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Introduction to the course 

When the civil engineering student chooses for the course “Theory of Elasticity”, (s)he is 
already extensively familiarised with the mathematical description of structural behaviour by 
means of differential equations. With this in mind reference can be made to the courses 
“Elastostatics” and “Elastic Plates and Slabs”. This course continues along the same line and 
extends on it. 
During the compilation of these lecture notes, the course material has been restructured. The 
reason for this is that three main objectives are aimed for: 
 
1. Historically a number of essential subjects in structural mechanics exist, which have to be 

dealt with. The solution of these problems is incorporated in the basic knowledge of a 
structural engineer entering the building practice. This part of the course is directed at 
“results”. The course material contains a number of known solutions for plate problems 
and torsional problems for beams with solid or hollow cross-sections.  

2. The engineer also should be capable of finding solutions for entirely new problems. For 
this aspect the course should give directions along which line a solution can be obtained. 
It appears that two strategies can be followed, in order to arrive at a consistent analytical 
modelling. These strategies will be discussed. In this part of the course the emphasis lies 
on the development of modelling skills for new problems. It also will be demonstrated 
that the classic problems (mentioned under objective 1) can be fitted in as applications or 
examples. The exercises and examples are mainly focussed on structural systems that can 
be regarded as one-dimensional. 

3. The great merit of the Theory of Elasticity is that via an analytical approach exact 
solutions could be obtained for continuous problems of mechanics, long before numerical 
methods were developed and became available on a large scale as they are today. 
However, it should be noticed that the realised exact solutions were usually limited to a 
certain class of problems, sometimes with a relatively academic geometry or for a limited 
number of not to complex boundary conditions. After the introduction of the computer, 
the number of possibilities is increased enormously, which made it possible to compute 
solutions for continua with an arbitrary geometry. In this respect especially the Finite 
Element Method (FEM) is important. With this method approximate solutions are 
generated and the basis of the method lies in the application of energy principles. Since 
energy principles also play a role in the exact formulation of continua, the possibility 
exists to make a smooth transition from the theory of elasticity to the numerical methods. 
This part of the course can be considered as an introduction to the course about the Finite 
Element Method      

 
In view of these three objectives the following set-up of the course is selacted. The lecture 
notes consists out of two parts. The first part deals with the first two objectives and “direct 
methods” will be used. In the other part attention is paid to the third objective and “energy 
principles and variational methods” will be discussed. 
 
Chapter 1 of the first part starts with a recapitulation of the force and displacement methods 
for discrete bar structures. The formulation can be presented very compact with the matrix 
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notation. Deliberately an approach is followed that makes it possible to pinpoint clearly which 
strategies are used.  
 
In chapter 2 a start is made with the analysis of continuous structures. The differential 
equation and boundary conditions are derived for a simple one-dimensional element, i.e. the 
beam. For a large part this is revision of previously obtained knowledge. On basis of this 
well-known continuous structural element, the analogy will be demonstrated with the discrete 
approach. 
 
With combinations of the different elastic cases (extension, bending, shear, torsion, elastic 
support) several structural systems can be modelled, such as can be found in high-rise 
buildings. The derived equations are always ordinary partial differential equations of the 
second order, fourth order or higher. 
 
After that two-dimensional problems will be addressed. Again with the same strategy the 
differential equations are derived for in its plane loaded plates (chapter 3) and transversely 
loaded plates (chapter 4). In these chapters for a number of classic problems the solution of 
the partial differential equations is worked out or provided directly (objective 1). 
 
The following two chapters deal with the theory of three-dimensional continua. Chapter 5 
focuses on the basic equations. In chapter 6 a specific classic problem is formulated and 
worked out, namely torsion in beams with a solid or hollow cross-section (objective 1). This 
concludes the part “Direct Methods”. 
 
The part “Energy principles and variational methods” will be offered as a separate set of 
lecture notes. In these notes the following subjects are addressed: work, energy principles, 
variational methods and approximate solutions. The validity of the derivations extends to 
general three-dimensional continua. However, the derivations itself will be worked out for 
one-dimensional cases. This is also the case for examples and applications. 
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1 Recapitulation for discrete bar structures 

1.1 Basic equations for statically determinate structures 

In the lectures that preceded this course, a large amount of attention was paid to the 
calculation of bar structures. A number of basic ideas from that lecture material will be 
summarised briefly. In this summary two strategies are highlighted, which are especially 
suitable for the analysis of problems, namely the displacement method and the force method. 
Moreover, the basic ideas will be addressed in such a manner that it becomes clear that the 
same strategy can be used for the analysis of continuous bodies. For this purpose a simple flat 
truss is considered. Fig. 1.1 shows a statically determinate truss. The structure consists out of 

six members and three movable nodes, which are numbered from 1 up to 3. Quantities 
associated with the nodes get a subscript equal to the node number. The bars are numbered 
from 1 to 6. Quantities associated with the bars receive a superscript with the element 
number. The height and length of the truss are 3  and , respectively. a 8a

3a

4a 4a

1 1,N e

2 2,N e

3 3,N e

5 5,N e

6 6,N e

4 4,N e

1 1  x xF u

2 2  x xF u 3 3   x xF u

1

1

y

y

F
u

2

2

y

y

F
u

3

3

y

y

F
u

x

y

Fig. 1.1: Statically determinate truss with relevant quantities. 

Each nodal point has two degrees of freedom, a displacement xu  in x -direction and a 
displacement yu  in -direction. In these respective directions external forces x  and y  can 
be applied. The degrees of freedom of all nodes combined, form the vector u  and all the 
forces form the vector 

y F F

f . 
 
Stresses are generated inside the structure, together with the corresponding strains. In this 
case the stress resultant  of each bar is used, together with the associated change of length 
(extension)  of the bar. They form the vector of generalised stresses or stress resultants  
and the generalised deformations or shortly deformations , respectively. The sign-
convention for the external quantities xu , yu , x  and y  differs from the sign-convention for 
the internal quantities  and e . For the external quantities a vector sign-convention is used. 
When they are pointing in positive 

N
e N

e
F F

N
x - or -direction they are defined positive. For the y
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internal quantity  a stress sign-convention is applicable. A positive sign is chosen for 
tensile forces. Likewise  is assumed positive if it concerns an elongation. 

N
e

 
Essential in this course is the way in which the several quantities are defined. The different 
degrees of freedom are identified and determined. Then it is also known which external loads 
can be applied. Separately it is ascertained which internal (generalised) stresses will appear, 
after that they are identified together with the corresponding (generalised) deformations. The 
external vectors  and u f  must provide exactly the performed external work, and the internal 
vectors  and determine the internal deformation work. In the coming chapters this 
approach will be applied to continuous structures too. In previous courses, it already has been 
discussed that three basic relations determine the behaviour of structures. This triplet is: 

e N

 
− the kinematic equations 
− the constitutive equations 
− the equilibrium equations 

 
The kinematic equations provide the relation between the displacements  and the 
deformations e . The constitutive equations relate the deformations  to the stress resultants 

. And the equilibrium equations prescribe how the stress resultants  are connected with 

the external load 

u
e

N N

f . The scheme in Fig.1.2 provides an overview of all these interacting 
relations.  

external work 

u Ne f

int

1 2 3

1 2 3

, ,
, ,

x x x

y y y

u u u
u u u

1 6e e 1 6N N 1 2 3

1 2 3

, ,
, ,

x x x

y y y

F F F
F F F

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium
equations 

Fig. 1.2: Diagram displaying the relations between the quantities 
playing a role in the analysis of a truss. 

Now, this triplet of equations will be worked out in detail for the example of the truss as 
shown in Fig. 1.1. 

Kinematic relations 
Considering the sign-convention for the displacements and deformations, for each of the bars 
the following relations can be derived (see Fig. 1.3): 
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4a 4a
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1xu

2xu 3xu

1yu

2yu 3yu

x

y

Fig. 1.3: Relations exist between deformations e and displacements u. 

 

1
1

2 34
2 25 5

3
2

4
1 2

5 3 34 4
1 1 35 5 5 5

6
2 3

x

x y

x

y y

x y x

x x

e u
e u u
e u
e u u
e u u u u
e u u

=+
= + +
= +
= − +
=− − + +
= − +
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In matrix notation this becomes: 

  

1
1

2 34
15 5

3
2

4
2

5 3 34 4
35 5 5 5

6
3

1 0 0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0

0 0
0 0 1 0 1 0

x

y

x

y

x

y

ue
ue
ue
ue
ue
ue

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥⎪ ⎪

⎨ ⎬
⎪ ⎪= ⎨ ⎬⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− −
⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 

This result can be rewritten briefly by the introduction of the kinematic matrix : B

 =e B u  (kinematic equations) (1.1) 

Constitutive relations 
For each bar a stiffness relation exists between the normal force  and the deformation e : N

 EAN e
l

=  

The flexibility formulation provides the inverse form: 
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 le N
EA

=  

By introduction of the abbreviations: 

 ;EA lD C
l E

= =
A

1

2

3

4

5

6

e
e
e
e
e

⎫
⎪
⎪
⎪⎪
⎬
⎪
⎪
⎪
⎪⎭

 

the formulation of the constitutive equations becomes: 

  

1 1

2 2

3 3

4 4

5 5

6 6

N D e
N D
N D
N D
N D
N D

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨

⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩

or briefly: 

 
( )

(
constitutive relations in stiffness formulation

stiffness) 
=N D e  (1.2)a 

and: 

  

1 1

2 2

3 3

4 4

5 5

6 6

e C N
e C
e C
e C
e C
e C

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬

⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭

1

2

3

4

5

6

N
N
N
N
N

or briefly: 

 
( )

( )
constitutive relations in flexibility formulation

compliance  
=e C N  (1.2)b 

It will become clear that the stiffness formulation of the constitutive equations is used in the 
displacement method and that the flexibility formulation is used in the force method. 

Equilibrium equations 
The next three pairs of equilibrium equations are obtained from the equilibrium of all nodes in 
the direction of the respective degrees of freedom (see Fig. 1.4): 
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Fig. 1.4: For each node equilibrium exist between the normal forces N 
 and the external loads f.  

 

3a

4a 4a

1N

2N

3N

5N

6N

4N

1xF

2xF 3xF

1yF

2yF 3yF

x

y

4N

6N
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1 54
15

4 53
15

2 3 64
25

2 43
25

5 64
35

53
35

x

y

x

y

x

y

N N
N N F

N N N F
N N

N N F
N F

+ −
− − =

+ + − =
+ + =

+ + =
+ =

F

F

=

 

In matrix form this reads: 

 

14
15

23
15

34
25

43
25

54
35

63
35

1 0 0 0 0
0 0 0 1 0
0 1 0 0 1
0 0 1 0 0
0 0 0 0 1
0 0 0 0 0

x

y

x

y

x

y

FN
FN
FN
FN
FN
FN

− ⎧ ⎫⎧ ⎫⎡ ⎤
⎪ ⎪⎪ ⎪⎢ ⎥− − ⎪ ⎪⎪ ⎪⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥− ⎪ ⎪ ⎪ ⎪=⎢ ⎥ ⎨ ⎬ ⎨ ⎬

⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 

Comparison of this matrix with the previously found kinematic matrix shows that it is 
exactly the transposed of . Therefore it can be written: 

B
B

 T =B N f  (equilibrium equations) (1.3) 

where the superscript “ T ” is the internationally accepted symbol to indicate the transposed of 
a matrix.   
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1.2 Strategies for the analysis of statically determinate structures 

In the previous section the following set of basic equations have been found:   

  (1.4) =e B u

  (1.5)     or= =N De e C N

 T =B N f  (1.6) 

Historical 
The first step is the calculation of the stress quantities . In the case of a statically 
determinate truss the vectors  and 

N
N f  have the same number of components, which means 

that the matrix  in the equilibrium equation (1.6) is square. Therefore, the stress quantities 
can be determined directly by inversion of : 

TB
TB

 T−=N B f  (“Cremona”) (1.7)  

This is the mathematical formulation of the classical graphical method involving the drawing 
of Cremona diagrams. The second step is the calculation of the deformation quantities e . 
When the normal forces  are known, the changes in member length  directly follow from 
the flexibility formulation of the constitutive equations 

N e
=e C N . 

Then in the third step, the displacements can be obtained from the kinematic relations given 
in (1.4). In a statically determinate truss the vectors  and  again have the same number of 
components. So, the matrix  is square and can be inverted. The required displacements 
subsequently can be obtained from: 

e u
B

 1−=u B e  (“Williot”) (1.8) 

This is the mathematical description of the classical graphical method, in which the 
displacements are determined from the changes in bar length by construction of a Williot 
diagram.  
The described computational method in these lecture notes contains the same consecutive 
phases, which also students historically have to follow during the learning process of applied 
mechanics. First, the force transmission and the equilibrium are thoroughly discussed. Then 
the concept of deformations is introduced and thirdly the displacements are calculated. 
The triplet of equations as listed below is evaluated in the order indicated by the arrow:  
  
    −   equilibrium equations 
“Historical”   −   constitutive equations (flexibility formulation) 

−   kinematic equations 
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Numerical 
After the introduction of the first computers, algorithms have been developed that literally 
followed above procedure, and basically only replaced the graphical element by a numerical 
technique. However, simultaneously the displacement method or stiffness method came into 
use, which appeared to be more suitable for computer analysis. In this method the triplet of 
equations is solved in the reversed order: 
 
    −   equilibrium equations 
“Numerical”   −   constitutive equations (stiffness formulation) 

−   kinematic equations 
 
When the kinematic equations (1.4) are substituted in the constitutive equations (1.5), 
followed by a substitution into the equilibrium equations (1.6), the result becomes: 

 T =B D B u f  (equations) (1.9) 

Each of these matrices is square. Since D  is a symmetrical matrix and the pre-multiplication 
matrix  is the transposed of the post-multiplication matrix , the final product will be a 
square and symmetrical matrix. This matrix is indicated by and is called the stiffness 
matrix, i.e.:  

TB B
K

 T=K B D B  (stiffness matrix) (1.10) 

The system of equations can now be summarised as follows: 

 =K u f  (1.11) 

From this system the displacements can be solved. In the standard displacement method the 
matrix  is assembled from the individual stiffness matrices of the several members. In this 
course intentionally for another derivation of is chosen, as an introduction on the next 
chapters dealing with continuous structures. 

K
K

In the displacement method first the displacements are calculated. After that, the deformations 
can be obtained from the kinematic relations and finally from the constitutive equations the 
stress quantities can be determined. This means that the triplet of equations is considered 
again in the same order. 
 
The formulation of the equations given by (1.9) will be considered again during the 
discussion of continuous structures. It is quite obvious, that the product of , TB D  and has 
to deliver a symmetrical matrix. For linear-elastic structures this follows directly from 
Maxwell’s law of reciprocal deflections. Conversely, it can be concluded that  always has 
to be the transposed of , irrespective of the structure considered. 

B

TB
B
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1.3 Basic equations for statically indeterminate structures 

The formulation of the basic equations as described in section 1.1 will be repeated for a 
statically indeterminate structure. The same truss is considered with three free nodes, however 
with an extra seventh member as shown in Fig. 1.5. This makes the structure statically 
indeterminate to the first degree. 

3a

4a 4a

,N e

2 2,N e

3 3,N e

5 5,N e

6 6,N e

1 1

4 4,N e

1 1x x

2 2  x xF u 3 3   x xF u

1

1

  F u

y

y

F
u

2

2

y

y

F
u

3

3

y

y

F
u

x

y

7 7,N e

Fig. 1.5: Statically indeterminate truss with relevant quantities. 

There still are two times six external quantities (degrees of freedom  and forcesu f ), but 
internally the number is larger. Seven normal forces in  and seven corresponding 
elongations in  are present. 

N
e

Again the triplet of equations will be formulated. After the detailed analysis of section 1.1 this 
can be done briefly. 

Kinematic equations 

 

1
1

2 34
15 5

3
2

4
2

5 3 34 4
35 5 5 5

6
3

7 34
5 5

1 0 0 0 0 0
0 0 0 0
0 0 1 0 0 0
0 1 0 1 0 0

0 0
0 0 1 0 1 0

0 0 0 0

x

y

x

y

x

y

ue
ue
ue
ue
ue
ue

e

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪

⎪ ⎪ ⎢ ⎥ ⎨ ⎬= −⎨ ⎬ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪− −⎪ ⎪ ⎢ ⎥ ⎪ ⎪

−⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭
⎪ ⎪ ⎢ ⎥−⎣ ⎦⎩ ⎭

 

Again this can be written as: 

 =e B u  (1.12) 

Now the matrix  has seven rows and six columns and therefore is not square anymore. The 
first six rows are identical to the matrix  of section 1.1. The seventh row is an extension 
due to the extra member. 

B
B
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Constitutive equations 
Also in this case, the stiffness and flexibility formulations of the constitutive equations read: 

 ;= =N De e C N  (1.13)   

Now  and  both contain seven components and N e D  and C  are square matrices with seven 
rows and seven columns. 

Equilibrium equations 
The six nodal equilibrium equations are now expressed in seven stress quantities:  

 

14 4
15 5

3 3 2
15 5

34
25

3 4
25

54
35

3 6
35

7

1 0 0 0 0
0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

x

y

x

y

x

y

FN
FN
FN
FN
FN
FN

N

−⎡ ⎤ ⎧
⎢ ⎥ ⎪− − −⎢ ⎥ ⎪
⎢ ⎥ ⎪−

⎫ ⎧ ⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪⎪ ⎪=⎢ ⎥ ⎪ ⎪ ⎨ ⎬

⎨ ⎬⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪⎩ ⎭⎣ ⎦
⎪ ⎪
⎩ ⎭

 

Also in this case, the matrix is the transposed of matrix . Therefore, it briefly can be 
written: 

B

 T =B N f  (1.14) 

Again the first six columns are equal to  from section 1.1, the seventh columns is an 
extension. 

TB

1.4 Strategies for the analysis of statically indeterminate structures 

On basis of the basic equations it formally will be described how the force method and the 
displacement method will work out. 

1.4.1 Force method 

1st step: Equilibrium 
Normally, the first step would have been the solution of the equilibrium equations. However, 
this is not possible because the number of unknowns exceeds the number of equations by one. 
In such a case, the old and well-tried method of making the structure statically determinate 
can be used, where one of the members is cut and a redundant is introduced on the cutting 
face. In the example of Fig. 1.6, bar 7 is cut and the redundant φ  is introduced.  
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3a

4a 4a

φ
1xF

2xF 3xF

1yF

2yF 3yF

x

y
φ ∆

Fig. 1.6: Introduction of redundant φ . 

Doing so a statically determinate main system is created. On top of the six external 
components of f , also the redundant φ  has to be considered as an external load (still 
unknown) on the main system. This means that this main system is subjected to two load 
vectors: 

 

4
1 5

3
1 5

2

2

3

3

0
;

0
0
0

x

y

x

y

x

y

F
F
F
F
F
F

φ

⎧ ⎫ −⎧ ⎫
⎪ ⎪ ⎪ ⎪+⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

 

The second vector contains the components of the redundant φ  acting in the three nodes. In 
section 1.2 it has been shown, how by (1.7) the normal forces can be calculated of the 
statically determinate main system. 
For the first load vector this provides: 

 

1 4
13

2 5 5 5
13 3 3

3 84 4
23 3 3

4
2

5 5
33

6 4
33

1 0 0 0 0
0 0 0
0 1 1
0 1 0 0 0 1
0 0 0 0 0
0 0 0 0 1

x

y

x

y

x

y

FN
FN
FN
FN
FN
FN

⎧ ⎫⎧ ⎫ ⎡ ⎤
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥
⎪ ⎪⎪ ⎪ ⎢ ⎥− − −⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨− −⎢ ⎥⎪ ⎪ ⎪

⎢ ⎥⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪

−⎢ ⎥⎪ ⎪

⎪
⎬
⎪
⎪
⎪

⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

  (1.15) 

where the matrix is the inverse of the matrix  from section 1.2. When in (1.15) the vector 
with external forces is replaced by the second vector with the components of the redundant 

TB
φ , 

the normal forces in the main system resulting from φ  can be found. The matrix-vector 
product then results in: 
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1 4
5

2

3 4
5

4 3
5

5

6

1

0
0

N
N
N
N
N
N

φ

⎧ ⎫ −⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪−⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬

−⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪

⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭

 (1.16) 

The seventh normal force is independent from the six external forces and is directly equal to 
the redundant, i.e.: 

 7N φ=  (1.17) 

The sum of these three intermediate results delivers the normal forces for the external load 
together with the redundant. This sum can be written as: 

1 4 4
15 5

2 5 5 5
13 3 3

3 84 4 4
23 3 3 5

4 3
25

5 5
33

6 4
33

7

                                         
1 0 0 0 0
0 0 0 1
0 1 1
0 1 0 0 0 1
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0 1

T

x

y

x

y

x

y

FN
FN
FN
FN
FN
FN

N φ

−

− ⎧⎧ ⎫ ⎡ ⎤
⎪⎪ ⎪ ⎢ ⎥
⎪⎪ ⎪ ⎢ ⎥
⎪⎪ ⎪ ⎢ ⎥− − − −
⎪⎪ ⎪ ⎢ ⎥

= − − −⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎢ ⎥

−⎪ ⎪ ⎢ ⎥
⎪ ⎪ ⎢ ⎥⎣ ⎦⎩ ⎭ ⎩

B

      

                                                                f

⎫
⎪
⎪
⎪
⎪
⎬
⎪

⎪ ⎪
⎪ ⎪
⎪ ⎪

⎭

f

P P

φ

 (1.18)  

The columns of this matrix associated with the load vector f  form the matrix fP  and the 
column working on the redundant φ  is called P . For cases with more than one redundant, P  
will contain more columns and φ  more than one component. So, matrix relation (1.18) can 
briefly be written as:  

 f= + φN P f P  (equilibrium system) (1.19) 

These stress resultants form an equilibrium system and therefore will satisfy the equilibrium 
equations (1.14) from section 1.3. 

2nd step: Constitution 
The force method utilises the constitutive relations in the flexibility formulation: 

 =e C N  (constitution) (1.20) 
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3rd step: Compatibility 
The solution process continues as follows. In Fig. 1.6 it was already shown that the bar ends 
on the cutting face can move independently with respect to each other. The overlap ∆  (or 
more generally the gap) is the result of both the external forces and the redundant. 
For the determination of the still unknown redundant φ  the so-called compatibility condition 
is required, which is given by: 

  (1.21) 0∆ =

In words: the gap caused by external forces has to be eliminated by the gap resulting from the 
redundant. For the truss of the example, it will be checked how the gap is related to the 
deformations of the members. This has to be a purely kinematic relation, which is governed 
by the geometry of the structure. 
For the calculation of ∆  it has to be clear how much the distance is reduced between the 
nodes 1 and 4. This reduction will be called 1,4∆ . Its magnitude is: 

 ∆1 4
4
5 1

3
5 1, = − +u ux y  

The value of  can directly be expressed in : 1xu 1e

  u ex1
1=

The magnitude of  is not directly known. However, it is known that: 1yu

  u u ey y1 2
4= −

the displacement  of which directly can be expressed in the deformations: 2yu

 u ey2
5
3

2 4
3

3= − e  

With these results, the gap  can be written as: 1,4∆

 ∆1 4
4
5

1 2 4
5

3 3
5

4
, = − + − −e e e e  

The gap at the position of the redundant is equal to this result increased by the change of 
length of bar 7: 

  ∆ ∆= +1 4
7

, e

Thus: 

 ∆ = − + − − +4
5

1 2 4
5

3 3
5

4 7e e e e e  

In matrix notation this becomes: 
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 { }3 14 4
5 5 5

2

3

4

5

6

7

1 0 0 1 e
e
e
e
e
e
e

∆ = − − − ⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎩ ⎭

 

Closer inspection reveals that the row-matrix is just equal to the transposed of the matrix P . 
Therefore the gap equals: 

 T=∆ P e  (1.22) 

The gap is here written as a vector, because for statically indeterminate structures to higher 
degrees more than one gap is present. In that case, the matrix TP  will contain more rows. The 
compatibility condition can now briefly be formulated as the requirement that: 

  T = 0P e  (compatibility) (1.23) 

In the example of the truss this is: 

 − + + − + =4
5

1 2 4
5

3 3
5

4 7 0e e e e e  

Now, formally the recipe for the compatibility condition has been derived on bases of 
kinematic considerations, which has been done in such a manner that a physical interpretation 
can be given. From a mathematical point of view, condition (1.23) can also directly be 
derived from the kinematic relations (1.12): 

    =e B u

which contain seven equations with six unknown displacements. This means that one 
dependent relation between the seven deformations can be formulated. In order to find this 
relation, the displacements have to be eliminated. This can be done by linear combination of 
the rows of  in such a way that a row of zeros is created. The weight factors with which the 
rows have to be multiplied just form the row-matrix

B
TP . 

 

This formal recipe: the elimination of the displacements from the kinematic relations in 
order to find the compatibility condition, shall be applied again to continuous structures.  
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System of equations 
With the three intermediate results for equilibrium (1.19), constitution (1.20) and 
compatibility (1.23) a system of equations is created for the calculation of the redundant(s) φ . 
Substitution of (1.19) into (1.20) leads to: 

 ( )f= + φe C P f P  (1.24) 

Combination of this result with the compatibility condition (1.23) yields: 

 T T
f + = 0φP C P f P C P  (1.25) 

The first term in this relation is the gap resulting from the external load f . This is a known 
term and will be called . Therefore, the redundant(s) f∆ φ  can be obtained from the 
equations: 

  T
f= −∆φP C P  (equations) (1.26) 

This formulation will be used again for continuous structures. The product of the three 
matrices TP , C  and P  delivers a symmetrical matrix because  is symmetrical and C TP  is 
the transposed of P . 
The product matrix has to be symmetrical since it has to satisfy Maxwell’s law, which proves 
that TP  is always the transposed of P . When for the product of the three matrices the total 
flexibility matrix F  is introduced: 

 T=F P C P  

The system of equations to be solved becomes: 

 f= −∆φF  

Remark 1 
It already was stated that the stresses given by (1.19) satisfy the equilibrium equations (1.14). 
Substitution of these stresses into the equilibrium equations provides the condition: 

 T T
f + =φB P f B P f  

Since both f  and φ  have to be different from zero, from this relation it can be concluded: 

 
T

f
T

=
= 0

B P I
B P

 (1.27) 
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Here I  is the unit matrix and 0  is the zero matrix.  
In this manner the compatibility condition can be derived as well. When in the kinematic 
relation (1.12) both the left-hand and right-hand sides are multiplied by TP , it follows: 

 T T=P e P B u  

From (1.27) it can be seen that is a zero matrix. The matrix TB P TP B is its transposed and 
therefore a zero matrix too. This means that the right-hand side of the above equation is equal 
to zero, reducing it to the already obtained compatibility condition (1.23). 

Remark 2 
In the case of a statically determinate structure, the matrix fP  equals 1−B  and the matrix P  is 
not there (in that case it has zero columns). 

Calculation of stress quantities 
When the redundants are obtained from the equations (1.26), the stress quantities (the normal 
forces) can be calculated from (1.19): 

 f= + φN P f P  

Calculation of displacements 
The intermediate result  of remark 1, can be used to calculate the displacements. 
From the calculated stress quantities , first the deformations are obtained from (1.20): 

T
f =B P I

N

  =e C N

After that the displacements  can be calculated. For that purpose both right-hand and left-
hand sides of the kinematic relations (1.12) are multiplied by 

u
T
fP , i.e.: 

    T T
f f= → =e B u P e P B u

Because T
fB P  is the unit matrix, its transposed T

fP B  is the unit matrix too. Therefore above 
equation can be simplified to: 

 T
f =P e u  (calculation of the displacements) (1.28) 

Which demonstrates how the displacements can be obtained from the deformations. 

Summary of the force method  
Overseeing the strategy of the force method, it is evident that the triplet of basic equations is 
evaluated two times in the order as shown below. First, the system of equations is built up, the 
redundants of which are solved. After that, successively the stresses, deformations and 
displacements are determined.  
 
    −   equilibrium equations 
“Force method”  −   constitutive equations (flexibility formulation) 

−   kinematic equations 

 20



1.4.2 Displacement method 

The displacement method for statically indeterminate structures is exactly the same as the one 
for statically determinate structures. The basic equations (1.12), (1.13) and (1.14) - being a bit 
different in this case - are evaluated two times in the order given below. 
  
    −   equilibrium equations 
“Displacement method”  −   constitutive equations (stiffness formulation) 

−   kinematic equations 
 
During the first cycle again a system of equations is derived: 

 T =B D B u f   (1.29) 

In this case the matrix  is not square and has more rows than columns. Naturally,  
contains more columns than rows. The matrix multiplication results in a square symmetrical 
stiffness matrix for the structure with the same number of rows as  and the same 
number of columns as , as shown in the scheme below: 

B TB

K TB
B

 

7 67

7 76

66

T

⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎪ ⎪ = ⎨ ⎬⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎪ ⎪⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎩ ⎭⎩ ⎭⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

fuD BB  

In the second cycle, successively the deformations are calculated from the kinematic relations 
and the stresses are obtained from the found deformations using the constitutive equations. 

1.5 Summary for discrete bar structures 

In this chapter for statically determinate and statically indeterminate structures the basic 
equations have been derived and two strategies have been discussed. For statically 
determinate structures the words “historical” and “numerical” indicated these strategies and 
for the statically indeterminate structures the terms “force method” and “displacement 
method” were used. The “numerical” method for statically determinate structures is 
completely identical to the displacement method for statically indeterminate structures. The 
word “numerical” is a bit misleading. It does not mean that the other methods are not suitable 
to be implemented on a computer. It only indicates that the displacement method is the most 
appropriate one. 
The “historical” method for statically determinate structures fits into the scheme of the 
displacement method. However, it is a special version of it, because going through two cycles 
is not necessary. Without compatibility conditions directly all required quantities can be 
determined.     
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equations 
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equations 
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T =B N f

=N D e

=e B u
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f= + φN P f P

=e C N

T = 0P e
T
f=u P e

1st 2nd

f= −∆φF
1st2nd

FORCE METHOD                                                             DISPLACEMENT METHOD 

Fig. 1.7: Solution schemes for force and displacement methods. 

In view of all the considerations made, it is possible to create one compact overview for all 
structures. In the central column of this scheme as shown in Fig. 1.7, the three basic equations 
are listed. In the right column it has been summarised in what form these basic equations are 
used for the displacement method. The two cycles are numbered by 1st and 2nd. In the left 
column the same has been done for the force method. However, different formulations of the 
kinematic equations are used in the two cycles.      

Clarification 
1. In the scheme of the force method, for statically determinate structures only one cycle is 

required. In that case the matrix fP  is equal to T−B  and T
fP  transforms into . 1−B

2. In the scheme of the force method two kinematic relations are listed. For statically 
indeterminate structures the left relation is used in the first cycle and the right relation in 
the second cycle (which is the first cycle for statically determinate structures). 

 

Two main aspects 

The strategy of the displacement method does not require any clarifications. In the strategy 
of the force method attention is focussed on two main aspects: 
1. The first one is the construction of a stress field  that satisfies the equilibrium 

equations and in which the (to be determined) redundants are incorporated. 
N

2. The second one is the derivation of the compatibility equations. These are expressions 
in the deformations e . They are found by elimination of the displacements from the 
kinematic equations. 

Remark 
The statically indeterminate truss of the example was internally statically indeterminate. For 
bar structures the calculation procedure remains the same for externally statically determined 
structures. 
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2 Continuous beam 

The strategies considered in chapter 1 will be applied for the solution of continuous problems. 
In this chapter these still are beam structures. Section 2.1 will focus on statically determinate 
beam structures and in section 2.2 statically indeterminate structures will be highlighted. In 
these sections an axially loaded bar is considered, in which only a normal force is generated. 
This phenomenon also can be called a bar loaded in extension. In the sections 2.3 and 2.4 the 
discussion will be repeated for a beam problem with bending. The next section 2.5 will briefly 
focus on problems with shear deformation and torsion. 

2.1 Statically determinate beam subjected to extension 

Fig. 2.1 shows the considered structure. In this structure, the only degree of freedom is the 
displacement  in the direction of the bar axis. The displacement is defined positive if it 
takes place in positive 

( )u x
x -direction. An external distributed load ( )f x  corresponds with this 

degree of freedom. For this load, the same sign convention applies. 

1 ε

( )  ( )f x u x F

NN

x

dNN dx
dx

+N
dx

f dx

l

Fig. 2.1: Bar subjected to extension with relevant quantities. 

Next to the two external quantities, two internal ones are present as well. They are the 
(generalised) stress being the normal force  and a specific strain ( )N x ( )xε , which is caused 
by that normal force. With the choice of these two internal quantities the deformation work is 
uniquely determined. In the scheme of Fig. 2.2 it is depicted, which quantities exist and what 
relations can be established. 
The three basic equations now are: 

 

( )

1or ( )

0 (

xdu kinematic equation
dx

N EA = N constitutive equation
EA

dN )f   equilibrium equation
dx

ε

ε ε

=

=

+ =

 (2.1) 

With introduction of the two operators  and B ′B  given by: 

 ;d
dx dx

′= =B B
d

−  (2.2) 
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external work 

int

( )                        ( )                        ( )                        ( )u x x N x f xε

ernal work

kinematic 
equation 

constitutive
equation 

equilibrium
equation 

Fig. 2.2: Diagram displaying the relations between the quantities playing a 
role in the analysis of a bar subjected to extension. 

and the stiffness  and flexibility : D C

 1( ) ;
( )

D EA x C
EA x

= =  (2.3) 

the basic equations can be reformulated as: 

 
( )

or ( )
( )

u kinematic equation
N D = C N constitutive equation

N=f equilibrium equation

ε
ε ε

=
=

′

B

B
 (2.4) 

Comparison with the basic equations (1.1), (1.2) and (1.3) from section 1.2 shows a large 
analogy. For the solution of a concrete problem, the force method as well as the displacement 
method can be applied. Both methods will be discussed in this chapter. 

Remark 
That in this case a separate operator ′ = −B B  has been introduced has a special reason. When 
above relations are discretised by the Finite Element Method or Finite Difference Method 
these operators are replaced by matrices; then operator B  is replaced by matrix  and 
operator  is replaced by matrix . The sign difference between the operators also can be 
found in their matrix counterparts as shown in section 2.3.4.  

B
′B TB

2.1.1 Force method 

The starting point is the equilibrium equation. This single equation contains one unknown 
stress quantity , which confirms that the problem is statically determined. So, by 
integration the normal force  can directly be determined from the external load 

N
( )N x ( )f x . In 

chapter 1 this boiled down to a matrix-inversion problem. Also integration (in a generalised 
sense) can be regarded as an inversion of differentiation. Then the constitutive equation in its 
flexibility formulation can be used to calculate the strains ( )xε . After that, integration of the 
kinematic equation in combination with the boundary condition directly delivers the 
displacement field  ( ).u x
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Remark 1 
The method of analysis is completely analogous to the one for statically determinate trusses. 

Remark 2 
The selected structure in the example of Fig. 2.1 is both internally and externally statically 
determinate. From the equilibrium equation it only can be established that the problem is 
internally statically determinate. For a conclusion about the external determinacy of the 
problem the boundary conditions have to be inspected.  

2.1.2 Displacement method 

In the displacement method the kinematic equation and the constitutive equation (in stiffness 
formulation) are substituted into the equilibrium equation. Doing so in (2.1), the following 
second order differential equation is obtained: 

 d dEA u f
dx dx

⎧ ⎫⎛ ⎞− ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

=  (2.5) 

In the case of a prismatic bar, the extensional stiffness  is constant and the differential 
equation reduces to: 

EA

  
2

2

d uEA f
dx

− =  (2.6) 

For the substitution process the operator equations (2.2) can be used too. Then the differential 
equation appears in the form: 

 D u f′ =B B  (2.7) 

Now the analogy with equation (1.9) of the comparable truss problem is quite clear. 

Elaboration of an example 
The structure of Fig. 2.1 is considered with the values of  and EA f  assumed constant. In the 
force method successively the three basic equations are evaluated together with the two 
boundary conditions given by: 

  0 0 ;x u x l N= → = = → = 0

Integration of the equilibrium equation delivers: 

  ( ) (0)N x N x f= −

For x l=  the normal force has to be zero, so that for  it holds: (0)N

  (0)N l= f

therefore: 
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  ( )( )N x l x f= −

Application of the constitutive equation yields: 

 ( ) l xx f
EA

ε −
=  

Finally, from the kinematic equation it then follows: 

 
( )1

2

0

( ) (0)

x
l x x

u x u dx f
EA

ε
−

= + =∫  

In the last term, the boundary condition (0) 0u =  already has been incorporated. The 
graphical representations of  and  can be found in Fig. 2.3.  ( )N x ( )u x

x x

N
xu

Fig. 2.3: Normal force and displacement as a function of . x

With the displacement method the same result has to be obtained by solving the differential 
equation: 

 
2

2

d uEA f
dx

− =  

 together with the following boundary conditions: 

  0 0 ;x u x l N= → = = → = 0

The second boundary condition can be rewritten as a condition for the displacement field: 

 0duN EA EA
dx

ε= = =  

With these two boundary conditions it indeed is found (also see the course “Elastostatics of 
slender structures”): 

  ( )1
2l x x

u f  
EA

−
=

From which for  it follows: ( )N x
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 ( )( ) duN x EA l x f
dx

= = −  

Remark 
The discussion in this section appears to be very trivial. This has been done on purpose to 
achieve two goals, first to express the analogy with the discrete approach of chapter 1 and 
second to highlight the correspondence with next chapters in which the analysis appears to be 
less obvious. 

2.2 Statically indeterminate beam subjected to extension 

The problem with the bar of previous section is extended with a system of distributed springs. 
These springs are connected to the bar at its axis and can deform only in the direction of this 
axis. The forces of the springs act in that direction too. Fig. 2.4 shows the set-up of this new 
problem. The springs are depicted as leaf springs restrained at the bottom and hinge-
connected to the bar at the top. 

x

l

( )                  ( )f x u x
F

1 ε

NN dNN dx
dx

+N

dx

f dx

sdx

e s

Fig. 2.4: Statically indeterminate bar with relevant quantities.  

Also in this case, the displacement field is fixed with one degree of freedom . Therefore, 
there is exactly one component of external distributed load 

( )u x
( )f x . With respect to the internal 

stress quantities and corresponding deformations the situation is different compared to the 
previous example. Next to the bar element there is a spring element. Deformation energy can 
be accumulated in both of them, such that for each of the elements separately a generalised 
stress and a generalised deformation occur. Therefore it makes sense to introduce separate 
symbols for these quantities. For the bar element these are again the normal force  and 
the specific strain 

( )N x
( )xε . In the spring element the force per unit length in x -direction is 

indicated by  and the deformation of the spring by . The scheme of Fig. 2.5 displays 
all quantities together with the governing relations. 

( )s x ( )e x
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external work 

int

( ) ( )
( )            ( )          ( )                      ( )

( ) ( )
x N x

u x x x f x
e x s x
ε⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

e s

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium
equation 

Fig. 2.5: Diagram displaying the relations between the quantities playing a role in 
the analysis of a spring-supported bar subjected to extension. 

Governing equations 
The normal force  has the dimension of a force and therefore is indicated by a capital. The 
load  in the springs is a force per unit of length, so it has a different dimension. For that 
reason a lower case letter is used. The kinematic equations for this case are: 

N
s

 
du
dx

e u

ε =

=
 (kinematic equations) (2.8) 

The constitutive equations are: 

 

1or

1or

N EA N
EA

s k e e s
k

ε ε= =

= =
 (constitutive equations) (2.9) 

where  is the extensional stiffness and  the spring modulus. For convenience sake, both 
parameters are taken constant. The equilibrium equation for a small section of the bar now 
becomes: 

EA k

 0dN s f
dx

− + =   (equilibrium equation) (2.10)  

These three sets of basic equations can be reformulated by using operators, which are defined 
by: 
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 ;
1

d
ddx= =
dx

⎧ ⎫
⎪ ⎪⎪ ⎪ ⎧−⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

′B B 1 ⎫  (2.11) 

 ;  (2.12) 
N

e s
ε⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

e s

 

10 0
;

10 0

EA
EA= =

k
k

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

D C ⎥

)

 (2.13) 

Again, the three basic equations can be written in a brief manner as discussed in chapter 1:   

 
( )
(
( )

u kinematic equations
constitutive equations

f equilibrium equation

=
=
′ =

e
s D e

s

B

B
 (2.14) 

Notice that the operator  is almost the transposed of the operator B . During transposition 
the derivative changes of sign. Again, it will be discussed how these basic equations are used 
in the force and displacement methods. 

′B

2.2.1 Force method 

In this method, the equilibrium equation (2.10) is the first equation to be evaluated. This is 
one equation with two unknown stress quantities  and , which confirms that the problem 
is statically indeterminate. Therefore, one redundant 

N s
( )xφ  has to be introduced. This means 

that there is only one compatibility condition too. In this case a horizontal cut is made 
between the bar and the springs. The distributed load at both faces of the cut then becomes the 
redundant. In Fig. 2.6a a positive ( )xφ  has been drawn. 

x

( )xφ ( )xφ

Fig. 2.6a: Selection of the redundant in a spring-supported bar subjected to extension.  

It makes sense to introduce a separate symbol for the redundant. In the simple bar problem 
that is under investigation here, the redundant ( )xφ  is equal to the spring load , but this 
is not necessarily always the case. With this choice for the redundant from the equilibrium 

( )s x
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equation (2.10), the following relations for the internal stress quantities  and  can be 
found: 

N s

 
dN f
dx
s

φ

φ

= −

=
 (equilibrium) (2.15) 

After determination of the redundant φ , the force  and the load  can be obtained from the 
relations (2.15).  

N s

The second step in the force method is the evaluation of the constitutive equations in 
flexibility formulation: 

 

1

1

N
EA

e
k

ε

φ

=

=
 (constitution) (2.16) 

The third step is the derivation of the compatibility condition. This condition is an equation 
describing the relation between ε  and  that has to be satisfied. The compatibility condition 
can be obtained from the kinematic equations (2.8) by elimination of the displacement u  
(notice what has been stated in the summary of chapter 1). This can be done by differentiation 
of the second equation with respect to 

e

x . Then both right-hand sides are equal to du dx , 
which after subtraction of the two equations disappears and a relation results only containing 
ε  and e . This is the compatibility condition and it is given by: 

 0de
dx

ε − =  (compatibility) (2.17) 

The fourth step is the derivation of the differential equation for the redundant φ . Analogously 
as done for the truss in chapter 1, first the substitution is required of the equilibrium system 
(2.15) into the constitutive equations (2.16). For this purpose the first equation of (2.16) is 
differentiated with respect to x . The two relations then become: 

 11 ;d dN e
kdx EA dx

ε φ==   

 Substitution of the equilibrium system (2.15) then provides: 

 ( )1 1;d f e
dx EA k
ε φ φ= − =  (2.18) 

Next this result has to be substituted into the compatibility condition (2.17), which first is 
differentiated once: 
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2

2 0d d e
dx dx

ε
− =  

Now (2.18) easily can be substituted resulting in: 

 
2

2

1 1 1d f
k dx EA EA

φ φ− + =  (2.19) 

This is a second-order differential equation with respect to the redundant φ . For the solution 
of this equation two boundary conditions have to be formulated. 

Similarity with bar structures 
The provided derivation of the differential equation for φ  did not show clearly the analogy 
with the force method for bar structures. The recognizability is increased when the derivation 
is carried out a bit differently. Again, in the first step it is started with the equilibrium 
equation (2.10), but now an integration is carried out. The following equilibrium system is 
found: 

 
0 0

;

x x

N dx f dx sφ φ= −∫ ∫ =  (2.20) 

The integration constant is not considered, because it is not important in this case. Together 
with the constitutive equation in the flexibility formulation (2.9), an expression for the 
deformations is found: 

 
0 0

11 1 ;

x x

e =dx f dx
kEA EA

ε φ= −∫ ∫ φ  (2.21) 

Now, the compatibility condition is determined by elimination of the displacement from the 
kinematic equations (2.8). Integration of the first one followed by subtraction of the second 
one gives: 

 

0

0

x

dx eε − =∫  (2.22) 

The physical interpretation of this result is shown in Fig. 2.6b. Substitution of (2.21) into 
(2.22) provides the compatibility condition from which φ  can be calculated: 

 
0 0 0 0

1 1 1
x x x x

dx dx f dx dx
k EA EA

φ φ− + =∫∫ ∫∫  (2.23) 
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Fig. 2.6b: Visual representation of the gap to be neutralised in a  
spring-supported bar subjected to extension.   

 

x u

e ∆

0

x

u e dx eε∆ = − = −∫

By differentiation twice, a more suitable equation is obtained: 

 
2

2

1 1 1d f
k dx EA EA

φ φ− + =  (2.24) 

Now it is clear that the inclusion of integration constants in (2.20) and (2.21) makes no sense, 
because these constants would have disappeared anyway by the two differentiations. The 
differential equation (2.24) is identical to the previously found equation (2.19). 

Notation with operators 
Now, it will be demonstrated how above result can also be obtained with the use of operators. 
The similarity with chapter 1 will become clear. The internal stress quantities in (2.20) are: 

 0 0 
0 1

x x

dx dx
N

f
s

φ

⎧ ⎫ ⎧ ⎫
−⎪ ⎪ ⎪ ⎪

⎧ ⎫ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫
 

Or briefly, analogously to (1.19): 

 f f φ= +P Ps  

where: 

 0 0

d d
;  

0 1

x x

f

x x
⎧ ⎫ ⎧

−⎪ ⎪ ⎪
⎪ ⎪ ⎪= =⎨ ⎬ ⎨
⎪ ⎪ ⎪
⎪ ⎪ ⎪⎩ ⎭ ⎩

∫ ∫
P P

⎫
⎪
⎪
⎬
⎪
⎪⎭

 

For the strains it then follows: 

 ( )f f φ+P Pe = C  
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where C  is given in (2.13). The compatibility condition (2.22) can be written as: 

  
0

1 0
x

dx

e

ε⎧ ⎫ ⎧ ⎫
− =⎪ ⎪⎨ ⎬

⎨ ⎬⎩ ⎭
⎪ ⎪
⎩ ⎭

∫

Introduction of the suitable operator ′P  given by: 

   
0

1
x

dx
⎧ ⎫

′ = −⎨ ⎬
⎩ ⎭

∫P

provides the following brief notation: 

  0′ =eP

In analogy with (1.23) from chapter 1, the operator ′P  is the transposed of  with as extra 
addition the sign difference in the integration term. Substitution of the matrix equation for the 
strains e  changes this equation into: 

P

 fφ′ = −∆CP P  (2.25) 

where  is the incompatibility resulting from the external load f∆ f , it is given by: 

 f f f′∆ = CP P   (2.26) 

Written in this form the previously found differential equations (2.19) and (2.24) can be 
compared to the results obtained in chapter 1. 

2.2.2 Displacement method 

In the displacement method the constitutive equations (2.9) in stiffness formulation and the 
kinematic equations (2.8) are directly substituted into the equilibrium equation (2.10). This 
leads to: 

 
2

2

d uEA k u f
dx

− + =  (2.27) 

Introduction of the operator definitions of (2.11) and the matrix D  given in (2.13) provides 
the following matrix notation of the differential equation: 

 u f′ =DB B   (2.28) 

In this form, the analogy with chapter 1 becomes clear again. 

 33



2.2.3 Elaboration of an example 

A solution is provided for the problem of Fig. 2.7 (also see Fig. 2.4), where ( )f x  has a 
constant value f  and where  and  are constants too. EA k

x x′
l

f

Fig. 2.7: Spring-supported bar, which is uniformly loaded in axial direction. 

In the force method the differential equation is: 

 
2

2

1 1 1d f
k dx EA EA

φ φ− + =  

and in the displacement method the equation reads: 

 
2

2

d uEA k u f
dx

− + =  

In the differential equation of the displacement method, the stiffnesses  and k  appear as 
constant coefficients. In the equation of the force method these are the compliances 

EA
1 k  and 

1 EA . At the position where the stiffness  appears in one case, the compliance k 1 EA

)
)

 
appears in the other case and vice versa. 
Both differential equations are of the second order. For both the displacement method and the 
force method, two boundary equations are required. They are: 

 
0 0 (

0 (
x u kinematic
x l N dynamic

= → =
= → =

 

Force method 
In the force method the boundary conditions are transformed into conditions expressed in φ . 
Use is made of the kinematic relation e u= . The kinematic boundary condition  
becomes  and therefore 

0u =
0e = 0φ = . The dynamic boundary condition  becomes 0N =

0EAdu dx = . Since  is equal to , it also holds e u 0de dx = . In view of the direct relation 
between  and e , the condition becomes s 0ds dx = . But  is equal to s φ , so that for the 
dynamic boundary condition it has to hold 0d dxφ = . Therefore, the following problem has 
to be solved: 
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2

2

1 1 1d f
k dx EA EA

φ φ− + =    (differential equation) 

 
0 0

0

x
dx l
dx

φ
φ

= → =

= → =
 (boundary conditions) 

A particular solution is: 

 fφ =  

A solution for the homogeneous equation (right-hand side zero) equals 

  rxA eφ =

The equation for the determination of the roots r  reads: 

 
2 1 0rxr e

k EA
⎛ ⎞

− + =⎜ ⎟
⎝ ⎠

 

By introduction of the characteristic length λ : 

 EA
k

λ =  

the characteristic equation (after division by rxe EA ) can be written as: 

  2 2 1 0r λ− + =

From which it follows: 

 2
2

1r
λ

=  

The two roots therefore are: 

 1 2
1 1;r r
λ λ

= = −  

The total solution for φ  including the particular solution becomes: 

 / /
1 2( ) x xx A e A e fλ λφ −= + +  

This solution is often written is a somewhat different form. The first term of the right-hand 
side is then expressed in the coordinate x′  opposite to the coordinate x  and starting at the 
free end (see Fig. 2.7). Between x  and x′  the following relation holds ( )x l x′= − . 
The first term then becomes ( )1

1
xA e λ′−  or 1

l xA e eλ λ′− . After introduction of the new constant 
1 1

lA A e λ=  the solution also can be written as: 
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 /
1 2( ) x / xx A e A e fλ λφ ′− −= + +  

The homogeneous part consists of a contribution that damps out from the end  and of a 
contribution that damps out from the end 

0x′ =
0x = . The constants 1  and 2  can be obtained 

from the boundary conditions. The elaboration is simplified by the assumption that the bar has 
such a length that both damping terms do not reach the other end. This is the case if the length 

 of the bar is three to four times its characteristic length 

A A

l λ . It then is found: 

 2 20

0
0 0

1

x

x

e
x A f A f

e e

λ

λ
φ

′−

−

⎫=
= → → = + = → = −⎬

= = ⎭
   

 
0

1 2 1
1 1 1 1 0 0

0

x
x x

x

e e dx l A e A e A A
dxe

λ
λ λ

λ

φ
λ λ λ

′−
′− −

−

⎫= =
= → → = − = = → =⎬

= ⎭
1  

Therefore the solution is: 

 ( )/( ) 1 xx e fλφ −= −  

From the equilibrium equation (2.15) it directly follows: 

 ( )
/

/

( )

( ) 1

x

x

N x f e

s x f e

λ

λ

λ −

−

=

= −
 

and the displacement becomes: 

 ( )/( ) 1 xfu x e
k

λ−= −  

Fig. 2.8 displays the normal force and displacement distributions. 

x

N

x

xu
s

Fig. 2.8: Normal force and displacement as a function of . x

Displacement method 
In the displacement method the boundary conditions have to be expressed in the displacement 

. For  this is already the case, because at that position the kinematic boundary 
condition u  applies. At the end 
u 0x =

0= x l=  the dynamic boundary condition  holds, 
which can be reformulated as 

0N =
0du dx = . 

Therefore, the following problem has to be solved: 

 36



 
2

2

d uEA k u f
dx

− + =  (differential equation) 

 
0 0

0

x u
dux l
dx

= → =

= → =
 (boundary conditions) 

Now, a particular solution is: 

 fu
k

=  

As homogeneous solution it is selected: 

  rxu A e=

This delivers the characteristic equation: 

  ( )2 0rxEA r k e− + =

After division by  and introduction of the characteristic length rxke λ  as previously defined, 
the same characteristic equation as in the force method is obtained: 

  2 2 1 0r λ− + =

From this equation the same roots can be solved. In a similar way as found for φ  in the force 
method, the solution for u  becomes: 

  1 2( ) x x fu x A e A e
k

λ λ′− −= + +  

Again the restriction is introduced that l λ . For the values of the constants it then can be 
derived: 

 
2 2

1 2 1

0

1 1 1 0 0x x

f fx u A A
k k

dux l A e A e A A
dx

λ λ

λ λ λ
′− −

= → = + → = −

= → = − = = → =1

 

The final solution for u  then becomes: 

 ( )/( ) 1 xfu x e
k

λ−= −  

Subsequently, from this relation the quantities  and  can be determined. Naturally, this 
solution is in agreement with the solution found with the force method. 

N s
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2.3 Statically determinate beam subjected to bending 

In this section a straight beam is considered in which bending moments are generated caused 
by a distributed load f  perpendicular to the beam-axis. Fig. 2.9 shows the structure and the 
symbols to be used during the derivations. 

MM κ

1

dVV dx
dx

+

V

M
dx

f dx
dMM dx
dx

+

x

( )w x
l

z

( )f x

Fig. 2.9: Statically determinate beam subjected to bending with relevant quantities. 

For the analysis of the problem it is assumed that the reader knows the classical beam theory. 
In this case it is particularly important that the deformations generated by the shear force V  
can be neglected. In that case the displacement field can be described by only one degree of 
freedom, which will be indicated by . Therefore, also only one external load is possible, 
the distributed load 

( )w x
( )f x  per unit of beam length in the direction of . Next to these two 

external quantities, also internal quantities play a role. They are the moment 
w

M  and the 
curvature , which is caused by the moment. In Fig. 2.9 positive κ M  and  are depicted. κ

Remark 1 
It is true that the shear force V  is appearing as well, but not as a generalised stress that plays 
a role in the followed solution strategy. Generalised stresses are quantities that are coupled 
with deformation energy. For the shear force this is not the case because the corresponding 
deformation is not considered. 

Remark 2 
The deformation caused by the moment is indicated by κ . This parameter definition is used 
frequently in the engineering practice in concrete and steel. Think about the use of 

diagrams. This means that  is defined positive if it is caused by a positive moment -M κ κ M .    
The quantities, which are essential for this discussion and the relations between them are 
indicated in the scheme of Fig. 2.10. 
From the three basic equations, two can be written down immediately: 

 
2

2

d w
dx

κ = −  (kinematic equation) (2.29) 
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external work 

int

( )                        ( )                        ( )                        ( )w x x M x f xκ

ernal work

kinematic 
equation 

constitutive
equation 

equilibrium
equation 

Fig. 2.10: Diagram displaying the relations between the quantities playing a 
role in the analysis of a beam subjected to bending. 

 1orM EI M
EI

κ κ= =   (constitutive equation) (2.30) 

The equilibrium equation requires extra attention. In this formal approach, only one degree of 
freedom is present and consequently only one external load f  acting in only one direction 
has to be present as well. Therefore, just one equilibrium equation can be used (acting in -
direction). However, for a small section of the beam, as drawn in the bottom-right corner of 
Fig. 2.9, two equilibrium equations can be formulated. Namely, one in the -direction but 
also the equilibrium of moments about the -axis: 

z

z
y

 0dV f
dx

+ =  (load in z-direction) 

 0dM V
dx

− =  (moment about y-axis)  

In the first equilibrium equation in -direction the shear force appears, while a relation is 
required between the moment and the external load. For the replacement of V  by an 
expression in 

z

M  the second equilibrium equation can be applied as a help relation: 

 dMV
dx

=  

Substitution of this result into the equilibrium equation for the -direction provides the 
required third basic equation: 

z

 
2

2 0d M f
dx

+ =  (equilibrium equation) (2.31) 

Again, the found three basic equations can be written down briefly with the use of operators. 
For this purpose, the following is introduced: 
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2 2

2 2;

1( ) ;
( )

d d
dx dx

D EI x C
EI x

= =

= − = −′B B
 (2.32) 

The three basic equations can now briefly written down as: 

 
( )

or ( )
( )

w kinematic equation
M D CM constitutive equations

M f equilibrium equation

κ
κ κ

=
= =

′ =

B

B
 (2.33) 

Remark 1 
In sections 2.1 and 2.2 it was made clear that the derivatives had to change sign when ′B  was 
obtained from . Here this is not the case. Generally it holds that a change of sign is required 
only for differentiations and integrations of uneven order. So, if the order is even the change 
of sign is not necessary. In subsection 2.3.4 more attention will be paid to this phenomenon.  

B

Remark 2 
For the selected sign convention of the moment M and the curvature κ , the curvature is 
equal to the second derivative of the deflection with a minus sign. Notice that the curvature κ  
is actually the change of curvature with respect to the unloaded state. For a straight beam, this 
initial curvature is zero, but for shells this is generally not the case. For shells the word 
curvature is introduced for the definition of the geometry too. Then the curvature is the 
second derivative of the function , which describes the shape of the shell surface. This 
is a geometrical quantity, while in this analysis 

( , )z x y
κ  is a deformation quantity with in addition a 

different sign convention.  

2.3.1 Force method 

Again, first the equilibrium equation is evaluated. This equation contains only one unknown, 
allowing direct solution by integration and substitution of the boundary conditions. Then from 
the constitutive equation the curvature can be determined. By integration of the kinematic 
relation together with the boundary conditions the displacement distribution can be found. 

2.3.2 Displacement method 

By successive substitution, a new equilibrium equation can be found from the three basic 
equations: 

 
2 2

2 2

d dEI w f
dx dx

⎧ ⎫⎛ ⎞⎪− −⎨ ⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

⎪ =⎬  (2.34) 

For constant , this equation transforms into the well-known differential equation of the 
fourth-order: 

EI
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4

4

d wEI f
dx

=  (2.35) 

After introduction of the defined operators the differential equation becomes: 

  (2.36) D w f′ =B B

2.3.3 Elaboration of an example 

Force method 
As an example, the structure as shown in Fig. 2.9 is analysed with constant  and EI f . In the 
force method the three basic equations are evaluated, starting with the equilibrium equation. 
The applied boundary conditions are: 

 

0
0

0

0

0 0

w
x dw

dx
M

x l dMV
dx

=⎧
⎪= → ⎨

=⎪⎩
=⎧

⎪= → ⎨
= → =⎪⎩

 

After some elaborations the following solutions for the moment and displacement distribution 
can be obtained (see Fig. 2.11): 

 
2 2 3

2
2 2 3

2 1 4 11 ; 2
2 3

4 4

43 8
x x x xM f l w
l l l l l EI

⎛ ⎞ ⎛ ⎞
= − − + = − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

x f l  

w

xM

x

Fig. 2.11: Bending moment and displacement as a function of . x

Displacement method 
With the displacement method the same solution has to be found from: 

 
4

4

d wEI f
dx

=  

satisfying the boundary conditions given by: 
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   2

2

3

3

0
0

0

0 0

0 0

w
x dw

dx
d wM
dxx l
d wV
dx

=⎧
⎪= → ⎨

=⎪⎩
⎧

= → =⎪⎪= → ⎨
⎪ = → =⎪⎩

 

Notice that all boundary conditions are formulated in . A kinematic condition is 
automatically a function of . However, a dynamic boundary condition has to be 
reformulated. With this method first a solution for the deflection  is found. Then, from 
this displacement field the moment distribution 

w
w

( )w x
( )M x  can be derived. Naturally, the found 

solution is identical to the one obtained from the force method. 

2.3.4 The sign difference between  and B ′B  

In the previous sections, it was established that the operator ′B  can be obtained from operator 
 by transposition, while at the same time the sign of first derivatives are changed (see 

(2.11)). When the second derivative is involved the change of sign is not required (see (2.32)). 
Generally it holds that the sign only changes for derivatives of uneven order. So, when the 
order is even nothing happens. This also holds for zero-order derivatives, which are constants. 
This property can be clarified by making use of differential calculus∗. In the discretisation 
process matrices replace these operators; then operator B  is replaced by matrix and 
operator  is replaced by matrix . As will be shown, the eventual sign difference 
between the operators, can be found in their matrix counterparts too.   

B

B
′B TB

Beam subjected to extension 
Again, the simple problem of Fig. 2.1 is considered in which a normal force loads a bar. In the 
displacement method it holds: 

 
; ;

; ;

du du
dx dx

dN df N f
dx dx

ε ε= =

′ ′− = = = −

B B

B B

=
 

The change of signs can be understood better, if the bar is discretised to a series connection of 
 normal-force elements. Along the bar n  elements of length n x∆  are situated, such that 1n +  

nodes are present. For the extension  in element  between the nodes i  and , the 
following kinematic relation holds: 

ie i 1i +

  1i i ie u u += − +

Likewise for the equilibrium of node  with external load  it follows: i iF

                                                 
∗ This explanation is provided by Prof.ir. H.W. Loof, professor Numerical Mechanics at the former faculty of 
Civil Engineering.  
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  1i iN N− − = iF

The stiffness , which relates e  to  is given by: iD i iN

 i
EAD

x
=

∆
 

For all elements the kinematic relations can be written as: 

 
1 1

1 1

. . .

. . .
1 1

1 1
1 1

. . .

. .
.

i i

i i

i i

e u
e u

e u

− −

+ +

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪−
⎪ ⎪ ⎢ ⎥= −⎨ ⎬ ⎪⎢ ⎥

.

.

.
. .

⎫
⎪
⎪
⎪

⎪ ⎪
⎪

⎨ ⎬⎪ ⎪ ⎢ ⎥− ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎪ ⎪
⎪ ⎪⎩ ⎭

 

zeros 

zeros 

or briefly: 

  =e B u

The first and last elements of the vectors and matrices, which may be affected by boundary 
conditions, are indicated by dots. They are not essential for the demonstration of the sign 
difference.    
Likewise all equilibrium equation form a system: 

 

1 1

1 1

. .

. . . .
1 1

1 1
1 1

. . . .
. . . .

. .

i i

i i

i i

N F
N F

N F

− −

+ +

⎡ ⎤ ⎧
⎢ ⎥ ⎪
⎢ ⎥ ⎪
⎢ ⎥ ⎪−

⎪ ⎪⎢ ⎥ =− ⎨ ⎬ ⎪⎢ ⎥

.⎫ ⎧ ⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪

⎪ ⎪
⎪

⎨ ⎬⎪ ⎪⎢ ⎥− ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

 

zeros 

zeros 

or briefly: 

 T =B N f  

For the total system it now holds: 

  B DT =B u f  
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where D  is a diagonal matrix containing all element stifnesses iD EA x= ∆ . The stiffness 
matrix is symmetrical, because  is the transposed of . But at the same time it holds that 

. This sign difference can also be found between the operators  and  in the 
differential equations. 

TB B
T = −B B ′B B

Beam subjected to bending 
Similarly the bending problem can be analysed. The relations are given by: 

 

2 2

2 2

2 2

2 2

; ;

; ;

d w dw
dx dx

d M df M f
dx dx

κ κ= − = = −

′ ′− = = = −

B B

B B
  

Again an equidistant node distribution along the beam is considered of  nodes at mutual 
distance of 

1n +
x∆ . As shown in Fig. 2.12 in each node  a bending moment ii M  is present and a 

deflection i  is generated perpendicular to the beam axis. In the course Elastic Plates it was 
shown that with the aid of differential calculus, the flexible bar can be replaced by a series 
connection of undeformable slices of length 

w

x∆ , with an imaginary rotation spring between 
those slices. The spring constant i  of this rotation spring, relates the moment iD M  to the 
angle iθ  between the two adjacent rigid slices. Between θ  and  the following kinematic 
relation holds: 

w

 ( )1 1
1 2i i iw w w
x

θ − += − + −
∆ i  

This relation easily can be understood by looking at Fig. 2.12. For the angles α , β  and iθ  it 
respectively holds: 

2          1                          1          2i i i i i− − + +

x∆ x∆x∆x∆

2iw −

1iw −

iw
1iw + 2iw +

α β

iθ
2iM −

1iM −

iM
1iM + 2iM +

2          1                          1i i i i− − +

Fig. 2.12: Displacement and moment distributions. 
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1

1

i i

i
i i

w w
x

w w
x

α
θ α β

β

−

+

− ⎫= ⎪⎪∆ → = −⎬− ⎪=
⎪∆ ⎭

  

which shows that the above stated kinematic relation is correct. 
For the total system of kinematic relations it then is found: 

 
1 1

1 1

. . .

. . . . .
1 2 1

1 1 2 1
1 2 1

. .

. .

i i

i i

i i

w
w

x
w

θ
θ

θ

− −

+ +

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪
⎪ ⎪ ⎢ ⎥ ⎪− −
⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎬ ⎨⎢ ⎥∆⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩

.

. .
.

⎫
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎭

 

or briefly: 

  =θ B w

The external distributed load ( )f x  is discretised in such a manner that in each node  a force 
i  can be applied in the direction of i . This means that across an element the shear force is 

constant. The moment equilibrium of element  then delivers (see Fig. 2.13a): 

i
F w

i

             1i i +

i
iM 1iM +

iV

iV

iM

iV

iM

1iV −

i

iF

a) equilibrium of element                   b) equilibrium of node 

Fig. 2.13: Equilibrium of elements and nodes.  

 1i i
i

M MV
x

+ −
=

∆
 

Analogously, for element i  it follows: 1−

 1
1

i i
i

M MV
x

−
−

−
=

∆
 

 For the force equilibrium of node i  it holds (see Fig. 2.13b): 

  F V Vi i= −−1 i

Substitution of the relations for the shear forces finally delivers: 
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 ( )1 1
1 2i i i iM M M F
x − +− + − =

∆
 

The entire system of equilibrium equations becomes: 

1 1

1 1

. . . .

. . . . .
1 2 1

1 1 2 1
1 2 1

. . . . .
. . . .

i i

i i

i i

M F
M F

x
M F

− −

+ +

⎡ ⎤ ⎧
⎢ ⎥ ⎪
⎢ ⎥ ⎪
⎢ ⎥ ⎪− −

⎪ ⎪ ⎪⎢ ⎥ =− − ⎨ ⎬ ⎨⎢ ⎥∆ ⎪ ⎪ ⎪⎢ ⎥− − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ ⎩

⎫ ⎧ ⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪

⎪
⎬
⎪
⎪
⎪
⎪

⎭ ⎩ ⎭

 

or briefly: 

 T =B M f  

Substitution of the relation between  and  given by: M θ

  =M Dθ

in combination with =θ B w  provides the required system of equations for the entire 
structure: 

 T =B DB w f  

The introduced D  is a diagonal matrix containing all rotation stiffnesses . i

Now  is not only the transposed of , but it also is completely identical to . This 
explains that in the differential equation the operator 

D EI=
TB B B

′B  is completely identical to operator B  
and no change in sign is involved. 

General conclusion 
It has been shown that for uneven derivatives, differential calculus leads to  and for 
the even derivatives . This principle is generally valid. 

T = −B B
BT = +B

It also can be stated differently. For uneven derivatives (of first, third, etc. order) the matrix 
 becomes asymmetrical with respect to the main diagonal and for even derivatives (of 

second fourth, etc. order) it becomes symmetrical. For that reason  becomes  in the 
first case and  in the other case. 

B
TB −B

+B

2.4 Statically indeterminate beam subjected to bending 

The beam problem of Fig. 2.9 is extended by an elastic foundation of uniformly distributed 
springs as shown in Fig. 2.14. In view of the extensive comments provided in the previous 
sections the derivations will be given without much explanation. Notice that in both 
deforming elements (beam and spring) the stress and strain quantities are introduced 
independently, separately from the displacement field. The distributed load  in the ( )s x
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MM κ

1

x

l

z

( )w x

( )f x

dVV dx
dx

+

V

M

dx

f dx
dMM dx
dx

+

sdx

s

e

Fig. 2.14: Spring-supported statically indeterminate beam subjected to bending 
 including relevant quantities. 

 

springs is positive for tension. Likewise,  is positive for extension. Again distinction has 
to be made between  and . The scheme of Fig. 2.15 displays the several quantities 
and their mutual relations. 

( )e x
( )s x ( )V x

external work 

int

( ) ( )
( )            ( )          ( )                     ( )

( ) ( )
x M x

w x x x f x
e x s x
κ⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

e s

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium
equation 

Fig. 2.15: Diagram displaying the relations between the quantities playing a role in 
the analysis of a spring-supported beam subjected to bending. 

The kinematic relations are: 

 

2

2
d w
dx

e w

κ = −

= −
 (kinematic equations) (2.37) 

 The constitutive equations read: 
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1or

1or

M EI
EI

s ke e s
k

= Mκ κ=

= =
 (constitutive equations) (2.38) 

The equilibrium equation becomes: 

 
2

2 0d M s f
dx

+ + =  (equilibrium equation) (2.39) 

These equations can be written briefly by introduction of the following operators and 
matrices: 

 

2

2

2

2

0
;

01

1 0
1 ;

10

d EI
dx

k

d EI
dx

k

⎡ ⎤⎧ ⎫
− ⎢ ⎥⎪ ⎪= =⎨ ⎬ ⎢ ⎥

⎪ ⎪ ⎢ ⎥−⎩ ⎭ ⎣ ⎦
⎡
⎢ ⎥⎧ ⎫

′ = − − = ⎢ ⎥⎨ ⎬
⎩ ⎭ ⎢ ⎥

⎢ ⎥⎣ ⎦

D

C

B

B

⎤
 (2.40) 

The result is: 

 
( )

or ( )
( )

w kinematic equations
constitutive equations

f equilibrium equation

=
= =
′ =

e
s D e e C s

s

B

B
 (2.41) 

2.4.1 Force method 

The equilibrium equation cannot be solved because it contains two unknowns. Therefore, a 
redundant ( )xφ  is introduced, which is the spring load function on the cutting face between 
beam and springs, as shown in Fig. 2.16. This redundant sees to it that the gap  between 
beam and springs becomes zero. From the equilibrium equation (2.39) and the choice for 

∆
φ  it 

can be concluded that: 

 
2

2 ;d M f s
dx

φ φ= − − =  

This result for M  and  will be substituted into the constitutive equations. Before doing so, it 
is handy to differentiate the constitutive equations twice with respect to 

s
x . After substitution 

of the above relations, it then follows: 
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Fig. 2.16: Selection of the redundant and visual interpretation of the gap. 
 

x ( )xφ

z

φ

φ

e
w ∆

0 0

x x

w e dx dx eκ
⎛ ⎞
⎜ ⎟∆ = + = − +
⎜ ⎟
⎝ ⎠

∫ ∫

 ( )
2

2

1 1;d f e
dx EI k

φ φκ
= − − =  

Further, the compatibility condition is obtained by elimination of the deflection  from the 
kinematic relations (2.37), which delivers: 

w

 
2

2 0d e
dx

κ− =  

This compatibility condition is differentiated twice: 

 
4 2

4 2 0d e d
dx dx

κ
− =  

Now, the previously found values for 2d dxκ 2  and  can be substituted, leading to the 
following differential equation for 

e
φ : 

 
4

4

1 1 1d f
k dx EI EI

φ φ+ = −  (2.42)    

Remark 
The compatibility condition has been visualised in Fig. 2.16. The total gap ∆  to be eliminated 
is the sum of  and : w e

  0w e+ =

Differentiation twice transforms this condition into:  

 
2 2

2 2 0d w d e
dx dx

+ =  

The first term is exactly , therefore the compatibility condition becomes: κ−
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2

2 0d e
dx

κ− =+  

This is the same equation as the one above, which was mathematically obtained by 
elimination of the deflection  from the kinematic equations. w

2.4.2 Displacement method 

In the displacement method, the kinematic and the constitutive equations are substituted into 
the equilibrium equation. This leads to: 

 
4

4

d wEI k w f
dx

+ =  (2.43) 

2.4.3 Elaboration of an example 

Force method 
The found results can be applied to the beam of Fig. 2.14 for constant  and EI f . When the 
force method is applied, differential equation (2.42) has to be solved. The boundary 
conditions are partly kinematic and partly dynamic: 

 
0

0
0

w
x dw

dx

=⎧
⎪= → ⎨

=⎪⎩

 (kinematic) 

   (dynamic) 
0

0
M

x l
V

=⎧
= → ⎨ =⎩

The requirement that  for  means that e  is zero and therefore that 0w = 0x = 0φ = . 
Likewise, from the requirement that 0dw dx =  it follows that d dxφ  is zero. This means that 
the kinematic boundary conditions are transformed into: 

 
0 (

0
0 (

x d
dx

φ
φ
=⎧

⎪= → ⎨
=⎪⎩

1)

2)
 

The boundary conditions for x l=  can also be interpreted as conditions for φ . To achieve 
this, the compatibility condition is used:   

 
2

2 0d e
dx

κ− =  

The condition  is identical to 0M = 0κ = . Therefore, it follows: 
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2 2

2 20 0d e d
dx dx

φ
= → = (3)  

That V  is zero means: 

 0 0dM d
dx dx

κ
= → =  

Then it has to hold: 

 
3 3

3 30 0d e d
dx dx

φ
= → = (4)  

Displacement method 
When the displacement method is applied, differential equation (2.43) has to be solved. The 
above-mentioned kinematic boundary conditions can be used directly: 

 
0 (

0
0 (

w
x dw

dx

=⎧
⎪= → ⎨

=⎪⎩

1)

2)
 

The two dynamic boundary conditions 0M =  and 0V =  for x l=  are reformulated into 
conditions for the deflection . w

 

2

2

3

3

0 (

0 (

d w
dxx l
d w
dx

⎧
=⎪⎪= → ⎨

⎪ =⎪⎩

3)

4)
 

Solution 
For both the force method and the displacement method the homogeneous solution for a beam 
on an elastic foundation contains four components (so the particular solution is not 
considered). In the book “Elastostatica van slanke structuren∗” of A.L. Bouma, section 11.4 
for these components it can be found: 

 
( ) ( )
( ) ( )

/ /

/ /

sin ; sin

cos ; cos

x x

x x

e x e x

e x e x

λ λ

λ λ

λ λ

λ λ

−

−
  

where λ  is a characteristic length: 

 4
4EI

k
λ =  

                                                 
∗ English translation: “Elastostatics of slender structures” 
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φ

x x

M

Fig. 2.17: Redundant and moment as a function of . x

When the beam length is at least four times its characteristic length λ  a solution is obtained 
as shown in Fig. 2.17. 

2.5 Beams subjected to torsion or shear 

Torsion 
In the case of torsion, the degree of freedom is the rotation ( )xϕ  about the x -axis (see Fig. 
2.18). This rotation is associated with a distributed torque . In the cross-section of the 

beam a torsional moment 

( )t x

tM  is generated, which goes together with an angular deflection θ . 
The torsional stiffness is . The scheme of relations is displayed in Fig. 2.19.  tGI

1 dx

θ

( )tM x

x

tdx

tM
tM

t
t

dMM dx
dx

+

( )xϕ( )t x

t tM GI θ=

( )t x  is a distributed torque 

Fig. 2.18: Bar subjected to torsion with relevant quantities. 

int

( )                        ( )                        ( )                       ( )tx x M x t xϕ θ

external work 

ernal work

kinematic 
equation 

constitutive
equation 

equilibrium
equation 

Fig. 2.19: Diagram displaying the relations between the quantities playing a 
role in the analysis of a beam subjected to torsion. 
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Exercise 
Derive the basic equations for the above load case. 

Shear 
When in a beam only deformation occurs that is caused by a shear force, the fibres do not 
change in length in x -direction (see Fig. 2.20). The only deformation present is a shear 

deformation γ  caused by the shear force V . Therefore, there is only one degree of freedom 
 corresponding with a distributed load w f . The scheme of relations can be found in Fig. 

2.21. 

1
dVV dx
dx

+

V

M
dx

f dx
dMM dx
dx

+

x ( )w x

( )f x

l

z

V GAγ=

V γ

Fig. 2.20: Statically determinate beam subjected to pure shear with relevant quantities. 

external work 

int

( )                        ( )                        ( )                        ( )w x x V x f xγ

ernal work

kinematic 
equation 

constitutive
equation 

equilibrium
equation 

Fig. 2.21: Diagram displaying the relations between the quantities playing a 
role in the analysis of a beam subjected to pure shear. 

Exercise 
Derive the basic equations for the above load case. 

2.6 Summary for load cases of continuous slender beams 

In this chapter, for a number of load cases it has been shown that the basic equations can be 
derived in a consistent manner. For suitably selected differential operators a large analogy can 
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be demonstrated with the formulation of discrete bar structures. A first decision concerns the 
choice (of the number) of independent displacements, the degrees of freedom. Every selected 
degree of freedom corresponds with a load. This means that the number of load components is 
exactly the same as the number of degrees of freedom. 
 

Further, it is an important choice, which of the (generalised) stresses play a role in the basic 
equations. Only these stresses are coupled with deformations (and therefore coupled with 
deformation energy). It is advantageous to indicate these stresses and deformations by a 
separate variable, independently from the selected degrees of freedom and external loads. 
 
The basic equations consist out of three sets: 

− the kinematic equations 
− the constitutive equations 
− the equilibrium equations 

In the force method, the constitutive equations are used in the flexibility formulation and in 
the displacement method the stiffness formulation is applied. 
It is essential that the equilibrium equations are formulated in the direction of the degrees of 
freedom. The number equilibrium equations has to be equal to the number of degrees of 
freedom. If there are more equilibrium equations, then one or more stresses are present to 
which no deformation is coupled. By elimination of these equilibrium equations the number 
is reduced to the desired amount. 
 
In the displacement method, the three sets of basic equations can be substituted into each 
other without any modifications. The substitution process starts with the kinematic equation 
and via the constitutive equation it ends at the equilibrium equation. The final result is a set 
of one or more equilibrium equations that are expressed in the degrees of freedom, the diffe 
.rential equation(s).  
 
In the force method, the three basic equations are evaluated in the opposite order, first the 
equilibrium equations, than the constitutive equations and finally the kinematic equations. 
However, in this case an additional operation is required. The following three steps have to 
be followed: 
First step: The equilibrium equations are used to express the (generalised) stresses  in one 
or more redundants 

s
φ . This guarantees an equilibrium system of stresses.  

 Second step: By substitution of this equilibrium system into the constitutive equations, the 
deformations  are expressed in the redundants. e
Third step: From the kinematic equations the degrees of freedom are eliminated. By this 
operation, the equations are reduced to one or more relations between the deformations  
themselves, the so-called compatibility condition(s). The results of the second and third step 
are combined to one or more differential equations with respect to the redundants 

e

φ . 
 
Take caution! The kinematic relations describe the relation between deformations and the 
degrees of freedom. However, the compatibility condition is a requirement only containing 
deformations. This condition sees to it that compatibility is guaranteed, which means that 
no gaps or overlappings in the structure can occur. 
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In this chapter the following elastic elements were discussed: 
− beam subjected to extension 
− beam subjected to bending 
− beam subjected to torsion 
− beam subjected to shear 
− distributed spring loads 
In a number of cases, combinations of these elements were considered. Many structural 
problems can be reduced to a combination of these cases. When the proposed strategy is 
followed, a reliable and consistent differential equation will be found in all cases. A number 
of examples will be elaborated. 

2.7 Walls coupled by springs subjected to a temperature load 

Fig. 2.22 shows two high walls, which are coupled by horizontal beams of high flexural 
stiffness. These beams can be considered as a system of distributed springs that counteract the 
relative movement between the two walls. It can be assumed that the rest of the building 
supports the two walls in such a manner that the horizontal displacement is suppressed. 
Both walls can only displace in vertical direction. Together they form the exterior wall of a 
building. The left wall is subjected to the outer temperature and the right wall has the interior 
temperature. The temperature difference between the two walls is T .        

outside       inside 

Fig. 2.22: Spring-connected walls subjected to a temperature load. 

1u 2u

1f 2f

x′

x

l

outside       inside 

The differential equation(s) will be derived from which the shear forces can be obtained 
occurring in the connecting beams. The boundary conditions will be determined as well. The 
linear coefficient of thermal expansion is α , the axial stiffnesses of the outer and inner walls 
are 1  and 2 , respectively. First the force method is applied and after that the 
displacement method. The equations will be solved for the special case that  and 

EA EA
1EA EA= 2
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under the assumption that the walls are much taller than the characteristic length λ  of the 
system. 
The considered problem is subjected to a temperature load. In such cases the strain ε  of a 
wall will be composed out of two contributions, en elastic strain eε  caused by the present 
normal force  and a temperature strain N Tε  resulting from the temperature difference T , i.e.: 

 1 ;e TN T
EA

ε ε α= =   

Then the total strain is the sum of eε  and Tε : 

 1 N T
EA

ε α= +  

This is the extended constitutive relation in flexibility formulation. Solving  from this 
equation provides the constitutive relation is stiffness formulation: 

N

  ( )N EA Tε α= −

In the calculation, the exterior wall is set to zero temperature and the interior wall to 
temperature T . 
The system of the two coupled walls is described by two degrees of freedom, 1u  and 2 . 
Distributed loads 1

u
f  and 2f  are possible in the direction of the degrees of freedom, however 

in this case they are zero. Three deformations occur, namely 1ε  and 2ε  in the walls and the 
displacement e  in the springs. With these deformations correspond the normal forces 1  and 

 in the walls and a distributed shear load  in the springs. Fig. 2.23 shows the positive 

directions of  and . The 

N
2N s

s e x -axis is pointing upwards and starts at the foundation. Fig. 2.24 
displays the scheme of relations for this wall problem. 

e

sdx

sdx1f dx sdx

1N

1
1

dNN dx
dx

+

2f dx

sdx

2N

2
2

dNN dx
dx

+

dx

Fig. 2.23: Relevant quantities in the walls. 

The kinematic equations are: 

 
1 2

1 2

1 2

;du du
dx dx

e u u

ε ε= =

= −
  (2.44) 
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N
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ε
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⎧ ⎫ ⎧ ⎫
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭
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equations 
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equations 

Fig. 2.24: Diagram displaying the relations between the quantities playing a role in the 
analysis of the spring-connected walls subjected to a temperature load. 

The constitutive equations become: 

 ( )

1 1 1

2 2 2

N EA

N EA T

s k e

ε

ε α

=

= −

=

   or   

1 1

2 2

1

1

1

N
EA

N T
EA

e s
k

ε

ε α

=

= +

=

 (2.45) 

The equilibrium equations read: 

 1 2
1 2;dN dNs f s f

dx dx
− + = − − =   (2.46) 

2.7.1 Force method 

Introduction of one redundant is sufficient, because two equations are present for three 
unknowns . The distributed spring load is selected as the redundant 1 2( , , )N N s φ . From the 
equilibrium equations (first step) it then is found: 

 1 2; ;dN dN s
dx dx

φ φ φ= == −  

where it has been used that . The three constitutive equations can now be written 
as (second step): 

1 2 0f f= =

 1 2

1 2

1 1; ;d d e
dx EA dx EA k

1ε εφ φ φ= = − =  
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Next the compatibility condition has to be formulated (third step). For that purpose, the 
degrees of freedom 1  and 2  have to be eliminated from the three kinematic equations. This 
can be done easily after that the relation for  is differentiated once with respect to 

u u
e x . It 

easily can be seen that: 

 1 2 0de
dx

ε ε− − =  

After differentiation for the second time the found results for 1d dxε , 2d dxε  and  can be 
substituted, leading to: 

e

 
2

2
1 2

1 1 1 0d
k dx EA EA

φ φ
⎛ ⎞

− + + =⎜ ⎟
⎝ ⎠

 (2.47) 

Two boundary conditions have to be formulated. 
For  it holds that both  and  are zero, this means that 0x = 1u 2u 0e = . Then it also holds 

, i.e.: 0s =

 0 for 0xφ = =  (2.48) 

For x l=  it is known that 1  and 20N = 0N = , this means that 1 0ε =  and 2 Tε α= . Now from 
the compatibility condition information can be obtained about the derivative of e : 

 de T
dx

α= −  

This means that the derivative of φ  is known for x l= : 

 ford k T x l
dx
φ α= − =  (2.49) 

The differential equation will be solved for 1 2EA EA EA= = . After introduction of the 
characteristic length: 

 
2
EA

k
λ =  

 the differential equation can be rewritten and solved. It is found: 

 
2

2
1 22 0 ( ) x xd x C e C e

dx
λ λφλ φ φ ′− −− + = → = +  

where x′  is defined by x l x′ = − . 
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From the two boundary conditions it follows (with l λ ): 

 1 20 ;C C k Tλ α= = −  

The solution then becomes: 

 ( ) xx k T e λφ λ α ′−= −  (2.50)  

Therefore, the spring load equals: 

 ( )
2

x EAs x k T e T eλλ α α
λ

′−= − = − x λ′−  (2.51) 

Then for the normal forces it is found: 

 

1
1 1

2
2 2

1
2
1
2

x

x

dN s EA T eN
dx

dN s N EA T e
dx

λ

λ

α

α

′−

′−

= → = − ++

= − = +→ +

D

D
 

Because  and  are zero for , the integration constants become: 1N 2N 0x′ =

 1 2
1 1;
2 2

D EA T D EA Tα α= = −  

Substitution of these constants into the normal forces delivers: 

tension             shear       compression
1 2( )              ( )             ( )N x s x N x

0 0 0                          N N Nλ −

x

x′

l 0
1
2

N EA Tα=

Fig. 2.25: Final results of the analysis of the spring-connected walls. 
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 ( ) ( )1 2
1 11 ; 1
2 2

xN EA T e N EA T eλα α′−= − = − + x λ′−  (2.52) 

In Fig. 2.25, these results are depicted across he height of the structure. It shows that the sum 
of the normal forces 1  and 2  is equal to zero for every value of N N x . This has to be the case, 
since no external vertical load is present. Only the connecting beams at the upper part of the 
structure are subjected to a shear load. They act like dowels and see to it that the strain in both 
walls is identical. The wall in which the compressive force is acting becomes taller as well, 
because of the temperature increase in this wall.   

2.7.2 Displacement method 

In this case, the kinematic equations and the constitutive equations in stiffness formulation are 
used. Substitution of the kinematic into the constitutive equations provides: 

 ( )1 2
1 1 2 2 1; ;du duN EA N EA T s k u u

dx dx
α⎛ ⎞= = − =⎜ ⎟

⎝ ⎠
2−  

Combination of these results with the equilibrium equations (with 1 2 0f f= = ) delivers: 

 
2 2

1 2
1 1 2 2 1 22 20 ; 0d u d uEA k u k u EA k u k u

dx dx
− + − = − − + =  (2.53) 

In a notation with operators this set of ordinary differential equations becomes: 

 

2
1

1 2

2

2 2 2

0

0

d uk EA kdx
dk EAk udx

⎡ ⎤− −⎢ ⎥
⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎢ ⎥ = ⎨ ⎬⎨ ⎬

⎢ ⎥ ⎪ ⎪⎪ ⎪−−⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎩ ⎭⎩ ⎭⎣ ⎦

 (2.54) 

It easily can be seen that the matrix with even-order differentiations is symmetrical. 
The boundary conditions for the bottom end 0x =  are: 

 1

2

0
0

0
u

x
u

=⎧
= → ⎨ =⎩

 (kinematic boundary conditions) (2.55)  

At the other end the boundary conditions read: 

   1

2

0
0

N
x l

N
=⎧

= → ⎨ =⎩
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These dynamic boundary conditions can be rewritten as conditions for  and : 1u 2u

 

1

2

0du
dxx l
du T
dx

α

⎧ =⎪⎪= → ⎨
⎪ =
⎪⎩

 (dynamic boundary conditions) (2.56) 

For obtaining the homogeneous solution of (2.53), the following terms: 

  1 2;rx rxu A e u B e= =

are substituted into the differential equation. This delivers: 

  (2.57) 
( )

( )

2
1

2
2

0

0

rx rx

rx rx

k EA r A e k B e

k A e k EA r B e

− −

− + −

=

=

After division by , the matrix formulation reads: rxe

  (2.58) 

2
1

2
2

0

0

k EA r k A

k k EA r B

⎡ ⎤− − ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− − ⎩ ⎭ ⎩ ⎭⎣ ⎦

These to equations in  and A B  only provide a solution for  and A B  if the determinant of the 
matrix is equal to zero, i.e.: 

    ( ) ( ) ( )22 2
1 2 0k EA r k EA r k− − − − =

This is a fourth-order equation in , which in general has four different roots , ,  and 
. The solution will be derived for the case that  and  have the same value . It 

then holds: 

r 1r 2r 3r

4r 1EA 2EA EA

 ( ) ( ) ( )2 22 2 4 2 2 20 2 0k EA r k EA r k EA r r EA r k− − = → − = → − 2 0=  

Introduction of the characteristic length: 

 
2
EA

k
λ =  

transforms this characteristic equation into: 

  r r2 2 2 1 0λ − =c h
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The four roots are: 

 1 2 3 4
1 10 ; 0 ; ;r r r r
λ λ

= = = = −  

From the first equation of (2.57), for each root the ratio of  and A B  can be determined. With 
 and introduction of the characteristic length the equation can be rewritten as: 1EA EA=

  ( ) ( )2 20 1 2k EA r A k B r A Bλ− − = → − −2 0=

The ratio of  and A B  for each of the roots then becomes: 

 1 1 1 3 3 3

2 2 2 4 4 4

0 1 ; 1/
0 1 ; 1/

r A B r A B
r A B r A B

1
1

λ
λ

= → = = → = −
= → = = − → = −

  

Therefore the general solution becomes: 

  3 31 2 4 1 2
1 1 2 3 4 2 1 2 3 4;r x r xr x r x r x r x r x r xu A e A e A e A e u A e A e A e A e= + + + = + − − 4

Two of the four roots have the same value, namely zero. The theory of homogeneous linear 
differential equations with constant coefficients prescribes that for double roots  the 
functions  and 

r
rxe rxxe  have to be introduced. When  is zero, these functions are 1 and r x . 

The general solution then becomes: 

 1 1 2 3 4 2 1 2 3 4;x x xu A A x A e A e u A A x A e A e xλ λ λ− −= + + + = + − − λ  

By introduction of another constant  for which it holds 3A 3
lA e Aλ= 3 , this solution can be 

rewritten as (notice that x l x′ = − ): 

 1 1 2 3 4 2 1 2 3 4( ) ; ( )x x xu x A A x A e A e u x A A x A e A e xλ λ λ′ ′− − −= + + + = + − − λ−  

The first two terms form the linear part of the solution. The third term damps out from the top 
and the fourth term damps out from the foundation. 
Now, a tall structure is considered ( l λ ) such that the exponential terms are damped out 
before they reach the other end of the wall. 
The kinematic conditions (2.55) then require that: 

  1 4
1 4

1 4

0
0 0

0
A A

x A
A A

+ = ⎫
= → → = =⎬− = ⎭

; 0A

This reduces the solution to: 

 1 2 3 2 2 3( ) ; ( )x xu x A x A e u x A x A eλ λ′ ′− −= + = −  

The dynamic boundary conditions (2.56) impose that: 
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2 3

2 3

2 3

1 0
1 1or 0 ;

1 2 2

A A
x l x A T A

A A T

λ Tα λ α
α

λ

⎫+ = ⎪⎪′= = → → = = −⎬
⎪− =
⎪⎭

 

Finally, the solution becomes: 

 ( ) ( )1 2
1 1( ) ; ( )
2 2

xu x T x e u x T x eλα λ α λ′−= − = + x λ′−  (2.59) 

From these results, for the normal forces it directly follows: 

 ( ) ( )1 2
1 1( ) 1 ; ( ) 1
2 2

xN x EA T e N x EA T eλα α′−= − = − + x λ′−  (2.60) 

and also the spring load: 

 ( )
2

x EAs x k T e T eλα λ α
λ

′− −= − = − x λ′  (2.61) 

The solutions (2.60) and (2.61) are identical to (2.52) and (2.51), the curves of which are 
displayed in Fig. 2.25.  

2.7.3 Epilogue 

The discussed problem of the coupled walls showed that the force method resulted in a lower 
number of solution steps than the displacement method. This aspect is generally valid. In the 
force method there is only one unknown (the redundant φ ), contrary to two unknowns (the 
degree of freedoms u  and ) in the displacement method. 1 2

On the other hand, in the displacement method it is easier to determine the boundary 
conditions. In the force method it is often quite a hustle to reformulate the boundary 
conditions into conditions imposed on the redundant(s) 

u

φ .  

2.8 Walls coupled by springs subjected to a wind load 

The coupled walls of a high-rise building from section 2.7 are now subjected to a wind load. 
A uniformly distributed load f  in horizontal direction represents the wind load. Fig. 2.26 
shows the notation, variables and sign convention used. Again, the axial vertical 
displacements of the exterior and interior walls in positive x -direction are 1u  and 2 , 
respectively. In this case displacements in horizontal direction are generated as well. From the 
assumption that rigid floors are present, it can be concluded that the horizontal displacements 
of both walls are the same. The arrow  indicates this displacement and it is positive when it 

u

w
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1f dx sdx

1N

1
1

dNN dx
dx

+

2f dx

sdx

2N

2
2

dNN dx
dx

+

dx qdx
qdx

f dx

2
2

dVV d
dx

+ x

2
2

dMM dx
dx

+

2V
2M

1
1

dMM dx
dx

+
1

1
dVV dx
dx

+

1V
1M

1u 2u

1f 2f

x′

x

l

a
b

f

1 2 a a

k

1E A
1E I

2E A
2E I

w

e−
sdx

sdx

e

a
a

1u
2u

dw
dx

1 20                       0w u u= = =

Fig. 2.26: Modelling of high wall subjected to wind load. 

points to the right. Notice that in Fig. 2.26 the displacement  and the wind load w f  are 
pointing in the same direction. This also holds for the displacements 1 2  and the distributed 
loads 

,u u
1 2,f f , respectively. Again, the two load components 1f  and 2f  are equal to zero. 

The centre-distance of the two walls is a  and the length of the connecting beams is b . The 
distances of wall to beam centres are  and , respectively.  1a 2

In the two walls, the normal forces 1 2 , the shear forces 1 2  and the moments 1 2

a
,N N ,V V ,M M  

are generated. The distributed shear load in the beams is . In the walls, the deformations s ε  
and  are considered caused by 1 2  and 1 2κ ,N N ,M M , respectively. The deformations caused 
by the shear forces 1 2  are left out of the analysis. In the springs between the walls, the 
deformation  caused by the distributed shear load  is taken into account. In Fig. 2.26 a 
positive  has been drawn. Further, in the figure it can be observed that a deformation  is 
formed by both the slope 

,V V
e s

e e
dw dx  and the difference in magnitude of the two displacements 1u  

and 2u . The sign conventions for ε  and κ  are similar to the ones in previous sections of this 
chapter. The stiffnesses of the two walls are  and , respectively. Again the 
spring stiffness is indicated by . 

1,EA EI1 22 ,EA EI
k

Both walls are subjected to the same horizontal displacement  and therefore have the same 
curvature . This means that the moments 1

w
κ M  and 2M  are in proportion to the stiffnesses 

 and . Therefore, it is advantageous to make use of the following collective quantities: 1EI 2EI

 1 2 1 2 1; ; 2M M M V V V EI EI EI= + = + = +  

This means that the quantities will be used as indicated in the relational scheme of Fig. 2.27. 
The wind load f  will be carried partly by wall 1 and partly by wall 2. The part of f  
transmitted to wall 2 is indicated by . This introduces a compressive force in the horizontal q
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int

1 1
1 1

2 2
2 2                                                                    

N
u f

N
u f

e s
w f

M

ε
ε

κ

⎧ ⎫ ⎧ ⎫
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

external work 

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium 
equations 

Fig. 2.27: Diagram displaying the relations between the quantities playing a role in the 
analysis of the spring-connected walls subjected to a wind load. 

beams. The shortening of the beams is assumed negligible small. On wall 1 the load q  points 
to the left and on wall 2 to the right. 
In the displacement method three interdependent differential equations in ,  and  can 
be formulated. In the force method, the utilisation of one redundant 

1u 2u w
φ  is sufficient, since three 

equilibrium equations exist for four unknowns. Therefore, it is obvious that the force method 
is applied.  

Kinematic equations 
The kinematic equations read: 

 

1
1 1

2
2

2 2

;

;

du dwe a u u
dx dx
du d w
dx dx

ε

ε κ

= = − + −

= = −

2

 (2.62) 

Constitutive equations 
The constitutive equations are: 

 

1 1 1
1 1 1

2 2 2
2 2 2

1 1 1

2 2 2
addition

/

N EA
N EA

N EA
N EA

s k e
e s k

M EI
M EI M EI

M EI

ε
ε

ε
ε

κ
κ κ

κ

=
=

=
=

= ⇒
=

= ⎫
→ = =⎬= ⎭

 (2.63) 

Equilibrium equations 
The equilibrium equations read: 
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1
1

2
2

0

0

dN s f
dx

dN s f
dx

− + =

+ + =
 (2.64) 

 

1
1 1

2
2 2 2

2
1

2

addition

elimination
     of 

addition

0
0

0
0

0
0

0

V

dM a s V
dMdx a s V

dM dxa s V
d M dsdx a f
dx dxdVf q

dVdx f
dV dxq
dx

⎫− − = ⎪⎪ ⎫→ − − =⎬
⎪⎪− − = ⎪⎪⎭ ⎪ → − + =⎬

⎫ ⎪− + = ⎪ ⎪⎪ → + =⎬ ⎪⎭
⎪+ =
⎪⎭

 (2.65) 

The distributed load  in the springs is selected as the redundant s φ . 

 s φ=  

First step 
From the equilibrium equations for the normal forces (2.64) it follows: 

 

1
1

2
2

dN f
dx

dN f
dx

φ

φ

= + −

= − −
  

From the intermediate results of relation (2.65), for the moment it can be derived:   

 
( )

( )

0

0 for

0

dVf
V f l xdx dM a f l xV x l

dx
dM a s V
dx

φ

⎫+ = ⎫⎪ → = −⎬ ⎪⎪⎪ → = + −= = ⎬⎭
⎪
⎪⎭− − =

 

Second step 
The constitutive equations can be rewritten as: 

 
( )

( ) ( )

1
1

1

2
2

2

1 1;

1 1;   

d f e
dx EA k
d df a f l f x
dx EA dx EI

ε φ φ

ε κφ φ

= − =

= − − = + −
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Third step 
The compatibility condition can be found by elimination of  and  from the kinematic 
equations: 

1u 2u

 1 2 0de a
dx

ε ε κ− − + =  

Differential equation 
The required differential equation is found by substitution of the constitutive relations 
obtained in the second step into the compatibility condition derived in the third step. But first, 
the compatibility condition is differentiated once: 

 

( ) ( ) ( )

( )

2
2

1 2 2
1 2

2 2
1 2

2
1 2 1 2

1 1 1 1 0

1 1 1

df f a f a l f a x
EA EA k d x EI

f a l xa d f f
EA EA EI k d x EA EA EI

φφ φ φ

φφ

− − − − − + + − = →

−⎛ ⎞
+ + − = − −⎜ ⎟

⎝ ⎠

 

Introduction of 1 2  and the factor 0f f= = α  given by (do not confuse with the linear 
coefficient of thermal expansion of the previous section): 

 
2

2

1 2

1 1 ak
EA EA EI

α
⎛ ⎞

= + +⎜
⎝ ⎠

⎟  (2.66) 

provides the following required differential equation: 

 ( )
2

2
2

d k f a l x
d x EI

φα φ − = − −  (2.67) 

The reciprocal of α  is the characteristic length λ  of this wall system: 

 1λ
α

=  

 In further elaborations, it is assumed that lλ . 

Boundary conditions 
The boundary conditions at the foundation equal: 

 

1

2

0
00
0

u
ux
dw
dx

=⎧
⎪ =⎪= → ⎨
⎪ =⎪⎩

 

 67



With the kinematic equation for e  this boundary condition transforms into . Substitution 
of 

0e =
e kφ=  finally provides: 

  0x φ= → = 0  (2.68) 

 The boundary conditions at the top equal:  

  
1 1

2 2

0 0
0 0
0 0

N
x l N

M

ε
ε
κ

= → =⎧
⎪= → = → =⎨
⎪ = → =⎩

From the compatibility equation, it now follows that 0de dx = . Substitution of e kφ=  
changes the boundary conditions into: 

 0dx l
dx
φ

= → =  (2.69) 

Solution 
The solution of the differential equation can now be obtained. After some elaborations it is 
found: 

 

( ) ( )1 2 2

1 22 3

( )

;

l xx kx C e C e f a l x
EI

k kC f a l C f a
EI EI

ααφ
α

α α

− −−= + − −

−
= =

 (2.70) 

With the equilibrium equations and the fact that 1 2 0N N M= = =  for x l= , from this 
solution it directly can be derived: 

  

( )

( )( ) ( )

( )( ) ( ) ( )

2

2
1 2 2

2 1

2
2 2

2 2

1

1 11
2

( )

1 1 11
2 2

l xx

l xx

l xx

ka fs l e e l x
EI

l kN e e l x
EI

N N

V f l x

l ka

a f

fM e e l x l x f
EI

αα

αα

αα

α α

α α α

α α α

− −−

− −−

− −−

⎛ ⎞= − − + + −⎜ ⎟
⎝ ⎠

⎧ ⎫= − + − + −⎨ ⎬
⎩ ⎭

= −

= −

⎧ ⎫= − + − + − − −⎨ ⎬
⎩ ⎭
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Check 
At the foundation the total moment caused by the wind load is equal to 2 2f l . This moment 
has to be resisted by the torque of the normal forces and the sum of the moments in the two 
walls. Therefore, considering the sign convention it should hold: 

 ( ) ( ) 2 1
1 2 21 1

2 2

1 1
2

a N Ma N M f l
f l f l

⎛ ⎞ ⎛ ⎞−
+ − = → + =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

Substitution of  into the derived formulae for  and 0x = 1N M  indeed shows that this relation 
is satisfied.  

Results 
In Fig. 2.28 the dimensionless spring load s f , the dimensionless normal force 21

1 2aN f l  
and the dimensionless bending moment 21

2M f l−  are represented graphically along the wall. 
The formulae for these dimensionless quantities are: 

 

( )

( )

( )
( )( )

( )

( )
( )( )

2

2

2 2
11

22 21
2

2 22
1

22 21
2

1 1

1 22 1 1

1 22 1 1

l xx

l x l l x l

l x l l x l

s l l l x k ae e
f a a l a l EI

a N x k ae e
fl l l EIl

1M x k a xe e
fl l l EIl

αα

α α

α α

α α

α αα

α αα

− −−

− −

− −

⎧ ⎫⎛ ⎞= − − + ∗ + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎪ ⎪⎛ ⎞= − + − + −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

⎧ ⎫− ⎪ ⎪⎛ ⎞ ⎛ ⎞= − − + − + − + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭ l
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1 x
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Fig. 2.28: Distributions of forces and moments in the coupled walls. 
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In these formulae the dimensionless parameter 2 2ka EIα  is smaller than unity, because from 
the definition for 2α  given by (2.66) it easily can be confirmed that: 

 
2 2

2 2 2 2
1 2

1 1k a I I k a
EI a A a A EIα α

⎛ ⎞
+ + = → <⎜ ⎟

⎝ ⎠
1 

In the graphs the following specific values have been used: 

 
2

210 ; 20 ; 0.8l k al
a EI

α
α

= = =    

The graph at the left side of Fig. 2.28 displays the distributed shear load  relative to the wind 
load 

s
f . It has been shown how this result is obtained from the particular solution with end 

corrections by the homogeneous solution in order to satisfy the boundary conditions. The 
maximum shear load in the connecting beams appears somewhere in the lower half of the 
wall, but not at the foundation itself. From the formula above, the maximum value max  of the 
shear load can be obtained. The largest shear force can be obtained by multiplication of max  
by the distance of the centre lines of the connecting beams. At the right side of Fig. 2.28 the 
curves of 1  and 

s
s

N M  are drawn. This has been done in one graph to display clearly how the 
total moment caused by the wind load f  is carried partly by the torque of the normal forces 

 and  and partly by the sum of the wall-moments 1N 2N 1M  and 2M .       

1 2   M M

f

1 2    N N

Fig. 2.29: sketch of the stresses at the bottom of both walls. 

Fig. 2.29 shows how the stresses caused by 1 1  and 2 2  are distributed at the bottom 
of the walls. The dashed line indicates the stress distribution that would occur if no gaps were 
present between the two walls. With gaps the stresses are considerably higher. 

,N M ,N M

Check on correctness of the kinematic and equilibrium equations  
The matrix formulation for the kinematic equations is: 
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1 1

2 2

2

2

0 0

00
or

1 1

0 0

d u
dx

d u
dx

dae wdx
d
dx

ε

ε

κ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪
⎪ ⎪ ⎢ ⎥ ⎪ ⎪

⎪ ⎪⎪ ⎪ ⎢ ⎥
⎨ ⎬⎪ ⎪ ⎢ ⎥⎪ ⎪ ⎪ ⎪⎢ ⎥= =⎨ ⎬ ⎪ ⎪⎢ ⎥⎪ ⎪ − ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎩ ⎭⎢ ⎥⎪ ⎪

⎢ ⎥⎪ ⎪ −⎢ ⎥⎪ ⎪⎩ ⎭ ⎣ ⎦

e uB  

The equilibrium equations can be rewritten as: 

 

11

22

2

2

0 1 0

0 1 0 or

0 0

d fN
dx

d
fN

dx
d d s fa
dx dx

M

⎡ ⎤ ⎧ ⎫ ⎧ ⎫−⎢ ⎥ ⎪ ⎪ ⎪ ⎪
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪⎢ ⎥ ⎪ ⎪ ′− − == ⎨ ⎬⎪ ⎪⎢ ⎥ ⎪ ⎪⎨ ⎬⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥− ⎪ ⎪⎪ ⎪⎢ ⎥ ⎩ ⎭⎣ ⎦ ⎪ ⎪
⎪ ⎪
⎩ ⎭

s fB  

As expected, the operator  is the transposed of operator B , except for the sign of the 
uneven derivatives. 

′B
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3 Plates loaded in-plane 

In this chapter a group of problems will be addressed, which can be classified as two-
dimensional. An in-plane loaded plate subjected to extension will be discussed. The plate may 
be in a state of plane stress or in a state of plane strain. A plane stress state occurs when a 
thin flat plate is loaded in-plane by a boundary load at the edge and/or a distributed load in the 
centre plane (see Fig. 3.1). The phenomenon of plane stress was already discussed in the 
course “Elastic Plates”. The plane strain state is an extension. Another new aspect in this 
chapter is that now both the displacement method and the force method are being considered. 

x

y

Fig. 3.1: Sketch of a plate loaded in-plane. 

Plane strain occurs for example in a long cylindrical or prismatic body, the deformation of 
which is prevented in axial direction and the external load is independent from the axial 
coordinate. Moreover, the external loads (at the circumference or distributed over the volume) 
have to act perpendicular to the axis of the body. An example of such a load case is given in 
Fig. 3.2 where a straight long dam is drawn, which is subjected to its own weight and a line 
load. 
In this case it is sufficient to analyse a slice of unit thickness, which is cut perpendicular to the 
cylinder-axis. This slice can be looked at as a plate with somewhat different constitutive 
properties as discussed hereafter. 

x
z

y

Fig. 3.2: In a straight dike or dam, the own weight or a line-load  
causes a state of plane strain.  

 

Each point ( , )x y  of an in-plane loaded plate experiences a displacement  in ( , )xu x y x -
direction and  in -direction. So, the displacement field is completely determined by 
two degrees of freedom. This means that in these two directions (distributed) external loads 

( , )yu x y y

xp  and yp  per unit of area can be applied. 
Internally the plate experiences three deformations, a specific strain xxε  in x -direction, a 
specific strain yyε  in -direction, and a specific shear deformation y xyγ . With those strains the 
stresses xxσ , yyσ  and xyσ  are associated, respectively.  
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Fig. 3.3: Quantities which play a role in a plate loaded in-plane;  
the quantities drawn are positive. 

 

The used sign convention reads: a stress component is positive when it acts in positive 
coordinate-direction on a surface with outward pointing normal in positive coordinate-
direction, or when it acts in negative coordinate-direction on a surface with outward pointing 
normal in negative coordinate-direction (see Fig. 3.3). 
It is customary, especially for plates loaded in-plane, to multiply the stresses by the plate 
thickness . In this way, extensional forces xx , yy  and xy  are obtained, which are the stress 
resultants per unit of plate width having the dimension of force per unit length. The usual 
basic relations can be formulated between the previously mentioned external quantities and 
the internal quantities as shown in Fig. 3.4. 

t n n n
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⎧ ⎫ ⎧ ⎫
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
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u e n p

kinematic 
equations 

constitutive
equations 

equilibrium
equation 

Fig. 3.4: Diagram displaying the relations between the quantities playing a role in 
the analysis of a plate in extension. 



Since three stresses and only two load components (i.e. equilibrium equations) are present, the 
in-plane loaded plate is statically indeterminate. So, there is also one deformation more than 
displacements, which means only one compatibility equation has to be formulated. 

3.1 Basic equations 

The three categories of basic equations will be formulated in the order: kinematic equations, 
constitutive equations and equilibrium equations. The first and third categories are identical 
for plane stress and plane strain. However, the constitutive equations are different. 

Kinematic equations 
Taking the definitions of Fig. 3.3 into account, from Fig. 3.5 the following relations can be 
obtained: 

dx

dy

xu

yu yu
x

∂

∂

xu
y

∂
∂

x
x

uu dx
x

∂
+
∂

y
y

u
u dx

x
∂

+
∂

x
x

uu dy
y

∂
+
∂

y
y

u
u dy

y
∂

+
∂

x

y

Fig. 3.5: Deformed state of an elementary plate part. 

 

x
xx

y
yy

yx
xy

u
x
u
y

uu
y x

ε

ε

γ

∂
=
∂
∂

=
∂

∂∂
= +
∂ ∂

 (kinematic equations) (3.1) 

Constitutive equations 
For the explanation of the difference between plane stress and plane strain it is necessary to 
depart from Hooke’s law for a linear-elastic material in its most general formulation (see Fig. 
3.6).  
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xzσ
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yyσ

yzσ
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Fig. 3.6: Stresses in three dimensions. 

Between the six stresses and six deformations, which may appear in the three-dimensional 
continuum, the following relations are valid:  

 

( )

( )

( )

1

1

1

xx xx yy zz

yy yy zz xx

zz zz xx yy

E E

E E

E E

υε σ σ σ

υε σ σ σ

υε σ σ σ

= − +

= − +

= − +

 (3.2) 

and: 

 

( )

( )

( )

2 1

2 1

2 1

xy xy

yz yz

zx zx

E

E

E

υ
γ σ

υ
γ σ

υ
γ σ

+
=

+
=

+
=

 (3.3) 

where  is the modulus of Elasticity and E υ  Poisson’s ratio. From the relations for the shear 
strains only the first one is relevant for a plate loaded in-plane: 

 ( )2 1
xy xyE

υ
γ σ

+
=  (3.4) 

This directly follows from the definition of such a plate. From the relations for the normal 
strains the third one has to disappear and zzσ  has to be eliminated from the first two ones. 
This works out differently for the two stress states. 

Plane stress 
Considering the definition of plane stress, the stress zzσ  is zero and the first two equations in 
(3.2) become: 
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 ( ) (1 1;xx xx yy yy yy xxE E )ε σ υσ ε σ υσ= − = −  (3.5) 

The third equation given by: 

 ( )zz xx yyE
υε σ σ= − +  

demonstrates how the plate contracts perpendicular to its plane, which is caused by the in-
plane stresses xxσ  and yyσ . Actually, this is unnecessary information that will not be used. 
After introduction of the extensional forces ,  and , the equation (3.4) and (3.5) in 
matrix formulation read: 

xxn yyn xyn

 
( )

1 0
1 1 0

0 0 2 1

xx xx

yy yy

xy xy

n
n

E t
n

ε υ
ε υ
γ υ

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢= −⎨ ⎬ ⎨ ⎬⎢
⎪ ⎪ ⎪ ⎪⎢ ⎥+⎣ ⎦⎩ ⎭ ⎩ ⎭

⎥
⎥  (plane stress) (3.6) 

This is the flexibility formulation of the constitutive relations: 

  =e C n

By inversion of (3.6) the stiffness formulation is found: 

 
( )

2

1 0
1 0

1
0 0 1 2

xx xx

yy yy

xy xy

n
E tn

n

υ ε
υ

υ
υ γ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨ ⎬⎢−⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

ε⎥
⎥  (plane stress) (3.7) 

or briefly: 

  =n D e

Plane strain 
Now the corresponding constitutive laws will be given for the plane strain state. Due to the 
definition of such a plate the strain zzε  is equal to zero. Then the third equation of (3.2) can be 
used to relate zzσ  to xxσ  and yyσ : 

 ( )zz xx yyσ υ σ σ= +  

Substitution of this result into the first two equations of (3.2) provides: 

 ( ) ( )1 11 ; 1xx xx yy yy yy xxE E
υ υε υ σ υσ ε υ σ+ +⎡ ⎤ ⎡= − − = − −⎣ ⎦ ⎣ υσ ⎤⎦  (3.8) 

 76



After introduction of the extensional forces, the matrix formulation of the relations (3.4) and 
(3.8) reads: 

 
1 0

1 1 0
0 0 2

xx xx

yy yy

xy xy

n
n

E t
n

ε υ υ
υε υ υ

γ

⎧ ⎫ ⎧ ⎫− −⎡ ⎤
+⎪ ⎪ ⎪ ⎪⎢ ⎥= − −⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎩ ⎭ ⎩ ⎭

 (plane strain) (3.9) 

which is the flexibility formulation of the plane strain state. In short it reads: 

  =e C n

Inversion of (3.9) again provides the stiffness formulation: 

 
1 0

1 0
(1 )(1 2 )

0 0 1 2 2

xx xx

yy yy

xy xy

n
E tn

n

υ υ ε
υ υ ε

υ υ
υ γ

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢= −⎨ ⎬ ⎨ ⎬⎢+ −⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦⎩ ⎭ ⎩ ⎭

⎥
⎥  (plane strain) (3.10)  

or briefly: 

  =n De

Equilibrium equations 
In the directions of both degrees of freedom  and  equilibrium equations can be 
formulated (see Fig. 3.7): 

xu yu

dx

dy

yxn dx
yyn dx

xx
xx

xy
xy

nn dx dy
x

n
n dx dy

x

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠

∂⎛ ⎞
+⎜ ⎟∂⎝ ⎠

yy yx
yy yx

n n
n dy dx n dy dx

y y
∂ ∂⎛ ⎞ ⎛ ⎞

+ +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

x

y
xyn dy

xxn dy

Fig. 3.7: Forces acting on an elementary plate particle. 
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0

0

yxxx
x

xy yy
y

nn p
x y

n n
p

x y

∂∂
+ + =

∂ ∂
∂ ∂

+ + =
∂ ∂

 (equilibrium equations) (3.11) 

All basic equation are now determined.  

Set of basic equations 
Similarly to the procedures in chapter 2, the kinematic equations (3.1) and the equilibrium 
equations (3.11) will be rephrased by introduction of the differential operators given by: 

 

0
0

0 ;
0

x
x y

y
y x

y x

⎡ ⎤∂
⎢ ⎥ ∂ ∂∂ ⎡ ⎤⎢ ⎥ − −⎢ ⎥∂ ∂⎢ ⎥∂ ⎢ ⎥′= =⎢ ⎥ ∂ ∂∂ ⎢ ⎥⎢ ⎥ − −⎢ ⎥∂ ∂⎢ ⎥∂ ∂ ⎣ ⎦
⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

B B  

The basic equation can now be rewritten as: 

  (3.12)  
( )

or ( )
( )

kinematical equations
constitutive equations
equilibrium equations

=
= =
′ =

e u
n D e e C n

n p

B

B

where  contains the components xp p  and yp . Just like in chapter 2, it can be seen that ′B  
can be found by transposition of  while at the same time all differentiations of uneven order 
are changed of sign. In this case all non-zero terms are affected by the sign change. 

B

Remark 1 
On close inspection, the basic equations are only approximately valid for a plate subjected to 
plane stress. In such a plate, a strain zzε  different from zero can be generated and therefore 
also a displacement . Because  and  may vary across the plane of the plate, the strain zu xxn yyn

zzε  and displacement  are generally functions of zu x  and . Therefore, after deformation the 
thickness of the plate is not constant anymore. This means that the shear strains 

y
xzε  and yzε  

are zero only at the centre plane of the plate, but may vary outside this plane. As a 
consequence, after deformation flat cross-sections will not be exactly flat anymore. For 
sufficiently small plate thicknesses all these effects can be neglected (for a more strict 
derivation it is referred to Sokolnikoff and Love).   

Remark 2 
Without explicitly mentioning, the derivations of the basic equations are valid for 
homogeneous isotropic plates. The theory of plates is also used for homogeneous orthotropic 
plates or structures that can be considered as such (see Fig. 3.8). 
Then it more generally holds: 
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Fig. 3.8: Orthotropic plates. 

  (3.13) 
0
0 or

0 0

xx xx xx

yy yy yy

xy xy xy

n D D
n D D
n D

υ

υ

ε
ε
γ

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

n D e=

The coefficients of the stiffness matrix have to be determined judiciously from the geometry 
and composition of the considered plate 

3.2 Application of the force method 

The force method will be elaborated for plates in a state of plane stress, which are solely 
subjected to loads along the perimeter. The first step in the force method is the creation of 
solution that satisfies the equilibrium equations, but which still contains the redundants . In 
this case only one redundant is present, because there are three unknown stress resultants , 

yy  and xy  in two equilibrium equations. Since the redundant is a stress quantity that is a 
function of the coordinates 

ф
xxn

n n
x  and , it is called a stress function. This function is (again) 

indicated by 
y

φ  and can be determined from the compatibility condition. The compatibility 
condition is obtained from the three kinematic equations by elimination of the two 
displacements. 

First step 
From the equilibrium equations given by ( 0x yp p= = ): 

 0 ; 0yx xy yyxx n n nn
x y x y

∂ ∂ ∂∂
+ = + =

∂ ∂ ∂ ∂
 

a solution is created for the extensional forces. It turns out that the stress function has to be 
chosen such that it holds: 

 
2 2

2 2 ;  ;xx yy xyn n n
y x x
φ φ∂ ∂ ∂

= = = −
∂ ∂ ∂

2

y
φ
∂

 (3.14) 

It simply can be verified that this solution satisfies the equilibrium equations. 
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Second step 
The solution for the extensional forces is substituted in the constitutive equations in flexibility 
formulation. This provides: 

 
2 2 2 2 2

2 2 2 2

1 1; ;xx yy xyE t y x E t x y G t x y
φ φ φ φ φε υ ε υ γ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= − = − = −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

1  (3.15) 

where G  is the shear modulus given by: 

 
( )2 1

EG
υ

=
+

 

Third step 
In this step, the strains will be substituted in the compatibility condition. But first the 
compatibility condition will be derived from the kinematic equations (3.1). The first equation 
is differentiated twice with respect to . The second one is differentiated twice with respect 
to 

y
x  and the third equation once with respect to x  and once with respect to . In the third 

equation, the signs are changed too. Addition of all these resulting relations then leads to: 
y

 , , , 0xx yy yy xx xy xyε ε γ+ − =   (compatibility condition) (3.16) 

In the right-hand side, the displacements have disappeared, which means that (3.16) is the 
required compatibility condition between the three deformations. The fact that such a relation 
exists means that not all arbitrarily chosen combinations of strains are possible. The condition 

prevents that gaps and overlappings are created. Fig. 3.9 (borrowed from Koiter) shows a 
combination of strains that does not satisfy the compatibility condition. 

x

y
Fig. 3.9: Example of a non-compatible combination of strains. 

Differential equation 
The substitution of the three equations (3.15) into the compatibility condition (3.16) finally 
leads to the required differential equation for the stress function φ : 

 
4 4 4

4 2 2 42
x x y y
φ φ φ∂ ∂ ∂
+ + =

∂ ∂ ∂ ∂
0  (3.17) 
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Remark 1 
It turns out that the modulus of elasticity  and Poisson’s ratio E υ  do not appear in the 
differential equation. 

Remark 2 
In this case, the differential equation has been derived for the plane stress case. The same 
differential equation can be derived for a state of plane strain. 

Remark 3 
The differential equation can also be written as: 

  (3.18) 2 2 40 or 0φ∇ ∇ = ∇ =φ

where  is the Laplace-operator given by: 2∇

 
2 2

2
2 2x y

⎛ ⎞∂ ∂
∇ = +⎜ ∂ ∂⎝ ⎠

⎟   

The British astronomer G.B. Airy was the first one who derived this biharmonic equation in 
1862. Therefore this stress function φ  is called the function of Airy. 

Remark 4 
Finally, the analogy will be demonstrated with the chapters 1 and 2 by presenting the solution 
for the stress resultants (3.14) and the compatibility equation (3.16) in operator notation. For 
that purpose the following operators are introduced: 

 

2

2

2 2 2

2 2 2

2

;

y
2

x y x x y

x y

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪
⎪ ⎪ ⎧ ⎫∂ ∂ ∂⎪ ⎪ ′= =⎨ ⎬ ⎨

∂ ∂ ∂⎩ ⎭⎪ ⎪
⎪ ⎪∂
−⎪ ⎪
∂ ∂⎪ ⎪⎩ ⎭

P P
∂

− ⎬
∂ ∂

  

The relations (3.14) and (3.16) then become: 

 ; 0φ ′=n P P =e

0

 (3.19) 

Because the differences in  are all of the second order, this operator is exactly the same as 
the transposed of . The biharmonic equation can now be rewritten as: 

′P
P

  ′ =CP P

where C  is the matrix defined in equation (3.6). This can be verified by working out the 
matrix multiplication. The right-hand side is zero because no distributed loads xp  and yp  are 
present. 
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Remark 5 
For plane strain exactly the same differential equation is obtained. Therefore, in plane stress 
and plane strain the forces xx , yy  and xy  are the same when the stresses on the edges are 
the same. The deformations may be different. 

n n n

Possibilities for solutions 
In the nineteenth century, solutions for the function of Airy have been found for a number of 
characteristic problems. Typical for these problems is the condition that along the total 
circumference of the plate the magnitude of the stresses has to be known. When prescribed 
displacements are present, the use of the function of Airy is not very advisable. Names of 
researchers such as Boussinesq, Flamant, Biot, Filon and Lamé are attached to the solutions 
they found. In these lecture notes a number of not to complicated solutions will be discussed. 
 
In the preface of these lecture notes, it already has been mentioned that nowadays the 
possibility exists to determine approximated computer solutions for almost every elasticity 
problem. The Finite Element Method (FEM) is the most elegant method for that purpose. The 
FEM is based on the displacement method.  

3.3 Solutions in the form of polynomials 

An example of a class of solutions of the biharmonic differential equation  is 
formed by polynomials. It simply can be confirmed that each polynomial of the third order or 
lower satisfies the equation. Polynomials of higher order only satisfy the equation if certain 
specific linear relations between the coefficients exist. Polynomials can be used for inverse 
solution methods. For the displacement method, this already has been applied in the course 
Elastic Plates. This means that one selects a solution and tries to find the corresponding 
problem. It will be clear that the applicability of this method is very restricted. Sometimes it is 
possible to find a semi-inverse solution for a problem. Then a stress function is chosen that 
still contains a number of undetermined coefficients. By trying to satisfy the boundary 
conditions, these coefficients are solved. Examples of solutions with polynomials can be 
obtained from literature, for example from Timoshenko & Goodier or from Biezeno & 
Grammel.  

2 2 0φ∇ ∇ =

Two elementary examples will be discussed. 

Example 1 
Suppose that the stress function reads: 

 2 2
1 2

1 1
2 2

y xφ σ σ= +     

Substitution of this relation into (3.17) indeed shows that this is a useful stress function. When 
no distributed surface load is present, the stresses in a plate of unit thickness are: 

 1 2; ;xx yy xy 0σ σ σ σ σ= = =  

This is a uniform stress distribution that is generated in a plate, which is uniformly loaded at 
the edges as shown in Fig. 3.10a. 
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a)                                                        b)
Fig. 3.10: Plate subjected to constant stresses. 

A uniformly distributed shear stress 3xyσ σ=  can be described by the following stress 
function (see Fig. 3.10b): 

 3xyφ σ= −  

Example 2 
This example was previously discussed by the displacement method in the course Elastic 
Plates. 

d

t

F
x

y

V

VM

M

Fig. 3.11: Overhanging beam subjected to a point load. 

The solution of the problem of a cantilever (height  and thickness t ) loaded by a point load 
at the free end (see Fig. 3.11) has to be found from the following class of functions: 

d

  ( )3
1 2C xy C xy tφ = +

Substitution of this relation into the differential equation shows that for all values of  and 
 the differential equation is satisfied. The corresponding stresses are: 

1C
2C

 
2

2
1 2

6
0

3

xx

yy

xy

C x y (bi-linear)

C C y (parabolic)

σ
σ
σ

=
=
= − −

 

The top and bottom side of the beam have to be stress free, so the shear stress xyσ  at those 
surfaces should be zero, i.e.: 

 2 2
1 2 1 2

1 3 0
2 4xyy d C C d C Cσ= ± → = − − = → = −

3
4

d  

 83



Substitution of this result into the relation for xyσ  provides the well-known parabolic 
distribution across the height of the beam: 

 2 2
2

13
4xy C d yσ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

The resultant of this distribution must exactly be equal to . Therefore: F

 
2 3

3
2

1

1
2

1
2

2
1d

32
2

xy

d

d

FC
t d

F t y C t d
FC
t d

σ

+

−

⎧ =⎪⎪= = → ⎨
⎪ = −
⎪⎩

∫   

The stress function becomes: 

 2 3
3

3 2
2

F x yd x y
d

φ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 The corresponding stresses are: 

 

2

2 3

2

2

2 2
2 2

3 2

1 12

1 0

1 3 36 1
2 2

xx

yy

xy

F x y
t y t d

t x
F Fd y

t x y t d t d d

φσ

φσ

φσ

∂
= =

∂

∂
= =

∂
⎛ ⎞∂ ⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠

4y

 

For easy recognition, the expressions for the stresses are rewritten somewhat differently. The 
moment of inertia I , the cross-sectional area  and the bending moment A M  acting on the 
cross-section are introduced. They are given by: 

 31 ; ;
12

I t d A t d M F x= = =  

Now, the expressions for the stresses change into: 

 
2

2

3 4; 0 ; 1
2xx yy xy

Fx M y Fy y
I I d

σ σ σ
⎛ ⎞

= = = = −⎜ ⎟
⎝ ⎠ A

 (3.20) 

Remark 1 
The stress distribution (3.20) can be found by the elementary beam theory too, which is based 
on the hypothesis of Bernoulli stating that “plane cross-section surfaces remain plane”. The 
distribution of xxσ  is linear over the height and xyσ  is distributed parabolically.  
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Remark 2 
The boundary conditions at the top and bottom side of the beam are satisfied exactly. The 
boundary condition at the left end is only satisfied if the point load acts through a parabolic 
shear stress distribution. When for example the point load acts as a concentrated force in a 
point of the cross-section, the stress distribution will deviate from the one provided in (3.20). 
However, according to the principle of De Saint-Venant the disturbance will be confined to 
the neighbourhood of the end of the beam. 
 
 The principle of De Saint-Venant reads: 

 When the forces that are acting on a small part of the surface of an elastic body are 
replaced by another statically equivalent system of forces, locally large changes in the 
stress-state are introduced; however, at a distance, which is large compared to the 
linear dimensions of the area that is affected by the changed forces, the influence is 
negligible (see Fig. 3.12). 

change

no change

1F 2F 1 2F F+

a

a

Fig. 3.12: Principle of De Saint Venant. 

Remark 3 
The boundary condition at the restrained end is not yet considered. It would be a large 
coincidence when at that position the boundary conditions were satisfied exactly. Since the 
clamping refers to a prevention of displacements, they first have to be determined. This will 
be explained below. 

Continuation of example 2 
The displacements can be found by integration of the expressions for the deformations. A 
complication is created by the fact that the deformations are found by partial differentiation 
of the displacements. By the inverse process of integration with respect to one of the 
variables, no integration constants are introduced but functions depending on the other 
variable(s). 
Because 0yy zzσ σ= =  (a state of plane stress is assumed), it holds: 

 x xx
xx

u Fx y
x E EI

σε ∂
= = =
∂
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from which after integration it follows; 

 
2

( )
2x
Fx yu

EI
= + f y  (3.21) 

where ( )f y  is an undetermined function depending on  only. y
An initial expression for the vertical displacement  is found by integration of the 
deformation 

yu
yyε , i.e.: 

 
2

( )
2

y xx
yy y

u Fx y f x yu
y E EI EI

σε υ υ υ
∂

= = − = − → = − +
∂

g x  (3.22) 

where  is a still unknown function. ( )g x
Now, the expressions for both displacement components xu  and y  are found, but they still 
contain the to be determined functions 

u
( )f y  and . These functions can be found because 

the required extra data is at hand. The displacements xu  and yu  have to be in agreement with 
the expression for the shear stresses 

( )g x

xyσ . From (3.21) and (3.22) it follows: 

 
2 2 ( ) ( )

2 2
yx

xy

uu F x F y d f y dg x
y x EI EI dy dx

υγ
∂∂

= + = − + +
∂ ∂

 

On the other hand, from Hooke’s law and the last expression of (3.20) it yields: 

 
2

2

3 41
2

xy
xy

y F
G d
σ

γ
⎛ ⎞

= = −⎜ ⎟
⎝ ⎠G A

  

Equating the two expressions for xyγ  delivers: 

 
2 2 2

2

( ) ( ) 3 41
2 2 2
Fx F y d f y dg x y F
EI EI dy dx d G A

υ ⎛ ⎞
− + + = −⎜ ⎟

⎝ ⎠
 

In this equation, terms appear that only depend on x  (for example the first one and 
( )d g x dx ), terms that only depend on , and a constant term (the first term of the right-hand 

side). The equality can be satisfied only if the sum of all terms that depend on 
y

x  is a constant, 
just like for the terms that depend on . The constants must have such a value that the 
equation is just satisfied. Therefore, it should hold:  

y

 
2 2 2

3 426 ;
2 2

d f F y y F dg F xC C
d y EI d G A d x EI

υ
= − + = − +  

  The constants  and  are interdependent, because it should hold: 3C 4C

 3 4 3
3 3
2 2

F FC C C C
G A G A

+ = → = − 4   

So, the derivatives of the functions become: 
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2 2 2

4 42

3 41 ;
2 2 2

d f F y y F dg F xC C
d y EI d G A dx EI

υ ⎛ ⎞
= + − − = − +⎜ ⎟

⎝ ⎠
 

Now, the functions ( )f y  and  can be determined by ordinary integration: ( )g x

 
3 3 3

4 5 42

3 4( ) ; ( )
6 2 3 6
F y y F F x

6f y y C y C g x C
EI d G A EI

υ ⎛ ⎞
= + − − + = − + +⎜ ⎟

⎝ ⎠
x C  

where C  and C  are real integration constants. 5 6

The found expressions for ( )f y  and  are now substituted in the expressions (3.21) and 
(3.22) for the displacements  and : 

( )g x
xu yu

 

2 3 3

4 52

3 2

4 6

rigid body      shear    bending
movement contributioncontribution

3 4
2 6 2 3

6 2

x

y

F x y F y y Fu y
EI EI d G A

F x F x yu
EI EI

υ

υ

⎛ ⎞
= + + − − +⎜ ⎟

⎝ ⎠

= − − + +

C y C

C x C  (3.23) 

These expressions clearly show which parts are contributed by the deformations caused by the 
bending moment and the shear force, respectively. Apart from that, there is also a contribution 
describing a rigid body movement, which is not associated with any development of stresses. 
This rigid body movement describes a pure rotation about the origin of the chosen coordinate 
system (C ), and two translations (  and C ).   4 5C 6

The value of the three constants follows from the boundary conditions at the constrained end. 
When the requirement is imposed that the displacements u  and  of the beam-axis are zero 
and the beam-axis is horizontal (see Fig. 3.13), i.e. when: 

x yu

 

0
0and 0

0

x

y

y

u
ux l y
u
x

=⎧
⎪ =⎪= = → ⎨
∂⎪ =⎪ ∂⎩

 

Fig. 3.13: Beam with suppressed rotation and vertical displacement at fixed end. 
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for the constants it follows: 

 
2 3

4 5 6; 0 ;
2 3
Fl FlC C C
EI EI

= = =  

The displacements (3.23) then become: 

 

( )

( )

2 2 3 3

2

3 2 3 2

         shearbending
  contributioncontribution

3 4
2 6 2 3

3 2
6 2

x

y

F x l y F y y Fu y
EI EI d G A

F x x l l F x yu
EI EI

υ

υ

− ⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠

− − +
= −

 (3.24) 

For the free end at , the vertical displacement of the beam-axis (0x = 0y = ) equals: 

 
3

3y
Flu
EI

= −  

This is exactly the same result as obtained from the elementary beam theory.  
The rotation according to the elementary beam theory is found as well. For a beam without 
shear deformation this rotation is: 

 
2

2
xu Fl

y E
∂

= −
∂ I

 

This can be found from (3.24) too, with 0x = , 0y =  and G A  infinitely large.  
However more information can be obtained from (3.24). The elementary beam theory seems 
to be an approximation for the real stress-state. In both xu  and y  a contribution is present 
depending on Poisson’s ratio 

u
υ . When the value of υ  is zero the terms disappear. When υ  is 

different from zero, the terms have a value outside the beam-axis. They never have any 
influence on the values on the beam-axis, but can be interpreted as a relative displacement 
with respect to the beam-axis.  
More important is the contribution to xu  caused by the shear deformation, because also for 

0υ =  this term has a value. For the considered restrained end as shown in Fig. 3.13 the beam 
deforms as depicted in Fig. 3.14. 

x

y
xcu

 

Fig. 3.14: Deformation caused by shear stresses. 
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The displacement in x -direction at the restrained end equals ( x l= , 0υ = ): 

 
3

2

3 4
2 3x

y Fu y
d G A

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

The largest value  occurs for xcu 2y d=  and equals: 

 
2xc

F du
G A

=  

This is just the value that also would have occurred if the shear stress distribution was 
constant over the cross-section.  
When the beam would have been restrained in a different way another situation is created. For 
the case that the beam is glued against an undeformable block, the boundary conditions 
become  and 0xu = 0yu =  for all values of  between y 2d−  and 2d+ . This boundary 
condition cannot be satisfied for the given stress function. At best, the boundary condition can 
be satisfied approximately, for example by requiring that the displacement xu  is only zero at 
the extreme fibres ( 2y d= −  and 2y d= + ). This can be achieved by introducing a rotation 
on the previously described fixing method (see Fig. 3.15a).  

2d

2d

cγ

xcu

,maxxu

,maxxu

cγ>

a) u  is zero at neutral line and extreme fibres            b) u  is minimised x ,maxx

Fig. 3.15: Rotation at the fixed end for incorporation of the deformation  
caused by the shear force. 

 

The angle of rotation in this case is: 

 
1
2

xc
c

u
d

γ =  

The subscript “c” is used again, because this rotation would also occur for constant shear 
stresses across the cross-section. This directly follows from the elimination of  from the 
last to equations. It then follows 

xcu
c cF G A F A Gγ γ= → =  

A better approximation is obtained by introducing a rotation such that the maximum value of 
the horizontal displacement xu  is minimised over the full height of the cross-section. This is 
achieved for a rotation that is larger than cγ  (see Fig. 3.15b, ,maxxu  has been made as small as 
possible). This state corresponds with a shape factor η , which is larger than 1. For the 
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1 6 5

xy xyσ σ
η η= =

V

V

A

Fig. 3.16: Shape factor for a beam subjected to shear loading. 

rectangular cross-section this shape factor equals 6 5η = , the meaning of which will be 
explained below.  
Fig. 3.16 shows a rectangular beam subjected to a shear force V . With xy Gσ γ= , for a 
uniform shear-stress distribution, the following shear force can be calculated: 

 xyV A G Aσ γ= =  

For a non-uniform shear-stress distribution, the shape factor can be introduced to obtain: 

 ;s sV G A A Aγ η= =  

When the shear-stress distribution is parabolic, the shape factor becomes: 

 6
5

η =  

Thus for the case of minimising the horizontal displacement at the restrained end over the full 
height of the cross-section, the corresponding vertical displacement at the free end becomes: 

 
23 3 11 (1 )

3 3 2y
F l F l F l du
EI G A EI l

η η
⎧ ⎫⎪ ⎛ ⎞= − − = − + +⎨ ⎜ ⎟

⎝ ⎠⎪ ⎪⎩ ⎭
υ ⎪

⎬  (3.25) 

From this expression, it easily can be seen that the deformation caused by the shear force can 
be neglected if . d l

Remark 
Compared to the elementary beam theory only little improvement has been obtained with 
respect to the most important stresses and displacements (of the neutral line). The only 
improvement lies in the understanding of the applicability of the elementary beam theory and 
its errors. Moreover, a complete consistent system of stresses and displacements is found. The 
horizontal displacement appears not to be a linear function of the coordinate in height 
direction (thus, plane cross-sections do not remain plane at all), but the stresses xxσ  however 
are just like in the elementary beam theory linearly distributed across the height.  

3.4 Solution for a deep beam 

The deep beam as shown in Fig. 3.17 is loaded at the bottom by a distributed sine-shaped load 
( )f x . This example was already discussed with the displacement method in the course 
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( )f x

l

d
x

y

Fig. 3.17: Deep beam loaded at bottom edge. 

Elastic Plates. The beam is supported in such a manner that the displacements at the left and 
right ends are prohibited. The aim of the exercise is to determine the stress distribution of xxσ  
over the middle cross-section of the high beam (the cross-section 0x = ). 
For the load it can be written: 

 ( ) cos( )f x f xα=     

where f  is the largest value and α  is equal to: 

 
l
πα =  

In this case the stress function of Airy can be written as the product of two functions, of 
which one is only depending on x  and the other one only depending on . For the first one 
the same distribution as for the load is selected, namely 

y
( )cos xα . It can be shown that this 

choice leads to displacements that satisfy the boundary conditions at the beam-ends. The 
function in -direction has to be selected such that the stress function satisfies the 
biharmonic equation of Airy and also satisfies the boundary conditions at the top and bottom 
of the beam.  So, the stress function reads: 

y

 ( , ) ( ) cos( )x y g y xφ α=  

Substitution of this function into the biharmonic equation given by: 

 
4 4 4

4 2 2 42 0
x x y y
φ φ φ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂
=  

delivers after division by cos( )xα : 

 ∂
∂

−
∂
∂

+ =
4

4
2

2

2
42 0g

y
g

y
gα α  
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The advantage of this approach is that the partial biharmonic differential equation for ( , )x yφ  
has been reduced to an ordinary fourth-order differential equation for .  ( )g y
The following trial solution is substituted: 

  ( ) ryg y e=

leading to the following characteristic equation: 

  4 2 2 42 0r rα α− + =

This equation can be factorised as: 

  ( ) ( )2 2 2 2 0r rα α− − =

The following four roots can be obtained: 

 1 2 3 4; ; ;r r r rα α α= = = − = α−  

For each double root , the terms  and  have to be included in the general solution. 
The general solution for 

r rye ryr e
( , )x yφ  becomes: 

 ( ) ( )1 2 3 4

( )

( , ) cosy y y y

g y

x y C e C y e C e C y e xα α α αφ α α− −= + + + α  

The four constants can be solved from the following four boundary conditions: 

 

1
2

1
2

0 , 0
0 , 0

cos( ) , cos( )
0 , 0

yy xx

xy xy

yy xx

xy xy

n
y b

n

n f x f x
y b

n

φ
φ

α φ α
φ

= → =⎧
= − → ⎨ = → =⎩

= → =⎧
= + → ⎨ = → =⎩

 

The straightforward calculation of the constants is left to the reader. After determination of 
the constants, the stress distribution can be derived from φ . For three special cases, the 
distribution of  over the line  will be provided. xx

The expression for  is: 
n 0x =

xxn

 ( ) ( )2 2 2 2
1 2 3 42 2y y y

xxn C e C y e C e C y e yα α αα α α α α α− −= + + + + − + α  

case 1: 1d l  
In this case, the beam is a high wall or actually even an infinite half-space. The constants  
and  have to be zero because the solution has to approach zero for large values of . 

1C
2C y

case 2: ≈ 1d l  
In this case, it really concerns a short high beam. All four constants play a role and therefore 
all four terms yeα , yeαα , ye α−  and ye αα − are important. 
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d

xxn xxn xxn

Fig. 3.18: Results for several values of the ratio of height d and span l.  

case 1                          case 2                           case 3 

1d
l

                         1d
l
≈                            1d

l
 

case 3: 1d l  
In this case, the beam is slender and the classical beam theory applies, which will be shown 
below. 
When 1d l  it also holds that 1yα . For these small values of yα  the functions yeα , 

yeαα , ye α−  and ye αα −  can be approximated by a Taylor expansion around the point . 
Then the stress function 

0y =
( , )x yφ  changes into: 

 ( ) ( ) ( ){ } ( )2 3
1 2 3 4, cosx y C C y C y C y xφ α α α α= + + + +   

For sufficiently small values of d l  the factor yα  is so small compared to unity, that the first 
four terms will do. Thus, the function reduces to a third-order polynomial in . The 
direct consequence is that xx  becomes a linear function of  (see Fig. 3.18) and xy  a 
parabolic one. For yy  the distribution is cubical in . This is exactly the solution of the 
classical beam theory.   

( )g y y
n y n

n y

Practical application 
The discussed academic case of a high wall can be used to make analytical estimations of the 
stress distribution in practical structures. An example is the calculation of the stress 
distribution in a silo wall on columns subjected to a uniformly distributed load as shown in 
Fig. 3.19. This load may be the dead weight or the downward directed friction forces due to 
silo action. In order to obtain a proper estimation of the horizontal stress between the two 

 

x
y

x

case I                                case II 
Fig. 3.19: Wall of silo on columns. 
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columns at the bottom of the wall the following approach is adopted. The load case is split up 
in a case I having a uniform stress distribution (without any significant horizontal stresses) 
and a case II for which the solution of the high wall can be used. The assumption for case II is 
that the distributed line load at the bottom edge of the wall can be estimated properly by the 
sine-shaped load. 

3.5 Axisymmetry for plates subjected to extension 

In this section, the special case of circular plates subjected to axisymmetric loads will be 
discussed. Fig. 3.20 shows such a plate with thickness t . 

dθ

dr
r

  p u

r
t

  p u

nθθ

nθθ

rrn rrn

Fig. 3.20: Displacement, load and extensional forces in an axisymmetric plate problem. 

For this type of problems it is handy to change to polar coordinates  and r θ . Due to the 
symmetry condition only one degree of freedom is present, which is the displacement  that 
is independent from the tangential coordinate 

u
θ . The same property holds for the load p  per 

unit of area. Only two extensional forces are present  and nrrn θθ . The shear stress rn θ  cannot 
occur. Therefore, only two strains exist rrε  and θθε . The essential quantities are schematically 
displayed in Fig. 3.21. 

external work 

int

                                                              rr rrn
u p

nθθ θθ

ε
ε
⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

e n

ernal work

constitutive
equations 

equilibrium 
equation 

kinematic 
equations 

Fig. 3.21: Diagram displaying the relations between the quantities playing a role in 
the analysis of axisymmetric problems. 
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Kinematic equation 
The strain rrε  and the displacement u  are both defined in -direction. The well-known 
relation between the two reads: 

r

 rr
du
dr

ε =  (kinematic equation in radial direction) (3.26)a 

Ordinary derivatives can be used since  only depends on the coordinate . For the 
derivation of the tangential strain 

u r
θθε  a circle is considered with radius . The circumference 

of this circle is 
r

2 rπ . After application of the axisymmetric load, each point of the circle 
displaces over a radial distance u . Then, the new radius of the circle is r  and the 
circumference . The increase of the circumference is 

u+
(2 r uπ + ) ( )2 2r u r u2π π π+ − = . 

Division of this result by the original length 2 rπ  provides the required strain: 

 u
rθθε =  (kinematic equation in tangential direction) (3.26)b 

Constitutive equations 
The elaborations are carried out only for the plane stress case. The relations are: 

 
( )

( )

1

1

rr rr

rr

n n
E t

n n
E t

θθ

θθ θθ

ε υ

ε υ

= −

= −
 (flexibility formulation) (3.27)a 

 
( )

( )

2

2

1

1

rr rr

rr

E tn

E tn

θθ

θθ θθ

ε υ ε
υ

ε υ ε
υ

= +
−

= +
−

 (stiffness formulation) (3.27)b 

Equilibrium equations 
The elementary plate element of length  and aperture angle dr dθ  is considered as shown in 
Fig. 3.20. The length of the edge at the inside of the element equals r dθ . The total force on 
this edge equals rrn r dθ  and points to the left. At the outside of the element, at a distance 

further, the force is increased to dr ( ){ }rr rrn r d d n r d dr drθ θ+ and points to the right. The 
resulting force of both circular edges is an outward-pointing force equal to 

( ){ }rrd n r d dr drθ . The angle dθ  is independent from , which means that the resulting 
force can be written as: 

r
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 ( )rr
d r n dr d
dr

θ   (3.28) 

A force  is acting perpendicular to each straight edge of the element. Since the angle 
between the two forces is 

n drθθ

dθ , a  force results of: 

 n dr dθθ θ−    (3.29) 

where the minus sign indicates the direction of the force (negative r -direction). 
The distributed load p  provides an outward-pointing force too. For that purpose, p  has to be 
multiplied by the area r d drθ  of the considered plate element. The force equals: 

 p r d drθ    (3.30) 

For equilibrium, the sum of the three forces (3.28), (3.29) and (3.30) has to be zero. After 
division by d drθ  the following equilibrium equation is obtained: 

 ( )rr
d r n n rp
dr θθ− + =  (equilibrium equation) (3.31) 

In this stress problem, rigid body displacements without development of strains remain cannot 
occur. For each displacement  immediately a strain field develops. Further, only one 
combination of constant strains is possible. For the strain 

u
θθε  to have a constant value 0ε , 

from (3.26)b it follows that a displacement is required of 0u rε= . The strain rrε  determined 
from (3.26)a then also equals 0ε . So, the only possible combination of constant strains is 
identical strains θθε  and rrε . Then from the constitutive relations (3.27) it follows that the 
extensional forces  and rrn nθθ  are equal and constant too (thus the stresses rrσ  and θθσ ).  
When the constant values  and 0rrn n= 0n nθθ =  are substituted in the equilibrium equation 
(3.31) it appears that the distributed load p across the plate area has to be zero. The plate can 
only be loaded along the edge. Fig. 3.22 show two situations, a circular plate with and without 
hole. In both plates in each point an isotropic extensional force  is present and Mohr’s 
circle is reduced to a point.   

0n

0n
0n

0n

0n

0n

0n0n

Fig. 3.22: Only one constant stress-state can occur in an axisymmetric plate; 
then the extensional forces n  and nrr θθ  are equal. 
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Transformation 
The equilibrium equation (3.31) comprises the terms rr  and . It makes sense to 
introduce new variables for these combinations. This will be done for 

r n r p
r nθθ  too. It is defined: 

 ; ;rr rrN r n N r n f rpθθ θθ= = =     (3.32) 

The two quantities rr  and N Nθθ  are normal forces with the dimension of force and f  is a 
line load with the dimension of force per unit of length. 
Application of the transformations in (3.32) change the kinematic equations (3.26), the 
constitutive equations (3.27) and the equilibrium equation (3.31) into: 

 ;rr
du u
dr rθθε ε= =  (3.33) 

 
( )

( )

( )

( )

2

2

1
1

1
1

rr rr rr rr

rr rr

EtrN N NEtr
EtrN N N

Etr

θθ θθ

θθ θθ θθ θθ

ε υ ε υ ε
υ

ε υ ε υ
υ

= − = +
−⇔

= − = +
−

ε
 (3.34) 

 rr
Nd N f

dr r
θθ− + =  (3.35) 

Remark 1 
This equilibrium equation can be compared with the one for a straight bar subjected to a 
normal force, which has been discussed in the course “Elastostatics for slender structures”: 

  dN f
dx

− =  

but with an extra term equal to N rθθ . The tangential stresses help to carry the line load. 
When the term rrdN dr−  is omitted in (3.35), the equation can be used to calculate the 
normal force Nθθ  in a ring subjected to a line load f . 

Remark 2 
After the transformation it can be written: 

  ;rr rrN
Nθθ θθ

ε
ε
⎧ ⎫ ⎧ ⎫

= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

e N

and: 

  ;u f′= =e NB B
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where: 

 1;
1

d
ddr
dr r

r

⎧ ⎫
⎪ ⎪⎪ ⎪ ⎧ ⎫′= = −⎨ ⎬ ⎨ ⎬

⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

B B  

Again it can be observed that in the transposed of B  the sign of the uneven (first) derivative 
d dr  has to be changed, but not of the even (0th) derivative 1 r . 

3.5.1 Thick-walled tube 

The thick walled tube, as shown in Fig. 3.23 is subjected at the inner cylindrical surface to a 
uniformly distributed load . The load is positive and points in r -direction. No distributed 
surface load 

q
p  is present at the face of the plate, which means that f  in (3.32) is zero.  

Fig. 3.23: Thick-walled pipe with load at inner wall. 
 

q
a r

b

In a thick-walled tube, flat sections remain flat after deformation, but the strain zzε in axial 
direction will not be zero. On the average zzσ  will be equal to zero. Therefore, the problem 
will be treated as a plane stress state. The analysis is carried out by both the force and 
displacement methods. A slice of unit thickness of the tube is considered, which is cut 
perpendicularly to the axial direction. This means that  and rrn nθθ  are equal to rrσ  and θθσ , 
respectively. 

Force method 
The first step is to find a solution for the equilibrium equation: 

 0rr
Nd N

dr r
θθ− + =  

This differential equation contains two unknowns. Therefore, one redundant stress function φ  
can be selected. The following choice: 

 ;rr
dN N r
drθθ
φφ= =  (3.36) 

satisfies the homogeneous differential equation. 
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From the constitutive relations in flexibility formulation, in the second step it follows: 

 1 1;rr
d d

E t r dr E t r drθθ
φ φ φε υ ε υ⎛ ⎞ ⎛= − = − +⎜ ⎟ ⎜
⎝ ⎠ ⎝

φ ⎞
⎟
⎠

 

In the third step, this result has to be substituted in the compatibility condition, which is 
obtained by elimination of the displacement  from the kinematic equations: u

 ( ) 0rr
d r
dr θθε ε− + =  

Substitution of the strains leads to: 

 ( ) 2

2

10 or 0 or 0
d rd d d d dr r r

dr dr r dr r dr dr dr r
φφ φ φ φ φ⎛ ⎞⎛ ⎞ − = = + − =⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

This differential equation can be rewritten as: 

 0φ =L   (3.37)a 

where the operator  has been introduced defined by: L

 1d dr r
dr r dr

=L  (3.37)b 

A second-order differential equation has been obtained, contrary to the more general case of 
rectangular problems for which the fourth-order biharmonic equation of Airy holds. 
For the solution of differential equation (3.37) the following trial function is used: 

  mC rφ =

where C  and  are constants. Substitution into (3.37) yields: m

  ( ) ( ) 11 1 mC m m r −+ − = 0

So, two roots are found: 

  1 21 ; 1m m= − =

The general solution becomes: 

 1 2
1( )r C C
r

φ = + r  

Now, with (3.36) the force distribution can be obtained: 
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 1 2 1
1 1;rr

dN C C r N r C
r drθθ 2C r

r
φφ= = + = = − +  

and subsequently: 

 1 2 12

1 1 1 1;rr rrn N C C n N C
r r r rθθ θθ= = + = = − + 22 C  (3.38) 

This result clearly shows that only one combination of constant stresses is possible, in which 
case  is zero and  and 1 rrC n nθθ 2

The two values of 1C  and 2C  are determined from the boundary conditions at the inner and 
outer cylindrical surface of the thick-walled tube. These conditions are: 

 are both equal to C .  

   ; 0rr rrr a n q r b n= → = − = → =

This delivers for the two constants: 

 
2 2 2

1 22 2 2 2;a b aC q C
b a b a

= − =
− −

q  

The extensional forces become: 

 
2 2 2 2

2 2 2 2 2 21 ; 1rr
a b a bn q n

b a r b a rθθ
⎛ ⎞ ⎛

= − + = +⎜ ⎟ ⎜− −⎝ ⎠ ⎝
q

⎞
⎟
⎠

 (3.39) 

Fig. 3.24a displays this distribution of forces (stresses) across the thickness of the tube wall. 

q

θθσ

rrσ          rrθθσ σ

nn

n

2n

nθθ

n

Fig. 3.24a: Stress distributions in a thick-          Fig. 3.24b: Stress concentration factor 2 near
 walled pipe under internal gas pressure.            a hole in case of equal principal stresses.  

Remark 1 
When the distributed load q  would have been applied on the outer wall pointing in negative 

-direction, the constants would have become: r

 
2 2 2

1 22 2 2 2;a b bC q C
b a b a

= = −
− −

q  

Addition of these values to the previously obtained ones provide the following -values: C
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  1 20 ;C C= = q−

This is exactly the constant state of stress with equal and rrn nθθ . Then both the inner and 
outer wall are subjected to the distributed load .  q

Remark 2 
When above exercise is repeated for plane strain, exactly the same differential equation will 
be obtained and therefore the same stresses. 

Remark 3 
Now the stress concentration factor can be computed in a large plate with a homogeneous 
stress state of equal principal stresses, in which a circular hole is made. The homogeneous 
membrane forces without hole are: 

  ;rrn n nθθ= = n

In order to make the edge of the proposed hole to be stress-free a loading case must be 
superimposed in which the edge is loaded with an opposite load. For the boundary in this case 
it holds . Further it is known that the stresses will vanish for large radius . The result 
is that 

0rrn = r
2

1C n a= −  en . Hence the membrane forces for this case become: 2 0C =

 
2 2

2 2;rr
a an n n n
r rθθ

⎛ ⎞ ⎛
= − =⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 

Still these membrane forces must be superimposed on the constant equal stresses for the case 
without hole. The final result for the large plate with hole is: 

 
2 2

2 21 ; 1rr
a an n n n
r rθθ

⎛ ⎞ ⎛
= − = +⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 

Due to the hole, the maximum value of the membrane force nθθ  is twice the value  of the 
homogeneous stress state (stress concentration factor 2), see Fig. 3.24b. 

n

Displacement method 
In the displacement method the kinematic equations (3.33) are substituted in the constitutive 
equations (3.34) in stiffness formulation: 

 2 2;
1 1rr
Etr du u Etr u duN N

d r r r d rθθυ υ
υ υ

⎛ ⎞ ⎛ ⎞
= + = +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

 

Substitution of this result into the equilibrium equation (3.35), leads to the following 
differential equation: 

 21
Et u f
υ

=
−
L  (3.40) 
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where L  is same the operator as defined in (3.37)b. 
For the tube subjected an internal gas pressure q  it holds 0f =  and therefore: 

   0u =L

The solution reads: 

 1 2
1u C C r
r

= +  

The integration constants follow from the two boundary conditions: 

 

1;

10 ; 0

rr rr

rr

r a n q N q
r

r b n N
r θθ

= → = − = −

= → = =
 

From the general solution it follows: 

 1 2 1 22 2 2

1 1
1rr
EtrN C C C

r r
υ

υ
⎧ ⎫⎛ ⎞ ⎛= − + + +⎨ ⎬⎜ ⎟ ⎜− ⎝ ⎠ ⎝⎩ ⎭

C ⎞
⎟
⎠

 

Therefore: 

 ( ) ( )1 22 2

11 1
1rr

Etn C
r

υ υ
υ

⎧ ⎫= − − + +⎨ ⎬− ⎩ ⎭
C  

Now the constants can be obtained from the two boundary conditions: 

 ( ) ( )
2 2 2

1 22 2 2 21 ; 1a b q a qC C
b a Et b a Et

υ υ= − = −
− −

 

Finally, the results for the displacement  and the stress quantities  and u rrn nθθ  become: 

 

( ) ( )
2 2

2 2

2 2 2 2

2 2 2 2 2 2

( ) 1 1

1 ; 1rr

a q bu r r
b a Et r

a b a bn q n
b a r b a rθθ

υ υ
⎧ ⎫

= + + −⎨ ⎬− ⎩ ⎭

⎛ ⎞ ⎛
= − + = +⎜ ⎟ ⎜− −⎝ ⎠ ⎝

q
⎞
⎟
⎠

   (3.41) 

These stress quantities were previously found in (3.39) 

3.5.2 Curved beam subjected to a constant moment 

A curved beam is considered with a constant radius of curvature. The dashed lines in Fig. 
3.25 show such a beam. The inner and outer radius are  and b , respectively. The aperture 
angle of the arc is 

a
ϕ . The beam has a rectangular cross-section with height d  and width . t
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atd

M
M

mϕ

iϕ

Fig. 3.25: circular bar in unloaded state (dashed lines) and in loaded state (solid lines). 

So, for the height  it holds . This curved bar is modelled by a thin plate with 
thickness t . 

d d b a= −

The radius of curvature of the beam increases, due to the application of the moment load. It is 
reasonable to assume that this radius is constant along the length of the curved beam. For 
reasons of axisymmetry, flat surfaces perpendicular to the neutral line remain flat and 
perpendicular to the neutral line. However the aperture angle reduces from ϕ  to mϕ . This 
reduction is necessary because no normal force in the beam should be generated, which means 
that the beam length measured along the neutral line remains the same. But the radius of 
curvature increases leading to a reduction in aperture angle. This reduction is indicated by iϕ . 
At first sight, this problem does not fall in the category of axisymmetric problems, because 
for that category the reduction iϕ  does not occur. However, the problem can be included in 
this category by simultaneous application of the moment M  and an initial strain iε  in 
tangential direction. Then the magnitude of iε  is selected such that the reduction iϕ  of the 
angle ϕ  is exactly compensated.  It can be imagined, that the strain iε  is caused by a 
temperature increase or a swelling by moisture. However, the initial strain iε  should only be 
introduced in θ -direction and not in -direction.   r
 
The initial strain iε  is constant across the height  of the cross-section and has magnitude: d

 i
i

ϕε
ϕ

=  

Due to the simultaneous application of M  and iε  the aperture angle of the curved beam 
keeps its magnitude ϕ  and no normal force develops. Each flat surface displaces exclusively 
in the direction of the radius . However, the question is how this load can be applied? In 
axisymmetric problems, distributed surface loads on the centre plane and distributed line 
loads along the edges with  and 

r

r a= r b=  can be applied. In this case, these types of loading 
are not applicable and an alternative approach is required. The initial strain iε  will be 
imposed as a “load” and then the moment M will follow from the resultant of the calculated 
stresses nθθ . The initial strain iε  will be incorporated in the constitutive equation (3.34) and it 
will be traced how this action affects the differential equation. Then this modified differential 
equation will be solved with boundary conditions 0rrn =  on the edges with  and r a= r b= . 
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In this way, the stress quantities rr  and n nθθ  are found as linear functions of the applied initial 
strain iε . The moment M  is determined from the stress quantity nθθ  by integration over the 
height of the beam (the resulting normal force in the cross-section is zero): 

 
b

a

M r n drθθ= ∫  (3.42) 

The moment M  will be a linear function of iε  too and will be used to eliminate iε  from the 
expressions for  and rrn nθθ , which in their turn become a function of the moment M .  

Force method 
The problem will only be analysed by the force method. The only difference with respect to 
the previous section is the formulation of the constitutive equations. They are: 

 ( ) ( )1 1; with 0rr rr rr i iN N N N
Etr Etrθθ θθ θθε υ ε υ ε= − = − + ε >  (3.43) 

The differential equation (3.37)a is extended to: 

 1
iEt

φ ε= −L  (3.44) 

Next to the in section 3.5.1 found homogeneous solution given by: 

 1 2
1( )r C C
r

φ = + r   

a particular solution exists corresponding with the right-hand side iε− : 

 1( ) ln
2 ir E t rφ ε= − r  

The correctness of this solution can be checked by substitution into (3.44). The total solution 
becomes: 

 1 2
1 1( ) ln

2 ir C C r E t r r
r

φ = + − ε  (3.45) 

From the boundary condition  on the two edges with 0rrn = r a=  and  the two 
integration constants can be determined: 

r b=

 
2 2 2

1 22 2 2 2

1 1 ln lnln ;
2 2

2

i
a b b b b - a aC E t C E t

b a a b a
ε ε⎛ ⎞= − =⎜ ⎟− −⎝ ⎠

i  (3.46) 

This results in the stress quantities: 

 1 1( ) ; ( )
2 2rr i rr in E t f r n E t fθθ θθε= = rε  (3.47) 
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where: 

 

2 2

2 2 2 2 2 2 2

2 2

2 2 2 2 2 2 2

( ) ln ln ln

( ) 1 ln ln ln

rr
ab b ab a r b rf r

b a a r b a a b a b
ab b ab a r b rf r

b a a r b a a b a bθθ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.48) 

The moment according to (3.42) becomes: 

 1
2 iM E t Cε=  (3.49) 

where: 

 ( )
22 2

2 2
2 2

1 ln
4

a b bC b a
b a a

⎛ ⎞= − − ⎜ ⎟− ⎝ ⎠
 (3.50) 

The normal force  becomes: N

  0
b

a

N n drθθ= =∫
Elimination of iε  from (3.47) and (3.49) finally provides the required relation between the 
moment M  and the stress quantities  and rrn nθθ : 

 ( ) ; ( )rr rr
M Mn f r n f r
C Cθθ θθ= =  (3.51) 

             rrf fθθ

             rrf fθθ

MM

MM

rrn

rrn

nθθ

nθθ
0.2a

b
=  

strongly curved 
 
 
 

0.9a
b
=  

weakly curved 

-

+

-

+

+

+

Fig. 3.26: Distribution functions for the stresses  and rrn nθθ   
for a small and a large value of a b . 
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In these expressions, C  only depends on a  and b , i.e. the geometry. The functions ( )rrf r  
and ( )f rθθ  are dimensionless and provide the distribution of stresses over the height  of the 
cross-section. In Fig. 3.26 this distribution is displayed for two different values of the ratio 

d

a b , a value that is small compared to unity (strong curvature) and a value close to unity 
(weak curvature). For a strong curvature, the bending stress distribution deviates severely 
from a linear distribution, irrespective of the fact that flat cross-sections remain flat. 

Remark 1   
In these notes a differential equation of the second-order has been used. Timoshenko and 
Goodier analysed the same problem in their book “Theory of Elasticity”. They started with 
the fourth-order Airy equation and found the same distribution of stresses. 

Remark 2 
That in the case of pure bending also stresses rr  are generated can be made clear by 
considering the part of the beam inside the neutral line. The tensile stresses n

n
θθ  deliver a 

tensile force. The two tensile forces acting on the ends of the beam-part have different 
directions. Equilibrium is possible only if over the full length of the bar a radial outward-
pointing rrn  is present. Therefore, it can be concluded that rr  is a tensile stress. The same 
conclusion holds for the part of the beam outside the neutral line, where compressive stresses 

n

nθθ  are present.    

3.6 Description in polar coordinates of plates subjected to extension 

The discussion is extended by the analysis in polar coordinates of plates subjected to 
extension for which no axisymmetry holds. The starting point is the treatment of the 
rectangular plates in section 3.2. In that section the stress function ( , )x yφ  was introduced, for 
which it was derived: 

 
2 2

2 2; ;xx yy xyn n n
y x

2

x y
φ φ φ∂ ∂

= = = −
∂ ∂

∂
∂ ∂

 

For this stress function the biharmonic equation of Airy holds: 

  2 2 0φ∇ ∇ =

where: 

 
2 2

2
2 2x y

∂ ∂
∇ = +

∂ ∂
 

This operator is a representation of the sum of the two normal forces. Fig. 3.27 shows which 
stresses are involved for the description in polar coordinates. Now, two degrees of freedom 

 and uru θ  are present and in both directions loads can be applied.  
In this case two equilibrium equations have to be formulated in both  and ru uθ  directions. 
From Fig. 3.28 it follows: 
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Fig. 3.27: Relevant quantities for a description in polar coordinates. 

rrn r dθ

n drθθ

rp r d drθ

p r d drθ θ

rn r dθ θ rn drθ

( )n dr
n dr d

r
θθ

θθ θ
∂

+
∂

( )r
r

n dr
n dr d

r
θ

θ θ
∂

+
∂

( )rr
rr

n r d
n r d dr

r
θ

θ
∂

+
∂

( )r
r

n r d
n r d dr

r
θ

θ

θ
θ

∂
+

∂

Fig. 3.28: Forces participating in the equilibrium. 

 ( ) ( );rr rr
r r

n r n rn nn p r n
r r

θθ θθ
θθ θ θθ θ

∂ ∂∂ ∂
− + − = − − − =

∂ ∂ ∂ ∂
p r  (3.52) 

where the components rnθ  and nrθ  are identical. For the case 0rp pθ= = , the equations are 
satisfied by the following solution: 

 
2 2

2 2 2

1 1 1; ;rr rn n n
r r r r r rθθ θ

φ φ φ φ
θ θ

∂ ∂ ∂ ∂ ∂⎛ ⎞= + = = − ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (3.53) 

Now, directly the operator  can be determined from the sum of  and 2∇ rrn nθθ . The equation 
of Airy then becomes: 

 
2 2 2 2

2 2 2 2 2 2

1 1 1 1 0
r r r r r r r r

φ
θ θ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + + =⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

⎟  (3.54) 
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3.6.1 Point load on a half-plane 

A wedge is considered with a distributed and point load as displayed in Fig. 3.29. The wedge 
and the load are symmetrical with respect to the axis 0θ = . 

line of symmetry

θ
r

α
α

F

rrn

Fig. 3.29: wedge that is subjected to loads that are in equilibrium. 

It can be shown that the stress function: 

 sinCrφ θ θ=   

defines the stress-state in the wedge. The reader can verify that this stress function satisfies 
the biharmonic equation of Airy. Using (3.53), the following stresses can be determined: 

 12 cos ; 0 ;rr rn C n n
r θθ θθ= = 0=  

The value of  can be calculated as follows. The horizontal resultant of the boundary load 
 on the circular edge has to be equal to : 

C
rrn F

 ( )2cos 2cos 2 sin 2 FF n rd C d C C
2 sin 2rr

α α

θ θ θ θ α α
α α

α α
− −

+∫ ∫= = = + → =  

Consequently, for  it can be written: rrn

 
1
2

cos
sin 2rr
Fn

r
θ

α α
=

+
 

A special case is introduced when the angle α  becomes equal to 2π , which is presented in 
Fig. 3.30. In this way the stress distribution is obtained for a point load on an infinite 2D half-

F

rrn 2 cos

0

0

rr

r

Fn
r

n

n

θθ

θ

θ
π

=

=

=
y

θ

r

x

Fig. 3.30: Solution in polar coordinates for a point-load on a half-plane. 
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Fig. 3.31: Vertical stresses in half-space due to point load on surface. 

plane, which is identical to a line-load on an infinite 3D half-space. Boussinesq even found 
such a type of solution for a compressive point-load  on an infinite 3D half-space, from 
which Flamant obtained the above-derived solution. Therefore, the solution for a point-load 
on a half-plane is also called the solution of Boussinesq. In each point 

F

( , )r θ  a transformation 
can be made from the stresses , rrn nθθ  and rn θ  to the stresses ,  and . All three the 
stresses are different from zero. Fig. 3.31 shows the vertical stress distribution .  

xxn yyn xyn
yyn

 
The solution for a compressive force  on a half-plane becomes very simple when it is 
presented by eccentric circles (Fig. 3.32). For all points on a circle it holds 

F
cosr d θ= . Then 

in each circle the stress rrσ  is constant while the other stress components are zero. The 
constant value is 0σ− , in which 0 2F dσ π=  is positive. In the vertical line of symmetry, the 
horizontal stress is zero. Just below the point load, a horizontal force F π  is present. This can 
be derived from the horizontal equilibrium of a part of the half-plane. In the next section this 
will be demonstrated. 

θ

cosr d θ=

d

0
2 cos 2

0

0

rr

r

F F
r d

θθ

θ

θσ σ
π π

σ

σ

= − = − = −

=

=

0σ

0σ

0σ

F
        F Fπ π

Fig. 3.32: Stresses on circles in a half-plane due to a point load. 

3.6.2 Brazilian splitting test 

Every material laboratory has a compression test rig. Therefore, it is easy to do splitting tests 
on concrete cylinders (Fig. 3.33). This test is often called a Brazilian splitting test. Direct 
tensile tests on concrete are much more difficult to perform, because a special tensile test set-
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Fig. 3.33: Splitting of cylinder due to double line load along generating lines. 

up needs to be available. Fortunately, there is a simple relation between the vertical splitting 
forces and the tensile strength in a Brazilian splitting test. For this reason, the tensile strength 
of concrete is often obtained from splitting tests. In this section it will be shown that a 
horizontal tensile stress occurs, which is constant over the height of the cylinder. 
It is assumed that the stresses do not vary along the axial direction of the cylinder so that a 
slice of unit thickness can be considered. In Fig. 3.34 the solution for a point load on a half-
plane is displayed again. The material outside the circle has been removed and replaced by the 
edge loading 0σ . In the same figure the mirror image of the solution is presented. When both 
solutions are superimposed a circular disk is obtained that is loaded by two concentrated 
forces  and edge stresses F 0rr θθσ σ σ= = − . The edge stresses combined deliver a radial edge 
stress 0σ− . Note that no horizontal stresses are present in the vertical line of symmetry. 

d

0σ

0σ

0σ

F

0σ

0σ

0σ

F

F

F

0σ

0σ

0σ

0σ
0σ

Fig. 3.34: Summation of the original and reflected solution.  

The final step in the derivation is to remove the edge stress by adding the axisymmetric 
solution of a disk with a constant tensile stress 0σ  on the edge (see Fig. 3.35). In this load 
case a hydrostatic stress-state occurs with a tensile stress 0σ  acting in all directions, also in 
horizontal direction on the vertical line of symmetry. The result of the superposition is a 
circular disk subjected to two diametrically opposite point-loads  with a free unloaded 
edge. On the vertical line of symmetry a constant tensile stress 

F
0σ  occurs, i.e.: 

 2
xx

F
d

σ
π

=  
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0σ
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0σ
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0σ

x

y

F

0σ

0σ

0σ

F

0
2F

d
σ

π
=

F
π

F

d

F
π

Fig. 3.35: The required result follows from the 
superposition of two cases. 

The total horizontal force on the line of symmetry has to be zero. Therefore, the concentrated 
horizontal compressive force at the point of action of each force  equals F 1

02 dσ , which is 
equal to F π . 
The final result is a constant tensile stress 0σ  on the splitting face. In a test, the tensile 
strength 0σ  can be determined by measurement of the force  per unit length. Since in this 
linear elastic solution the compressive stress becomes infinite at the surface (see Fig. 3.31), 
the reality will be somewhat different. The compressive force 

F

F π  will be spread out over 
some distance and locally the material behaviour will be non-linear. 
 

3.6.3 Hole in large plate under uniaxial stress 

A plate of large size with a hole is considered, in which a uniaxial stress state is present. This 
stress state can be split into two parts, one with equal principal stresses of equal sign and one 
with equal principal stresses of opposite sign (see Fig. 3.36). The first one has already been 
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Fig. 3.36: A state of uniaxial stress can be split in two other states,  

which can be analysed easily.   
 



solved in section 3.5.1. This case is similar to the axisymmetric plate with a hole. Here the 
second part of the problem will be dealt with. The case of equal principal stresses with 
opposite sign is in fact the case of a homogeneous shear stress. A hole in this plate causes a 
disturbance of the homogeneous state in the vicinity of the hole, which results in tensile 
stresses and compressive stresses at the edge of the hole, which are much higher than the 
homogenous stresses. These high stresses will be determined. The plate under consideration is 
shown in Fig. 3.37. The value of the principal membrane forces is .  It easily can be verified 
from Mohr`s circle or the transformation rules that the homogeneous stresses in absence of 
the hole would be: 

n

 
cos 2
cos 2
sin 2

rr

r

n n
n n
n n
θθ

θ

θ
θ
θ

=
= −
= −

 

Fig. 3.37: Stress state with equal principal stresses of opposite sign.  
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n
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If a hole is created, the membrane forces rrn  and rn θ  have to be made zero on the edge of the 
hole. This means that an edge loading has to be superimposed, which causes the same 
membrane forces but with an opposite sign: 

 
cos 2
sin 2

rr

r

n n
n nθ

θ
θ

= −
=

 

The general homogeneous differential equation (3.54) has to be solved. This can be done by 
choosing a solution for φ  of the form: 

 ( , ) ( ) cos 2r g rφ θ θ=  

This means that the variables  and r θ  are separated. Substitution in the differential equation 
(3.54) yields an ordinary fourth-order differential equation for g(r): 

 
2 2

2 2 2 2

1 4 1 4 0d d d d g
dr r dr r dr r dr r

⎛ ⎞⎛ ⎞
+ − + − =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 

The solution of the shape  is tried, which results in the following equation for : ( ) mg r C r= m
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  ( )( ) ( )4 2 2m m m m− − + = 0

= −

The four roots are: 

  1 2 3 44 ; 2 ; 0 ; 2m m m m= = =

The general solution for ( , )rφ θ  now becomes: 

 4 2
1 2 3 4 2

1( , ) cos 2r C r C r C C
r

φ θ θ⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 

From (3.53) it can be derived: 

 

2 3 42 4

2
1 2 44

2
1 2 3 42 4

4 62 cos 2

612 2 cos 2

2 66 2 sin

rr

r

n C C C
r r

n r C C C
r

n r C C C C
r r

θθ

θ

θ

θ

2θ

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + +⎜ ⎟
⎝ ⎠
⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

 

For infinite large  all membrane forces must vanish. Hence r 1 0C =  and . At the edge 
 of the hole, the membrane forces are: 

2 0C =
r a=

 
cos 2
sin 2

rr

r

n n
n nθ

θ
θ

= −
=

 

From this information  and  can be derived: 3C 4C

 2 4
3 4

1;
2

C a n C a n= = −  

So the result for the membrane forces is: 

 

2 4

2 4

4

4

2 4

2 4

4 3 cos 2

3 cos 2

2 3 sin 2

rr

r

a an n
r r

an n
r

a an n
r r

θθ

θ

θ

θ

θ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 

This solution still has to be superimposed on the homogenous stresses for the situation 
without hole. The final result is: 
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2 4

2 4

4

4

2 4

2 4

1 4 3 cos 2

1 3 cos 2

2 3 sin 2

rr

r

a an n
r r

an n
r

a an n
r r

θθ

θ

θ

θ

θ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠
⎛ ⎞

= − +⎜ ⎟
⎝ ⎠

 

The maximum tensile stress nθθ  at the edge appears for θ π= ±  and is equal to . This 
value is four times the applied principal membrane stresses (stress concentration factor is 4), 
see Fig. 3.38. 

4n

 

nn

n

4n

nθθ

n

Fig. 3.38: Stress concentration factor of 4 near a hole in a constant shear field. 

The uniaxial stress state is found from the superposition of the here achieved solution and the 
solution for the axisymmetric case in section 3.5.1, divided by 2 in order to relate it to an 
applied stress of the magnitude : n

 

2 2 4

2 2 4

2 4

2 4

2 4

2 4

1 1 4 3 cos 2
2

1 1 3 cos 2
2

1 2 3 sin 2

rr

r

n
r r r

n a an
r r

a an n
r r

θθ

θ

n a a a θ

θ

θ

= − + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= + − +⎨ ⎬⎜ ⎟ ⎜ ⎟
⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
⎧ ⎫

= − − +⎨ ⎬
⎩ ⎭

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪

 

Now the maximum tensile stress nθθ  is three times the value of the uniaxial membrane force  
(stress concentration factor is 3). The stress distribution is shown in Fig. 3.39. 
 
 

nn 3n

nθθ

 
 
 
 
 
 

Fig. 3.39: Stress concentration factor of 3 near a hole in a uniaxial stress field. 
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4 Plates in bending 

4.1 Rectangular plates 

When a shear load is applied on a thin plate, it is subjected to bending. This problem was 
already discussed in the previous course “Elastic Plates”. The theory of plates, which is used 
to analyse this elasticity problem is based on the same assumptions as the bending theory for 
beams. It will be shown that in a homogeneous isotropic plate bending occurs in two 
directions and also torsion is present. It is assumed that the centre plane of the plate does not 
deform. Therefore, all stresses in this plane are zero, similarly as on the neutral line of beams. 
Analogously to a beam where flat cross-sections perpendicular to the neutral line remain flat 
and perpendicular after deformation, for a plate a similar hypothesis is introduced. A straight 
line perpendicular to the centre plane remains straight and perpendicular to the centre plane 
after the load has been applied. This is a proper assumption as long as the deformations 
caused by the shear loads can be neglected with respect to the deformations caused by 
bending and torsion. For a beam this assumption applies when the beam height  is small 
compared to the span l  (i.e. ); for plates this holds too. Further, in the plate theory it is 
assumed that the displacement perpendicular to the centre plane is small compared to the plate 
thickness ( ). 

t
t l

w t
When this is not the case, non-linear terms will be introduced in the kinematic and 
equilibrium equations and also extensional forces will play a role (membrane action). 
The plate moments , ,  and  have the dimension of force (moment per unit of 
length). The sign convention is as follows: they are positive when the stress is positive for 
positive values of the -coordinate. The torsional moments  and  are identical for 
isotropic plates. The shear forces  and  have the dimension of force per unit of length 
and are positive for positive stresses. Fig. 4.1 shows all the stress resultants. They are 
constantly indicated in positive direction. The figure also shows the only possible external 
load 

xxm yym xym yxm

z xym yxm
xv yv

p  together with the corresponding degree of freedom . w
 
The shear deformation caused by the shear forces  and  is neglected. Therefore, these 
stress resultants do not appear in the constitutive and equilibrium equations, which will be 
formulated in -direction. However, the deformation due to the plate moments ,  and 

xv yv

z xxm yym

x

y

z

t

p
w

xxm

xym

xxm
xym

yym

yym

yxm

yxm
xv

yvxv

yv

Fig. 4.1: Plate subjected to bending and its stress resultants. 
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xxκ
yyκ

1
2 xyκ

1
2 xyκ

1
2 yxκ

1
2 yxκ

1l =

1b =

xxm

1l =

1b =

yym

1l =

1b =

xym

yxm

2 2xy xy yxρ κ κ= =

Fig. 4.2: Stress resultants and deformations in a plate subjected to bending. 

xym  will be considered, which means that these quantities determine the internal deformation 
energy. The deformations corresponding with these plate moments listed in the same order are 

, yy  and xyxxκ κ ρ . In literature, the deformation xyρ  is often split into two equal parts xy  and 
yx , corresponding with the torsional moments xy  and yx , respectively. The deformations 

are drawn in Fig. 4.2 and the scheme of relations is given in Fig. 4.3.      

κ
κ m m

                                                          
xx xx

yy yy

xy xy

m
w m

m

κ
κ
ρ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

κ m p

int

external work 

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium
equation 

Fig. 4.3: Diagram displaying the relations between the quantities playing a role in 
the analysis of rectangular plates subjected to bending. 

4.1.1 The three basic equations in an orthogonal coordinate system 

As mentioned earlier, this type of plates was analysed already with respect to an orthogonal 
coordinate system in the course “Elastic Plates”. The following three sets of basic equations 
were found: 

 116



Kinematic equations 

 
2 2

2 2; ;xx yy xy
w w 2

2 w
x y x

κ κ ρ∂ ∂
= − = − = −

∂ ∂ y
∂
∂ ∂

 (4.1) 

Constitutive equations 

 ( ) ( ) 1; ;
2xx xx yy yy xx yy xy xym D m D m D υκ υ κ υ κ κ ρ−⎛ ⎞= + = + = ⎜ ⎟

⎝ ⎠
 (4.2) 

where  is the plate stiffness given by: D

 
( )

3

212 1
E tD

υ
=

−
 

Equilibrium equation 

 
2 22

2 22 xy yyxx m mm p
x x y y

⎛ ⎞∂ ∂∂
− + + =⎜⎜ ∂ ∂ ∂ ∂⎝ ⎠

⎟⎟  (4.3) 

Remark 1 
For verification purposes, the kinematic, constitutive and equilibrium equations are 
reformulated in operator form. With the introduction of: 

 

( ) ( ) ( )

2

2

2 2 2 2

2 2 2

2

2
1
2

; 2

2

;

1 0 1 0
11 0 1 0;

10 0 1 0 0 2 1

xx xx

yy yy

xy xy

x

y x y x y

x y

m
m
m

D
D

κ
κ
ρ

υ υ
υ υ

υυ υ

⎧ ⎫∂
−⎪ ⎪∂⎪ ⎪

⎪ ⎪ ⎧ ⎫∂ ∂ ∂ ∂⎪ ⎪ ′= − = − − −⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂⎩ ⎭⎪ ⎪
⎪ ⎪∂

−⎪ ⎪
∂ ∂⎪ ⎪⎩ ⎭

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

−⎡ ⎤ ⎡
⎢ ⎥ ⎢ −= =⎢ ⎥ ⎢−⎢ ⎥ ⎢− +⎣ ⎦ ⎣

κ m

D C

B B

�
⎤
⎥
⎥
⎥⎦

 (4.4) 
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The relations (4.1), (4.2) and (4.3) can briefly be rewritten as: 

  (4.5)  
w

p
=
′ =
= ⇔ =

κ
m

m Dκ κ C m

B
B

Remark 2 
The constitutive equations (4.2) are valid for a homogeneous isotropic plate of constant 
thickness, for which the plate stiffness  holds. The plate stiffness can also be formulated as: D

 
1
2

0
0

0 0

xx xx xx

yy yy yy

xy xy xy

m D D
m D D
m D

υ

υ

κ
κ
ρ

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎪⎢=⎨ ⎬ ⎨⎢
⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩

⎫
⎪⎥
⎬⎥
⎪
⎭

 (4.6) 

where: 

 ( ); ; 1xx yy xyD D D D D Dυ υ υ= = = = − D  

The terms xx  and yy  represent the bending stiffness of a plate-strip of unit width and 
modulus of elasticity equal to 

D D
( )21E υ− . 

The third constitutive equation can also be written as: 

 1
2xy xy xy xy xy xym D m Dρ κ= → =  

The term xy  is the torsional stiffness xyGI  in the D x -direction of a plate-strip with unit width 
and shear modulus ( )2 1G E υ= + . In chapter 6 it will be derived that the torsional moment 
of inertia of a cross-section with thickness t  and unit width is equal to 31

3 t . Half of it is 
caused by the horizontal stresses in the cross-section, the other half results from the vertical 
stresses. In this case, in the plate only horizontal stresses occur, therefore the torsional 
moment of inertia becomes 31

6xyI t= .  
The quantity xy  is the specific torsional deformation of the plate-strip. (In section 6.1 this 
quantity will be indicated by 

κ
θ ). For a plate-strip of unit width a corresponding torsional 

stiffness yx  in the -direction holds. The stiffnesses  and  are equal because  
and  have the same value. 

D y xyD yxD xym
yxm

Remark 3 
In the derivation it was assumed that the plate is homogeneous, isotropic and of constant 
thickness. The three basic equations are also used for the analysis of orthotropic plates or 
plates, which can be schematised as such (see Fig. 4.4). 
In such a plate it still holds that xy yx , but xy  is not equal to  anymore. Therefore it 
makes sense to define two different torsional stiffnesses  and : 

κ κ= m yxm
xyD yxD

 1 1;
2 2xy xy xy yx yx yxm D m Dρ ρ= =  
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x

y

Fig. 4.4: The theory of thin plates can be applied to orthotropic plates too. 

Contrary to a homogeneous plate, the quantities  and  are not identical and for that 
reason  and  differ too. Instead of (4.6) is can be written: 

xym yxm
xyD yxD

 
1
2

0
0

0 0

xx xx xx

yy yy yy

t t

m D D
m D D
m D

υ

υ

κ
κ

xyρ

⎧ ⎫ ⎡ ⎤ ⎧
⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩

⎫
⎪
⎬
⎪
⎭

  (4.7) 

The terms  and  are generally not equal to each other. They are averaged values for a 
plate of unit width. The coupling term 

xxD yyD
Dυ  caused by lateral contraction has to be determined 

separately. The quantity  is the average of  and , and  is the average of  and 
. The designer has to determine the stiffnesses judiciously based on the considered 

structure.  

tm xym yxm tD xyD
yxD

4.1.2 Force method 

In the force method a solution will be formulated for the stress resultants (in this case the 
moments), which satisfy the equilibrium equation. For a plate subjected to bending one 
equilibrium equation exists containing three moments. Therefore, two redundant stress 
functions 1φ  and 2φ  are present. The solution to be obtained consists of a homogeneous part 
depending on 1φ  and 2φ  and a particular part depending on the load p . The following type of 
solution complies wit the equation: 

 

( )

2,

1,

1, 2,
1
2

xx y

yy x

xy y x

m particular part
m particular part

m particular part

φ

φ

φ φ

= − +

= − +

= + +

 (4.8) 

The correctness of the homogeneous part can be checked by substitution of this solution into 
the equilibrium equation (4.3) with 0p =  (bear in mind that xy yxm m= ). Two compatibility 
conditions can be formulated for the determination of the two stress functions, because the 
kinematic equations (4.1) contain three deformations and only one displacement. This 
displacement can be eliminated in two manners, namely from the first and second equation 
and from the second and third equation. The result equals: 
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 , , , ,
1 10 ; 0
2 2yy x xy y xx y xy xκ ρ κ ρ− = − =   (4.9) 

With the aid of the constitutive equations these two conditions can be transformed into 
conditions for the moments: 

 ( ){ } ( ){ }, , , , , ,
0 0

1 11 0 ; 1yy x xx x xy y xx y yy y xy xm m m m m m
D D

υ υ υ υ− − + = − − + 0=  (4.10) 

where: 

 
3

0 12
E tD =  

Substitution of solution (4.8) for the moments into (4.10) provides: 

 
1, 1, 2, 1

0

2, 2, 1, 2
0

1 1 1
2 2

1 1 1
2 2

xx yy xy

yy xx xy

D

D

υ υφ φ φ

υ υφ φ φ

+ −⎛ ⎞− − − = −∆⎜ ⎟
⎝

+ −⎛ ⎞− − − = −∆⎜ ⎟
⎝ ⎠

⎠  (4.11) 

In this system of partial differential equations 1∆  and 2∆  are the gaps resulting from the 
particular solution. In operator form (4.11) can be written as: 

 

2 2 2

1 12 2

2 2 2
0

2 2 2 2

1 1
2 21

1 1
2 2

x y x y
D

x y y x

υ υ φ

υ υ
φ

⎧ ⎫ ⎧ ⎫⎡ ⎤∂ + ∂ − ∂ −∆− − − ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ ∂ ∂ ∂ ⎪ ⎪ ⎪ ⎪⎢ =⎥ ⎨ ⎬ ⎨ ⎬⎢ − ∂ ∂ + ∂ ⎥ ⎪ ⎪ ⎪ ⎪− − −⎢ ⎥ −∆⎪ ⎪ ⎪ ⎪∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (4.12) 

Remark 1 
In practice, the force method is never applied for the derivation of analytical solutions. 
However, in the Finite Element Method special applications along this path can be put in 
practice. 

Remark 2 
The system (4.12) can also be obtained by introduction of the operators  and  given by: P ′P

  

0
10
2

0 ;
10
21 1

2 2

y
x y

=
x

y x
y x

⎡ ⎤∂
−⎢ ⎥ ∂ ∂∂ ⎡ ⎤⎢ ⎥ −⎢ ⎥∂ ∂⎢ ⎥∂ ⎢ ⎥′− =⎢ ⎥ ∂ ∂∂ ⎢ ⎥⎢ ⎥ −⎢ ⎥∂ ∂⎢ ⎥∂ ∂ ⎣ ⎦

⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

P P  
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The relations (4.8) and (4.9) then become: 

 particular part ; ′= + = 0m κφP P  

where φ  is the vector containing the two components 1φ  and 2φ .With: 

  =κ C m

the matrix system (4.12) can be written as: 

 ′ = −∆C φP P  

where ∆  is the vector containing the two components 1∆  and 2∆ . 

Remark 3 
The force method for plates subjected to bending and the displacement method for plates 
subjected to extension demonstrate a large similarity. The role of 1φ  and 2φ  corresponds with 
the role of xu  and y . Also xx , yy , xy  correspond with xxu m m m ε , yyε , xyε , respectively 
(however with a sign difference). This analogy (dualism) has been used in the past to apply 
solutions in one field for problems in another field. 

4.1.3 Displacement method 

In the displacement method the kinematic and constitutive equations are substituted in the 
equilibrium equation. This approach is adopted in the course “Elastic Plates”. The result is the 
following differential equation: 

 
4 4 4

4 2 2 42w w wD
x x y y

⎛ ⎞∂ ∂ ∂
+ +⎜ ∂ ∂ ∂ ∂⎝ ⎠

p=⎟  (4.13) 

This is the biharmonic equation: 

 
2 2

2 2 2
2whereD w p 2x y

∂ ∂
∇ ∇ = ∇ = +

∂ ∂
 (4.14) 

In literature the derivation of Lagrange (dated 1811) can be found. 
No applications will be discussed, because this has been done already in the course “Elastic 
Plates”. 

Remark 1 
Relation (4.14) can be reformulated with operators. With the relations (4.5): 

  ; ;w p′= =κ m m κB B = D

equation (4.14) can be rewritten as: 

  w p′ =B BD
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Remark 2 
Again the analogy is demonstrated between the plate subjected to extension and the plate 
subjected to bending. For the first one the biharmonic equation holds for Airy’s function and 
for second one the biharmonic equation for the deflection. The extensional forces , , 

 correspond with the curvatures , 
xxn yyn

xyn xxκ yyκ , xyκ  (with a sign difference). 

4.2 Axisymmetry for plates subjected to bending 

4.2.1 Basic equations for axisymmetry 

A special elaboration of the theory of plates can be made for circular plates resisting a load, 
which is axisymmetric with respect to the centre point of the plate. The vertical deflection  
of the centre plane will solely depend on the radius , the distance to the centre point. The 
moments and shear forces are defined in the direction of the polar coordinates  and 

w
r

r θ . The 
moments to be distinguished are the radial moments rr  and the tangential moments m mθθ . 
Due to the axisymmetry no torsional moments rm θ  occur. 

r θ
x

y
z

r
mθθ

mθθ

rrm

rv

rrm

rv

ϕ

z

w

Fig. 4.5: Relevant quantities for axisymmetric plates subjected to bending. 

Only one shear force component is present, namely the radial shear force r  acting on areas of 
constant . For axisymmetric reasons, on areas of constant 

v
r θ  no shear force vθ  develops. 

The relevant quantities are indicated in Fig. 4.5. 
Two independent degrees of freedom  and w ϕ  are defined, analogously to the defined 

                                                                  
rr rr

r r

w p
m

q
v

θθ θθκ
ϕ

γ

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭
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int

external work 

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium 
equations 

Fig. 4.6: Diagram displaying the relations between the quantities playing a role in 
the analysis of axisymmetric plates subjected to bending. 
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orthogonal coordinates in the course “Elastic Plates”. So, initially deformation by shear forces 
is not excluded. The deflection  is positive if it is pointing in positive -direction. The 
rotation 

w z
ϕ  is positive, when at the positive -side of the centre plane a radial displacement  

occurs in positive -direction (see Fig. 4.5). Fig. 4.6 shows the scheme of relations, where 
z u

r p  
is a distributed load in -direction and  a distributed moment in w q ϕ -direction.  

Kinematic relations 
The relation between the curvature  and the rotation rrκ ϕ  is simple: 

 rr
d
dr
ϕκ =  

z

ϕ

t

( )u z

r

θθε

θθκ
ϕ

rγ

dw dr

r

Fig. 4.7: Determination of θθκ  and rγ . 

The calculation of θθ  is more complicated, because no rotation in κ θ -direction exists. It 
should be kept in mind that the curvature θθκ  is equal to the gradient of the strains θθε  across 
the plate thickness, see Fig. 4.7. For axisymmetric plates subjected to extension it already was 
derived that: 

 u
rθθε =   

At distance  from the centre plane the displacement equals z ( )u z zϕ= , the strain at that spot 
equals: 

 ( )z z
rθθ
ϕε =   

It also holds zθθ θθε κ=  (see Fig. 4.7), so that it can be concluded: 

 
rθθ
ϕκ =  

For the shear strain it holds: 

 r
dw
dr

γ ϕ= +  

Summarising it can be stated that: 
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 ; ;rr r
d d
dr r drθθ

wϕ ϕκ κ γ= = = ϕ+  (4.15) 

Constitutive relations 
The constitutive equations speak for themselves: 

 ( ) ( ); ;rr rr rr r rm D m D v Dθθ θθ θθ γκ υ κ υ κ κ γ= + = + =  (4.16) 

with: 

 
( ) ( )

3

2

1;
2 112 1

E t E tD Dγ υ ηυ
= =

+−
 

where η  is a shape-factor (for a rectangular cross-section the value equals 6 ). 5

Equilibrium relations 
The equilibrium is considered of an elementary plate particle with apex angle dθ  and length 

 in -direction, see Fig. 4.8. The equilibrium equations in - and dr r w ϕ -directions become: 

r
m drθθ

m drθθ

( )r r
dv rd V rd dr
dr

θ θ+

( )rr rr
dm rd m rd dr
dr

θ θ+

w ϕ

z

rrm rdθ

rv rdθ

q rd drθ

dr
p rd drθ

dθ

Fig. 4.8: Relevant forces and torques  in the equilibrium equation  
for axisymmetric problems. 

 

 
( )

( )

( )

( )

r

rr r

d r v r p w-direction
dr
d r m m r v rq -direction
dr θθ ϕ

− =

− + + =
 (4.17) 

It can be confirmed whether B  can be obtained from  by the correct procedure of 
transposition. Therefore, (4.15) and (4.17) are written in operator form: 

′ B
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0 0 0

;
0 1 1 1

1

rr rr

r r

wd dr r md dr r p
r rd dr r rq

d dr r v
θθ θθ

κ
ϕκ

γ

−⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎡ ⎤⎧ ⎫ =⎪ ⎪ ⎪ ⎪ ⎨⎨ ⎬⎢ ⎥ ⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎣ ⎦⎩ ⎭⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

m
⎧ ⎫

⎬
⎩ ⎭  (4.18) 

Again the uneven derivatives change of sign, which means that the operators are correctly 
related.  
After introduction of moments and forces given by: 

 
; ;
;

rr rr r rM r m P r p V r v
M r m Q rqθθ θθ

= =
= =

=
 (4.19) 

the basic equations can be summarised as follows: 

 

rr

r

d
dr

r
dw
dr

θθ

ϕκ

ϕκ

γ ϕ

=

=

= +

 (kinematic equations) (4.20)a 

 
( )
( )

rr rr

rr

r

M r D
M r D
V r D

θθ

θθ θθ

γ

κ υκ
υ κ κ

γ

= +
= +

=
 (constitutive equations) (4.20)b 

 
( )

( )

r

rr
r

dV P w-direction
dr

MdM V Q -direction
dr r

θθ ϕ

− =

− + + =
 (equilibrium equations) (4.20)c 

In (4.20)c the analogy with the beam theory easily can be recognised. When the distributed 
moment  is zero (and therefore also ) and the radius r  is infinitely large, the second 
equation states that the shear force V  is the derivative of the moment 

q Q
r rrM . 

Neglect of the shear deformation 
The next step is to neglect the deformation caused by the shear force. It is assumed that 

0rγ = , so the third term in (4.20)a becomes: 

 dw
dr

ϕ = −  

which transforms the first two terms of  (4.20)a into: 

 
2

2

1;rr
d w dw
dr r drθθκ κ= − = −  (4.21) 
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The third constitutive relation in (4.20)b disappears and in the second equilibrium equation of 
(4.20)c the shear force  cannot exist, because Q ϕ  is not an independent degree of freedom 
anymore. Therefore, the right-hand side becomes zero. From this equation the shear force is 
solved: 

 rr
r

MdMV
dr r

θθ= −  (4.22) 

Substitution of this result into the first equilibrium equation of (4.20)c delivers: 

 
2

2
rr Md M d P

dr dr r
θθ⎛ ⎞− + =⎜ ⎟

⎝ ⎠
 (4.23) 

The basic equations are reduced to: 

 

2

2

1

rr
d w
dr

dw
r drθθ

κ

κ

= −

= −
 (kinematic equations) (4.24)a 

 
( )
( )

rr rr

rr

M rD
M rD

θθ

θθ θθ

κ υ κ
υ κ κ

= +
= +

 (constitutive equations) (4.24)b 

 
2

2
rr Md M d P

dr dr r
θθ⎛ ⎞− + =⎜ ⎟

⎝ ⎠
 (equilibrium equation) (4.24)c 

The analysis of the axisymmetric plate without shear deformation can be summarised by 
showing how the scheme of Fig. 4.6 changes (see Fig. 4.9). 

                                                                      rr rrm
w p

mθθ θθ

κ
κ

⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
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int

external work 

ernal work

kinematic 
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equations 

equilibrium 
equations 

Fig. 4.9: Diagram displaying the relations between the quantities playing a role in 
the analysis of a plate subjected to bending without shear deformation. 
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4.2.2 Differential equation 

The differential equation for plates without shear deformation can be derived from the basic 
equations (4.24) (with ): P pr=

 
4 3 2

4 3 2 2 3

d 2 d 1 d 1 d
d d d d

w w w wD
r r r r r r r

⎛ ⎞
+ − + =⎜

⎝ ⎠
p⎟  (4.25)  

This differential equation will be derived once more from the more general case, which is 
formulated by the set (4.20). Because then it is easier to link up with the results for circular 
plates subjected to extension (section 3.5) and rectangular plates subjected to bending (section 
4.1). Substitution of  and rrκ θθκ  from (4.20)a into rrM  and Mθθ  from (4.20)b leads to: 

 ;rr
d dM D r M D r
dr drθθ
ϕ ϕυϕ ϕ υ⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

With this result, the equilibrium equation in ϕ -direction from (4.20)c provides the following 
expression for the shear force  (The load term Q  is zero since no shear deformation can 
occur): 

rV

 1
r

d d d dV D r D r
dr dr r dr dr r

ϕ ϕ ϕ⎧ ⎫⎛ ⎞ ⎧ ⎫= − =⎨ ⎬ ⎨⎜ ⎟
⎝ ⎠ ⎩ ⎭⎩ ⎭

− ⎬  

The operator between braces is exactly the previously obtained operator L  for axisymmetric 
plates subjected to extension: 

 1 1ord d d dr r
dr dr r dr r dr

= − =L L r  (4.26) 

The expression for the shear force can now be briefly written as: 

 withr
dwV D
dr

ϕ ϕ= =L −  (4.27) 

After division by  and substitution of L  and r ϕ , expression (4.27) delivers the following 
relation: 

 1
r

d d dv D r w
dr r dr dr

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (4.28)  

The term between brackets is the operator of Laplace given by: 
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2

2
2

1 1d d d dr
r dr dr dr r dr

∇ = = +  

Comparison with (4.24)a shows that the two curvatures in the - and r θ -directions appear. 
This agrees with the definition of  for rectangular plates in (4.14). Thus, expression (4.28) 
for the shear force becomes: 

2∇

 2
r

dv D
dr

= − ∇ w  (4.29) 

The last step in the analysis is the introduction of the shear force given by (4.27) in the 
equilibrium equation for the -direction of (4.20)c. The result is the required differential 
equation: 

w

 d dD w p
dr dr

=L  (4.30) 

Similarly, differential equation (4.30) can be worked out further. Substitution of L  and 
division by  transforms the differential equation into: r

 1 1d d d dD r r w p
r dr dr r dr dr

⎛ ⎞⎛ ⎞ =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 (4.31) 

In this formulation the Laplace operator appears twice, so that the biharmonic equation can be 
recognised again: 

  (4.32) 2 2D w∇ ∇ = p

Now full correspondence is reached with the description for orthogonal coordinates provided 
in (4.14). 
Working out equation (4.31) leads to the differential equation (4.25), which was directly 
obtained from the basic equations. 

Remark 
For the term: 

 1 dw
r dr

 

another derivation will be given, which is based on geometrical considerations and really 
shows what is happening in the plate. 
Two concentric circles are considered, one with radius  and another with a slightly larger 
radius (see Fig. 4.10). The tangent line in point  of the circle with radius  is called 
the -axis. This axis is perpendicular to the radius. In order to show that 

r
r dr+ A r

t 2d w dt 2  is equal to 
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A
B

dr

r

C
dt

( )w t
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C

C
C

A

( )w r

A
B r

t

Fig. 4.10: Clarification of the curvature θθκ  obtained by an alternative derivation. 

( )dw dr r , the increase of the deflection of the points B  and  situated on the second circle 
is considered. From the graph representing the deflection  as a function of t , it is clear 
that a curvature (i.e. a second derivative) develops in the t -direction, when  increases in the 

-direction. When the deflection in point  is equal to , it will increase in the -direction 
to . For  the Taylor expansion around point  holds: 

C
( )w t

w
r A w r

Bw Bw A

 ( )
2

2
2

1
2B

d w d ww w dr dr
d r d r

= + + +  (4.33) 

Going from point  in t -direction the deflection increases to , for which the following 
Taylor expansion around point  is valid: 

A Cw
A

 ( )
2

2
2

1
2C

d w d ww w dt dt
dt dt

= + + +  (4.34) 

In (4.33) all first three terms in the right-hand side can be different from zero. However, for 
small values of  the following approximation holds: dr

 B
dww w d
dr

− = r  (4.35) 

where the higher order terms are neglected.  
For reasons of symmetry the first derivative dw dt  will be zero, just like all higher order 
uneven derivatives. Therefore for small values of dr  the increase can be approximated by: 
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 ( )
2

2
2

1
2C

d ww w dt
dt

− =   (4.36) 

The displacements B  and C  are the same because the points w w B  and C  are situated on the 
same circle. Therefore from (4.35) and (4.36) it follows: 

 ( )
2

2
2

1
2

d w dwdt dr
dt dr

=  (4.37) 

A
B

C

dtr

r dr+

dr

Fig. 4.11: Relation between  and . ,dt r dr

It is also possible to write  as a function of . From triangle  of Fig. 4.11 the 
following relation yields: 

( )2dt r OAC

 ( ) ( ) ( )2 2 2 2dt r dr r rdr d r= + − = +  2

For sufficiently small values of  the term (  can be neglected with respect to , so 
that it holds: 

dr )2dr 2rdr

  ( )2 2dt rdr=

Substitution of this result into (4.37) gives: 

 ( )
2

2

1 2
2

d w dwrdr dr
dt dr

=  

Division of this equation by  finally provides the required expression: rdr

  
2

2

1d w  (4.38) dw
dt r dr

=

4.3 Axisymmetric applications 

The solution of differential equation (4.31) for a uniformly distributed load p  reads: 

 
4

2 2
1 2 3 4ln ln

64
p rw C C r C r C r r

D
= + + + +  (4.39) 
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The last term is the particular solution. The four integration constants have to be determined 
from the boundary conditions. After that the moments and the shear force can be obtained 
from: 

 

2 2

2 2

3 2
2

3 2 2

1;

1 1

rr

r

d w dw dw d wm D m D
dr r dr r dr dr

d d w d w dwv D w D
dr dr r dr r dr

θθ
υ υ

⎛ ⎞ ⎛
= − + = − +⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎛ ⎞
= − ∇ = − + −⎜ ⎟

⎝ ⎠

⎞
⎟
⎠

 (4.40) 

For the formulation of the boundary conditions the derivatives of  are required: w

 

3
3

2 4

2 2
3

2 4 42 2

3
3 4

3 3

2 2 ln
16
3 2 3 2 l
16

23 2
8

Cdw p r C r C r r C r
dr D r

Cd w p r C C C
dr D r

Cd w p r C
dr D r r

= + + + +

= + − + +

= + +

4

n r  (4.41) 

The expression for the shear force  is important: rv

 41 4
2r

D Cv pr
r

= − −  (4.42) 

4.3.1 Simply supported circular plate with boundary moment 

Fig. 4.12 shows a simply supported circular plate, which loaded by a boundary moment 0 . 
For the outer edge the radius is , in the centre point 

m
r a= 0r = . The boundary conditions are: 

0m 0m

a
r

a

Fig. 4.12: Simply supported circular plate with edge moment. 

 
0

00
0 ;

0 rr
r

dw w
r r adr

m mv

⎧ == ⎧⎪= → = →⎨ ⎨ =⎩⎪ =⎩

 

From the boundary conditions for 0r =  it follows: 

  3 4 0C C= =

From the boundary conditions for r a=  it can be obtained: 
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( ) ( )

2
0 0

1 2;
2 1 2 1

m a mC C
D Dυ υ

= = −
+ +

 

With the found results for the four constants, the final solution for the vertical deflection 
becomes: 

 
( ) ( )2 20

2 1
mw a

Dυ
= −

+
r  (4.43) 

The curvatures are: 

 
( ) ( )

2
0 0

2

1;
1 1rr

m md w dw
dr D r dr Dθθκ κ

υ υ
= − = = − =

+ +
 

and the moments: 

 ( ) ( )0 0;rr rr rrm D m m D mθθ θθ θθκ υ κ υ κ κ= + = = + =  

In this case, a homogeneous state of moments exists, because for each r  the following 
expressions are valid: 

  0 ; 0rr rm m m vθθ= = =

A homogeneous stress-state was also found for the circular plate subjected to extension as 
discussed in section 3.5. In Fig. 3.21 the load cases are shown for which it holds rr θθσ σ= .    

4.3.2 Restrained circular plate with uniformly distributed load 

Now a restrained plate is considered, loaded by a uniformly distributed load p  (see Fig. 
4.13). Again the outer edge of the plate is given by r a=  and the centre by r . The 
boundary conditions are: 

0=

 
00

0 ;
0

0r

dw w
drr r a dw
v dr

=⎧ ⎧=⎪ ⎪= → = →⎨ ⎨ =⎪ ⎪= ⎩⎩

 

From the boundary conditions for 0r =  it is found: 

  3 4 0C C= =

Fig. 4.13: Restrained circular plate with uniformly distributed load. 

p

a
r

a
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and from the boundary conditions for r a=  it follows: 

 
4 2

1 2;
64 32
p a pC C

D D
= =

a
−  

With those four constants the following function for the deflection can be found: 

 ( )22 2

64
pw a r
D

= −  (4.44) 

Of course, the maximum of the vertical deflection occurs in the centre of the plate, so for 
 this deflection becomes:  0r =

 
4

max 64
paw

D
=  

The bending moments in this case are (see (4.40)):  

 ( ) ( ) ( ) ( )
2 2

2 2
2 2

1 11 3 ; 1 1 3
16 16rr

r rm pa m pa
a aθθυ υ υ υ

⎛ ⎞ ⎛
= + − + = + − +⎜ ⎟ ⎜

⎝ ⎠ ⎝

⎞
⎟
⎠

 (4.45)a 

and the shear force equals: 

 1
2rv = − pr  (4.45)b 

Fig. 4.14 shows the graphical representation of these results. 
 

21
8

pa−
2

8
paυ

−

21
16

paυ+

m

r a

rrm

mθθ
1

1
2

pa−

rv

r a
1

Fig. 4.14: Results for uniformly distributed load on restrained circular plate. 
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Remark 1 
In the centre of the plate the moments rr  and m mθθ  are equal. At that spot the distinction 
between these moments disappears. At the restrained circumference the tangential moment 
mθθ  is just υ  times the radial moment . This result also can be found for straight 
restrained edges. 

rrm

Remark 2 
For the considered load, the distribution of the shear force is comparable with the one in a 
beam. The expression for the shear force ( 2rv pr= − ) can also directly be derived from the 
equilibrium of a plate part with radius , for which it easily can be derived that (see Fig. 
4.15): 

r

   22 0rr v r pπ π+ =

p

rr
rvrv 22 0rr v r pπ π+ =

Fig. 4.15: Free-body diagram. 

4.3.3 Simply supported circular plate with uniformly distributed load 

The solution for the simply supported plate as drawn in Fig. 4.16 can easily be obtained from 
the solution of the restrained plate. Along the circumference of the restrained plate a radial 
moment is present equal to 2 8rrm pa= − . For the simply supported plate this moment has to 

be zero. Therefore, the solution for the simply supported plate can be found by superposition 
of the solution for the restrained plate and the solution for a circular plate with just having a 
boundary moment of magnitude 2 8rrm pa= + . After superposition of the solutions it directly 
follows: 

p

Fig. 4.16: Simply supported circular plate with uniformly distributed load. 

a
r
a

 
( ) ( )

2 2
2 2

2 2

3 11 ; 3 1 3
16 16
1
2

rr

r

r rm pa m pa
a a

v p r

θθ
υ υ υ

⎛ ⎞ ⎛+
= − = + − +⎜ ⎟ ⎜

⎝ ⎠ ⎝

= −

⎞
⎟
⎠  (4.46) 

This means that in Fig. 4.14 the horizontal axis shifts upward over a distance of 2 8pa , 
leading to Fig. 4.17. 
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16
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m
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rrm

mθθ

1

Fig. 4.17: Results for uniformly distributed load on simply supported circular plate. 

4.3.4 Circular plate with point load in the centre 

In this case the plate is only loaded in the centre. This load can be introduced as a boundary 
condition. Therefore, for all values  between 0 and  it holds: r a

  (4.47) 2
1 2 3 4ln lnw C C r C r C r r= + + + 2

The derivatives can be obtained from (4.41) with 0p = : 

 

3
2 4

2
3

2 4 42 2

3
3 4

3 3

2 2 ln

2 3 2 ln

2 2

Cdw C r C r r C r
dr r

Cd w C C C
dr r

Cd w C
dr r r

= + + +

= − + +

= +

4

r  

The expression (4.42) for the shear force becomes: 

 44
r

D Cv
r

= −  

Restrained plate 
First the restrained case is considered as shown in Fig. 4.18. The boundary conditions are: 

 
00

0 ;
0

2r

dw w
drr r a dw

F drv
rπ

⎧ == ⎧⎪⎪ ⎪= → = →⎨ ⎨ =⎪ ⎪= − ⎩⎪⎩

 

Fig. 4.18: Restrained circular plate with point load in centre. 

F

a
r
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p

rr
rvrv 2 0rr v Fπ + =

Fig. 4.19: Free-body diagram. 

The second boundary condition for 0r =  requires some explanation. It expresses that a small 
circular section with length 2 rπ has to transmit a total force  (see Fig. 4.19). This means 
that the shear force per unit of length equals 

F
2F rπ . The minus sign follows from the sign 

convention for the shear force. The boundary conditions for 0r =  respectively provide: 

 3 40 ;
8

FC C
Dπ

= =  

From the boundary conditions along the outer edge, the two other constants can be 
determined: 

 2 1ln ;
16 8 16

F F FC a C
D D Dπ π π

= − − =  

Finally the solution becomes: 

 
2 2 2

21 l
16 8
Fa r Fr rw

D a D aπ π
⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
n  

Also in this case the largest displacement occurs in the centre of the plate: 

 
2

max 16
Faw

Dπ
=  

Comparison of this result with the maximum vertical deflection for a uniformly distributed 
load shows that the deflection increases by a factor four when the full load ( ) is 
concentrated in the centre of the plate. 

2F aπ= p

For the moments it is found: 

 ( ) ( )1 ln 1 ; 1 ln
4 4rr
F a F am m

r rθθυ υ
π π

⎡ ⎤ ⎡⎛ ⎞ ⎛ ⎞= + − = + −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣
υ⎤

⎥
⎦

 (4.48)a 

The shear force is: 

 
2r
Fv

rπ
= −  (4.48)b 

These results are displayed in Fig. 4.20. 
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Fig. 4.20: Results for point load on restrained circular plate. 

Simply supported plate 
The solution for the simply supported plate can be found by shifting the horizontal axis in Fig. 
4.20 for the moments in vertical direction, such that  becomes zero at the edge . The 
origin then shifts from 0 to . The graph for the shear force remains the same. 

rrm r a=
0′

Remark 1 
The most important result is the fact that the moments and the shear force in the centre of the 
plate are infinitely large. The bending and shear stresses become infinitely large too. The 
same holds for the vertical stress zzσ  just beneath the point load. In reality infinitely large 
stresses never develop because theoretical point loads do not exist. In the neighbourhood of a 
point load, assumptions of the plate-theory are not satisfied anymore. At a distance of 
approximately the plate thickness from the point load, the plate theory is valid again. 

Remark 2 
Here, the singular character of the moments and shear force has been derived for a circular 
plate. Also for other cases, these quantities will be very large in the neighbourhood of 
concentrated loads. It even can be stated that the behaviour in the neighbourhood of all 
concentrated loads is of the same type of character. For example, the formulae (4.48) can also 
be used for the calculation of the stresses in the neighbourhood of a concentrated load on a 
square plate. The only problem is the value to be assigned to the radius . For this radius, for 
example the smallest distance to the edge can be chosen, or even better a sort of average 
distance to the edge. Moreover, when the radius r  is very small, the exact value of  in 
relation (4.48)a for the moments is not that important anymore. For a load over a radius 0r  
that is clearly smaller than , as a first approximation the stresses can be calculated on basis 
of (4.48). The value of 0  may rise to an upper limit that is different from case to case, but 
generally will be of the order of magnitude of 

a

a

a
r

4a .   
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4.4 General solution procedure for circular plates 

In literature, solutions to many problems can be found. In this respect the book “Theory of 
plates and shells” of S.P. Timoshenko and S. Woinowsky-Krieger can be mentioned. 
Generally the following axisymmetric situations are dealt with:  
− only a part of the circular plate carries a uniformly distributed load; 
− one or more circular line loads may occur; 
− the plate suddenly may change of thickness; 
− one or more circular line springs may be present. 
In such cases the total plate ( ) is subdivided into a number concentric rings. A new 
ring is introduced when the distributed load suddenly changes in magnitude, or when a line 
load appears, or when a line spring is present, or when the thickness suddenly changes. For all 
plate parts a differential equation should hold, the solution of which contains four constants. 
When  plate parts can be distinguished,  unknowns have to be solved. So,  boundary 
conditions are required. This means 2 boundary conditions for 

0 r a≤ ≤

n 4n 4n
0r =  and 2 boundary 

conditions for . On each of the r a= 1n −  transitions, 4 transition conditions have to be 
determined. Normally, this concerns the deflection  and its derivative w dw dr , as well as the 
moment  and the shear force . These last two quantities lead to transition conditions for: rrm rv

 
2 3 2

2 3 2

1 1;d w dw d w d w dw
dr dr dr r dr r dr

υ
⎛ ⎞ ⎛

+ + −⎜ ⎟ ⎜
⎝ ⎠ ⎝

2

⎞
⎟
⎠

 

A modern approach linking up with this theory is the numerical analysis of structures by the 
displacement method. Then the plate is divided into elements (above-mentioned concentric 
rings) and the load is concentrated in circular line loads. 

1 1  M F

1 1  wϕ

2 2 F ϕ

2 2 w M 1r
2r

1 1rr rm v

r

2 2 r rrv m

Fig. 4.21: Elemental degrees of freedom and generalised forces. 

The connection between two elements is called a (circular) node. In this node two degrees of 
freedom are defined,  and w dw drϕ = . Per element , two nodes 1 and 2 can be 
distinguished. With the four degrees of freedom 1 , 1

i
w ϕ , 2  and 2w ϕ  correspond four 

generalised nodal forces , 1 1F M ,  and 2 2F M , respectively (see Fig. 4.21). 
The stiffness matrix of such an element looks like: 

 

11 12 13 14 1 1

21 22 23 24 1 1

31 32 33 34 2 2

41 42 43 44 2 2

k k k k w F
k k k k M
k k k k w F
k k k k M

ϕ

ϕ

⎡ ⎤ ⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎢ ⎥ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎩ ⎭ ⎩ ⎭⎣ ⎦

  (4.49) 
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This matrix will be symmetric if the generalised nodal forces are defined as follows: 

   (4.50) 1 1 1 2 2 2

1 2 1 2 2 2

2 2
node 1 ; node 2

2 2
r

rr rr

F r v F r v
M r m M r m

π π
π π

= − = −⎫
⎬= − = −⎭ ⎭

r ⎫
⎬

=

Now, the stiffness matrix can simply be determined column by column. This exercise will be 
explained for the first column. This column corresponds with the degree of freedom 1 . 
Assuming that this degree of freedom is set to 1 while the others remain zero, the element 
adopts the shape as drawn in Fig. 4.22. Substitution of these values for the four degrees of 
freedom into (4.49) and performing the matrix multiplication leads for this special case to: 

w

1

Fig. 4.22: deformed element for 1 1w =  and 2 1 2 0w ϕ ϕ= = = .  

  11 1 21 1 31 2 41 2; ; ;k F k M k F k M= = =

The left-hand sides just form the first column of the stiffness matrix. The right-hand sides (the 
generalised nodal forces) can be calculated for this special case. From the differential 
equation and the four boundary conditions for the displacements, the solution can be 
determined and after that the distribution of rr  and r  can be obtained. From (4.50) the 
generalised nodal forces can be calculated, and therefore also the first column of the stiffness 
matrix. The other three columns can be determined in a similar manner, by assigning the 
value 1 to the corresponding degree of freedom and the value zero to the remaining three. 

m v

Exercise 
Show how the fourth column of stiffness matrix (4.49) can be determined. 
− Which value do each of the four degrees of freedom get; sketch the special deformed 

shape; 
− which differential equation applies, and which general solution; 
− provide the four equations from which the still unknown coefficients can be solved. 
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5 Theory of elasticity in three dimensions 

After the one-dimensional applications of chapter 2 and the two-dimensional plate problems 
of the chapters 3 and 4, a generalisation to three dimensions will be made. 
In a space continuum the displacement of a point ( , , )x y z  in a cartesian coordinate system, 
can be decomposed into the components  in the ( , , )xu x y z x -direction,  in the -
direction and  in the -direction. Per unit of volume the external loads ,  and 

 can be applied, which correspond with the degrees of freedom ,  and , 
respectively. Regarding the internal quantities, it already was demonstrated that a surface 
element in a continuum is able to transmit a force per unit of area and that this force per unit 
of area was called a stress vector. In a space continuum, the stress vectors acting in arbitrary 
direction on three areas that are perpendicular to the cartesian coordinate axes 

( , , )yu x y z y
( , , )zu x y z z xP yP

zP xu yu zu

, ,x y z  can be 
decomposed into three components along these three coordinate directions. Doing so, nine 
quantities appear indicated by , ,xx xy xzσ σ σ  (acting on the area perpendicular to the x -axis), 

, ,yx yy yzσ σ σ  (acting on the area perpendicular to the -axis) and y , ,zx zy zzσ σ σ  (acting on the 
area perpendicular to the -axis). Again it can be seen that the first subscript of the stress 
components (often just called stresses) indicates the direction of the normal on the area, and 
the second subscript the direction of the component of the stress vector. Similarly as in the 
plate theory, a stress component is called a normal stress when the two indices are equal 

z

( , ,xx yy zz )σ σ σ . When the indices are different they are called shear stresses ( , ,xy xz yx ,σ σ σ  
, ,yz zx zy )σ σ σ . Also in this case the sign convention holds that a stress component is positive 

when it is working in positive coordinate direction on an area with its normal in positive 
coordinate direction. 
With the defined internal stress components, internal deformation components correspond. 
These are known as specific strains caused by the normal stresses and changes of the right 
angle due to the shear stresses. 
As indicated in Fig. 5.1, the specific strains associated with the normal stresses are called 

, ,xx yy zzε ε ε , respectively. The shear deformations consist out of three pairs of equal angular 

x

z

y

1

1

1
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xxσ x
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1 zzε+

Fig. 5.1: Positive normal stresses with corresponding strains 
 in a three-dimensional continuum. 
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Fig. 5.2: Positive shear stresses with corresponding strains 
 in a three-dimensional continuum. 

 

changes , ,yz zy xz xz xy yxε ε ε ε ε ε= = = (see Fig. 5.2). As done before, the shear deformations 
can be used, which are defined by: 2 , 2 , 2yz yz zx zx xy xyγ ε γ ε γ ε= = = . Then the scheme of 
relations as shown in Fig. 5.3 can be set up. 
Since six stress components are present and only three load components (i.e. three 
equilibrium equations) a three-dimensional stress problem is statically indeterminate to the 
third degree. 

                                                 

xx xx

yy yy
x x

zz zz
y y

yz yz
z z

zx zx

xy xy

u P
u P
u P

ε σ
ε σ
ε σ
γ σ
γ σ
γ σ

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= = = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

u ε σ P

int

external work 

ernal work

kinematic 
equations 

constitutive
equations 

equilibrium 
equations 

Fig. 5.3: Diagram displaying the relations between the quantities playing a role in 
the analysis of three-dimensional problems. 
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5.1 Basic equations 

Subsequently the three categories of basic equations will be formulated in the following 
order: kinematic equations, constitutive equations and equilibrium equations. 

Kinematic equations 
In section 3.1, the kinematic equations for a plate were derived. Similarly by considerations in 
three directions, the kinematic equations for a space continuum are found: 

 
, ,

, ,

, ,

; 2
; 2
; 2

xx x x yz yz y z z y

yy y y zx zx z x x z

zz z z xy xy x y y x

u u
u u
u u

ε γ ε
ε γ ε
ε γ ε

= = = +
= = = +
= = = +

,

,

,

u
u
u

 (5.1) 

In this notation, the subscript  “ , x ” means differentiation with respect to x , etc. 
In addition to deformations, a volume particle can also be subjected to a displacement as a 
rigid body. Six displacement components exist. Three of them are pure translations x y  
in 

, , zu u u
-, -, -x y z directions, respectively. The other three are rotations about the -, -, -x y z  axes. 

They are called , ,yz zx xyω ω ω , respectively. 

4
π

4
π 4

π

4
π

4 yx
π ε−

4 xy
π ε−

,y xu

,x yu

1l =

1l =

x

y

xyω

( ), ,
1
2xy y x x yu uω = −

Fig. 5.4: Rotation about z-axis. 

Fig. 5.4 shows the rotation xyω  about the -axis. Doing so, for the three rotations it is found 
(anticlockwise is positive): 

z

 

( )

( )

( )

, ,

, ,

, ,

1
2
1
2
1
2

yz z y y z

zx x z z x

xy y x x y

u u

u u

u u

ω

ω

ω

= −

= −

= −

 (5.2) 
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Constitutive equations 
Hooke’s law is valid for an isotropic linear-elastic material. The stress-strain relations are: 

 

( ) ( )

( ) ( )

( ) ( )

2 11 ; 2

2 11 ; 2

2 11 ; 2

xx xx yy zz yz yz

yy yy zz xx zx zx

zz zz xx yy xy xy

E E E

E E E

E E E

υυε σ σ σ ε σ

υυε σ σ σ ε σ

υυε σ σ σ ε σ

+
= − + =

+
= − + =

+
= − + =

 (5.3) 

where  is the modulus of elasticity (Young’s modulus) and E υ  Poisson’s ratio (lateral 
contraction coefficient). The term ( )2 1 Eυ+  is the reciprocal quantity of the shear modulus 

. The matrix formulation of the constitutive equations read: G

 ( )
( )

( )

1 0 0 0
1 0 0 0

1 0 0 01
2 1 0 0

2 1 0
2 1

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

E

ε συ υ
ε συ
ε σ
γ συ
γ συ
γ συ

− −⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨ ⎬+⎢ ⎥⎪ ⎪ ⎪ ⎪

⎢ ⎥⎪ ⎪ ⎪ ⎪+
⎢ ⎥⎪ ⎪ ⎪ ⎪

+⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (5.4)a 

symmetrical 

  or briefly: 

 =ε C σ  (5.4)b 

where C  is called the flexibility matrix or compliance matrix. 
Through inversion, the stiffness formulation of the constitutive equations appears: 

 ( )
( )( )

( )

( )

( )

1 0 0 0
1 1

1 0 0 0
1

0 0 01
1 21 1 2 0 0

2 1
1 2 0

2 1
1 2

2 1

xx xx

yy yy

zz zz

yz yz

zx zx

xy xy

E

υ υ
σ ε

υ υ
υ

εσ
υ

εσ υ
υυ υ γσ
υ

υσ γ
υ

υ γσ
υ

⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥− −⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪− ⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥−+ −⎪ ⎪ ⎪ ⎪⎢ ⎥

−⎪ ⎪ ⎪ ⎪⎢ ⎥−⎪ ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥−
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎢ ⎥⎪ ⎪ ⎪ ⎪⎣ ⎦⎩ ⎭ ⎩ ⎭

 (5.5)a 

symmetrical 
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or briefly: 

 =σ D ε  (5.5)b 

where D  is called the stiffness matrix or rigidity matrix. 
In this formulation the constitutive equations are normally used in the finite element 
programmes with spatial elements. 

Equilibrium equations 
In Fig. 5.5 the equilibrium in x -direction is considered. The edges of the drawn cube have 
unit length. Similarly the equilibrium in the  and directions can be set up. Doing so, it 
can be derived: 

-y -z

 
, , ,

, , ,

, , ,

0
0
0

xx x yx x zx z x

xy x yy y zy z y

xz x yz y zz z z

P
P
P

σ σ σ
σ σ σ
σ σ σ

+ + + =
+ + + =
+ + + =

 (5.6)a 

xP

zxσ

yxσ

xxσ

, 1xx xx xσ σ+ ×

, 1yx yx yσ σ+ ×

, 1zx zx zσ σ+ ×

x

y

z

Fig. 5.5: Forces in x-direction. 

Equilibrium of moments about the -x ,  and axis leads to: -y -z

 ; ;yz zy zx xz xy yxσ σ σ σ σ σ= = =  (5.6)b 

Check with matrices of differential operators 
For the kinematic equations it can be written: 

 144



 

0 0

0 0

0 0

0

0

0

xxx

y

zyy

zz

yz

zx

xy

u
x u

u
y

z

z y

z x

y x

ε

ε

ε

γ

γ

γ

∂⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎢ ⎥ ⎪ ⎪∂⎪ ⎪ ⎨ ⎬⎢ ⎥

∂⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭⎪ ⎪ ⎢ ⎥∂

⎪ ⎪ ⎢ ⎥
∂⎪ ⎪ ⎢ ⎥

⎪ ⎪ ⎢ ⎥∂⎪ ⎪ = ⎢ ⎥⎨ ⎬ ∂ ∂⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ ∂ ∂
⎢ ⎥⎪ ⎪ ∂ ∂⎢ ⎥⎪ ⎪
⎢ ⎥⎪ ⎪ ∂ ∂
⎢ ⎥⎪ ⎪ ∂ ∂⎢ ⎥⎪ ⎪
⎢ ⎥∂ ∂⎪ ⎪ ⎣ ⎦⎩ ⎭

 (5.7)a 

or briefly: 

 =ε uB  (5.7)b  

Likewise, the equilibrium equations (5.6)a in this notation read: 

 

0 0 0

0 0 0

0 0 0

xx x

yyy

zzz

yz

zx

xy

P
x z y

P
y z x

P
z y x

σ

σ

σ

σ

σ

σ

⎡ ⎤∂ ∂ ∂ ⎧ ⎫⎧ ⎫− − −⎢ ⎥ ⎪ ⎪⎪ ⎪∂ ∂ ∂⎢ ⎥ ⎪ ⎪⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪∂ ∂ ∂ = ⎨ ⎬− − −⎢ ⎥ ⎪ ⎪∂ ∂ ∂ ⎪ ⎪⎢ ⎥ ⎪ ⎪
⎪ ⎪⎢ ⎥ ⎪ ⎪∂ ∂ ∂ ⎪ ⎪− − −⎢ ⎥ ⎪ ⎪ ⎩ ⎭⎪ ⎪∂ ∂ ∂⎢ ⎥⎣ ⎦ ⎨ ⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

  (5.8)a 

or briefly: 

 ′ =σ PB  (5.8)b 
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Also in this case  can be obtained by transposition of B  plus the introduction of a minus 
sign for all uneven derivatives. 

′B

5.2 Solution procedures and boundary conditions 

For the force method, one would expect three compatibility conditions. However, in literature 
continuously six compatibility conditions are derived. But these conditions are linearly 
independent, so that from the six conditions also three identities can be derived, the so-called 
identities of Bianchi. This means that in the three-dimensional analysis an extra complication 
arises, which is not present in the previously discussed one- and two-dimensional problems. 
In this Course, no further attention will be paid to this matter. 
In the displacement method, the kinematic and the constitutive equations are substituted in the 
equilibrium equations. This approach results in a set of three simultaneous partial differential 
equations in the three components ,  and  of the displacement field: xu yu zu

 

x y z x

x y z y

x y z z

u u u P
u u u P
u u u P

+ + =
+ + =
+ + =

  (5.9) 

The positions indicated by the three dots are occupied by differential operators multiplied by 
the stiffness terms from (5.5). An alternative description of these three differential equations 
will be provided in section 5.5. 

Remark 
In this course, no general applications will be discussed for three-dimensional stress-states, 
which are described by the system of differential equations given by (5.9). Only one special 
case will be highlighted, the torsion of bars. Chapter 6 is completely dedicated to this 
problem. For the case of torsion, it appears that the three-dimensional stress-state can be 
reduced to a two-dimensional problem. 

Boundary conditions 
The general goal of the theory of elasticity can be described as follows: 
The calculation of displacements, deformations and stresses inside a body, which is subjected 
to known volume forces and certain known conditions at its outer surface.  
The most frequently appearing boundary conditions are: 

Kinematic boundary conditions 
This boundary condition occurs when at a specific part of the outer surface (say ), such a 
provision is made that the points of that part are subjected to a prescribed displacement. For 
example, a part of the body can be glued completely to a rigid supporting block. Then the 
displacements for the glued surface are zero (in other words: it is prescribed that the 
displacements are zero). The formulae for this type of boundary condition read: 

uS
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 on

o
x x

o
y y u

o
z z

u u
u u S
u u

⎫=
⎪= ⎬
⎪= ⎭

 (5.10) 

where ,  and are prescribed (for example zero). o
xu o

yu o
zu

Dynamic boundary conditions 
This boundary condition occurs when at a specific part of the outer surface (say p ) a certain 
surface load is acting. For that case, three relations can be formulated between the stress 
components with respect to the cartesian coordinate system. When the unit outward-pointing 
normal on the surface has the components ,  and , the formulation of the boundary 
condition becomes: 

S

xe ye ze

 on
xx x yx y zx z x

xy x yy y zy z y p

xz x yz y zz z z

e e e p

e e e p S
e e e p

σ σ σ

σ σ σ

σ σ σ

⎫+ + =
⎪

+ + = ⎬
⎪+ + = ⎭

 (5.11) 

where xp , yp  and zp  are prescribed. On an unloaded part of the surface xp , yp  and zp  are 
zero of course. 
The boundary conditions (5.11) are a generalisation into three dimensions of the 
corresponding conditions for a plate loaded in its plane. The derivation is performed 
analogously. A triangular surface element  with unit area as shown in Fig. 5.6 is 

considered, on which a vector  is acting with components 

ABC

p xp , yp  and zp . As mentioned 
before, the unit outward-pointing normal on  has the components ,  and . From 
elementary stereometric principles it follows that the areas of triangles OBC , OAC  and 

 are equal to ,  and , respectively. By considering the equilibrium of the 
tetrahedron in the directions 

ABC xe ye ze

OAB xe ye ze
x ,  and , the three conditions of (5.11) can be derived. y z

p
e

xe ye

ze

unit normal=e

O

A

B

C

x

y

z

Fig. 5.6: Derivation of dynamic boundary conditions. 
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Exercises 

1. Find the deformation field corresponding with the following displacement field: 
 ; ;x yu a b y u c b x u d= + = − =z

2. Determine the displacement field corresponding with the following (homogeneous) 
deformation field, when also is given that 0zu = : 

; ;xx yy zz xy yz zxa b 0ε ε ε ε ε ε= = = = = =

0=

 

3. Is the following stress field possible, for a body in equilibrium without being subjected to 
volume loads? 

 2 2; 2 ; ;xx xy yx yy xz yz zx zy zza x a x y a yσ σ σ σ σ σ σ σ σ= = = − = = = = =

4. When in a body, which is in equilibrium, the following stresses are present ( k , ρ  and  
are constants): 

g
; ; 0xx yy zz xy xz yx yz zx zyk g z g zσ σ ρ σ ρ σ σ σ σ σ σ= = = = = = = == . 

Which volume force is acting on the body? 

5.3 Alternative formulation of the constitutive equations 

In section 5.1 Hooke’s law was presented for the description of the behaviour of isotropic 
linear-elastic material. A relation was formulated between the six stress components xxσ , yyσ , 

zzσ , yzσ , zxσ , xyσ  and the associated deformations xxε , yyε , zzε , yzε , zxε , xyε . This relation 
was presented in both flexibility and stiffness formulation. It appeared that the two elastic 
constants  and E υ  were sufficient for a unique description of the material behaviour. 
Sometimes it is advantageous, to adapt the description such that in the total deformation 
distinction can be made between the change of volume and the change of shape. For example 
for the behaviour of soil this may be important, where the change of volume is prevented by 
the pore water while the change of shape can take place unhampered. Then instead of the 
constants  and E υ , two other constants are introduced. Another example is rubber, which is 
incompressible. This means that change of volume is zero and the value of υ  is practically 
0.5. In (5.5)a the term ( )1 2υ−  that appears in the denominator  makes the relation between 
stresses and strains undetermined. The splitting-up of the deformations causing a change of 
volume and a change of shape may simplify the description of the non-linear behaviour of 
materials. Among other things this is important for concrete and soil. In this section the 
alternative description of Hooke’s law will be summarised. To start with, the law will be split 
up in a separate law for the change of volume and a law for the change of shape. This will be 
done in both the flexibility and stiffness formulations. Then two other material constants will 
be introduced, they are the compression modulus  and the shear modulus G . The starting 
point of the derivation is formed by the basic equations (5.4) and (5.5). Finally, for the two 
description methods, the two separate laws are combined to one total law of Hooke. Further, it 
appears that for the stiffness formulation another alternative exists, where the constants  
and G  are replaced by the so-called constants of Lamé 

K

K
λ  and µ .   

5.3.1 Separate laws of Hooke for the change of volume and shape 

From the occurring stress-state given by the stress components xxσ , yyσ , zzσ , yzσ , zxσ , xyσ  
the so-called hydrostatic stress 0σ  is split off. The hydrostatic stress is defined by: 
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 ( )0
1
3 xx yy zzσ σ σ σ= + +  (5.12) 

The remaining stress components are the deviator stresses , , , xxs yys zzs yzσ , zxσ , xyσ . For the 
first three components it holds: 

 

( )

( )

( )

0

0

0

1 2
3
1 2
3
1 2
3

xx xx xx yy zz

yy yy yy zz xx

zz zz zz xx yy

s

s

s

σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

= − = − −

= − = − −

= − = − −

 (5.13)  

Analogously a component 0  is split off from the existing deformations e xxε , yyε , zzε , yzε , 
zxε , xyε , which is equal to one third of the change of volume :     e

 ( )0
1
3 3xx yy zze ε ε ε= + + =

1 e  (5.14) 

Then the remaining part is formed by the deviator deformations , , , xxe yye zze yzε , zxε , xyε . 
The first three components are: 

 

( )

( )

( )

0

0

0

1 2
3
1 2
3
1 2
3

xx xx xx yy zz

yy yy yy zz xx

zz zz zz xx yy

e e

e e

e e

ε ε ε ε

ε ε ε ε

ε ε ε ε

= − = − −

= − = − −

= − = − −

 (5.15) 

No change of volume is associated with the six deviator deformations. It just changes the 
form (shape) of a material particle.  

Flexibility relations 
A relation can be established between  and e 0σ  by adding up the first three equations of  
(5.4)a. This delivers: 

 ( ) ( )3 1 2 1
3xx yy zz xx yy zzE

υ
ε ε ε σ σ σ

−
+ + = + +    

or: 
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 0

(1
)

Hooke's law for the change of
e         

volume in flexibility formulationK
σ=  (5.16) 

with: 

 
( )3 1 2

EK
υ

=
−

 (modulus of compression) (5.17) 

Relation (5.16) is Hooke’s law for the change of volume. A relation can also be derived 
between the deviator deformations xxe , ,  and the deviator stresses xx , yy , zz . For 
example from (5.15) it is known that 

yye zze s s s
0xx xxe eε= − , for both xxε  and  the relation with the 

stresses is known, so that: 
0e

 ( ) ( )1 1 2
3xx xx yy zz xx yy zze

E E
υσ υσ υσ σ σ σ−

= − − − + +  

or: 

 1 2 1 1
3 3 3xx xx yy zze

E
υ σ σ σ+ ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

This expression can be briefly written as: 

 1
2xx xxe s
G

=  

where G  is the shear modulus. A similar derivation holds for the relations between yy  and 
yy , and between  and zz . The shear modulus also establishes a relation between the shear 

deformations yz

e
s zze s

γ , zxγ , xyγ  and the shear stresses yzσ , zxσ , yxσ . When for the shear 
deformations the quantities yzε , zxε , xyε  are used the factor 1 2G  appears again. Therefore, 
for all six deviator deformations and stresses it holds: 

 

1 1;
2 2

(1 1;
)2 2

1 1;
2 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

e s
G G

Hooke's law for the change of 
e s        

shape in flexibility formulationG G

e s
G G

ε σ

ε σ

ε σ

= =

= =

= =

 (5.18)  

with: 
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( )2 1

EG
υ

=
+

 (shear modulus) (5.19)  

Stiffness relations 
The two components (5.16) and (5.18) of Hooke’s law can also be derived in inverse form as 
stiffness relations. By addition of the first three equations in (5.5)a, and division of the result 
by three, it is found: 

 ( ) ( ) (
1
3 3 1 2xx yy zz xx yy zz

E )σ σ σ ε ε ε
υ

+ + = + +
−

  

which is just equal to: 

 0

(
)

Hooke's law for the change of 
K e         

volume in stiffness formulation
σ =  (5.20) 

The relation between the deviator stresses xx , ,  and the deviator strains , yy ,  
can simply be obtained. For xx  it is known that 

s yys zzs xxe e zze
s 0xx xxs σ σ= − . Substitution of xxσ  and 0σ  as 

functions of the deformations then yields: 

 ( )
( )( ) ( ) ( )1
1 1 2 1 1 3 1 2xx xx yy zz xx yy zz

E Es
υ υ υε ε ε ε ε

υ υ υ υ υ
− ⎛ ⎞= + + − +⎜ ⎟+ − − − −⎝ ⎠

ε+  

After some elaboration this reduces to: 

 
( )

2 1 1
1 3 3 3xx xx yy zz

Es ε ε ε
υ

⎛= − −⎜+ ⎝ ⎠
⎞
⎟    

which briefly can be written as: 

  2xx xxs G e=

Analogously similar expressions are found for  and . Therefore, Hooke’s law for the 
change of shape in stiffness form reads: 

yys zzs

  
2 ; 2

(
2 ; 2

)
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

s G e G
Hooke's law for the change of

s G e G        
shape in stiffness formulation

s G e G

σ ε
σ ε
σ ε

= =
= =
= =

 (5.21) 
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5.3.2  Hooke’s law for total deformations and stresses 

With the two separate laws of Hooke on basis of  and G  for the change of volume and 
shape, respectively, a general law on basis of  and G  can be formulated for the total 
deformations (in flexibility formulation), or for the total stresses (in stiffness formulation). 

K
K

Flexibility relations 
The total strains xxε , yyε , zzε , yzε , zxε , xyε  are the sum of the average strain 1

0 3e = e  and the 
deviator deformations , , , xxe yye zze yzε , zxε , xyε . With the relations (5.16) and (5.18) it then 
directly can be found: 

 

0

0

0

;
3 2 2

(
;

)3 2 2

;
3 2 2

yzxx
xx yz

yy zx
yy zx

xyzz
zz xy

s
K G G

s Hooke's law in K and G for the total 
       

deformations in flexibility formulationK G G
s

K G G

σσε ε

σ σε ε

σσε ε

= + =

= + =

= + =

 (5.22) 

Stiffness relations 
The total stresses xxσ , yyσ , zzσ , yzσ , zxσ , xyσ  are the sum of the hydrostatic stress 0σ  and 
the deviator stresses , , , xxs yys zzs yzσ , zxσ , xyσ . With the relation (5.20) and (5.21), for the 
total stresses it then directly can be found: 

 
2 ; 2

(
2 ; 2

)
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

K e G e G
Hooke's law in K and G for the total 

K e G e G       
stresses in stiffness formulation

K e G e G

σ σ ε
σ σ ε
σ σ ε

= + =
= + =
= + =

 (5.23) 

This law for the total stresses in stiffness formulation, can also be represented in a different 
manner. The three deviator deformations , ,  are replaced by xxe yye zze 1

3xx eε − , 1
3yy eε − , 

1
3zz eε − , respectively. The law then becomes: 

 
2 ; 2

(
2 ; 2

)
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

e
Hooke's law in  and  for the total 

e       
stresses in stiffness formulation

e

σ λ µε σ µε
λ µ

σ λ µε σ µε
σ λ µε σ µε

= + =
= + =
= + =

 (5.24) 

where λ  and µ  are called the Lamé constants. These constants can be expressed in and  
and also in  and 

K G
E υ . The following expressions are valid: 

 
( )( ) ( )

2 ;
3 1 1 2 2 1

EK G G Eυλ µ
υ υ υ

= − = = =
+ − +

 (5.25) 
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The quantity µ  is identical to , but it is customary to use G µ  in combination with λ . 

5.3.3 The displacement method in the description of Lamé 

In section 5.2 it has been discussed that the displacement method for three-dimensional 
problems amounts to the simultaneous solution of three partial differential equations in , 

 and u  (see (5.9)). 
xu

y z

These three differential equations can be formulated very concisely, if Hooke’s law is 
expressed in the Lamé constants 

u

λ  and µ .  
The three sets basic equations then are: 

 

( )

( )

( )

, ,

, ,

, ,

1;
2
1;
2
1;
2

xx x x yz y z z y

yy y y zx z x x z

zz z z xy x y y x

u u u

u u u

u u u

ε ε

ε ε

ε ε

= = +

= = +

= = +

,

,

,

 (kinematic equations) 

 
2 ; 2
2 ; 2
2 ; 2

xx xx yz yz

yy yy zx zx

zz zz xy xy

e
e
e

σ λ µε σ µε
σ λ µε σ µε
σ λ µε σ µε

= + =
= + =
= + =

 (constitutive equations)   

 
, , ,

, , ,

, , ,

0
0
0

xx x yx y zx z x

xy x yy y zy z y

xz x yz y zz z z

P
P
P

σ σ σ
σ σ σ
σ σ σ

+ + + =
+ + + =
+ + + =

 (equilibrium equations)  

By downward substitution the three equilibrium equations are transformed into the so-called 
equations of Navier: 

 
( )
( )
( )

2
,

2
,

2
,

0
0
0

x x x

y y y

z z z

e u P
e u P
e u P

λ µ µ
λ µ µ
λ µ µ

+ + ∇ + =
+ + ∇ + =
+ + ∇ + =

 (equations of Navier) (5.26) 

where the volume strain  is a function of the displacements and e 2∇  is the Laplace operator 
for three dimensions, i.e.: 

 
2 2

2
, , , 2 2;x x y y z ze u u u

2

2x y z
∂ ∂ ∂

= + + ∇ = + +
∂ ∂ ∂
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Use of tensor notation 
A big advantage in the formulation of above relations can be obtained by the use of the index 
notation including summation convention. To start with, the coordinate axes , ,x y z  are 
indicated by 1 2 3, ,x x x , respectively. The displacement components then are . The 
stress components are ij

1 2 3, ,u u u
σ  ( ) and the strain components are , 1, 2, 3i j = ijε  ( ). The 

notation for partial differentiation is: 
, 1, 2, 3i j =

 ,i
i

aa
x
∂

=
∂

 

The summation convention of Einstein requires that when in an expression one subscript 
appears twice, a summation has to be carried out with respect to this index from 1 to 3, i.e.: 

  
3

11 22 33
1

ii ii
i

a a a a
=

= = + +∑ a

Another useful quantity is the Kronecker delta, defined by: 

 
1 when
0 whenij

i j
i j

δ
=⎧

= ⎨ ≠⎩
  

The three sets of basic equations now become: 

 
( ), ,

,

1 ( )( , 1, 2, 3)
2
2 ( , 1, 2, 3) (

( )0 ( 1, 2, 3)

ij i j j i

ij ij kk ij

ij i j

kinematic equationse u u i j

i j           constitutive equations

equilibrium equationsP j

σ µ ε λ ε δ

σ

= + =

= + =

= =+

)  (5.27) 

Downward substitution again provides the equations of Navier: 

 ( ) , , ( 1, 2, 3)0j ji i jj i iu u Pλ µ µ =+ + + =  (5.28) 

The boundary conditions are: 

 
0

0

on ( 1, 2, 3)
on ( 1, 2, 3)

i i p

ij i j

u u S i
e p S jσ
= =
= =

 (5.29) 

The advantage of this notation is that the whole system of equations can be written very 
concisely and simple. Substitution of one equation into another can be done as well. In 
literature this notation is used intensively. 
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6 Torsion of bars 

6.1 Problem definition 

During the civil engineering training at the university, the student is thoroughly introduced in 
the behaviour of bar structures. The student has been familiarised with the basic cases of 
extension, bending, shear, torsion and their combinations. For each basic case, two external 
quantities can be identified, namely a specific deformation and a corresponding generalised 
stress resultant. For the case of extension they are ε  and , for bending  and N κ M , for shear 
γ  and V  and for torsion θ  and tM . 
From each of the four basic cases, for the designer always two specifications are important. 
First, he has to know the stiffness. This is the relation between the specific deformation and 
the corresponding stress resultant. For the several cases the relations are: 

 

( )
( )
( )
( )

s

t t

N EA extension
M EI bending
V GA shear
M GI torsion

ε
κ
γ
θ

=
=

=
=

 

Here is  the axial stiffness,  the bending stiffness, EA EI sGA  the shear stiffness and  the 
torsional stiffness. The quantity  is the modulus of elasticity (also called Young’s modulus) 
and G  is the shear modulus. The quantities 

tGI
E

, , sA I A  and tI  follow from the shape of the 
cross-section of the bar. The area  and the bending moment of inertia A I of the cross-section 
do not need extra explanation. The quantity sA  is the cross-sectional area to be applied for 
shear; only for circular cross-sections this area is equal to . The quantity A tI  is called the 
torsional moment of inertia. During previous courses a lot of attention is paid to the 
determination of  and A I , and to a less extend to sA . Compared to this, the torsional 
problem was summarily dealt with. In previous lectures, only for a number simple cases a 
solution has been derived, but a generally valid analysis has not been provided up to now. 
As mentioned, a second quantity in each of the basic cases is important for the designer. This 
is information about the stress distribution over the cross-section. For the case of extension 
the stress is constant, for bending the stress varies linearly, and for shear the stresses can be 
derived from the stress distribution for bending via an equilibrium consideration. The stress 
distribution for torsion has been derived only for the above-mentioned simple special cases.   
A generally valid procedure has not been presented yet. In summary, for the stress calculation 
the following is known: 

 

( )

( )
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Here is  the cross-sectional area, W  the section factor, A I  the bending moment of inertia, b  
the width subjected to the shear stress σ  and  the static moment of a part of the cross-
section. The stiffness problems and the stress distributions are shown schematically in Fig. 
6.1. For the case of torsion, the only thing that can be established is that the torsional moment 

t

S

M  has to be obtained from the integration over the cross-section of the product of the shear 
stress σ  and the lever arm . r

Before this problem definition is concluded, the three simple special cases of torsion are 
mentioned, for which the solution was generated in previous courses. It only concerned 
prismatic bars of circular cross-section, strip-shaped cross-section and thin-walled hollow 
cross-section. The found relations for the torsional moments of inertia tI  and the maximum 
occurring stresses are indicated in Fig. 6.2. 
The main goal of this chapter is to offer a generally valid theory for prismatic bars with 
arbitrarily shaped cross-sections. These cross-sections may be solid but may contain holes as 
well. In the case of hollow cross-sections, the wall thickness not necessarily needs to be small. 
Attention is also paid to the possibility of cross-sections composed out of two different 
materials. Fig. 6.3 provides an overview of the cross-sections to be considered. 

Fig.6.1: Definition of stiffness and stress distribution for the four basic load cases of a bar.
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Fig. 6.2: Torsional moment of inertia tI  and shear stress σ  for simple special cases. 

Fig. 6.3: A general theory is required to analyse cross-sections that 
 are common in the engineering practice. 

 

Solid cross-section              Cross-section with holes            cross-section composed 
  of arbitrary shape              thick- and thin-walled                  of several materials 

The approach to be followed is summarised in Fig. 6.4. By definition, the torsional moment 
tM  is equal to the product of  and the specific torsion tGI θ . However, tM  is also equal to 

the integral over the cross-sectional area of the shear stress σ  times the arm . This means 
that a recipe can be formulated for the calculation of , provided that a value of 

r
tGI θ  is 

adopted. For this assumed deformation the stresses σ  are determined. The torsional moment 
in the cross-section then can be obtained by calculation of the integral for rσ . Because the 
torsional stiffness  is equal to the torque tGI tM  for 1θ = , the torsional moment of inertia is 
known too (see Fig. 6.4). Since the stress distribution is known, the largest stress and its 
position in the cross-section are fixed as well.  

1:
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t t
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  find  for given 
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∫∫

tM

r
σ

Fig. 6.4: The calculation of the torsional stiffness is formulated as a 
stress problem for an imposed deformation θ .   
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6.2 Basic equations and boundary conditions 

De Saint-Venant has published the theory for torsion in 1855. This theory is correct if at the 
ends of the bar certain conditions are satisfied. These conditions prescribe that the torsional 
moments have to be applied via a certain distribution of shear stresses over the cross-section, 
and that no normal stresses are generated in axial direction at the ends (a dynamic boundary 
condition). This last condition implies that an eventual distribution of displacements in axial 
direction can be generated without restrictions, because at the surface where the (surface) load 
has been prescribed, no kinematic boundary condition can be imposed at the same time. 
The right-handed coordinate system is chosen such that the x -direction is parallel to or 
coincides with the bar axis. So, the -axis and -axis are situated in the cross-section (see 
Fig. 6.5). The figures are drawn in such a manner that the 

y z
x -axis is pointing backwards. In a 

 

x

y

z

tM

tM

Fig. 6.5: Choice of coordinate system. 

three-dimensional stress state, normally three displacements are generated, and in the three 
corresponding directions a volume load may be applied. Generally, six different stresses with 
six corresponding strains are present as well. The kinematic, constitutive and equilibrium 
equations are already provided in chapter 5. Using the brief notation for differentiation, they 
can be summarised as follows: 

Kinematic equations 

 
, ,

, ,

, ,

;
;
;

xx x x yz y z z y

yy y y zx z x x z

zz z z xy x y y x

u u
u u
u u

,

,

,

u
u
u

ε γ
ε γ
ε γ

= =
= =
= =

+
+
+

   (6.1) 

Constitutive equations 
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 (6.2) 
⎢⎪ ⎪ ⎪ ⎪⎥ ⎣⎩ ⎭ ⎩ ⎭⎦symm.                                                           symm. 
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Equilibrium equations 

 
, , ,

, , ,

, , ,

0
0
0

xx x yx y zx z x

xy x yy y zy z y

xz x yz y zz z z

P
P
P

σ σ σ

σ σ σ

σ σ σ

+ + + =

+ + + =

+ + + =

 (6.3) 

In the case of torsion the volume forces  and  are absent. ,x yP P zP

Distribution of displacements and stresses 
De Saint-Venant succeeded to indicate a displacement field with enough freedom to allow for 
displacements at the ends, and from which a stress field follows that satisfies all requirements 
for equilibrium in the volume, along the circumference and at the ends of the bar. In the 
theory of elasticity only one unique solution can exist, which is in equilibrium with the 
external load and which satisfies the boundary conditions. Therefore, the solution of De Saint-
Venant has to be the correct one. 
The displacement field in question will be described now. De Saint-Venant stated that for 
torsion, the shape of the cross-section is not affected by the deformations. Regarding the 
displacements  and  in the plane of the cross-section, the displacement field manifests 
itself as a rotation about the 

yu zu
x -axis as a rigid body.  

This rotation is indicated by the symbol ϕ . This ϕ  is identical to the rotation yzω  as 
discussed in chapter 5. Further, it can be stated that the displacement  can be different from 
zero and may have a certain distribution over the cross section. However, this distribution is 
the same for all cross sections. This means that the displacement field is independent of 

xu

x . 
The fact that an arbitrary distribution of  can occur over the cross section means that an 
initially unloaded flat cross-section starts to warp as soon as a torque is applied. Such a 
displacement field for a bar with square cross-section is drawn in Fig. 6.6. Possible 

xu

             A B

             E F

               A A B

              C C D
                 C D

             G E F′ ′ ′

            E F

               G H

E′

F ′

H ′

G′
y y

z
y′

z′

ϕ

              A B D′ ′ ′

xyσ

xzσ

z

Fig. 6.6: The displacement field is composed of a rotation ϕ  of the cross-section and a 
warping of the cross-section (the magnitude of ϕ  is very exaggerated). 
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distributions of the shear stresses have been sketched. Along the edges  and AC BD  the shear 
stress xyσ  has to be zero. This means that the stress in the points  and A B  and C  and is 
zero, but between those points along the edges  and CD  the stress is allowed to increase. 
The same holds for the shear angle xy

D
AB

γ , which causes the originally rectangular lateral surface 
 to deform into (see Fig. 6.6). The other lateral surfaces experience the same 

deformation, which makes it plausible that after deformation the originally flat cross-sections 
are warped.  

ABEF A B E F′ ′ ′ ′

y

z

x

u z
u y

ϕ θ

ϕ
ϕ

=

= −
= +

z

y
z

y

ϕ

ϕ

yu

zu

x

Fig. 6.7: The displacement field described by  and . yu zu

After this qualitative description of the displacement field, a quantitative formulation will be 
provided. As a result of the rotation ϕ , the displacements  and  in a point yu zu , ,x y z  of the 
cross-section are equal to (see Fig. 6.7): 

 y

z

u z
u y

ϕ

ϕ

= −

= +
 

The rotation ϕ  depends on the specific torsion θ . For constant θ , from d dxϕ θ=  it 
follows: 

 xϕ θ=  

where it has been used that 0ϕ =  for 0x = . So, the displacements  and  become: yu zu

 y

z

u x z
u x y

θ

θ

= −

= +
 (6.4)a 

The warping displacement  is independent of xu x , it will increase linearly with the specific 
torsion θ . Therefore, it can be written: 

 ( , )xu y zψ θ=  (6.4)b  

where the so-called warping function ψ  describes the displacement distribution over the 
cross-section for 1θ = . In order to check whether this displacement field is suitable for the 
considered torsion problem, it is substituted into the kinematic equation (6.1). The result is: 
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= − ≠=

θ  (6.5) 

Only zxγ  and xyγ  appear to become unequal to zero. Then from the constitutive equations it 
follows that only the stresses zxσ  and xyσ  are different from zero too: 

 ( )
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00 ;

00 ;

xx yz

zx zyy

xy yzz

yG

zG

σ σ

σ ψσ θ

σ ψ θσ

= =

= + ≠=

= − ≠=

 (6.6) 

The stresses zxσ  and xyσ  are the shear stresses in the cross-section that correspond with the 
torsional moment in the cross-section. So, the chosen displacement field satisfies the 
requirements. Of the three equilibrium equations (6.3), only the first one is important for the 
equilibrium of the bar. The second and third one are satisfied automatically, because 
differentiation of ψ  with respect to x  yields zero, i.e.: 

 
, ,0 0

0 0 0 0
0 0 0 0

yx y zx z

          
          

σ σ+ + =

+ + =
+ + =

 (6.7) 

In Fig. 6.8 it is demonstrated how the remaining equilibrium equation can be interpreted. An 
elementary cube of material is considered the edges of which have unit length and are parallel 
to the coordinate directions. In the face coinciding with the cross-section the shear stresses 

xyσ  and xzσ  are present. In the x -direction, on the faces with constant  and , their 
counterparts yx

y z
σ  and zxσ  can be found. As shown these stresses increase in and direction, 

respectively. The requirement that the cube is in equilibrium in 
y z

x -direction, directly leads to 
the obtained equilibrium equation. 
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Fig. 6.8: Interpretation of the equilibrium equation in x-direction. 
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Summarising, for the special case of the De Saint-Venant torque, the general three-
dimensional kinematic, constitutive and equilibrium equations reduce to: 
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zx z

xy y
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γ ψ θ

γ ψ θ

= +

= −
 (kinematic equations) (6.8) 
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 (constitutive equations) (6.9) 

 , , 0yx y zx zσ σ+ =  (equilibrium equation) (6.10) 

The problem contains only one degree of freedom, the warping function ( , )y zψ ; this 
corresponds with the fact that just one equilibrium equation is present. No volume load in x -
direction exists. Only two stresses and their corresponding strains are different from zero, 
therefore just two kinematic equations and two constitutive equations remain. 
The scheme of relations as depicted in Fig. 6.9 is applicable. The two stresses xz zxσ σ=  and 

Fig. 6.9: Diagram displaying the relations between the quantities playing a role in 
the analysis of the De Saint-Venant torsion. 
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Fig. 6.10: A torsional moment will generate shear stresses 
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xy yxσ σ= , which play a role in the assumed displacement field of the problem, are exactly the 
shear stresses in the cross-section that are caused by the torsional moment. This has been 
depicted in Fig. 6.10.  

Dynamic boundary conditions 
The two stresses xzσ  and xyσ  can also satisfy the dynamic boundary conditions along the 
circumference of the bar. Generally a normal stress nnσ  and two shear stresses nsσ  and  

nxσ  are present on the cylindrical surface (see Fig. 6.11). The stresses nnσ  and nsσ  follow via 

a transformation from the stresses ,yy yzσ σ  and zzσ . Because all these stresses are zero, the 
stresses nnσ  and nsσ  will be zero too. The shear stress nxσ  is equal to xnσ , which is situated 
in the plane of the cross-section. The shear stresses xnσ  and xsσ  can be obtained via a 
transformation in the same plane of the shear stresses xzσ  and xyσ . The stresses xsσ and 

xnσ are tangent and normal to the circumference of the cross-section, respectively. The stress 
xnσ  has to be zero, because nxσ  cannot occur on the stress-free cylindrical surface. In other 

words, a completely stress-free cylindrical surface can be realised by requiring that nxσ  is 
zero, i.e.: 

xsσ

xnσ

x

y

z

nnσ
nxσ

nsσ

x
n

s

Fig. 6.11: The stresses resulting from the displacement field of De Saint-Venant can satisfy 
the condition that the stresses  and  along the outer surface are zero. ,nn nsσ σ nxσ

 0xnσ =  (dynamic boundary condition) (6.11) 

Solution strategies 
After the formulation of the three sets of basic equations, the next step is the establishment of 
the solution procedure for these equations. Again the two strategies of the displacement and 
force method can be followed. Both methods will be discussed and it will become clear that 
the displacement method leads to a simple and concise formulation for both solid cross-
sections and cross-sections with holes. The force method provides a simple formulation only 
for solid cross-sections, for cross-sections with holes the formulation becomes rather 
complicated. Nevertheless, in the past the force method was used in the classical approach of 
the torsional problem. The reason was that for this method a number of analogies exist that 
provided a lot of insight into the problem. Nowadays in the computer age, no clear preference 
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for one of the methods exists and both methods can be applied. However, in this course most 
of the attention is paid to the force method, because this method links up with the visual 
imagination of the engineer. 

6.3 Displacement method 

Differential equation 
In the procedure of the displacement method, successive substitutions take place from the 
kinematic equations towards the equilibrium equation. Here the constitutive equations are 
used in stiffness formulation. Doing so, the equilibrium equation is transformed into a 
differential equation for the unknown degree of freedom ψ . The procedure can be 
summarised by:  

 
( )
( )

,

,

zx z

xy y

y

z

γ ψ θ

γ ψ θ

= +

= −
 (kinematic equations) 

 zx zx

xy xy

G
G

σ γ
σ γ

=
=

 (constitutive equations) 

 , , 0yx y zx zσ σ+ =  (equilibrium equation) 

 ( ), , 0yy zzG ψ ψ θ+ =  (6.12) 

Because  and G θ  are constants, the found differential equation simply states that the Laplace 
operator of ψ  is equal to zero: 

 , , 0yy zzψ ψ+ =  (6.13) 

Boundary condition 
For the solution of differential equation (6.13) it is required to reformulate the boundary 
condition 0xnσ =  in terms of ψ . This can be done as follows. 
The condition 0xnσ =  implies that the deformation 0xnγ =  too. For this deformation it can be 
written:  

 , ,xn x n n xu uγ = +  

The displacement n  can simply be expressed in  and  by the following transformation 
formula (also see Fig. 6.12): 

u yu zu

 cos sinn y zu u uα α= +  

The expression for the deformation becomes: 
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Fig. 6.12: Transformation of displacements in the plane of the cross-section. 

 , , ,cos sinxn x n y x z xu u uγ α α= + +  

Finally, the relations for  and  given by (6.4) are substituted, they read: ,x yu u zu

 ; ;x y zu u x z u x yψ θ θ= = − = θ  

The requirement that xnγ  is zero delivers the relation: 

  ( ), cos sin 0n z yψ α α θ− + =

or differently written, it delivers the condition for the slope of ψ  perpendicular to the edge: 

 , cos sinn z yψ α α= −  (6.14) 

In each point of the edge the values of  and ,y z α  are known, so that ,nψ  is prescribed along 
the entire circumference. The solution of differential equation (6.13) together with boundary 
condition (6.14) is classified as a problem of the Neumann type. Now from a mathematical 
point of view, the warping function ψ  is determined and can be solved. After that zxγ  and xyγ  
can be solved from the kinematic equations, which also determine the values of the stresses. 
For obtaining a correct solution for ψ , in one point of the cross-section a value of ψ  has to 
be prescribed in order to prevent a rigid body movement of the body in x -direction. 

Hollow Cross-sections 
When the cross-section is not solid but contains one or more holes, the procedure is not 
essentially more difficult. Then along the circumference of each hole the dynamic boundary 
condition 0xnσ =  applies too. This means that along the holes the condition (6.14) for ,nψ  
has to be imposed.   

6.4 Force method 

In the force method a solution for the stresses is sought that a priori satisfies the equilibrium 
equations and dynamic boundary conditions. Because one equilibrium equation exists for the 
two unknown stresses xyσ  and xzσ , the problem is statically indeterminate to the first degree. 
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Therefore, only one stress function has to be introduced, which just like the stresses is a 
function of  and . In this case, a stress function that meets the conditions is defined by: y z

 , ,;xy z xz yσ φ σ= = φ−  (6.15) 

These relations between the stresses and the redundant φ  guarantee that the equilibrium 
equation , ,yx y zx z 0σ σ+ =  is satisfied automatically. For the determination of φ  a 
compatibility condition has to be formulated. This condition is found by elimination of the 
degree of freedom ψ  from the two kinematic equations: 

 ( ) ( ), ,;zx z xy yy zγ ψ θ γ ψ= + = − θ  

When both equations are differentiated with respect to  and  respectively, the two 
equations contain the term 

y z
, yzψ , which easily can be eliminated. The result reads: 

 , , 2xz y xy zγ γ θ− =    (6.16) 

where ,zx yγ  is replaced by ,xz yγ . It appears that the deformations xzγ  and xyγ  cannot obtain 
independently any value, they are coupled. 

xyσ

xzσ

xyσ

xzσ
xzγ

xyγ

, , 2xz y xy zγ γ θ− =

 and  have to be compatible.  Fig. 6.13: The deformations xzγxyγ

On basis of Fig. 6.13, a physical interpretation of the compatibility condition can be given. In 
a horizontal slice of the bar the shear stresses xyσ  generate the shear angles xyγ . The 
originally rectangular slice deforms into another shape. At the same time a vertical 
rectangular slice deforms under the influence of the shear stresses xzσ , which initiate the 
shear angles xzγ . All those horizontal and vertical slices have to fit precisely during 
deformation, such that a continuous warped cross-section is maintained. This means that there 
has to be a relation between the deformations xyγ  and xzγ . 
The solution strategy now is the successive substitution from the equilibrium equation up to 
the compatibility equation. In this case, the constitutive equations are given in flexibility 
formulation, i.e.: 
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 ( ), ,
1 2yy zzG

φ φ θ− + =  (6.17) 

 , , 2xz y xy zγ γ− = θ  (compatibility equation) 
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1

xy xy
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γ σ

γ σ

=

=
 (constitutive equations) 

 ,

,

xy z

xz y

σ φ
σ φ

= +
= −

 (equilibrium equations) 

It can be seen that the force method results in a Laplace equation too. However, in this case 
the right-hand side is not equal to zero. 

Remark 
In (6.15) the stress function is defined in such a manner that the stress xyσ , which is acting in 

-direction is equal to the derivative of y φ  in the -direction perpendicular to that. Likewise, 
the value of the stress xz

z
σ  is equal to the derivative of φ  in perpendicular direction (except 

for the sign). It can be shown that this property also holds for the shear stresses xnσ  and xsσ  
in arbitrarily chosen orthogonal directions  and  (see Fig. 6.14): n s

 , ,;xn s xs nσ φ σ= + = −φ  (6.18) 

To prove this, the stresses xnσ  and xsσ  and also ,nφ  and ,sφ  will be expressed in , yφ  and , zφ . 
From the results, relation (6.18) can be confirmed. 
Fig. 6.14 shows that the coordinates and the shear stresses in the cross-section transform by 
the same rule. In the expression for the stresses, xyσ  and xzσ  are replaced by respectively , zφ  
and , yφ− . This results in: 

 , ,

, ,

cos sin

sin cos
xn z y

xs z y

σ φ α φ α

σ φ α φ

= + −

= − + α
 (6.19) 

α
y

n

zs

cos sincos sin
               

sin cossin cos
xn xy xz

xs xy xz

n y z
s y z

σ σ α σ αα α
σ σ α σ αα α

= + += + +
= − += − +

α1dA =
xyσ

xsσ

xzσ

xnσ

Fig. 6.14: Transformation of coordinates and shear stresses in the cross-section. 
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By using the chain rule, ,nφ  and ,sφ  can be expressed in , yφ  and , zφ : 

 , , , , ,

, , , ,

n y n z

,

n

s y s z s

y z

y z

φ φ φ

φ φ φ

= +

= +
    

To determine the derivatives of  and  with respect to  and , the coordinate 
transformations of Fig. 6.14 are inverted: 

y z n s

 
cos sin
sin cos

y n s
z n s

α α
α α

= −
= +

 

This leads to the expressions: 

 , , ,

, , ,

cos sin

sin cos
n y z

s y z

φ φ α φ α

φ φ α φ

= + +

= − + α

0

 (6.20) 

Comparison of (6.19) with (6.20) shows that relation (6.18) is generally valid. 

Boundary conditions 
The dynamic boundary condition along the circumference of a solid cross-section reads: 

 xnσ =  

where  is normal to the edge and pointing outward (see Fig. 6.15). On basis of (6.18) it then 
follows that: 

n

 , 0sφ =   

The derivative in the direction of the circumference is equal to zero. This means that φ  has a 
constant value along the circumference. For a solid section this constant value can be set to 
zero without any loss of general validity, for the stresses are obtained by differentiation of φ  
so that the constant disappears. Therefore, as boundary condition it will be prescribed: 

 0φ =  (6.21) 

The found differential equation and corresponding boundary condition given by: 

xnσ

nxσ x
n

s

,0 0
 constant choose 0

xn sσ φ
φ φ

= → = →
= → =

Fig. 6.15: Boundary condition along  the circumference of the bar. 
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( ), ,

1 ( )2

0 ( )

yy zz differential equation
G

boundary condition

θφ φ

φ

− + =

=
 (6.22) 

determine in mathematical sense the torsional problem in the force method. In this way the 
problem is written in the so-called Dirichlet formulation. The stress function φ  can be solved 
from the set (6.22), after which the stresses can be found by the derivatives of the function φ : 

 ,

,

xy z

xz y

σ φ
σ φ

= +
= −

 (6.23)  

The φ -bubble 
From the simple torsional problem of the circular cross-section, as discussed in previous 
courses, it is known that the shear stresses are zero in the centre of the cross-section and that 
the “round-going” stresses increase in radial direction. This pattern can be expected for cross-
sections of arbitrary shape too. In the point where the stresses xyσ  and xzσ  are zero, the 
derivatives , zφ  and , yφ  have to be zero. At that position the function φ  obtains an extreme 
value, while φ  is zero on the edge. When a section is made through the distribution of φ  
perpendicular to the cross-section a sort of hood covering of the cross-section can be noticed, 
which will be called the “φ -bubble” (see Fig. 6.16). The slopes of the φ -bubble determine 
the magnitude of the stresses. Indeed it can be observed that the stresses increase towards the 
edge. 

φ

z

y ,
max

,

  on circumference 0

0
in point where   

0
y

z

φ

φ
φ φ

φ

→ =

= ⎫
→ =⎬= ⎭

z y

-bubbleφ

Fig. 6.16: The distribution of φ  over the cross-section is called a “φ -bubble”. 

Check of the shear forces 
It was shown that xyσ  and xzσ  are the only stresses present, and how they can be determined. 
In general, the resultants of these stresses over the cross-section may be a torsional moment 

tM  and the shear forces yV  and zV . In the case of torsion, the stress distribution should be 
statically equivalent with a torsional moment tM , while the shear forces  and  are zero. 
Therefore, the values of the shear forces will be checked. 

yV zV

The horizontal shear force equals: 
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 y xy

A A

V dA
z
φσ ∂

= =
∂∫∫ ∫∫ dydz  

First, integration is carried out in -direction and then in -direction (see Fig. 6.17): z y

d y

y

z

y

z

dz

  for calculation of  V               for calculation of  V  y z

1y 2y

1z

2z

Fig. 6.17: Integration paths required  for the conformation that V  and V  are zero. y z

   ( )
2 2

1 1

2 1 0y

z z

z z

V  dz dy d dy dy
z
φ φ φ φ

⎧ ⎫ ⎧ ⎫
∂⎪ ⎪ ⎪ ⎪= = = − =⎨ ⎬ ⎨ ⎬
∂⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

∫ ∫ ∫ ∫ ∫
At the edge the values of 1φ  and 2φ  are both zero, which means that V  is zero too. y

For the vertical shear force a similar approach is adopted. In this case the integration is first 
carried out in -direction: y

   ( )
2

1

2 1 0z xz z

y

yA A

V d  A dydz V d dz dz
y
φσ φ φ φ

⎧ ⎫
∂ ⎪ ⎪= − = − → = − = − − =⎨ ⎬∂ ⎪ ⎪

⎩ ⎭
∫∫ ∫∫ ∫ ∫ ∫

The resulting torsional moment 
During the problem definition in section 6.1, the resulting moment was written as: 

 t

A

M r dAσ= ∫∫  

This integral can be worked out into more detail by introducing the shear stresses xyσ  and xzσ  
with their arms  and , respectively. As can be observed in Fig. 6.18, positive values of 

xy

z y
σ  deliver moments that reduce the torque and the positive values of xzσ  increase the torque 
(in the first quadrant). Therefore, the expression of the torsional moment becomes: 

 (t xz xy )M y z dσ σ= −∫∫ A  (6.24) 
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y

z

dA

xzσ
xyσ

tM

Fig. 6.18: Calculation of the resulting torsional moment. 

It is advantageous to solve integral (6.24) in two parts. During the solution process integration 
by parts takes place. It is recalled to mind how this is done. Two functions  and  are 
considered on the interval 

( )u x ( )v x
1 2x x x≤ ≤ . For 1x  the function values are  and  and for 1u 1v 2x  

they are  and . For the product of the two functions it holds: 2u 2v

 
2 2 2

1 1 1

2 2 1 1 2 2 1 1( ) or

x x x

x x x

d u v u v u v u dv v du u v u v= − + = −∫ ∫ ∫  

As rule for integration by parts, the last expression is used in the form: 

2 2x x

 ( )
1 1

2 2 1 1

x x

u dv v du u v u v= − + −∫ ∫  (6.25)  

After this short intermezzo, it is continued with the determination of the surface integral of the 
vertical stresses. They deliver a share in the torsional moment given by: 

 vertical xz

A A

M y dA y dydz
y
φσ ∂

= = −
∂∫∫ ∫∫    

First the integration in -direction is performed, see Fig. 6.19: y

y

z

y

z

d y

dz

1y 2y

1z

2z

cross-section
φ -bubble

φ

y

  for calculation of  M               for calculation of  M  horizontal vertical

Fig. 6.19: Integration paths for the calculation of  and  verticalM horizontalM .
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2 2

1 1

vetical

y y

y y

M y dy dz y d d
y
φ φ

⎛ ⎞ ⎛
∂⎜ ⎟ ⎜= − = −⎜ ⎟ ⎜∂⎜ ⎟ ⎜

⎝ ⎠ ⎝
∫ ∫ ∫ ∫ z

⎞
⎟
⎟
⎟
⎠

 

Now, the integral in -direction will be integrated by parts according to the rule (6.25). Then 
it is found: 

y

 ( )
2 2

1 1

2 2 1 1

y y

y y

y d dy y yφ φ φ− = − −∫ ∫ φ  

Because 1φ  and 2φ  are situated on the edge they are zero, so that the following remains: 

  
2

1

y

y

dyφ∫  (area of the vertical section of the φ -bubble) (6.26) 

This result is exactly the area of the considered vertical section of the φ -bubble. It then is 
clear that the moment of the vertical stresses is equal to the volume of the φ -bubble: 

 vertical

A

M dydzφ= ∫∫   (volume of the φ -bubble) (6.27) 

In an analogous manner the contribution of horizontal  is calculated. For that purpose 
integration in -direction is carried out. Also for this case it is found: 

M
z

 horizontal

A

M dydzφ= ∫∫   (volume of the φ -bubble) (6.28) 

Therefore, the total result for the torsional moment becomes: 

 2t

A

M dAφ= ∫∫   (two times the volume of the φ -bubble) (6.29) 

Recalling to mind that for this moment it also holds t tM GI θ= , for the torsional stiffness it is 
found: 

 
2

t

A

GI dAφ
θ

= ∫∫    (6.30) 
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Conclusions 
Up to now, results have been derived which are worthwhile mentioning in a summary. Fig. 
6.20 supports these conclusions.  
− The stiffness t  and the torsional moment GI tM  are determined by the double volume of 

the φ -bubble (for 1θ = ). 
− The shear stress is determined by the slope of the φ -bubble perpendicular to the direction 

of the stress. This property holds for every direction. 
− It appears that the contribution of the vertical and horizontal stresses to t  and tGI M  is the 

same, namely one volume of the φ -bubble each. This generally holds irrespective the 
shape of the cross-section, for example for a strip-shaped as well as a square cross-section.  

y

z

xzσ
xyσ

φ

z

σ

tGI

      CONCLUSIONS 
 
 
− Stiffness = 2 times volume of φ -bubble for 1θ =  
 
 
− Shear stress = slope of the φ -bubble 
 
 
− The contributions of verticalσ  and horizontalσ  are equal 
 

y

Fig. 6.20: Summary of the conclusions. 

Remarks 
1. The x -axis has been chosen arbitrarily parallel to the bar axis. The displacement field 

(6.4) contains a rotation about the x -axis. This creates the impression that this axis has 
certain special properties. However, this is not the case, because an extra rotation as a 
rigid body about the - and -axes can be added to the displacement field (6.4), such that 
any other line parallel to the 

y z
x -axis start to act as the rotation axis. For the displacement 

field it then has to be chosen: 

 ( , )xu y z b y azψ θ θ= − + θ  
 rotation about -axis y
 ( )yu x z b θ= −  
 rotation about z-axis  
 ( )zu x y a θ= −  
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It simply can be established that the additional terms have no influence on the stresses, 
and that now the rotation takes place about the axis ,y a z b= = . So, this indicates that the 
x -axis indeed can be chosen arbitrarily without loss of generality provided that it is 
parallel to the axis of the bar. 
 

2. During the analysis it was made clear that xxσ  has to be zero, also at the ends of the bar 
and that for that reason the warping cannot be prevented. In section 6.12 the consequences 
of a prevented warping will be discussed. Theoretically, the shear stresses xyσ  and xzσ  at 
the ends have to be distributed exactly as the derivatives of the stress function φ  
prescribe. If this is not the case at the ends an interference length will occur in which the 
stress-state gradually evolves to the distribution according to the derivatives of φ .  

 
3. The surface integral for tM  given by (6.29) could have been determined directly from 

(6.24) by replacement of xyσ  and xzσ  by the respective derivatives of φ , which is 
followed by the application of the proposition of Green for the transformation of a surface 
integral into a contour integral. However, the disadvantage of this approach is that it 
would not have revealed that the contributions of the horizontal and vertical stresses to the 
moment are identical.  

6.5 Exact solution for an elliptic cross-section 

For some cross-sections, it appears to be possible to derive an exact solution for the 
differential equation and boundary condition (6.22). An example is the elliptic cross-section 
(see Fig. 6.21). The equation of the edge in this case is: 

y

z

                  a a

b

b

Fig. 6.21: Elliptic cross-section. 

 
2 2

2 2 1y z
a b

+ =  

Then the following function is zero all along the edge: 

 
2 2

2 21 y zA
a b

⎛ ⎞
− −⎜ ⎟

⎝ ⎠
 

It turns out that the differential equation can be satisfied if φ  is made equal to this function: 
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2 2

2 21 y zA
a b

φ
⎛ ⎞

= − −⎜ ⎟
⎝ ⎠

 

Substitution of this relation into differential equation (6.22) yields the following result for : A

 
2 2

2 2

a bA G
a b

θ=
+

 

Therefore, the solution is: 

 
2 2 2 2

2 2 2 21a b y zG
a b a b

φ θ
⎛ ⎞

= − −⎜ ⎟+ ⎝ ⎠
  (6.31) 

Using (6.15) the shear stresses become: 

 
2 2

2 2 2 22 ; 2xy xz
a z b yG G

a b a b
σ θ σ= − = +

+ +
θ

b

  (6.32) 

The shear stresses are linearly distributed along straight lines through the origin, just as 
known for the circular cross-section (see Fig. 6.22). The largest shear stress occurs on the 
edge at the short axis (at , , when ). The absolute value of this stress is: 0y = z = ± a b>

y

z

In this figure the x -axis 
is pointing into the paper 

Fig. 6.22: Stress distribution in an elliptic cross-section. 

 
2

max 2 22 fora bG a
a b

σ θ= >
+

b   

The torsional moment is according to (6.29) two times the volume of the φ -bubble: 

 
2 2

2 2
2 2 2 2

1 12t
a bM G dy dz y dy dz z dy dz

a b a b
θ

⎧ ⎫
= − −⎨ ⎬+ ⎩ ⎭∫∫ ∫∫ ∫∫  

The first integral is the area of the ellipse, abπ . The second and third integrals are the 
moments of inertia with respect to the -axis and -axis, respectively. The values are equal 
to 

z y
3 4a bπ  and 3 4abπ , respectively. Thus the term between braces equals 2abπ  and the 

moment becomes: 
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3 3

2 2t
a bM G

a b
π θ=

+
 (6.33) 

Because it also holds: 

 t tM GI θ=  

For an ellipse it apparently is found: 

 
3 3

2t
a bI

a b
π

=
+ 2  (6.34) 

 By using (6.33), the relations (6.32) for the stresses can be expressed in the torsional moment 
tM : 

 
3 3

;1 1
2 2

t t
xy xz

z M y M

ab a b
σ σ

π π
= − = +   (6.35) 

A designer mainly will be interested in the maximum shear stress. Expressed in the torsional 
moment this shear stress equals:  

 max
2

for1
2

tM a b
ab

σ
π

= >

ection 
− 

 (6.36) 

6.6 Membrane analogy 

Already during the discussion of the force method it was mentioned that analogies can be 
used. Prandtl introduced a well-known analogy. He recognised that the differential equation 
for the torsional problem was similar to the problem of a membrane under tension. This so-
called membrane analogy is depicted in Fig. 6.23. 

     ANALOGY 
 
− shape of membrane = shape of cross-s

2p θ=  
− 1s G=  
 

( ) ( ), , , ,
1 2

                
on edge: 0 on edge: 0

yy zz yy zzS w w p
G

w

φ φ θ

φ

− + = − + =

= =

z

y

w
p

S
S

Fig. 6.23: The differential equations for a stressed membrane and 
 for torsion have the same character. 
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The bending stiffness of the membrane is very low. In the plane of the membrane an 
omnidirectional tensile force per unit of width is present. When a part of the membrane is 
considered with unit width in -direction and length , it can be modelled as a cable. For 

sufficiently small deflection  under a constant excess pressure 

z dy

w p , the vertical equilibrium 
of this part of the membrane equals (see Fig. 6.24): 

1v

2v

S

S

1α
2α

dy

w

y

Fig. 6.24: Free-body diagram. 

  1 2v v p dy− =

where  and  are the membrane shear forces, for which it can be written: 1v 2v

 1 1 2;v S v S 2α α= =  

So: 

  ( )1 2S pα α− = dy

Further, for the increase of the slope it holds: 

 2 1 , yyw dyα α− =  

This provides: 

  , ,yy yyS w dy p dy S w p− = → − =

When both the -direction and -direction are considered, the differential equation for a 
membrane is found: 

y z

 ( ), ,yy zzS w w p− + =  (6.37) 

Experimental membrane analogy 
The membrane analogy can be utilised experimentally as discussed below. A box is made 
with vertical walls and horizontal bottom. The horizontal top of the box is open and is 
covered by a stretched rubber membrane. The plan view of the box has the shape of the cross-
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section to be investigated. By pressurising the inside of the box, the membrane will bulge out. 
A shape will be created similar to the φ -bubble (Fig. 6.23 shows this phenomenon for a 
rectangular cross-section). By measurement of the slope of the membrane in different points, 
the stress distribution over the cross-section can be determined. In literature articles can be 
found of how this was done in the past with soap films. Therefore, this approach is also called 
the soap-film analogy.  

Fig. 6.25: Example of contour lines for a T-shaped cross-section.  

A method to visualise the membrane surface is the drawing of contour lines of constant φ  
(see Fig. 6.25). When a  coordinate system is attached with  parallel and  
perpendicular to the contour line, then along the contour line it holds  and therefore 

-s n s n
, 0sw =

, 0sφ = . This means that xnσ  is zero and only the shear stress xsσ  is present. So, the direction 
of the shear stress is tangent to the contour lines. The contour lines can be drawn at constant 
intervals of  (and thus w φ ). Then it can be concluded that the shear stress xsσ  is large where 
the density of he contour lines is high, because at those spots the gradient ,nφ  is large. The 
contour lines can be visualised by the so-called “shadow moiré”. With optical means, the lines 
of constant displacement are visualised, with a constant difference in displacement between 
the lines. 

Membrane analogy as mental experiment 
The membrane analogy can be used too, without the actual execution of a real test with a 
membrane. The analogy is applied as a mental experiment. This can be done both 
qualitatively and quantitatively. Qualitatively, the analogy is useful, since it provides an 
indication where the largest shear stresses will occur and how the cross-section can be 
adapted to optimise it for torsion. Fig. 6.26 shows a triangular cross-section. When a soap 
film is imagined under pressure over this cross-section, the largest slope will occur halfway 

maxσ σ=

0σ =

 

Fig. 6.26: membrane analogy as mental experiment to optimize cross-sections. 
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the sides of the triangle. At those positions the shear stress reaches its maximum. In the 
vertices, the soap film will be practically horizontal and no significant contribution to the 
moment and stiffness can be expected. Therefore, rounding off the vertices can save material. 
At the right side of Fig. 6.26, a notched rectangular cross-section is depicted. When the notch 
is sharp the contour lines will be concentrated around the tip of the notch and large stresses 
will occur. A blunt notch is much more favourable. 

b

t

z

y
t b

Fig. 6.27: Strip-shaped cross-section. 

The mental experiment can be applied too for obtaining quantitative information. A well-
known example is the torsion of a bar with a strip-shaped cross-section as shown in Fig. 6.27  
(for this case, in previous lectures a solution was found already by a different method). When 
the experiment would be carried out with a membrane it can be expected that the deflection  
would be cylindrically shaped over practically the entire width b , independently of . Only  y
at the two ends 2y b=  and 2y b= −  a deviation from this shape would occur. For  
this will hardly affect the volume under the membrane, if it is assumed that the deflection  
over the full width is only a function of , see Fig. 6.28. 

t b
w

z

pt
S S

z

( )w zb

t y

z 1t b

Fig. 6.28: Shape of the membrane for a strip-shaped cross-section. 

The differential equation then simplifies to: 

 
2

2

1 d w p
S d z

− =  

with boundary condition that  is zero for w 2z t= ± . 
The solution for this equation is: 

 
2

2
2

4( )= 1
8
p zw z t
S t

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 

This is a parabola. In Fig. 6.23 it is shown that  is equivalent to w φ , if at the same time it is 
substituted: 
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 12 ;p s
G

θ= =  

Therefore, for the stress function φ  it holds: 

 
2 2

2

4( )= 1
4

Gt zz
t

φ θ
⎛

−⎜
⎝ ⎠

⎞
⎟  (6.38) 

This is a parabolic distribution with a maximum of: 

 
2

max 4
Gtφ θ=  

The area between this parabola and the -axis equals: z

 3
max

2 1
3 6

Area t Gtφ θ= × × =  (6.39) 

The torsional moment is twice the volume of the φ -bubble; 

 312
3tM b Area G bt θ= × × =  

Since it also holds that: 

 t tM GI θ=   

For the torsional moment of inertia it is found: 

 31
3tI bt=  (6.40) 

which already was indicated in Fig. 6.2. 
Further, the stress distribution can be checked. In the direction of the long edge it holds: 

 2xy Gz
z
φσ θ∂

= = −
∂

 (6.41)   

The maximum values in absolute sense occur for 2z t= ± , see Fig. 6.29: 

 max Gtσ θ=  

b

            φ σ

t

Fig. 6.29: Stress distribution in a strip-shaped cross-section. 
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With the aid of (6.39) this maximum stress can be expressed in the moment, an interesting 
relation for design purposes: 

 max
21

3

tM

bt
σ =    (6.42) 

This expression was mentioned in Fig. 6.2 too. 

Remarks 
1. From the mental experiment it follows that the formula 31

3tI bt=  also can be used (in a 
similar approach) to determine the torsional moment of inertia of cross-sections, which 
are built up out of strip-shaped parts as shown in Fig. 6.30. 

wb

fb

ft

ft
wt wb

fb

ft

ft
wt

t

R

3 3 3 3 31 2 1 2 1                            where  2
3 3 3 3 3t w w f f t w w f f tI b t b t I b t b t I bt b Rπ= + = + = =

Fig. 6.30: Torsional moments of inertia of thin-walled cross-sections. 

2. The result for φ  given by (6.38) leads to the stresses: 

 
3

; 01
6

t
xy xz

M z

bt
σ σ= − =  

It was shown in general that the contribution to the moment of the stress xzσ  is the same 
as that of the stress xyσ . However in this case this is not possible because xzσ  is zero. The 
share of the horizontal shear stresses xyσ  is correct: 

 

1 1
2 2

1 1
2 2

2

3

1
1 2
6

t
xy t

t t

t t

M bb z dz z dz
bt

σ
− −

− = =∫ ∫ M  

Nevertheless, in reality the missing part 2tM  is delivered by vertical shear stresses xzσ , 
which are present at the ends of the cross-section as shown in Fig. 6.31. At these ends the 

b

t

Fig. 6.31: Shear stresses at the ends contribute half of the torsional moment. 
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distribution of φ  is not cylindrically in  but has to decrease to zero (see Fig. 6.28). 
These stresses are of the same order of magnitude as xy

z
σ , but because of the large distance 

between them (about b ) they still produce half of the torsional moment tM .  

6.7 Numerical approach 

The availability of fast computers makes it possible to generate numerical solutions. Suitable 
for this purpose is the Finite Element Method. A cross-section is divided into elements and in 
the nodes of the element mesh a value is determined for the displacement  of the 
membrane. It is a method of approximation, which produces more accurate results for finer 
meshes. 

w

Strip-shaped cross-section 
A very detailed discussion of this numerical method falls outside the scope of this course. 
Only the principle will be indicated and as an example the strip-shaped cross-section is taken, 
for which in section 6.6 already a solution has been determined. This solution will be labelled 
as the exact one. Since a cylindrically shaped displacement  is present, it is sufficient just to 
define an element distribution over the shortest edge t  of the cross-section. 

w

1 1 1
3 3 3                             t t t

S S

1 1
8 8                                             t t

S S8 elements 

approximation 

3 elements 

node 1         node 2 

Fig. 6.32: Approximation of the shape of the membrane by three and eight elements. 

The real distribution of the displacement  that is drawn by the dashed line in Fig. 6.32, is 
approximated by linear interpolation between two adjacent nodes. The figure shows  the cases 
with three and eight elements. Now, the shape of the membrane is polygonal. With eight 
elements the approximation seems already to be quite good, but with three elements not yet. 

( )w z

However for the coarse distribution with three elements the finite element method can be 
simulated by a calculation by hand. In the analysis, use will be made of the symmetry of the 
membrane surface. Fig. 6.33 shows the strip-shaped cross-section once more, including the 
section over the membrane. The uniformly distributed load p  is concentrated as point loads 

 in the nodes at distances of F 3t . The problem contains one degree of freedom . This 
degree of freedom can be obtained from the equilibrium of node 1. After the determination of 

, the torsional stiffness is calculated from the double volume beneath the membrane. 

w

w
The calculation scheme of  is listed in Fig. 6.33. In node 1, the point load  has to be in 
equilibrium with the vertical component of the tension force  in the first element. Because 

 is small, 

w F
S

w tanα  can be replaced by the angle α  itself and the displacement becomes: 

 
2

9
tw p
S

=   (6.43) 

The area of the section under the membrane over the full thickness t  equals: 
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Fig. 6.33: Calculation of the displacement  for three elements. w

 2
3

Area wt=  

and the double volume: 

 42 2
3

Vol Area b wbt× = × × =  

Substitution of  from (6.43) yields: w

  342
27

pVol bt
S

× =  

The φ -bubble is introduced by choosing: 

 12 ;p S
G

θ= =  

Then the double volume is equal to the torsional moment, and for 1θ =  the result is the 
torsional stiffness : tGI

 3 34 2 8
27 1/ 27tGI bt Gbt

G
= =  

The exact solution is: 

 31
3tGI Gbt=  

The difference is in the order of 10 percent; for such a coarse element mesh this is quite a 
good result. The approximated solution appears to be exactly the inscribed polygon of the 
parabola. 

 183



In the computation with eight elements four different unknown displacements  occur. Then 
four equilibrium equations have to be set up and solved simultaneously. In that case, the error 
in  already will be less than 1 percent. 

w

tGI

b

xy             φ σ

t

φ φ
8 elements 3 elements 

exact stress distribution 

xyσ xyσ
exact exact

Fig. 6.34: Stress distribution obtained by finite element method. 

The accuracy of the stress distribution is investigated as well. The exact solution is displayed 
in Fig. 6.34. Since φ  is a parabolic function, its derivative the stress xyσ  will be linear over 
the thickness t  of the cross-section. For a polygon description of φ  with straight branches, 
the derivative will be constant per branch and will be discontinuous in the nodes. Fig. 6.34 
shows the result that can be expected with the discussed finite element example. With three 
elements the largest error is not less than 33 percent, but for eight elements the error already 
reduces to 12 percent. In the middle of the elements always the correct value is found.    

Arbitrarily shaped cross-sections 
For arbitrarily shaped cross-sections a two-dimensional element mesh is applied. This can be 
done with triangular, rectangular and quadrilaterals of arbitrary shape (see Fig. 6.35). In the 
finite element approximation the load is again concentrated in the nodes. An unknown  
(and therefore 

w
φ ) is introduced in each node. Between the nodes, i.e. along the element edges 

the variation of  (and w φ ) is linear. Generally, the number of equations that can be 
formulated is equal to the number of nodes, thus equal to the number of unknown ’s (and w
φ ’s). From this set the unknowns are solved. 

y

z

y

z

φ

Fig. 6.35: Element mesh and φ -bubble for a cross-section of arbitrary shape.  
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Now, the φ -bubble is a collection of flat surfaces (above the triangular elements) and a 
collection of ruled surfaces (Dutch: “regelvlak”) (above the rectangular and quadrilateral 
elements). The formula read: 

     1 2 3

1 2 3 4

( , ) ( )
( , ) ( )
y z a a y a z triangle
y z a a y a z a yz rectangle

φ
φ

= + +
= + + +

The double content of the φ -bubble for 1θ =  again provides the stiffness t . The value of 
the stiffness is already quite good for relatively small numbers of elements. The stresses 
follow the slope of the 

GI

φ -bubble. In a triangle both slopes , yφ  and , zφ  are constant over the 
entire element. The single value per element calculated for xyσ  and xzσ  is considered to be 
present in the centre of gravity of the element. In a rectangular element, each of the two slopes 
of φ  is constant in one direction and linear in the other direction. This delivers two values for 
each of the stresses xyσ  and xzσ . In an arbitrary quadrilateral the slopes vary in both 
directions and four values for xyσ  and xzσ  can be computed (see Fig. 6.36).  
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xy xy
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σ σ
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Fig. 6.36: Stress distributions in the elements. 

Increasing refinement of the mesh leads to better approximations approaching the exact 
solution. In Fig 6.37 this is demonstrated for a rectangular cross-section with a height-width 
ration of 2. When the number of elements 2N N×  increases, the ratio of the approximated 
and exact torsional stiffness tGI  approaches unity. This also holds for the maximum shear 
stress σ , provided it is evaluated halfway an elemental edge. When after a number of 
numerical tests it has become clear how fine the mesh should be for a particular accuracy, the 
calculation can be repeated for different height-width ratios. Then a table can be created as 
shown in Fig. 6.38. When b , the cross-section degenerates into a strip and for both tGI  
and the maximum shear stress 

t
σ  the coefficient 1 3 is calculated, previously found in (6.40) 

and (6.42).       
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Fig. 6.37: Mesh refinement leads to convergence. 
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Fig. 6.38: Stiffness and maximum stress for a rectangular cross-section. 

b

t
σ

6.8 Cross-section with holes 

When the cross-section of the bar contains one or more cavities, the discussed theory requires 
some addition. First the case will be discussed with a single hole in the cross-section (see Fig. 
6.39). Along the edge of the hole a coordinate system is attached. The positive direction 
of  points into the hole. On the edge of the hole, no shear stress 

n-s
n xnσ  different from zero can 

be present. Therefore it holds that: 

 , 0sφ =  (6.44)  

Fig. 6.39: Cross-section with one hole. 

n

s y

z

 186



This means that φ  is constant along the circumference of the hole. However in this case the 
value of φ  cannot be set to zero, because this already has been done at the outer 
circumference. The unknown value is indicated by hφ  and is an undetermined degree of 
freedom of the problem. 
The question arises which boundary condition for ( , )y zφ  has to be prescribed at the edge of 
the hole. The harmonic equation for φ  is a second-order differential equation of the elliptic 
type, in which case generally only one boundary condition can be formulated on the edge. 
When this is the value of φ  itself, one speaks about a Dirichlet problem as previously 
discussed. When the derivative ,nφ  is prescribed the problem is of the Neumann type. Since at 
the outer circumference the value of φ  was set to zero, at the edge of the hole φ  is free and 
undetermined. Therefore, at that position the value of ,nφ  has to be prescribed. Thus, the hole 
creates an extra unknown hφ , which means that only one extra condition ,nφ  has to be 
formulated along the edge of the hole, although ,nφ  may vary itself along the circumference of 
the hole. It now will be investigated which condition this is. This will be done in two steps. 
First a special case is considered, for which the condition can be identified easily. After that it 
will be shown that this condition is generally valid. 

Special case 
Again the φ -bubble is considered occurring on a solid cross-section. In the left part of Fig. 
6.40, the contour lines of the φ -bubble are indicated, i.e. the lines of constant φ . Along such 
a line the value of ,sφ  is zero, which means that xnσ  is zero as well. This means that the part 

of the bar inside the contour does not exert any force on the part outside the contour. 
Therefore, the inner part (with area ) can be removed without affecting the stress 
distribution outside the contour (with area ). This situation is depicted in the right part of 
Fig. 6.40. It also has been indicated how this affects the 

hA
A

φ -bubble. For the solid cross-section 
a cut is made through the φ -bubble at the line 0z = . The contour line, inside which the hole 
will be created, intersects the curve twice with the same value for φ , namely hφ . 

y

z

ns

y

φ

y

z

ns

y

φ

AhA

hφ

φ -bubble of  
removed inner part
 
φ -bubble of  
hollow bar 

Fig. 6.40: Clarification on the φ -bubble of a cross-section with a hole. 

In this case, the torsional stiffness  for the hollow cross-section is equal to the difference 
of the torsional stiffness of the solid cross-section minus the torsional stiffness of the removed 
inner part. The cut-off cap of the 

tGI

φ -bubble represents the torsional stiffness of the removed 
part. It can be seen that for the φ -bubble of the hollow cross-section the hole continues to 
provide a contribution, but now with a constant value hφ  over the whole cavity. So, the 
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torsional stiffness is twice the volume of the truncated φ -bubble for 1θ = , including the part 
above the hole. The formula reads: 

  2 d 2 for 1t h h

A

GI A Aφ φ θ= + =∫∫  (6.45) 

For further interpretation it make sense to investigate what impact above explanation has on 
the membrane analogy (see Fig. 6.41). This analogy still can be used if a small adaptation is 
included. Again the membrane is fixed at the outer circumference and spans the cross-section. 

On the edge of the hole the membrane is imaginarily fixed to a thin rigid weightless plate. 
This plate must be able to move freely. When a pressure p  pressurises the membrane, it will 
load not only area  of the membrane with but also area h  of the thin plate. Therefore, the 
weightless plate will be displaced parallel with respect to itself. The displacement of the 
membrane along the edge of the plate is the same and the slope with the plate is ,n . The 
membrane analogy assists in finding the boundary condition for ,n

A A

w
φ  along the circumference 

of the hole. For that purpose the equilibrium of the weightless plate is considered. 

s y

z

hp A

v

              S S

w
,nw

wvv

                n n

Fig. 6.41: The membrane analogy assists in finding the boundary condition 
 for ,nφ  along the hole. 

 

The weightless plate is subjected to a distributed load p  over its surface and to the lateral 
membrane load v  along the circumference. This lateral load has the value ,n  (  is positive 
if it points inside the hole). For the equilibrium of the weightless plate in -direction it then 
can be written: 

S w n
w

     ,h nv ds p A S w ds p A= → =∫ ∫ h

When this result is reformulated in terms of the torsional problem ( 2p θ= , 1S G=  and 
w φ= ), the required condition for ,nφ  at the edge of the hole is found: 
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 ,
1 2n ds A
G hφ θ=∫  (6.46) 

General case 
Now the idea is abandoned that a hole is created by removing material from a solid cross-
section just inside a contour of theφ -bubble. In this case the hole is created arbitrarily and 
again a  coordinate system is attached along its circumference. Also the same boundary 
condition (6.44) holds and 

-s n
φ  must have a constant value hφ . In this case φ -contours are 

generated that generally do not correspond with those of the solid cross-section. This means 
that compared to the solid cross-section the stress distribution will be different. Therefore, it 
has to be proved separately that condition (6.46) holds for this case too. If so, the analogy of 
the weightless plate for the determination of the φ -bubble can be generalised. It also has to be 
shown that formula (6.45) for the determination of  is generally valid. t

Since 
GI

,nφ  is equal to xsσ−  and xs xsGσ γ= , condition (6.46) can be rewritten as: 

 2xs hds Aγ− =∫ θ  (6.47) 

 In order to prove whether this contour integral is generally valid, it is investigated how xsγ  is 
expressed in the three-dimensional displacement field. This displacement field reads: 

 ( , ) ( , ) ; ( , ) ; ( , )x y zu y z y z u y z x z u y z x yψ θ θ= = − θ=  (6.48) 

The shear angle xsγ  is defined by: 

 , ,xs x s s xu uγ = +  

which means that the derivative in x -direction of the displacement  has to be 
determined. This displacement can be expressed in  and  as shown in Fig. 6.12: 

( , )su y z
yu zu

 sin coss y zu u uα α= − +    

Then the required relation between xsγ  and the displacement field is found: 

 , ,sin cosxs x s y x z xu u ,uγ α α= − +   

Substitution of (6.48) changes this result into: 

 { }, ( , ) sin cosxs s y z z yγ ψ α= + + α θ

θ

 

So, the contour integral under investigation becomes: 

  , sin cosxs sds ds z ds y dzγ ψ α α
⎧ ⎫

− = − − −⎨ ⎬
⎭⎩∫ ∫ ∫ ∫
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Since sin dsα−  is just equal to  and dy cos dsα  is just equal to  this relation transforms 
into: 

dz

                        xsdsγ− =∫ ,s dsψ
⎧

−⎨
⎩ ∫ θ

⎫
⎬
⎭

       (6.49) ∫z dy+∫ − y dz

The three contour integrals in the right-hand side will be determined separately. The first one 
can be written as: 

  ,s dsψ =∫ 0dψ =∫
The value has to be zero because of the uniqueness of the warping displacement ψ  along the 
circumference. The second integral equals: 

  hz dy A=∫
This result can easily be understood by splitting the integral into two parts. In the left part of 
Fig. 6.42 the contour integral is split into a part from  to A B  through the region with positive 

-values and in a part from z B  to  with negative -values. For the first part  is positive 

if  increases in positive direction and  is also positive in this area. Therefore, the integral 
over this part becomes: 

A z dy

s z

s

s

dz

dz

A

z

y
y

y

B

s

s

dy

dy

z

z

z
y

A B

ds
                                                  h hz dy A y dz A= + = −∫ ∫

Fig. 6.42: Integrations of ∫ ∫ .z dy and ydz  

   0
down

z dy Area of the part of the hole for which z= ≥∫
In the second part of the contour integral  is negative if  increases in positive direction, 
but  is negative as well, so that  still is positive. Consequently, the integral over this 
part equals: 

dy s
z z dy
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    0
up

z dy Area of the part of the hole for which z= <∫
The summation of both integrals just delivers the total area of the hole: 

  z dy∫ h

up

z dy A+ =∫
down

z dy= ∫
Likewise, in the right part of Fig. 6.42 the area is split up into two parts for the third contour 
integral, a region where  and a region where 0y ≥ 0y < . In a similar manner for the third 
contour integral it is found: 

  y dz∫
right

y dz= ∫ h

left

y dz A+ = −∫
With these results for the three contour integrals, relation (6.49) transforms into: 

  xs dsγ−∫ 2 hA θ=

This is the same condition as found in (6.47) for the special case of a hole the edge of which 
coincides with a contour line of a solid cross-section. This means that it has been shown that 
this condition is valid too for an arbitrary position of the hole. So, the membrane analogy can 
also be applied for the determination of the φ -bubble. Only the plate will not automatically 
displace itself parallel to its original position and some sort of guide is required. 
 
The only remaining aspect is to show that formula (6.45) retains its validity for the 
determination of the torsional stiffness  from the tGI φ -bubble. For the solid cross-section, 
the following relation was used: 

 ( )t xz xy

A

GI y z dAσ σ= −∫∫ (for 1)θ =  

or by expressing the stresses in φ : 

 t

A

GI y z dA
y z
φ φ⎛ ⎞∂ ∂

= − −⎜ ⎟∂ ∂⎝ ⎠∫∫ (for 1)θ =  

For the solid section, the integral over the area  was calculated in two parts. This will be 
done again, but now only that part of the area will be considered where material can be found 
(see Fig. 6.43). 

A

The first integral can be worked out as follows: 
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− −∫∫ ∫∫
Fig. 6.43: Determination of the resulting moment for a cross-section with a hole. 

 
2 4

1 3

  

y y

y yA

y dA y d y d d
y
φ φ φ

⎛ ⎞
∂ ⎜ ⎟− = − + −⎜ ⎟∂ ⎜ ⎟

⎝ ⎠
∫∫ ∫ ∫ ∫ z   

Integration by parts with respect to  changes this relation into: y

  ( ) ( )
2 4

1 3

2 2 1 1 4 4 3 3

y y

y y

dy y y dy y y dzφ φ φ φ φ φ
⎛ ⎞
⎜ ⎟− − + − −⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
On the outer circumference, 1φ  and 4φ  are zero, while 2φ  and 3φ  have the same value hφ  at 
the circumference of the hole. This reduces the integral to: 

  ( )
2 4

1 3

3 2h

y y

y y

dy y y dy dzφ φ φ
⎛ ⎞
⎜ ⎟− − +⎜ ⎟
⎜ ⎟
⎝ ⎠

∫ ∫ ∫
The term between square brackets is just the area of the cross-section of the φ -bubble, 
including the part of the φ -bubble above the hole. Consequently it is found: 

 h h

A A

y dA dA A
y
φ φ φ∂

− = +
∂∫∫ ∫∫  

Similarly it can be derived: 

 h h

A A

z dA dA A
z
φ φ φ∂

− = +
∂∫∫ ∫∫  

For a cross-section with a hole it remains valid that the vertical and horizontal stresses 
contribute equally. Putting all results together it can be written: 
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  2 2 2 (for

h

t h h

A A A

GI dA A dAφ φ φ θ

+

= + =∫∫ ∫∫  1)=

This completes the proof that for any arbitrary position of the hole the torsional stiffness is 
equal to twice the volume of the φ -bubble, for 1θ = . 

Cross-section with a number of holes 
It simply can be indicated how the calculation should be performed for more than one hole in 
the cross-section. In that case, the amount of unknown hφ ’s is the same as the number of 
holes, and all these hφ ’s may have a different value.  
For the membrane analogy this means that above each hole a weightless plate is present, and 
that for each plate an equilibrium equation has to be formulated. When the shape of the 
membrane has been determined in this manner and the conversion of the torsional problem is 
carried out, the torsional stiffness can be determined from: 

 
all holes

2 2tGI dA Aφ φ= + ∑∫∫ h h  (6.50)  

6.9 Thin-walled tubes with one cell 

A special case of a cross-section with holes is a tube with a relatively small wall thickness. 
The circumference of the tube is C  and it wall thickness , such that . Further it is 
assumed that the cross-sectional area inside the tube is equal to . 

t t C
hA

t

t

w

Fig. 6.44: Membrane for thin-walled tube. 

According to the membrane analogy, the membrane and plate adjust themselves such that the 
plate elevates to a certain height  (see Fig. 6.44). Because t  is very small, with a good 
approximation it can be assumed that the displacement of the membrane varies linearly from 
zero to  over the distance t . For the slope  it then holds: 

w

w ,nw

 ,n
ww
t

=   
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The equilibrium of the weightless plate is described by: 

  ,n hS w ds p A=∫
so that: 

 h
h

w pS C p A w
t S

= → =
t A
C

 

By substitution of 2p θ=  and 1S G= , the displacement  can be replaced by w hφ , i.e.: 

 2 h
h

t AG
C

φ θ=  

The torsional moment is twice the volume of the φ -bubble: 

 2 2t h h

A

M dA Aφ φ= +∫∫   

In this case, the area  of the material is equal to . For thin-walled tubes this area can be 
neglected with respect to the area of the hole . The moment then becomes: 

A t C
hA

 
242 h

t h h t
t AM A M G
C

φ θ= → =   

Therefore, the torsional moment of inertia becomes: 

 
24 h

t
t AI
C

=  

This formula is valid for a constant wall thickness . When t  varies along the circumference, 
the more general so-called 2nd formula of Bredt holds: 

t

 
24 h

t
AI
ds
t

=

∫
 (6.51) 

This formula follows from the equilibrium of the weightless plate. When t  is constant, 
application of the formula leads to the above-derived relation for tI . The shear stresses xsσ  
are approximately constant across the thickness. Apart from the sign, it holds: 

 2h h
xs

AG
t C

φσ θ= =  

or expressed in the torsional moment: 
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2

t
xs

h

M
t A

σ =  (6.52) 

This relation is called the 1st formula of Bredt. 

Remarks 
1. The assumption that the membrane varies linearly over the wall thickness is an 

approximation. In reality a weak parabolic variation has to be added to the linear profile as 
shown in Fig. 6.45. This parabolic contribution represents the torsional moment of inertia 

31
3 Ct  of the wall itself, considered as a strip. However, compared to the torsional moment 
of the entire closed tube as a whole, the contribution of the wall can be neglected.    

 

w

t
Fig. 6.45: Weakly curved membrane. 

2. It is instructive to compare the results of a closed tube and an open tube (see Fig. 6.46). 

The ratio of the stiffnesses is: 

closed tube                                 open tube

R

t

R

t

3 3

max max2 2

22
3
1

2 3 2

t t

t t

I R t I R t

M M
R t Rt

ππ

σ σ
π π

= =

= =

Fig. 6.46: Torsional stiffness of closed and open tubes. 
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The ratio of the stresses for the same moment equals: 

 3closed tube

open tube

t
R

σ
σ

⎛ ⎞= ⎜ ⎟
⎝ ⎠
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It can be seen that the stresses for the transmission of the same moment in the closed tube 
are an order t R  smaller than in the open tube, while the stiffness of the closed tube is 
much larger. This is caused by the fact that the “round-going” shear stresses in the closed 
tube have a large arm ( 2R ), while this arm in the open tube is equal or smaller than . 
This means that for the transmission of the same moment, in the last case the shear 
stresses are much larger. 

t

6.10 Thin-walled tubes with multiple cells 

In the building practice, it may be necessary to calculate the torsional stiffness of box-girders 
with more cells. An example with two cells is depicted in Fig. 6.47. The traffic arrangement 
on the upper deck of a bridge may be the cause that the vertical partitioning wall is applied 

eccentrically. In this example, the thickness ( 2t ) of the upper deck is half the one ( ) of the 
webs and the lower plate. Since , the centre-to-centre distance (  and 2 ) of the box-
girder walls can be used. This means that the contribution of the walls itself can be neglected. 
For the same reason, the flanges of the box-girder can be ignored as well. 

t
t a a a

t

2a a

at t

t t

1
2 t 1

2 t

t a

Fig. 6.47: Box-girder with two cells. 

Fig. 6.48 shows a cross-section of the membrane and the two weightless plates appearing in 
the membrane analogy. The left and right plate displace  and , respectively. In the 
drawing  is chosen larger than , which is consequently applied in the calculations as 
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equilibrium of the two
weightless plates

membrane

section with two cells

Fig. 6.48: Membrane and equilibrium of the plates. 
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well. The answers will reveal whether this assumption was correct. For the equilibrium of the 
two plates membrane shear forces of different magnitude play a role. When 2  is larger than 

, the shear forces as drawn in Fig. 6.48 will have a positive value. They are: 
w

1w

 1 1 2 2 2
1 1
2 2

; ; ; ;w w w w wv S v S v S v S v
t t t t

1w S
t
−′ ′′ ′′′ ′′′′= = = = =  

The first four shear forces  and , ,v v v′ ′′ v′′′  are applied in downward direction on the plates. 
The last force  acts upward on plate 1 and downward on plate 2 (for the case of  being 
larger than  this is the other way round). The vertical equilibrium of the plates is: 

v′′′′ 1w
2w

 
2 2 2 (

( 2
v a v a v a v a p a a         plate 
v a v a v a v a p a a         plate 

1)
)

′ ′′′′∗ + ∗ + ∗ − ∗ = ∗ ∗
′′ ′′ ′′′ ′′′′∗ + ∗ + ∗ + ∗ = ∗ ∗

      

Substitution of the forces provides: 

 

21 1 1 2 1
1
2

22 2 2 2 1
1
2

2 2 2 (

( 2

w w w w wS a S a S a S a p a         plate 
t t t t

w w w w wS a S a S a S a p a         plate 
t t t t

1)

)

−
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Division by  changes this into: a

 
1 2
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Solution of the two equations provides: 

 1 2
11 10;
39 39

p pw at w
S S

= = at  

The displacement 2  is smaller than . Therefore, the shear force w 1w v′′′′  is pointing in the 
opposite direction than it is drawn. 
Now the transition is made to the φ -bubble by the introduction of 2p θ=  and 1S G= . This 
delivers: 

 1 2
22 20;
39 39

G a t G a tφ θ φ= = θ  

The torsional moment is twice the volume of the φ -bubble: 

 3
1 2

1282 2 2
39t tM a a a a M G a tφ φ θ= ∗ ∗ + ∗ ∗ → =  

Obviously the torsional moment of inertia equals: 
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 3128
39tI a t=   

Expressing 1φ  and 2φ  in the moment provides: 

 1 22 2

11 10;
64 64

t tM M
a a

φ φ= =  

For the stresses it then can be derived (see Fig. 6.49): 

 

1 1 2
2 21

2

2 1 2
2 21

2

11 22 10; ;
64 64 64
20 1;
64 64

t t

t t

M M
t ta t ta t ta

M M
t ta t ta

2
tMφ φ φσ σ σ

φ φ φσ σ

′ ′′= = = = = =

−′′′ ′′′′= = = =
 

Fig. 6.49 indicates the proper directions of the shear stresses. The first one can be chosen, and 
considering the slope of the membrane the other ones can be indicated. The partitioning has 
the same slope as the right web, which means that σ ′′′′  points in the same direction as σ ′′ . 

1φ
2φ

σ

2a a

a

σ

σ ′

σ ′′′′ σ ′′

σ ′′′

σ ′′

Fig. 6.49: φ -distribution and shear stresses in a section with two cells. 

Exercises 
1. Confirm that the resulting horizontal and vertical shear forces are zero in the discussed 

box-girder with two cells. 
2. Check if the calculated vertical stresses deliver a torsional moment of 2tM . Repeat the 

same exercise for the horizontal stresses. 
3. Calculate with the formula of Bredt the torsional moment of inertia tI  and the stresses σ  

when the partitioning is left out of the structure. Compute the ratio of the tI ’s and the 
maximum σ ’s for the situation with and without partitioning. What can be concluded? 

6.11 Cross-section built up out of different materials 

A cross-section composed out of two different materials  and A B  is considered as shown in 
Fig. 6.50. For these materials the respective shear moduli A  and BG  are applicable. A 

coordinate system is attached to the joining line, of which the -coordinate is following 
the line and the -coordinate is perpendicular to it. Now the boundary conditions along the 

G
-n s s

n
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A

B
n

s

1

2
Fig. 6.50: Cross-section with two different materials  and A B . 

joining line are investigated. In Fig. 6.51 the -direction is considered. The stress n xnσ  has to 
be continuous across the joining line, because the stress xnσ  is transmitted from one material 
to the other. For the φ -bubble this means that the derivative sφ∂ ∂  has to be continuous. In 
both materials  and A B , φ  starts with zero value in edge point 1. Therefore, φ  has to be 
continuous along the entire joining line. 

A

B
xnσ

s

1

2

1

2

s
φ

   CONTINUOUS   CONTINUOUS A Bxn xn
s
φσ σ φ∂= ⇒ = ⇒ =

∂

Fig. 6.51: Stress condition perpendicular to a connection line of two materials.  

In Fig. 6.52 the -direction is considered. In that direction the deformation condition holds 
that the shear strain xs

s
γ  on the joining line is the same for both materials. Consequently, the 

stress xsσ  is discontinuous across the joining line (because the shear moduli A  and BG  are 
different), this means that the slope 

G
,nφ  of the φ -bubble is discontinuous too. Therefore the 

φ -bubble contains a kink.  
In the membrane analogy, the same procedure as described before can be followed. Only the 
tensile force for both materials is different. So, distinction has to be made between  and AS

   DISCONTINUOUS  = DISCONTINUOUS A Bxs xs xs n
φγγ σ ∂= ⇒ = ⇒

∂

A

Bn

xsσ

1

2

n

φ

Fig. 6.52: Strain condition in the direction of a connection line of two materials. 
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BS . This implicates again that a kink is created in the membrane. The shear force nv  must be 
continuous and because it holds that ,nv S w n=  the slope  will be discontinuous for 

. 
,nw

A BS S≠

Cross-section with hole as a special case 
 A cross-section with a hole can be regarded as a special case of a cross-section composed out 
of two materials. The hole is considered to be a special material with G  equal to zero. Then 

in the membrane analogy the tensile force  above this hole is infinitely large. Therefore, this 
part of the membrane remains flat (see Fig. 6.53). Making further use of the knowledge that: 

S

infinite
finite 

S
S

=
=φ

Fig. 6.53: Cross-section with a hole considered as a special case of two materials. 

 ,0 0 constant
A Bxn xn s hσ σ φ φ= = → = → =    

Additionally it can be concluded that this flat part of the membrane remains horizontal. So, 
exactly the same goal is achieved as with the concept of a weightless plate! 

6.12 Torsion with prevented warping 

Up to now it has been assumed continuously that the ends of the bar were loaded in such a 
manner that no axial normal stresses xxσ  could be generated. An eventual warping of the 
cross-section could take place without any hindrance. However, if the warping at the end is 
prevented, for example by bonding the end to an undeformable body, a kinematic boundary 
condition is prescribed. Then it is not possible to prescribe zero stress values. So, generally 
normal stresses xxσ  will be generated. The influence of the prevented warping can be 
considerable. Especially the stiffness can be increased strongly. This can be demonstrated for 
example by the torsion of an I-section. When an I-section is subjected to torsion, the cross-

x

y

tM
h

tM

y

b
z

Fig. 6.54: Torsion of an I-section. 

 200



section warps. In each cross-section, the upper and lower flanges have opposite rotation 
directions as shown in Fig. 6.54. The right part of the section is drawn again in Fig. 6.55, but 
rotated over an angle of 900. At the left sketch the warping is free at the right sketch it is 
prevented. The prevention of the warping can be achieved by subjecting the top flange to a 
moment about the -axis, while at the same time the bottom flange experiences a moment of 
the same magnitude but opposite direction. In both flanges this moment disappears gradually 
as the distance from the fixed end increases. These moments go together with shear forces V  
in -direction in the flanges.  

z

y

y

tM

tM

x

y

z

tM

tM

y

x

y

z
w

ϕ

1
2 h

1
2 hb

y

x

,xM M dx+

,xV V dx+

M
V

dx

Fig. 6.55: I-section the warping of which is prevented. 

The total torsional moment tM  is not only taken up by a “round-going” shear stream 
according to De Saint-Venant, but can partly be attributed to these shear forces V too (see 
Fig. 6.56). At the clamped end ( ), the warping is completely prevented. At that position, 0x =
θ  is zero and the moment is completely determined by V h . For sufficiently large x  it can be 
expected that V  damps out to zero value and that θ  has developed completely, so that at that 
position the torsional moment is resisted just as in the case of free warping (G Itθ ). 
 
The expected picture will now be worked out quantitatively. The rotation of the cross-section 
is equal to ϕ  and the displacement of the top flange in -direction is called . The moment y w
M  and shear force V  in this flange as drawn in Fig. 6.55 are considered positive. The 
following relations are valid: 
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h

V

V

tGI θ

  t tM GI V hθ= +

Fig. 6.56: Shear forces V due to prevented warping. 
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where  is the bending stiffness of a flange for bending in the plane of the flange. For the 
torsional moment it then follows: 

fEI

 
2

2
2

1
2t t t t f

dM GI V h M GI h EI
dx

θθ θ= + → = −   

This is a differential equation in the unknown θ . After division by  and the introduction 
of the characteristic length 

tGI
λ  and the specific torsion angle svθ  according to De Saint-Venant 

given by: 

 
2

2 ;
2

f t
sv

t t

h EI M
GI GI

λ θ= =  

the differential equation becomes: 

 
2

2
2 sv

d
dx

θθ λ θ− =  

The solution consists out of a particular and a homogeneous part: 

 
1 2

( ) ( )
( ) ( )

sv
x x

x     particular part
x C e C e     homogeneous partλ λ

θ θ
θ −

=
= +

 

The total solution is: 
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 1 2( ) x x
svx C e C eλ λθ θ −= + +  

The coefficient  has to be zero, because the specific torsional angle 1C ( )xθ  has to approach 
the value svθ  for x → ∞ . Then the influence of the bonded end should not be felt anymore. 
The constant  can be found from the condition that 2C θ  is zero for 0x = , i.e.: 

 1 2: 0 ; 0 : svx C x C θ→ ∞ = = = −  

Therefore, the solution becomes: 

 ( )( ) 1 x
svx e λθ θ−= −  

On basis of this solution all desired stresses can be calculated. In Fig. 6.57 it can be seen that 
the influence of the fixed end is practically damped out at a distance of 2λ  to 3λ . 

0        1        2        3       4        5       6 x λ

1

( )

sv

xθ
θ

Fig. 6.57: Influence of the clamped end. 

Example 
For the sake of simplicity, Poisson’s ratio υ  is set to zero, so that 2G E= . 
For an I-section with the same thickness for the web and the flanges it holds: 

 ( )3 31 1; 2
12 3f tI t b I h b t= = +     

where b  is the width of the flange. It then follows: 

 
2 2
b b

h t h
λ

=
+ b

 

For more or less equal b  and , this relation becomes: h

 1
2 3

b
h t
λ

≈  

When  is much larger than , then b t λ  is much larger than . The influence of the 
disturbance by the bonded end is noticeable up to a distance (about 3

h
λ ), which is much larger 

than the size ( ) of the disturbed cross-section. In this case, the principle of de Saint-Venant 
appears not to be applicable. This means that the principle has no general validity. 

h
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A practical example of disturbed warping occurs in the case of viaducts built up out of pre-
stressed beams, on which a high-lying deck is cast (see Fig. 6.58). The disturbance occurs at 
the end cross-members and eventual intermediate cross-members. Both b  and  are of the 

order of magnitude of 1 m, while  is in the order of 0.20 m. With 

h

t 5b t =  the characteristic 
length becomes: 

Fig. 6.58: Pre-stressed beam for viaduct. 

 5 1.5 m
2 3

λ = ≈    

a damping length of about 3λ  provides more than 4 m. Compared to a span of 30 to 40 m this 
is a small part of the entire span. This means that the torsional stiffness of such a viaduct 
obtained through De Saint-Venant is sufficiently accurate, in case only end cross-members 
are applied. When intermediate cross-members are applied as well, the actual stiffness will be 
larger. 
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