
Delft University of Technology   Write your name and study number  
Faculty of Civil Engineering and Geosciences  at the top right-hand of your work. 
Structural Mechanics Section     
 
Exam CT5141 Theory of Elasticity  
Friday 31 October 2003, 9:00 – 12:00 hours 
 
Problem 1  (3 points) 
 
Consider a curved beam of rectangular cross-section 
(Figure 1). The beam is loaded by a moment M. The 
normal stress σ  in a cross-section can be derived 
as. 
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Figure 1. Curved beam 
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Figure 2. Functions W and I 

 
The moment in the cross-section can be derived as 
 

1
2 iM Et= − ε C , 

 
where 

22 2
2 21

4 2 2( ) a b bC b a ln
ab a

 = − − +  
 −

. 

 
a Derive the formula for the elastic section modulus W 

(Dutch: weerstandsmoment). 
 

max
M
Wθθσ =  

 
b Derive the formula for the moment of inertia I (Dutch: traagheidsmoment). 

 
M E= κI  

 
(Note that curvature κ is the change of rotation of the cross-sections per arch length.).  
 

c The derived formulas W and I have been plotted in Figure 2. Both W and I can be 
approximated by the formulas for straight beams. Is this approximation safe or unsafe? 
Consider for this both the serviceability limit state and the ultimate limit state of the structural 
component. 
 

d The hypothesis of Bernoulli states that plane cross-sections remain plane during bending. Is 
this hypothesis correct for curved beams? 
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Problem 2  (2 points) 
 
Traditional timber floors consist of beams and floorboards (Dutch: vloerdelen). In this problem 
the deflection of such a floor is calculated. One of the beams carries a line load q [kN/m] (Figure 
3). The floorboards transfer part of this load to the adjacent beams. The contribution of other 
beams is neglected, so only three beams are included in the structural model. The Young’s 
modulus is E and the moment of inertia of the beams is I. The boards have a thickness t. 
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          Figure 3. Cross-section of a timber floor 

 
Figure 4. Structural model of a timber floor 

We assume a deflection function 
 for the middle beam, a 

deflection function w  for both 
adjacent beams and a deflection 
function w  for the boards. 
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a What is the interpretation of variables w  and w . Formulate the kinematic boundary 
conditions of the deflection functions. Which of these boundary conditions are already satisfied? 
Show that the boundary conditions can be used to solve the following coefficients. 

1ˆ 2ˆ
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b Formulate the potential energy of the floor. 
Write it such that it can be evaluated by a 
mathematical computer program. 
 
 
 
 

 

Kinematic Equations 
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Constitutive Equations 
 
M E= κI M E= κI 31m E t= κ
1 1 2 2  3 312

2



 
 

c The result of the computer evaluation is a large function of the following variables. 
 

pot pot 1 2 2, 4 6ˆ ˆ( , , , , , , , , , )E E l a t E q w w C C C= I  
 
With respect to which variables needs the potential energy be minimal? How are the 
equations derived from which the deflection can be solved? 
 

d The computer solves the deflection as  
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The formula can be simplified with very little loss of accuracy to 
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Can this result be improved by using better approximations of the deflection functions? 
 
 
 
Problem 3  (3 points) 
 
A concrete offshore platform has a central 
shaft with a five-cell cross-section (Figure 5). 
The thickness of each wall is t, which is much 
smaller than the radius R of the cells. The 
membrane analogy will be used to determine 
the torsion properties. Due to rotation 
symmetry just two cells need to be considered 
in the calculations.  and  are the cross-
section areas of these cells. O  and O  are 
the circumferences of these cells. The 
following relations apply 
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Figure 5. Cross-section of a offshore 
platform shaft 

 
  A R= π 2

1

A R= − π 2
2 (4 )  
O R= π1 2  
O R= π2 2 . 

 
a Formulate the equations from which the displacements w  and w  of the floating plates can 

be solved. You do not need to solve these equations. 
1 2
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The solution of the equations is 
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b Calculate the torsion stiffness of the cross-section. 

 
c Calculate the shear stresses in the walls. Make a simple drawing of the cross-section and 

draw the shear stresses in the correct directions. 
 
 
 
Problem 4  (2 points) 
 
Consider an axial symmetrical plate loaded in bending. Derive the following equilibrium 
equation. 
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Exam CT5141, 31 October 2003 
Answers to Problem 1 
 

a Section Modulus 
In the lecture book  has been plotted. From this we observe that the extreme value 
occurs at r = a. 
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b Moment of Inertia 
Curvature is change of rotation over arch length. 
 

1
2

2
( )

i i
a ba b

ϕ ε
κ = =

++ ϕ
 

1 22 2
2 22 1 1 1

4 4 4 2 2( ) ( ) (2
i

i

Et CM atC b a t b a ln b a
E ab aE

b a

 − ε   = = = − + = − − − + + ε  κ  − 
+

I )b b
 

22 2
21 1

4 4 ( )( ) a b bt b a b a ln
b a a

   = − + −   −   
I  

 
 

c Approximation 
In the serviceability limit state the deformation is important. Since the approximated I is too 
large the displacements will be too small. Therefore the approximation of I is unsafe. 
 
In the ultimate limit state the stresses are important. Since the approximated W is too large 
the calculated stresses will be too small. Therefore the approximation of W is unsafe. 
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d Hypothesis 
The initial strain ε  produces plane rotations of the cross-sections. Therefore, the hypothesis 
is correct for curved beams. 

i

 
 
Encore (not an exam question) 
The first two non zero terms of the Taylor expansion of W to d = b – a are 
 

3
21 1

6 18
dW t d t
R

≈ − . 

 
The first two non zero terms of the Taylor expansion of I to d are 
 

5
31 1

12 365 2
dt d t
R

≈ −I . 

 
These approximations have an error less than 2 % for d < R (Figure 6). 
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Figure 6. Functions W, I and their approximations 
 
 
Answers to Problem 2 1 
 

a Kinematic Boundary Conditions 
The variables w  and w  are the maximum deflections that occur in the middle of beam 1 and 
2 respectively. The boundary conditions are 

1ˆ 2ˆ

 
 1 1

12 0w= → =x l  

2 1
12 0x l w= − → =  

3 1
22 0x l w= → =  
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4 1
22 0x l w= − → =  

5  3 10y w= → =w
6  3 2y a w w= → =

 7 30 0w
y

∂
= → =

∂
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The deflection functions are such that the boundary conditions 2, 4, 5 and 7 are already 
satisfied. 
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b Potential Energy 
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c Minimal 

The potential energy needs to be minimal with respect to the parameters that describe the 
deformation,w w . The equations are derived from 1 2 2, 4 6ˆ ˆ, , ,C C C
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d Improved 

De interaction between floorboards and beam is not a constant force over the beam length. 
Therefore, fourth order polynomials are not sufficient to describe the exact deflection of the 
beams. So, the solution is not exact and in theory it can be improved. 
 
Encore (not an exam problem) 
The deflection functions can be extended 
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The calculated maximum deflection is now 
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The approximated formula 
 
 
 7



 
4

5
1 384

10 28ˆ
10 84

q lw
E

+ β
=

+ βI  

 
shows a deviation between –0.4 % and 0.4 % for all values of β. 
 
Answers to Problem 3 
 

a Constitutive Equations 
We assume that plate 2 has a higher altitude than plate 1. 

Vertical equilibrium of plate 1.  w w wpA S O S O
t t

−
− + =1 2 13 1

1 14 4 01  

Vertical equilibrium of plate 2.  w wpA S O
t
−

− =2 1
2 2 0  

This can be evaluated to 
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The solution of these equations has been provided. 
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b Torsion Stiffness 

From the membrane the φ -bubble is obtained using the following substitutions 

 w p S
G

= φ = θ =
12 . 

GRt

GRt

π +
φ = θ

π

φ = θ
π

1

2

3 42
6
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The torsion moment is two times the volume of the φ -bubble. 
 

1 1 2 22(4 )tM A= φ + φ A  

GRt R GRt Rπ + = × θ π + θ − π π π 
2 23 4 82 4 2 2 (4 )

6 3
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3 1288
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For a wire frame model of the shaft we write 
 
 . t tM G= θI
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Therefore the torsion stiffness is 
 

 3 1288
3tG GR t  = π + π 

I . 

 
c Shear Stresses 

The shear stress is the slope of the φ –bubble. First we rewrite the formula for the torsion 
moment 
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and express φ  and  in the torsion moment. 1 φ2
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The shear stresses are 
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Answer to Problem 4 
 
Vertical equilibrium 
 

( )( )
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Moment equilibrium 
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Substitution of (2) in (1) gives 
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2
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Q. E. D. 
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