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Structural Mechanics Section

Exam CT5141 Theory of Elasticity
Friday 5 November 2004, 9:00 — 12:00 hours

Problem 1 (3 points)

A curved beam of rectangular cross-section is loaded by a moment M (Figure 1). The
material is laminated wood and the fibres are directed in the circumferential direction. The
kinematic equations are

grrzﬂ
ar

_U
899 —7.

£0p = %00 _YOrr , o
- I
E By _ .
. _Sw_ VO Figure 1. Curved beam of laminated wood
(= )
E, E

which can be inverted to give
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The equilibrium equation is
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Write the constitutive equations in matrix notation. Is this matrix symmetrical? What is the
meaning of E; and E ?

Derive a differential equation for solving this problem. Use either the displacement method or
the force method (You do not need to do both).

Formulate the boundary conditions that need be used to solve the differential equation.

Maple solves the differential equation and gives the following solution of the stress o in
the circumferential direction.
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d Give the formulae for deriving the moment
M and the normal force N in the cross-
section (you do not need to evaluate the , Goo .
formulae). Figure 2. % as a function of r

Maple evaluates these formulae as
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e Derive the formula for the section modulus W for calculating the extreme stress
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Problem 2 (3 points)

A reinforced concrete barge (Dutch:
ponton) is lifted at two corners
(Figure 3). The barge is loaded by
self-weight. The material density is p
[kg/m?] and the gravitation is g [m/s?].
All walls of the barge and the bottom
plate have a thickness t. In this
problem we calculate the deflection
w of the barge and the largest stress
using minimum potential energy.

We assume that the bottom plate

has the following deflection (Figure _ .
4). Figure 3. Barge supported at two opposite corners
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a Does the barge deformation fulfil the kinematic boundary conditions? Explain your answer.
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b Show that the bottom plate and each
wall experience the same constant
torsion
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¢ Give the formula for the potential
energy of the barge. (You do not need
to evaluate this formula).

This formula can be evaluated to the
following result

Figure 4. Barge deformation
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d Calculate the displacement w of the barge free corners. Explain why the height h does not
appear in the formula.

e Calculate the torsion momentm,, . Useful formulae for plates ,
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Problem 3 (3 points)

A box-girder bridge has reinforced concrete flanges and corrugated steel plate webs (Figure
5, 6). The shear stiffness of concrete is G, while the shear stiffness of steel is Gy . In this

problem we derive a formula for the torsion stiffness GI; of the cross-section.
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Figure 5. Section of a box-girder bridge
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Figure 6. Cross-section dimensions of the box-girder

. This formula is

t M; M;
——, T = and 13 =
2At, 2At, 2At;
also valid for inhomogeneous cross-sections. Check this by calculating the box-girder torsion
moment that the shear stresses 14, 1, and t3 produce.

Bredt's second formula states that | =

Formulate the complementary energy E,. of a slice of the box-girder with thickness A and
show that this can be evaluated to the following result
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Formulate the complementary energy E. of a wire model of the box-girder with length A.

Derive the torsion stiffness GI;.

Problem 4 (1 point)
Consider the following statement.

In thin-wall open sections the largest torsion stress occurs in the thickest wall part, while in
thin-wall single-cell closed sections the largest torsion stress occurs in the thinnest wall part.

Is this statement correct? Explain your answer.



Exam CT5141, 5 November 2004
Answers to Problem 1

Symmetry
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The material matrix is symmetrical. E; is Young’s modulus in the circumferential direction or
fibre direction. E | is Young’s modulus in the radial direction or perpendicular to the fibres.

Displacement Method
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¢ Boundary Conditions in the Displacement Method
On an edge o, =0, therefore,
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Boundary Conditions in the Force Method
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d Moment and Normal Force
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e Section Modulus
According to Figure 2 the extreme stress occurs at r = a.
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Encore (not an exam question)
Figure 7 shows that the influence of a is not large considering that for most wood species a
has a value between 3 and 6. The section modulus W can be approximated by
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It can be shown that this approximation has an error less than 3 % forO<d<Rand 1 <a <

e \)

Figure 7. Section modulus W as function of the beam height d and the stiffness ratio o.
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Answers to Problem 2'

Kinematic Boundary Conditions
The bottom plate is correctly connected to the supports because

X=y= -
X=a =b

0 w=0
y - w=0
Therefore, the barge fulfils the kinematic boundary conditions.

Torsion
The curvatures in the bottom plate are
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The curvature in the large walls is (see Figure 8)
Whih
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The curvature in the small walls is (see Figure 8.)

! Reinforced concrete barges are often used for constructing houseboats in The Netherlands (Dutch:

woonboten).
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Figure 8. Deformation of the barge walls

¢ Potential Energy
Epot =Eg + Ep
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d Displacement
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The displacement does not depend on the height h. Apparently the extra stiffness is
compensated by the extra load. Therefore, the formula is equally valid for just a plate (no
walls) and also valid for a barge without bottom plate (only walls).

e Torsion Moment
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f Largest Stress
The largest principal momentis my = Myy therefore, the largest principal stress is
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Encore (Not an exam question) .
The proposed barge displacement is not
completely kinematically admissible o /
because the wall joints are not

perpendicular after deformation. The joint
deformation angle at the top edge of the a

barge is 2 gxx
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If the wall joints would remain perpendicular than bending moments in the x, y and z
directions would occur. In fact these bending moments have been ignored in the present
analysis. The moments would not carry much of the load but occur because the wall joints
have to follow the deformation of the structure. Therefore they are called compatibility
moments.
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For practical dimensions the compatibility moments in the joints m,, will often be larger than
the torsion moment m, .

Answers to Problem 3

Bredt's Formula
Moment equilibrium around the middle point gives

h

_ 1 1 1
Mt = T1/1t1 Eh + ’C2I2t2 Eh + 2’C3l3t3 —/3 Eb
Substitution of the stresses

M; = M hti3h+ M Ity 3+ h+2 M, /t3h1b
2At 2At, 2Aty © 7 Iy 2

M;
:ﬂh(“ +/2 +2b)

Mt p o 4 ob)

=%hb Q.E.D.
A



2 2
—Al1t1+%;—2Al2t2 +%;—32BA/31‘3
C S
2 2 2
Y 12 13
— i+ ==ty +—=22BI5t
G gl Bl3 3]

C C S

2 2 2
1l Mt i/1 t+ M i/2t2+ M; i2ﬁl3 ts
2At ) G, 2At, ) G; 2At; ) Gg

2
=A%(%j [ h + 2 +2B13 j
A Goty  Ggty Gt

d Torsion Stiffness

Ec, slice = E¢, wire frame

2 2
A ME L pa(MeY [k 2B
261, "8l A ) |G.ty Gut, Gt

t c1 c'2 s'3

4A2
ho | 2Bl3
Gty Guty  Ggts

GI; =

Answer to Problem 4

This statement is correct. The stress in thin-wall single-cell closed sections is calculated by
Bredt's second formula

My

Tmax = m
The stress in thin-wall open sections is calculated by
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