corresponds to one stringer element and has three columns. The first column
holds the global DOF numbers per stringer element corresponding to local DOF number
1. Similarly, columns 2 and 3 hold the global DOF numbers per stringer element
corresponding to local DOF numbers 2 respectively 3. While the DOF numbers are
assigned, also the extensional stiffness EA and the stringer element length are
determined and stored in vectors: stringerEA respectively stringerLength. The source
code of the procedure generateStringers () reads:

private void generateStringers ()
{

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction

 // determine the number of stringers used in the model

 nrOfStringers = nx * nrOfRebarsX + ny * nrOfRebarsY;

 // create a matrix which stores the DOF per stringer

 stringerDOF = new IntMatrix (nrOfStringers, 3);

 // create a vector which stores the extensional stiffness per stringer
 // and one for the length per stringer

 stringerEA = new DoubleVector (nrOfStringers);
 stringerLength = new DoubleVector (nrOfStringers);

 // calculate the extensional stiffness for the stringers in X-direction

 double stringerEA_X = E_Rebars * Math.PI / 4 * rebarDiameterX *
 rebarDiameterX;

 // number the DOF of the stringers in X-direction

 for (int j = 1; j <= nrOfRebarsX; j++)
 {

 for (int i = 1; i <= nx; i++)
 {

 // determine the stringer number, starting from 0

 int stringerNr = (j - 1) * nx + i - 1;

 // determine the number of the middle DOF of the stringer

 int n = (j - 1) * (2 * nx + 1) + 2 * i;

A.V. van de Graaf Structural design of reinforced concrete pile caps

63

 // set the entries of the stringerDOF matrix, the stringerEA
 // vector and the stringerLength vector

 stringerDOF.setEntry (stringerNr, 0, (n - 1));
 stringerDOF.setEntry (stringerNr, 1, n);
 stringerDOF.setEntry (stringerNr, 2, (n + 1));
 stringerEA.setEntry (stringerNr, stringerEA_X);
 stringerLength.setEntry (stringerNr, ctcDistanceOfRebarsY);

 }

 }

 // calculate the extensional stiffness for the stringers in Y-direction

 double stringerEA_Y = E_Rebars * Math.PI / 4 * rebarDiameterY *
 rebarDiameterY;

 // number the DOF of the stringers in Y-direction

 for (int i = 1; i <= nrOfRebarsY; i++)
 {

 for (int j = 1; j <= ny; j++)
 {

 // determine the stringer number, starting from
 // the last number assigned in X-direction

 int stringerNr = nx * nrOfRebarsX + (i - 1) * ny + j - 1;

 // determine the number of the middle DOF of the stringer

 int n = (2 * nx + 1) * nrOfRebarsX + (i - 1) * (2 * ny + 1) + 2
 * j;

 // set the entries of the stringerDOF matrix, the stringerEA
 // vector and the stringerLength vector

 stringerDOF.setEntry (stringerNr, 0, (n - 1));
 stringerDOF.setEntry (stringerNr, 1, n);
 stringerDOF.setEntry (stringerNr, 2, (n + 1));
 stringerEA.setEntry (stringerNr, stringerEA_Y);
 stringerLength.setEntry (stringerNr, ctcDistanceOfRebarsX);

 }

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

65

Appendix A2: Numbering and generating shear panel
elements

This appendix discusses numbering and generating shear panel elements. First, it is
explained how the degrees of freedom (DOF) are numbered. Then the source code of the
procedure generateShearPanels () is given.

Numbering shear panel elements and their DOF

Since the stringer elements and their DOF already have been numbered (Appendix A1),
no “new” DOF numbers need to be assigned. It is sufficient to find the correct
intermediate DOF numbers of the adjacent stringer elements, because these DOF
coincide (Section 3.3). Numbering shear panel elements is analogous to numbering
stringer elements (Appendix
A1): start from the shear panel
element closest to the origin,
from left to right and from top
to bottom. This is demonstrated
in Figure 53. The origin is
indicated in blue. The horizontal
axis is the x -axis, the vertical
axis is the y -axis. While the
shear panel elements are

numbered, their DOF have to
be numbered as well (Figure
52). The number of shear panel
elements that fits in x -direction
is called xn , the number of
shear panel elements that fits in
y -direction is called yn . These

numbers are determined by the
number of reinforcing bars
specified by the user. The global
DOF number for local DOF 1
can be determined based on the shear panel element row and column. Obviously, the
global DOF number for local DOF 2 is determined by adding 2 1xn× + (the number of
DOF per stringer element row) to this number. The same applies to determining the
global DOF numbers for local DOF 3 and 4. Once the global DOF number for local
DOF 3 has been determined, which can be done based on the shear panel element row
and column and the number of DOF already assigned in x -direction, the global DOF
number for local DOF 4 is determined by adding 2 1yn× + to this number.

1 2 3 4

5 6 7 8

Figure 53 Numbering shear panel elements

2 4 6 8

11 13 15 17

29 34 39 44 49

Figure 52 Numbering shear panel element DOF for the first row

Structural design of reinforced concrete pile caps A.V. van de Graaf

66

Generating shear panel elements

The global DOF numbers per shear panel element are stored in a matrix called
shearPanelDOF. Each row corresponds to one shear panel element and has four columns.
The first column holds the global DOF numbers per shear panel element corresponding
to local DOF number 1. Similarly, columns 2, 3 and 4 hold the global DOF numbers per
shear panel element corresponding to local DOF numbers 2 and 3 respectively 4. The
effective depth and the corresponding shear stiffness is determined in this procedure as
well. The source code of the procedure generateShearPanels () reads:

private void generateShearPanels ()
{

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction
 double t;

 // determine the number of shear panels used in the model

 nrOfShearPanels = nx * ny;

 // create a matrix which stores the DOF per shear panel

 shearPanelDOF = new IntMatrix (nrOfShearPanels, 4);

 // determine the shear stiffness of a shear panel

 t = concreteCover + (rebarDiameterX + rebarDiameterY) / 4 +
 (ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 4;

 if (t > ((ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 2))
 {

 t = (ctcDistanceOfRebarsX + ctcDistanceOfRebarsY) / 2;

 }

 if (t > capDepth)
 {

 t = capDepth;

 }

 Gt = G_CapConcrete * t;

 // number the DOF per shear panel

 for (int j = 1; j <= ny; j++)
 {

 for (int i = 1; i <= nx; i++)
 {

 // determine the shear panel number, starting from 0

 int shearPanelNr = (j - 1) * nx + i - 1;

A.V. van de Graaf Structural design of reinforced concrete pile caps

67

 int n = (j - 1) * (2 * nx + 1) + 2 * i;
 shearPanelDOF.setEntry (shearPanelNr, 0, n);
 n = j * (2 * nx + 1) + 2 * i;
 shearPanelDOF.setEntry (shearPanelNr, 1, n);
 n = (2 * nx + 1) * nrOfRebarsX + (i - 1) * (2 * ny + 1) + 2 * j;
 shearPanelDOF.setEntry (shearPanelNr, 2, n);
 n = (2 * nx + 1) * nrOfRebarsX + i * (2 * ny + 1) + 2 * j;
 shearPanelDOF.setEntry (shearPanelNr, 3, n);

 }

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

69

 Appendix A3: Numbering and generating strut elements

This appendix discusses numbering and generating strut elements. First, it is explained
how strut elements and their degrees of freedom (DOF) are numbered. Then the source
code of the procedure generateStruts () is given.

Numbering strut elements and their DOF

First, the ‘internal’ strut elements are numbered. The strut element from column 1 to pile
1 receives strut element 1, the strut element from column 1 to pile 2 is called strut element
2, and so on (Figure 55).
This process is repeated
for all piles and columns.
Then the piles, which are
also strut elements, are
numbered in the pile
number order starting
from the strut element
number which was
assigned last to an
‘internal’ strut element.
Simultaneously, the
global DOF numbers are
assigned (Figure 54). For
the ‘internal’ strut
elements, first the DOF
at the pile side are
numbered. In Figure 54
the concerning strut
element ends are
numbered 1, 2 and 3.
Then the DOF at the
column side of these
strut element are
numbered (4 in Figure
54). For the piles, first
the DOF at the shear
panel element side are numbered (1, 2 and 3 in Figure 54), then the DOF at the column
tip side (5, 6 and 7 in Figure 54). Note that the DOF of the ‘internal’ struts at the shear
panel element side coincide with the DOF of the corresponding piles at the same side. Per
strut element end, 3 DOF need to be numbered. First the DOF pointing in x -direction is

Plane consisting of
stringer elements and
shear panel elements

Column 1 (normal force)
Strut element 1

Strut element 2

Strut element 3

Pile 1 /
Strut element 4

Pile 2 /
Strut element 5

Pile 3 /
Strut element 6

Figure 55 Numbering strut elements

1

2

3

4

5

6

7

Figure 54 Order of numbering strut element DOF

Structural design of reinforced concrete pile caps A.V. van de Graaf

70

numbered, then the DOF pointing in y -direction and finally the DOF pointing in z -
direction.

Generating strut elements

The global DOF numbers per strut element are stored in a matrix called strutDOF. Each
row corresponds to one strut element and has six columns. The first column holds the
global DOF numbers per strut element corresponding to local DOF number 1. Similarly,
columns 2, 3, 4, 5 and 6 hold the global DOF numbers per strut element corresponding to
local DOF numbers 2, 3, 4, 5 respectively 6. While the DOF numbers are assigned, also
the extensional stiffness EA and the strut element length are determined and stored in
vectors: strutEA respectively strutLength. Another matrix, strutGonio, holds the values
for sinα , cosα , sin β , cosβ and β . For the definition of angles α and β , refer to
Section 3.4. The source code of the procedure generateStruts () reads:

private void generateStruts ()
{

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction
 int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY;
 int l = k + 3 * nrOfPiles + 3 * nrOfColumns;

 // determine the number of struts used in the model

 nrOfStruts = (nrOfColumns + 1) * nrOfPiles;

 // create a matrix which stores the DOF per strut

 strutDOF = new IntMatrix (nrOfStruts, 6);

 // create a vector which stores the extensional stiffness per strut
 // and one for the length per strut

 strutEA = new DoubleVector (nrOfStruts);
 strutLength = new DoubleVector (nrOfStruts);

 // create a matrix which stores sin(Alpha), cos(Alpha),
 // sin(Beta), cos(Beta) and Beta per strut

 strutGonio = new DoubleMatrix (nrOfStruts, 5);

 // calculate the extensional stiffness of a pile

 pileEA = E_PileConcrete * pileSection;

 // number the DOF of the internal struts

 for (int i = 1; i <= nrOfColumns; i++)
 {

 for (int j = 1; j <= nrOfPiles; j++)
 {

 // determine the strut number, starting from 0

A.V. van de Graaf Structural design of reinforced concrete pile caps

71

 int strutNr = (i - 1) * nrOfPiles + j - 1;

 int n = k + 3 * j - 2;
 strutDOF.setEntry (strutNr, 0, n);
 n = k + 3 * j - 1;
 strutDOF.setEntry (strutNr, 1, n);
 n = k + 3 * j;
 strutDOF.setEntry (strutNr, 2, n);
 n = k + 3 * nrOfPiles + 3 * i - 2;
 strutDOF.setEntry (strutNr, 3, n);
 n = k + 3 * nrOfPiles + 3 * i - 1;
 strutDOF.setEntry (strutNr, 4, n);
 n = k + 3 * nrOfPiles + 3 * i;
 strutDOF.setEntry (strutNr, 5, n);

 // get column co-ordinates and pile co-ordinates

 double columnX = columnXY.getEntry ((i - 1), 0);
 double columnY = columnXY.getEntry ((i - 1), 1);
 double pileX = pileXY.getEntry ((j - 1), 0);
 double pileY = pileXY.getEntry ((j - 1), 1);

 // determine the projected strut length, the strut length and
 // the extensional stiffness of the strut

 double deltaX = columnX - pileX;
 double deltaY = columnY - pileY;
 double deltaZ = capDepth;
 double projectedStrutLength = Math.sqrt (deltaX * deltaX +
 deltaY * deltaY);
 double strutL = Math.sqrt (deltaZ * deltaZ +
 projectedStrutLength * projectedStrutLength);
 strutLength.setEntry (strutNr, strutL);
 strutEA.setEntry (strutNr, pileEA);

 // determine sin(Alpha), cos(Alpha), sin(Beta), cos(Beta) and
 // Beta and store these values in strutGonio

 if ((columnX == pileX) && (columnY == pileY))
 {

 // the strut has a vertical orientation, which means that
 // Alpha is not defined
 // in this case the goniometric values are not important,
 // so fill the first four entries with zeros

 strutGonio.setEntry (strutNr, 0, 0.0);
 strutGonio.setEntry (strutNr, 1, 0.0);
 strutGonio.setEntry (strutNr, 2, 0.0);
 strutGonio.setEntry (strutNr, 3, 0.0);
 strutGonio.setEntry (strutNr, 4, 90.0);

 }
 else
 {

 double sinAlpha = deltaY / projectedStrutLength;
 strutGonio.setEntry (strutNr, 0, sinAlpha);
 double cosAlpha = deltaX / projectedStrutLength;
 strutGonio.setEntry (strutNr, 1, cosAlpha);
 double sinBeta = deltaZ / strutL;
 strutGonio.setEntry (strutNr, 2, sinBeta);
 double cosBeta = projectedStrutLength / strutL;
 strutGonio.setEntry (strutNr, 3, cosBeta);

Structural design of reinforced concrete pile caps A.V. van de Graaf

72

 double Beta = Math.toDegrees (Math.asin (deltaZ / strutL));
 strutGonio.setEntry (strutNr, 4, Beta);

 }

 }

 }

 // number the DOF of the piles

 for (int i = 1; i <= nrOfPiles; i++)
 {

 // determine the strut number, starting from the last number
 // assigned

 int strutNr = nrOfPiles * nrOfColumns + i - 1;

 int n = k + 3 * i - 2;
 strutDOF.setEntry (strutNr, 0, n);
 n = k + 3 * i - 1;
 strutDOF.setEntry (strutNr, 1, n);
 n = k + 3 * i;
 strutDOF.setEntry (strutNr, 2, n);
 n = l + 3 * i - 2;
 strutDOF.setEntry (strutNr, 3, n);
 n = l + 3 * i - 1;
 strutDOF.setEntry (strutNr, 4, n);
 n = l + 3 * i;
 strutDOF.setEntry (strutNr, 5, n);

 // determine and store the strut extensional stiffness and length

 strutEA.setEntry (strutNr, pileEA);
 strutLength.setEntry (strutNr, pileLength);

 // set the pile gonio

 strutGonio.setEntry (strutNr, 0, 0.0);
 strutGonio.setEntry (strutNr, 1, 0.0);
 strutGonio.setEntry (strutNr, 2, 0.0);
 strutGonio.setEntry (strutNr, 3, 0.0);
 strutGonio.setEntry (strutNr, 4, 90.0);

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

73

 Appendix B1: Assembling the elements

This appendix gives the source code for assembling the three different elements.

Assembling stringer elements

private void assembleStringers ()
{

 // create an element stiffness matrix

 DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (3, 3);

 // set the entries of the element stiffness matrix

 elementStiffnessMatrix.setEntry (0, 0, 4.0);
 elementStiffnessMatrix.setEntry (0, 1, -6.0);
 elementStiffnessMatrix.setEntry (0, 2, 2.0);
 elementStiffnessMatrix.setEntry (1, 0, -6.0);
 elementStiffnessMatrix.setEntry (1, 1, 12.0);
 elementStiffnessMatrix.setEntry (1, 2, -6.0);
 elementStiffnessMatrix.setEntry (2, 0, 2.0);
 elementStiffnessMatrix.setEntry (2, 1, -6.0);
 elementStiffnessMatrix.setEntry (2, 2, 4.0);

 // assemble the stringers into the system stiffness matrix

 for (int stringerNr = 0; stringerNr < nrOfStringers; stringerNr++)
 {

 double k = stringerEA.getEntry (stringerNr) /
stringerLength.getEntry (stringerNr);

 for (int ii = 0; ii < 3; ii++)
 {

 int i = stringerDOF.getEntry (stringerNr, ii) - 1;

 for (int jj = 0; jj < 3; jj++)
 {

 int j = stringerDOF.getEntry (stringerNr, jj) - 1;
 double temp = systemStiffnessMatrix.getEntry (i, j)
 + k * elementStiffnessMatrix.getEntry (ii,
jj);
 systemStiffnessMatrix.setEntry (i, j, temp);

 }

 }

 }

}

Structural design of reinforced concrete pile caps A.V. van de Graaf

74

Assembling shear panel elements

private void assembleShearPanels ()
{

 // create an element stiffness matrix

 DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (4, 4);

 // calculate length-to-width ratio and width-to-length ratio

 double alpha = ctcDistanceOfRebarsY / ctcDistanceOfRebarsX;
 double beta = ctcDistanceOfRebarsX / ctcDistanceOfRebarsY;

 // fill the entries of the element stiffness matrix

 elementStiffnessMatrix.setEntry (0, 0, alpha);
 elementStiffnessMatrix.setEntry (0, 1, -alpha);
 elementStiffnessMatrix.setEntry (0, 2, 1.0);
 elementStiffnessMatrix.setEntry (0, 3, -1.0);
 elementStiffnessMatrix.setEntry (1, 0, -alpha);
 elementStiffnessMatrix.setEntry (1, 1, alpha);
 elementStiffnessMatrix.setEntry (1, 2, -1.0);
 elementStiffnessMatrix.setEntry (1, 3, 1.0);
 elementStiffnessMatrix.setEntry (2, 0, 1.0);
 elementStiffnessMatrix.setEntry (2, 1, -1.0);
 elementStiffnessMatrix.setEntry (2, 2, beta);
 elementStiffnessMatrix.setEntry (2, 3, -beta);
 elementStiffnessMatrix.setEntry (3, 0, -1.0);
 elementStiffnessMatrix.setEntry (3, 1, 1.0);
 elementStiffnessMatrix.setEntry (3, 2, -beta);
 elementStiffnessMatrix.setEntry (3, 3, beta);

 // assemble the shear panels into the system stiffness matrix

 for (int shearPanelNr = 0; shearPanelNr < nrOfShearPanels;
shearPanelNr++)
 {

 for (int ii = 0; ii < 4; ii++)
 {

 int i = shearPanelDOF.getEntry (shearPanelNr, ii) - 1;

 for (int jj = 0; jj < 4; jj++)
 {

 int j = shearPanelDOF.getEntry (shearPanelNr, jj) - 1;
 double temp = systemStiffnessMatrix.getEntry (i, j)
 + Gt * elementStiffnessMatrix.getEntry (ii,
jj);
 systemStiffnessMatrix.setEntry (i, j, temp);

 }

 }

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

75

Assembling strut elements

private void assembleStruts ()
{

 // create an element stiffness matrix

 DoubleMatrix elementStiffnessMatrix = new DoubleMatrix (6, 6);

 // process the internal struts first

 for (int columnNr = 0; columnNr < nrOfColumns; columnNr++)
 {

 for (int pileNr = 0; pileNr < nrOfPiles; pileNr++)
 {

 int strutNr = columnNr * nrOfPiles + (pileNr + 1) - 1;
 double k = strutEA.getEntry (strutNr) / strutLength.getEntry
(strutNr);
 double columnX = columnXY.getEntry (columnNr, 0);
 double columnY = columnXY.getEntry (columnNr, 1);
 double pileX = pileXY.getEntry (pileNr, 0);
 double pileY = pileXY.getEntry (pileNr, 1);

 // if the strut has a vertical orientation then use the same
 // element stiffness matrix as for the piles

 if ((columnX == pileX) && (columnY == pileY))
 {

 elementStiffnessMatrix.setEntry (0, 0, 0.0);
 elementStiffnessMatrix.setEntry (0, 1, 0.0);
 elementStiffnessMatrix.setEntry (0, 2, 0.0);
 elementStiffnessMatrix.setEntry (0, 3, 0.0);
 elementStiffnessMatrix.setEntry (0, 4, 0.0);
 elementStiffnessMatrix.setEntry (0, 5, 0.0);
 elementStiffnessMatrix.setEntry (1, 0, 0.0);
 elementStiffnessMatrix.setEntry (1, 1, 0.0);
 elementStiffnessMatrix.setEntry (1, 2, 0.0);
 elementStiffnessMatrix.setEntry (1, 3, 0.0);
 elementStiffnessMatrix.setEntry (1, 4, 0.0);
 elementStiffnessMatrix.setEntry (1, 5, 0.0);
 elementStiffnessMatrix.setEntry (2, 0, 0.0);
 elementStiffnessMatrix.setEntry (2, 1, 0.0);
 elementStiffnessMatrix.setEntry (2, 2, 1.0);
 elementStiffnessMatrix.setEntry (2, 3, 0.0);
 elementStiffnessMatrix.setEntry (2, 4, 0.0);
 elementStiffnessMatrix.setEntry (2, 5, -1.0);
 elementStiffnessMatrix.setEntry (3, 0, 0.0);
 elementStiffnessMatrix.setEntry (3, 1, 0.0);
 elementStiffnessMatrix.setEntry (3, 2, 0.0);
 elementStiffnessMatrix.setEntry (3, 3, 0.0);
 elementStiffnessMatrix.setEntry (3, 4, 0.0);
 elementStiffnessMatrix.setEntry (3, 5, 0.0);
 elementStiffnessMatrix.setEntry (4, 0, 0.0);
 elementStiffnessMatrix.setEntry (4, 1, 0.0);
 elementStiffnessMatrix.setEntry (4, 2, 0.0);
 elementStiffnessMatrix.setEntry (4, 3, 0.0);
 elementStiffnessMatrix.setEntry (4, 4, 0.0);
 elementStiffnessMatrix.setEntry (4, 5, 0.0);
 elementStiffnessMatrix.setEntry (5, 0, 0.0);
 elementStiffnessMatrix.setEntry (5, 1, 0.0);
 elementStiffnessMatrix.setEntry (5, 2, -1.0);
 elementStiffnessMatrix.setEntry (5, 3, 0.0);
 elementStiffnessMatrix.setEntry (5, 4, 0.0);

Structural design of reinforced concrete pile caps A.V. van de Graaf

76

 elementStiffnessMatrix.setEntry (5, 5, 1.0);

 }
 else
 {

 double sinAlpha = strutGonio.getEntry (strutNr, 0);
 double cosAlpha = strutGonio.getEntry (strutNr, 1);
 double sinBeta = strutGonio.getEntry (strutNr, 2);
 double cosBeta = strutGonio.getEntry (strutNr, 3);

 elementStiffnessMatrix.setEntry (0, 0, (cosAlpha * cosAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (0, 1, (cosAlpha * cosBeta *
cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (0, 2, (-cosAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (0, 3, (-cosAlpha * cosAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (0, 4, (-cosAlpha * cosBeta
* cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (0, 5, (cosAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (1, 0, (cosAlpha * cosBeta *
cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (1, 1, (sinAlpha * sinAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (1, 2, (-sinAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (1, 3, (-cosAlpha * cosBeta
* cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (1, 4, (-sinAlpha * sinAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (1, 5, (sinAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (2, 0, (-cosAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (2, 1, (-sinAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (2, 2, (sinBeta * sinBeta));
 elementStiffnessMatrix.setEntry (2, 3, (cosAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (2, 4, (sinAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (2, 5, (-sinBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (3, 0, (-cosAlpha * cosAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (3, 1, (-cosAlpha * cosBeta
* cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (3, 2, (cosAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (3, 3, (cosAlpha * cosAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (3, 4, (cosAlpha * cosBeta *
cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (3, 5, (-cosAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (4, 0, (-cosAlpha * cosBeta
* cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (4, 1, (-sinAlpha * sinAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (4, 2, (sinAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (4, 3, (cosAlpha * cosBeta *
cosBeta * sinAlpha));
 elementStiffnessMatrix.setEntry (4, 4, (sinAlpha * sinAlpha
* cosBeta * cosBeta));
 elementStiffnessMatrix.setEntry (4, 5, (-sinAlpha * cosBeta
* sinBeta));

A.V. van de Graaf Structural design of reinforced concrete pile caps

77

 elementStiffnessMatrix.setEntry (5, 0, (cosAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (5, 1, (sinAlpha * cosBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (5, 2, (-sinBeta *
sinBeta));
 elementStiffnessMatrix.setEntry (5, 3, (-cosAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (5, 4, (-sinAlpha * cosBeta
* sinBeta));
 elementStiffnessMatrix.setEntry (5, 5, (sinBeta * sinBeta));

 }

 for (int ii = 0; ii < 6; ii++)
 {

 int i = strutDOF.getEntry (strutNr, ii) - 1;

 for (int jj = 0; jj < 6; jj++)
 {

 int j = strutDOF.getEntry (strutNr, jj) - 1;
 double temp = systemStiffnessMatrix.getEntry (i, j)
 + k * elementStiffnessMatrix.getEntry (ii,
jj);
 systemStiffnessMatrix.setEntry (i, j, temp);

 }

 }

 }

 }

 // process the piles

 elementStiffnessMatrix.setEntry (0, 0, 0.0);
 elementStiffnessMatrix.setEntry (0, 1, 0.0);
 elementStiffnessMatrix.setEntry (0, 2, 0.0);
 elementStiffnessMatrix.setEntry (0, 3, 0.0);
 elementStiffnessMatrix.setEntry (0, 4, 0.0);
 elementStiffnessMatrix.setEntry (0, 5, 0.0);
 elementStiffnessMatrix.setEntry (1, 0, 0.0);
 elementStiffnessMatrix.setEntry (1, 1, 0.0);
 elementStiffnessMatrix.setEntry (1, 2, 0.0);
 elementStiffnessMatrix.setEntry (1, 3, 0.0);
 elementStiffnessMatrix.setEntry (1, 4, 0.0);
 elementStiffnessMatrix.setEntry (1, 5, 0.0);
 elementStiffnessMatrix.setEntry (2, 0, 0.0);
 elementStiffnessMatrix.setEntry (2, 1, 0.0);
 elementStiffnessMatrix.setEntry (2, 2, 1.0);
 elementStiffnessMatrix.setEntry (2, 3, 0.0);
 elementStiffnessMatrix.setEntry (2, 4, 0.0);
 elementStiffnessMatrix.setEntry (2, 5, -1.0);
 elementStiffnessMatrix.setEntry (3, 0, 0.0);
 elementStiffnessMatrix.setEntry (3, 1, 0.0);
 elementStiffnessMatrix.setEntry (3, 2, 0.0);
 elementStiffnessMatrix.setEntry (3, 3, 0.0);
 elementStiffnessMatrix.setEntry (3, 4, 0.0);
 elementStiffnessMatrix.setEntry (3, 5, 0.0);
 elementStiffnessMatrix.setEntry (4, 0, 0.0);
 elementStiffnessMatrix.setEntry (4, 1, 0.0);
 elementStiffnessMatrix.setEntry (4, 2, 0.0);
 elementStiffnessMatrix.setEntry (4, 3, 0.0);
 elementStiffnessMatrix.setEntry (4, 4, 0.0);
 elementStiffnessMatrix.setEntry (4, 5, 0.0);

Structural design of reinforced concrete pile caps A.V. van de Graaf

78

 elementStiffnessMatrix.setEntry (5, 0, 0.0);
 elementStiffnessMatrix.setEntry (5, 1, 0.0);
 elementStiffnessMatrix.setEntry (5, 2, -1.0);
 elementStiffnessMatrix.setEntry (5, 3, 0.0);
 elementStiffnessMatrix.setEntry (5, 4, 0.0);
 elementStiffnessMatrix.setEntry (5, 5, 1.0);

 for (int strutNr = nrOfStruts - nrOfPiles; strutNr < nrOfStruts;
strutNr++)
 {

 double k = strutEA.getEntry (strutNr) / strutLength.getEntry
(strutNr);

 for (int ii = 0; ii < 6; ii++)
 {

 int i = strutDOF.getEntry (strutNr, ii) - 1;

 for (int jj = 0; jj < 6; jj++)
 {

 int j = strutDOF.getEntry (strutNr, jj) - 1;
 double temp = systemStiffnessMatrix.getEntry (i, j)
 + k * elementStiffnessMatrix.getEntry (ii,
jj);
 systemStiffnessMatrix.setEntry (i, j, temp);

 }

 }

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

79

 Appendix B2: Generating and processing imposed forces

This appendix gives the source code for generating and processing the imposed forces.

Generating imposed forces

private void generateImposedForces ()
{

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction
 int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY;

 // create a vector which stores the degrees of freedom per imposed
normal force

 loadingDOF = new IntVector (nrOfColumns);

 // determine on which degrees of freedom a force is applied

 for (int i = 0; i < nrOfColumns; i++)
 {

 int n = k + 3 * nrOfPiles + 3 * (i + 1);
 loadingDOF.setEntry (i, n);
 }

}

Structural design of reinforced concrete pile caps A.V. van de Graaf

80

Processing imposed forces

private void processImposedForces ()
{

 // create the force vector

 forceVector = new DoubleVector (nrOfDOF);

 // initialise the force vector

 for (int i = 0; i < nrOfDOF; i++)
 {

 forceVector.setEntry (i, 0.0);

 }

 // process the normal forces imposed by the columns

 for (int i = 0; i < nrOfColumns; i++)
 {

 int n = loadingDOF.getEntry (i) - 1;
 double temp = forceVector.getEntry (i) + columnNormalForces.getEntry
(i);
 forceVector.setEntry (n, temp);

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

81

 Appendix B3: Generating and processing tying

This appendix gives the source code for generating and processing tying.

Generating tying

private void generateTyings ()
{

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction
 int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY;

 // determine the number of tyings

 nrOfTyings = 2 * nrOfPiles;

 // create a matrix which stores the degrees of freedom per tying
 // the first entry stores the degree of freedom of master1
 // the second entry stores the degree of freedom of master2
 // the third entry stores the degree of freedom of slave

 tyingDOF = new IntMatrix (nrOfTyings, 3);

 // create a matrix which stores the tying factors
 // the first entry stores factor1
 // the second entry stores factor2

 tyingFactors = new DoubleMatrix (nrOfTyings, 2);

 for (int i = 0; i < nrOfPiles; i++)
 {

 double temp = (pileXY.getEntry (i, 0) - concreteCover -
(rebarDiameterY / 2)) / ctcDistanceOfRebarsY;
 int nxTying = (int) Math.floor (temp);
 temp = (pileXY.getEntry (i, 1) - concreteCover - (rebarDiameterX /
2)) / ctcDistanceOfRebarsX;
 int nyTying = (int) Math.floor (temp);

 // tying in X-direction

 int tyingNr = 2 * i;
 int n = nyTying * (2 * nx + 1) + (nxTying + 1) * 2;
 tyingDOF.setEntry (tyingNr, 0, n);
 n = (nyTying + 1) * (2 * nx + 1) + (nxTying + 1) * 2;
 tyingDOF.setEntry (tyingNr, 1, n);
 n = k + 3 * (i + 1) - 2;
 tyingDOF.setEntry (tyingNr, 2, n);
 temp = ((nyTying + 1) * ctcDistanceOfRebarsX + concreteCover +
(rebarDiameterX / 2)
 - pileXY.getEntry (i, 1)) / ctcDistanceOfRebarsX;
 tyingFactors.setEntry (tyingNr, 0, temp);
 tyingFactors.setEntry (tyingNr, 1, (1 - temp));

 // tying in Y-direction

Structural design of reinforced concrete pile caps A.V. van de Graaf

82

 tyingNr = 2 * i + 1;
 n = (2 * nx + 1) * nrOfRebarsX + nxTying * (2 * ny + 1) + (nyTying +
1) * 2;
 tyingDOF.setEntry (tyingNr, 0, n);
 n = (2 * nx + 1) * nrOfRebarsX + (nxTying + 1) * (2 * ny + 1) +
(nyTying + 1) * 2;
 tyingDOF.setEntry (tyingNr, 1, n);
 n = k + 3 * (i + 1) - 1;
 tyingDOF.setEntry (tyingNr, 2, n);
 temp = ((nxTying + 1) * ctcDistanceOfRebarsY + concreteCover +
(rebarDiameterY / 2)
 - pileXY.getEntry (i, 0)) / ctcDistanceOfRebarsY;
 tyingFactors.setEntry (tyingNr, 0, temp);
 tyingFactors.setEntry (tyingNr, 1, (1 - temp));

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

83

Processing tying

private void processTyings ()
{

 for (int tyingNr = 0; tyingNr < nrOfTyings; tyingNr++)
 {

 int master1DOF = tyingDOF.getEntry (tyingNr, 0) - 1;
 int master2DOF = tyingDOF.getEntry (tyingNr, 1) - 1;
 int slaveDOF = tyingDOF.getEntry (tyingNr, 2) - 1;
 double factor1 = tyingFactors.getEntry (tyingNr, 0);
 double factor2 = tyingFactors.getEntry (tyingNr, 1);

 for (int j = 0; j < nrOfDOF; j++)
 {

 double temp = systemStiffnessMatrix.getEntry (master1DOF, j)
 + factor1 * systemStiffnessMatrix.getEntry
(slaveDOF, j);
 systemStiffnessMatrix.setEntry (master1DOF, j, temp);
 temp = systemStiffnessMatrix.getEntry (master2DOF, j)
 + factor2 * systemStiffnessMatrix.getEntry (slaveDOF, j);
 systemStiffnessMatrix.setEntry (master2DOF, j, temp);
 systemStiffnessMatrix.setEntry (slaveDOF, j, 0.0);

 }

 systemStiffnessMatrix.setEntry (slaveDOF, master1DOF, factor1);
 systemStiffnessMatrix.setEntry (slaveDOF, master2DOF, factor2);
 systemStiffnessMatrix.setEntry (slaveDOF, slaveDOF, -1.0);
 double temp = forceVector.getEntry (master1DOF)
 + factor1 * forceVector.getEntry (slaveDOF);
 forceVector.setEntry (master1DOF, temp);
 temp = forceVector.getEntry (master2DOF)
 + factor2 * forceVector.getEntry (slaveDOF);
 forceVector.setEntry (master2DOF, temp);
 forceVector.setEntry (slaveDOF, 0.0);

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

85

Appendix B4: Generating and processing imposed
displacements

This appendix contains the source code which implements the processing of the imposed
displacements.

The source code of the procedure generateImposedDisplacements () reads:

 // method which generates the imposed displacements

 private void generateImposedDisplacements ()
 {

 // variable declaration

 int nx = nrOfRebarsY - 1; // number of shear panels in X-direction
 int ny = nrOfRebarsX - 1; // number of shear panels in Y-direction
 int k = (2 * nx + 1) * nrOfRebarsX + (2 * ny + 1) * nrOfRebarsY;
 int l = k + 3 * nrOfPiles + 3 * nrOfColumns;

 // determine the number of fixed degrees of freedom

 nrOfFixedDOF = 3 + 3 * nrOfPiles;

 // create a vector which stores the degree of freedom number per
fixed degree of freedom
 // and one which stores the magnitude of the imposed displacements

 fixedDOF = new IntVector (nrOfFixedDOF);
 prescribedDisplacements = new DoubleVector (nrOfFixedDOF);

 // determine which degrees of freedom are fixed

 fixedDOF.setEntry (0, 1);
 prescribedDisplacements.setEntry (0, 0.0);
 int n = (2 * nx + 1) * nrOfRebarsX + 1;
 fixedDOF.setEntry (1, n);
 prescribedDisplacements.setEntry (1, 0.0);
 n = (2 * nx + 1) * (nrOfRebarsX - 1) + 1;
 fixedDOF.setEntry (2, n);
 prescribedDisplacements.setEntry (2, 0.0);

 for (int i = 1; i <= nrOfPiles; i++)
 {

 n = l + 3 * i - 2;
 fixedDOF.setEntry ((3 * i), n);
 prescribedDisplacements.setEntry ((3 * i), 0.0);
 n = l + 3 * i - 1;
 fixedDOF.setEntry ((3 * i + 1), n);
 prescribedDisplacements.setEntry ((3 * i + 1), 0.0);
 n = l + 3 * i;
 fixedDOF.setEntry ((3 * i + 2), n);
 prescribedDisplacements.setEntry ((3 * i + 2), 0.0);

 }

 }

Structural design of reinforced concrete pile caps A.V. van de Graaf

86

The source code of the procedure processImposedDisplacements () reads:

 // method which processes the imposed displacements (fixed degrees of
freedom)

 private void processImposedDisplacements ()
 {

 // create a matrix which stores the entries from lines that will be
removed
 // from the system stiffness matrix

 removedLines = new DoubleMatrix (nrOfFixedDOF, nrOfDOF);

 for (int fixedDOF_Nr = 0; fixedDOF_Nr < nrOfFixedDOF;
fixedDOF_Nr++)
 {

 int n = fixedDOF.getEntry (fixedDOF_Nr) - 1;

 for (int j = 0; j < nrOfDOF; j++)
 {

 double temp = systemStiffnessMatrix.getEntry (n, j);
 removedLines.setEntry (fixedDOF_Nr, j, temp);
 systemStiffnessMatrix.setEntry (n, j, 0.0);

 }

 systemStiffnessMatrix.setEntry (n, n, 1.0);
 double temp = prescribedDisplacements.getEntry (fixedDOF_Nr);
 forceVector.setEntry (n, temp);

 }

 }

A.V. van de Graaf Structural design of reinforced concrete pile caps

87

 Appendix B5: Detailed consideration on LU decomposition

This appendix gives a detailed consideration on how to solve for vector x in the system
A x b⋅ = , given matrix A and vector b . The first three parts of this appendix are an

elaboration on the steps presented in Section 4.5. This means that part one considers the
theory of the actual decomposition of matrix A in matrices L and U . Then part two
explains how to solve for vector y starting from matrix L and vector b . Part three
discusses how to solve for vector x starting from matrix U and vector y . The fourth
part of this appendix gives the source code of the class which implements the solution
procedure. For reusability reasons this procedure has been implemented in a separate
module. Therefore, separate testing of this module is possible, which has been elaborated
in the fifth and final part of this appendix. The text in this appendix, accept for the part
that concerns testing, has been based on Press (1988) [9].

Decomposition of matrix A in matrices L and U

The basis of LU decomposition is that matrix A may be written as the product of two
matrices, namely a lower triangular matrix and an upper triangular matrix:

11 11 12 13 1 11 12 13 1

21 22 22 23 2 21 22 23 2

31 32 33 33 3 31 32 33 3

1 2 3 1 2 3

0 0 0
0 0 0

0 0 0

0 0 0

n n

n n

n n

n n n nn nn n n n nn

a a a a
a a a a
a a a a

a a a a

α β β β β
α α β β β
α α α β β

α α α α β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

,

where all ijα and ijβ are to be determined and all ija are known. An arbitrary element ija
can be calculated from the following formula:

1 1 2 2 ...ij i j i j in nja α β α β α β= + + + .

However, since the lower triangular and upper triangular matrices contain many zeros, it is
better to leave the multiplication terms containing one or more zeros out. To do this,
three different cases have to be distinguished:

:i j< 1 1 2 2 ...i j i j ii ij ijaα β α β α β+ + + = (38)

:i j= 1 1 2 2 ...i i i i ii ii iiaα β α β α β+ + + = (39)

:i j> 1 1 2 2 ...i j i j ij jj ijaα β α β α β+ + + = (40)

The number of unknowns in the lower triangular matrix is equal to ()2 2n n n− + . The
same applies to the number of unknowns in the upper triangular matrix. Therefore, the
total number of unknowns in both matrices comes down to 2n n+ . But only 2n
equations (the number of elements in A) can be formulated for these unknowns. This

Structural design of reinforced concrete pile caps A.V. van de Graaf

88

means that n unknowns may be specified arbitrarily and then try to solve for the
remaining unknowns. Press (1988) [9] states that it is always possible to take:

1iiα ≡ for 1, 2,...,i n= .

The remaining unknowns are solved using Crout’s algorithm. This method decomposes
matrix A column by column. For a certain column j two procedures have to be carried
out. First for 1, 2,...,i j= :

1

1

i

ij ij ik kj
k

aβ α β
−

=

= −∑ (41)

This formulation can be deduced from equations (38) and (39):

()
1

1
1 1 2 2 (1) (1)

1

1 ... ii
i

ij ij i j i j i i i j ij ij ik kj
kii

a aαβ α β α β α β β α β
α

−
=

− −
=

⎡ ⎤= − + + + ⎯⎯⎯→ = −⎣ ⎦ ∑

Secondly, calculate for 1, 2,...,i j j n= + +

1

1

1 j

ij ij ik kj
kjj

aα α β
β

−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ (42)

This formulation can be deduced from equation (40):

()
1

1 1 2 2 (1) (1)
1

1 1...
j

ij ij i j i j i j j j ij ij ik kj
kjj jj

a aα α β α β α β α α β
β β

−

− −
=

⎡ ⎤⎡ ⎤= − + + + ⎯⎯→ = −⎢ ⎥⎣ ⎦ ⎣ ⎦
∑

By doing the above calculations by hand for a few elements reveals that all α ’s and β ’s
needed for a certain calculation are already determined by the time they are needed.
Furthermore it can be seen that every ija is used only once and never again. This means
that the corresponding ijα or ijβ can be stored in the location that a used to occupy.
This is advantageous with the computer implementation in mind: only one array is needed
to perform the decomposition, since A is destroyed while simultaneously LU is
produced. Moreover, L and U can be stored in same matrix, because of their triangular
forms:

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

n n n nn

β β β β
α β β β
α α β β

α α α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

Since 1iiα = for 1, 2,...,i n= , these values do not need to be stored.

One more attention point is the stability of Crout’s algorithm. Just like other numerical
methods for solving systems of linear equations, pivoting is essential. This can be done by

A.V. van de Graaf Structural design of reinforced concrete pile caps

89

picking the largest absolute value that occurs in a column. That is, only the element on the
main diagonal or the elements below may be selected. If this element is not on the main
diagonal, the corresponding rows should be swapped. This procedure is called partial
pivoting. Of course, if rows in matrix A are swapped, the same should be done to vector
b . It is important to notice that in the case of i j= equation (41) is exactly the same as
equation (42) except for the division by jjβ in the latter equation. The upper limit of the
sum is in both cases equal to 1j − .
Choosing the pivot element by simply picking the largest absolute value is obviously not
the best way, because scaling a certain row is always allowed. If for example a certain row
is multiplied by a million, then it is almost certain that this row will deliver the pivot
element. To avoid this problem use is made of implicit pivoting. The idea of implicit
pivoting is as follows: calculate per row the scaling factor that is needed to obtain 1 as the
largest absolute coefficient. Then calculate per element the product of this scaling factor
and the real value of the element. Picking the largest absolute value after performing this
operation gives a good choice for the pivot element. It is recalled that only elements on
the main diagonal or in the same column below it can be chosen. Choosing an element
above the main diagonal element destroys the already formed part of the decomposed
matrix. If the largest element is not on the main diagonal, the two corresponding rows
have to be swapped. Now knowing the value of the pivot element, the division from
equation (42) can be carried out.

Solving for vector y

Now that matrix A has been decomposed in matrices L and U , use can be made of the
fact that triangular matrices can be solved in a simple way. Writing L y b⋅ = gives:

11 1 1

21 22 2 2

31 32 33 3 3

1 2 3

0 0 0
0 0

0

n n n nn n n

y b
y b
y b

y b

α
α α
α α α

α α α α

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(43)

These equations can be solved by forward substitution:

1
1

11

b
y

α
= ,

[]2 21 1
2 2 21 1

22 22

1b y
y b y

α
α

α α
−

= = − ,

()3 31 1 32 2
3 3 31 1 32 2

33 33

1b y y
y b y y

α α
α α

α α
− −

= = − +⎡ ⎤⎣ ⎦ ,

and so forth.
In general, for element iy it holds that:

Structural design of reinforced concrete pile caps A.V. van de Graaf

90

1

1

1 i

i i ij j
jii

y b yα
α

−

=

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ for 1, 2,...,i n= .

Solving for vector x

In a similar manner as for the system L y b⋅ = , the system U x y⋅ = can be solved. But
this time the procedure is called backward substitution. Writing U x y⋅ = gives:

11 12 13 1 1 1

22 23 2 2 2

33 3 3 3

0
0 0

0 0 0

n

n

n

nn n n

x y
x y
x y

x y

β β β β
β β β

β β

β

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⋅ =
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Vector x can now be solved as follows:

n
n

nn

y
x

β
= ,

1 (1)
1 1 (1)

(1)(1) (1)(1)

1n n n n
n n n n n

n n n n

y x
x y x

β
β

β β
− −

− − −
− − − −

⎡ ⎤= = −⎣ ⎦ ,

()2 (2)(1) 1 (2)
2 2 (2)(1) 1 (2)

(2)(2) (2)(2)

1n n n n n n n
n n n n n n n n

n n n n

y x x
x y x x

β β
β β

β β
− − − − −

− − − − − −
− − − −

− −
⎡ ⎤= = − +⎣ ⎦ ,

and so forth.
In general, for element ix it holds that:

1

1 n

i i ij j
j iii

x y xβ
β = +

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
∑ for 1, 2,...,1i n n= − − .

Source code of class LU_Decomposition.java

The solution procedure has been implemented as follows:

// include this source file to the linear algebra package

package anne.linalg;

final public class LU_Decomposition
{

 public static DoubleVector solve (DoubleMatrix A, DoubleVector b)
 {

 // constants declaration

 final int N; // number of rows of the square matrix
 final double TINY_NUMBER = 1.0E-20;

 // variable declaration

A.V. van de Graaf Structural design of reinforced concrete pile caps

91

 int pivotRow = 0;
 DoubleMatrix LU; // decomposed matrix
 DoubleVector y; // solution vector
 DoubleVector scaleFactors; // vector which stores the implicit
 // scaling of each row of A

 // check the dimensions of matrix A and vector b

 if (A.getNumRows () != A.getNumCols ())
 {

 throw new RuntimeException ("Error: matrix in module
 LU_Decomposition is not square.");

 }

 if (A.getNumCols () != b.getNumEntries ())
 {

 throw new RuntimeException ("Error: number of columns in matrix
 does not match number of entries in
 vector in module
 LU_Decomposition.");

 }

 // make a copy of matrix A and vector b

 LU = new DoubleMatrix (A);
 y = new DoubleVector (b);

 // create an empty scale factor vector

 N = y.getNumEntries ();
 scaleFactors = new DoubleVector (N);

 // calculate implicit scale factor for each row of A

 for (int i = 0; i < N; i++)
 {

 double largest = 0.0;

 for (int j = 0; j < N; j++)
 {

 double temp = Math.abs (LU.getEntry (i, j));
 if (temp > largest)
 {

 largest = temp;

 }

 }

 if (largest == 0.0)
 {

 throw new RuntimeException ("Error: matrix in module
 LU_Decomposition is
 singular.");

 }

Structural design of reinforced concrete pile caps A.V. van de Graaf

92

 else
 {

 double temp = 1.0 / largest;
 scaleFactors.setEntry (i, temp);

 }

 }

 // perform decomposition of A in L and U

 for (int j = 0; j < N; j++)
 {

 for (int i = 0; i < j; i++)
 {

 double sum = LU.getEntry (i, j);

 for (int k = 0; k < i; k++)
 {

 sum = sum - LU.getEntry (i, k) * LU.getEntry (k, j);

 }

 LU.setEntry (i, j, sum);

 }

 double largest = 0.0;

 for (int i = j; i < N; i++)
 {

 double sum = LU.getEntry (i, j);

 for (int k = 0; k < j; k++)
 {

 sum = sum - LU.getEntry (i, k) * LU.getEntry (k, j);

 }

 LU.setEntry (i, j, sum);
 double temp = scaleFactors.getEntry (i) * Math.abs (sum);

 if (temp >= largest)
 {

 largest = temp;
 pivotRow = i;

 }

 }

 if (j != pivotRow)
 {

 LU = LU.swapRows (pivotRow, j);

A.V. van de Graaf Structural design of reinforced concrete pile caps

93

 y = y.swapEntries (pivotRow, j);

 }

 if (LU.getEntry (j, j) == 0.0)
 {

 LU.setEntry (j, j, TINY_NUMBER);

 }

 if (j != (N - 1))
 {

 double temp = 1.0 / LU.getEntry (j, j);

 for (int i = (j + 1); i < N; i++)
 {

 double temp2 = LU.getEntry (i, j) * temp;
 LU.setEntry (i, j, temp2);

 }

 }

 }

 // calculate solution vector

 for (int i = 0; i < N; i++)
 {

 double sum = y.getEntry (i);

 for (int j = 0; j <= (i - 1); j++)
 {

 sum = sum - LU.getEntry (i, j) * y.getEntry (j);

 }

 y.setEntry(i, sum);

 }

 for (int i = (N - 1); i >= 0; i--)
 {

 double sum = y.getEntry (i);

 for (int j = (i + 1); j < N; j++)
 {

 sum = sum - LU.getEntry (i, j) * y.getEntry (j);

 }

 double temp = sum / LU.getEntry (i, i);
 y.setEntry (i, temp);

 }

Structural design of reinforced concrete pile caps A.V. van de Graaf

94

 return y;

 }

}

Testing module LU_Decomposition

The module LU_Decomposition was tested by calculating example systems of linear
equations taken from literature. Two small examples are given here. The first example is
taken from Lay (2000) [7]. Consider the system A x b⋅ = , where

1 2 1
0 2 8
4 5 9

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 and
0
8
9

b
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

.

The module LU_Decomposition gives the following solution

29.000000000000018
16.00000000000001
3.000000000000027

x
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,

which is correct accepting a small round-off error.
The second example (taken from [19]) tests partial pivoting explicitly. Let

410 1
1 1

A
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 and
1
2

b ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

and consider the system A x b⋅ = . The solution provided by the module is

1.0001000100010002
0.9998999899989999

x
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,

which is correct and proves that the used algorithm is stable [19].

A.V. van de Graaf Structural design of reinforced concrete pile caps

95

 Appendix C: Matrix and vector classes in Java

This appendix provides the source code for the classes DoubleMatrix, DoubleVector,
IntMatrix and IntVector. Since variable types have to be specified inside a class, a
distinction has been made in matrices which contain double-precision numbers and which
contain integer numbers. The same applies to the Vector classes. The source code in this
appendix is inspired by [18].

Source code of class DoubleMatrix
// include this source file to the linear algebra package

package anne.linalg;

final public class DoubleMatrix
{

 private final double[][] array; // the 2D array
 private final int numRows; // number of rows
 private final int numCols; // number of columns

 // constructor for creating an empty matrix

 public DoubleMatrix(int numRows, int numCols)
 {

 this.numRows = numRows;
 this.numCols = numCols;
 this.array = new double[numRows][numCols];

 }

 // constructor for creating a matrix from an array

 public DoubleMatrix(double[][] matrix)
 {

 this.numRows = matrix.length;
 this.numCols = matrix[0].length;
 this.array = new double[numRows][numCols];
 for(int i = 0; i < numRows; i++)
 {

 for(int j = 0; j < numCols; j++)
 {

 this.array[i][j] = matrix[i][j];

 }

 }

 }

 // copy constructor

Structural design of reinforced concrete pile caps A.V. van de Graaf

96

 public DoubleMatrix (DoubleMatrix matrix)
 {

 this.numRows = matrix.numRows;
 this.numCols = matrix.numCols;
 this.array = new double[numRows][numCols];
 for(int i = 0; i < numRows; i++)
 {

 for(int j = 0; j < numRows; j++)
 {

 this.array[i][j] = matrix.array[i][j];

 }

 }

 }

 // method for getting number of rows

 public int getNumRows()
 {

 return this.numRows;

 }

 // method for getting number of columns

 public int getNumCols()
 {

 return this.numCols;

 }

 // method for setting the value of an entry

 public void setEntry(int i, int j, double value)
 {

 this.array[i][j] = value;

 }

 // method for getting the value of an entry

 public double getEntry(int i, int j)
 {

 return this.array[i][j];

 }

 // method for writing the matrix to the standard output

 public void showMatrix()
 {

A.V. van de Graaf Structural design of reinforced concrete pile caps

97

 for(int i = 0; i < this.numRows; i++)
 {

 for(int j = 0; j < this.numCols; j++)
 {

 System.out.print(this.array[i][j] + " ");

 }
 System.out.println();

 }

 }

 // method for interchanging two rows

 public DoubleMatrix swapRows(int i, int j)
 {

 DoubleMatrix matrix = new DoubleMatrix(this);
 double[] temp = matrix.array[i];
 matrix.array[i] = matrix.array[j];
 matrix.array[j] = temp;
 return matrix;

 }

}

Structural design of reinforced concrete pile caps A.V. van de Graaf

98

Source code of class DoubleVector
// include this source file to the linear algebra package

package anne.linalg;

final public class DoubleVector
{

 private final double[] array; // the 1D array
 private final int numEntries; // number of entries

 // constructor for creating a vector

 public DoubleVector(int numEntries)
 {

 this.numEntries = numEntries;
 this.array = new double[numEntries];

 }

 // constructor for creating a vector from an array

 public DoubleVector(double[] vector)
 {

 this.numEntries = vector.length;
 this.array = new double[numEntries];
 for(int i = 0; i < numEntries; i++)
 {

 this.array[i] = vector[i];

 }

 }

 // copy constructor

 public DoubleVector(DoubleVector vector)
 {

 this.numEntries = vector.numEntries;
 this.array = new double[numEntries];
 for(int i = 0; i < numEntries; i++)
 {

 this.array[i] = vector.array[i];

 }

 }

 // method for getting number of entries

 public int getNumEntries()
 {

 return this.numEntries;

A.V. van de Graaf Structural design of reinforced concrete pile caps

99

 }

 // method for setting the value of an entry

 public void setEntry(int i, double value)
 {

 this.array[i] = value;

 }

 // method for getting the value of an entry

 public double getEntry(int i)
 {

 return this.array[i];

 }

 // method for writing the vector to the standard output

 public void showVector()
 {

 for(int i = 0; i < this.numEntries; i++)
 {

 System.out.println(this.array[i]);

 }

 }

 // method for interchanging two entries

 public DoubleVector swapEntries(int i, int j)
 {

 DoubleVector vector = new DoubleVector(this);
 double temp = vector.array[i];
 vector.array[i] = vector.array[j];
 vector.array[j] = temp;
 return vector;

 }

}

Structural design of reinforced concrete pile caps A.V. van de Graaf

100

Source code of class IntMatrix
// include this source file to the linear algebra package

package anne.linalg;

final public class IntMatrix
{

 private final int[][] array; // the 2D array
 private final int numRows; // number of rows
 private final int numCols; // number of columns

 // constructor for creating an empty matrix

 public IntMatrix(int numRows, int numCols)
 {

 this.numRows = numRows;
 this.numCols = numCols;
 this.array = new int[numRows][numCols];

 }

 // constructor for creating a matrix from an array

 public IntMatrix(int[][] matrix)
 {

 this.numRows = matrix.length;
 this.numCols = matrix[0].length;
 this.array = new int[numRows][numCols];
 for(int i = 0; i < numRows; i++)
 {

 for(int j = 0; j < numCols; j++)
 {

 this.array[i][j] = matrix[i][j];

 }

 }

 }

 // copy constructor

 public IntMatrix (IntMatrix matrix)
 {

 this.numRows = matrix.numRows;
 this.numCols = matrix.numCols;
 this.array = new int[numRows][numCols];
 for(int i = 0; i < numRows; i++)
 {

 for(int j = 0; j < numRows; j++)
 {

 this.array[i][j] = matrix.array[i][j];

A.V. van de Graaf Structural design of reinforced concrete pile caps

101

 }

 }

 }

 // method for getting number of rows

 public int getNumRows()
 {

 return this.numRows;

 }

 // method for getting number of columns

 public int getNumCols()
 {

 return this.numCols;

 }

 // method for setting the value of an entry

 public void setEntry(int i, int j, int value)
 {

 this.array[i][j] = value;

 }

 // method for getting the value of an entry

 public int getEntry(int i, int j)
 {

 return this.array[i][j];

 }

 // method for writing the matrix to the standard output

 public void showMatrix()
 {

 for(int i = 0; i < this.numRows; i++)
 {

 for(int j = 0; j < this.numCols; j++)
 {

 System.out.print(this.array[i][j] + " ");

 }
 System.out.println();

 }

 }

Structural design of reinforced concrete pile caps A.V. van de Graaf

102

 // method for interchanging two rows

 public IntMatrix swapRows(int i, int j)
 {

 IntMatrix matrix = new IntMatrix(this);
 int[] temp = matrix.array[i];
 matrix.array[i] = matrix.array[j];
 matrix.array[j] = temp;
 return matrix;

 }

}

A.V. van de Graaf Structural design of reinforced concrete pile caps

103

Source code of class IntVector
// include this source file to the linear algebra package

package anne.linalg;

final public class IntVector
{

 private final int[] array; // the 1D array
 private final int numEntries; // number of entries

 // constructor for creating a vector

 public IntVector(int numEntries)
 {

 this.numEntries = numEntries;
 this.array = new int[numEntries];

 }

 // constructor for creating a vector from an array

 public IntVector(int[] vector)
 {

 this.numEntries = vector.length;
 this.array = new int[numEntries];
 for(int i = 0; i < numEntries; i++)
 {

 this.array[i] = vector[i];

 }

 }

 // copy constructor

 public IntVector(IntVector vector)
 {

 this.numEntries = vector.numEntries;
 this.array = new int[numEntries];
 for(int i = 0; i < numEntries; i++)
 {

 this.array[i] = vector.array[i];

 }

 }

 // method for getting number of entries

 public int getNumEntries()
 {

 return this.numEntries;

Structural design of reinforced concrete pile caps A.V. van de Graaf

104

 }

 // method for setting the value of an entry

 public void setEntry(int i, int value)
 {

 this.array[i] = value;

 }

 // method for getting the value of an entry

 public int getEntry(int i)
 {

 return this.array[i];

 }

 // method for writing the vector to the standard output

 public void showVector()
 {

 for(int i = 0; i < this.numEntries; i++)
 {

 System.out.println(this.array[i]);

 }

 }

 // method for interchanging two entries

 public IntVector swapEntries(int i, int j)
 {

 IntVector vector = new IntVector(this);
 int temp = vector.array[i];
 vector.array[i] = vector.array[j];
 vector.array[j] = temp;
 return vector;

 }

}

