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Exam CT5141 Theory of Elasticity  
Wednesday 21 January 2004, 9:00 – 12:00 hours 
 
Problem 1  (2.5 points) 
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Elasticity theory provides a solution for the radial 
stress  that occurs in a bend of rectangular 
cross-section due to a moment M (Figure 1) 
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Figure 1. Curved beam 
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Figure 2. Function W  r

 
The moment in the cross-section can be derived as 
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b Derive the formula for the elastic section modulus W  (Dutch: weerstandsmoment). r
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c The derived formula for W  has been plotted in Figure 2. It shows that W  goes to zero 

when d goes to 2R. Apparently, in this situation 
r r

maxrrσ  becomes infinite. Is this physically 
correct? Explain your answer. 

 
d The first two non-zero terms of the Taylor expansion of W  to d in zero are r
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It can be shown that this approximation has a deviation between -0.7% and 0% for 0<d<R. 
Does this formula give correct results for straight beams? Explain your answer. 
 

e Laminated wood is an orthotropic material. Therefore, Young's moduli of a wooden bend in 
the radial and circumferential directions differ. New formulae for the stresses can be derived 
including this effect. Write down the kinematic equations, constitutive equations and 
equilibrium equations that need be used in this derivation. (You do not need to derive a 
formula.) 

 
 
Problem 2  (2.5 points) 

 
A triangular plate of thickness t 
carries an evenly distributed load 
q (Figure 3). The plate is simply 
supported at two edges. We 
assume that the kinematic, 
constitutive and equilibrium 
equations are linear. D is the 
plate stiffness and ν is Poisson’s 
rato. In this problem a formula is 
derived for the deflection of the 
plate using potential energy. 
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Figure 3. Triangular plate 

 
The following general deflection 
function is assumed. 
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where a  are coefficients that need to be determined. i
 

a Formulate the boundary conditions of the plate. Which boundary conditions need to be fulfilled 
for application of the principle of minimal potential energy?  

b When the boundary conditions are processed the deflection function reduces to 
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Formulate the potential energy of the floor. Write it such that it can be evaluated by a 
mathematical computer program. 
 

c The result of the computer evaluation is a large function of the following variables. 
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With respect to which variables needs the potential energy be minimal? How are the 
equations derived from which the coefficients can be solved? 
 

d The largest deflection and moments are expected in the middle of the free edge x = 0, y = 
a/2. The computer solves this deflection as 
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The moments in this point are 
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However, the moment on the free edge should be zero. Explain this inconsistency. yym
 
 
Problem 3  (2.5 points) 
 
A prismatic prestressed concrete girder carries an 
eccentric force of 85 kN (Figure 4). Young’s modulus 
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Figure 4. Cross-section of a 
prestressed concrete girder 

E = 30000 MPa and Poisson’s ratio ν = 0.15. Due to the 
prestressing cracks do not occur. A computer program for 
section analysis has determined the cross-section 
properties of this girder. 
 
Centroid   x = 157 mm, y = 268 mm 
Moments of Inertia   6 43379 10 mmxx =I
     6 4382 10 mmyy =I

     6 4362 10 mmxy =I

Polar Moment of Inertia  6 43761 10 mmp =I
Torsion Constant 
(Torsion Moment of Inertia)  6 4717 10 mmt =I
Warping Constant   10 6765 10 mmwC =
Shear Centre   x = 180 mm, y = 196 mm 
 

a What percentage is the torsion stiffness of this girder 
larger than the torsion stiffness of a rectangular cross-
section 150 x 600 mm? 
 3



 
b Explain shortly how the program computes the torsion properties of the cross-section. 

 
c Calculate the torsion moment load onto the girder due to the eccentric force. 

 
d What is an important restriction of the torsion theory of De Saint Venant? 

 
e What is the warping constant  used for? wC

 
 
Problem 4  (2.5 points) 
 

Derive the kinematic equation 1 dw
r drθθκ = −  of an axisymmetric plate loaded in bending.  
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Exam CT5141, 21 January 2004 
Answers to Problem 1 
 

a Maximum
In the lecture book  has been plotted. The maximum value of  can be derived from 
from 
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b Section Modulus 
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c Infinite Stress
A re-entrant corner (Dutch: inwendige hoek) cannot be sharper than the molecules from 
which the material is made of. So, there always is an internal radius a. The graph shows that 
when d  is a fraction smaller than 2R then  is not zero. Therefore, infinite stresses will not 
occur. Nonetheless, the stress can become large and damage can be expected in sharp re-
entrant corners. 

rW

 
d Approximation
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For straight beams R is very large. When R goes to infinity the first term of the approximation 
formula goes to infinity and the second term to zero. Therefore,  goes to infinity and rW rrσ  
goes to zero, which is physically correct. Therefore, the approximation formula gives the 
correct result for straight beams. 
 

e Orthotropic
kinematic equations 
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equilibrium equation 
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Answers to Problem 2 
 

a Boundary Conditions
kinematic boundary conditions 
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dynamic boundary conditions 
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For application of the principle of minimum potential energy the displacement function needs 
to fulfil the kinematic boundary conditions. 
 

b Potential Energy
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c Minimal



The potential energy needs to be minimal with respect to the parameters  
that describe the deformation. The equations are derived from 
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d Inconsistency

The calculated moment  is not zero on the free edge because apparently it is an 
approximation. 

yym

 
Encore (not an exam problem) 
The deflection function can be extended. 
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The calculated maximum deflection is now 
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has a deviation between -0.2% and 0.2% for 0 < ν < 0.5. 
 
The formula for the maximum moment along the free edge is 
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which can be approximated as 
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It can be shown that the deviation of this formula is between –0.6% and 0.5% for 0 < ν < 0.5. 
It is noted that for ν < 0.1 the absolute value of moment and xxm yym in the origin (x = 0, y = 
0) are somewhat larger than this value.  
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Answers to Problem 3 
 

a Torsion Stiffness 
girder   6717x10tG G=I

6Grectangle  3 30 281 0 281 600x150 569x10tG . Gbh . G= = =I

larger  717 569100 26
569

%−
=  

 
b Program

The program solves a partial differential equation using the finite element method. This 
differential equation can either describe the φ bubble (force method) or the warping function ψ 
(displacement method). From the result the torsion constant , warping constant and the 
Saint Venant shear stresses are computed. 

tI wC
,zx zyσ σ

 
c Torsion Loading

The eccentricity of the force is the horizontal distance from the force to the shear centre. 
tM = 85 x (0.180 – 0.050) = 11.05 kNm 

 
d Restriction

The torsion theory of De Saint Venant assumes that cross-sections can warp freely. This is 
often not the case in practice. 
 

e Warping Constant
The warping constant is used in the torsion theory of Vlasov. This theory describes the 
effects of warping restraints and distributed torsion loading. 

wC

 
 
Answer to Problem 4 
 
In Figure 5 can be seen that 
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This can be evaluated to rR =
ϕ

. 

Since 1
Rθθκ = −  and dw

dr
ϕ =  we find 1 dw

r drθθκ = − .  Q.E.D. 

 
Encore (Not an exam question) 
In the previous derivation small rotations ϕ  are assumed. We can also do the derivation for 
any rotation. 
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This can be evaluated to 
 

 
Figure 5. Deformation of an axisymmetric 
plate 
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rR =

ϕ
. 

 

Since 1
Rθθκ = −  and tan dw

dr
ϕ =  we find  
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The first two terms of the Taylor expansion in 
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