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Exam CT5141 Theory of Elasticity
Friday 31 October 2003, 9:00 — 12:00 hours

Problem 1 (3 points)

Consider a curved beam of rectangular cross-section
(Figure 1). The beam is loaded by a moment M. The M
normal stress cyq in a cross-section can be derived ) d
as.
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Derive the formula for the elastic section modulus W =92
(Dutch: weerstandsmoment). | R _b+a
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Coomax =,/ Figure 2. Functions Wand I

Derive the formula for the moment of inertia I (Dutch: traagheidsmoment).
M=EIx
(Note that curvature « is the change of rotation of the cross-sections per arch length.).

The derived formulas W and I have been plotted in Figure 2. Both W and I can be
approximated by the formulas for straight beams. Is this approximation safe or unsafe?
Consider for this both the serviceability limit state and the ultimate limit state of the structural
component.

The hypothesis of Bernoulli states that plane cross-sections remain plane during bending. Is
this hypothesis correct for curved beams?



Problem 2 (2 points)

Traditional timber floors consist of beams and floorboards (Dutch: vloerdelen). In this problem
the deflection of such a floor is calculated. One of the beams carries a line load g [kN/m] (Figure
3). The floorboards transfer part of this load to the adjacent beams. The contribution of other
beams is neglected, so only three beams are included in the structural model. The Young’s
modulus is E and the moment of inertia of the beams is I. The boards have a thickness t.

floorboard

Figure 3. Cross-section of a timber floor

We assume a deflection function
w, for the middle beam, a

deflection function w, for both

adjacent beams and a deflection
function w3 for the boards.

Figure 4. Structural model of a timber floor
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What is the interpretation of variables w, and w, . Formulate the kinematic boundary

conditions of the deflection functions. Which of these boundary conditions are already satisfied?
Show that the boundary conditions can be used to solve the following coefficients.

Cy =—4vy - 1C;
Cs =—4W, - +Cy

C5 =W2—W1—C6

Formulate the potential energy of the floor.
Write it such that it can be evaluated by a
mathematical computer program.

Kinematic Equations

d2W1 _ d2W2
dx?
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Constitutive Equations

M1=EIK1 M2 ZEIKZ




¢ The result of the computer evaluation is a large function of the following variables.

E,

pot = Epot(/’ a, ty E’ I7 q, W1, Wzy C2‘ C4’ C6)

With respect to which variables needs the potential energy be minimal? How are the
equations derived from which the deflection can be solved?

d The computer solves the deflection as

.5 ql* 95256+ 263970 +14375p2

W1 =
384 ET 95256 + 784350 + 431252
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The formula can be simplified with very little loss of accuracy to

. 5 ql*10+28p

w4 =
17384 ET 10+ 84p

Can this result be improved by using better approximations of the deflection functions?

Problem 3 (3 points)

A concrete offshore platform has a central
shaft with a five-cell cross-section (Figure 5).
The thickness of each wall is {, which is much
smaller than the radius R of the cells. The
membrane analogy will be used to determine
the torsion properties. Due to rotation
symmetry just two cells need to be considered
in the calculations. Ay and A, are the cross-

section areas of these cells. O; and O, are

the circumferences of these cells. The
following relations apply

A, =nR?
A, =(4-m)R?
Oy =21R Figure 5. Cross-section of a offshore
O, = 27R platform shaft
2 - .

a Formulate the equations from which the displacements w4 and w, of the floating plates can
be solved. You do not need to solve these equations.



The solution of the equations is

pRt3n+4
W1:—
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Calculate the torsion stiffness of the cross-section.

Calculate the shear stresses in the walls. Make a simple drawing of the cross-section and
draw the shear stresses in the correct directions.

Problem 4 (2 points)

Consider an axial symmetrical plate loaded in bending. Derive the following equilibrium
equation.

2
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Exam CT5141, 31 October 2003
Answers to Problem 1

a Section Modulus

In the lecture book fyy has been plotted. From this we observe that the extreme value

occurs atr
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b Moment of Inertia

Curvature is change of rotation over arch length.
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¢ Approximation
In the serviceability limit state the deformation is important. Since the approximated I is too

large the displacements will be too small. Therefore the approximation of I is unsafe.

In the ultimate limit state the stresses are important. Since the approximated W is too large
the calculated stresses will be too small. Therefore the approximation of W is unsafe.
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d Hypothesis
The initial strain ¢; produces plane rotations of the cross-sections. Therefore, the hypothesis

is correct for curved beams.

Encore (not an exam question)
The first two non zero terms of the Taylor expansion of Wto d=b - a are

1,2 1,4
Wzgtd _ﬁtﬁ'

The first two non zero terms of the Taylor expansion of I to d are

R " b+a 6
T T T
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Figure 6. Functions W, I and their approximations

Answers to Problem 2 '

a Kinematic Boundary Conditions
The variables w; and w, are the maximum deflections that occur in the middle of beam 1 and

2 respectively. The boundary conditions are

1 x=21 > wy=0
2 x=-31 —> wy=0
3 x:%l - wy=0

' This probl em has been proposed by Dr. Linh Cao Hoang, COW Consult
Denmar k
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W3 =Wy
y=a — Wz=Wwjp
8W3
oy
The deflection functions are such that the boundary conditions 2, 4, 5 and 7 are already
satisfied.
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=0

1 XZ%I—) 0=W1+C1%+Cz%—) C1=—4W1—102
3 XZ%/—) 0=W2+C3%+C4%—) C3——4W2——C4
6 y=a—> wy=wq+C5+Cq— Cg =wy —wq—Cg

Potential Energy
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Minimal
The potential energy needs to be minimal with respect to the parameters that describe the
deformation, w4, w5, Cy C4, Cg . The equations are derived from

%:0 %:0 %:0 %:0 aEPOt:
oy ’ owy, 0Cy 0Cy 0Cqg

Improved
De interaction between floorboards and beam is not a constant force over the beam length.

Therefore, fourth order polynomials are not sufficient to describe the exact deflection of the
beams. So, the solution is not exact and in theory it can be improved.

Encore (not an exam problem)
The deflection functions can be extended

2 X4 X6

W1 :W1+C1)I(_2+C2/T+C7I_6

2 X4 X6

W2 =Vi72 +C3)/(_2+C4I_4+08/_6
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23
The calculated maximum deflection is now

o 54 I* 5394156768 + 152549535604 + 1807186500 B +6640625p°
1=
384 ET 5394156768 + 448203294008 + 54172125002 + 1992187543

The approximated formula



o _ 5 ql*10+28p
17384 £T 10+ 84p

shows a deviation between —-0.4 % and 0.4 % for all values of j.
Answers to Problem 3

Constitutive Equations
We assume that plate 2 has a higher altitude than plate 1.

Vertical equilibrium of plate 1. p A, - s%%q 4 SM%Q -0

Wo — Wy

Vertical equilibrium of plate 2. pA, -S 0, =0

This can be evaluated to

prR? - %%%R + S@%m 0

p(4 - n)R2 -suan -0

The solution of these equations has been provided.

pRt3n+4
W1=—
S 6n
w, PRES
S 3xn

Torsion Stiffness
From the membrane the ¢-bubble is obtained using the following substitutions

w=0d p=20 S:l.

G
o1 =20GRtS" 4
T
8
by = 20G Rt —
3n

The torsion moment is two times the volume of the ¢-bubble.

M; = 2(441A1 + 02A2)
3n+4
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For a wire frame model of the shaft we write



Therefore the torsion stiffness is

GI, =GR (8 +@j.
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¢ Shear Stresses
The shear stress is the slope of the ¢ —bubble. First we rewrite the formula for the torsion

moment

Bn My

GRto=—"
2472 +128 R?

and express ¢4 and ¢, in the torsion moment.

3n Mt3n+4 3n+4 M
2472 1128 R2 61 2472 1128 R2
3n. M8 16 M
2472 +128 R2 31 2472 4+128 R2
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bp =2

The shear stresses are
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Answer to Problem 4

Vertical equilibrium

pdrer=q,er—(q, +dq,)(r+dr)e
pdrr=q,r-q,(r+dr)-dq,(r+dr)
pdrr=q,r—-q,r—-q,dr—dq,r—-dq,dr
pdr r=-q,dr—-dq,r—dq,dr

dq,
r=—-q,—r——-d
p ar ar qr
aq,
r=—q,—-r——
p ar dr
d
r=——:{r 1
pr=-—-(rar) (1)

Moment equilibrium

0:(m,,+dm,,)(p(r+dr)—mr,(pr+pdr(pr%—qr(prdr—2m99drg

ar 1
0=(m, +dm, )(r+dr)—m, r+pdr r?—qrrdr—ZmeedrE
O0=my(r+dr)+dm, (r+dr)—-m, r+pdr r%—q,rdr—Zmee dr%
O=mg r+mg,dr+dmg,r+dm,dr—-m, r+pdr r%—qrrdr—Zmeedr%

0=m, dr +dm, r +dm, dr +pdr r%—qr rdr —2mgyg dr%

0=m, + m”r+dm,,+p r%—q,r—mee
r
0=m, + m”r—q,r—mee
r
d(rmy,)
0 T2—q,r-m 2
g 97 Meo (2)

Q. E.D.
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