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Problem 1  (4 points) 
 

 1

A three storey office building is founded on a 
round cellar of reinforced concrete (Figure 1). 
Both the structure and the dominant loading are 
axisymmetric. We model the floor of the cellar as 
a linear elastic plate of thickness t and radius a 
(Figure 2). The Young’s modulus is E and the 
Poison’s ration is ν. The soil is modelled with 
homogeneously distributed springs with stiffness 
k [kN/m³]. The cellar wall is considered to be a 
rigid cylinder, therefore, the edges of the plate 
can translate vertically but cannot rotate. The 
plate is loaded by a distributed load p [kN/m²] 
and a line load f [kN/m] at the edge. 
 
 

a As you know the differential equation of a 
axisymmetric plate is 
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Figure 1. Cross-section of a round office 
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Figure 2. Axisymmetric plate 

 
where w is the displacement 

and =
− ν

3

212(1 )
EtD the plate stiffness of the floor. 

 
How can we introduce the distributed springs in 
this differential equation? 
 
 

b An analytical solution exists for the differential 
equation that you formulated in question a. 
However, the solution is difficult to handle 
because it contains complex Bessel-functions. 
Therefore we want to approximate the solution 
using potential energy.  
 
Give the formula for the potential energy of the 
spring supported plate. Evaluate the formula to 
a function of the displacement w and the 
curvatures and or the curvatures rrκ θθκ

xxκ yyκ and . xyρ
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c We choose the following function for the 
deflection w of the plate. 
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Formulate the boundary conditions of this 
function. Does the function meet these 
conditions? Explain your answer. 
 

d Substitution of w in the formula of the potential energy gives the following result. 
 

 ⎛ ⎞β
= π + + − + − +⎜ ⎟β⎝ ⎠
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D
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Derive two equations from which the constants C and C can be solved. (You do not need 
to solve C and C .) 
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e The constants have been solved for you with the following result. 
 

− β
= +

+ β1
1603
240

p fC
k ak

 

β
=

+ β
15

2 2 240
fC

ak
 

 
Calculate the moment in the middle (r = 0) and at the edge (r = a) of the plate. rrm

  
Problem 2  (3 points) 
 
A symmetric box-girder beam is loaded in torsion. The dimensions are drawn in Figure 3. The 
cross-section areas of the cells are and . These are calculated between the dashed lines 
in the centres of the walls. The wall thickness t is small compared to the width b. 

1A 2A

 
a Calculate the torsion stiffness GI . w

 
b Calculate the largest shear stress τ as function of the moment M . w
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Figure 3. Cross-section of a box-girder beam 
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Problem 3  (3 points) 

 3

 
A thin axisymmetric plate is clamped at the edge r = a 
and has a free edge at r = b (Figure 4.). The plate 
stiffness is D and the Poisson’s ratio is ν. The loading 
of the plate consists of a temperature gradient over 
the thickness of the plate. The temperature at the 
upper face of the plate is higher than at the bottom 
face. If the plate would have two free edges, stresses 
would not occur and the curvature of the plate would 
be in all directions and in each point of the plate 
( ). 

−κT
κ > 0T

 
 

a The constitutive equations of a axisymmetric plate 
without temperature loading are 
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Show that these equations change into the following 
equations when the temperature loading is present. 
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Figure 4. Axisymmetric plate 

 
 

b The shear force can be determined by rV
 
    (a) = LrV D ϕ
where 
  =r rV r v

 =
1L d dr r

dr r dr
 

 ϕ = −
dw
dr

 

 
The same shear force can be derived from 
 

 = − ∇2
r

dv D
dr

w   (b) 

 
Show that equations (a) and (b) are equivalent. 
 
 

c The homogeneous solution of the differential equation is 
 

= + + +2 2
1 2 3 4( )w r C C r C ln r C r ln r  



If  then only the term would remain. Show that in this case 
always  and . 

= = =1 3 4 0C C C 2
2C r

θθ=rrm m = 0rv
If  then only the term would remain. Assume that κ = . Show that in 
this case always 

= = =1 2 4 0C C C 3C ln r 0T

θθ= −rrm m  and = 0rv . 
 
 

d Discuss why the shear force in the problem at hand will be zero for all values of r in the 
interval . Do not use the homogeneous solution of question c. ≤ ≤a r b
 
 

e Formulate the boundary conditions from which , , and can be solved. (You do 
not need to solve the constants.) 

1C 2C 3C 4C

 
 

f The solution of the constants is 
 

 + ν
= − κ1

1 2
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 + ν
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= − κ3

1
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=4 0C  
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 + ν − ν
= +2 2

1 1n
a b

 

 
Consequently, the displacement field is 
 

 
⎛ ⎞ + ν

= − + − κ⎜ ⎟⎜ ⎟
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2
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2 2 2

1
T

r rw ln
a na

 

 
Choose ν = 0 and b = 2a and check that boundary conditions are satisfied. 
 
 

g Draw a graph of  and  in the interval rrm θθm ≤ ≤ 2a r a . Write the value of the moments at 
both ends of the interval in the graph. 
 
 

h Predict without analysis the moments if the clamped edge is replaced by a simply supported 
edge. Explain your answer. 
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Exam CT5141, 23 June 2003 
Answers to Problem 1 
 

a Differential Equation
The distributed springs can be introduced as a reduction of the distributed load. The new 
differential equation becomes therefore 
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This can be written somewhat more elegantly. 
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b Potential Energy  

De potential energy consists of 1) the strain energy in the plate, 2) the strain energy in the 
springs, 3) the position energy of the distributed load q and 4) the position energy due to the 
edge load f. 
 

( )= κ + κ + ρ + − −∫ ∫ ∫21 1
2 2pot xx xx yy yy xy xy

A A A
E m m m dA k w dA pw dA f w ds∫

s
 

 
where A is the area of the plate and s the edge of the plate. 
We can also write this in polar coordinates. 
 

( )θθ θθ
=

= κ + κ + − π − π∫ 21 1 1
2 2 2

0
2 2 (

a

pot rr rr
r

E m m kw pw r dr a f )w a  

 
The constitutive equations are 
 

θθ= κ + νκ( )rr rrm D  

θθ θθ= κ + νκ( )rrm D . 
 
Substitution of these in the potential energy function gives 
 

( )θθ θθ
=

= κ + νκ κ + κ + νκ κ + − π − π∫ 21 1 1
2 2 2

0
( ) ( ) 2 2

a

pot rr tt rr rr
r
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which can be simplified to 
 

( )θθ θθ
=

= κ + νκ κ + κ + − π − π∫ 2 2 21 1 1
2 2 2

0
( ) 2

a

pot rr rr
r

E D kw pw r dr a f w2 ( )a . 

 
 

c Boundary Conditions
The function w needs to be kinematically admissible. So, it should fulfil the kinematic 
boundary conditions. These follow from symmetry and the fixed edge rotation. 
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=
=

0
0

r

dw
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  and  
=

= 0
r a

dw
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The slope of the plate is 
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

2
2 2 2

4 1dw r rC
dr a a

 
Encore (not an exam question) 
De dynamic boundary conditions are 
 

= → =
= → =

0 0r

r

r v
r a v f  
 

These need not be fulfilled for 
application of the principle of minimum 
potential energy. 

= → =

= → =

0 0

0

dwr
dr
dwr a
dr

 

 
Therefore, the function correctly fulfils the 
kinematic boundary conditions. 
 
 

d Coefficients
Potential energy must be minimal with respect to the coefficients that describe the 
displacements. In the minimum the derivatives equal zero. 
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From this C and C can be solved. 1 2
 

e Moments
⎛ ⎞

= + −⎜ ⎟⎜ ⎟
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Encore 1 (not an exam question) 
Note that the distributed load p does not contribute to the moments. Apparently p is directly 
carried by the distributed springs. 
 
Note too that the moment in the middle of the plate is negative. At that location the 
reinforcement shall be placed in the top of the floor. At the edge the reinforcement shall be 
placed in the bottom of the floor. 
 
Encore 2  
The deflection can also be approximated by a polynomial of a higher order. 

= + + +
2 4

1 2 3 42 4
r rw C C C C
a a

6

6
r
a

 

Cleary, this provides a better approximation. Processing of the kinematic boundary 
conditions gives = − −1 2

4 23 3C C 3C . The largest moment  becomes  ( )rrm a
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480 2016 5
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. Below both approximations are plotted for practical 

values of β. 
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The largest difference is approximately 10 %. 
 
Encore 3 
We can use a simple trick to estimate the moments in the floor. Assume that the support 
reaction from the soil onto cellar floor is evenly distributed. Now we can ignore the 
distributed springs and use the normal plate theory. 
The total load onto the floor is . The area of the floor is . Therefore, 

the evenly distributed support reaction is 

= π + π 22F f a p a = π 2A a

π + π
= = +

π

2

2
2 2F f a p a f p

A aa
. 

The moments in the floor are (Lecture book page 130) 
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fm p p a
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⎛ ⎞= − − − =⎜ ⎟
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2 1
4
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8rr

fm a p p a f a
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which corresponds to the result of question e for β = 0. As the graph above shows the trick is 
conservative and gives an error of at most 15 %. 
 
 
Answers to Problem 2 
 

a Torsion Stiffness
We use the membrane analogy with weight-less plates. Due to symmetry just two 
equilibrium equations exist. 

Equilibrium plate 1 −
= + −2 1 1 2( )0.0261 0.333 0.356 0.120

2
sw sw s w wb p b b b

t t t
1  

Equilibrium plate 2 −
= + + x2 2 2 2( )0.0478 0.333 0.335 2 0.120

2
sw sw s w wb p b b b

t t t
1  

 
These equations can be evaluated 
 

= −1 20.0261 0.643 0.120bpt w w
s

 

= − +1 20.0478 0.240 0.742bpt w w
s

 

A1 A1A2

w1 w1
w2

 
from whichw andw can be solved. 1 2
 

=1 0.0560 bptw
s

 

=2 0.0825 bptw
s

 

 
From the membrane we go to the φ bubble using the following substitutions. 
 

 
= φ
= θ

=

2
1

w
p

s
G

 

Therefore, 
 
  φ = θ1 0.112Gbt
 . φ = θ2 0.165Gbt
 
The torsion moment  is two times the volume of the φ-bubble. tM
 

= φ + φ = θ +x 2 2
1 1 2 22(2 ) 2(2 0.0261 0.112 0.0478 0.165 )tM A A b Gbt b Gb θt

θb t

 

= 30.0275tM G         (♦) 
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For a wire frame model of the box-girder beam we have = θt tM GI . So, the torsion stiffness 
is 



= 30.0275tGI Gb t  . 
 

b Largest Shear Stress
The shear stress τ is the slope of the φ bubble. The largest slope occurs in the middle of the 
lower flange of the box-girder. 
 

φ θ
τ = = =2
max

0.165 0.165Gbt Gb
t t

θ  

Equation (♦) can be rewritten as = θ20.0275
tM Gb

b t
. Using this we obtain the shear stress 

τ =max 20.167
tM
b t

 . 

 
 
Answers to Problem 3 
 

a Constitutive Equations 
The deformation due to stresses is the total deformation minus the deformation due to 
temperature. 
 

( ) ( )
( ) (

θθ θθ

θθ θθ θθ

= κ − −κ + ν κ − −κ = κ + νκ + + ν κ

= ν κ − −κ + κ − −κ = νκ + κ + + ν κ

( ( )) ( ( )) (1 )

( ( )) ( ( )) (1 )
rr rr T T rr T

rr T T rr T

m D D

m D D )
 

 
b Shear Force

Substitution of 
 

=r rV r v  

 =
1L d dr r

dr r dr
 

 ϕ = −
dw
dr

 

into 
  = ϕLrV D
gives 

 ⎛ ⎞= −⎜ ⎟
⎝ ⎠

1
r

d d dwr v Dr r
dr r dr dr

 

 = −
1

r
d d dv D r
dr r dr dr

w  

Since the operator is defined as ∇2

 

 ∇ =2 1 d dr
r dr dr

 

 
we can write this as 
 

 = − ∇2
r

dv D
dr

w  
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which was to be proved. 
 

c Terms
Term  = 2

2w C r

= 22dw C r
dr

 

=
2

22 2d w C
dr

 

κ = − = −
2

22 2rr
d w C
dr

 

θθκ = − = − 2
1 2dw C
r dr

 

( ) ( )
( ) (

θθ

θθ θθ

= κ + νκ + + ν κ = − − ν + + ν κ

= νκ + κ + + ν κ = −ν − + + ν κ
2 2

2 2

(1 ) 2 2 (1 )

(1 ) 2 2 (1 )
rr rr T T
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m D D C C
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Therefore,  θθ=rrm m

 θθ θθ= + − = + −0 0rr rr
r rr

m mm mdv m
dr r r r r

=  

 
Term  = 3w C ln r

= 3
1dw C

dr r
 

2
32 2

1d w C
dr r

= −  

κ = − =
2

32 2
1

rr
d w C
dr r

 

θθκ = − = − 3 2
1 1dw C
r dr r
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θθ

θθ θθ

⎛ ⎞
= κ + νκ + + ν κ = − ν + = − ν⎜ ⎟

⎝ ⎠
⎛ ⎞

= νκ + κ + + ν κ = ν − + = − − ν⎜ ⎟
⎝ ⎠

3
3 32 2

3
3 32 2

1 1(1 ) 0 (1 )

1 1(1 ) 0 (1 )
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Cm D D C C D
r r r

Cm D D C C D
r r

2
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Therefore,  θθ= −rrm m

θθ
− ν − − ν

= + − = − − ν + −

3 3
2 23

3

(1 ) (1 )
2 (1 )rr

r rr

C CD D
m Cmd r rv m D

dr r r r rr
 

− ν
= − − ν + =

3
23

3

2 (1 )
2 (1 ) 0

CD
C rD

rr
 

 
d Equilibrium

Consider equilibrium in the z direction of a plate part between r and b ( ). The plate does 
not have an edge load f at r = b and does not have a distributed load p over the area of the 
plate. Hence . 

≥r a

= 0rv
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p = 0

f = 0
rv

z

r
b

 
e Boundary Conditions

 

 
=

= →
=

0

0

w
r a dw

dx
 =

= →
=

0
0

rr

r

m
r b

v
 

f Check

Substitution of ν = 0 and b = 2a into + ν −
= +2

1 1n
a b

ν
2  gives = + =2 2

1 1 5
4 4

n
a a a2  

⎛ ⎞
= − + − κ⎜ ⎟⎜ ⎟
⎝ ⎠

2
21 1 4

2 2 52 T
r rw ln

aa
a  

⎛ ⎞
⎜ ⎟ ⎛ ⎞

= − κ = − κ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟⎜ ⎟

⎝ ⎠

2 24 4
5 52 2

1 1 1
T T

dw r ra ardr a ra a
a

 

( )⎛ ⎞
= − + − κ = − + − κ =⎜ ⎟⎜ ⎟
⎝ ⎠= →
⎛ ⎞

= − κ =⎜ ⎟
⎝ ⎠

2
2 21 1 4 1 1 4

2 2 5 2 2 52

24
52

0 0

1 0

T T

T

a aw ln a a
aar a

dw a a
dr aa
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⎛ ⎞
= + κ⎜ ⎟
⎝ ⎠

2
24

52 2 2
1 1

T
d w a
dr a r
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κ = − = − + κ⎜ ⎟

⎝ ⎠

2
24

52 2 2
1 1

rr T
d w a
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θθ
⎛ ⎞

κ = − = − + κ⎜ ⎟
⎝ ⎠

24
52 2

1 1 1
T

dw a
r dr a r

 

( )
⎛ ⎞⎛ ⎞⎛ ⎞

= κ + κ = − + κ + κ = κ −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

2
24 1

5 52 2 2
1 1

rr rr T T T T
am D D a D

a r r
4
5  

( )θθ θθ
⎛ ⎞⎛ ⎞⎛ ⎞

= κ + κ = − + κ + κ = κ +⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

2
24 1

5 52 2 2
1 1

T T T T
am D D a D

a r r
4
5  

θθ

⎛ ⎞ ⎛
κ − κ +⎜ ⎟ ⎜⎜ ⎟ ⎜⎛ ⎞ ⎝ ⎠ ⎝= + − = κ + −⎜ ⎟⎜ ⎟

⎝ ⎠

2 2
1 4 1 4
5 5 5 52 22

8
5 3

T T
rr

r rr T

a aD D
r rmmd av m D

dr r r r rr

⎞
⎟⎟
⎠  

⎛ ⎞ ⎛
κ − − − κ −⎜ ⎟ ⎜⎜ ⎟ ⎜⎛ ⎞ ⎛ ⎞⎝ ⎠ ⎝= κ + = κ + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

2 2 2
81 4 1 4

5 5 5 5 52 2 22 2
8 8
5 53 3 0

T T

T T

a a aD D
r r ra aD D
r rr r

⎞
⎟⎟
⎠  
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⎛ ⎞
= κ − =⎜ ⎟⎜= → ⎝

=

2
1 4
5 5 2 0

(2 )
0

rr T

r

am D
r b a

v

⎟
⎠   correct 

 
g Plot

21

κ
rr

T

m
D

θθ
κT

m
D

− 3
5

2
5

1

r
a

 
 

h Simply Supported
In case of a simply supported edge at r = a there is nothing that restricts the temperature 
induced curvature. Therefore the moments will be zero everywhere in the plate. 
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