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PREFACE 
 
The research presented in this report is the graduation thesis to obtain my master’s degree in 
Civil Engineering at Delft University of Technology in the Netherlands. Most work for this 
thesis was performed at the engineering office of Gemeentewerken Rotterdam. 
 
The main objective of the study was to discover whether or not large shield driven tunnels 
are more sensitive to snap through than smaller ones. A physical and geometrical non-linear 
model was used to analyse this subject. Additionally, during this research unexpected but 
interesting results concerning the segmental thickness were discovered. Moreover, a useful 
practical procedure to analyse snap through was developed. 
 
To me, it was a nice challenge to analyse snap through, which is a quite unknown 
mechanical problem for shield driven tunnels. 
 
I would like to thank the engineering office of Gemeentewerken Rotterdam for giving me the 
opportunity to conduct research at the company. Prior to this research, during the internship 
at Museumpark as well as during the graduation period, I had a great time. 
 
I would like to thank the members of my graduation committee for their useful comment, 
which resulted in a higher quality level. 
 
Especially I would like to thank Kees Blom for his personal guidance on the subject and 
enjoyable informal conversations where he turned out to be a true consultant in general. 
 
Finally, I thank my girlfriend and family for their support and understanding. 
 
 
Tim van der Waart
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SUMMARY 
 
Until the 1990’s the commonly used Dutch tunnelling methods were the cut and cover 
methods and the immersed tunnels. At the same time the Dutch government decided that 
shield driven tunnelling has a high potential in the crowded Dutch area. 
 
Tunnelling in soft ground conditions with a high water table (like in the Netherlands) generally 
employs a shield with excavation wheel as standard practice for the purpose of providing a 
safe working environment for the tunnellers, and for achieving more effective and efficient 
tunnel excavation. The entire tunnelling operation is done by a TBM (Tunnel Bore Machine). 
 
In 1964 Schulze and Duddeck described ring behaviour of shield driven tunnels by a 
collection of graphs. These graphs are used to design a shield driven tunnel. The method 
assumes that the tunnel remains circular and equilibrium of forces is guaranteed at all time. 
The failure criterion is based on the bending moment capacity. Blom [4] showed that a shield 
driven tunnel will not collapse after formation of a plastic hinge. Finally, the tunnel becomes 
unstable as a result of large deformations. This is a very explosive and dangerous failure 
mechanism which is called snap through. The current design method is only valid if reaching 
the bending moment capacity is decisive. Since snap through probably becomes more 
critical in case of large tunnel diameters, the question remains: “Are shield driven tunnels 
with large diameters more sensitive to snap through than smaller ones?” 
 
To answer this question, a physical and geometrical non-linear model was used to analyse 
different segmented rings surrounded by soil. This model takes into account soil loading, soil 
support, cracking of segments, yielding of reinforcement and deformations of segments and 
longitudinal joints. To increase bending moments and trigger snap through, the ovalisation 
loading is increased by small steps. This was done to find out which mechanism is decisive. 
 
The situation concerning snap through is worse than Blom [4] predicted. The safety factor   

is close to one, instead of 3  as Blom predicted for the BRT (Botlek Railway Tunnel). 

However, for different diameters, the   value varies to some extent. If 1 , it means that 
snap through and reaching the bending moment capacity occur at the same time. Therefore, 
a closer look at practical design methods is needed. It turned out that a linear elastic 
calculation always provides safe results. When non-linear longitudinal joints were added, it is 
more likely that the analysis provides unsafe results for tunnel diameters larger than 8 meter. 
Hence, shield driven tunnels with large diameters are more sensitive to snap through than 
smaller ones. A larger possibility exists that snap through takes place without any plastic 
hinge. 
 
Secondly, snap through is also influenced by the segmental thickness. The safety factor   is 
determined for many cases. Again a closer look at practical design methods is needed, since 
the reserve capacity is close to the critical point for snap through ( 1 ) or even smaller. It 

turned out that a linear elastic calculation provides safe results if 40isegd  D . When non-

linear longitudinal joints were included, the analysis only provides safe results for the interval 
221381  iseg Dd . If the segmental thickness over the internal diameter ratio does not 

fulfil these requirements, the corresponding analysis could provide unsafe results. 
Additionally, it was possible to determine the optimal segmental thickness. This research part 
confirms the correctness of the empirical design rule to determine the segmental thickness in 
relation to the radius. Materials are used most efficient if 22iseg Dd  . 

 



SNAP THROUGH OF LARGE SHIELD DRIVEN TUNNELS   

   8

Despite the wrong results, one can conclude that a linear elastic calculation provides s
results. More awareness of reality is required for everyone who takes into account non-line
longitudinal joints. Since it is not unthinkable that snap through is the decisive failure 
mechanism, it is very

afest 
ar 

 dangerous if one realises that practical methods to analyse a shield 
riven tunnel will not notice this failure mechanism. The tunnel design is probably based on 

 

f 
le. After 

calibrating the simple model, it was possible to develop a practical procedure to predict the 
right snap through inducement and corresponding load bearing capacity in no time. 

d
the wrong criterion. 
 
It takes a lot of time to determine the real load bearing capacity by using the advanced model
mentioned above. Therefore, a simple model to analyse snap through is developed. 
The model provides qualitative knowledge about the character of snap through and the load 
bearing capacity influenced by the soil, the segments, the longitudinal joints and the radius o
the tunnel. The model is able to indicate quantitative whether or not the tunnel is stab
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SAMENVATTING 
 
Tot de jaren 90 waren er in Nederland twee veel toegepaste tunnelmethodes: de 
zogenaamde ‘cut and cover’ methode en de zinktunnel. In diezelfde tijd bepaalde de 
Nederlandse overheid dat boortunnels veelbelovend waren in het dichtbevolkte Nederland. 
 
Het maken van boortunnels in zachte grond met een hoge grondwaterstand (zoals in 
Nederland) vereist meestal een schild met een graafwiel als basisuitrusting. Naast het feit 
dat dit moet leiden tot een veilige werkomgeving voor de bouwvakkers, is het ook bedoeld 
om effectiever en efficiënter te ontgraven. Het gehele tunnelbouwproces wordt uitgevoerd 
met behulp van een TBM (tunnelboormachine). 
 
In 1964 ontwierpen Schulze en Duddeck een aantal grafieken waarmee het gedrag van 
boortunnels (gemaakt met behulp van een schild) beschreven kon worden. Deze methode 
veronderstelt dat de tunnel rond blijft en dat krachtenevenwicht altijd gegarandeerd is. Het 
bezwijkcriterium is gebaseerd op het ontstaan van een plastisch moment in de lining. Blom 
[4] heeft laten zien dat een boortunnel niet instort na het ontstaan van een plastisch 
scharnier. Uiteindelijk zal de tunnel bezwijken door instabiliteit, ten gevolge van grote 
vervormingen. Dit zeer explosieve en gevaarlijke bezwijkmechanisme wordt doorklappen 
genoemd. De huidige ontwerpmethode is alleen geldig wanneer het bereiken van het 
plastisch moment ook maatgevend is. Het doorklapmechanisme wordt waarschijnlijk steeds 
kritischer wanneer tunnels een grotere diameter krijgen. De onderzoeksvraag is dan ook: 
“Zijn boortunnels met een grote diameter gevoeliger voor doorklappen dan kleine 
boortunnels?” 
 
Om deze vraag te kunnen beantwoorden is een fysisch en geometrisch niet lineair model 
gebruikt om verschillende gesegmenteerde ringen omgeven door grond te analyseren. 
Dit model houdt rekening met grondbelasting, ondersteuning door de grond, scheuren van 
het beton, vloeien van de wapening en vervormingen van de segmenten en de langsvoegen. 
Om het buigend moment te verhogen en doorklappen te ‘prikkelen’ is de ovaliserende 
belasting stapsgewijs opgevoerd. Deze werkwijze is toegepast om te kunnen bepalen welk 
mechanisme maatgevend is. 
 
De situatie met betrekking tot doorklappen is erger dan Blom [4] voorspelde. Hoewel de 
veiligheidsfactor   varieert voor de verschillende onderzochte diameters, liggen wel al deze 

waardes relatief dicht bij één, in plaats van 3   zoals Blom voorspelde voor de BRT 

(Botlek spoortunnel). Als 1 , dan klapt de tunnel door op moment dat ook een plastisch 
scharnier ontstaat. Daarom is het nodig om de praktische ontwerpmethodes nader te 
beschouwen. Het blijkt dat een lineair elastische berekening altijd voor veilige resultaten 
zorgt. Als er niet lineaire langsvoegen worden toegevoegd, dan is het meer aannemelijk dat 
de analyse resulteert in onveilige uitkomsten voor tunnels met een diameter groter dan 8 
meter. Dus, boortunnels met grote diameters zijn gevoeliger voor doorklappen dan kleine 
boortunnels. De kans is groter dat doorklappen optreedt zonder dat er een plastisch 
scharnier ontstaan is. 
 
Daarnaast wordt doorklappen ook beïnvloed door de dikte van de segmenten (lining). De 
veiligheidsfactor   is bepaald voor veel verschillende gevallen. Ook nu is het noodzakelijk 
om de praktische ontwerpmethodes nader te beschouwen, aangezien de reserve capaciteit 
erg dicht bij het kritische punt voor doorklappen ligt, of er zelfs onder. Het blijkt dat een lineair 
elastische berekening altijd veilige resultaten geeft als 40iseg Dd  . Wanneer niet lineaire 

langsvoegen worden toegevoegd, dan blijkt dat de analyse alleen veilige resultaten geeft als 
voldaan wordt aan de voorwaarde: 221381  iseg Dd . Deze twee praktische analyses 
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kunnen onveilige uitkomsten geven als de verhouding tussen de dikte van het segment en 
de diameter niet voldoet aan de bijbehorende voorwaarde. Daarnaast heeft dit deel van het 
onderzoek ook geleid tot het vaststellen van de optimale dikte van de segmenten. De 
juistheid van de empirische vuistregel om de dikte van het segment te bepalen als ratio van 
de diameter is aangetoond. De materialen worden het meest efficiënt gebruikt als 

22iseg Dd  . 

 
Ondanks de onjuiste resultaten kan er worden geconcludeerd dat de lineair elastische 
berekening de veiligste resultaten oplevert. Meer bewustzijn van de realiteit is noodzakelijk 
voor iedereen die niet lineaire langsvoegen meeneemt in de berekening. Omdat het in dit 
geval niet ondenkbaar is dat doorklappen het maatgevende bezwijkmechanisme van een 
boortunnel is, is het gevaarlijk om deze praktische methode te gebruiken, aangezien 
doorklappen niet opgemerkt wordt. In dit geval bestaat de kans dat het ontwerp van een 
boortunnel gebaseerd is op het verkeerde criterium. 
 
Wanneer het hierboven beschreven geavanceerde computermodel gebruikt wordt, neemt het 
veel tijd in beslag om de maximale belasting die de constructie kan dragen te bepalen. 
Daarom is een eenvoudig model ontwikkeld om doorklappen van boortunnels te kunnen 
analyseren. Dit model levert kwalitatieve kennis over het karakter van het doorklappen en de 
maximaal opneembare belasting die beide worden beïnvloed door de grond, de segmenten, 
de langsvoegen en de radius van de tunnel. Dit model is kwantitatief in staat om aan te 
geven of een boortunnel al dan niet stabiel is. Na het kalibreren van dit eenvoudige model 
was het mogelijk om een praktische procedure te beschrijven waardoor de juiste aanleiding 
van doorklappen en bijbehorende maximale opneembare belasting kunnen worden bepaald 
in zeer korte tijd. 
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1 INTRODUCTION 
 
1.1 Introduction to shield driven tunnels 
 
1.1.1 History 
Until the 1990’s the commonly used Dutch tunnelling methods were the cut and cover 
methods and the immersed tunnels. At the same time the Dutch government decided that 
shield driven tunnelling has a high potential in the crowded Dutch area. There are almost no 
surface disturbances by construction. The bored tunnel, and especially the shield tunnelling, 
was an addition to the traditional construction methods. Today’s tunnelling practice shows 
that shield driven tunnelling is well-applicable in the Dutch soft grounds with high water 
tables. Tunnelling in soft ground conditions with a high water table (like in the Netherlands) 
generally employs a shield with excavation wheel as standard practice for the purpose of 
providing a safe working environment for the tunnellers, and for achieving more effective and 
efficient tunnel excavation. 
 
1.1.2 Tunnelling process 
Essential aspects of basic tunnelling operation is ground excavation coupled with immediate 
control of the tunnel face and ground around the tunnel periphery by effective support, 
followed by removal of the excavated ground and erection of the permanent system (the 
lining). This tunnelling operation is done by a TBM (Tunnel Bore Machine, figure 1.1). At the 
front of the TBM the soil is excavated by the cutter wheel. The soil is removed by means of a 
worm wheel and conveyer belt. The shield of the TBM is a conical shaped steel cylinder and 
is pushed forward by hydraulic rams (jacks) which counteract on the lining. The tail void 
should be promptly filled with pea gravel and/or grout in order to maintain effective ground 
control. Since the TBM diameter is larger than the tunnel diameter, grout must be injected to 
prevent soil movement towards the tunnel that causes soil disturbances and settlements to 
the environment. When the TBM has axially advanced over a distance of a ring width 
(generally 1.5 to 2 m) a space is available in which a new ring can be erected. Several jacks 
are released to provide space for a new segment of the ring. The erector lifts the segment 
towards its final position, where the jacks are released. When the segment is secured by 
bolts, the jacks elongate until the newly placed segment is clamped. In a sequence all new 
segments are erected and a new ring is built. At this moment, the excavation process starts 
over again. The segmental supply is arranged from the start shaft through the tunnel part that 
is already constructed by use of small-track trains or especially designed cargo trucks. At the 
rear of the TBM the segments are lifted by a crane and transported to the erector. On the 
next page, in figure 1.2, some shield tunnelling definitions are shown. 

 
 
 

 

Figure 1.1 – Closed shield TBM with excavation wheel. 
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Figure 1.2 – Shield tunnelling definitions. 

1.2 Problem description 
In 1964 Schulze and Duddeck described ring behaviour of shield driven tunnels by a 
collection of graphs (figure 1.3 and 1.4). By means of these design graphs bending moments 
and normal forces could be retrieved for various depth projections of the tunnel and various 
ratios between the tunnel stiffness and soil stiffness. 

 
 

Figure 1.3 – Design diagrams for tangential bending moments and normal forces in case of bond (tangential support) 

 
 

Figure 1.4 – Design diagrams for tangential bending moments and normal forces in case of no bond (no tangential support) 
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These design graphs are still used in practice. In practice a rule of thumb is used as well to 
determine the segmental thickness. This is an empirical “design rule”. 
 

iseg Dd
20

1
  

 
One twentieth times the tunnel’s internal diameter is a rule of thumb to calculate the 
segmental thickness, simply because it works very well. The design graphs presented by 
figure 1.3 and 1.4 in combination with this rule of thumb result in the required amount of 
reinforcement. A calculation of the cross-section in ultimate limit state results in the bending 
moment capacity, which is called the plastic moment ( pULS MM  ). Nowadays, the bending 

moment capacity is still the failure criterion for a shield driven tunnel design ( ). pdesign MM 
 
This design method is based on the assumption that equilibrium is always guaranteed (no 
stability problems). According to this method, the ‘Ketel’ formula is always valid since the 
tunnel remains circular. Therefore, from a stability point of view the assumption is made that 
the tunnel is able to carry the normal force (hoop force) due to soil loading at all time. Since 
this method is based on a linear elastic (LE) calculation, one assumes that the results are 
always safe. 
 
The question pops up whether or not these assumptions are right. Imagine the situation in 
which the tunnel can not carry the tangential normal force. The tunnel would collapse! A 
heavily deformed tunnel (not circular anymore) is a scenario in which the tunnel rings are not 
able to carry the normal force. This failure mechanism is called snap through (figure 1.5), 
which is introduced by Blom [4]. 

 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 1.5 – Snap through 
 

 
The real behaviour of a structure is normally less stiff than a linear elastic calculation 
presents. Hence, for a certain loading, the real deformation is much more than the linear 
elastic calculation presents. Figure 1.6 shows the real stiffness behaviour for a structure in 
general and the stiffness behaviour according to the linear elastic calculation method. The 
absolute maximum load for this structure is indicated by  (big dot). realityFmax,
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The next question comes up whether or not the hypothetical failure mechanism (figure 1.5) 
can occur in reality. And, immediately the third question arises: If snap through is a possible 
failure mechanism, is it also a decisive failure? Blom [4] elaborated a second order elasto-
plastic calculation for the Botlek Railway Tunnel (BRT) with a more or less hypothetical 
loading case. He showed that snap through is a possible failure. The ring will not collapse 
after formation of the first plastic hinge. The load can be increased by a factor three before 
snap through occurs. Hence, the load bearing capacity of the structure is three times higher 
than the load corresponding to the formation of the first plastic hinge. One can conclude that 
snap through is a possible failure mechanism, but not decisive in this specific case (BRT). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding literature study [7] presented the ‘shape’ of the soil loading. The total load 
is a superposition of the uniform loading 0  and the ovalisation loading 2 . According to the 

design method mentioned above, bending moments were caused by the ovalisation loading 
only. By an arbitrary choice for 0  a certain value for 2  is needed to reach the bending 

moment capacity ( ). Blom [4] chose an initial value for pM 0  arbitrarily and increased 0  

as well as 2  in small steps to discover whether or not the bending moment capacity is 

reached at an earlier load stage than snap through ( 2, p 2,M snap through  ?). Since the bending 

moment capacity is the failure criterion, this must be true, without consideration whether or 
not the values for 0  and 2  are realistic. If not, the design rules are not valid anymore 

(unsafe). 
 
From the corresponding literature study [7] one can conclude that almost no knowledge 
about snap through of shield driven tunnels is available. Only Blom’s [4] hypothetical loading 
case makes one aware of this failure, though it was not decisive. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6 – Linear elastic vs real behaviour. This situation indicates  

     danger, since . 
pmax,reality M ,LE

F < F

Load 

LE 

Deformation

reality

? 

? 

LEM p
F ,  

realityFmax,  
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In modern world everything becomes larger, also tunnel diameters. This development of 
decreasing curvatures makes the snap through case probably even more dangerous. One 
supposes that tunnels with larger diameters are more sensitive to snap through than smaller 
ones. When larger tunnels were built, at a certain moment the increasing horizontal diameter 
and normal force will execute the explosive failure of snap through before the first plastic 
hinge evolves ( 2, 2, psnap through M  , illustrated by figure 1.6). This mechanism does not warn 

the surrounding people for collapse; suddenly it happens. 
 
1.3 Problem definition 
Snap through of shield driven tunnels is a relatively “new and dangerous” failure mechanism 
and will probably be more critical when tunnel diameter increases. At some point it will be the 
decisive failure of a shield driven tunnel. The question remains: “Are shield driven tunnels 
with large diameters more sensitive to snap through than smaller ones?” 
 
1.4 Objective 
The objective of this research is to discover whether or not large shield driven tunnels are 
more sensitive to snap through than smaller ones. 
 
1.5 Outline of this report 
Chapter 1 briefly explained what a shield driven tunnel actually is. Moreover, a likely 
shortcoming of the design rules with respect to snap through is explained in paragraph 1.2. 
Chapter 2 briefly introduces some parameters which influence the structural behaviour of the 
tunnel. The research framework is given as well. Chapter 3 presents an explanation of the 
model which is used to study snap through. Actually, an explanation is given on how to find 
the real load bearing capacity of a shield driven tunnel. An illustration of this value is given in 
figure 1.6; . All structural parts are described separately. Finally, a validation for the 

model concerning the concrete segments is given. Chapter 4 shows the results for the 
normal force, the bending moment and the relation between load and displacement. 
Afterwards, a clarification for these results is presented. Paragraph 4.4 describes the 
importance of analysing snap through in relation to the radius. Paragraph 4.5 explains the 
reserve capacity concerning engineering practice. The last paragraph of chapter 4 answers 
the research question mentioned in paragraph 1.3. Chapter 5 is about the most interesting 
parameter for a shield driven tunnel: the segmental thickness. This parameter is analysed 
similarly to the analysis in paragraph 4.4 and 4.5. Furthermore, the most efficient value for 
the segmental thickness related to the radius is determined. Chapter 6 is a simplification of 
the model explained in chapter 3. First, a simple model is developed. Secondly, the influence 
of several parameters on snap through will be analysed. Finally, a clear practical procedure 
to consider snap through is introduced. Chapter 7 gives an overall conclusion and 
recommendations from several perspectives. In the end, all references as well as five 
appendices which are directly or indirectly related to this research are presented. 

realityFmax,

 
Keywords: shield driven tunnel, snap through, reserve capacity, radius, segmental thickness.
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2 SYSTEM BOUNDARIES 
 
2.1 Parameters 
Radius 
The radius of the tunnel is the most important parameter for this research. If the radius of a 
tunnel increases, the curvature decreases. This probably implies that the lining becomes 
more sensitive to snap through failure. 
 
Stiffness ratio between the soil and the concrete lining 
A tunnel is mainly loaded by soil and water pressure. Since these loads differ around the 
ring, bending occurs, which causes ovalisation. Shield driven tunnels are very sensitive to 
this ovalisation pressure. Relatively small load differences in comparison with the uniform 
pressure bring on huge bending moments and deformations. The stiffness ratio between the 
soil and the concrete is highly important in this case. When the soil is relatively stiff it attracts 
more (ovalisation) load, which reduces the bending moment in the ring and increases the 
normal force. When the soil is relatively weak, it is just the other way around. Regardless the 
stiffness ratio, the ground at the sides of the tunnel will always have a positive influence on 
the ring behaviour. In case of ring support (by the surrounding soil), the ovalisation loading 
which causes the first plastic hinge, is seven times larger than in the case without support 
(40% versus 6% of the uniform loading, in both cases acting on a single segmented ring). If 
stability is not an issue, the compressive stresses become critical. This can be explained by 
the fact that the ring loses stiffness due to the plastic hinges. The soil becomes relatively stiff 
and starts to compensate the ovalisation loading and only normal forces remain. [8] 
 
Compressive strength 
If the compressive strength increases, the cross-section can sustain higher stresses. 
Therefore, the bending moment capacity increases. Since there is a positive correlation 
between the compressive strength and the Young’s modulus, the Young’s modulus will 
increase too. The stiffer cross-section will attract more forces from now. It turns out that if the 
capacity of the cross section increases, the bending moments increase even more. Hence, 
increasing the compressive strength has a negative influence on safety [1]. However, the 
bending moment capacity is reached at an earlier load stage. Therefore, there is less chance 
that snap through will occur as decisive failure. 
 
Longitudinal joints 
These joints are in between the segments and weaken the bending stiffness of the 
homogeneous ring. Janβen developed a method to describe the rotational stiffness of the 
longitudinal joints. As long as the stress due to the compressive normal force (hoop force) is 
larger than the maximum stress caused by bending moment, the rotational stiffness is 
constant and the joint is closed. 
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A gap will develop if the normal force is out of the neutral force centre. The developed tensile 
stresses due to the bending moments exceed the compression stresses due to the normal 
forces. If this is happening, a gap develops and the rotational stiffness will also depend on 
the rotation itself and becomes non-linear. The bending stiffness of the ring reduces even 
more. 
 

   19



SNAP THROUGH OF LARGE SHIELD DRIVEN TUNNELS   

   20

2
2

9 1

8

t c
t

r

M
bl E

Nl
c

N

 
 

  M   under the condition that    under the condition that  
tcblE

N2
  

 
It is obvious that the bending stiffness of a homogeneous ring also depends on the number 
of longitudinal joints ( ). Every joint is a weak spot in the ring; more joints means less 
bending stiffness. 

n

 
Angle of support 
Since the ovalisation loading causes bending moments, the horizontal diameter increases 
(lying egg). Therefore, the soil at the sides of the tunnel is compressed and will support the 
tunnel rings. Since the ovalisation loading is dominant for the radial deformations, the points 
for which the sign of the deformation changes are about  above and below the sides of 
the ring. The ground supports the ring over an angle of approximately 90  at both sides. The 
angle of soil support is quite important since the soil (stiffness) has a lot of influence on 
structural behaviour of the ring. 

45


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Loading 
The uniform loading ( 0 ) causes normal forces (‘hoop’ forces). Due to these normal forces 

the ring shrinks a bit, but stays circular (see , figure 2.1). The ovalisation loading (0u 2 ) 

causes bending moments. Due to this load the ring starts to bend and gets an oval shape 
(see , figure 2.1). If the ovalisation loading increases, the horizontal diameter of the oval 
increases as well and simultaneously the curvatures at the top and bottom decrease. At a 
certain moment, snap through takes place (with or without  plastic hinges). If the uniform 
loading increases too, the negative effect of the ovalisation loading reduces a bit, since there 
is extra pressure at the sides of the ring to maintain a circular shape. In order to study snap 

2u

 

0  
2    

  
0u  

2u  u  

 

Figure 2.1 – Load on tunnel ring (upper part) and deformations of the tunnel ring due to the load (lower part). 
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through (real load bearing capacity) in relation to the failure criterion according to the current 
design rules, the uniform loading is constant (chosen arbitrarily) and the ovalisation loading 
increases stepwise. 
 
2.2 Botlek Railway Tunnel (BRT) 
This report has been written based on the recommendations of Groeneweg [6], Blom [4] and 
Consortium DC-COB [1]. Since Blom and Consortium DC-COB both considered the BRT to 
analyse the subject of snap through, the BRT configuration will be used again in order to 
answer the research question mentioned in paragraph 1.3. The radius will be varied several 
times to find out the influence on snap through. Three different tunnels will be studied: 

,  , . All parameters which depend on the radius change 
proportionally (table 4.1). To ensure consistency, the model created by Blom [3] is used 
partly in this research. The BRT is characterised by the parameters presented in table 2.1. 

BRTrr 5.0 BRTrr  BRTrr 2

 

tl m170.0  

intjob  m388.1  

n 7  segments 

ernalDint m65.8  

10/Rdseg   m4.0  

segmentb  m5.1  

bedding  90  

0 MPa5.0  

2 MPa05.0  

min,00    0.18% 

oedE MPa38  

Concrete strength B45 
 

Table 2.1 – Important BRT parameters 
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3 MODELLING OF RING BEHAVIOUR SURROUNDED BY SOIL 
 
3.1 Introduction 
The soil surrounding the tunnel has certain stiffness, just like the concrete lining itself. Stiff 
parts attract bending moments. Consequently the tunnel and soil will cooperate to bear all 
loads. These loads result from the soil’s mass and ground water pressure surrounding the 
shield driven tunnel. 
 
From literature [5] it is known that shear forces are of minor influence in a circular shield 
driven tunnel and will not turn out to be governing. Since the (combination of) tangential 
bending moments and tangential normal (or ‘hoop’) forces are governing for the structural 
behaviour in a ring, the focus of this research will be on these forces.  
 
In 1964 Schulze and Duddeck described ring behaviour of shield driven tunnels by a 
collection of graphs. By means of those design graphs bending moments and normal forces 
could be retrieved for various depth projections of the tunnel and various ratios between the 
tunnel stiffness and soil stiffness. When computers developed and the time needed for more 
comprehensive calculations decreased, the creation of models especially designed for one 
tunnelling project grew popular. The main difference in the models created by now is the 
modelling of the soil. In finite element models, soil is normally introduced as a continuum 
around the tunnel lining. In more uncomplicated framework analyses the soil has been 
reduced to springs and loads representing the supporting and loading effects of the soil on 
the tunnel lining (paragraph 3.4). This model focuses on the tunnel structure only; the 
developments of deformations and stresses in the surrounding soil are omitted. Finite 
element models however are able to return these soil results as well. 
 
Modelling of the tunnel lining itself can be realized by reducing the ring to a homogenous ring 
beam, a segmented single ring beam or a segmented double ring beam. The homogeneous 
ring beam is most simplified, but ignores peak moments which develop in the lining due to 
the presence of longitudinal joints and ring joints. It also ignores the large concentrated 
rotations in the longitudinal joint, which are important for the snap through behaviour. The 
segmented single ring beam model takes care of the longitudinal joints as well. This model is 
valid if no axial normal forces are present. Hence, no interaction between rings occurs via the 
contact areas in the ring joints. But, as a consequence of the masonry layout of the 
segments, the deformations of the adjoining rings will always differ, even when the loading 
on both rings is the same. Therefore, the so-called dowel and socket system is activated, 
resulting in very high stress spots that cause damage to the concrete. When segments 
damage, the rings are less connected and will act more like single rings. Since it takes very 
large deformations to activate the snap through mechanism [7], it is assumed that these 
deformations damage the segments so much, that no interaction between the rings is 
possible anymore. The segmented double ring beam model introduces the effects of both 
longitudinal joints and interacting ring joints in the calculation. However, the most appropriate 
way to answer the research question is using the segmented single ring beam model. 
 
In the paragraphs 3.2, 3.3 and 3.4 the creation of a segmented single ring beam model with 
soil interaction represented by loads and springs will be described. This model focuses on 
the tunnel structure. Paragraph 3.5 is about the validation of the model for the reinforced 
concrete segments. 
 
The software application Scia Engineer 2009.0 is used to process the framework analysis 
from this study. 
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3.2 Reinforced concrete tunnel segments 
The geometry of the segments is represented by so-called beam elements. The span of 
these beams is projected in between the longitudinal joints at both ends. Since these 
elements are straight by definition, a maximum number of elements is connected to simulate 
the curved shape of the segments. This optimised geometry of 84 beam elements generates 
most accurate displacements and internal forces. To model the bending stiffness of the 
reinforced concrete segments, every beam element is extended by a non-linear rotational 
spring (figure 3.1). This spring is able to model cracking, plasticity of the concrete 
compressive zone and yielding of the reinforcement. The bending stiffness of the beam 
elements itself is extremely high. As usually, the axial stiffness is modelled by the beam 
elements. Hence, the beam elements have a very high moment of inertia, but a normal 
Young’s modulus and normal cross-sectional area. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 3.2figure NM

EI

EA
 

Janβen joint

 
 

Figure 3.1 – Every beam element is extended by a rotational spring  
     (blue circle). The black circles are Janβen joints. 

 
With respect to this research, this framework analysis is the most time efficient way to model 
the reinforced concrete segments. The computational modelling is relatively easy and the 
calculation time is relatively low. During the calculation only iterations are necessary to take 
into account the geometrical non-linearity. The physical non-linearity is represented by the 
rotational springs. The adaptability of this model is very time efficient too. Almost any 
transformation of the model is possible by changing only a few numbers. Especially for this 
research, in which a lot of geometries must be analysed, it is required to use a time efficient 
and clear model like this. 
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Beam elements 
The axial stiffness ( ) of the beam elements is defined by the Young’s modulus and the 
cross-sectional area. 

EA

 

NEA
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mmNfE ck 10
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As mentioned before, the bending stiffness ( EI ) of the beam elements is extremely high 
since the moment of inertia is very high. The only way to obtain this, without changing the 
axial stiffness, is to find another combination of the segmental width and height, provided a 

cross-sectional area of . A very easy and practical solution is dividing the width by 10  
and multiplying the height by 10 . The moment of inertia is proportional with the height to the 

power three. Therefore, the bending stiffness increases with a factor: 

24.0 m

10010*10
1 3  . The 

next calculation is given to illustrate the possibility to obtain a relatively high bending stiffness 
without changing the axial stiffness. 
 

4933 1033.5400*1000*
12

1

12

1
NmmbhI   

Replaced by:        41133 1033.510*400*10
1000*

12

1
101012

1
NmmhbI   

   
22 4.0400000400*1000 mmmbhA   

 

Replaced by:        22 4.040000010*400*10
10001010 mmmhbA   

Non-linear rotational spring elements 
The rotational springs represent the bending stiffness of the reinforced concrete segments. 
The cross-sectional parameters are very important in this case. 
 

EIM   
 
This well-known constitutive equation is able to describe this behaviour in general. Since a 
non-linear constitutive relation is needed for this research, underneath a M  diagram for 
a constant normal force is presented. This cross-section calculation will provide more 
understanding about the non-linear bending stiffness of the segments. In general a 

 NM  comprises four straight lines. The break points of the line are characteristic 
situations. 
 
 The concrete starts to crack ( rM  and r ). 

 The reinforcement starts to yield ( yM  and y ). 

 Plasticity starts to develop in the concrete compressive zone ( cM , c , 31075. ). 1 c
 The ultimate limit state ( cuM , cu , 3105.3  ).  cuc 
 
By using the  NM  diagram one is able to calculate the bending stiffness in every 
situation. The bending stiffness decreases when the load increases. The reason for this is 
the increasing crack pattern and yielding of the reinforcement at a certain moment. 
Especially in this case, four situations must be analysed to determine the  NM  
diagram. 
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1) The fibre with the highest tensile stress; . 2/0 mmNc 
2) The reinforcement on the tensile side of the cross-section; . 2

1 /0 mmNs 
3) The design value for the compressive strength has been reached ( ). 31075.1 c
4) The ultimate limit state of the compressive zone has been reached ( ). 3105.3 cu
 
The   NM  diagram is carried out for the BRT for example. An elaboration is given in 
appendix C. The final result, the  NM  diagram, is shown in figure 3.2. The rotational 
springs, which are added to every beam element, are based on figure 3.2. But, the input 
must be a M  relation (bending moment versus rotation). Therefore,   is integrated over 
the length of one beam element.  
 
To simulate the changing normal force, several calculations, all with a different constant 
normal force, will be performed. Reality is a combination of these calculations. 

M-N-Kappa diagram (BRT)
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Figure 3.2 –  relation with a constant normal force of 2262.5kN (BRT). M - N - κ
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3.3 Longitudinal joints 
As mentioned before, the structural behaviour of the ring in the soil depends strongly on the 
stiffness of the ring. Since the longitudinal joints are weak discontinuities in the ring; the joints 
influence the ring’s structural behaviour. Hence, the longitudinal joints, which are in between 
two segments, bring on reduced stiffness compared to the homogeneous ring. 
 
The joint transfers a bending moment and a normal force by contact. The joint is unable to 
transfer tensile forces since the segments are not physically connected. The normal force 
prevents opening of the joint to some extend. However, in case of a relative high bending 
moment the joint will open. As a result, the stiffness of the joint is reduced. Modelling of a 
contact area usually means longer calculation time, which is undesirable. The model itself 
requires a lot of input time as well. 
 
A simplified solution has been presented by Janβen. The contact problem is reduced to the 
problem of a beam, which is unable to cope with tensile stresses. The depth of the beam 
equals the width of the joint (segmental width) and the height and width of the beam are both 
equal to the joint’s contact height. The contact behaviour in the longitudinal joint (also called 
Janβen joint) can be described by a simple non-linear rotational spring, which is more 
common and requires much less modelling and calculation time. The relation between 
rotation, bending moment and normal force is determined analytically. Next, this relation is 
translated into a spring stiffness of the rotational spring. An elaboration is given in appendix 
D. The analytical solution for the rotational stiffness is expressed by two formulas, each 
corresponding to a specific situation. Figure 3.3 shows a M  relation of a Janβen joint for 
the BRT. 
 
1) As long as the stress due to the compressive normal force (hoop force) is larger than the 
maximum stress due to the bending moment, the rotational stiffness is constant and the joint 
is closed. Hence, there is no gap in the joint: the rotational stiffness is constant (not 
depending on the occurring rotation in the joint). 
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2) A gap will develop if the normal force is out of the neutral force centre of the joint’s cross-
section. The developed tensile stress due to the bending moment exceeds the compression 
stress due to the normal force. If this is happening, a gap starts to develop and the rotational 
stiffness will also depend on the rotation itself and becomes non-linear. The bending stiffness 
of the ring reduces even more. Hence, there is a gap in the joint: the rotational stiffness is 
reducing as a function of the rotation. 
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Where:  = rotational stiffness rc
   = width of the contact area of the joint (segmental width) b
   = height of the contact area of the joint tl

   =  Young’s modulus of the concrete cE

  M  = bending moment 
   = normal force N

  = rotation in the joint 
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Longitudinal joint (BRT)
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Figure 3.3 – Janβen joint with a constant normal force of 2262.5kN (BRT). 
 

 
In theory it is possible that the second stage pass into a third stage in which the concrete in 
the joint becomes plastic. Most studies only take into account the first two stages. Moreover, 
when the second stage goes on (the rotation increases without consideration of plasticity), it 
describes almost the plastic behaviour of the third stage. The second stage acts a little bit too 
stiff, but the difference is unimportant. 
 
Obviously the Janβen method only focuses on the transfer of bending moments in the joint. 
Normal forces and shear forces are transmitted in a far more straightforward way. Provided 
that the joint is subjected to a pure compressive normal force the joint will not be noticed at 
all. The normal force is simply transferred from one tunnel segment to the other. The joint 
itself will not shrink by the compressive force since the influence zone is relatively small. The 
shear force is transferred by friction in the joint. The maximum shear force that can be 
transferred depends on the normal force and the contact surface of the joint. It is assumed 
that there is enough friction at all time to transfer the shear force. 
 

Nsf FF *  

 
This is a simple formula to determine the maximum shear force that can be transferred. 
Where:  = maximum shear force that can be transferred by friction fF

  s  = static friction coefficient between two concrete surfaces ( ) 6.0
   = The normal force in the Janβen joint. NF
 
For the BRT the normal force varies between 2300kN and 4200kN. Consequently the 
maximum shear force that can be transferred roughly varies between 1400kN and 2500kN. 
Since the maximum acting shear force is much smaller than these values, there is no 
problem at all by transferring it from one segment to the other. 
 
In the end, a longitudinal joint can be modelled by a rotational spring only (Janβen 
characteristics). The normal force as well as the shear force is transferred by connecting two 
beam elements to each other at places where a Janβen joint is situated. This will result in a 
stiff connection. Every ring of the BRT has seven segments and also seven Janβen joints. 

   28



  SNAP THROUGH OF LARGE SHIELD DRIVEN TUNNELS 

The equation for the spring stiffness of an open joint shows that the stiffness is related to the 
rotation, the bending moment and the normal force. However, the software application Scia 
Engineer only offers a non-linear rotational spring with a custom relation between rotation 
and bending moment. To simulate the changing normal force, several calculations, all with a 
different constant normal force, will be performed. Reality is a combination of these 
calculations. 
 
3.4 Soil interaction 
 
3.4.1 Soil loading according to Blom [2] 
The lining must be stable and resist the water pressure. The structural forces and 
deformations however are complex to determine due to time dependent behaviour of the soil 
and the phased construction stage. An exact determination of the structural behaviour is only 
possible with an integral calculation approach, but is hardly to be fulfilled because of the 
complexity. In the design practice for tunnel linings a far more practical (and traditional) 
approach is used. 
 
Even in the prefabrication stage a variety of loadings act on the segments, like de-moulding 
loading and lift and store loadings. During the construction stage also a variety of loadings 
act on the segments, like positioning loading, TBM jack loading and bold forces. Grout 
loading is important as well. The most dominant load during the serviceability stage is soil 
loading. Since the serviceability stage is the longest period in the segmental lifetime it should 
be aimed for that this stage is the most governing stage in structural design. For the purpose 
of this research, only a description of the soil loading is given. 
 
In figure 3.4 the case of a tunnel surrounded by soil is considered. Assuming that the vertical 
soil pressure has to be calculated at a certain depth, the vertical pressure is calculated by the 
weight of the soil overburden above this level. At the same depth there is water pressure. 
The effective vertical soil pressure is calculated by subtracting the water pressure from the 
vertical soil pressure. The local horizontal effective soil pressure is calculated by 
multiplication of the effective vertical soil pressure with the horizontal soil coefficient. The 
total horizontal soil pressure is the sum of the effective horizontal soil pressure and the water 
pressure. 
 

 

 

Figure 3.4 – Soil pressure on a ring of the lining. 
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The vertical and the horizontal soil pressure can be transformed into the radial and the 
tangential stress-loading components (figure 3.5). To activate the tangential loading 
component there must be a possibility to mobilise tangential friction between the soil and the 
lining. In several lining designs there has been an interesting discussion whether or not 
tangential loading occurs. The occurrence is expected to depend on all factors of soil 
properties, grout body properties and the interfaces between concrete and grout and grout 
and soil. Involving all tangential loading (in combination with the tangential soil reaction) 
could result in unrealistic lining dimensions. Even some existing linings would collapse due to 
this loading system. Some lining designs only involve a percentage of the full tangential 
loading (Botlek Railway Tunnel: 25%). 

 
The total radial component is: 

   2 2
, , ,cos sinr v h         

 
The total tangential component is: 

    , , , cos sint v h          

 
The structural model requires a definition of the loading in order to predict the internal forces 
and the deformations of the lining. Blom presents three approaches. The first approach 
makes use of a reduced vertical pressure on the lower half of the lining, the second approach 
assumes a constant vertical pressure but an increasing water pressure in relation to the 
depth and the third approach omits the floating due to water pressure. This third approach 
has been applied frequently, which gives a load system with pressure equilibrium in vertical 
and horizontal direction. One should think about the influence that the omission of floating 
has on the internal stress distribution and the deformations of the lining. 
 
To illustrate the influence of floating on the internal forces and deformations of the lining, it is 
assumed that a ring is loaded only by water pressure and the ring is uniformly supported by 
an elastic soil continuum. Only radial loading will act due to the water pressure. Next it is 
assumed that the soil support is only active in radial direction. From this point of view the 
floating component of the water pressure will only result in a translation of the lining in the 
supporting medium. It is stated that the floating component due to water pressure does not 
result in bending moments and ovalisation of the ring, since all loads act in radial direction. 
 
The question is: What values for active loading should be used in the calculations? 

 

Figure 3.5 – Transformations of vertical and horizontal loading to the radial and tangential component. 
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Due to floating the ring shifts upwards. The soil support on the upper part of the ring will 
increase (total pressure increases) while the soil support at the lower half of the ring will 
decrease (total pressure decreases). Finally, the vertical ring translation holds when the 
upward directed loading is equal to the downward directed loading. This means equilibrium 
of soil pressure on top, soil pressure at the bottom, self weight and floating. Since the self 
weight is very low compared to soil loading, the self weight is neglected. Hence, it is 
assumed that the self weight does not cause internal forces. The absolute vertical loading at 
the top and the bottom of the ring will then be equal to the vertical soil pressure at the centre 
of the ring: top bottom vc   . The horizontal loading at the sides of the ring is not influenced 

by the vertical translation of the ring: , 0*side vc eff wcK    . 

 
By determining the top and the side pressure, the uniform and ovalising radial pressure can 
be calculated. This is illustrated in figure 3.6. Realistic values are roughly: 

00.15 0.7MPa   and 20.03 0.15MPa  . However, 2  can be increased enormously 

by grout loading. The floating pressure component is called 1  and is omitted here. The total 

radial pressure around the ring is calculated with:    0 2 cos 2      . 

 
The uniform loading ( 0 ) causes normal forces only (hoop force; RN 0 ). Due to these 

normal forces the ring shrinks a bit, but stays circular (see , figure 3.7). The ovalisation 

loading (
0u

2 ) causes bending moments. Due to this loading the ring starts to bend and gets 

an oval shape (see , figure 3.7). If the ovalisation loading increases, the horizontal 2u

 
 

Figure 3.6 – The total loading on the lining is a summation of the uniform pressure  and the ovalisation pressure . 
0

σ
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Figure 3.7 – deformations of the tunnel ring as result of the loads in figure 3.6. 
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diameter of the oval increases as well and simultaneously the curvatures at the top and 
bottom decrease. At a certain moment snap through takes place, because the ring is not able 
to resist the normal force anymore due to the large deformations (ovalisation) of the ring 
itself. Hence, at a certain moment the deformed geometry is not able to create equilibrium 
anymore. As one knows, the deformed situation is affected by the second order effect (GNL) 
and the physical non-linear behaviour (FNL). If both the uniform and the ovalisation loading 
increase, the negative effect of the ovalisation loading slightly reduces, since there is extra 
pressure at the sides of the ring to maintain a circular shape. This is undesirable for this 
specific study on snap through, since bending as a result of the ovalisation loading is an 
important aspect. 
 
One of the failure mechanisms according to the current rules on tunnelling is the formation of 
a plastic hinge. Blom [4] shows that the opposite is true: the tunnel lining will not collapse 
after formation of a plastic hinge. Blom shows for the BRT that the load could even be three 
times higher (

pMULS ,2,2 3  ) before the ring collapses explosively as a consequence of 

snap through (approximately when three plastic hinges are present). Thus, for the BRT holds 
a reserve capacity of a factor 3. However, one of the reasons that the reserve capacity 
indicates a very safe situation is that Blom [4] increased the ovalisation loading as well as the 
uniform loading. 
 
In order to discover the reserve capacity for different rings, the load is dictated; 0  is 

constant and 2  increases in small steps until snap through has been occurred. Hence, to 
increase bending moments and trigger snap through, only the ovalisation loading is 
increased in this research. This was done to find out which mechanism is decisive. The 
reserve capacity can be expressed by a safety factor   (paragraph 4.4). If 1 , the ring is 

safe and the formation a first plastic hinge is decisive. If 1  , a dangerous situation can 
appear, since the unexpected snap through collapse will be the decisive failure mechanism. 
 
3.4.2 Soil support 
Relative stiff parts in a structure attract more internal forces than relative weak parts. Since 
there is a certain stiffness ratio between the ring and the surrounding soil, the soil loading is 
supported by the ring as well as by the soil itself. It seems to be quite strange that the soil 
can load the tunnel and support it against this loading at the same time. This can be 
explained by the fact that the soil loading reacts on the deformation of the loaded structure. A 
very simple loading case is considered. Imagine a homogeneous ring with a certain axial 
stiffness, only loaded by a radial uniform loading from the soil. Due to the radial uniform 
loading it is obvious that the ring will have a uniform compressive deformation (the rings 
‘shrinks’ a bit, but stays circular). Due to this compression the soil reaction is activated. The 
initial radial uniform loading will decrease due to the soil release. If compression is positive, 
the value of the equation underneath must be larger than zero, as soil can not bear tensile 
stress. 
 

0 reductioninitialtotal    Where:      2cos20 initial  

 
The reduction loading ( reduction ) is the result of the soil release and should be modelled with 

a continuum. Because this study focuses on the tunnel structure, a more practical model has 
been used. Blom [4] defined a solution to model the soil release by linear translational 
springs that support the periphery of the ring (bedding) against the initial loading ( initial ). 
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Where:  = integrated translational spring stiffness rk

   = Oedometer stiffness (soil stiffness during one-dimensional  oedE
compression test) 

  r  = Radius of the tunnel 
  s  = Soil stiffness reduction factor 

   = Surface for which the bedding is represented by the spring  rA rk
 
When the soil is modelled with springs instead of a continuum, special attention should be 
paid to the spring stiffness. The main difference is that the springs do not interact with each 
other, while this is established in the continuum model. By comparing the continuum model 
with the spring model, it turned out that the equation rEAk oedsrr   is useful in a frame 

analysis. A distinguish is made between uniform compression and ovalisation. In case of 
uniform compression the soil stiffness reduction factor has a value of 1s . In case of 

ovalisation the soil stiffness reduction factor has a value of 65.0s . In order to be 

consistent, 1s  is used in this research, since Blom [4] as well as Consortium DC-COB [1] 

adopted this value to analyse snap through. 

 

 

Figure 3.8 – deformations of the tunnel ring as result of the loading. 

It is assumed that the soil on top of the tunnel follows the deformation of the tunnel. Hence, 
there is no soil release and the final loading (after deformation) equals the initial loading. To 
ensure equilibrium, the same holds for the soil under the tunnel. Therefore, the bedding is 
only projected at both sides of the tunnel. The bedding supports the sides over an angle of 

(figure 3.9), because these areas are roughly the places for which the tunnel 
compresses the soil (figure 3.8). Moreover, projecting the bedding on top and at the bottom 
of the ring as well, will not contribute to more accurate knowledge about the reserve capacity. 

90

 

 
 

Figure 3.9 – The soil supports the ring (bedding). 
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3.5 Validation of the model for the reinforced concrete tunnel segments 
The model for the concrete tunnel segments is a combination of beam elements and 
rotational spring elements. Figure 3.2 shows the cross-sectional behaviour of the segments, 
which is modelled by the rotational spring elements only. All beam elements are connected 
to just one rotational spring element. Therefore, all rotational spring elements are responsible 
for the physical non-linear behaviour of the segments over just the length of one beam 
element. 
 
To ensure the validity of this discontinuous model, a comparison is made with a more 
accepted continuous model (table 3.1). This model only uses linear beam elements to model 
the physical behaviour of the segments. For both models the relation between the 
displacement at the top of the ring (  ) and the loading (topu 2 ) is plotted (figure 3.10). Both 

models should indicate the same relation. Note: It is only possible to compare both models 
until the moment that the concrete starts to crack. The model with only beam elements does 
not take into account the reduced bending stiffness after the first crack. Hence, after the first 
crack both models could show different results. The first branch in figure 3.2 represents the 
uncracked cross-section. The corresponding maximum bending moment equals 153.47kNm. 
Both models should indicate the same results until this bending moment. 
 
 
 
 
 
 
 

 Continuous model Discontinuous model 
EA and EI EA Linear beam element 

- EI Non-linear rotational spring element 
 

Table 3.1 – reproduction of the properties for each model. 
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Figure 3.10 – The discontinuous model versus the more accepted continuous model. 
 

 
Both models almost show exactly the same result. It is concluded that the discretised 
character of the model with beam elements and non-linear rotational spring elements is not 
less accurate than the more accepted continuous model with only beam elements. 
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Moreover, the results with respect to the non-linear structural behaviour of this discontinuous 
model can be compared with the results according to Blom and Consortium DC-COB [1]. The 
load versus displacement curves called ‘Verticaal opgelegd A1’ and ‘Rectificatie thesis Blom’ 
in figure 3.11 are representative. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

 Figure 3.11 – Load ( ) vs. displacement ( ) according to Blom and Consortium DC-COB. 
top

u
2

σ
 

 
The curve used in this research, presented in figure 3.12, fits very well too the two mentioned 
curves in figure 3.11. Therefore, it is concluded that the non-linear structural behaviour of this 
discontinuous model performs accurate enough as well. Figure 3.12 is based on a 
calculation with a constant normal force ( kNN 3500 ). This value is approximately the 
average of the minimum and maximum occurring normal force in the ring (  

and ). 

kNN 5.2262min 
kNN 4200max 
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Figure 3.12 – Load ( ) vs. displacement ( ) according to this research. 
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4 RESULTS AND INTERPRETATION 
 
4.1 Introduction 
From a mechanical point of view it is possible to analyse a structure in four different ways. In 
order to clarify the model from chapter 3, a visualisation displayed in figure 4.1. Figure 4.1 
shows the behaviour of the ring for all four types of analysis. 
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 Figure 4.1 – The stiffness behaviour of four different types of mechanical analysis. 

 
 
 FL + GL. The concrete segments as well as the Janβen joints are linear elastic (FL). The 

Janβen joints are realised with the initial linear stiffness according to paragraph 3.3. 
Equilibrium of forces is based on the undeformed situation, which means a first order 
calculation (GL). Obviously the relation between displacement ( topu ) and force ( 2 ) is 

linear. Note: this statement only holds for relative small displacements since the program 

assumes that  tan    and  sin   . This is typical for a linear elastic (LE) 

calculation (appendix B). 
 
 FL + GNL. The same physical behaviour from the first analysis is also used in this 

analysis. But now, equilibrium of forces is based on the deformed situation, which means 
a second order calculation (GNL). This line is normally used to determine the buckling 
load of the structure; the line approaches the buckling load asymptotically. However, in 
this case the structure is statically indeterminate and linear elastic. Exactly the same 
behaviour as in figure 6.6 (paragraph 6.2) is observed for this analysis. The Janβen joints 
are too stiff compared with the bedding stiffness to obtain instability (snap through). The 
buckling load is infinitely. 

 
 FNL + GL. The physical behaviour of the concrete segments as well as the Janβen joints 

is non-linear (FNL). The segments are able to show reduced bending stiffness by 
cracking of the concrete and yielding of the reinforcement (paragraph 3.2). The Janβen 
joints are able to behave like the second branch of the M  relation as explained in 
paragraph 3.3. At a certain moment the structure reaches the plastic collapse load, which 
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is clearly demonstrated in figure 4.1. The same geometrical behaviour from the first 
analysis is also used in this specific calculation. 

 
 FNL + GNL. This fourth analysis is a ‘summation’ of all non-linear types of analysis 

mentioned above. The physical (segments and Janβen joints) as well as the geometrical 
behaviour is able to show non-linear relations. This analysis gives most accurate 
approach of reality. The model in chapter 3 is based on this type of analysis and 
corresponds to the weakest relation between displacement and force (figure 4.1). 

 
Figure 4.1 is also a qualitative control of the analysis. The line corresponding to FL + GL 
must show the stiffest behaviour and the line corresponding to FNL + GNL must show the 
weakest behaviour. The lines corresponding to FL + GNL and FNL + GL must be somewhere 
is between. Figure 4.1 fulfils this requirement. 
 
The well-known formula of Merchant provides extra confirmation about the accuracy of this 
analysis as well. 
 

pbc FFF

111
    

pbc ,2,2,2

111


  

 
This formula gives in a simple way the critical geometrical and physical non-linear failure load 
( ) as a function of the buckling load ( ) and the plastic collapse load ( ). cF bF pF

 

3497.0

111

,2





c

   MPaMPac 3202.03497.0,2   

 
This formula is only valid for simple structures. In most cases the critical collapse load is 
overestimated [9]. This statement confirms the result exactly.
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4.2 Results 
In order to obtain good results, three different diameters were considered. The three ring 
calculations were carried out for many constant normal forces. This is done to simulate the 
varying normal force in the segments and the Janβen joints. All calculations together 
provided a clear view of the ring behaviour influenced by the diameter and the normal force. 
 
This chapter is about the results of the calculations when using the model according to 
chapter 3. An interpretation of these results is presented as well. Afterwards a conclusion is 
formulated, based on the results and interpretation. 
 
First of all, the important internal forces were discussed. Figure 4.2 (left) shows the real 
normal force of the BRT is case of a low modelled normal force and small ovalisation 
loading. Figure 4.2 (right) shows the real normal force of the BRT is case of a low modelled 
normal force and large ovalisation loading, just before snap through occurs. 
 

 

 

kNN 2300  kNkNN 38002800   

 

Figure 4.2 – The real compressive normal force in the ring for the BRT. Left: modelled N=2262.5kN, ovalisation 

loading . Right: modelled N=2262.5kN, ovalisation loading . 
2

σ = 0.05M Pa
2

σ = 0.3202MPa

The visual normal forces of both rings in figure 4.2 can not be compared; the diagrams are 
not on scale with reference to each other. The abrupt change in the diagrams is a result of 
the x coordinate that changes sign. Figure 4.2 (left) shows a uniform distribution of the 
normal force along the ring periphery. Figure 4.2 (right) shows a less uniform distribution of 
the normal force along the ring periphery. The normal force in the top region has the highest 
value and the normal force at the sides is the lowest. The bottom normal force is somewhere 
in between. 
 
Figure 4.3 (left) shows the real bending moment of the BRT in case of a low modelled normal 
force and small ovalisation loading. Figure 4.3 (right) shows the bending moment of the BRT 
in case of a low modelled normal force and large ovalisation loading, just before snap 
through occurs. 
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kNmM 150max   
pMkNmM  72.411max  

 
 

Figure 4.3 – The bending moment (change) in the ring for the BRT. Left: modelled N=2262.5kN, ovalisation loading 

. Right: modelled N=2262.5kN, ovalisation loading . σ
2

= 0.05MPa
2

σ = 0.3202M Pa

The visual bending moments of both rings in figure 4.3 can not be compared; the diagrams 
are not on scale with reference to each other. Nearby, the shape of both diagrams in figure 
4.3 is quite different. 
 
Secondly, the relation between the ovalisation loading and displacement for the BRT is given 
in figure 4.4. Since snap through is expected in the top region, the displacement of the node 
at the top of the ring is considered. 
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 Figure 4.4 –  vs.  for the BRT, modelled with different values for the normal force. 
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Figure 4.4 shows that a larger normal force causes stiffer ring behaviour. The extreme values 
for  and topu 2  increase as well in case of a larger normal force.
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4.3 Interpretation 
Normal force 
The left picture in figure 4.2 shows a uniform distribution of the normal force. This is the 
result of the relative high uniform pressure 0 . This uniform pressure only results in a 

uniform normal force (hoop force), which is described by the “ketel” formula. The tangential 
normal force  is determined by consideration of the forces as shown in figure 4.5. 

Horizontally, these forces are definitely in equilibrium. The relation between  and 
0N

0N 0  

comes from vertical force equilibrium. 
 

        '000
2

2
00

2

2

00 /11sin2cos mNrNrrNrdN 












  

 
The tangential normal force is given in force per unit length of the ring; rN 0 , where r  is 

the radius of the ring. . This is quite close to the actual v
of N 23 e the ovalisation pressure 2

kNN 5.2262525.4*105.0 6  alue 
 SinckN00 .   is very low, almost no bending occurs

As a consequence, there are almost no reaction forces from the bedding. Therefore, the 
modelled normal force almost equals the actual normal force. 

. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The right picture in figure 4.2 shows a less uniform distribution of the normal force. This is the 
result of the increased ovalisation pressure, which is now of the same magnitude as the 
uniform pressure. The primary effect of the ovalisation pressure is the occurrence of bending 
moment along the ring. As a consequence of the bending moment, the ring starts to deform 
and gets an oval shape (“lying egg”). The sides of the ring were pushed outwards into the 
soil, which activates the bedding. So, the secondary effect is that the bedding starts to resist 
this deformation, because the active or neutral soil pressure shifts towards more passive soil 
pressure (the soil stiffens). The normal force in the top and bottom region increases most. 
This is explained by figure 4.6. 
 
Due to the configuration of the Janβen joints in this ring; the top region has less bending 
stiffness than the bottom region. Therefore, the top region deforms easier and pushes more 
into the soil (more bedding reaction forces). Hence, the top region experiences even more 
normal force than the bottom region. This is perfectly expressed by the right picture in figure 
4.2. 

 
 

Figure 4.5 – Uniform compression 
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-- 

-- 

 
 

Figure 4.6 – The increasing normal force (large arrows) in top and bottom region due to the  
      bedding reaction forces (small arrows). 

It is concluded that the normal force in the ring depends on the uniform pressure as well as 
the bedding (stiffness). The stiffness of the bedding defines the relation between the 
deformation of the ring and the increasing normal force. Note: the normal force is completely 
determined by the soil properties ( 0  and the bedding stiffness). This is not surprisingly at 

all, since internal forces are always caused by the (external) loading. 
 
Bending moment 
The left picture in figure 4.3 shows a bending moment that belongs to a homogeneous ring, 
subjected to ovalisation. This statement is quite obvious since the ovalisation loading is very 
small, relative to the uniform loading. The relative high uniform loading provides the ring high 
bending stiffness because the normal force is very high. Since the ovalisation pressure is 
relatively low, there is also little impulse to bend the ring. There are barely any stiffness 
differences along the ring. So, a high loading ratio ( 20  ) has a positive influence on 

physical behaviour of the ring. Especially the Janβen joints are able to show stiff behaviour in 
case of high loading ratio. As a consequence the ring will not deform very much. This fact 
has also a positive influence on geometrical behaviour. Since the ring remains quite circular, 
it is able to carry the load even better. It turned out that a higher ratio between the uniform 
loading and the ovalisation loading ( 20  ) results in more homogeneous ring behaviour. A 

stiffer bedding also contributes to more homogeneous ring behaviour since it resists 
ovalisation. This effect will be stronger when the bedding is stiffer. 
 
The right picture in figure 4.3 shows a bending moment that differs a lot from the left picture. 
The bending moment changes sign more frequently. The reason is a low loading ratio, which 
means relative low bending stiffness to resist ovalisation. Especially the Janβen joints are too 
weak to maintain the circular shape of the tunnel in case of relative high ovalisation loading. 
As one knows, stiff parts (segments) attract more internal forces than weak parts (Janβen 
joints). Since there are stiffness differences along the ring, the bending moment distribution 
has been changed. 
 
It is concluded that the bending moment distribution depends on the corporation between the 
segments, the Janβen joints and the bedding. Actually, the bending moment distribution 
depends on the stiffness differences between the segments, the Janβen joints and the 
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bedding. This is always the case when a statically indeterminate structure is considered. The 
magnitude of the bending moment is caused by the (external) loading. 
 
Load versus displacement 
Figure 4.4 shows that a larger normal force causes stiffer ring behaviour. This behaviour can 
be explained very easily by the fact that a larger normal force will increase the bending 
stiffness of the segments and the Janβen joints. Hence, the entire ring attracts more internal 
forces while the deformations are relatively low. 
 
The maximum values for  and topu 2  increase as well in case of a larger normal force. This 

can be clarified by comparing the ring behaviour for a low and a high normal force. 
 
The ring corresponding to the line for N=2262.5kN snaps through just after formation of the 

first plastic spot in the two upper segments ( , figure 4.7). This is the result of 

an intense decrease of the bending stiffness. At this point the ring is not able to attain 
equilibrium of forces anymore. The collapse is induced by the changing physical properties. 

31075.1 c

 
The ring corresponding to the line for N=4200kN snaps through when already five plastic 

spots have been developed in both upper segments ( ). The highest 

value for the bending moment is indicated in figure 4.7. This is the result of much less 
reduction of the bending stiffness in case of high normal force. The ring is still able to 
maintain equilibrium of forces after the formation of the first plastic spot in the two upper 
segments (figure 4.7). Thereby, also the bending moment capacity of the segments 
increases in case of high normal force. Finally, the ring collapses as result of the deformed 
geometry. 

33 105.31075.1   c
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Figure 4.7 – Cross-sectional behaviour of the segments in case of low and high normal force. 

 
Figure 4.7 clearly shows the occurrence of more deformation (which means larger ) and 

relative more bending moment (which means larger 

topu

2 ) just before snap through in case of 
a higher normal force.
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4.4 Reserve capacity 
One of the failure mechanisms according to the current rules on tunnelling is the formation of 
a plastic hinge. Blom [4] shows that the opposite is true; the tunnel lining will not collapse 
after formation of the first plastic hinge. The load can increase till snap through occurs. To 
quantify the reserve capacity, a safety factor   is defined. For 1  the ring is safe and the 

formation of the first plastic hinge is decisive. If 1  , a dangerous situation can appear, 
since the unexpected snap through collapse will be the decisive failure mechanism. Hence, if 

1  , snap through occurs without any plastic hinge in the lining. In this situation the safety 
factor is defined by the ratio between the maximum occurred bending moment in the lining 
just before snap through and the value for the theoretical plastic moment. 
 

1max
1 

pM

M
  

 
If 1 , the formation of the first plastic hinge occurs at an earlier load stage than snap 

through. In this situation, the safety factor is defined by the ratio between ultimate value 2  

(for which snap through occurs) and the value for 2  where the first plastic hinge develops. 
 

2, 2,
2

2, 2,

1
p

snap through st

first plastic hinge M

 
 

 
     

 
As mentioned before, three different diameters are considered for many constant normal 
forces; , BRTrr 5.0 BRTrr   and . Table 4.1 shows an abstract of all parameters. 
Note: parameters that depend on the radius change proportionally. Dependent on the 
diameter and the modelled normal force, a plastic hinge could develop before snap through 
occurs. In all situations, only one safety factor is determined (

BRTrr 2

1  or 2 ), as only one value for 

  is valid in a specific situation; 1   or 1 . Figure 4.8 shows the safety factor for all 
tunnels and all modelled normal forces. 
 

r=2.2625m (0.5BRT) r=4.525m (BRT) r=9.05m (2BRT) 

   

mmd seg 200 mmd seg 400 mmd seg 800   

mmlt 85 mmlt 170 mmlt 340   

45B 45B 45B   

MPaEoed 38 MPaEoed 38 MPaEoed 38   
2/7956.16 mMNkb 

2/3978.8 mMNkb 
2/1989.4 mMNkb 

 90bedding  90bedding  90bedding   

7segn 7segn 7segn   

MPa5.00  MPa5.00  MPa5.00    

%18.0min,0  %18.0min,0  %18.0min,0    

mmc 35 mmc 35 mmc 35   

mmrebar 10 mmrebar 10 mmrebar 10   
 

Table 4.1 – Abstract of the parameters for all three tunnels. 

   44



  SNAP THROUGH OF LARGE SHIELD DRIVEN TUNNELS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0,85 0,9 0,95 1 1,05 1,1 1,15

Gamma [-]

N
 [

kN
] r=2.2625m (0.5BRT)

r=4.525m (BRT)

r=9.05m (2BRT)

 2 1 

 
Figure 4.8 – Modelled normal force N vs. γ  for all three tunnel diameters. 

 
The value 1  starts to present a nonlinear relation with the normal force for values nearly 

equal to 1. For smaller values of 1 , the relation looks linear. 2  shows a linear relation with 
the normal force at all time. 
 
Figure 4.4 displays many relations between  and topu 2  for the BRT. The behaviour for 

N=2262.5kN is too weak, because the modelled normal force is too low. The behaviour for 
N=4200kN is too stiff, because the modelled normal force is too high. The real behaviour is 
somewhere in between. Quantifying this finding is very difficult. The same philosophy holds 
for figure 4.8. The lowest value for 1  is based on the minimum occurring normal force, 

rN 0  ( min,1 ). The highest value for 2  is based on the maximum occurring normal force 

( max,2 ). The values min,1  respectively max,2  are too low respectively too high. The real 

situation is somewhere in between these extreme values (grey area). For all three tunnels, 
these two extreme values are showed in figure 4.9. 
 
Figure 4.9 indicates that small radius and large normal force have positive influence on 
safety. A higher normal force increases the bending stiffness of the ring (segments and 
Janβen joints). However, the bending moment capacity of the segmental cross-section does 
not increase proportionally as a consequence of higher normal force. Figure 4.7 clearly 
explains the occurrence of more deformation and relative more bending moment just before 
snap through in case of higher normal force. This results in more reserve capacity. 
 
Figure 4.10 shows the relation between the ovalisation loading and the displacement at the 
top for all tunnels. This figure gives information about the stiffness of the tunnels. It turned 
out that a twice as large diameter behaves more than twice as weak. So, relative less 
bending moment is attracted by the segments, which results in less safety. 
 
The situation concerning snap through is worse than Blom [4] predicted. Figure 4.9 shows 
that   is quite close to one for all diameters, instead of 3  as Blom predicted for the BRT. 
Therefore, a closer look at practical design methods is needed (paragraph 4.5).
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Figure 4.9 – Radius vs. γ . ST = snap through. 
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Figure 4.10 –  vs.  concerning the radius. These Lines are valid for the lowest acting normal force in the ring.
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A second plastic hinge is not found in any calculation. Only the bottom of the ring was stiff 
enough to reach the bending moment capacity under certain conditions. In the top region, 

only plastic behaviour has been observed ( ). Depending on the 

normal force, on one or more spots in the two upper segments show this plastic behaviour.

33 105.31075.1   c
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4.5 Reserve capacity concerning engineering practice 
As mentioned before, this research is based on a FNL + GNL analysis; which is the best 
approach of real behaviour. However, in practice, most of the time a FL + GL analysis is 
carried out. Sometimes the analysis is extended by the non-linear behaviour of the Janβen 
joints, which is called SL + JNL + GL (segments linear + Janβen non-linear + geometrical 
linear). This means a first order calculation including linear elastic segments and non-linear 
Janβen joints. All three types of analysis are presented in figure 4.11. 
 
Both alternative models are too stiff. As a consequence, the bending moment in the ring is 
too high for the corresponding deformation. Therefore, the bending moment capacity is 
reached at an earlier load stage. Hence, the inaccuracy of the two practical analyses 
provides saver or less unsafe results. 
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Figure 4.11 – Two types of practical mechanical analysis versus the scientific mechanical analysis. 

 
The two horizontal lines represent the values 2  for which the bending moment capacity has 

been reached for both alternative analyses (
pM,2 ). In case of a FL + GL analysis, the 

bending moment capacity is reached at a very early load stage ( MPa1586.02  , only valid 
for the situation in figure 4.11). In case of a SL + JNL + GL analysis, the bending stiffness of 
the ring is reduced due to the non-linear Janβen joints. In this case, the ovalisation loading 
must be significantly higher to reach the bending moment capacity ( MPa324.02  , only 

valid for the situation in figure 4.11). These values will be compared with st,2 . This is the 

load for which snap through occurs in the scientific analysis (FNL + GNL). The safety factor 
can be determined. 
 

pM
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This safety factor is demonstrated in figure 4.12 for all tunnel diameters. Again, two extreme 
values, corresponding to the minimum and maximum occurring normal force in the ring, are 
presented for both types of practical analysis. The real   value is somewhere in between 
(grey area). 
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Figure 4.12 – Radius vs. λ  

Figure 4.12 indicates that the practical methods are almost safe at all time. The lines 
corresponding to the FL + GL analysis provides safest results. It turned out that the normal 
force is not important in this case. Figure 4.4 displays that a higher normal force increases 
the snap through failure load ( st,2 ). But, also the bending moment capacity increases in 

case of higher normal force (figure 4.7). Since this calculation is linear elastic, there is a 
linear relation between 

pM,2  and the bending moment capacity. Hence, st,2  as well as 

pM,2  increase in case of a higher normal force. Apparently these values increase 

proportionally. Therefore, the safety factor   is barely influenced by the normal force. For all 
normal forces and all diameters 2 . Note: the initial stiffness of the Janβen joints has the 
same value in both extreme cases. 
 
The lines corresponding to the SL + JNL + GL analysis provides least safe results. It turned 
out that the normal force is important in this case. Paragraph 3.3 as well as appendix D 
explained that a higher normal force increases the bending stiffness of the Janβen joints. In 
contradiction with the FL + GL analysis, the bending stiffness of the ring has increased in 
case of higher normal force. Therefore, the bending moment capacity is not increasing 
proportionally anymore. Thus, a larger safety factor is observed when both extreme 
situations of the SL + JNL + GL analysis are compared. 
 
With respect to the BRT, one can conclude that the safety factor is about two ( 2 ), if a 
linear elastic analysis (FL + GL) has been used for designing this tunnel. However, if a SL + 
JNL + GL analysis has been applied, the safety factor is in the range of 2999.0  .1 . 
Hence, although the BRT design is probably based on the right failure criterion, the reserve 
capacity is quite low in this case. Moreover, realistic soil loading will not cause snap through.
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4.6 Conclusion 
The situation concerning snap through is worse than Blom [4] predicted. It turned out that the 
  value is close to one, instead of 3  as Blom predicted for the BRT. However, the   
value varies to some extent for different diameters. Since   is close to the critical point for 
snap through, a closer look at practical design methods was carried out to discover whether 
or not practical assumptions are still valid. 
 
Despite the wrong results, it is concluded that everyone can safely go to bed when using the 
FL + GL (linear elastic) analysis, because snap through will never occur before the bending 
moment capacity has been reached ( 2 ). More awareness of reality is required for 
everyone who uses the SL + JNL + GL (linear elastic with non-linear Janβen joints) analysis. 
For larger tunnel diameters ( ) it is more likely that the analysis provides unsafe results 
(figure 4.12). A larger possibility exists that snap through takes place without any plastic 
hinge. 

4r m

 
This conclusion is only valid concerning the diameter of the tunnel. In this specific research it 
was not possible to determine the ‘exact’ reserve capacity for different tunnel diameters since 
the influence of the normal force can not be included. However, based on specific parameter 
sets it was possible to indicate minimum and maximum values for the reserve capacity. 
 
This research confirms the expectation that increasing the tunnel diameter has negative 
influence on safety of the design when using a practical way to analyse a shield driven 
tunnel. Since it is not unthinkable that snap through is the decisive failure mechanism, it is 
very dangerous if one realises that the practical methods to analyse a shield driven tunnel 
will not notice this failure mechanism. The tunnel design is probably based on the wrong 
criterion.
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5 OUT OF THE BOX 
 
5.1 Introduction 
The objective of this research was to discover the influence of the tunnel diameter on snap 
through failure concerning the reserve capacity. An answer is given in chapter 4. The 
conclusion in paragraph 4.6 is only valid for the parameter values given in table 4.1. The 
corresponding literature study [7] and the research itself provided the expectation that some 
other parameters have influence on safety as well. 
 
This chapter will describe the influence of the segmental thickness ( ) only. This is the 

most interesting parameter since the segmental thickness is determined by an empirical rule. 
One twentieth times the tunnel’s internal diameter is a rule of thumb to calculate the 
segmental thickness, simply because it works very well. 

segd

 

iseg Dd
20

1
  

 
The analysis is done by presenting an elaboration that looks like paragraph 4.4 and 4.5. 
 
5.2 segmental thickness 
This parameter has a lot of influence on the stiffness of the lining and the bending moment 
capacity. Paragraph 4.3 already explained the importance of the stiffness differences 
between the segments, the Janβen joints and the bedding. To study the relation between the 
segmental thickness and safety, the BRT is analysed with three different linings (table 5.1). 
Note: the height of the Janβen joint ( ) depends on the segmental thickness and changes 

proportionally. 
tl

 
 

mr 525.4 mr 525.4 mr 525.4    
 d  = 200mm d  = 400mm (BRT) d  = 800mm seg seg seg

 mmlt 85 mmlt 170 mmlt 340   
 

45B 45B 45B    
 MPaEoed 38 MPaEoed 38 MPaEoed 38   
 

2/3978.8 mMNkb 
2/3978.8 mMNkb 

2/3978.8 mMNkb    
  90bedding  90bedding  90bedding   
 

7segn 7segn 7segn    
 MPa5.00  MPa5.00  MPa5.00    
 

%18.0min,0  %18.0min,0  %18.0min,0     
 mmc 35 mmc 35 mmc 35   
 

mmrebar 10 mmrebar 10 mmrebar 10    
 

 

Table 5.1 – Abstract of the parameters for all three tunnels. 

 
 
The safety factor   is determined in the same way as mentioned in paragraph 4.4. These 
results are based on the extreme values for the normal force as well. Reality is somewhere in 
between (grey area). The safety factor  , which is based on a FNL + GNL analysis, is 
displayed in figure 5.1. 
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Figure 5.1 indicates that the segmental thickness can probably be optimised in order to 
create safest and most efficient results. It is quite remarkable that multiplying or dividing the 
segmental thickness by a factor two both result in less safety. Even the most favourable 
extreme situation ( max,2 , corresponding to the highest normal force) is unsafe for very thin or 

very thick linings. 
 
The tunnel lining with very thin segments ( 40segd D ) experiences very high normal stress, 

since the hoop force ( r0 ) is only supported by the reduced cross-sectional area. Chapter 4 

showed the positive influence of high normal force on the reserve capacity. However, in such 
thin segments the normal stress is extremely high which results in a very high concrete 
strain. A small bending moment is already enough to reach the plastic concrete strain 

( ), which reduces the bending stiffness. This phenomenon is explained in 

figure 5.2. In case of a low modelled normal force the lining collapses when the first plastic 
spot is observed in the two upper 
segments. Thereby, the initial bending 
stiffness is already very low, since the 
internal lever arm as well as the 
reinforcement amount is very small. 
The thin tunnel lining snaps through 
very easily (figure 5.3). In case of a 
high modelled normal force the plastic 
concrete strain is reached even faster. 
This results in four plastic spots in both 
upper segments when the ring snaps 
through. Safety however is not 
increased significantly. For both 
extreme situations the collapse is 
induced by the changing physical 
properties of the segments. 

31075.1 c

 

 
Figure 5.1 – segmental thickness vs.  γ

 
 

Figure 5.2 – M  vs. N  for reinforced concrete cross-sections p p

     with identical top and bottom reinforcement. [11] 
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The tunnel lining with very thick segments ( 10segd D ) experiences very low normal stress, 

since the hoop force ( r0 ) is supported by the increased cross-sectional area. Despite the 

relative low normal stress the segments are very stiff since the internal lever arm as well as 
the reinforcement amount is very large. The bending moment capacity is very high as well. It 
turned out that the bending moment capacity is too high for this tunnel. Even no plastic 
behaviour has been observed just before snap through occurs. Since the bedding is very 
weak now, relative to the segments and Janβen joints, the bedding prevents ovalisation 
relatively bad. The deformation due to ovalisation is absorbed by the Janβen joints since 
these are the weakest construction parts. The upper three Janβen joints have rotated so 
much that they behave like hinges. Finally, the two upper segments will snap through 
completely. As mentioned before, no plastic behaviour is observed, which implies a 
dangerous situation since the bending moment in the segments is not even close to the 
bending moment capacity. This results in a safety factor smaller than one. The same 
explanation holds for the analysis with a high modelled normal force. For both extreme 
situations the collapse is induced by the reduced rotational stiffness of the Janβen joints in 
the upper region. 
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Figure 5.3 –  vs.  concerning the segmental thickness. These Lines are valid for the lowest 

2
σ

top
u  

                      occurring normal force (N=2262.5kN). 

 
 
For very thin or very thick segments the   value is always smaller than one. Only for the 
original segmental thickness the   value could be slightly lager than one. The segmental 
thickness seems to be not very robust since a small change results in large safety 
differences. Therefore, a closer look at practical design methods is needed again (paragraph 
5.4). Paragraph 5.3 is about the optimal segmental thickness in relation to the rule of thumb 
mentioned before. 

   53



SNAP THROUGH OF LARGE SHIELD DRIVEN TUNNELS   

   54

5.3 Optimal segmental thickness 
Figure 5.1 indicates that the segmental thickness has an optimal value in order to create the 
highest   value. The magnitude of the   value gives an indication about the importance to 

analyse snap through in relation to the practical design methods. An optimal   value 
indicates the most efficient value for the parameter under consideration. In this specific case, 
a certain value for the segmental thickness provides the most efficient use of concrete and 
reinforcement. In paragraph 4.4 two possible   values are distinguished. 
 

1max
1 

pM

M
    2, 2,

2
2, 2,

1
p

snap through st

first plastic hinge M

 
 

 
     

 
Both   values, 1  as well as 2 , are based on real behaviour and indicates the degree to 

which the bending moment has developed when snap through occurs. Hence, a lager   
values indicates more efficient use of the specific segmental cross-section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some extra FNL + GNL calculations with different segmental thicknesses (close to the 
apparent optimum according to figure 5.1) were done to determine the optimal segmental 
thickness more accurate (figure 5.4). It turned out that the normal force is not important. Both 
extreme   values, min,1  as well as max,2 , corresponding to the minimum and maximum 

occurring normal force, show the same value for the segmental thickness as optimum. Only 
very small differences have been observed due to small inaccuracy concerning the maximum 
modelled normal force. Figure 5.5 displays the optimal segmental thickness for three rings 
with different diameters. 
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Figure 5.4 – This is actually figure 5.1 extended with some extra results. 
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Figure 5.5 demonstrates that the optimal value for the segmental thickness is quite close to 
the value indicated by the empirical design rule ( 20seg id D ). The optimal value seems to 

be linearly related to the diameter. The average ratio ,seg optimal id D  can be determined. 

 
0.195 4.33 1 22.2
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Table 5.2 shows the same ratio for many case studies. The segmental thickness over the 
diameter ratio for Dutch shield driven tunnels approaches the standard ratio of  
relatively close. However, most tunnels use a slightly smaller ratio of , which is 
extremely close to the optimal average ratio found in this research. One can conclude that 
the empirical design rule to determine the segmental thickness is a very good approach for 
most efficient material use. 
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Figure 5.5 – Diameter vs. segmental thickness. 

Tunnel project Internal diameter [m] Segmental thickness [m] Ratio

Second Heinenoord Tunnel 7.6 0.35 1/22 

Westerschelde Tunnel 10.1 0.45 1/22 

Sopia Rail Tunnel 8.65 0.40 1/22 

Botlek Rail Tunnel 8.65 0.40 1/22 

Tunnel Pannerdensch Canal 8.65 0.40 1/22 

Green Heart Tunnel 13.3 0.60 1/22 

North/South Metro Line Amsterdam 5.62 0.30 1/19 

RandstadRail Tunnel Rotterdam 5.8 0.35 1/17 

Hubertus Tunnel The Hague 9.4 0.45 1/21 
 

Table 5.2 – Segmental thickness over diameter ratio for Dutch shield driven tunnels. 
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5.4 Segmental thickness concerning engineering practice 
Figure 5.1 showed that the   value is close to one or even smaller than one. Therefore, the 
FNL + GNL analysis is compared with the practical methods. 
 
The safety factor   (explained in paragraph 4.5) is showed in figure 5.6 for the BRT 
configuration with many different segmental thicknesses. Again, two extreme values, 
corresponding to the minimum and maximum occurring normal force in the ring, are given for 
both types of practical analysis. The real   value is somewhere in between (grey area). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6 shows that the practical methods result in safer (or less unsafe) behaviour. This 
statement is true since both practical analyses show stiffer behaviour than the scientific 
analysis, while the bending moment capacity is the same in all analyses. Hence, 

pM,2  has a 

lower value when using a practical method, which results in more safety. 
 
The lines corresponding to the FL + GL analysis provides safest results. It turned out that the 
normal force is not important for relative thin linings ( 201iseg Dd ). Figure 4.4 shows that 

a higher normal force increases the snap through failure load ( st,2 ). But, also the bending 

moment capacity increases in case of higher normal force (figure 4.7). Since this calculation 
is linear elastic, there is a linear relation between 

pM,2  and the bending moment capacity. 

Hence, st,2  as well as 
pM,2  increase in case of a higher normal force. Apparently these 

values increase almost proportionally. Snap through is induced by a decreasing bending 
stiffness of the two upper segments. However, in case of relative thick linings 
( 20seg Dd 1i ), snap through is induced by a decreasing bending stiffness of the Janβen 
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Figure 5.6 – Segmental thickness vs. . Only valid for the BRT with varying segmental thickness. λ
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joints and the normal force points out to be more important. Moreover, the FL + GL analysis 
roughly provides safe results when the segmental thickness is larger than 40iD . 

 
The lines corresponding to the SL + JNL + GL analysis provide least safe results. It turned 
out that the normal force is important at all time. In paragraph 4.5 an explanation is given. 
The   value can not be determined for relative thick segments because the ring snaps 
through before the bending moment capacity has been reached. This has been observed for 
thinner segments when the extreme situation corresponding to the maximum occurring 
normal force is considered. For relative thin linings this analysis provides safest results. If 

221381 d iseg D , the results will be safe at all time. For segmental thicknesses outside 

this interval the analysis probably provides unsafe results. When the segments become very 
thin ( 401iseg Dd ) or very thick ( 171iseg Dd ) the results will be unsafe at all time. 

However, snap through in case of extreme thick segments ( 131iseg Dd ) would be noticed 

by the engineer since the non-linear behaviour of the Janβen joints is included. 
 
Note: the safest segmental thickness in case of a practical analysis (the maximums in figure 
5.6) does not correspond to the most material efficient segmental thickness (paragraph 5.3; 

mDd seg 395.09.21655.89.21  ). 

 
5.5 Conclusion 
Again, the situation concerning snap through is worse than Blom [4] predicted. It turned out 
that the   value is always close to one or smaller than one for all segmental thicknesses, 

instead of 3  as Blom predicted for the BRT. The segmental thickness is an exponential 
parameter; a small change results in large safety differences. Since   is close to the critical 
point for snap through, a closer look at practical design methods was carried out to discover 
whether or not practical assumptions are still valid. 
 
Despite the wrong results, it is concluded that everyone can safely go to bed when using the 
FL + GL (linear elastic) analysis. Snap through will never occur before the bending moment 
capacity has been reached if 40iseg Dd  . More awareness of reality is required for 

everyone who uses the SL + JNL + GL analysis (linear elastic with non-linear Janβen joints). 
For segmental thicknesses outside the interval 221381  iseg Dd it is more likely that the 

analysis provides unsafe results. A larger possibility exists that snap through takes place 
without any plastic hinge. Since it is not unthinkable that snap through is the decisive failure 
mechanism, it is very dangerous if one realises that the practical methods to analyse a shield 
driven tunnel will not notice this failure mechanism. The tunnel design is probably based on 
the wrong criterion. 
 
This conclusion is only valid concerning the segmental thickness of the tunnel. In this specific 
research it was not possible to determine the ‘exact’ reserve capacity since the influence of 
the normal force can not be included. However, based on specific parameter sets it was 
possible to indicate minimum and maximum values for the reserve capacity. 
 
This research confirms the correctness of the empirical rule to determine the segmental 
thickness in relation to the radius. Most efficient material use is reached if 22iseg Dd  .
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6 SIMPLIFICATION 
 
In chapter 3 a model for the tunnel ring surrounded by soil was chosen and explained as 
well. The calculations were done by using computer software, since the model is quite large 
and the analysis very advanced. A physical and geometrical non-linear analysis was carried 
out for a model that contains many elements. This chapter is about simplifying the computer 
model and reducing the engineering time needed to determine the real load bearing capacity. 
First of all, a simple theoretical model to analyse snap through failure will be introduced. 
Secondly, snap through is affected by the radius, the soil and the Janβen joints. The 
influence on the load bearing capacity and the snap through character (global or local 
instability) is analysed. In the end the load bearing capacity of this model is calibrated to 
some results corresponding to the computer model. A clear practical procedure to consider 
snap through is introduced. The software application Maple is used (appendix E). 
 
6.1 Modelling 
The simplest way to model a tunnel ring is to schematise one quarter of the ring as an infinite 
stiff straight beam, standing with an angle of  relative to the horizontal direction (figure 
6.1). The support at the left upper end of the beam (A) can be modelled as a rotational spring 

 and a hinge which can move freely in vertical direction. This support represents the 

connection with the other part of the tunnel. On this end, also a vertical load  is applied, 
which represents 

45

1c

F

2 . The support at the right lower end of the beam (B) can be modelled as 

a rotational spring  and a hinge which can move freely in horizontal direction. This support 

represents the connection with the other part of the tunnel. But, at this end of the beam the 
support is extended with a translational spring k  in horizontal direction, which represents the 
support from the soil at the sides. 

2c

 
 

B

A 

2c  

F

1c

k

l  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 6.1 – A simple model to analyse snap through.  
 
The behaviour of this model is given by three types of equations: kinematic, constitutive and 
equilibrium equations. 
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6.1.1 Kinematic equations 
Kinematic equations give the relation between the change in geometry (deformation) and the 
displacement caused by that change in geometry. In this case the rotation of the beam   
causes a vertical displacement  of point A of the beam (figure 6.2). In this case the beam is 
standing with an initial angle of  relative to the horizontal direction. The initial angle is 
defined as the variable 

w
45

 , since it can vary in general. The angle   , relative to the 
horizontal direction, determines the new configuration of the rotated beam. 

 
  

m

BB

A 

A 

   

w  

h w  

al  

w  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

Figure 6.2 – The rotation θ  of the beam causes a vertical displacement w  of point A.  
      Grey is the initial situation and black is the rotated situation. 

 
 
From this figure the next kinematic equations can be defined easily. First of all, the constant 
length of the beam m  is determined, in which  is the initial horizontal length. Parameter  
is the initial vertical length. 

l h

 

 cos

l
m


      cosa m l     

 

 tanh l       sinw h m      

 
6.1.2 Constitutive equations 
Constitutive equations give the relation between the internal forces and the change in 
geometry (deformation) caused by these internal forces. For convenience linear elastic 
stiffness behaviour of the rotational springs and the translational spring is presumed. R  is 
the reaction force in the translational spring  caused by the displacement . k a 1M  and 2M  

are the reaction moments in the rotational springs  and , caused by the rotation 1c 2c  . 

 
R ka    1 1M c    2 2M c   
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6.1.3 Equilibrium equations 
Equilibrium equations give the relation between the internal forces and the external forces. 
There must be equilibrium of forces (horizontally and vertically) and equilibrium of moments. 

 is the horizontal reaction force in A and hA vB  is the vertical reaction force in B. 

 

0hF         0hR A  hA R  

 

0vF         0vF B  vB F  

 

0
A

M       1 2 0F l a M R h w M        
 
 

1 2M R h w M
F

l a

  



 

 
Three sets of equations are available now. In order to obtain the solution of this stability 
problem, the kinematic equations must be substituted into the constitutive equations and the 
constitutive equations must be substituted into the equilibrium equations. Very useful and 

explicit functions for  w   and  F   are determined now. Only the length l  (radius of the 

ring), the angle   and the stiffness parameters k ,  and  are initial values which have to 

be quantified. 
1c 2c

 

     
 

sin
tan

cos

l
w l

 
 




         cos sin
arcsin

w l
w

l

 
 

 
   

 
 

 

 

 
 

 
 

 
 

1 2

cos sin

cos cos

cos

cos

l l
c k l c

F
l

   
 

 


 


  
   

 
 
  
 




  

 

The function  can be substituted into  w  F  , which will lead to the explicit function 

. This expression is too large to write down.   F w   F w

 
6.1.4 The creation of a continuous initial horizontal length  l
In order to predict the character of the snap through failure (global or local failure), different 
beams with a different initial angle ( 0 4   ) must be considered (figure 6.3). The result 

will be a maximum load , for every single beam with a different initial angle. That enables 
one to identify the most sensitive spot to snap through along the ring. 

F
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0n   

0 4
   

0 4
   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

  Figure 6.3 – Different initial angles  must be analysed to find out the weakest spot along the ring. 

 
As one can see in figure 6.3 and 6.4, the initial horizontal length l  will vary too. But, the initial 

horizontal length can be written as a continuous function  ,l  r , where r  is the radius of the 

specific ring that is considered. 
 
  

M 

B 

A 

r  

l  

  

2

2
   

2
   



  

tangent 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.4 – The features of the isosceles triangle ABM determine . l
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Figure 6.5 – Behaviour of the model for k = 10N/m  

     and 
1 2

c = c = 0Nm/rad . 

 

Figure 6.6 – Behaviour of the model for k = 0N/m  

     and 
1 2

c = c = 10Nm/rad . 

The feature that the summation of the three angles of a triangle is   radials has been used. 
Since the triangle ABM  is an isosceles triangle, the next features are known. 
 

2 2
2

AMB MAB ABM MAB


2               
 

  

   , cos cos 2
2

l r r r
      
 

 

 
Note: If the beam is standing with an initial angle of  relative to the horizontal direction, 
than the initial horizontal length is equal to the radius of that specific ring, l  (basic 
situation, figure 6.1). 

45
r

 
From now on, it is possible to describe the behaviour of the model in figure 6.1 for every 
combination of the basic parameters: , r  , ,  and . k 1c 2c
 
6.2 The influence of the basic parameters: , r  , k ,  and  1c 2c
Until now, only equations have been derived. This paragraph describes the qualitative 
influence that the basic parameters , r  , ,  and  have on the behaviour of the model. 

This will be clarified by some graphs. 

k 1c 2c

 
First of all, the influence of the stiffness parameters ,  and , and the interaction 

between them, will be analysed. The radius 

k

m
1c 2c

10r   and the initial angle 45 / 4rad     
(basic situation, figure 6.1). Two extreme situations can be considered. 
 k  has a certain value (10 /N m ) and 1 2 0 /c c Nm rad  . 

 The other way around: 0 /  and 1c  and 2c  have a certain value (both 10k N m /Nm rad ). 

 
 

 
igure 6.5, the first extreme situation, indicates a clear snap through behaviour. This graph 

xtreme 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F
looks just the same as the right graph in figure 1.8 from the literature study [7]: the 
characteristic graph for snap through of a well known model. Figure 6.6, the other e
situation, does not show snap through at all. This is not very strange, since the reaction 
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moments in the rotational springs always increase if the rotation of the beam increases (a
result of the increasing force F ). Hence, F  must increase in order to push point A 
downwards further, which means increasing w . 
 

s a 

 turns out that, if all stiffness parameters  and  and  are non zero values, a 

tiffness 

r 

Note: From the equilibrium equations 
t 

It k 1c

la

2c

r t

combination of figure 6.5 and 6.6 is observed. Figure 6.7 is a situation for which all s
parameters are not equal to zero. Still the same radius and initial angle are used. This 
specific combination of these parameters approximately represents the splitting point fo
snap through. If k  is smaller or the summation of 1c  and 2c  is larger than the values in 

figure 6.7, snap through will not occur. But, if k  is rger o he summation of c  and 2c  is 

smaller than the values in figure 6.7, snap through will occur. 
 

1

(equilibrium of moments) it is clear tha
superposition of 1M  and 2M  is allowed

both of them depends linearly on the rotated 
angle 

, since 

 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

However, the behaviour of the model shown in figure 6.6 and 6.7 is not representative for the 
real behaviour. The moments in the rotational springs will increase linearly with the rotation 
 . The rotational springs are theoretically able to increase till infinitely, which means that the

ap through failure does not occur anymore for some combinations of the stiffness 
parameters. In reality the weakest spots in the ring are the longitudinal joints, which c
modelled according to Janβen (paragraph 3.3). 

 

an be 
sn

M c , with: 
 

2

12
t cbl E

c      under the condition that  
2

c t

N

E bl
  , and 

2
2

9 1

8

t c
t

M
bl E

Nl
c M

N

 
 

    under the condition that  
2

c t

N

E bl
  . 

 
here: W b    Width contact area longitudinal joint (segmental width) 

   tl   Height contact area longitudinal joint 

  cE    Young’s modulus concrete 

   N   Normal force in ring 
  M    Moment in longitudinal joint 

 

Figure 6.7 – Behaviour of the model for k = 10N/m  

     and
1 2

c = c = 600Nm/rad . 
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The first branch f  o the M 

he longitudinal joints ca

1c  and c
e t

the behaviour of the model in the extreme case that 

 relation according to Janβen is also linear, the second branch 
is non-linear. The non-linear branch depends on the rotation itself. At a certain moment the 
longitudinal joint (rotational spring) has lost his stiffness almost completely. Therefore, the 
moment in t n increase barely. These more accurate stiffnesses for 
the rotational springs  are used from now on. Realistic values are used for all 

parameters to illustrat he behaviour of the longitudinal joints (figure 6.8). Figure 6.9 shows 
2

0 /k N m  and  and  behave like a 

Janβen joint with the characteristics from figure 6.8. The fact that this problem is geometrical 
non-linear explains the extreme increase of the force eaction moment 
in the rotational springs is already constant at that time. 

 
 
In reality, the soil stiffness is non-linear as well. Despite this fact, in this model the linear 
stiffness of the soil is not improved, since the system can fail as a consequence of snap 
through. This is very important in order to answer the question whether or not snap through 
occurs on a global scale. A realistic and frequently used value for the linear soil stiffness 
can be obtained [4]. 
 

1c

e 6.9. The r

2c

F  in figur

k  

2
oedEk

A r
  

 
Where: oedE    Oedometer stiffness of soil 

  r    External radius of the tunnel 
  A    Surface for which the bedding is represented by the spring . 
 
An assumption for  must be made to show the improved behaviour of the model when all 

stiffness parameters are not equal to zero. In this case 

k

k
10r m  and  because 

only the soil e upper half of the ring at modelled (one 

25 /A m m
 has been support at th

quarter of the ring). A realistic value for 
 the right side
Pa38oedE M . From the equation above it turns out 

that . The “new” behavio all 
parameters, is shown in figure 6.10. Figure 6.5 and 6.10 look exactly the same. The 
longitudinal joints have hardly any influence on the snap through behaviour. 

9.5 /k MN m ur of the model, by using the realistic values for 

 

Figure 6.8 –  relation according to Janβen. 

      

       and 

- θM

N = 1000kN , b = 1m , 
2

E = 15000N/mm

l
t

= 0.170m  

 

Figure 6.9 – Behaviour of the model fo

      and  and  according to figure 6.8 

r k = 0N/m  

1
c

2
c
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Now the influence of the stiffness parameters  and , and the interaction between 

them is clear. In the second step to study the behaviour of the model, the influence of the 
radius  will be analysed. Again two extreme situations will be considered. 
  has a certain value (

k , 1c 2c

r
k 9.5 /MN m ) and 1 2 0 /c c Nm rad   (figure 6.11). 

 The other way around:  and  and  according to figure 6.8 (figure 6.12). 

The initial angle 

0 /k N m 1c 2c

  is still 45 / 4rad  . 
 

 
Figure 6.11, the first extreme situation, c n increase of both coordinates w  and 

F  w The functions 
learly shows a

ith a factor 2. w   and  F   clarify this multiplication since l  is twice

as big. This statement does not hold for the second extreme situation. After the enlar
of the radius by a factor 2, the coordinate w  is enlarged by a factor 2, but the coordinate

 

gement 
 F  

 
 

Figure 6.10 – More realistic behaviour of the model. 

        and  and  according

       to figure 6.8 

k = 9.5MN/m
1

c
2

c

 

igure 6.11 – Behaviou mod or F r of the el f

                       k = 9.5MN/  and 
1 2

c = c = 0Nm/rad .
        red line: r = 10m , blue line: r = 20m  

m

 

Figure 6.12 – Behaviour of the model for k = 0MN/m

                 and 
1

c  and 
2

c  according 

figure 6.8. 
 line: r ine: r = 20m  

       to 
       red , blue l= 10m
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is decreased by a factor 2 (figure 6.12). But, also this behaviour is underpinned by the 

functions  w   and  F  . In order to obtain the same moment in the rotational springs, the 

load  must decrease, since the lever arm increase (  is twice as big). 
 

 dominates the system so much, that varying the radius does 
not influence the behaviour at all. Only the coordinates  and  are increased by a factor 

2. The functions 

F

It turns out t

r

w
hat the value for 

 

k
F

w   and  F   clarify this multipli  is twice as big. The total 

figure 6.13. Since the blue line is an enlargement of figure 6.10 
 the blue line looks exactly the 

re 6.5 as well. 

 

 
 
 
 
 
 
 

ep to study the behaviour of the mode nce of the initial angle 

cation si

figure 6.13),

l, the influe

nce l

enlargement is shown in 

same as the graph in fig

st

(figure 6.10 is exactly the same as the red line in 
u

 
 
 
 
 
 
 
 
 
 
 
 

 
 

In the last   will be 
ons will be considered, each of them with different 

rameters. 
 

analysed.

k

 A
values for the stiffness p

 has a certain value (

gain, two extreme situati
a

0.95 /MN m , 9.5 /MN m  or 95 /MN m ) and 

  and  and  according to the Janβen characteristics 

 But,  values (  or ). 

 
 

Ta tions  will  

1 2 0 /c c Nm rad  . 

The other way around: 

in figure 6.8.

0 /k N m
ree different

1c 2c

tl  has th 0.170m , 0.340m 0.510m

 
 
 
 
 
 
 
 
 

ble 6.1 shows six different situa  which be considered. The maximum load F  will
be plotted against the angle   (figure 6.14 and 6.15). The definition of   is given in figure 
6.4. 

 
 

Figure 6.13 – aviour of the model. 

  and  according

re 6.8
: ue line:

More realisti

      k = 9.5M

       to figu
       red line

c beh

m  and 
1

c

. 
10m , bl

N/
2

c

 r =  r = 20m  

 1 2 3 4 5 6 

k  0.95 /MN m  9.5 /MN m  95 /MN m - - - 

N  - - - 1000kN  1000kN  1000kN  

b  - - - 1m  1m  1m  

cE  - - - 2m 15000N15000 m/N 2/ mm  215000 /N mm

tl  - - - 0.170m  0.340m  0.510m  
 

Table 6.1 – Three different cases for each extreme situation will be considered. 
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All curves in figure 6.14 have the same shape. All three cases show a maximum load 0F  , 
if / 0.5 0.5       (initial angle 0  ). Hence, for the first extreme situation (1, 2 a

 do not influence the most sensitive spot to snap through. But, the 
ecreases w

nd 

3), different values for k
influence of k  in general d hen   increases, because  contributes less to the k  

maximum load F  when   increases. 

ll urves in figure 6.15 have the same shape. The maximum load  in all three cases tend 
  to infin

 
A  c F
to go ity, if / 0 0.5.5       (initial angle 0  ). Hen e, for the other extreme 

it tion (4,  an en characteristics f  and  do not influence the most 

en itive sp  to  of ses when 

c

 in general incre

s ua  5 d 6), different Janβ

snap through. But, the influence

o 1c

 and c

r 2c

s s ot 1c 2 a   

inc ases, b cause more to the maxi  when re e 1c  an 2c  contribute d mum force F   increases. 
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Figure 6.14 – F versus β . Situation 1, 2 and 3. 
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Figure 6.15 – F versus β . Situation 4, 5 and 6. 
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In reality all stiffness parameters are non zero values. It turns out that, if the realistic values 
from figure 6.13 are used, a minimum has been found for the maximum load  somewhere 
in the top region of the ring. This is a combination of situation 2 and 4. Fo h

F
r these hig    

values, the radius  is an important parameter as well (figure 6.16). 

 
Regardless the radius, figure 6.16 shows a local instability. According to this analysis the top 
region of the ring is the most sensitive part to snap through. Furthermore, figure 6.16 gives 
some information about the radius with respect to snap through. If the radius increases, the 
maximum load , which that specific structure can carry, decreases. A more local snap 
through failure is observed in case of a larger radius as well. 
 
Figure 6.16 shows the result for a regular situation. To be more precise about the range for 

r

F

 , with respect to the most likely place for snap through to occur, two extreme situations are 

considered. The result will be more accurate values for the boundaries of the range for   
(figure 6.17). 
 The lowest value for   (lower boundary of the range) is observed when  and  are 

small and the parameters for the Janβen joint are large. So: 

k
/N

r
0.95k M m , 3r m , 

1000N kN 1 , cE N , b m 215000 / mm  and 0.510tl m . The result will be the lower 

boundary for  . 

 The highest value for   (upper boundary of the range) is observ d when k  and r  are 

large and the p βen joint are small. So: 95 /k MN m
e

arame  for the Janters  , 30r m , 

1000N kN , 1b m , 215000 /cE N mm  and 0.100tl m . The result will be the upper 

boundary for  . 

Combination of situation 2 and 4
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Figure 6.16 – F versus 
 

β  curves show local instability for 

                        and  

k = 9.5MN/m , N = 1000kN , b = 1m , 
2

E = 15000N/mm  l
t

= 0.170m .
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Conclusion 
The objective of this paragraph was to obtain qualitative knowledge about the character of 

h and the load bearing capacity influenced by  and snap throug k , 1c , 2c r . Therefore, an 
paramete  were studied to nd out there 

n the behaviour of the model. 

 

analytical model was developed. All important rs  fi
influence o
 
To summarize all these findings with respect to global or local snap through and the failure 
load, the influence of the important parameters is given in table 6.2. The second column 
gives an indication on what happens with the character of the snap through failure, if the 
specific parameters increase. The same philosophy holds for the third column. 
 
 
 
 
 
 
 
 
 
 

 
 
The extreme range for   is determined by figure 6.17. The coordinates for   of these two

ich the coor inates of F  are minimum, are 0.22
 

convex functions, for wh d    and 

0.47  . Hence, th

0.22 0.47
e most sensitive region g the ring to snap thro ed as alon ugh is defin

     (or 0.14 0.015    ). If more realistic values were u ed (BRT), than s

 38.0  (or  06.0 ), which indicates a quite local snap through failure. 
 
This theoretical analysis is just an approach of the mechanism. The bending stiffness of the 
lining is not included, as well as the circular shape. The loading 2  and the soil support are 

concentrated in one point, which is of course not true. However, the model was sophisticated 
enough to attain the objective mentioned above. 
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Figure 6.17 – These two curves (F versus β ) determine the extreme boundary values of the range for β . 

Increase parameter Character of snap through Failure load F  

k  More local increase 

1c  More global increase 

2c  More global increase 

r  More local decrease 
 

ters on  theTable 6.2 – The influence of the parame  the character and  failure load of snap through. 
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6.3 Calibration 
The model from paragraph 6.1 will be calibrated for two different situations. In the first 
situation, snap through is induced by the reduced rotational stiffness of the Janβen joints in 
the upper region. Both upper segments will snap through completely, which is called Janβen 
failure from now on. In the second situation, snap through is induced by the changing 
physical properties of the segments. Both upper segments will snap through partly, since the 

bending stiffness has been reduced somewhere along both upper segments (

has been reached), which is called segmental failure from now on. These two situations are 
the only possible inducements for snap through. For each situation table 6.3 shows a specific 
parameter set. These two examples are already considered by using the computer model. 
 

 
 
 
 
 

 
 
 

 

 
 

 
 

 order to compare the computer m ion, both models must be linked. 
ence, the ov lisation loading

31075.1 c  

 

 
 
 
 

 
 
 
 
 

 

 
In odel with the simplificat
H a  2  m n as a function of the force ust be writte F  and the soil 

tiffness  must be written as a function of the reaction force s k R  and the horizontal 

.3.1 Janβen failure 
 th β

nd figure 

displacement a . 
 
6
The straight beam from e simplification is projected in between the two Jan en joints in 
order to simulate the Janβen failure. Hence, according to figure 6.4 a 6.18 

143   (and 7  ) since this tunnel ring has seven segments. For convenience the 

radial directed ovalisation loading 2  is integrated for 40    to determine the force F  
(figure 6.18 is i  appr

βen
). Th s oximately the average location for which the ring snaps through in 

 failure is the most global collapse possible. general. Note: the Jan
 

      2
4

02

4

0

2 2
12sin2

12cos 




rrrdF       r
FF 2

2   

Segmental failure Janβen failure 

kNN 5.2262  kNN 5.2262  

mr 525.4  mr 525.4  

mmdseg 400  (BRT) mmdseg 800  

mmlt 170  mmlt 340  

45B  45B  

MPaEoed 38  MPaEoed 38  
2/3978.8 mMNkb   2/3978.8 mMNkb 

 90bedding   90bedding  

7segn  7segn  

MPa5.00   MPa5.00   

%18.0min,0   %18.0min,0   

mmc 35  mmc 35  

mmrebar 10  mmrebar 10  
 

Table 6.3 – Abst ct of the parameters for botra h situations. 
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The soil stiffness s determined in a more advanced way by using the computer models. 
The normal force, shear force and displacement in horizontal direction in the Janβen joint 
(point B, figure 6.18) were registered for many load steps. The reaction force 

 
 
 
 
 
 
 
 
 
 

k  i

R  in the 
horizontal translational spring  is a summation of the horizontal force com

. Figure 6.19 shows the diagram for 
k ponents: 

horhor VNR  R  versus

g

 [kN/mm = MN/m] 

ined. 
 

 a . A fourth order expression is 

iven for this specific relation. 
 

9.1515098.18291.00022.0000006.0  
 
One must realise that the derivative of this expression provides a continuous expression for 
the stiffness of the horizontal spring k . 
 

234  aaaaR

098.18582.00066.0000024.0' 23  aaaRk
 
The Janβen joints in point A and B are modelled according to paragraph 3.3. The input is 
complete and the load bearing capacity according to the simple model can be determ

MPa

MPa

computer

simple

4836.0

6188.0

max,,2

max,,2








    28.1

4836.0

6188.0

max,,2

2 
computer

max,, simple
 

 
The simple model overestimates the load bearing capacity with 28%. This is an unsafe 

on.approximati

 

Figure 6.18 –  is integrated for 
2

σ 0 4   π  to etermine d  F . 
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he simple model assumes an infinite stiff lining without curvature. In order to eliminate the 
as ce of the i e , the computer odel for the Janβen 

failure is also calculated with infinite stiff segments. The expression for the spring  turns out 

Again the load 

T
inaccuracy  a consequen nfinite stiff b am m

k
to be a little bit different. 
 

729.154232.00039.0000012.0 23  aaak  [MN/m] 
 

bearing capacity can be determined. 
 

MPa

MPa

computer

simple

5121.0

5481.0

max,,2

max,,2








    07.1

5121.0

5481.0

max,,2

max,,2 
computer

simple




 

 
The simple model overestimates the load bearing capacity with just 7%. One can conclude 
that the inaccuracy of the simple model regarding the stiffness of the segments is 

. The remaining 7% inaccuracy is the result of the curvature which is neglected 
mination of the function 

%217 
and the inaccurate deter
28

 F2 . But, the approximation is still 
unsafe. 
 

R = -6E-06a4 + 0,0022a3 - 0,291a2 + 18,098a + 1515,9

0
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]

 
Figure 6.19 – R versus a, included a fourth order expression for R. 
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6.3.2 Segmental failure 
The whole analysis for the segmental failure is almost the same as the Janβen failure
analysis. From the computer model it turned out that 

 
4213   (and 212 

t represe
). 

Secondly, the Janβen joint is point B is replaced by a rotational spring tha nts
behaviour in the upper segment. A relation which is almost bi-linear (almost rigid plastic 
behaviour) is used for the 

 plastic 

M
lation is 

 diagram. Since Maple can only handle continuous 
functions, the bi-linear re simulated by the general function      yxM arctan , in 
which x  and  are constants. The constant  influences the stiffy y ness and the constant x  
influences the bending a  mu

extreme high stiffn stic behaviour starts if 

. Figure 6.2  shows the

moment cap

ess. The pla

0

city. The constant y st be a large number to obtain 
31075  , which means  initial 

kNm

.1c
M 44. 399  M

viour in point B (red line)
 diagram for the Jan

 segmental plastic beha
determined according to the Janβen failure analysis, by using the corresponding computer 
model. Afterwards, the load bearing capacity can be determined. 
 

 

βen joint in point A (blue 
. The spring stiffness k  is line) and the

1.441962.20678.00008.0 23  aaak  

MPa

MPa

computer

simple

3202.0

3611.0

max,,2

max,,2








    13.1

3202.0

3611.0

max,,2

max,,2 
computer

simple




 

 
acity with 13%. The approximat n for 

the load bearing capacity concerning the segmental failure performs more than twice as 

 

The simple model overestimates the load bearing cap io

good than the Janβen failure approach (28% deviation). However, it is an unsafe 
approximation. 
 

 

Figure 6.20 –  diagram for the Janβen joint (blue line) and the segmental 
        plastic behaviour (red line). 

M - θ
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6.3.3 Initial soil stiffness 
Until now, the spring stiffness k  is determined by using the computer models. These m
are not available in practice. So, this simple model ne  stiffne
determined easily. The initial soil stiffness according to paragraph 3.4.2 is a very easy way. 
Only the horizontal component of the bedding in figure 6.21 is integrated for 

odels 
eds a spring ss  which can be k

40  
 

 

. 

     oed
edoed Er

r

E
rd

r

E
rdkk 22

1sincoscos 4
0

4

0

4

0

 




  

 
 
 
 
 

o
b

 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

 
The two possible situations according to table 6.3 will be analysed again by implementing the 
initial soil stiffness into the simple model. First, the load bearing capacity and the deviation 
for the Janβen failure will be determined. The simple model overestimates the load bearing 
capacity with 84%. 
 

 
 

 
 
 
 

MPasimple 8884.0max,,2      84.1
4836.0

8884.0

max,,2

max,,2 
computer

simple




 

 
Secondly, the load bearing capacity and the deviation for the segmental failure will be 
determined. The simple model underestimates the load bearing capacity with 19%. This is a 
safe approximation. 
 

MPasimple 2581.0max,,2      81.0
3202.0

2581.0

max,,2 compute
max,,2 

r

simple
 

 

 

bk

B

4  

A 

  

 
 

Figure 6.21 – The horizontal component of  is integrated for  
b

k πδ0 4   to determine k . 
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143   

a  

4   

0  

45.1JFa  

1SFa  

1.225averagea   

 
 

Figure 6.22 – The bedding is compressed in a  
         bi-linear sh

        failure, SF = segme
ape. JF = Janβen  

ntal failure. 

 the initial soil stiffness provides a very simple model, but the 

 th be in

 
In case of Janβen failure, the reaction force from the 
bedding is overestimated, since the average 
compression of the bedding is less than the specific 
compression at the location of the Janβen joint. 
Since the blue surface equals the yellow surface 
(figure 6.22), the reaction force must be divided by 

 

One can conclude that using
results become less accurate. However, the assumption was made that the bedding is 
uniformly compressed. From the computer models it turned out that the bedding is not 
uniformly compressed, but more or less in a bi-linear shape (figure 6.22). The ratios seems 
to be valid in general. A small adjustment to the integrated reaction force from e dd g 
will increase accuracy a lot. 

 1.2 1.45 1.225 . The new load bearing capacity 

and corresponding deviation can be determined. 
 

2,max, 0.7514simple MPa    

 

2,max,

2,max,

0.7514
1.55

0.4836
simple

computer




    (55% deviation) 

 
In case of segmental failure, it is just the other way 
around. The reaction force from the bedding is 
underestimated, since the average compression of 
the bedding is more than the specific compression at 
the location where the segment fails. Since the blue 
surface equals the yellow surface (figure 6.22), the 

reaction force must be multiplied by  1.2 1.225 1 . 

For convenience and consistency, the approach for 
the Janβen failure has been used as well in this 
case. The new load bearing capacity and 
corresponding deviation can be determined for the 
segmental failure as well. 
 

2,max, 0.2904simple MPa    

 

2,max, 0.2904
0.91

0.3202
simple

2,max,computer




    (9% deviation) 
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6.3.4 Interpretation 
This paragraph is about the practical value of the simplification to determine the load be
capacity of a shield driven tunnel. In other words: the capability of the simplification to 
determine the load bearing capacity of a tunnel must be verified. The results from paragraph
6.3.3 were interpreted. 
 

aring 

 

Literature explains that if 10 FFn b  the first order calculation always suffices. Hence, 

when the buckling load  is at least tenbF  times larger than the specified load F , the 

ility point of view. If 10structural design will be e from a stabsaf n , the first order approach 
 which is accepted since safety factors are used. 
g the magnification factor for 10

deviates just 11.1% fro e real result, This 
deviation ca in

m th
n be explained by calculat n . 

 

Magnification factor:  11.1
1

 11.1% deviation 
10

10

1


n

n
  

 
Figure 6.23 shows the deviation for many  values when using a first order calculation. If 

, the deviation is 100%. s and internal forces are twice as big 
as the first order calculation predicted. 

 

 
 

 

 
 
 
 
 

 
 

 

n
Hence, all displacement2n
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Figure 6.23 – Deviation from First order approach to reach equilibrium.
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Figure 6.24 – Illustrative interpretation of the factor  according to Dicke. 

 should be interpreted. 

 

tention; a second order calculation is needed for a stable design. 

qual to ten, but
own in 

e collapse load with 9% if one analyses the segmental 
ilure. Hence, when the load bearing capacity is determined by using the simple model, the 

 to 
the si

 

 
or the situations in table 6.3 one can conclude that the simple model is able to indicate 

whether or not the tunnel is stable. Even without calibration the results are acceptable 
; yellow and green area).

n

Dicke [10] tells in a practical way how the factor n
 2n   Unacceptable; the structure is unstable. 
 52  n   Dangerous; building a structure like this is highly discourage. Extensive

non-linear analysis is required. 
 105  n   At

(Equilibrium must be based on deformed structure.) 
 10n   Good; the structure is stable. A first order (LE) calculation suffices. 
 
Therefore, a practical design should aim at 10n . The simple model overestimates the 
collapse load with 55% if one analyses the Janβen failure. Hence, when the load bearing 
capacity is determined by using the simple model, the n  value is not e  

6.45 . The n  value for the Janβen failure according to the simple model is shn
figure 6.24. 
 
The simple model underestimates th
fa
n  value is not equal to ten, but 10.99n  . The n  value for the segmental failure according

mple model is shown in figure 6.24. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

F

( 5n
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6.3.5 Recommendation for a practical procedure 
As mentioned before, snap through failure can be induced by the Janβen joints or the 

gm
to kn   ual loa

cti

e se. 
i

se ents. However, in practice it is unknown which one will be decisive in the end. In order 
ow the act it is important to develop a d bearing capacity of a specific case, 

pra cal procedure which finds out the decisive snap through inducement. 
 
The Janβ n failure as well as the segmental failure must both be checked for a specific ca

he defin tion for the function  FT 2 , the Janβen characteristics for c  and c  (paragraph1 2  

ss3.3) and the expression for the spring stiffne are similar for both failure types. 
 

 

 k  

r
FF 2

2     and   oedEk 22
1  

 
ther input pO arameters depend on the failure type under consideration. For the Janβen 

failure the initial angle   (figure 6.4) depends on the location and the number of Janβen 
joints. This expression assumes that the first Janβen joint is located in the top of the ring. 
 

n

     Where: n  = Number of Janβen joints in one tunnel ring. 

 
Secondly, the reaction force ( R ) in the translational spring must be divided by , since the 
reaction force from the bedding is overestimated. 
 
For the segmental failure the initial angle 

1.2

  is determined by the average place for which 
plastic behaviour starts to develop. In case of seven Janβen joints, the initial average angle 

212  . This is a very accurate definition, since all advanced computer analyses only 
show very small differences. 
 
If the segmental failure is considered, the reaction force ( R ) in the translational spring must 
be multiplied by , since the reaction force from the bedding is underestimated. 
 
Furthermore, in case of the segmental failure analysis, the Janβen joint in point B in
by a rotational spring which represents plastic behaviour in the upper segment. The bending 

moment capacity must be limited by the situation for which . Note: this 

approach is most conservative. The 

1.2

 replaced 

31075.1 c
M

xtreme low 
nding mome

 relation for th  in point B 
must be rigid plastic or nearly rigid plastic. Henc ss (a
infinite) must promptly change into e iffness). This rapid 
stiffness change must occur at the be nt for which  strain equals 

 

inally, by using this practical procedure for this simple model, one obtains two different load 
ctor 
ad 

ap through. For good stability, the specified load must be 
at least ten times smaller than this load bearing capacity (

is new rotational spring
e, an extreme high initial stiffne
stiffness (almost zero st

the concrete

lmost 

31075.1  .
 
F
bearing capacities. These two values must be divided by the corresponding calibration fa
according to paragraph 6.3.3. The failure analysis corresponding to the lowest factored lo
bearing capacity is the decisive snap through inducement. This load bearing capacity can be 
used in tunnel design concerning sn

10 FFn b

om a practical point of 
ed. Paragraph 6.3.4 gives a recommendation how to 

). So, the first order 

approach deviates just 11.1% of the real result. Fr view this is 
acceptable since safety factors are us
act if 
 
This practical procedure predicts the right snap through inducement for the specific situations 
in table 6.3. 

10n . 
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7 CONCLUSIONS AND RECOMMENDATIONS 
 
7.1 Conclusions 
The discretised model with beam elements and non-linear rotational spring elements is not 
less accurate than the more accepted continuous model with only beam elements. The 
physical and geometrical non-linear model is able it provide knowledge about the ‘real’ 
structural behaviour of a shield driven tunnel surrounded by soil. 
 
The normal force in the ring depends on the uniform pressure as well as the bedding. The 
bedding stiffness defines the relation between ring deformation and the increasing normal 
force. The normal force is completely determined by the soil properties (uniform loading and 
bedding stiffness). This is not surprisingly at all, since internal forces are always caused by 
the (external) loading. 
 
The bending moment distribution depends on the corporation between the segments, the 
Janβen joints and the bedding. Actually, the bending moment distribution depends on the 
stiffness differences between the segments, the Janβen joints and the bedding. This is 
always the case when a statically indeterminate structure is considered. The magnitude of 
the bending moment is caused by the (external) loading. 
 
The research question was: “Are shield driven tunnels with large diameters more sensitive to 
snap through than smaller ones?” The situation concerning snap through is worse than Blom 
[4] predicted. It turned out that the   value is always close to one, instead of 3  as Blom 
predicted for the BRT. Since   is  to the critical point for snap through, a closer look at 
practical design methods was carried out to discover whether or not practical assumptions 
are still valid. 
 
The radius is a quite robust parameter concerning snap through. Changing the radius of the 
tunnel will not influence safety a lot. However, the segmental thickness is an exponential 
parameter since a small change has large influence on safety. Despite the wrong results, the 
FL + GL (linear elastic) analysis turned out to be the safest approach for tunnel design. In 
case of changing radius, snap through will never occur before the bending moment capacity 
has been reached (

close

2 ). In case of changing segmental thickness, the tunnel is safe if 
40iseg Dd  . More awareness of rea

) it is more likely that th

lity is required for everyone who uses the SL + JNL + 

GL (linear elastic with non-linear Janβen joints) analysis. For larger tunnel diameters 
e analysis provides unsafe results. The same holds for 

segmental thicknesses outside the interval 
( mr 4

221381  iseg Dd . A larger possibility exists 

that snap through takes place without any plastic hinge. 
 
This research confirms the expectation that increasing the tunnel diameter has negative 
influence on safety of the design when using a practical way to analyse a shield driven 
tunnel. Hence, shield driven tunnels with large diameters are more sensitive to snap through 
than smaller ones. Since it is not unthinkable that snap through is the decisive failure 
mechanism, it is very dangerous if one realises that the practical methods to analyse a shield 
driven tunnel will not notice this failure mechanism. The tunnel design is probably based on 
the wrong criterion. 
 
Additionally, this research confirms the correctness of the empirical design rule to determine 
the segmental thickness in relation to the radius. The reinforced concrete segments are used 
most efficient if 22iseg Dd  . 
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The simplified model is a very practical and quite good tool to analyse
driven tunnels. The model provides qualitative knowledge about the ch

 snap through of shield 
aracter of snap 

ing capacity influenced by  and through and the load bear k , 1c , 2c r  (soil, segments, 
 longitudinal joints and the radius of the tunnel). Even without calibration, the simple model is

able to indicate quantitative whether or not the tunnel is stable. After calibrating the simple 
model, it was possible to reveal a practical procedure to predict the right snap through 
inducement and corresponding load bearing capacity in no time. 
 
7.2 Recommendations 
During this research only the radius and the segmental thickness are studied in relation to 
snap through. In paragraph 2.1 all influencing parameters are introduced. The question 
remains whether or not these parameters are exponential or robust. For a complete 
statement about snap through and safety, the influence of these parameters must be 

nalysed. a
 

tl   = Height of the Janβen joint 

n   = Number of Janβen joint 
B value  = Concrete strength 

bk   = Bedding stiffness (depends on oedE  and s ) 

0   = Uniform loading 

 
This research assumes that a single segmented ring is sophisticated enough t alyse snap
through (paragraph 3.1). However, as a result of large deformations, peak forces will develop
and load the segments, since the so-called dowel and socket system is activated (coupling 
forces). These coupling forces could have a positive effect on safety, since the tunnel rings 
upport each o

o an  
 

ther to bear the ovalisation loading. But, possibly these forces have negative 

 

activated and
a 

s
influence on safety, since plastic hinges can develop very close to each other as a 
consequence of these large peak forces. 
 
The results shown in chapter 4 are based on calculations with constant normal force. The 
software application Scia Engineer (as well as MatrixFrame) only offers a non-linear 
rotational spring with a custom relation between the rotation and bending moment. In order to
analyse snap through, the ovalisation pressure is increased. Therefore, the bedding is 

 the normal force increases. Since the normal force is very important for the 
bending stiffness of the segments and the Janβen joints, it is recommended to create 
normal force dependant model (  NM  relation). Extending the model from chapter
with normal force dependant structural beha e convenience for the 
engineer and high accuracy of the results. Furthermore, i
he difference between the behaviour of the discontinuou

 3 
viour will cause mor

t is recommended to check exactly 
s model (with non-linear rotational 

 

plification has high potential for practical usage, it is recommended to 

nβen failure and segmental failure) is possible as well. In this case, the 
dapted calibration factors should be implemented into the practical procedure mentioned in 

paragraph 6.3.5.

t
springs) and the continuous model (with non-linear beam elements). The difference will 
probably be very small. However, in case of snap through, a small change in stiffness can
influence results quite intensely. 
 
Chapter 6 is about a simple model to analyse snap through. The results are calibrated and 
used for a practical procedure to determine the load bearing capacity. The simple model and 
the practical procedure perform very well. However, the conclusion is based on two specific 
ases. Since this simc

determine the calibration factors more accurate (based on many cases). Perhaps, one 
general calibration factor dependant on one or more of the parameters mentioned in 
paragraph 2.1 can be determined. A specific calibration factor for both snap through 
inducements (Ja
a
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A Choosing an
 

 appropriate program 

orde

ailab

are of the influen
ve.  

aused a delay on the time schedule. The understanding of the mechanical behaviour of the 

dealing with th

Since t
that bad, since I learned a lot about many programs which are used by an engineer. In this 
appendix all these experiences are mentioned. A summary is given in table A.1. 
 
In the beginning FX+ (pre-post processor) for DIANA was used. I had already some 
experience with this finite element program, since I passed the master course CT5148, 
Computational Modelling of Structures, for which FX+ for DIANA was used to solve some 
basic problems. It is a very advanced and scientific program. It is even possible to create 
your own element! In case of non-linear analysis, all sorts of data for every increment are 
given. Hence, not only the final situation, the intermediate stages can be interpreted as well. 
However, it is not very user-friendly. One is not able to put in all data by using FX+. To put in 
sophisticated data, like non-linear material properties, one must use the so-called 
MeshEditor. The final input for DIANA is a file with the extension “.dat” (data file) and is 
created by this external MeshEditor. The user is also allowed to change the data file directly 
by using the keyboard. If an error appears during the calculation it is almost impossible to 
delete this error, since there is hardly any information about the missing or incorrect data. In 
contrast with the FX+ manual, the DIANA manual is sufficiently good. If you are able to deal 
with these disadvantages, FX+ for DIANA is probably the best choice. 
 
A quick try of modelling the structure was done by making use of Dr. Frame. This is actually 
a very simple program with a clear interface. It is not possible to apply curved beams, which 
is typical for a frame analysis program. A (plastic) hinge can only be modelled with a bilinear 
relation, which is not accurate enough to model a Janβen joint or a segment. The program is 
a bit unstable; it crashes frequently without any reason. There is also a bug in the program; 
for some reason it can not deal with the input when the unity cm has been used. 
 
In the beginning MatrixFrame appears to be a quite good program to model the snap 
through problem for shield driven tunnels. The interface is very easy to use and the program 
is able to calculate FNL and GNL at the same time. But, later on it became clear that it has 
unacceptable disadvantages. The FNL + GNL calculations simply can not be combined with 
any other type of non-linear analysis (Janβen joint). During a GNL calculation, MatrixFrame 
assumes small rotations and small displacements (Appendix B). 
 
The fourth program that was used is Scia Engineer. This is a very user-friendly program, but 
really extensive. It is impossible to simulate a Janβen joint. The dependency on the normal 
force can not be included. In case of non-linear analysis, Scia Engineer only shows the 
results of the last increment (final situation). This is not a big problem since many different 
load combinations can be calculated at the same time. The users’ manual is very basic. 

In r to answer the research question, numerical research has been carried out. A variety 
of sophisticated finite element programs and programs especially for frame analysis are 
av le. All of them are more or less able to solve the problem; however, all programs have 
their specific advantages and disadvantages. Before starting this master thesis, I was not 
aw ce that the disadvantages or shortcomings of a specific program could 
ha
 
In contrast with the simplification in chapter 6, the numerical analysis toke a lot of time and 
c
system was not the reason for this, but the understanding of all different programs and 

eir specific disadvantages was a time consuming issue during this thesis. 
 

he master thesis is part of the study, from an educative point of view this delay is not 
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Program Advantage Disadvantage 

FX+ for DIANA 

 Advanced and scientific 
 Results per increment 
 DIANA manual 

 Input in FX+ is very 
limited 

 Deleting errors is 
difficult 

 User-unfriendly 
 FX+ manual 

Dr. Frame 

 Simple program 
 Clear interface 
 

 Only straight beams 
 Only linear or bilinear 

behaviour for (plastic
hinges 

) 

 Unstable; it crashes 

s a bug. 

frequently 
 Can not deal with the 

unity cm; that i

MatrixFrame 

 User-friendly 
 Input very easy 

 This program simply 
can not combine FNL
GNL with other types 
non-linear analysis 
(longitudinal joints). 

 Is able to calculate GNL 
(second order), but 
assumes small 
rotations/displaceme

 Only results of the last 
increment (final 
situation) are given. 

 + 
of 

nt. 

Scia Engineer 
(modelling and solver 
options) 

linear rotational spring. 
 Only results of the last 

increment (final 
situation) are given. 

 Very basic users’ 
manual 

 User-friendly 
 Input relatively easy 
 Very extensive 

 It is not possible to put 
in more than ten 
coordinates for a non-

 

 Table A.1 – Summary of experience by using finite element programs.   
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Figure B.2 – del. 

 rding

More realistic behaviour of the mo

     k = 9.5MN/m  and c  and c  acco
1 2

      to figure 6.8 
 

 

B

A 

2c  

F  

1c

k

l  

 

Figure B.1 – Model for the theoretical approach of the   
                     mechanism. 

 The essence of geometrical non-linear (GNL) calculations 
 
In Chapter 6
the behaviour of this mo

we aragr

B

 the behaviour of the model in figure B.1 is derive
fn

d. Figure B.2 shows graphically 
ess parameters k , c  anddel when realistic values for the stif 1  2c  

re used. From p aph 6.2 it turns out that, if l r , the longitudinal joint stiffness

odel. The soil s

e

and he behaviou e m tiff

dominant. According to figure B.2, a real snap through  
 

 

 
After this analytical research, the pr
sn viour num
available at ns based on
rotational springs, which represent the longitudinal joints, w nce 
they are relatively unimportant. To simulate the geome
displacement of point A (figure B.1) was applied in ten equal 

of the 
slational spring . 

 
After doing this exercise the result has showed the essence of geometrical nonlinear 
calculations. Figure B.3 shows the analytically calculated behaviour, while figure B.4 shows 
the numerically calculated behaviour. Both graphs of figure B.3 and B.4 have the same 
shape. But, two important differences are observed. First of all, the value for the force  is 
significantly higher in case of the numerical calculation. The second difference is the 
intersection with the horizontal axis. The latter is easy to explain. Since the force 
depends on the deformed geometry from step 

s 1c

 is very 

 

2c  are relatively unimportant for t r of th ness k
 character has been observed.

 

ogram MatrixFrame was
erically. The student version o

 used, in order to simulate this 
ap through beha

that time, can only perform calculatio
f MatrixFrame, which was only 

 linear elastic theory. The 
ere not taken into account si

 trical non-linear behaviour, the
steps. Every increment is equal 

al geometry to 1m displacement downwards. When a new step was modelled, the fin
previous step was used, as well as the final force in the tran k

 F
point of 

 in step F i  
1i  , the curve from figure B.4 intersects the 

horizontal axis one step to “late”. Hence, the force in the last step ( 11w m ) is zer
the deformed geometry of the beam in de secon  last step (

o, since 
d 10w m ) is perfect

st be zero, 

ly horizontal. 
If the beam is perfectly horizontal, it ssibility to obtain equilibrium 
when the vertical force  is not equal to he force a
indicated by the last st ). 

means that there is no p
 zero. So, t

o
F  mu F

ep (
which is cle rly 

11w m
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In fact, this is also the reason for the first mentioned difference. However, a more extensive 
explanation is given. The numerical GNL calculation is done in ten equal steps. But, every 
step in itself is a geometrical linear (GL) calculation. Hence, in all steps equilibrium of forces 
is based on the undeformed geometry (initial situation). When deformations are relatively 

the results. 
 a cons

. The beam becomes less steep and the translational spring h , 
point B shifts to the right. In order to obtain equilibrium; the resultant reaction force in point B 

st be directed in the same direction as the beam (

large this becomes a problem for the accuracy of 
s pushed downwards as

This problem has shown in 
equence of the prescribed displacement figure B.5. Point A i

w

u

 starts to pus back since 

m 0M  ) and the vertical component 

of the reaction force in point B must be equal to the force F  ( 0VF  ). MatrixFrame uses

the direction of the undeformed beam (grey) while the direction of the deformed beam (b
must be used. Hence, in reality the prescribed displacement w  causes the vertical reaction 
force ,V d

 

lack) 

B  ( analyticalF ), but MatrixFrame calculates ,V udB  ( numericalF ). The latter is larg

since the beam is steeper in the undeformed situation. This is indicated in figure B.5 by two 
closed force polygons, in which the reaction force from the soil has the same size in both 
orce polygons (

er 

f , ,H ud H dB B ). This clarifies why the results from the numeric l aa nalysis are 

significantly higher than the results from the analytical analysis. The discretised (or 
numerical) solution is an approach of the continuous (or analytical) solution and will be more 
accurate when more steps (smaller increments) are applied. 
 
 

0

2000

4000
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10000

12000

14000

16000

kN
]

18000

0 2 4 6 8 10 1

w [m]
F

 [

2

Figure B.4 – Numerically calculated behaviour 
                     (discrete, 10 equal displacement steps) 

  

 
 
 
 
 
 
 
 

 

Figure B.3 – Analytically calculated behaviour, see   
                      also figu

 
 
 
 
 
 
 
 

 

Figure B.3 – Analytically calculated behaviour, see   
                      also figure B.2. (continuous) 
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MatrixFrame warns the user when deformations become larger than 1m, because the 

program assumes small deformations/displacements and small rotation angles (  tan    

and  sin   ). (This assumption is very typical for linear elastic calculations.) This can 

explained by analyzing the coordinates of point A and B in step 1 of table B.1. The 
ordinate system from figure B.5 is adopted. From the coordinates in step 0, the total len

of the beam is calculated: 

be 

gtco h 

10 2 14,14 200m m m  ythagoras). The length is a constant 
property, because the beam is infinitely stiff. The pres wnwards directed 
displacement of point A is 1m in every step. Hence, the co rdi as increased from -

10m to -9m. Since one knows the total length of the beam and the length of one virtual 
rectangle side, the length of the other virtual rectangle side can be calculated by using 

Pythag s a

 (P
cribed do

o nate h

n:

 zA  

ora gai  2200 9 10.91xB m   . This va or lue f xB  in step 1 is less than the 

value that MatrixFrame gave, because of the assumption of small deformations. 
 
 
 
 
 
 
 

 

,V dB  

,H dB  ,H udB  

,V udB  

Bd Bud 

Ad 

Aud   

   

w  

z  

x  

 
 

Figure 
                      

B.5 – Equilibrium of forces based on the undeformed (ud) vs. the deformed (d)  
geometry for a curtain step i . Grey means undeformed and black means deformed. 

step B W ΔF A 
  x z x z     
0 0 -10 10,0000 0 0 0 
1 0 -9 11,0000 0 1 9500 
2 0 -8 11,8182 0 2 14132,23
3 0 -7 12,4951 0 3 16045,53
4 0 -6 13,0553 0 4 16260,67
5 0 -5 13,5149 0 5 15346,13
6 0 -4 13,8848 0 6 13653,65
7 0 -3 14,1729 0 7 11420,37
8 0 -2 14,3846 0 8 8816,85
9 0 -1 14,5236 0 9 5975,08
10 0 0 14,5925 0 10 3003,96
11 0 1 14,5937 0 11 0 

 

Table B.1 –  vs.  and the coordinates of point A and B for all steps of the numerical 
                    calculation. 

F w
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C κN M  diagram (BRT) 

eometry (figure C.1) 
 Cross-sectional area   : 

 
G
 mmbhAc 400*1000  ( ) 

aterial data 
 Concrete strength    : B45 

 Design value compressive strength : 

 Young’s modulus concrete  

 

segdh 
M

 2'' /2745*6.06.0 mmNff ckcd   

 : 2' /3350025022250 mmNfE ckc   

   value compressive zone  :  (B15 – B65) 
 

75.0
   value compressive zone  :  (B15 – B65) 

 Young’s modulus steel   : 

 Reinforcement area   : 

 Design value tensile strength  : 

 Ratio     :

389.0

 2/200000 mmNEs   

 %)18.0(648 min,00
2

21  mmAAA sss  

 2/435 mmNf yd   

  1.0h
a  ( mmca 4010*5.0355.0   ) 

Load 

specially in this case four situations must be analysed to determine the 

 Constant normal force (hoop force) : RN .4*105.0 6  kN5.  22625250 

 
 
E  NM  
dia . 

) T  fibre with the hig ten s;

) T  reinforc ent on  ten of th ross-se ion;

) T  design value for the compressive strength has been r ). 

4) The ultimate limit stat ne has been ). 

gram
 

1 he hest sile stres  2/0 mmN . c 

2 he em  the sile side e c ct  1 Ns
2/ mm . 0

3 he eached ( 31075.1 c
e of the compressive zo  reached ( 3105.3 cu

 

N

M

a  

1000

400  

1sA  

2sA  

 

Figure C.1 – Reinforced concrete segment: cross-section and load 
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1) e highest tensile stress; The fibre with th

tresses are given in figure C.2. 

2/0 mmNc   

The deformations and s
 

 
eTh  strains 1s , 2s  and c  are three unknown parameters. But, 1s  and 2s  can be 

expressed in terms of c . 

 

c
c

s h

h



 1.0

*1.0
1    

 
c

c
s h

hh



 9.0

*1.0
2 


  

 
To ensure equilibrium, the summation of horizontal forces must be equal to zero. From this 
equilibrium equation the unknown parameter c  can be determined. 

 

ccssss AEN  129600001.0*648*20000011   

ccssss AEN  1166400009.0*648*20000022   

ccccc bhEN  6700000000*33500*400*1000*5.05.0   

 

0N   NNNN css   21

     c670000000011664000012960000105.2262 3   

   410313.3 c  

 

Check:   N s 4.313.3*129600001  N429310 4    

   N s .3864010313.3*1166400002 
4

N34  

   NNc 3.221956610313.3*6700000000   

   css NNNN  21  

   3.22195663.386404.42932262500   (OK) 
 
The assumption was made that the reinforcement at both sides of the segment does not 
yield. This must be verified before the results are used in the next calculation. 
 

354
1 10175.2

200000

435
10313.310313.3*1.01.0  

s

yd
cs E

f
  (OK) 

 

-- h4.0

h4.0

c  

cN  

2sN  

1sN  

hx 

c
2s1s

a

a

N  

M  

hh  3121 

 

tion 1. 
 

Figure C.2 – Deformations and stresses along the cross-section for situa
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344 10982.210313.3*9.09.0    2 20


s
cs E

10175.2
0000

435 ydf
 (OK) 

To ensure equilibrium, the summation of moments must be equal to zero as well. The 
equilibrium of moments is verified with respect to symmetrical axis of the cross-section. 
 

 

     hNhNhhNM ssc 4.0*4.0*3
1

2
1

12   

      NmmM 61047.153400*4.0*4.4293400*4.0*3.386403
400200*3.2219566 

 
The corresponding curvature can be determined very easy. 
 

17
4

10282.8
400

10313.3 





 mm
h

c  

 
 

2) The reinfo t on the tensile side of the cross-section; 1 / mmNs  

The deformations and stresses are given in figure C.3. 
 

rcemen

re only two unknown parameters:

20

 
In this situation, there a  2s  and c . Again, 2s  can be 

expressed in terms of c . 

 

ccs hh


1.02 



h 

9.0

8.00*2
 

he summation of horizontal forces must be equal to zero. From this 
e unknown parameter 

h 1.

 
To ensure equilibrium, t
equilibrium equation th c  can be determined. 

 

ccssss AEN  115200000
9.0

8.0
*648*20000022   

  ccccc EhbN  6030000000*33500*400*9.0*1000*5.0*9.0*5.0   

 
+

- -
h4.0

h4.0
hx 9.0

c  

cN  

2sN  

c
2s

a

a

N  

M  

hh 9.0*3121   

 

Figure C.3 – Deformations and stresses along the cross-section for situation 2. 
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0N   

   

cs NNN  2  

  c6030000000115200000105.2262 3   

   10682.3 c  

 
4

4

Check:   

   

   

  

NN s 6.4241310682.3*1152000002   

NNc 4.22200860682.3*6030000000 4    1

cs NNN  2  

 4.22200866.424132262500   (OK) 

es of the segment does not 
ield. This must be verified before the results are used in the next calculation. 

 

 
he assumption was made that the reinforcement at both sidT

y

34
1 10175.2

200000

435
010682.3*00  

s

yd
cs E

f
  (OK) 

344 435
10273.310682.3*

8.08.0   ydf
 10273.310682.3*

8.08.0   ydf
 2 29.09.0 s

cs E9.09.0 s
cs E

10175.2
00000

  (OK) 

To ensure equilibrium, the summation of moments must be equal to zero as well. The 
equilibrium of moments is verified with respect to symmetrical axis of the cross-section. 
 

  (OK) 

To ensure equilibrium, the summation of moments must be equal to zero as well. The 
equilibrium of moments is verified with respect to symmetrical axis of the cross-section. 
 

  

   hNhhNM sc 4.0*9.0*3
1

2
1

2  

  NmmM 61039.184400*4.0*6.42413
3

400*9.0
200*4.2220086 






   

 
The corresponding curvature can be determined very easy. 
 

16
4

10023.1
400*9.09.0 h

 

10682.3 





 mmc  

n r d 

st ses are given in figure C.4. 

 

3) The design value for the compressive strength has bee eache ( 307.1 c ) 

The deformations and res

15 

 

 

+

-
-

h4.0

h4.0

'
cdf  

cN  

2sN  

1sN

xh

31075.1 c
2s1s

a

a

N  

M  

xhh 3121   

 

Figure C.4 – Deformations and stresses along the cross-section for situation 3. 
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The strains 1s , 2s  and c  are again three unknown parameters. The strains 1s  and 2s  

can be expressed in terms of c . 

 

ccs x

x

xh

xhh  .09.0  


9
1   ccs x

x

xh

hxh  1.01.0
2





  

 
To ensure equilibrium, the summation of horizontal forces must be equal to zero. From this 

e unknown parameter equilibrium equation th c  can be determined. 

 

x

x

x

x
AE ssssN


 2268001075.1**648*20000011   

  9.09.0 3

x

xx
AE

1.0
2268001075.1*

1.0
*648*200000 3

xssss 22N





   

xxbxhEN ccc 540000027*400**1000*5.05.0    

 

 0N  12 scs NNNN   

   
x

x
x

x

x 





9.0
2268005400000

1.0
226800105.2262 3  

   4322.0x  
 

Check:   NN s 2.245518
4322.0

4322.09.0
2268001 


  

   NN s 2.174320
4322.0

1.04322.0
2268002 


  

   NNc 0.23336984322.0*5400000   

   12 scs NNNN   

   2.24551823336982.1743202262500   (OK) 
 
The assumption was made that the reinforcement at both sides of the segment does not 
ield. This must be verified before the results are used in the next calculation. y

 

333 4354322.09.09.0  
 ydfx

1 10894.11075.1*
4322.0

 cs x
 10175.2

200000


sE
 (OK) 

333
2 10175.2

200000

435
10345.11075.1*

4322.0

1.04322.01.0  






s

yd
cs E

f

x

x   (OK) 

 
To ensure equilibrium, the summation of moments must be equal to zero as well. The 
equilibrium of moments is verified with respect to symmetrical axis of the cross-section. 
 

     hNhNxhhNM ssc 4.0*4.0*3
1

2
1

12   

    NmmM 61044.399160*2.245518160*2.174320
3

400*4322.0
200*0.2333698 






 
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The correspo din curvat re can be determined very easy. 
 

n g u

15
31075.1 

10012.1
400*4322.0

 mm
xh

c  

 

u

e reinforcement must yield before the compressive zone crushes. 
nt of reinforcement (

 

4) The ultimate limit state of the compressive zone has been reached ( 105.3 cu ) 

The deformations and stresses are given in fig re C.5. 

3

 

 
To avoid brittle failure, th
So, the minimum amou %18.00  ) is applied. Especially in the ultimate 

n was made that the reinforcement at both sides of the segment 
equilibrium, the summation of horizontal forces must be equal to zero. 

 

limit state the assumptio
does yield. To ensure 
 

AfN 64*435 N2818808   syds1

AfN 64*435 Nsyds 28188082   

xxbxhfN cdc 810000027*400**1000*75.0'    

 

 0N  12 scs NNNN   

   
   
 
The assumption was made that the reinforcement at both sides of the segment does yield. 

his must be verified before the results are used in the next calculation. 

2818808100000281880105.2262 3  x  
2793.0x  

T
 

333 10175.210777.7105.3*
2793.09.09.0  





 ydfxhh   (OK) 1 2793.0 s

cus Exh

333
2 10175.210247.2105.3*

2793.0

1.02793.01.0  






s

yd
cus E

f

xh

hxh   (OK) 

 

 

+

-
-

hxh 21  

3105.3 cu

h4.0

h4.0

'
cdf  

cN  

2sN  

1sN

xh

2s1s
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Figure C.5 – Deformations and stresses along the cross-section for situation 4. 
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To ensure equilibrium, the summation of moments must be equal to zero as well. The 
quilibrium of moments is verified with respect to symmetrical axis of the cross-section. 

 
e

     hNhNxhhNM ssc 4.0*4.0*2
1

12    

    Nmm61037.444400*4.0*281880*2400*2793.0*389.0200*2793.0*8100000 M
 
The corresponding curvature can be determined very easy. 
 

15
3

10133.3
400*2793.0

105.3 





 mm
xh

cu
  

 
 

 NM  diagram 
Table C.1 is an overview of the relations between the bending moment and the deformation. 
Figure C.6 is the corresponding diagram. The diagram is valid for a normal (or hoop) force of 
2262.5kN. 
 
 
 
 
 
 

 
 

 
 
 
 
 

 

Moment ( M ) [  KappakNm ]  ( ) [ Bending stiffness1mm ]  ( MEI  ) [ ] 2kNm

47.153  710282.8   185305 

39.184  610023.1   180244 

44.399  510012.1  39470 

37.444  510133.3   14184 
 

Table C.1 – M - κ  relation and the corresponding bend r a constant normal force of 2262.5kN (BRT) ing stiffness fo

M-N-Kappa diagram (BRT)
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Figure C.6 –  relation for a constant normal force of 2262.5kN (BRT). 
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D Janβen joint 
 
The analytical solution for the rotational stiffness of a longitudinal joint is expressed by two 
formulas, each corresponding to a specific situa D.1 shows a Janβen joint and 
some definitions. 
 

) As long as the stress due to the compressive normal force (hoop force) is larger than the 
tiffness is constant and the joint 
iffness is constant (not 

n the occurring rotation in the joint). 
 

 
The maximum stress in the influenced zone due to the bending moment: 

tion. Figure 

1
maximum stress due to the bending moment, the rotational s

 closed. Hence, there is no gap in the joint: the rotational stis
depending o

2

6

t
M bl

M

W

M
          (1) 

The maximum strain in the influenced zone due to the bending moment: 

c

M
M E


            (2) 

The deformation in the influenced zone due to this strain: 

tMM lu            (3) 

The relative rotation of the influenced zone: 

t

M

l

u2
           (4) 

Substitution of (1), (2) and (3) in (4) will result in: 

blE

M

tc
2

12
           (5) 

 

Figure D.1 – Longitudinal joint with the contact thickness  and the influenced zone. 
t

l
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The mathematical relation between the tangential bending moment and the rotation is: 

rcM     


cr         (6) 

Substitution of (5) in (6) results in the constant rotational stiffness: 

M

2

12
t c

rc            (7) 

It is obvious that the constant stiffness is only influenced by the Young’s modulus of the 
concrete and the contact surface in the longitudinal joint. 
 

bl E

) A gap will develop if the normal force is out of the neutral force centre of the joint’s cross-
section. The developed tensile stress due to the bending moment exceeds the compression 
stress due to the normal force. If this is happening a gap starts to develop and the rotational 
stiffness will also depend on the rotation itself and becomes non-linear. The bending stiffness 
of the ring reduces even more. Hence, there is a gap in the joint: the rotational stiffness is 
reducing as a function of the rotation. Equation (8) shows the condition for this second stage. 
Equation (10) is a more specific condition for the second stage. 

2

NM             (8) 

The stresses due to the normal forces are: 

t
N bl

N
           (9) 

Substitution of (1) and (9) in (8) results in the limit for which the gap occur: 

 
6

tNl
M            (10) 

Hence, if this condition is fulfilled, the rotational stiffness will also be depending on the 
rotation. 
 
There must be a normal force equilibrium at all time: 

0N    RN          (11) 

or the reaction force R is written: F

2

bx
R


           (12) 

Substitution of (12) in (11) will give: 

b

N
x


2

   

There must be bending moment equilibrium at all time: 

        (13) 

 

0M    0
23

Substitution f (13

 NM       (14) 

o

tNlx

) in (14) will give: 

 








 1
231 t Mbl

    
 t4 NlN

     (15) 

 

 

The acting strains can be derived from: 

cE

   

The deformation  is related to the strains by: 
 

         (16) 

u

tlu             (17) 
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The rotation of the influenced zone as relation of the deformation is: 

 
x

u
      

 

      (18) 

Substitution of (13), (15), (16) and (17) in (18): 

2
2  M

        (19) 

19 






t

ct Nl
Ebl

e reducing rotational stiffness is derived by substituting (19)

8


N

 in (6): D
2

2
9 1

8

t c
t

r

M
bl E

Nl
c M

N

 
 

          (20) 

From the equations (19) en (20) it is clear that the rotation has a non-linear relation with to 
the bending moment; the rotational stiffness is non-linear. When the bending moment is 
known the rotational stiffness can be determined easily. However, when the rotation is 
known, the rotational stiffness is more complex to determine. The analytical solutions are 

the rotational stiffness as function of the rotation based on force equilibrium. The solution for 
is not given here. 
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E Maple sheets 
 
E versus displacement .1 Load 

  

> 

 
> ;restart  

> :638: eEoed 

: 0.5 2 :oedk E  

> 

> : 4.525 :r   

: :
7

   

> : cos 2
2

l r


:    
 

 

> 
 

: :
cos

l
m


  

>  : cos - :a m l     

>  : sin :h m    

> :   : sin sin -w m m       

>  
> 

:: akR 
 1 : 220000arctan 1400 :M   

>  2 : 220000arctan 1400 :M   

> 
 1 2: :

M R h w M
F

l a

   



 

> , , 0.. , "F versus w", ["w[m]","F[N]", [ ] ;
3.2

plot w F title labels color red
         
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E.2 Janβen joint 
 

 102

M ulate a Janβen joint or to create a plastic hinge by 
ction

This aple sheet must be used to sim
      yxM arctan . The result is the input for 1M  and/or 2M  using the fun

men  M
 

tioned  the aple sheet in appendix E.1. 

 

 in

> ;restart

> 0: :M c    
2

0

2
9 1

: :
8

t
t

M
b l E

N l
eq c M> 

N

 
          

 > 0({ },{ });solve eq c

 
   

0 0 02 2

3 2 2 3 2 21 1
0 , ,

6 6

t t t tb E l b E N l N b E l b E N l N
c c

b E b E

   

 

            
      

 c

 2

2

3 2 22 1
: ' ' , , :

12 6

t tt

t

b E l b E N l Nb l EN
> c i f

E b l b E

 




               
    
 

 

 
 

 
 

 

> : 2262500 :N 
> :1:b
> :01500000000:E
> : 0.340 :tl 

> , ([220000arctan 1400 ], 0..0.01, 0..400000,plot c y    
 
 

"Jan en joint", [" [rad]","M[Nm]"], [ , ]);title labels color red blue      

 


