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Introduction to part 1 

Motivation 
In the first years of university education, the mathematical background of structural 
mechanics was mainly based on three basic sets of equations, namely equilibrium, 
compatibility and material behaviour. These sets of equations were solved by so-called direct 
methods. During the basic training, the most important new aspect in the solution procedures 
was the introduction of the concept of virtual work and the virtual work equation. Application 
of this indirect method happened only occasionally. 
 
In part 1 of the course CT5141, the lecture notes of which are presented here, the indirect 
methods or variational methods will be put in a wider context. It will be shown that the virtual 
work equation is a facet of a comprehensive and consistent theory. In the classical structural 
mechanics, two energy principles have always played an important role. They are the 
principle of minimum potential energy and the principle of minimum complementary energy. 
They are related to the displacement method and the force method, respectively. In a 
somewhat different formulation, these two energy principles are known as the two theorems 
of Castigliano. In the past, these methods were taught to provide the engineer with an 
analytical solution method for structural problems that were difficult to solve using direct 
solution procedures. Nowadays, computer programmes are available for many of these 
calculations, which means that analytical skills are less essential. However, indirect methods 
still are important to understand the theoretical background of the programmes. 
 
There is another reason for the discussion of variational methods. The computer has not only 
adopted classical calculation procedures but also introduced new solution procedures such as 
the finite element method (FEM). The basis of this approximation method lies in the 
application of energy principles. 
 

Course contents 
This course is presented in such a manner that variational principles directly follow from the 
triplet: equilibrium equations, constitutive equations and kinematic equations for deformable 
continua. In this triplet, the principle of potential energy replaces the equilibrium equation and 
the principle of complementary energy replaces the kinematic equations. The first and second 
theorems of Castigliano will be derived from the principle of potential energy and from the 
principle of complementary energy, respectively. In this approach it also can be made very 
clear, when the variational principles are valid (valid or not for geometrical non-linear 
problems). 
 
Actually, the derivations should be based on the equilibrium, constitutive and kinematic 
equations valid for three-dimensional continua. In that case the derivations require a lot of 
handwriting, unless the tensor notation is used. Therefore, in these lecture notes the 
derivations are performed for one-dimensional bodies. Then, the generalisation to three-
dimensional bodies can directly be given. 
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Examples 
The text of these lecture notes is quite extensive. The covered theory itself does not require 
such elaboration. A large part of the text consists of calculation examples applying the several 
variational methods. 
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1 Work and some applications 

1.1 Performed work 

It is assumed that the material responds elastically. It is not necessary to adopt linear-elastic 
behaviour. 
A cube of material is considered with a unit volume, which is loaded unaxially by a stress σ  
(see Fig. 1.1). The length 1 increases by an amount ε . The strain ε  develops gradually, 
because the load σ  is applied gently. 

The work performed by this load, is determined as follows. Suppose that at a certain moment 
a load σ  is present, then a small increment dσ  causes the strain to increase by dε (see Fig. 
1.2a). The existing load σ  performs an amount of work equal to dσ εi . Therefore, the total 
amount of work performed equals: 

  ( )

0

withsE d
ε

σ ε σ σ ε′ = =∫  (1.1) 

This is called the deformation energy per unit of volume. This amount of energy is indicated 
by the grey area in the -σ ε  diagram (Fig. 1.2b). Deformation energy is potential energy, 
which is accumulated in the material. 
 

In structural mechanics another concept of energy plays an important role. It is called 
complementary energy indicated by cE′ , it is defined by: 

Fig. 1.1: Uniaxially loaded cube. 

σ
σ

ε

1

1

1

Fig. 1.2: Potential energy. 

σ

ε

σ

ε

dε
a)                                        b) 

dσ
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 ( )

0

withcE d
σ

ε σ ε ε σ′ = =∫  (1.2) 

In Fig. 1.3 the grey area represents the amount of complementary energy. In general, it is not 
easy to give a physical interpretation of the concept of complementary energy. 

1.2 Linear-elasticity 

From now on, only linear-elastic materials will be considered. In this case the deformation 
energy sE′  is equal to the complementary energy cE′ as shown in Fig. 1.4. Hooke’s law then 
describes the constitutive property: 

 
( )

( )

E stiffness formulation

flexibility formulation
E

σ ε

σ

ε

=

=

 (1.3) 

where E is Young’s modulus.   
It holds: 

 1
2sE σε′ =  (1.4) 

With the stiffness formulation of (1.3) this can be rewritten as: 

Fig. 1.4: Energy in a linear-elastic material. 

σ

ε

cE′

sE′

σ

ε

Fig. 1.3: Complementary energy. 
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 21
2sE Eε′ =  (1.5) 

It also holds: 

 1
2cE εσ′ =  (1.6) 

Substitution of the flexibility formulation of (1.3) provides: 

 
21

2cE
E
σ

′ =  (1.7) 

The deformation energy is expressed in strains, and is therefore also called strain energy. The 
complementary energy is expressed in stresses.  

The same principle is applied to a shear stress σ . Again a cube of unit volume is considered 
(Fig. 1.5). A shear stress σ  causes a shear deformation γ . The load acting on a surface of 
unit area (1 1)× , is then displaced over a distance 1γ × . The work done, which is equal to the 
accumulated deformation energy, holds: 

     21 1
2 2sE Gσ γ γ′ = =  (1.8) 

where G is the shear modulus. The complementary energy equals: 

 
21 1

2 2cE
G
σ

γσ′ = =  (1.9) 

Fig. 1.5: Cube of unit volume subjected to a shear stress. 

γ

σ

σ

1γ ×

1

G

G

σ γ

σ
γ

=

=
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For the case of an in-plane loaded plate (Fig. 1.6), a combination of shear stresses and normal 
stresses is present. It can be written: 

 1 1 1
2 2 2s c xx xx yy yy xy xyE E σ ε σ ε σ γ′ ′= = + + →   

 { }
1 1
2 2

T
s xx yy xy xx

yy

xy

E ε ε γ σ

σ

σ

′ = = 
 
 
 
 

ε σ  (1.10) 

 { }
1 1
2 2

T
c xx yy xy xx

yy

xy

E σ σ σ ε

ε

γ

′ = = 
 
 
 
 

σ ε  (1.11) 

where the superscript “ T ” indicates that the associated vector is transposed. Introduction of 
the more general matrix notation for the material properties given by: 

 
( )
( )
stiffness formulation
flexibility formulation

ε

σ

=

=

σ K ε
ε C σ

 (1.12) 

leads to: 

 1     
2

T
sE

ε
′ = ε K ε  (an expression in strains) (1.13) 

 1
2

T
cE

σ
′ = σ C σ  (an expression in stresses) (1.14) 

where 
ε

K  is the material stiffness matrix and 
σ

C  is the material compliance or flexibility 
matrix. 
In three dimensions (Fig. 1.7) the more general expression holds: 

  1 1 1 1 1 1
2 2 2 2 2 2s c xx xx yy yy zz zz xy xy yz yz zx zxE E σ ε σ ε σ ε σ γ σ γ σ γ′ ′= = + + + + +  (1.15) 

xxσ

xyσ

yyσ

Fig. 1.6: Plane stress state.                                 Fig. 1.7: Three-dimensional stress state. 
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and again 1
2

T
sE

ε
′ = ε K ε  and 1

2
T

cE
σ

′ = σ C σ . In this case ε  and σ  are vectors with 6 
components and 

ε
K  and 

σ
C  are square 6 by 6 matrices. 

1.3 Bars 

Analogously to the previously formulated energy relations per unit of volume, for bars 
definitions per unit of length will be introduced. This is done for the four basic cases: 
extension, bending, shear and torsion. 

Extension 
The governing equations are given by (see Fig. 1.8): 

 ( ) ( )NN EA stiffness formulation flexibility formulation
EA

ε ε= ⇔ =  (1.16) 

The potential and complementary energy become: 

 21 1
2 2sE N EAε ε′ = =  (per unit of length) (1.17) 

 
21 1

2 2c
NE N
EA

ε′ = =  (per unit of length) (1.18) 

Bending 
The governing equations are given by (see Fig. 1.9): 

 ( ) ( )MM EI stiffness formulation flexibility formulation
EI

κ κ= ⇔ =  (1.19) 

N N

1 ε

N

ε

cE′

sE′
EA

Fig. 1.8: Beam subjected to extension. 

M

cE′

sE′
EI

κ

MM

κ

Fig. 1.9: Beam subjected to bending. 
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The potential and complementary energy become: 

 21 1
2 2sE M EIκ κ′ = =  (per unit of length) (1.20)  

 
21 1

2 2c
ME M
EI

κ′ = =  (per unit of length) (1.21) 

Shear 
The governing equations are given by (see Fig. 1.10): 

 ( ) ( )sh
sh

VV GA stiffness formulation flexibility formulation
GA

γ γ= ⇔ =  (1.22) 

The potential and complementary energy become: 

 21 1
2 2s shE V GAγ γ′ = =  (per unit of length) (1.23)   

 
21 1

2 2c
sh

VE V
GA

γ′ = =  (per unit of length) (1.24) 

Torsion 
The governing equations are given by (see Fig. 1.11): 

 ( ) ( )t
t t

t

MM GI stiffness formulation flexibility formulation
GI

ϑ ϑ= ⇔ =  (1.25)  

V

γ

cE′

sE′

shGA

Fig. 1.10: Beam subjected to shear. 

γ

V

V

1 

1γ ×

tM

ϑ

cE′

sE′

tGI
tM

tM

ϑ

1 

Fig. 1.11: Beam subjected to torsion. 
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The potential and complementary energy become: 

 21 1
2 2s t tE M GIϑ ϑ′ = =  (per unit of length) (1.26)  

 
21 1

2 2
t

c t
t

ME M
GI

ϑ′ = =  (per unit of length) (1.27)  

1.4 Stiffnesses of bar cross-sections 

For a bar the stiffnesses , ,  and sh tEA EI GA GI  are important. One of the methods used for the 
determination of these stiffnesses is based on an energy approach. In this section this method 
will be discussed, in order to demonstrate that the work-concept sometimes simplifies the 
calculations.  

Axial stiffness EA 
A constant normal stress distribution across the cross-section is assumed (Fig. 1.12). The 
cross-section is square with height d and width b: 

 NN b d
b d

σ σ= → =  (1.28) 

 The complementary energy per unit of bar length equals: 

 
22 2 21 1 1 11

2 2 2 2c

V

N bd NE dV b d
E E bd E Ebd
σ σ  ′ = = × × × = = 

 ∫∫∫  (1.29) 

It also holds (see (1.18)): 

 
21

2c
NE
EA

′ =  (1.30) 

Therefore: 

 E A E b d=  (1.31) 

Of course, this is a trivial result. For the cases of bending, shear and torsion it will be less 
obvious as shown below. 

1 

d
N N

σ

Fig. 1.12: Beam subjected to extension. 
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Bending stiffness EI 
A linear distribution of stresses across the height d is assumed (Fig. 1.13). In the example a 
square cross-section is chosen (width b and height d). The stress distribution is: 

 
ˆ2( ) yy

d
σ

σ =  (1.32) 

The moment M equals: 

 2 2
21

6

1 1
2 2

1 1
2 2

ˆ2 1 ˆ ˆ( )
6

d d

d d

b MM y bydy y dy bd
d bd
σ

σ σ σ

− −

= = = → =∫ ∫  (1.33) 

The complementary energy per unit of bar length is: 

 
2 2 2 2

2
2 31

12

1
2

1
2

ˆ ˆ1 ( ) 2 1 1
2 6 2c

d

V d

y b bd ME dV y dy
E Ed E Ebd

σ σ σ

−

′ = = = =∫∫∫ ∫  (1.34) 

It also holds (see (1.21)): 

 
21

2c
ME
EI

′ =  (1.35) 

From the last two equations it follows: 

 31
12

EI Ebd=  (1.36)  

This is the well-known result for the rectangular cross-section. 

Shear stiffness shGA  
A shear-stress distribution is assumed, which is normally used in the beam theory (Fig. 1.14). 
In a rectangular cross-section (width b, height d) this is a parabolic profile across the height: 

1 

d

M
M

y

σ̂−

σ̂+

Fig. 1.13: Beam subjected to bending. 
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2

2

4 ˆ( ) 1 yy
d

σ σ

 
= − 
 

 (1.37) 

The transverse force V equals: 

 
22

2

1 1
2 2

1 1
2 2

4 2 3ˆ ˆ ˆ( ) 1
3 2

d d

d d

y VV y b dy b dy bd
d bd

σ σ σ σ

− −

 
= = − = → = 

 ∫ ∫  (1.38) 

The complementary energy per unit of bar length is: 

 
22 2 2 2 2

2 5
6

1
2

1
2

ˆ ˆ1 ( ) 4 4 11
2 2 15 2c

d

V d

y b y bd VE dV dy
G G d G Gbd

σ σ σ

−

 
′ = = − = = 

 ∫∫∫ ∫  (1.39)  

It also holds (see (1.24)): 

 
21

2c
sh

VE
GA

′ =  (1.40) 

From the last two equations it follows: 

 5
6shGA Gbd=  (1.41) 

The area shA  is often expressed in A by using: 

Fig. 1.14: Beam subjected to shear. 

1 

d
V

V

y

σ̂

Fig. 1.15:  Shape factors for several cross-sections subjected to shear.  

6 37                                    2                  
5 32 web

A
A

η η η η= = = ≈
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 sh
AA
η

=  (1.42) 

For the rectangular cross section 6
5 1.2η = = . The shape factor η  depends on the shape of the 

cross-section. Fig. 1.15 shows some values of η  for a number of common cross-sections. 

Torsional stiffness tGI  
The energy concept can be used if the shear stress distribution is known. An example is a 
hollow thin-walled cross-section of arbitrary shape (see Fig. 1.16a). The thickness ( )t s  may 

vary along the circumference. The area of the hole in the cross-section is indicated by hA . In 
the thin wall a shear-stream n is generated, which has the same value for all coordinates s. 
Therefore, along the whole circumference, it holds: 

 ( ) ( ) ( )
( )
nn t s s s

t s
σ σ= → =  (1.43) 

The torsional moment tM in this hollow cross-section equals: 

 ( )tM n ds e= ∫� i  (1.44) 

The dot product e dsi  is exactly twice the hatched area hdA  of Fig. 1.16b. Therefore: 

 2 2
2

t
t h h

h

MM n dA nA n
A

= = → =∫�  (1.45) 

The complementary energy cE′  per unit of bar length now is: 

 
22 2 21 ( ) 1 1 1 1( ) 1

2 2 ( ) 2 ( )c

Vol

s n nE dV t s ds ds
G G t s G t s

σ  
′ = = × × = 

 ∫ ∫ ∫� �  (1.46) 

With 2t hn M A=  this becomes: 

Fig. 1.16: Cross-section of a beam subjected to torsion. 

( )t s
n

hA

s

a)                                                    b)

n ds

ds

hdA

e
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2

2
1

42
1
( )

t
c

h

ME
AG

ds
t s

′ =

∫�
 (1.47) 

It also holds (see (1.27)): 

 
21

2
t

c
t

ME
GI

′ =  

From the last two equations, it follows: 

 
24

1
( )

h
t

AI
ds

t s

=

∫�
 (formula of Bredt) (1.48) 

For other cross-sectional shapes, the same approach can be applied, as long as the shear stress 
distribution is known.   
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2 Virtual work equation and principle of 
minimum potential energy 

2.1 Problem definition 

For arbitrary three-dimensional bodies the following equations are valid for the volume V  of 
the body: 

Balance equations 
The balance equations or equilibrium equations read: 

 
, , ,

, , ,

, , ,

0
0
0

xx x yx y zx z x

xy x yy y zy z y

xz x yz y zz z z

P
P
P

σ σ σ

σ σ σ

σ σ σ

+ + + =

+ + + =

+ + + =

 (2.1) 

Constitutive equations 
The constitutive equations in matrix form are: 

 
( )

( )

( )

1 0 0 0
1 0 0 0

1 0 0 01
2 2 1 0 0
2 2 1 0
2 2 1

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

E

ε συ υ

ε συ

ε σ

ε συ

ε συ

ε συ

    
    
    
       

=     
+    

    +
    

+        

 (2.2) 

Written in the inverse form they read: 

 ( )

( )( )
( )

( )

( )

1 0 0 0
1 1

1 0 0 0
1

1 0 0 01
1 21 1 2 20 0

2 1
1 2 20

2 1
1 2 2

2 1

xx xx

yy yy

zz zz

xy xy

yz yz

zx zx

E

υ υ
σ ε

υ υ

υ
σ ε

υ

σ ε

υ

υ
υ υσ ε

υ

υ

σ ε

υ

υ

σ ε

υ

    
    − −
    
    

−    
    
   −     

=    −+ −    
−    

−    
    −
    −
   −       




 (2.3) 

Kinematic equations 
The kinematic or strain displacement relations are: 

symmetrical 

symmetrical 



 20

 
, , ,

, , ,

, , ,

2
2
2

xx x x xy x y y x

yy y y yz y z z y

zz z z zx z x x z

u u u
u u u
u u u

ε ε

ε ε

ε ε

= = +

= = +

= = +

 (2.4) 

Kinematic boundary conditions 
The kinematic boundary conditions on the part uS  of the surface read: 

 on 

o
x x

o
y y u

o
z z

u u
u u S
u u

=


= 
= 

 (2.5) 

where o
xu , o

yu  and o
zu  are prescribed values. 

Dynamic boundary conditions 
The dynamic boundary conditions on the part pS  of the surface equal: 

 on 
xx x yx y zx z x

xy x yy y zy z y p

xz x yz y zz z z

e e e p
e e e p S
e e e p

σ σ σ

σ σ σ

σ σ σ

+ + =


+ + = 
+ + = 

 (2.6) 

where xp , yp  and zp  are prescribed surface loads and xe , ye  and ze  are the components of 
the unit outward-pointing normal on the surface. 

Tensor notation 
All equations above can be rewritten in tensor notation as: 

  

( )

,

, ,

0

in 
1
2

ij i j

ij ijkl kl

ij i j j i

P
K V

u u

σ

σ ε

ε

+ = 

=



= + 

 (2.7) 

The boundary conditions expressed in tensor notation are: 

 
on 
on 

o
i i u

i ij j p

u u S
e p Sσ

=

=

 (2.8) 

In above equations , 1,2,3i j =  and summation convention has to be applied. 
 
From now on all derivations are restricted to the special one-dimensional continuum, where 
only xu , xP , xp , xxε  and xxσ  are different from zero. Since no confusion may arise anymore, 
the indices are left out of the variables and the notations u , P , p , ε  and σ  are used. 
The cross-section of the one-dimensional body is chosen such that it has unit area. Integration 
over the volume of the body is then reduced to integration over its length. The surface S , 
being the sum of uS  and pS , now consists out of both ends of the body (see Fig. 2.1). The 
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numbers 1 and 2 tag the left and right side, respectively. At one of these ends, the 
displacement may be prescribed. That cross-section then forms the part uS  of S , while the 
other end forms the part pS . When at both ends a displacement is prescribed, uS  coincides 

with S and there is no part pS .  
The relations (2.1) up to (2.6) can be simplified to: 

 , 0x Pσ + =  (balance equation) (2.9) 
 Eσ ε=  (constitutive equation) (2.10) 
 ,xuε =  (kinematic equation) (2.11) 

 0ou u− =  (kinematic boundary condition) on uS  (2.12) 
 0e pσ− + =  (dynamic boundary condition) on pS  (2.13) 

2.2 The method of weighted residuals 

It is assumed that the kinematic relation in V  and the boundary condition on uS  are satisfied. 
In first instance, in V  and on pS  stress fields are assumed that do not necessarily satisfy 
equilibrium. It then holds: 

 , in 
on 

x

p

P R V
e p r S

σ

σ

+ =

− + =

 (2.14) 

where R  and r  are the so-called residuals. For the exact solution, these residuals have to be 
zero. This condition is fulfilled if for every kinematic admissible displacement field u  the 
following relation is satisfied: 

in V






x

( )  ( )P x u x1 1  p u 2 2  p u

e�

1 1

1
0

e
pσ

= −

+ = 2 2

           1
0

e
pσ

=

− + =

Fig. 2.1: One-dimensional body. 
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 0

pV S

R u dV r u dS+ =∫∫∫ ∫∫  (2.15) 

Such a field is kinematic admissible if it is zero on uS  where the displacements have been 
prescribed and if it satisfies the kinematic relations in V . 

For the displacement field u  a variation uδ  on the real displacement field is chosen (also see 
Fig. 2.2). This idea was already used when the concept of virtual displacement was discussed. 
The condition (2.15) now becomes: 

 0

pV S

R u dV r u dSδ δ+ =∫∫∫ ∫∫  (2.16) 

The requirement that this condition has to hold for every arbitrarily admissible variation uδ , 
can only be satisfied if the following relations are valid: 

 
0 in 
0 on p

R V
r S
=

=

 (2.17) 

Accordingly, condition (2.16) prescribes that exact equilibrium is required. The requirement 
that the “weighted residuals” have to be zero for all kinematically admissible variations of the 
displacement field is therefore a full replacement of the equilibrium conditions.  

2.3 The equation of virtual work 

Relation (2.16) will be reformulated. Firstly (2.14) is substituted, leading to: 

 ( ) ( ), 0x

pV S

P u dV e p u dSσ δ σ δ+ + − + =∫∫∫ ∫∫  (2.18) 

The volume integral with integrand ,x uσ δ  can be integrated by parts, i.e.: 

( )u x

( )u x

( )u xδ

ou

uS pS
x

Fig. 2.2: Kinematically admissible displacement field. 
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�

, , 1 1 2 2x x

IIIV V

u dV u dV u uσ δ σδ σ δ σ δ= − − +∫∫∫ ∫∫∫ �������

 (2.19) 

The two terms indicated by I  and II  will be rephrased. Term II  can be rewritten as: 

 1 1 2 2 1 1 1 2 2 2

pS

u u e u e u e u dSσ δ σ δ σ δ σ δ σδ− + = + = ∫∫  (2.20) 

where S  is the area of the entire surface, which is the sum of uS  and pS . Because of the 
choice that uδ  is zero on uS , this part of the surface integral vanishes. Therefore, (2.20) can 
be rewritten as: 

  1 1 2 2

pS

u u e u dSσ δ σ δ σδ− + = ∫∫  (2.21) 

The virtual displacement ,xuδ (term I  in (2.19)) can be replaced by δε . After all, if uδ  is a 
variation of the displacement u , then ,xuδ  is a variation of the strain ε , i.e.: 

 ,xuδε δ=  (2.22) 

Combination of (2.18), (2.19), (2.21) and (2.22) finally leads to: 

 0

pV V S

dV P u dV p u dSσδε δ δ− − =∫∫∫ ∫∫∫ ∫∫  (2.23) 

This expression is the virtual work equation for a deformable body. The relation has been 
derived directly from the balance equation and the dynamic boundary condition. Since no 
constitutive conditions have been used, this relation is valid in the plastic range too.  
It now also becomes clear why the variation of uδ  is set to zero on the part of the surface 
where u  is prescribed, because otherwise in the virtual work equation also unknown support 
reactions p  on uS  would appear.  

Example 
In spite of the fact, that the virtual work equation (2.23) is a preliminary result, already an 
application of the equation can be shown. The formulation in which it is presented is new, the 
application however is not. It can be used to calculate internal stresses or stress resultants in a 
statically determinate structure.  
As an example, the overhanging truss as shown in Fig. 2.3 is considered. The normal N  has 
to be determined in the bar of upper side adjacent to the support. On basis of the equilibrium 
of moments about point A  it is known that 2N F= .  
The principle of virtual work will be applied in two manners. In the first method the bar is 
imaginarily cut in half and the two cutting edges are displaced with regard to each other over 
a distance eδ  (see Fig. 2.4a). The formed mechanism causes the point load F  to displace 
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over a distance uδ . From the geometry of the structure, it follows that 2u eδ δ= . The virtual 
work equation then becomes: 

 2 2N e F u N e F e N Fδ δ δ δ= → = → =i i i i  

In the second method the following approach is adopted. The virtual work equation is used in 
the form given by (2.23). A virtual displacement field is chosen, which is uniquely defined in 
each point of the truss and still produces a mechanism. This can be achieved by a rigid body 

rotation about point A  of the part of the truss situated at the right side of line-piece AB (see 
Fig. 2.4b). All displacements are expressed in the virtual displacement of load F . From 
geometrical considerations, the horizontal displacement Buδ  of node B  appears to be: 

 1
2Bu uδ δ=  

Between the nodes C  and B  a linear displacement field is assumed, being equal to 0 in C  
and Buδ  in B, i.e.: 

Fig. 2.3:  Overhanging truss. 

N

a a a

a

F
A

Fig. 2.4: Virtual displacements of the truss. 
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 ( )
2B

x xu x u u
a a

δ δ δ= =  

For the chosen mechanism, the strains in all bars with the exception of bar CB  are zero. 
Therefore, the first integral of (2.23) becomes:  

 
0

a

V

dV N dxσδε δε=∫∫∫ ∫  

For δε  it follows: 

 ,
1

2xu u
a

δε δ δ= =  

The virtual work equation can now be written as: 

 
0 0

1 10 0 0
2 2

a a

N dx F u N u dx F u N F u
a

δε δ δ δ δ
 

− = → − = → − = 
 ∫ ∫  

This result should hold for every virtual displacement uδ , this means that above equation 
only can be satisfied if the term between brackets is equal to zero. Therefore: 

 2N F=  

which is the required solution. 

2.4 The principle of minimum potential energy 

From now on only elastic materials will be considered. Further, it is assumed that the loads on 
the structures are conservative in nature. The effect of these conditions is that no energy is 
dissipated. 
From now on, the constitutive equation plays a role too. For an elastic material the stress σ  
can uniquely be expressed in the strain ε : 

 ( )σ σ ε=  (2.24) 

The deformation energy per unit of volume sE′  is defined by: 

 
0

sE d
ε

σ ε′ = ∫  (2.25) 

and inversely the stress σ  can be written as: 

 sdE
d

σ

ε

′
=  (2.26) 
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The integral over the volume of sE′  is indicated by sE . A variation uδ is accompanied by a 
variation of the deformation energy: 

 s
s s

dEE E
d

δ δε δ σ δε
ε

′
′ ′= → =  (2.27) 

In Fig. 2.5, this has been displayed graphically. The volume integral in the virtual work 
equation (2.23) is exactly equal to the variation sEδ  of the potential energy accumulated in 
the material.  
There is another form of potential energy, namely pE  of the position of the external loads. 
The potential of a distributed load per unit of volume P  during a displacement u  decreases 
by the amount P  times u . For a variation uδ  of the displacement, per unit of volume it 
holds: 

 pE P uδ δ= −  

For the entire load P  in the volume V  and p  on the surface pS , it follows: 

 p

pV S

E P u dV p u dSδ δ= − −∫∫∫ ∫∫     (2.28) 

With the results (2.27) and (2.28) the virtual work equation can be interpreted as the condition 
that the potential energy potE  has to be stationary with respect to variations of u : 

 0potEδ =  (2.29) 

or: 

 

p

pot s

s p

V V S

E E

E E dV P u dV p u dS′= − −∫∫∫ ∫∫∫ ∫∫
����������������

            (stationary) (2.30) 

Fig. 2.5: Deformation energy. 

σ

σ

ε δε

ε

sE′ sEδ ′
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It can be shown that the stationary value of potE  is a minimum (see Fig. 2.6). Additionally the 
value of potE  is negative. 
Many problems can be solved by assuming that a linear-elastic material is applicable, for 
which Hooke’s law is valid (Fig. 2.7): 

 21;
2sE E Eσ ε ε′= =  

The expression for the potential energy then becomes: 

 21
2pot

pV V S

E E dV Pu dV pu dSε= − −∫∫∫ ∫∫∫ ∫∫  (stationary) (2.31)  

Example 
A bar with cross-section A , length l  and modulus of elasticity E  is loaded at one end by a 
compressive force 1F . The bar is restrained at the other end as shown in Fig. 2.8. The 
displacement of the free end is 1u . From the displacement 1u , the strain can be obtained 
which is uniformly distributed over the volume: 

 1u
l

ε = −  

The deformation energy equals: 

 
2

21
1

1 1
2 2s

V

u EAE E dV u
l l

 
= − = 

 ∫∫∫  

    Fig. 2.6: Minimum of potential energy.                 Fig. 2.7: Linear-elastic material. 

potE

u uδ

u

σ

ε

sE′

lx

1 1     F u
Eσ ε= N EAε=

ε ε

sE′ sE′

Fig. 2.8: Bar loaded by a compressive force. 
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Starting from the stress resultant N A EAσ ε= =  the same result is obtained: 

 
2

2 21
1

0 0

1 1 1 1 1
2 2 2 2 2s

l l

V

u EAE N dV N Adx EA dx EA l u
l l

ε ε ε
 

= = = = − = 
 ∫∫∫ ∫ ∫  

For the energy of position it holds: 

 1 1pE Fu= −  

So that the potential energy is: 

 2
1 1 1

1
2pot

EAE u F u
l

= −  

For equilibrium it is required that: 

 1 1 1 1 1 1
1

0pot
pot

dE EA EAE u u F u F u
du l l

δ δ δ
 

= = − = → = 
 

 

The value of potE  in this state of equilibrium is: 

 2 2
1 1 1 1

1 1
2 2pot

EA EA EAE u u u u
l l l

 
= − = − 

 
 

Indeed, the value of potE  is negative. To demonstrate that this value is a minimum, the second 
derivative is investigated. It is found: 

 
2 2

2
1 1 12 2

1 1

1
2

potd E d EA EAu Fu
du du l l

 
= − = 

 
 

So, the second derivative is positive for each arbitrary value of 1u . Therefore, the stationary 
value of potE  (for which equilibrium occurs) is a minimum.  

2.5 The principle of minimum potential energy in three dimensions 

The potential energy expression (2.31) is derived for the one-dimensional case, only 
containing the stress xxσ , the volume load xP  the surface load xp , the displacement xu  and 
the strain xxε . Since no confusion could arise, the indices were removed. 
The more general three-dimensional derivation provides a similar expression. Before this 
relation can be written down, firstly a number of vectors have to be introduced: 
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 ; ; ; ;
2
2
2

xx xx

yy yy
x x x

zz zz
y y y

xy xy
z z z

yz yz

zx zx

P p u
P p u
P p u

σ ε

σ ε

σ ε

σ ε

σ ε

σ ε

   
   
         
            

= = = = =         
         

        
   
      

σ ε P p u  (2.32) 

The relation between stresses and strains is given by: 

 
ε

=σ K ε  (2.33) 

where 
ε

K is the stiffness matrix already introduced in (2.3). The virtual work equation (2.23) 
for this case reads: 

 0T T T

pV V S

dV dV dSδ δ δ− − =∫∫∫ ∫∫∫ ∫∫ε σ u P u p  (2.34) 

where the superscript “T ” indicates that the associated vector is transposed. The expression 
(2.31) for the potential energy of a linear-elastic body becomes: 

 1
2

T T T
pot

pV V S

E dV dV dS= − −∫∫∫ ∫∫∫ ∫∫εε K ε u P u p   (stationary) (2.35) 

2.6 The displacement method 

The application of the principle of minimum potential energy actually boils down to the fact 
that in the triplet: 
 
• kinematic equations 
• constitutive equations (2.36) 
• balance equations 

 
the last one is replaced by the condition that the potential energy has to be stationary, 
changing the triplet into: 
 
• kinematic equations 
• constitutive equations (2.37) 
• potential energy stationary 
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When the equations in the triplet are successively evaluated, the strategy of the displacement 
method is followed. When a compatible displacement field is assumed, then the potential 
energy is a function of that displacement field. Variation with respect to that displacement 
field provides the balance equations expressed in the displacements.  

Example 
As an example a truss is considered with two degrees of freedom xu  and yu  as shown in Fig. 
2.9. The bars are loaded by normal forces only. The external load consists out of two point 
forces xF  and yF . The axial stiffness and the length of the three bars are different. For 

comparison, the calculation is carried out in two manners. Firstly, a solution is obtained by a 
direct method and secondly the principle of minimum potential energy is applied.  
 
Direct method 
The kinematic, constitutive and balance equations respectively are: 
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 (kinematic equations) 
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 (constitutive equations) 

Fig. 2.9: Structure with two degrees of freedom. 
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1 2

2 3

4
5

3
5

x

y

N N F

N N F


+ = 


+ =


 (balance equations) 

By downward substitution the balance equations are transformed into: 

 ( ) ( )41 12 ; 12 34
25 25x y x x y y
EA EAu u F u u F

l l
+ = + =  

For the sake of simplicity a special load case is chosen: 

 94 ; 58x yF F F F= =  

This provides the following solution: 

 50 ; 25x y
Fl Flu u
EA EA

= =  

For the normal force it can be derived: 

 1 2 350 ; 55 ; 25N F N F N F= = =  

Variational method 
In the variational method, the same kinematic and constitutive equations are used. The 
balance equations are replaced by the minimisation of the potential energy equation: 

 

( )

2 2 2
1 1 2 2 3 3

0 0

2 22

2 2

31 2

0

1 1 1
2 2 2

1 4 4 1 1 3 35 4 3 5
2 5 5 2 2 5 54 5 5 3

41 24 34
50

pot x x y y

y yx x
pot x x y y

pot x x y y x x y y

ll l

E EA dx EA dx EA dx F u F u

u uu uE EA l EA l EA l F u F u
l l l l

EAE u u u u F u F u
l

ε ε ε= + + − − →

    = + + − − →+     
     

= + + − −

∫ ∫ ∫

   

Variation with respect to xu  and yu  delivers:  

 ( ) ( )41 12 0 ; 12 34 0
25 25

pot pot
x y x x y y

x y

E EEA EAu u F u u F
u l u l

∂ ∂
= + − = = + − =

∂ ∂
 

These equations are identical to the ones derived with the direct method. Therefore, the same 
solution is found. 
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2.7 Validity of the virtual work equation 

In the form given by (2.23), the virtual work equation is valid for both elastic and plastic 
materials. After all, the constitutive equation has not been used in the derivation! The virtual 
work equation is valid for geometrical non-linear problems as well, where for example in the 
expression for the strains also terms are present that are quadratic in the displacements: 

 ( ) ( ) ( )
22 2

, , , ,
1 1 1
2 2 2xx x x x x y x z xu u u uε = + + +  (2.38)  

A small variation of the displacement field leads to a variation of the strain equal to: 

 ( ) ( ) ( )
22 2

, , , ,
1 1 1
2 2 2xx x x x x y x z xu u u uδε δ δ δ δ= + + +  (2.39) 

If the variations are small, then the last three terms are an order of magnitude smaller than the 
first term. Therefore for this case, it also holds: 

 ,xx x xuδε δ=  (2.40) 

This relation also has been used in the derivation of the virtual work equation, which means 
that it keeps its validity for geometrical non-linear problems. 
 
In summary, the principle of minimum potential energy was obtained by assuming that a 
unique relation exists between stresses and strains. Therefore, this principle is only valid for 
elastic media. However, for geometrical non-linear elastic problems the principle is valid too. 
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3 Complementary virtual work equation and principle of 
minimum complementary energy 

3.1 Starting points 

Again, a one-dimensional continuum is considered, as used in chapter 2. As defined before, 
only the variables xu , xP , xp , xxε  and xxσ  are different from zero. Also in this case, the 
indices x  are left out of the variables (see Fig. 3.1). 

The cross-section of the one-dimensional body is chosen such that it has unit area. The 
relations for this body are (also see (2.9) up to (2.13)): 

 , 0x Pσ + =  (balance equation) (3.1) 

 1
E

ε σ=  (constitutive equation) (3.2) 

 ,xuε =  (kinematic equation) (3.3) 

 0ou u− =  (kinematic boundary condition) on uS  (3.4) 
 0e pσ− + =  (dynamic boundary condition) on pS  (3.5) 

Note that the constitutive equation is presented in flexibility formulation, while in chapter 2 
this was done in stiffness formulation. 

3.2 The method of weighted residuals 

It is assumed that the balance equation in V  and the dynamic boundary conditions on pS  are 
satisfied. In first instance, in V  and on pS  displacement fields are assumed, which not 
necessarily do satisfy the kinematic relation and the kinematic boundary condition. It then 
holds: 

in V







x

( )  ( )P x u x1 1  p u 2 2  p u

e�

1 1

1
0

e
pσ

= −

+ = 2 2

           1
0

e
pσ

=

− + =

Fig. 3.1: One-dimensional body. 
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 , in 
on 

x
o

u

u R V
u u r S
ε − =

− =

 (3.6) 

where R  and r  are the residuals. For the exact solution, these residuals have to be zero. This 
condition is fulfilled if for every statically admissible stress field σ  the following relation is 
satisfied: 

 0

uV S

R dV r p dSσ + =∫∫∫ ∫∫  (3.7) 

Such a field is statically admissible if it is zero on pS  where the stresses have been prescribed 
and if it satisfies the homogeneous balance equation in V . 

For the stress field σ  a variation δσ  on the real stress field is chosen (also see Fig. 3.2). That 
these stresses satisfy the requirements of a statically admissible stress field can easily be 
shown. Since the balance equation has to be satisfied all the time, for the volume V  the 
following variation has to be satisfied: 

 
( )

,
,

,

0
0 in 0

x
x

x

P
VP

σ
δσ

σ δσ

+ = 
→ =+ + = 

 (3.8) 

On the surface pS  it holds: 

 
( )

0
0 0 on 

0 p

e p
e p S

e p
σ

δσ δ
σ δσ

− + = 
→ = → =

− + + = 
 (3.9) 

The concept δσ  is called a virtual stress. The condition (3.7) now becomes: 

 0

uV S

R dV r p dSδσ δ+ =∫∫∫ ∫∫  (3.10) 

The requirement that this condition has to hold for every arbitrarily admissible variation δσ , 
can only be satisfied if the following relations are valid: 

( )xσ

( )xσ

( )xδσ

p
uS pS

x

Fig. 3.2: Dynamically admissible stress field. 
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0 in 
0 on u

R V
r S
=

=

 (3.11) 

Therefore, the condition (3.10) prescribes that exact compatibility is required. The 
requirement that the “weighted residuals” have to be zero for all statically admissible 
variations of the stress field is therefore a full replacement of the compatibility conditions.  

3.3 The equation of complementary virtual work 

Relation (3.10) will be reformulated. Firstly (3.6) is substituted, leading to: 

 ( ) ( ), 0x

uV S

u dV u u p dSε δσ δ− + − =∫∫∫ ∫∫ �  (3.12) 

The volume integral with integrand , xu δσ−  can be integrated by parts, i.e.: 

   , , 2 2 1 1x x

V V

u dV u dV u uδσ δσ δσ δσ− = − +∫∫∫ ∫∫∫  (3.13) 

The last two terms can be rewritten as: 

 2 2 1 1 2 2 1 1

uS

u u u p u p u p dSδσ δσ δ δ δ− + = − − = −∫∫  (3.14) 

where S  is the area of the entire surface, which is the sum of uS  and pS . Because of the 
choice that pδ  is zero on pS , this part of the surface integral vanishes. Therefore, (3.14) can 
be rewritten as: 

  2 2 1 1

uS

u u u p dSδσ δσ δ− + = −∫∫  (3.15) 

Further, the volume integral of the right-hand side of (3.13) is equal to zero, because of the 
choice that , xδσ  is equal to zero in V . With (3.13) and (3.15) the principle (3.12) becomes: 

 0

uV S

dV u p dSεδσ δ− =∫∫∫ ∫∫ �  (3.16) 

This expression is the complementary virtual work equation for a deformable body. The 
relation has been derived directly from the compatibility conditions. Now, it also becomes 
clear why a variation of the stress field is required that satisfies the conditions (3.8) and (3.9), 
because otherwise unknown displacements u  in V  and on pS  would persist in the equation. 
Comparison with (2.23) makes it clear why (3.16) is called the complementary energy 
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equation. The roles of σ  and ε  are exchanged in the volume integral, and the contributions 
of P  and p  are replaced by the known displacement ou .  

Example 
The complementary virtual work equation (3.16) is just like the virtual work equation (2.23) a 
preliminary result. However, in this form it already can be applied. It can be used for the 
calculation of displacements when the internal stresses or stress resultants are known. The 
same overhanging truss will be considered, as used in the example with the application of the 
virtual work equation (2.23). All bars have the same axial stiffness EA . 

The given load F  generates normal forces in the bars as displayed in Fig. 3.3. The 
displacement u  is the result of the load F . But as a line of thought it also can be stated that a 
prescribed displacement u  actually causes the support reaction F  and all indicated normal 
forces in the bars. The virtual stresses are chosen to be the increase Fδ  of this support 
reaction and the resulting increased normal forces. This delivers a statically admissible stress 
field. In all freely movable nodal point directions equilibrium is satisfied, except where the 
displacement is prescribed. Application of (3.16) now provides: 

 � �

( )

all bars
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 
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 

∑

��������������  

This has to hold for every variation 0Fδ ≠ , i.e.: 

 ( )21 6 2aFu
EA

= +  

The same value would have been found from a Williot diagram. 
 

Fig. 3.3:  Overhanging truss. 
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3.4 The principle of minimum complementary energy 

Again, only elastic materials and applied conservative loads will be considered. Also the 
constitutive equation will be introduced. In chapter 2 the deformation energy per unit of 
volume sE′  was introduced as a function of ε : 

 
0

sE d
ε

σ ε′ = ∫  (3.17) 

where the stress σ  is a function of the strain ε : 

 ( )σ σ ε=  (3.18) 

Now it is meaningful to define a complementary energy per unit of volume cE′  according to: 

 ( )c sE Eσε ε′ ′= −  (3.19) 

where in this case the strain ε  is a function of the stress σ : 

 ( )ε ε σ=  (3.20) 

The variation of this complementary energy caused by a variation of the stress field equals: 

 c
c

dEE
d

δ δσ
σ

′
′ =  (3.21) 

During the determination of cdE dσ′  from (3.19) one should realise that ε  is a function of σ  
and that sE′  is a function of ε  (and through (3.20) also a function of σ ): 

 c s sdE d dE d dE d
d d d d d d

ε ε ε

ε σ ε σ

σ σ ε σ ε σ

′ ′ ′ 
= + − = + − 

 
 

Introduction of  (2.26) given by: 

 sdE
d

σ

ε

′
=  

provides: 

 cdE
d

ε

σ

′
=  (3.22) 

From (3.21) it now follows: 

 cEδ ε δσ′ =  (3.23) 

For cE′  per unit of volume it also can be written: 
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0

cE d
σ

ε σ′ = ∫  (3.24) 

Then, for the total volume it holds:  

 c c

V

E E dV′= ∫∫∫   (3.25) 

This has been displayed in Fig. 3.4.  
The volume integral in the complementary virtual work equation (3.16) is in view of (3.23) 
just equal to the variation cEδ  of the complementary energy cE  accumulated in the material. 
For the total structure the complementary energy complE  can now be defined as follows: 

 o
compl c

u
o

c c

V S

E E

E E dV pu dS′= −∫∫∫ ∫∫
����������

 (3.26) 

The complementary virtual work equation can be interpreted as the condition that the 
complementary energy complE  is stationary for variations of σ : 

 0complEδ =  (3.27) 

It can be shown that the stationary value of complE  is a minimum (see Fig. 3.5). Additionally, 
the value of complE  is negative. 
For the special case involving linear-elastic media the expression (3.26) can be developed a 
bit further. Hooke’s law is applied in its flexibility formulation (Fig. 3.6): 

 21 1 1;
2cE

E E
ε σ σ′= =  

Fig. 3.4: Complementary energy. 

σ

σ

ε

δσ

ε

cE′

cEδ ′
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The expression for the complementary energy then becomes: 

 21 1
2

o
compl

uV S

E dV pu dS
E
σ= −∫∫∫ ∫∫  (stationary) (3.28)  

Example 
The same bar of the example in section 2.4 is considered, which was analysed with the 
principle of minimum potential energy. The bar has cross-section A , length l  and modulus of 
elasticity E  and is loaded at the free end by a compressive force 1F , which causes a 
displacement 1u  (see Fig. 3.7). Requested is the relation between 1F  and 1u . 
In order to be able to apply the principle of minimum complementary energy the next line of 
thought is followed. The left end of the bar is not considered as a free end with a given load 

1F , but as the end where the displacement 1u  is prescribed. For this given 1u  the support  
 

reaction 1F  is calculated. Although uS  only consists out of the right end of the bar, this 
surface is artificially extended with the left end. The calculation is then as follows. 
No volume load P  is present so that σ  has to be constant in order to satisfy the balance 
equation in V . So, there is only one stress parameter σ . The force 1F  and the stress resultant 
N  can be expressed in this σ  on basis of equilibrium: 

lx

1 1     F u
Eσ ε= N EAε=

ε ε

cE′ cE′

Fig. 3.7: Bar loaded by a compressive force. 

complE

σ δσ

σ

    Fig. 3.5: Minimum of complementary energy.                Fig. 3.6: Linear-elastic material.

σ

ε

cE′
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 1 ;F A N Aσ σ= − =  

One of the variables σ , N  or 1F  can be chosen as the fundamental unknown. In this case the 
choice is 1F . 
The complementary energy cE  is: 

 2 2
1

1 1
2 2c c

lE Al E F
E EA
σ= → =  

Consequently, the total complementary energy is: 

 2
1 1 1 1 1

1
2compl c

lE E F u F F u
EA

= − = −  

Variation with respect to 1F  delivers: 

 1 1 1 1 1
1

0compl
compl

dE l lE F F u F u F
dF EA EA

δ δ δ
 

= = − = → = 
 

 

This is the same result as found in section 2.4.  
Substitution of the found relation for 1u  in: 

 2
1 1 1

1
2compl

lE F F u
EA

= −  

delivers: 

 2 2
1 1 1 1

1 1
2 2compl

l l lE F F F F
EA EA EA

 
= − = − 

 
 

which is negative and a minimum. The minimum can be confirmed by determination of the 
second derivative of complE  with respect to 1F , followed by substitution of the value of 1F  that 
makes complE  stationary: 

 
2 2

2
1 1 12 2

1 1

1 0
2

complE l lF u F
F F EA EA

∂ ∂  
= − = > 

∂ ∂  
 

3.5 The principle of minimum complementary energy in three dimensions 

The complementary energy expression (3.28) is derived for the one-dimensional case. The 
more general three-dimensional derivation provides a similar expression. Before this relation 
can be written down, the following vectors are introduced: 
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 ; ; ;
2
2
2

xx xx

yy yy o
x x

zz zz o o
y y

xy xy o
z z

yz yz

zx zx

p u
p u
p u

σ ε

σ ε

σ ε

σ ε

σ ε

σ ε

   
   
      
          

= = = =       
       

      
   
      

σ ε p u  (3.29) 

For the constitutive relations between stresses and strains the flexibility formulation is used: 

 
σ

=ε C σ  (3.30) 

where 
σ

C  is the compliance matrix, which is the inverse of the stiffness matrix 
ε

K . The 
complementary work equation can now be written down as: 

 0T T o

uV S

dV dSδ δ− =∫∫∫ ∫∫σ ε p u  (3.31) 

The expression (3.28) for the complementary energy of a linear-elastic body becomes: 

 1
2

T T o
compl

uV S

E dV dS
σ

= −∫∫∫ ∫∫σ C σ p u   (stationary) (3.32) 

The volume integral is the deformation work. In many cases the surface integral will be zero, 
because in practical problems for the supports it holds o

=u 0 . In literature this specific case 
is referred to as the principle of minimum deformation work. 

3.6 The force method 

The application of the principle of minimum complementary energy actually amounts to it, 
that in the triplet: 
 
• balance equations 
• constitutive equations (3.33)  
• kinematic equations 

 
the last one is replaced by the condition that the complementary energy has to be stationary, 
changing the triplet into: 
 
• balance equations 
• constitutive equations (3.34) 
• complementary energy stationary 
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When the equations in the triplet are successively evaluated the strategy of the force method 
is followed. A stress field is assumed that still contains one or more redundants (statisch 
onbepaalden), which is in equilibrium with the external load. Then the complementary energy 
is a function of this stress field. By variation with respect to the redundants of this stress field, 
the compatibility conditions are obtained, which are expressed in the stresses.  

Example 
The same example will be used as analysed by the displacement method in section 2.6. In that 
example the truss was treated as a structure with two degrees of freedom. Here the truss will 
be considered as a structure being statically indeterminate to first degree (see Fig. 3.8).  

For comparison, the calculation will firstly be carried out directly without the use of 
variational methods. 
 
Direct method 
The same kinematic, constitutive and balance equations are used: 

 

1

2

3

5
4
4 3
5 5
5
3

x

yx

y

u
l

uu
l l

u
l

ε

ε

ε


= 




= + 



= 


 (kinematic equations) 

 

1 1

2 2

3 3

5 1
4

1

5 1
3

N
EA

N
EA

N
EA

ε

ε

ε


= 




= 



= 


 (constitutive equations) 

1

2 3

3 3,
5 5

EA l

4 4,
5 5

EA l

,EA l

xF

3sin
5
4cos
5

94
58

x

y

F F
F F

α

α

=

=

=

=

yF

α

Fig. 3.8: Structure with two degrees of freedom. 
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1 2

2 3

4
5

3
5

x

y

N N F

N N F


+ = 


+ =


 (balance equations) 

The force method begins by setting up an internal force distribution that satisfies the balance 
equations. The bar force 2N is introduced as the redundant ϕ . Then the equilibrium equations 
can be solved for 1N  and 3N : 

 1 2 3
4 3; ;
5 5x yN F N N Fϕ ϕ ϕ= − = = −  

Thus, the bars 1 and 3 form the statically determinate primary system. The deformations 
follow from the constitutive equations: 

 1 2 3
1 5 1 1 5; ;

4 3x yF F
EA EA EA

ε ϕ ε ϕ ε ϕ
   

= − = = −   
   

 

Using a compatibility condition the redundant can be solved. The values of the three 
deformations 1ε , 2ε  and 3ε  cannot be changed independently. There is a dependency the 
relation of which can be obtained from the kinematic equations, by elimination of the degrees 
of freedom xu  and yu . This can be done by addition of the three equations after they have 
been multiplied by respectively the following factors: 

 
2 24 3; 1 ;

5 5
   

−   
   

 

This delivers: 

 1 2 3
16 9 0
25 25

ε ε ε− + =  

In this compatibility condition the previously found relation between 1 2 3, ,ε ε ε  and ,F ϕ  is 
substituted: 

 1 16 5 9 5 1 4 30 2 0
25 4 25 3 5 5x y yF F F F

EA EA
ϕ ϕ ϕ ϕ

      
− − + − = → + − =      

      
 

So, for the redundant ϕ  it follows: 

 2 3
5 10x yF Fϕ = +  

In this example the force components are: 

 94 ; 58x yF F F F= =  
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Therefore: 

 55Fϕ =  

The normal forces then become: 

 1 2 3
4 394 50 ; 55 ; 58 25
5 5

N F F N F N F Fϕ ϕ= − = = = − =  

This is the same solution as found by the displacement method. In this example the values for 
xu  and yu directly follow from the kinematic relations: 

 
1

3

4 4 1 235 55 50
5 5 2

3 3 1 290 55 25
5 5 3

x

y

Flu l l F F
EA EA

Flu l l F F
EA EA

ε

ε

 
= = − = 

 

 
= = − = 

 

  

Variational method 
In the variational method the compatibility condition is replaced by the minimisation of the 
complementary energy. Because no prescribed displacements different from zero are present, 
it holds:  

 2 2 2
1 2 3

1 2 3

31 2

0 0 0

1 1 1
2 2 2compl

ll l

E N dx N dx N dx
EA EA EA

= + +∫ ∫ ∫  

In this case the expression for the deformation work becomes: 

 

2 2
2

2 2 2

1 5 1 4 1 1 1 5 1 34 3
2 4 5 2 2 3 55 5
1 1 8 6 2
2 5 5

compl x y

compl x y x y

E l l lF F
EA EA EA

E F F F F
EA

ϕϕ ϕ

ϕ ϕ

   
= + + →− −   

   

  
= + − + +  

  

   

Variation with respect to ϕ  delivers: 

 1 8 6 4 0
2 5 5

compl
x y

E l F F
EA

ϕ
ϕ

∂  
= − − + = 

∂  
 

where 95xF F=  and 58yF F= , leading to: 

 55Fϕ =  

This result was found by the direct method too. Therefore, the normal forces are the same too. 
When the displacements are required as well, xu  and yu  can be considered as prescribed 
displacements and xF  and yF  as support reactions. Then two extra redundants are introduced 
and it can be written: 
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( )

2 2
2

2 2 2

1 4 3
2 5 5

1 8 6 2
2 5 5

compl x y x x y y

compl x y x y x x y y

lE F F u F u F
EA

lE F F F F u F u F
EA

ϕ ϕ ϕ

ϕ ϕ

     
= − + + − − − →    

     

  
= + − + + − −  

  

 

where ϕ , xF  and yF  are the redundants. 
Variation with respect to ϕ , xF  and yF  respectively gives: 

 8 6 4 34 0 ; 0 ; 0
5 5 5 5x y x x y y

l lF F F u F u
EA EA

ϕ ϕ ϕ
     

− + + = − − = − − =     
     

 

From the first relation, with 94xF F=  and 58yF F= it follows again: 

 55Fϕ =  

and from the second and third equation: 

 50 ; 25x y
Fl Flu u
EA EA

= =   

3.7 Validity of the virtual complementary work equation 

In the form given by (3.16), the complementary work equation is valid for both elastic and 
plastic materials. After all, the constitutive equation has not been used in the derivation! 
However, the complementary work equation is not valid for geometrical non-linear problems, 
because in the derivation a linear kinematic equation has been assumed, see (3.12). So, this is 
a restriction compared to the virtual work equation of chapter 2. 
 
In summary, the principle of minimum complementary energy was obtained by assuming that 
a unique relation exists between stresses and strains. Therefore, this principle is only valid for 
elastic media. In addition, the principle is restricted to geometrical linear problems.
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4 The two theorems of Castigliano and the law of Maxwell 

When an elastic body is loaded by a number of discrete forces and an identical number of 
discrete displacements are associated with those forces, the minimum principles can be 
formulated differently. The principles discussed in this chapter are called the first and second 
theorem of Castigliano. Then from these theorems directly Maxwell’s law of reciprocal 
deflections can be derived. 

In the derivation of the theorems, the distributed volume load P  and the distributed surface 
load p  are not considered, only concentrated forces and displacements are taken into account 
(see Fig. 4.1). Likewise, concentrated moments can be considered together with the 
corresponding rotations. Generally one may speak about a discrete number of generalised 
forces with a matching number of generalised displacements. 

4.1 The first theorem of Castigliano 

The elastic construction is loaded by n  forces 1 2, , , nF F F�  in different arbitrary directions. 
The displacements in those directions are respectively 1 2, , , nu u u� . The potential energy for 
the structure consists out of a contribution sE  of the internal deformation energy and a 
contribution pE  of the position of the external load, i.e.: 

 pot s pE E E= +  (4.1) 

The internal energy sE  is a function of the strains ε  of the structure: 

 ( )s s

V

E E dVε′= ∫∫∫  (4.2) 

The kinematic relations relate the strains ε  to the displacements 1 2, , , nu u u� , transforming 
sE  into an expression of the displacements: 

 1 2( , , , )s s nE E u u u= �  (4.3) 

In the example of section 2.4 this was already demonstrated. 

1F

1u

2 2  F u

nF
nu

Fig. 4.1: Body subjected to external forces and/or displacements. 
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For a discrete number of forces, the external energy pE  holds: 

 1 1 2 2p n nE Fu F u F u= − − − −�  (4.4) 

The total potential energy is the sum of the contributions (4.3) and (4.4): 

 1 2 1 1 2 2( , , , )pot s n n nE E u u u Fu F u F u= − − − −� �  (4.5) 

The potential energy has to become stationary for variations of each of the discrete 
displacements iu : 

 
1 1

0 0pot s
pot i pot i i

i i

n n

i i

E EE u E F u
u u

δ δ δ δ

= =

∂  ∂
= = → = − = 

∂ ∂ 
∑ ∑  (4.6) 

From this relation, directly the first theorem of Castigliano can be obtained: 

 s
i

i

EF
u

∂
=
∂

 (4.7) 

Actually, the example in section 2.4 was already an application of this theorem.  

4.2 The second theorem of Castigliano 

Again a set of forces 1 2, , , nF F F�  and the associated displacements 1 2, , , nu u u�  are 
considered. In the previous section, the concept was used that forces are applied (cause) and 
the displacements follow (effect). In this case the displacements will be prescribed (cause) 
and the forces are resulting support reactions (effect). The complementary energy of the 
structure consists out of an internal volume part cE  and an external surface part o

cE  on the 
surface uS : 

 o
compl c cE E E= +  (4.8) 

The volume part of complE  is a function of the stresses σ  in the structure: 

 ( )c c

V

E E dVσ′= ∫∫∫  (4.9) 

Since these stresses satisfy the balance equations a relation is established between the stresses 
σ  and the forces 1 2, , , nF F F� . This means that cE  is a function of those forces: 

 1 2( , , , )c c nE E F F F= �  (4.10) 

This already was shown in the example of section 3.4.  
The complementary energy o

cE  on the surface can now directly be written as: 
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 1 1 2 2
o
c n nE u F u F u F= − − − −�  (4.11) 

The total complementary energy is the sum of the contributions (4.10) and (4.11): 

 1 2 1 1 2 2( , , , )compl c n n nE E F F F u F u F u F= − − − −� �  (4.12) 

The complementary energy has to become stationary for variations of each of the discrete 
forces iF : 

 
1 1

0 0compl c
compl i compl i i

i i

n n

i i

E EE F E u F
F F

δ δ δ δ

= =

∂  ∂
= = → = − = 

∂ ∂ 
∑ ∑  (4.13) 

From this relation, directly the second theorem of Castigliano can be obtained: 

 c
i

i

Eu
F

∂
=
∂

 (4.14) 

Actually, the example in section 3.4 was already an application of this theorem.  
For linear-elastic materials cE  is equal to sE . Therefore, sE  is often used but than as a 
function of the stresses. 

4.3 Maxwell’s law of reciprocal deflections 

The restriction is made that only linear-elastic materials are considered and that geometrical 
non-linear effects are excluded. Then the principle of superposition is applicable, and the 
several resulting effects can be summed up. Every force can be written as a sum of the effects 
of the (applied) displacements and every displacement can be written as a sum of the effects 
of the (applied) forces. For the two forces iF  and jF  it is found: 

 1 1 2 2

1 1 2 2

i i i ii i ij j in n

j j j ji i jj j jn n

F k u k u k u k u k u
F k u k u k u k u k u

= + + + + +

= + + + + +

� � �

� � �

 (4.15) 

For the two displacements iu  and ju  it follows: 

 1 1 2 2

1 1 2 2

i i i ii i ij j in n

j j j ji i jj j jn n

u c F c F c F c F c F
u c F c F c F c F c F

= + + + + +

= + + + + +

� � �

� � �

 (4.16) 

The quantities ijk  are stiffness terms and are the coefficients of the stiffness matrix K , which 
relates the vector f  containing all forces to the vector u  containing all displacements: 

 =f K u  (4.17) 

On the other hand, the flexibility terms ijc  are the coefficients of the flexibility or compliance 
matrix C : 
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  =u C f  (4.18) 

The matrix C  is the inverse of the matrix K . 
Now it will be shown that K  is symmetrical, i.e. it will be shown that ijk  is equal to jik . On 
basis of (4.15), for this two coefficients it respectively holds: 

 ; ji
ij ji

j i

FFk k
u u

∂∂
= =
∂ ∂

 (4.19) 

From the fist theorem of Castigliano for iF  and jF  it follows: 

 ;s s
i j

i j

E EF F
u u

∂ ∂
= =
∂ ∂

 (4.20) 

Substitution of these relations in to (4.19) leads to: 

 
2 2

;s s
ij ji

j i i j

E Ek k
u u u u
∂ ∂

= =
∂ ∂ ∂ ∂

 (4.21) 

Since the two right-hand sides are identical, it has been proved that: 

 ij jik k=  (4.22) 

Analogously it can be shown that the matrix C  is symmetrical too, i.e. that ijc  is equal to jic . 
On basis of (4.16) for these two coefficients it holds: 

 ; ji
ij ji

j i

uuc c
F F

∂∂
= =
∂ ∂

 (4.23) 

The second theorem of Castigliano provides: 

 ;c c
i j

i j

E Eu u
F F

∂ ∂
= =
∂ ∂

 (4.24) 

Substitution of this result into (4.23) leads to: 

 
2 2

;c c
ij ji

j i i j

E Ec c
F F F F
∂ ∂

= =
∂ ∂ ∂ ∂

 (4.25) 

Since the two right-hand sides are identical, it has been proved that: 
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 ij jic c=  (4.26) 

By convention this is called the law of Maxwell of reciprocal deflections. 

4.4 Remarks 

From a historical point of view it is not correct to attribute the second theorem of Castigliano 
to Castigliano himself. He has derived the theorem only for linear-elastic systems (in 1873). 
About the same time, Fransesco Grotti who was a friend of Castigliano provided the general 
proposition (also) valid for non-linear systems. Independent of Grotti, Engesser has derived 
the proposition in 1889. In both cases this theorem drew little attention, until Westergaard 
rediscovered it in 1942. 
 
In literature Maxwell’s law of reciprocal deflections is called the Law of Betti as well. Betti 
has derived a similar relation in terms of energy. 

4.5 Summary 

From chapter 2 up to here a considerable number of equations, principles and laws have been 
derived. In order to indicate the coherence and field of application, in the table below a 
schematic overview is given.  
 

 
field of application 

 

 
Displacement method 

 
force method 

 
generally valid in spite of 
the constitutive property 

 

 
virtual work 

 equation 

 
complementary virtual 

work equation 

 
for elastic materials 

 

 
principle of minimum 

potential energy 
 

 
principle of minimum 
complementary energy 

 
restriction to  

generalised forces 
 

 
1st theorem of Castigliano 

s
i

i

EF
u

∂
=
∂

 

 

 
2nd theorem of Castigliano 

c
i

i

Eu
F

∂
=
∂

 

 
further restriction to  

linear-elastic systems 

 
stiffness matrix 

2
s

ij
i j

Ek
u u
∂

=
∂ ∂

 

 
law of Maxwell 

ij jik k=  
 

 
flexibility matrix 

2
c

ij
i j

Ec
F F
∂

=
∂ ∂

 

 
law of Maxwell 

ij jic c=  
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4.6 Application of stiffness and flexibility matrices 

The two “recipes” for the determination of the quantities ijc  and ijk  will be applied to a 
prismatic beam element, which is loaded at the ends by the moments 1M  and 2M . These 
moments are associated with the rotations 1ϕ  and 2ϕ , respectively (see Fig. 4.2). 

Flexibility matrix 
The moment distribution is linearly interpolated between 1M  and 2M (see Fig. 4.3): 

 1 2( ) 1 x xM x M M
l l

 
= − + 
 

 

The internal complementary energy equals: 

 

2

2 2
2 2

1 1 2 2

2 2
1 1 2 2

0

0 0 0

1 ( )
2

1 1 2 1
2

1 1 1
6 6 6

c

c

c

l

l l l

E M x dx
EI

x x x xE M dx M M dx M dx
EI l l l l

lE M M M M
EI

= →

 
      

= − + − + →      
      

 

 
= + + 

 

∫

∫ ∫ ∫  

From this it follows: 

2 2   M ϕ1 1    Mϕ

EI

l

Fig. 4.2: Beam subjected to bending. 

11 x M
l

 
− 

 

2
x M
l

x

l

1M

2M

1 2( ) 1 x xM x M M
l l

 
= − + 
 

Fig. 4.3: Moment distribution along the beam. 
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2 2

11 122
1 1 2

2 2

21 22 2
2 1 2

1 1;
3 6

1 1;
6 3

c c

c c

E l E lc c
M EI M M EI

E l E lc c
M M EI M EI

∂ ∂
= = = =
∂ ∂ ∂

∂ ∂
= = = =
∂ ∂ ∂

 

 The relation between rotations and moments is: 

 1 1

2 2

1 3 1 6
1 6 1 3

Ml
MEI

ϕ

ϕ

    
=    

    
 

Stiffness matrix 
Now the stiffness matrix will be derived by prescribing the displacement field w(x). For the 
distribution w(x) the following function is chosen (see Fig. 4.4):  

 2 3
1 2 3 4( )w x a a x a x a x= + + +  

The coefficients 1a  up to 4a  can be determined from the four conditions: 

 
1

2

0
0

0

w
x dw

dx
w

x l dw
dx

ϕ

ϕ

=


= → 
=

=


= → 
= −

 

For w(x) it then is found: 

 
2 2

1 2( ) 1 1x x xw x x
l l l

ϕ ϕ
   

= − + −   
   

 

The curvature becomes: 

 , 1 22 2

4 6 2 6( ) xx
x xx w

l l l l
κ ϕ ϕ

   
= − = − − −   

   
 

Fig. 4.4: Deflection of beam. 

2ϕ
1ϕ ( )w x

l
x
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The internal energy equals: 

 

( )

2

2 2
2 2
1 1 2 22 2 2 2

2 2
1 1 2 2

0

0 0 0

1 ( )
2

1 4 6 4 6 2 6 2 62
2

2 2 2

s

s

s

l

l l l

E x dx
EI

x x x xE dx dx dx
EI l l l l l l l l

EIE
l

κ

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= →

 
       

= − − − − + − →       
       

 

= − +

∫

∫ ∫ ∫  

From this it follows: 

 

2 2

11 122
1 1 2

2 2

21 22 2
2 1 2

4 ; 2

2 ; 4

s s

s s

E EEI EIk k
l l

E EEI EIk k
l l

ϕ ϕ ϕ

ϕ ϕ ϕ

∂ ∂
= = = = −
∂ ∂ ∂

∂ ∂
= = − = =
∂ ∂ ∂

 

The relation between moments and rotations is:  

 1 1

2 2

4 2
2 4

M EI
M l

ϕ

ϕ

−    
=    −    

 

As expected, the product of the found stiffness and flexibility matrices appears to be equal to 
the unit matrix, which means that they are each other’s inverse. 
 
In this example a choice has been made for the distributions of ( )M x  and ( )w x . The 
assumptions made were correct, because for a beam subjected to bending in the absence of a 
distributed load along the beam, it holds: 

 
2 4

2 40 ; 0d M d wEI
dx dx

= =  

The chosen interpolations satisfy these conditions. 

4.7 Applications of the theorems of Castigliano 

First theorem: example 1 
The first theorem of Castigliano is just as the principle of minimum potential energy also 
valid for elastic geometrical non-linear systems. For a change, such a problem is addressed in 
this example. 
Two horizontal bars AC  and CB  are considered, which are connected by a hinge (see Fig. 
4.5). The points A  and B  are connected to static hinged supports. At point C  a vertical force 
F  is applied, causing this point to be displaced by w . 
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The aim is to determine the relation between F  and w . 
In the deformed state the elongation e  of each bar equals: 

  
2

2 2 1 1we l w l l
l

   = + − = + −    

 

The ratio w l  is small compared to unity, this means that ( )
2 1w l � . Therefore, the square 

root can be replaced by the following binomial series: 

 
2 211 1

2
w w
l l

   
+ = + +   
   

�  

The elongation and the normal force then become: 

 
21 ;

2
w EAe N e
l l

= =  

Subsequently, the deformation energy for both bars follows from: 

 2 4
3

1 12
2 4s

EA EAE e w
l l

 
= = 

 
 

Application of the first theorem of Castigliano provides: 

 3
3

sdE EAF w
dw l

= =  

Fig. 4.5: Simply supported hinged bars. 

A

F

l l

BC

w

F

w

sE

Fig. 4.6: Relation between force and deflection. 
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Which is the required relation between force F  and displacement w . The load F  can only 
be carried after the generation of a displacement w  (see Fig. 4.6). In the initial state no force 
can be carried since the curve is tangent to the w -axis. Further because of the nature of the 
third-order curve, initially large displacements only provide small forces. For increasing 
deformation the structure becomes stiffer. 

Second theorem: Example 2 
A uniformly distributed load f , as shown in Fig. 4.7, loads a prismatic beam on three 
supports of equal span l . For this statically indeterminate problem to the first degree the 
stress distribution will be obtained. 

The reaction R  in the central support is introduced as the redundant. The moment line is the 
superposition of a parabolic distribution caused by the distributed load f  and a triangular 
distribution caused by the reaction R .  
At a distance x  from the end, the moment in the left field equals: 

    ( )
1 1( ) 2
2 2

M x f x l x R x= − −  

The complementary energy becomes (for two fields): 

 

( )

( ) ( )

22

2 2
22 2 2

5 4 3
2 2

0 0

0 0 0

1 ( ) 1 1 12 2
2 2 2

2 2
4 2 4

2 5
15 24 12

c

c

c

l l

l l l

M xE dx f x l x Rx dx
EI EI

f f R RE x l x dx x l x dx x dx
EI EI EI

l l lE f fR R
EI EI EI

 
   

= = − − →   
  

 

= − − − + →

= − +

∫ ∫

∫ ∫ ∫   

where no deformation energy caused by the transverse force has been taken into account. 
Application of the second theorem of Castigliano delivers the displacement of the middle 
support. Because this displacement is equal to zero it holds: 

Fig. 4.7: Uniformly loaded beam on three simple supports with redundant R. 

R

l l

f
x
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 0cdE
dR

=  

So, in this case the second theorem of Castigliano is identical to the principle of minimum 
deformation work. Differentiation of the complementary energy yields: 

 
4 35 50

24 6 4
l lf R R f l
EI EI

− + = → =  

Now the force distribution is known. The moment of the middle support becomes: 

 21( )
8

M x l f l= = −  

One integration could have been avoided, if the following approach had been chosen: 

  ( ){ }

( )

2

4 3
2 2

0

0 0

0 0

1 ( )

1 ( ) 1 12 ( ) 2 0
2

1 5 1 52 0
2 2 24 6 4

c

c

l

l l

l l

E M x dx
EI

dE dM xM x dx f x l x Rx x dx
dR EI dR EI

f R f l Rlx l x dx x dx R f l
EI EI EI EI

=

 
= = − − − = → 

 

− − + = → − + → =

∫

∫ ∫

∫ ∫

 

Instead of R  another choice for the redundant can be made, namely the moment M  in the 
beam at the middle support (see Fig. 4.8: 0M > ). Now the gap between the two beam parts 
above the support has to be zero, i.e.: 

 2

0 0

1 2 ( )( ) ( ) 0c

l l
dE d dM xM x dx M x dx
dM dM EI EI dM

 
 = = = 
 
 
∫ ∫  

At distance x  from the end it holds: 

M

l l

f
x

Fig. 4.8: Uniformly loaded beam on three simple supports with redundant M. 
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  ( )
1( )
2

xM x f x l x M
l

= − −  

Substitution of this relation provides: 

 ( )
3

2 2
2

0 0

2 1 20 0
2 24 3

l l
f M f l Mlx l x dx x dx

EI l l EI

 
  − − + = → + =  
  

 
∫ ∫  

Which shows that the gap caused by f  is exactly compensated by the gap caused by M , so 
compatibility is satisfied. From above relation it finally follows: 

 21
8

M f l=  

Second theorem: Example 3 
The second theorem of Castigliano is often used to calculate the stress distribution in arches. 
In this example a circular ring is chosen, which is loaded by two opposite forces 2F  as 
shown in Fig. 4.9. This problem is statically indeterminate to the first degree. As the 

redundant, the moment is introduced halfway the height of the ring. For reasons of symmetry 
only a quarter of the ring needs to be considered. In the quadrant as drawn, the moment is 
called positive if it causes tensile stresses at the inner side of the ring. It holds: 

 ( ) 2

2

0

1 1( ) 1 cos ; ( )
2cM M rF E M r d

EI

π

α α α α= − − = ∫  

The derivative with respect to M  has to be zero, because the slope is zero at the end where 
the moment M  is applied: 

2F

2F

2F

2F

MM

M M
M

F

F

α

r

cosr α ( )1 cosr α−

Fig. 4.9: Calculation of moment distribution in test ring.  
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2

0

( )( ) 0cdE r dMM d
dM EI dM

π

α

α α= =∫  

The integral equals: 

 
( ){ } ( )

2 2 2

0 0 0

1 cos 0 1 cos 0

21 0 1
2 2

M rF d M d rF d

M rF M rF

π π π

α α α α α

π π

π

− − = → − − =

   
− − = → = −   
   

∫ ∫ ∫
 

Assignment 
Prove with the second theorem of Castigliano that the displacement of the end in the direction 
of F  is equal to ( ) ( )2 38 4Fr EIπ π− .
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5 Variational methods and differential equations 

The variational methods for potential and complementary energy can be used to derive 
differential equations with corresponding dynamic boundary conditions. The principle of 
minimum potential energy provides differential equations with respect to unknown 
displacements and from the principle of minimum complementary energy differential 
equations with respect to unknown stress functions can be obtained. Variational methods can 
be used if the derivation of the differential equation by a direct method is not very transparent.  
This chapter is confined to examples using the principle of minimum potential energy. In 
addition only simple linear structures are considered, for which a direct solution is known as 
well. This offers the advantage that the validity of the found results can be tested. 

5.1 Beam subjected to extension (displacement method) 

A prismatic beam is considered with a continuous axial stiffness EA as shown in Fig. 5.1. At 
end 1 the beam is restrained. Along the beam a distributed load ( )f x  per unit of length is 
acting. At end 2 an external concentrated force 2F  is applied. 

The question now is to set up the balance equation together with the dynamic boundary 
condition at end 2 and to express these in the displacement field ( )u x . 

Direct method   
The triplet of equations reads: 

  
,

,

( )
( )

0 ( )

x

x

u kinematic equation
N EA constitutive equation
N f equilibrium equation

ε

ε

=

=

+ =

 (5.1) 

Successive substitution in the direction of the arrow transforms the equilibrium equation into: 

 , 0xxEAu f+ =  (5.2) 

The dynamic boundary condition at end 2 between the internal normal force 2N  and the 
external force 2F  reads: 

 2 2 0N F− + =  

Fig. 5.1: Bar loaded by a tensile force. 
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1 ε

( )  ( )f x u x
2 2    F u
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With N EAε=  and ,xuε =  this boundary condition becomes: 

 
2, 2 0xEAu F− + =  (5.3) 

Variational method 
The expression for the potential energy equals: 

 2 2

2 2

1 1

1
2potE N dx f u dx F uε= − −∫ ∫  

Together with N EAε=  and ,xuε =  this relation becomes an expression of the unknown 
displacement field and the known external load: 

 ( )
2

, 2 2

2 2

1 1

1
2pot xE EA u dx f u dx F u= − −∫ ∫  (5.4) 

More precisely formulated, the potential energy is a functional in which , xu  and u  appear as 
variables, which in their turn are functions of x . In short it can be written: 

 ,( ; ; )pot pot xE E u u x=  (5.5) 

This quantity has to be stationary with respect to variations of the displacement field. The 
variational process involves both uδ  and its derivative , xuδ . The variation uδ  is chosen such 
that it is zero at the position where the displacement u  is prescribed. In this case, this is end 1, 
so it holds 1 0uδ =  (see Fig. 5.2). 
From the potential energy expression (5.5), the following variation can be derived: 

 ,
,

0pot pot
pot x

x

E E
E u u

u u
δ δ δ

∂ ∂
= + =

∂ ∂
 (5.6) 

Fig. 5.2: Kinematically admissible displacement field. 
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From (5.4) it can be found: 

 , , , 2 2
,

2 2

1 1

1 2 ; 0
2

pot pot
x x x

x

E E
u EAu u dx u f u dx F u

u u
δ δ δ δ δ

∂ ∂
= = − − =

∂ ∂∫ ∫  

Which transforms (5.6) into: 

 , , 2 2

2 2

1 1

0pot x xE EA u u dx f u dx F uδ δ δ δ= − − =∫ ∫  (5.7) 

This expression will be rephrased such that in the right-hand side only uδ  appears and no 
variation of the derivative , xuδ . This can be achieved by partial integration of the first 
integral: 

 ( )
1 2, , , , 1 , 2

2 2

1 1

x x xx x xEAu u dx EA u u dx EA u u EA u uδ δ δ δ= − − +∫ ∫  

Substitution of this result into (5.7) together with the condition that 1uδ is zero yields: 

  ( ) ( )2, , 2 2

2

1

0pot xx xE EA u f u dx EA u F uδ δ δ= − + − − + =∫  (5.8) 

If this relation has to be satisfied for every arbitrary kinematically allowable variation uδ , 
then for every position x  along the beam it should hold: 

 , 0xxEA u f+ =  (5.9) 

and also at end 2: 

 
2, 2 0xEA u F− + =  (5.10) 

These are exactly the same results as derived by the direct method in this section.  

Solution 
For the sake of completeness, a solution of the differential equation is given too. It is assumed 
that the distributed load f  is uniform and that the force 2F  is equal to zero. A particular 
solution then is: 

 2
part( )

2
fu x x
EA

= −  
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The homogeneous solution equals: 

 hom 1 2( )u x a a x= +  

From the total solution given by: 

 2
1 2( )

2
fu x a a x x
EA

= + −  

The constants 1a  and 2a  are solved from the two boundary conditions: 

 
21 ,0 0 ; 0xx u x l EA u= → = = → =  

This delivers: 

 1 20 ; f la a
EA

= =  

This means that as shown in Fig. 5.3 the functional relations of the displacement and normal 
force are: 

 
2 2

,2

1( ) ; ( ) 1
2 x

f l x x xu x N x EA u f l
EA l l l

   
= − = = −   

  
 (5.11) 

5.2 Beam subjected to bending (displacement method) 

As shown in Fig. 5.4, again a prismatic beam is considered, now with a constant bending 
stiffness EI . The beam is fixed at end 1. At that position, the kinematic boundary conditions 
are that both the displacement and the slope are equal to zero. The external load consists out 
of a distributed load ( )f x  per unit of length and a force 2F  and moment 2T  at end 2 of the 
beam. 
The question now is to set up the balance equation together with the dynamic boundary 
condition at end 2 and to express these in the displacement field ( )u x , which in this case is 
perpendicular to the beam axis. It is assumed that the deformation caused by the transverse 
force can be neglected. 

Fig. 5.3: Deflection and normal force along the bar. 
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Direct method 
The triplet of equations reads: 

 
,

,

( )
( )

0 ( )

xx

xx

u kinematic equation
M EI constitutive equation
M f equilibrium equation

κ

κ

= −

=

+ =

 (5.12) 

Successive substitution in the direction of the arrow transforms the equilibrium equation into: 

 , 0xxxxEI u f− + =  (5.13) 

The two dynamic boundary conditions at end 2 are: 

 2 2 2 20 ; 0V F M T− + = + =  

With M EIκ= , , xxuκ = −  and , xV M=  these boundary conditions become: 

 
2 2, 2 , 20 ; 0xxx xxEI u F EI u T+ = − + =  (5.14) 

Variational method 
The expression for the potential energy equals: 

 2 2 2 2

2 2

1 1

1
2potE M dx f u dx F u Tκ ϕ= − − −∫ ∫  

Together with M EIκ=  and , xxuκ = −  this becomes an expression of the displacement field: 

 ( )
2

, 2 2 2 2

2 2

1 1

1
2pot xxE EI u dx f u dx F u T ϕ= − − −∫ ∫  (5.15) 

In short: 

Fig. 5.4: Beam subjected to bending. 
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 ,( ; ; )pot pot xxE E u u x=  (5.16) 

The variation of this expression is: 

 ,
,

0pot pot
pot xx

xx

E E
E u u

u u
δ δ δ

∂ ∂
= + =
∂ ∂

 (5.17) 

Together with (5.15) it can be derived: 

 , , 2 2 2 2

2 2

1 1

0pot xx xxE EI u u dx f u dx F u Tδ δ δ δ δϕ= − − − =∫ ∫  (5.18) 

In order to arrive at an expression only containing variations uδ  and no variation of , xxu , the 
first integral of the right-hand side has to be partially integrated twice. The first partial 
integration provides: 

 
1 1 2 2, , , , , , , ,

2 2

1 1

xx xx xxx x xx x xx xEI u u dx EI u u dx EI u u EI u uδ δ δ δ= − − +∫ ∫  

Since the variation of u  has to satisfy the kinematic boundary condition at end 1 (at that 
position it holds 1 , 0xluϕ = = ), the variation 

1, xuδ has to be zero and above expression 
becomes: 

  
2, , , , , 2

2 2

1 1

xx xx xxx x xxEI u u dx EI u u dx EI uδ δ δϕ= − +∫ ∫  

where it has been used that 
2, 2xuδ δϕ= . 

Partial integration for the second time provides: 

 
1 2 2, , , , 1 , 2 , 2

2 2

1 1

xx xx xxxx xxx xxx xxEI u u dx EI u u dx EI u u EI u u EI uδ δ δ δ δϕ= + − +∫ ∫  

In the right-hand side 1uδ  is equal to zero because 1u  is prescribed. Substitution of this result 
into (5.18) yields: 

  ( ) ( ) ( )2 2, , 2 2 , 2 2

2

1

0pot xxxx xxx xxE EI u f u dx EI u F u EI u Tδ δ δ δϕ= − − + − + − − + =∫  (5.19) 

This relation only can be satisfied for all variations if along the beam it holds: 
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 , 0xxxxEI u f− + =  (5.20) 

and also at the end 2: 

 
2 2, 2 , 20 ; 0xxx xxEI u F EI u T+ = − + =  (5.21) 

These are exactly the same results as derived by the direct method in this section. 

Solution 
Also in this case a solution is provided for a uniformly distributed load f . At end 2 the force 

2F  and the moment 2T  are set to zero. A particular solution then is: 

 4
part( )

24
fu x x
EI

=  

The homogeneous solution equals: 

 2 3
hom 1 2 3 4( )u x a a x a x a x= + + +  

From the total solution given by: 

 2 3 4
1 2 3 4( )

24
fu x a a x a x a x x
EI

= + + + +  

The constants 1 2 3, ,a a a  and 4a  are solved from the four boundary conditions: 

 1 ,

, ,

0 0
0 ;

0 0
xx

x xxx

u EI u
x x l

u EI u
= = 

= → = → 
= = 

 

This delivers: 

 
2

1 2 3 40 ; 0 ; ;
4 6

f l f la a a a
EI EI

= = = = −  

So that as displayed in Fig. 5.5, the required displacement function becomes: 

Fig. 5.5: Deflection, moment and shear force along the beam. 
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4 2 3 4

2 3 4

1 1 1( )
4 6 24

f l x x xu x
EI l l l

 
= − + 

 
 (5.22) 

From which it follows: 

 
2

2
, 2

1 1( )
2 2xx

x xM x EI u f l
l l

 
= − = − + − 

 
 

The derivative of which equals: 

 ,( ) 1x
xV x M fl
l

 
= = − 

 
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6 Approximated solutions 

In chapter 2, the concept of weighted residuals was introduced where the equilibrium equation 
was replaced by the following requirement: 

 0

pV S

R u dV r u dSδ δ+ =∫∫∫ ∫∫  (6.1) 

This condition has to be satisfied for every kinematically admissible variation uδ , which is 
only the case if R  is zero in all point of the volume V  and r  is zero in all points of the 
surface pS . Therefore, the fulfilment of this condition delivers the exact solution. 
The same idea holds for the replacement of the compatibility condition in chapter 3 by the 
requirement that: 

 0

uV S

R dV r p dSδσ δ+ =∫∫∫ ∫∫  (6.2) 

This condition has to be satisfied for all statically admissible variations δσ . This again means 
that R  is zero in all points of V  and r  is zero in all points of uS , and also in this case the 
exact solution is obtained. 
 
The replacing functional conditions (6.1) and (6.2) do not necessarily have to be utilised to 
obtain the exact solution. They also offer the possibility to generate approximated solutions. 
This can be achieved as follows. In chapter 2 and 3, the replacing functional conditions are 
converted and reduced to the minimum of potential energy and the minimum of 
complementary energy. In both cases, the condition is that a functional ( , , )I x y z  has to be 
minimised, i.e.: 

 ( , , )  minimalI x y z =  (6.3) 

For the principle of minimum potential energy the functional I  is equal to potE  and for the 
principle of minimum complementary energy the functional I  is equal to complE . The 
minimisation of potE  and complE  provides the solutions of ( , , )u x y z  and ( , , )x y zσ , 
respectively. In general, the solution is indicated by ( , , )s x y z . When a method of 
approximation is applied, the solution is written as the sum of a finite number ( n ) of separate 
functions: 

 
1

( , , ) ( , , )i i

n

i
s x y z a b x y z

=

=∑  (6.4) 

where ia is the participation factor for the function ( , , )ib x y z .  
Every function has to satisfy the imposed conditions. In the displacement method ( , , )s x y z  
represents the displacement field. For this field, the requirement holds that it has to be 
compatible in V , and that it has to satisfy the kinematic boundary conditions on uS . In the 
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force method ( , , )s x y z  represents the stress field. For this field, the condition of equilibrium 
in V  holds, and that the dynamic boundary conditions are satisfied on pS . 
The still unknown parameters ia  can be solved by substitution of ( , , )s x y z  into ( , , )I x y z , 
followed by the minimisation of ( , , )I x y z  under the condition that for each of the parameters 
the requirement holds that: 

 ( , , ) 0
i

I x y z
a

∂
=

∂
 (6.5) 

This exercise provides a number of equations equal to the amount of unknown parameters. 
Generally, not the exact minimum value of the functional ( , , )I x y z  shall be found, but a 
neighbouring (algebraically) larger value. In the case that the exact solution indeed is found, 
the collection of functions in (6.4) is called a complete set. In coming sections this will be 
elucidated by a number of examples from the displacement method. A beam submitted to 
extension and bending will be discussed. For these linear structures it is also quite simple to 
find the exact solution. However, it should be clear that in practice the method is applied only 
if it is very difficult or impossible to determine the exact solution.  
 
In order to interpret what exactly is happening, the following can be reflected on. When the 
solution is obtained from a complete set of functions, the exact solution will be found and for 
this exact solution the residuals R  and r  in (6.1) and (6.2) will be zero in every point of the 
volume V and in every point of the surface pS or uS , respectively. When the solution is not a 
complete set of functions, R  and r  do not become zero in all points of V  and pS  or uS , 
respectively. The zeroing of the residuals is achieved only in average sense, and weighted 
over the volume V  and the surface pS  or uS , the respective residuals will be zero. This 
weighting procedure takes place through variations of the used finite set of functions. 
 
The method is most frequently applied in connection with the displacement method. Quite old 
and well known are the methods of Rayleigh (1870) and/or Ritz (1908). A more modern 
version is the finite element method (FEM). This method became popular (again) with the 
development of the computer capacity. 

6.1 Beam subjected to extension (displacement method) 

A prismatic cantilever beam is considered with axial stiffness EA as shown in Fig.6.1. Along 
the beam a uniformly distributed load f  per unit of length is acting. The displacement ( )u x  
and normal force ( )N x  along the beam will be determined twice, firstly with one parameter 

1a  and secondly with two parameters 1a  and 2a . 

ε

EAl
x

f

( )u x

N

Fig. 6.1: Bar subjected to a uniformly distributed load in axial direction. 
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Solution with one parameter 
In this case the function ( )u x  becomes: 

 1 1( ) ( )u x a b x=  

For 1( )b x  the function x l  is chosen. This function satisfies the kinematic boundary condition 
of zero displacement at the restrained end x = 0, i.e. (see Fig.6.2): 

 1( ) xu x a
l

=  

The strain equals: 

 1
, x

au
l

ε = =  

and the normal force: 

 1
EAN EA a
l

ε= =  

The potential energy is: 

 2 2
1 1 1 12

0 0 0 0

1 1 1 1
2 2 2 2pot

l l l l
EA x EAE N dx f u dx a dx f a dx a f l a
l l l

ε= − = − = −∫ ∫ ∫ ∫  

Variation with respect to 1a  delivers: 

 1 1 1
1 10 0
2 2pot

EA EAE a f l a a f l
l l

δ δ
 

= − = → − = 
 

 

From which it follows: 

 
2

1
1
2

f la
EA

=  

Fig. 6.2: Kinematically admissible displacement field. 

l

1a

1aδu

x
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The displacement and normal force become: 

 ,
1 1( ) ; ( )
2 2x

f lu x x N x EAu f l
EA

= = =  

In the drawings of Fig. 6.3 this solution is compared with the exact one of section 5.1. It can 
be seen that the approximation of the displacement is reasonable. At the end, even the exact 
displacement is predicted. However, the normal force is only calculated properly at the 
middle of the beam.  

Solution with two parameters 
An extra function ( )

2x l  is added to the displacement field: 

 
2

1 2 2( ) x xu x a a
l l

= +  

The strain equals: 

 , 1 2
1 2x

xu a a
l l

ε
 

= = + 
 

 

and the normal force: 

 1 22EA xN EA a a
l l

ε
 

= = + 
 

 

The potential energy is: 

 

2 2
2

1 2 1 22 2

2 2
2 2
1 1 2 2 1 22 2 2

2 2
1 1 2 2 1 2

0 0 0 0

0 0

1 2
2 2

4 4
2

1 2 1 1
2 3 2 3

pot

pot

pot

l l l l

l l

EA x x xE EA dx f u dx a a dx f a a dx
l l l l

EA x x x xE a a a a dx f a a dx
l l l l l

EAE a a a a f l a a
l

ε

  
= − = + − + →  

   

   
= + + − + →   

   

   
= + + − +   

   

∫ ∫ ∫ ∫

∫ ∫  

Fig. 6.3: Deflection and normal force along the bar for one parameter. 

x x
l l

exact exact u N

2

2
f l
EA

1
2

f l
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Variation with respect to 1a  and 2a  delivers: 

 ( )

( )

1 2
1 2

1 2 1 1 2 2

1 2 1 2

0

1 4 1 0
2 3 3

1 4 1;
2 3 3

pot pot
pot

pot

E E
E a a

a a

EA EAE a a f l a a a f l a
l l

EA EAa a f l a a f l
l l

δ δ δ

δ δ δ

∂ ∂
= + = →

∂ ∂

    
= + − + + − = →    
    

 
+ = + = 

 

  

From which it follows: 

 
2 2

1 2
1;
2

f l f la a
EA EA

= = −  

The solution for the displacement and normal force become: 

 
2 2

,2

1( ) ; ( ) 1
2 x

f l x x xu x N x EAu f l
EA l l l

   
= − = = −   

  
 

This is the exact solution, which means that for this simple example obviously the complete 
set of functions was used (see Fig. 6.4). 

6.2 Beam subjected to bending (displacement method) 

Again the beam is prismatic with flexural stiffness EI  and length l . As shown in Fig. 6.5, a 
distributed load is applied perpendicular to the beam axis. In this example the displacement 

Fig. 6.4: Deflection and normal force along the bar for two parameters. 

x x
l l

f l

u N

2

2
f l
EA

Fig. 6.5: Bar subjected to a uniformly distributed load in transverse direction. 
κ

EIl
x

f

( )u x

M
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( )u x  perpendicular to the beam axis will be calculated, as well as the internal moment ( )M x . 
This exercise is carried out for respectively one parameter 1a , two parameters 1a , 2a  and 
three parameters 1a , 2a , 3a . 

Solution with one parameter 
The displacement relation ( )u x  is given by: 

 1 1( ) ( )u x a b x=  

For 1( )b x  the function ( )
2x l  is chosen. The linear function is not considered because it 

describes a rigid body movement without causing any deformations. The function ( )
2x l  

satisfies the kinematic boundary conditions at the fixed end, where both u  and , xu  have to be 
zero. 
Thus, the displacement field equals (Fig. 6.6): 

 
2

1 2( ) xu x a
l

=  

The curvature becomes: 

 1
, 2

2
xx

au
l

κ = − = −  

and the moment: 

 12

2EIM EI a
l

κ= = −  

The potential energy becomes: 

 ( )
2

22 2
1 1 1 14 2 3

0 0 0 0

1 1 2 12
2 2 3pot

l l l l
EI x EIE EI dx f u dx a dx f a dx a f l a
l l l

κ= − = − − = −∫ ∫ ∫ ∫  

Variation with respect to 1a  delivers: 

Fig. 6.6: Kinematically admissible displacement field. 

l

( )u x

( )u xδ

u

x
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4

1 1 13

4 1 10
3 12pot

EI f lE a f l a a
l EI

δ δ
 

= − = → = 
 

 

Therefore, the solution reads: 

 
2

2( )
12

f lu x x
EI

=  

The moment and transverse force are: 

 2
, ,

1( ) ; ( ) 0
6xx xM x EI u f l V x M= − = − = =  

Compared with the exact solution from section 5.2, the approximation of the displacement 
field is not too good and the approximation of the moment is even worse. For the transverse 
force no value at all has been found (see Fig. 6.7).  

Solution with two parameters 
A third order term is added to the displacement field: 

 
2 3

1 22 3( ) x xu x a a
l l

= +  

The curvature now equals: 

 , 1 22

1 2 6xx
xu a a

l l
κ

 
= − = − + 

 
 

and the moment: 

 1 22 2 6EI xM EI a a
l l

κ
 

= = − + 
 

 

The potential energy becomes: 

Fig. 6.7: Deflection, moment and shear force for one parameter. 

x x

l

f l

l l

x

u M V

4 8f l EI

4 12f l EI

2 2f l−

2 6f l−

exact 
exact
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( )

2 2 3
2

1 2 1 24 2 3

2 2
1 1 2 2 1 23

0 0 0 0

1 1 2 6
2 2

1 1 14 12 12
2 3 4

pot

pot

l l l l
EI x x xE EI dx f u dx a a dx f a a dx
l l l l

EIE a a a a f l a a
l

κ

  
= − = + − + →  

   

 
= + + − + 

 

∫ ∫ ∫ ∫
 

Variation with respect to 1a  and 2a  delivers: 

 ( ) ( )1 2 1 1 2 23 3

1 1 1 18 12 12 24 0
2 3 2 4pot

EI EIE a a f l a a a f l a
l l

δ δ δ
   

= + − + + − =   
   

 

The parameters become: 

 

4

4 41 2

1 24

1 2

14 6
5 13 ;
24 1216 12

4

f la a f l f lEI a a
EI EIf la a

EI


+ = 

→ = = −
+ =


 

Therefore, the solution reads: 

 
4 2 3

2 3

5( )
12 2

f l x xu x
EI l l

 
= − 

 
 

The moment and transverse force are: 

 2
, ,

1 5( ) ; ( )
2 6 2xx x

x f lM x EI u f l V x M
l

 
= − = − + = = 

 
 

The deflection is already very accurate (at the end it is even exact). The moment is improved 
and for the transverse force a value different from zero is found (see Fig. 6.8).  

Solution with three parameters 
By adding a third parameter a fourth order polynomial is obtained: 

Fig. 6.8: Deflection, moment and shear force for two parameters. 

x x

l

f l

l l
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exact 
exact

exact 
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2 3 4

1 2 32 3 4( ) x x xu x a a a
l l l

= + +  

The curvature now equals: 

 
2

, 1 2 32 2

1 2 6 12xx
x xu a a a

l l l
κ

 
= − = − + + 

 
 

and the moment: 

 
2

1 2 32 22 6 12EI x xM EI a a a
l l l

κ

 
= = − + + 

 
 

The potential energy becomes: 

 

22 2 3 4

1 2 3 1 2 34 2 2 3 4

2 2 2
1 1 2 1 3 2 2 3 3 1 2 33

0 0

1 2 6 12
2

1 144 1 1 14 12 16 12 36
2 5 3 4 5

pot

pot

l l
EI x x x x xE a a a dx f a a a dx
l l l l l l

EIE a a a a a a a a a f l a a a
l

   
= + + − + + →   

   

   
= + + + + + − + +   

   

∫ ∫
 

Variation with respect to 1a , 2a  and 3a  delivers: 

 

4

1 2 3

4 4 4 4

1 2 3 1 2 3

4

1 2 3

14 6 8
3
1 1 1 16 12 18 ; ;
4 4 6 24

144 18 18
5 5

f la a a
EI
f l f l f l f la a a a a a
EI EI EI EI
f la a a
EI


+ + = 




+ + = → = = − =



+ + = 


 

The solution reads: 

 
4 2 3 4

2 3 4

1 1 1( )
4 6 24

f l x x xu x
EI l l l

 
= − + 

 
 

The moment and transverse force are: 

 
2

2
, ,2

1 1( ) ; ( ) 1
2 2xx x

x x xM x EI u f l V x M f l
l l l

   
= − = − + − = = −   

  
 

These are the exact solutions for ( )u x , ( )M x  and ( )V x , which have been calculated earlier 
in section 5.2. In this problem, three functions are sufficient to make the set of trial functions 
complete. The addition of more functions (of a higher order) makes no sense. However, if this 
still is done, than the calculated coefficients ia  of these terms will be zero.   
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The examples also clearly demonstrate that the approximation is worse as higher derivatives 
are considered. The addition of higher order polynomials does not have a large effect on the 
displacement field (no derivative), but does help in the improvement of the moment and 
transverse force (second and third derivative).  

6.3 Approximations for the stiffness and flexibility matrices 

Now, the subject discussed in section 4.6 will be reconsidered. In that section the flexibility 
and stiffness matrices were derived for a prismatic beam by making use of: 

 
2 2

;c s
ij ij

i j i j

E Ec k
M M ϕ ϕ

∂ ∂
= =
∂ ∂ ∂ ∂

 (6.6) 

The procedure discussed above can also be used for finding approximations for the flexibility 
and stiffness matrices. This will be shown for a tapered beam having a flexural stiffness, 

( )EI x , which is varying along the beam axis (see Fig. 6.9). At 0x =  and at x l=  the flexural 
stiffnesses are 2EI  and EI , respectively. A linearly varying function is chosen: 

 ( ) 2 xEI x EI
l

 
= − 
 

 

Flexibility matrix 
For the calculation of the flexibility matrix again the same procedure is applied: 

 1 2 1 1 2 2( ) 1 ( ) ( )x xM x M M b x M b x M
l l

 
= − + = + 
 

  

The complementary energy cE becomes: 

2 2

2
2 2

1 1 1 2

0 0 0 0

1 1
1 ( ) 1 2
2 ( ) 2 2 2 2

c

l l l lx x x x
M x l l l lE dx dx M dx M M dx M

x x xEI x EI
l l l

      
− −      

      = = + +
      

− − −             

∫ ∫ ∫ ∫  

2EI EI1 1   Mϕ 2 2  M ϕ

l
x

Fig. 6.9: Tapered beam subjected to bending. 
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The three integrals can be solved numerically by application of for example the trapezoidal 
rule or Simpson’s rule. From the more accurate Simpson’s rule applied to one interval it is 
found: 

 ( )2 2
1 1 2 20.097 0.113 0.137c

lE M M M M
EI

= + +  

The components of the flexibility matrix are: 

 
2 2 2

11 12 222 2
1 1 2 2

0.194 ; 0.113 ; 0.274c c cE E El l lc c c
M EI M M EI M EI
∂ ∂ ∂

= = = = = =
∂ ∂ ∂ ∂

 

In matrix notation: 

 1 1

2 2

0.194 0.113
0.113 0.274

Ml
MEI

ϕ

ϕ

    
=    

    
 (6.7) 

Stiffness matrix 
For the computation of the stiffness matrix again the following deflection function is chosen: 

 

2 2

1 2 1 1 2 2

, 1 22 2

( ) 1 1 ( ) ( )

4 6 2 6( ) xx

x x xw x x b x b x
l l l

x xx w
l l l l

ϕ ϕ ϕ ϕ

κ ϕ ϕ

   
= − + − = +   

   

   
= − = − − −   

   

  

The potential energy becomes: 

  

2

2
2
1 1 22 2 2

0

0 0

1 ( ) ( )
2

4 6 4 6 2 62 2 2
2

                                                                                        

s

s

l

l l

E EI x x dx

EI x x x x xE dx dx
l l l l l l l l

κ

ϕ ϕ ϕ

= →


      = − − − − − − +             



∫

∫ ∫
2

2
22

0

2 6            2
l

x x dx
l l l

ϕ


   − −      


∫

 

Again, the integrals can be determined analytically, but can also be obtained by a numerical 
procedure. It follows: 

 ( )2 2
1 1 2 23.50 3.00 2.50s

EIE
l

ϕ ϕ ϕ ϕ= − +  

The components of the stiffness matrix become: 
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2 2 2

11 12 222 2
1 1 2 2

7.00 ; 3.00 ; 5.00s s sE EI E EI E EIk k k
l l lϕ ϕ ϕ ϕ

∂ ∂ ∂
= = = = − = =
∂ ∂ ∂ ∂

 

In matrix notation: 

 1 1

2 2

7.00 3.00
3.00 5.00

M EI
M l

ϕ

ϕ

−    
=    −    

 (6.8) 

If this relation is inverted, it is found: 

 1 1

2 2

0.192 0.115
0.115 0.269

Ml
MEI

ϕ

ϕ

    
=    

     
 (6.9) 

This result should be identical to (6.7), but some discrepancies can be observed. This means 
that at least one of the matrices is an approximation.  
In the exact formulation, for the beam subjected to bending it holds: 

 
2 2 2

2 2 20 ; ( ) 0d M d d wEI x
dx dx dx

 
= = 

 
 

Which confirms that the linear momentum distribution is exact and the third order function 
for the deflection is not correct. The flexibility matrix given by (6.7) is the exact one, but the 
stiffness matrix in (6.8) is an approximation. The exact stiffness matrix, which is the inverse 
of the flexibility matrix in (6.7) equals: 

     1 1

2 2

6.78 2.80
2.80 4.80

M EI
M l

ϕ

ϕ

−    
=    −    

 (6.10) 

It can be seen that the approximated stiffness matrix is quite good. The error in the terms on 
the main diagonal is only 3 to 4 percent. 

Remark 1 
The approximated stiffness matrix is applied in modern computer programmes for sheet 
pilings. The sheet pile wall is considered to be a flexural member on an elastic foundation. 
The piling itself is prismatic but the subgrade modulus may vary along the piling. 

Remark 2 
The integrals in cE  can be given a physical interpretation, by using the “moment-area” 
concept. When only the moment 1M  is considered it can be written: 

 1( ) 1 xM x M
l

 
= − 
 

 

and the “reduced moment”: 
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 1

1
( )
( ) 2

red

x
M x MlM

xEI x EI
l

 
− 

 = =
 

− 
 

 

When redM  is considered to be an external load, then the support reaction following from this 
load equals the angular deflection. At end 1 the support reaction is: 

 
0

1red

l
xM dx
l

  
−  

  ∫  

and at node 2: 

 
0

red

l
xM dx
l

 
 
 ∫  

So: 

 

2

1
1 11 1

1
2 21 1

0

0

1

2

1

2

l

l

x
Ml dx c M

x EI
l
x x

Ml l dx c M
x EI
l

ϕ

ϕ

 
− 

 = =
 

− 
 

  
−  

  = =
 

− 
 

∫

∫

 

These results are in agreement with the previously found values of 11c  and 21c . 

6.4 The method Ritz presented as finite element method 

In the method Ritz the displacement ( )u x  is considered as a superposition of functions: 

 ( ) ( )i iu x a b x=∑  (6.11) 

Each function ( )ib x  is defined over the entire volume of the structure and has to satisfy the 
kinematic boundary conditions. Normally, considerably high-order and complex functions 

( )ib x  are used, so that a limited amount of degrees of freedom ia  will do. This means that 
only a small number of equations have to be solved. 
 
With the rise of the computer, the solution of large systems of equations became possible. 
New computational methods were developed such as the Finite Element Method (FEM). Now 
deliberately a high number of degrees of freedom ia  are defined, but very simple functions 
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( )ib x  are considered, called basis functions or shape functions. This concept will be 
demonstrated for a bar subjected to extension. The actually smoothly distributed displacement 

( )u x  can be approximated by a polygon. In four points of the bar unknown displacement are 
introduced as degrees of freedom, given by 1u , 2u , 3u  and 4u  (see Fig. 6.10). Between the 

points 1, 2, 3 and 4 the displacement is obtained by linear interpolation. The magnitudes of 
1u , 2u , 3u  and 4u  follow the requirement that the potential energy has to be stationary for 

variations of these four degrees of freedom. 
 
The in this way defined displacement field can be considered to be built up out of four “base 
fields” called trial functions or test functions: 

 

1 2
1 1 1 1 1 1

2 3
2 2 2 2 2 2

3 4
3 3 3 3 3 3

4
4 4 4 4

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

u b x u b x u b x

u b x u b x u b x

u b x u b x u b x

u b x u b x

= +

= +

= +

=

 (6.12)  

where the numbers in the rectangular frames refer to the fields between the respective points 
as can be seen in Fig. 6.11. For the total displacement field it now can be written: 

 
nodes

( ) ( )i iu x u b x= ∑  (6.13) 

Again it can be seen that ( )u x  is the sum of a set of functions. However, in this case the shape 
functions ( )ib x  are very simple. Each shape function is piecewise linear per element, has a 
maximum value of unity and satisfies the kinematic boundary condition.  
The total area of the structure is now divided in sub-areas, the so-called elements indicated by 
framed numbers. In this example there are four elements. In the finite element method the 
common boundary of two elements is called the element edge. On the element edges the 
nodes or nodal points 1 up to 4 are situated. 
As described above the displacement field is a summation of the contribution of the nodes and 
a function ( )ib x , which may extend over more than one element. These contributions can be 
reorganised such that the displacement field becomes a summation over the several elements 
(also see Fig. 6.12): 

u
2u

x

3u
4u

1u

1                 2                 3                 4 

Fig. 6.10: Displacement field approximated by a polygon. 
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{ }

{ }

{ }

1 1
1 1

2 2 2 2 2 2
11 1 2 2 1 2

2

3 3 3 3 3 3
22 2 3 3 2 3

3

4 4 4 4 4 4
33 3 4 4 3 4

4

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

u b x B x u

uu b x u b x b x b x x
u

uu b x u b x b x b x x
u

uu b x u b x b x b x x
u

=

 + = =
 
 

 + = =
 
 

 + = =
 
 

B u

B u

B u

 (6.14)  

The total displacement field becomes: 

 
elements

( ) ( )e eu x x= ∑ B u  (6.15) 

The big advantage of this approach is that the potential energy can be calculated per element. 
The total potential energy then becomes a simple addition of the elemental contributions: 

 
elements

( )e e
pot potE E u= ∑  (6.16) 

Now, above-mentioned example with the four elements will be worked out further. For an 
element e  between the nodes l  and r  it holds (see Fig. 6.13): 

1      2 3      4
1       2 3      4

1u
2

2u
3

3u
4

4u
Fig. 6.11: The four trial functions.          Fig. 6.12: Displacement fields in the elements. 

1      2 3      4
1       2 3      4

1u

2

2u

3

3u

4

4u

1u

2u

3u
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 ( ) 1 ; ( )e e
l r

x xb x b x
a a

= − =  

The displacement becomes: 

 { }( ) ( ) ( ) ( ) ( ) ( ) 1e e e e
ll r l l r r l r

r

x xuu x x b x b x b x u b x u u u
a au

 
 = = = + = − + 
   
 

B u  

The strain can be obtained by differentiation: 

 ( )
( ) 1( ) l r

du xx u u
x a

ε = = − +
∂

 

The potential energy of the element equals: 

 ( )
22

0

1 1
2 2

e
s l r

a
EAE EA dx u u
a

ε= = − +∫  

Introduction of the stiffness factor: 

 EAK
a

=  

provides: 

 ( )2 21 2
2

e
s l l r rE K u u u u= − +  

The potential energy of position of an axial distributed load ( )f x  equals: 

 
0 0 0

( ) ( ) ( ) ( ) ( ) ( )e
p l l r r

a a a

E f x u x dx f x b x dx u f x b x dx u= − = − ∗ − ∗∫ ∫ ∫  

Fig. 6.13: Displacement field in an arbitrary element. 

a
x

lu
ru

e rl
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For constant ( )f x f=  it is found: 

  
0 0

1 1 1 11
2 2 2 2

e
p l r l r l r

a a
x xE f u dx f u dx f au f a u F u F u
a a

 
= − − = − − = − − 

 ∫ ∫  

where F f a=  has been introduced. 
The total potential energy of the element equals: 

 ( )2 21 1 12
2 2 2

e e e
pot s p l l r r l rE E E K u u u u Fu Fu= + = − + − −  

The elemental potential energies of the example become: 

 

( )

( )

( )

( )

(1) 2
1 1

(2) 2 2
1 1 2 2 1 2

(3) 2 2
2 2 3 3 2 3

(4) 2 2
3 3 4 4 3 4

1 1
2 2
1 1 12
2 2 2
1 1 12
2 2 2
1 1 12
2 2 2

pot

pot

pot

pot

E K u Fu

E K u u u u Fu Fu

E K u u u u Fu Fu

E K u u u u Fu Fu

= −

= − + − −

= − + − −

= − + − −

 

Summation provides the total potential energy: 

 2 2 2 2
1 1 2 2 2 3 3 3 4 4 1 2 3 4

1 1
2 2potE K u u u u u u u u u u F u u u u   

= − + − + − + − + + +   
   

 

Minimisation offers: 

 
( ) ( )

( ) ( )

1 2 2 3 4
1 3

1 2 3 3 4
2 4

2 0 ; 2 0

2 0 ; 2 0

pot pot

pot pot

E E
K u u F K u u u F

u u
E E

K u u u F K u u F
u u

∂ ∂
= − − = = − + − − =

∂ ∂

∂ ∂
= − + − − = = − + − =

∂ ∂

 (6.17) 

In matrix notation this set of equations can be rewritten as: 

 

1

2

3

4

2 1
1 2 1

1 2 1
1 1 2

u F
u F

K
u F
u F

−     
    − −      =   

 − −    
     −    

 (6.18)  

providing the following solution: 
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1

2

3

4

3.5
6.0
7.5
8.0

u F K
u F K
u F K
u F K

   
   
   

=   
   
     

 (6.19)  

The found displacement and the normal force distributions are shown in Fig. 6.14. 

6.5 Finite Element Method on basis of the virtual work equation 

The example with four elements as discussed in section 6.4 will be considered again. In this 
case however, the principle of weighted residuals of Galerkin for the equilibrium will be used. 
Again a volume load P  and a surface load p  at the end of the bar are introduced (also see 
sections 2.2 and 2.3). The cross-sectional area of the bar is set to unity, i.e. 1A = . In the 
nodes 1 up to 4 the internal stresses on the cut faces are 1σ  up to 4σ . Fig. 6.15 shows the bar 
divided into elements. The equilibrium equations valid inside the elements, on the cut faces 
and on the end face of the bar are indicated as well. 
The Galerkin condition incorporating all these equilibrium equations reads: 

 

( ) ( ) ( ) ( )

( )

( )

( )

( )

( )

( )
( )

1 2 3 4
, , , ,

1 2 3
1 1 1 2 2 2 3 3 3

4
4 4

2 3 4
1 1 1 2 2 2 3 3 3

1 2 3 4

0 0 0 0

0

x x x x

a a a a

P u dx P u dx P u dx P u dx

u u u
p u

u u u

σ δ σ δ σ δ σ δ

σ σ δ σ σ δ σ σ δ

σ δ

σ σ δ σ σ δ σ σ δ

+ + + + + + + +

  − + − + − +
  

+ + + + − + =  
− + − + − +  

  

∫ ∫ ∫ ∫
 (6.20) 

u
F S

x13
2 17

2
6

8

N
F

1 
2 
3 
4 

x1
211

212
213

2

Fig. 6.14: Calculated displacement and normal force distributions. 
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The variation of the displacements is zero at the left end where the displacement is prescribed. 
By partial integration for each of the four elements it holds: 

  , 1 1

0 0

i i i i
x i i i i

i ia a

u dx dx u uσ δ σ δε σ δ σ δ
− −

= − − +∫ ∫  (6.21) 

This relation transforms the Galerkin condition into (all signs are changed): 

 4

        contibution of volume contribution of
summation over the 4 elements   the edge 

4

1 0 0

0

i i

p

a a

i

S

dx P u dx p uσ δε δ δ

=

 
 − − =
 
 

∑ ∫ ∫
������������� ���

 (6.22) 

In the example of section 6.4 a realistic value of A  is assumed and a uniformly distributed 
line load f . No load at the free end of the bar is present. The integral condition then 
becomes: 

 ( )
4 4

1 10 0

0 0i i
s p

i ia a

i i
N dx f u dx E Eδε δ δ δ

= =

 
 − = → + =
 
 

∑ ∑∫ ∫  (6.23) 

For element e  situated between the nodes l  and r  it holds: 

 ( ) ( )

( )

( ) 1 ; ( ) 1

1 1( ) ; ( )

( )

l r l r

l r l r

l r

x x x xu x u u u x u u
a a a a

x u u x u u
a a
EAN x u u
a

δ δ δ

ε δε δ δ

   
= − + = − +   
   

= − + = − +

= − +

 

1                               2                               3                               4 
1

, 0x Pσ + =
2

, 0x Pσ + =
4

, 0x Pσ + =
3

, 0x Pσ + =

1
1 1

2
1 1

0

0

σ σ

σ σ

− + =

− + =

2
2 2

3
2 2

0

0

σ σ

σ σ

− + =

− + =

3
3 3

4
3 3

0

0

σ σ

σ σ

− + =

− + =

4
4 0pσ + =

1 2 3 41                           2                          3                          4             σ σ σ σ p

0 

Fig. 6.15: Governing equations of a bar divided into four elements. 
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The variation of the potential energies becomes: 

 

( ) ( ) ( ) ( )

0

0 0 0

1

1 11
2 2

e
s l r l r l r l l r r

e
p l r l r

a

a a a

EA EA EAE N dx u u u u a u u u u u u
a a a a

x xE f u dx f u dx f u dx f a u f a u
a a

δ δε δ δ δ δ

δ δ δ δ δ δ

= = − + − + = − + − +

 
= − = − − − = − − 

 

∫

∫ ∫ ∫
 

Substitution of K EA a=  and F f a=  for one element it totally provides: 

 ( ) ( )
1 1
2 2

e e e
s p l r l l r r l rE E E K u u u K u u u F u F uδ δ δ δ δ δ δ= + = − + − + − −  

For the four elements of the example this delivers (note that 0 0u =  and 0 0uδ = : 

 

( ) ( )

( ) ( )

( ) ( )

( ){ } ( ){ }

( ){ } ( )

1
1 1 1

2
1 2 1 1 2 2 1 2

3
2 3 2 2 3 3 2 3

4
3 4 3 3 4 4 3 4

1 2 1 1 2 3 2

2 3 4 3 3 4

1
2

1 1
2 2
1 1
2 2
1 1
2 2

2 2

12
2

E Ku u F u

E K u u u K u u u F u F u

E K u u u K u u u F u F u

E K u u u K u u u F u F u

E K u u F u K u u u F u

K u u u F u K u u F

δ δ δ

δ δ δ δ δ

δ δ δ δ δ

δ δ δ δ δ

δ δ δ

δ

= + −

= − + − + − −

= − + − + − −

= − + − + − −

= − − + − + − − +

 
+ − + − − + − + − 

 
4 0uδ =

 

Since Eδ  has to be zero for all allowable variations 1uδ  up to 4uδ , all terms between braces 
have to be zero. This provides the same relations as derived in the previous section by the 
principle of minimum of potential energy (see (6.17) and the matrix equation (6.18)). 

6.6 Epilogue 

In the approach of the principle of minimum potential energy, the contribution of an element 
can be written as: 

 { } { }
1 2
2

2

e
ll r l rpot

r

uEA a EA a f au u u uE
uEA a EA a f a

− −=     
    −    

 (6.24) 

The Galerkin approach provided: 

 { } { } 2
2

e
ll r l r

r

uEA a EA a f au u u uE
uEA a EA a f a

δ δ δ δδ − −=     
    −    

 (6.25) 

+
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In matrix notation these relations read: 

 1
2

e T T
potE = −u K u u f  (6.26) 

 e T TEδ δ δ= −u K u u f  (6.27) 

It can be seen that the stiffness matrix K  as well as the nodal force vector f  can be obtained 
by both methods. Because an elastic system is involved, both methods lead to the same 
answer. 
However, The virtual work (Galerkin) approach has become more popular than the principle 
of minimum potential energy. The advantage of the virtual work equation is especially 
demonstrated in the application of non-linear and non-elastic material behaviour. 
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7 Application of the Finite Element Method on a                                  
one-dimensional system 

In chapter 2 of the lecture notes “Direct Methods” a bar subjected to extension was analysed, 
which was spring supported in axial direction (see Fig. 7.1). The solution was determined by 

both the displacement and the force method, in both cases for a large length l . The general 
solution valid for any length l  can be calculated by: 

 2 2

1( ) 1
1 1

x xe fu x e e
e e k

α

λ λ

α α

−

′− −

− −

 
= − − + 

+ + 
 (7.1) 

 2 2

1( )
1 1

x xeN x e e f
e e

α

λ λ

α α
λ

−

′− −

− −

 
= − 

+ + 
 (7.2) 

 2 2

1( ) 1
1 1

x xes x e e f
e e

α

λ λ

α α

−

′− −

− −

 
= − − + 

+ + 
 (7.3) 

where: 
 
 u  =  displacement [m] 
 N  = normal force [N] 
 s  = spring load [N/m] 
 EA kλ =  = characteristic length [m] 
 EA  = extensional stiffness [N] 
 k  =  spring stiffness [N/m2] 
 lα λ=  = dimensionless length [-]  
 
When 1α � , the damping term with x′  from the right side disappears. But when 1α ≈ , this 
term cannot be neglected. In Fig. 7.2 the solution has been drawn for 2 6α =  and 2α = . 
These exact solutions will be approximated by the finite element method. In section 7.1 this is 
done with the principle of minimum potential energy and in section 7.2 the principle of 
minimum complementary energy is used. 

x x′l

f EA

k

Fig. 7.1: Spring-supported bar, which is uniformly loaded in axial direction. 
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7.1 Approximation by minimum of potential energy 

The bar is divided into two elements. The degrees of freedom in the two nodes 1 and 2 are the 
displacements 1u  and 2u , respectively. The two elements are indicated by 1  and 2  (see Fig. 
7.3). Inside the elements a linear field of displacements is assumed. A linear displacement 
field is the simplest distribution that satisfies the kinematic boundary condition(s).   
For the whole system it holds: 

Fig. 7.2: Exact solutions for spring-supported bar. 

0.99
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2α =0.96
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Fig. 7.3: Division into two elements. 
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 2 2

 energy in energy in potential enrgy
 the bar the springs    of position

0 0 0

1 1
2 2pot

l l l

E EA dx k e dx f u dxε= + −∫ ∫ ∫
������� ����� �����

 (7.4) 

The potential energy consists out of three parts, namely the contribution of the bar, the 
contribution of the springs and the contributions of the external load (position). These three 
contributions will be obtained for each of the elements separately and summed up afterwards. 

Element 1  
The displacement and strain fields are (see Fig. 7.4): 

 1
1 ,( ) ; ( ) x

x uu x u x u
a a

ε= = =  (7.5) 

The energy in the bar is: 

 
2

2 21
1

0

1 1 1
2 2 2s s

a
u EAE EA dx EA a E u
a a

ε
 

= = → = 
 ∫  (7.6) 

The energy in the springs is: 

 
2

2 2 2
1 1

0 0

1 1 1
2 2 6s s

a a
xE k u dx ku dx E k a u
a

 
= = → = 

 ∫ ∫  (7.7) 

The energy of the external load is: 

 1 1

0 0

1
2p p

a a
xE f u dx f u dx E f a u
a

= − = − → = −∫ ∫  (7.8) 

x

1
x u
a 1u

a

Fig. 7.4: Displacement field of element 1. 
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Element 2  
The displacement and strain fields are (see Fig. 7.5): 

 ( )1 2 , 1 2
1( ) 1 ; ( ) x

x xu x u u x u u u
a a a

ε
 

= − + = = − + 
 

 (7.9) 

The energy in the bar is: 

 ( )
2

2 21 2
1 1 2 2

0

1 1 2
2 2s s

a
u u EAE EA dx E u u u u

a a
− + 

= → = − + 
 ∫  (7.10) 

The energy in the springs is: 

( )
2

2 2
1 2 1 1 2 2

0

1 11
2 6s s

a
x xE k u u dx E k a u u u u
a a

  
= − + = → = + +  

  ∫  (7.11) 

The energy of the external load is: 

 ( )1 2 1 2

0 0

11
2p p

a a
x xE f u dx f u dx E f a u u
a a

 
= − − − − → = − + 

 ∫ ∫  (7.12) 

Total potential energy 
The sum of all framed contributions equals: 

 2 2
1 1 2 2 1 2

1 1 1 1 1
3 6 2 6 2pot

EA EA EAE ka u ka u u ka u f au f au
a a a

     
= + + − + + + − −     
     

 (7.13) 

This expression is stationary if the following is satisfied: 

Fig. 7.5: Displacement field of element 2. 
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1 2

1

1 2
2

2 10 2
3 6
1 1 10
6 3 2

pot

pot

E EA EAka u ka u f a
u a a

E EA EAka u ka u f a
u a a

∂    
= → + + − + =   

∂    

∂    
= → − + + + + =   

∂    

 (7.14) 

Division of (7.14)  by ka  and introduction of: 

 2 2

4EA
ka α

=  (7.15) 

where α  just as in the exact solution, is defined by: 

 l
α

λ
=  (7.16) 

provides the following two equations: 

 1 2 1 22 2 2 2

8 2 4 1 4 1 4 1 1;
3 6 6 3 2

f fu u u u
k kα α α α

       
+ + − + = − + + + =       

       
 (7.17) 

A solution will be obtained for the same values of α , for which the exact solutions have been 
determined as well: 
 
 2 6α =   behaviour as “long” bar 
 2α =   behaviour as “short” bar 
 

“long” bar: 2 6α =  
In this case from the relations in (7.17) it follows: 

 1 2;f fu u
k k

= =  

The normal forces then become: 

 ( )1 21 1 2; 0u EA f u uN EA f N EA
a a k a a

λ
λ

− + 
= = = = = 

 
 

For the ratio aλ  it can be written: 

 2 2 1 0.41
6a l

λ λ

α
= = = =  

So, the normal forces can be simplified to: 

 1 20.41 ; 0N f Nλ= =  



 96

Both the displacement and normal force distributions are shown in Fig. 7.6. 

   

“short” bar: 2α =  
Now the relations in (7.17) become: 

 1 2 1 2
8 5 5 4 1;
3 6 6 3 2

f fu u u u
k k

− = − + =  

Solving the displacements provide:  

 1 2
63 780.61 ; 0.76

103 103
f f f fu u
k k k k

= = = =  

The normal forces are: 

 ( ) ( )1 263 15;
103 103

N f N f
a a
λ λ

λ λ= =  

For the ratio aλ  it holds: 

 2 1
a
λ

α
= =  

So, the normal forces can be simplified to: 

Fig. 7.6: Comparison with exact solution. 
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 1 20.61 ; 0.15N f N fλ λ= =  

In Fig. 7.7 both the displacement and normal force distribution are shown again. 

7.2 Approximation by minimum of complementary energy 

Similarly to section 7.1 two elements 1  and 2  and two nodes 1 and 2 are used. Now a 
stress field is defined such that equilibrium is satisfied. In this example this is done by 
choosing two redundants 1ϕ  and 2ϕ  (see Fig. 7.8). For this structure this is the simplest 
distribution that satisfies the equilibrium equations. The redundant 1ϕ  is a constant distributed 
load between element 1  and the springs, and 2ϕ  is the constant distributed load between 
element 2  and the springs. In each point of the bar the value of the normal force N can be 
expressed in 1ϕ , 2ϕ  and f . The spring loads s  are equal to the local value of ϕ .  
The expression for the complementary energy reads: 

 
2

energy energy in
 in bar  springs

0 0

1 1
2 2compl

l l
N sE dx dx
EA k

= +∫ ∫
����� �����

 (7.18) 

No displacement term can be found in above energy expression, because no prescribed 
displacement different from zero is present. The two contributions of the bar and the springs 
are calculated for each of the elements separately. 

Fig. 7.7: Comparison with exact solution. 
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 Element 1  
The normal force field equals (see Fig. 7.9): 

 1 2( ) 2 1x xN x f a a a
a a

ϕ ϕ
   

= − − − −   
   

 (7.19) 

The energy in the bar is: 

 

Fig. 7.8: Introduction of redundants. 

a a

l

f EA

k

0                                         1                                         2

1                                        2

2 f a

( )1 2 aϕ ϕ− +

1ϕ 2ϕ

f a

2aϕ−

( )  resulting
from  

N x
f

( )  resulting
from  

N x
ϕ

The normal force 
distribution 
follows from the 
equilibrium 
equation 















Fig. 7.9: Normal force fields of element 1. 
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2

2
2 2 2 2

1 2

2
2 2 2
1 1 2

0

0 0 0

0

1 ( )
2

1 2 2 2 1 2 2
2

                                                         1 2 1

c

c

a

a a a

a

E N x dx
EA

x x x xE f a dx f a dx f a dx
EA a a a a

x xa dx a
a a

ϕ ϕ

ϕ ϕ ϕ

= →


       

= − − − − − − +       
      



   
− + −  

   

∫

∫ ∫ ∫

∫ 2 2
2

0 0

a a

dx a dxϕ




+ →



∫ ∫

 

 
3

2 2 2
1 2 1 1 2 2

1 7 5 13
2 3 3 3c

aE f f f
EA

ϕ ϕ ϕ ϕ ϕ ϕ
 

= − − + + + 
 

 (7.20) 

The energy in the springs is (see Fig. 7.10): 

 

2
2
1

1

0

1
12
2

c
c

a
sE dx ak E

k
s

ϕ

ϕ


= 

→ =

= 

∫  (7.21) 

Element 2  
The normal force field equals (see Fig. 7.11): 

 ( )2( ) 1 xN x a f
a

ϕ
 

= − − 
 

 (7.22) 

1ϕ

Fig. 7.10: Spring load. 

Fig. 7.11: Normal force fields of element 2. 
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The energy in the bar is: 

 ( )
22

22
2

0 0

1 ( ) 1
2 2c

a a
a xE N x dx f dx

EA EA a
ϕ

 
= = − − → 

 ∫ ∫  

 ( )
3

2 2
2 2

1 2
6c

aE f f
EA

ϕ ϕ= − +  (7.23) 

The energy in the springs is: 

 
2 2
2 2

0

1 1
2 2c c

a
aE dx E

k k
ϕ ϕ

= → =∫  (7.24) 

Total complementary energy 
The sum of all framed contributions equals: 

 
3

2 2 2 2 2
1 2 1 1 2 2 1 2

4 5 11 1 1 2 1 1
3 6 6 6 2 3 2 2compl

a aE f f f
EA k

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
   

= − − + + + + +   
   

 (7.25) 

Variation with respect to 1ϕ  and 2ϕ  provides: 

 

3 3 3

1 2
1

3 3 3

1 2
2

1 1 50 0
3 2 6

1 4 110 0
2 3 6

compl

compl

E a a a a f
EA k EA EA

E a a a a f
EA EA k EA

ϕ ϕ
ϕ

ϕ ϕ
ϕ

∂  
= → + + − = 

∂  

∂  
= → + + − = 

∂  

 (7.26) 

Multiplication of (7.26) and  by 3EA a  and introduction of: 

 2 2

4EA
ka α

=  (7.27) 

where α  is defined by: 

 l
α

λ
=  (7.28) 

provides the following two equations: 

 1 2 1 22 2

1 4 1 5 1 4 4 11;
3 2 6 2 3 6

f fϕ ϕ ϕ ϕ
α α

   
+ + = + + =   

   
 (7.29)  
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“long” bar: 2 6α =  
In this case from the relations in (7.29) it follows: 

 
1 2

1 2

1 2

1 1 5
22 2 6 ;

1 3 11 3
2 2 6

f
f f

f

ϕ ϕ

ϕ ϕ

ϕ ϕ


+ = 

→ = =
+ =


 

The normal forces then become: 

 0 1 2
1 ; 0
3

N f a N N= = =  

In order to compare this result with the exact solution the length a  is expressed in λ : 

 1 1 6 2.46
2 2

a l αλ λ λ= = = =  

So, the normal forces can be simplified to: 

 0 1 20.82 ; 0N f N Nλ= = =  

Above results are shown in Fig. 7.12. 

“short” bar: 2α =  
Now the relations in (7.29) become: 

Fig. 7.12: Comparison with exact solution. 
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1 2

1 2

1 2

4 1 5
37 733 2 6 0.36 ; 0.71

1 7 11 103 103
2 3 6

f
f f f f

f

ϕ ϕ

ϕ ϕ

ϕ ϕ


+ = 

→ = = = =
+ =


 

Solving the normal forces provide:  

 0 1 2
96 30; ; 0

103 103
N f a N f a N= = =  

with 2a αλ λ= =  this becomes: 

 0 1 2
96 300.93 ; 0.29 ; 0

103 103
N f f N f f Nλ λ λ λ= = = = =  

In Fig. 7.13 the graphical representation of these results can be found. 

Calculation of the displacements 
When the displacement 2u  in node 2 has to be determined, a (not known) force 2F  has to be 
applied at that position (see Fig. 7.14). This force is incorporated in the derivation as extra 
redundant together with 1ϕ  and 2ϕ  (when 1u  in node 1 has to be determined, a force 1F  has to 
be applied in node 1; when both 1u  and 2u  have to be determined, both 1F  and 2F  have to be 
applied). 
The total complementary energy then becomes: 

Fig. 7.13: Comparison with exact solution. 
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3

2 2 2 2 2
1 2 1 1 2 2 1 2

4 5 11 1 1 2 1 1
3 6 6 6 2 3 2 2compl

a aE f f f
EA k

ϕ ϕ ϕ ϕ ϕ ϕ ϕ ϕ
   

= − − + + + + +   
   

+ 

 ( )2 2 2 2
2 2 1 2 2 2 2 2

1 2F fa F a F a F l F u
EA

ϕ ϕ+ − − + −  (7.30) 

Subsequently variation with respect to 1ϕ , 2ϕ  and 2F  delivers three equations: 

 

1 2 22

1 2 22

1 2 2 22

2 4 1 1 5
3 2 6

1 4 4 1 11
2 3 6
1 3 2 2
2 2

F f
a a

F f
a a

EAF u f
a a

ϕ ϕ

ϕ ϕ

ϕ ϕ

 
+ + − = 

 

 
+ + − = 

 

− − + = −

 (7.31) 

For 2 0F = , the first two equations provide the same values for 1ϕ  and 2ϕ . For 2u  it then 
follows from the third equation: 

 
2 2

1 2
2 1 2

1 31 3 22 2 22 2 4
a afu f
EA k

ϕ ϕ
ϕ ϕ

 
  − − = − − = 

  
 

 

For the “long” and “short” bar it respectively is found: 

Fig. 7.14: Calculation of displacements. 
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2

1
2

2

2
2 6 3

24
f f fu

k kf

ϕ α
α

ϕ


= 

= → → = =
= 

 (exact solution: 2 0.9999 fu
k

= ) 

 
21

2

2

37
781032 0.76

73 103 4
103

f f fu
k kf

ϕ
α

α

ϕ


= 

= → → = =
=


 (exact solution: 2 0.73 fu
k

= ) 

7.3 Epilogue 

The results of both the displacement and the force methods are on the average calculated well. 
In the chosen computational example only two elements were defined. By increasing the 
amount of elements, the correspondence with the exact solution will become better. 
 
In the displacement method the displacement u  is calculated, followed by the calculation of 
the normal force N  and the spring load s .  
In the force method, firstly the redundant ϕ  (equal to the spring load s ) is obtained followed 
by the normal force N  and displacement u . 
 
In the displacement method the distribution of u  (and therefore also s ) is linear, and is the 
normal force N  is constant per element.  
In the force method this is quite the reverse. Then N  is linear and ϕ  (thus s ) is constant 
across each element. 
 
Both the displacement and the force methods lead in the chosen example to approximated 
solutions. In the displacement method the equilibrium x -direction will be violated, and in the 
force method compatibility between the bar and the springs will not be satisfied.  
That the equilibrium is not correct in the displacement method can be shown by calculation of 
the normal force corresponding with the spring load s  and comparison of this force with the 
previously obtained solution. For both examples this is shown in Fig. 7.15. 
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Fig. 7.15: Violation of equilibrium. 
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That compatibility is violated in the force method can clearly be seen, when the displacement 
u  of the springs resulting from the spring load s  is compared with the displacement u  in the 
bar resulting from the normal force N , as shown in Fig. 7.16. 
 

A final remark should be made concerning the suitability of both methods for calculations on 
a computer. The displacement method has the advantage that per element it is dealt with 
degrees of freedom only belonging to that specific element. In the force method, the stress 
state in an element is normally also depending on redundants defined in other elements, which 
makes it difficult to programme a simple computer algorithm. For this reason the 
displacement method is given preference above the force method in computer applications. 
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8 Characteristics of the approximations 

A linear-elastic system is considered loaded by n  loads 1F  up to nF , with corresponding 
displacements 1u  up to nu . The loads may be point loads but also generalised loads are 
possible. 

8.1 Displacement method 

In the displacement method a displacement field is interpolated between the discrete degrees 
of freedom 1u  up to nu . Doing so, a quadratic expression is found for the potential energy: 

 1
2

T T
potE = −u K u u f  (8.1) 

where u  is the vector containing all discrete displacements and f  is the force vector. The 
matrix K is a stiffness matrix. The forces f  are given (and therefore exact), and the 
(approximated) displacements u  are to be found. 
The potential energy is stationary if: 

 potE∂
= → − = → =

∂
0 Ku f 0 Ku f

u
 (8.2) 

The stationary value of potE  is: 

 1 1 1
2 2 2

T T T T
potE = − = − = −u K u u f u K u u f  (8.3) 

where the term 1
2

Tu K u is just the deformation energy. Generally, the exact minimum shall 
not be found for the assumed displacement field but only a neighbouring approximation. For 

the term 1
2

Tu f a value is found which is too small, as shown in Fig. 8.1. Since f  is fixed, as 
a rule u  will be too small. It also can be said that the deformation energy is underestimated. 
Because for the term 1

2
Tu K u  a value is found that is too small. 

1approximated minimum 
2

Tu f

exact minimum

u

potE

Fig. 8.1: Approximated and exact minimum of potential energy. 
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8.2 Force method  

In the force method, the displacements u  are considered given and the associated forces f  
are calculated. On bases of equilibrium, a stress field is chosen that is corresponding with the 
forces f  (the redundants). In this case the complementary energy becomes a quadratic 
expression: 

 1
2

T T
complE = −f C f f u  (8.4) 

where C  is the flexibility or compliance matrix. The displacements u  are given and the 
(approximated) forces f  are to be found. 
The complementary energy is stationary if: 

 complE∂
= → − = → =

∂
0 C f u 0 C f u

f
 (8.5) 

The stationary value of complE  equals: 

 1 1 1
2 2 2

T T T T
complE = − = − = −f C f f u f C f f u  (8.6) 

where the term T1
2 f C f is just the deformation energy. Because a stress field has been 

assumed the calculated value of T1
2 f u  will be too small as shown in Fig. 8.2. Therefore, it 

has to be concluded that for a given u  a force f  is calculated, which is too small. In other 
words, when the correct load f  is being used, the found displacements u  will be too large. 
This also means that the deformation energy 1

2
Tf C f ( T1

2= f u ) then will be too large. 

8.3 Conclusion 

In approximated solutions obtained by the principle of minimum potential energy, the 
stiffness is overestimated. As a rule, the displacements are too small. Better expressed: the 
deformation energy sE  is underestimated. 
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Fig. 8.2: Approximated and exact minimum of complementary energy. 
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In approximated solutions obtained by the principle of minimum complementary energy, the 
stiffness is underestimated. As a rule, the displacements are too large. Better expressed: the 
deformation energy cE  is overestimated. 
 

When more and more elements n  are used, meaning that the assumed displacement field or 
the assumed stress field are in better agreement with the exact solution, the two 
approximation methods will converge to the same exact solution. In this way an upper-bound 
and a lower-bound solution encloses the exact solution (see Fig. 8.3).      
 
 

Fig. 8.3: Convergence of force method and displacement method towards exact solution. 
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