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Exam CT5141 Theory of Elasticity  
Friday 5 November 2004, 9:00 – 12:00 hours 
 
Problem 1  (3 points) 
 
A curved beam of rectangular cross-section is loaded by a moment M (Figure 1). The 
material is laminated wood and the fibres are directed in the circumferential direction. The 
kinematic equations are 
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Figure 1. Curved beam of laminated wood
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The constitutive equations are 
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which can be inverted to give 
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The equilibrium equation is 
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a Write the constitutive equations in matrix notation. Is this matrix symmetrical? What is the 

meaning of E  and E⊥ ? 
 

b Derive a differential equation for solving this problem. Use either the displacement method or 
the force method (You do not need to do both). 
 

c Formulate the boundary conditions that need be used to solve the differential equation. 
 
Maple solves the differential equation and gives the following solution of the stress σ  in 
the circumferential direction. 

θθ
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In Figure 2 this stress is plotted for α = 5, a 
= 200 and b = 400. 
 
 

d Give the formulae for deriving the moment 
M and the normal force N in the cross-
section (you do not need to evaluate the 
formulae). 
 
Maple evaluates these formulae as 
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e Derive the formula for the section modulus W for calculating the extreme stress 
 

Mˆ
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Problem 2  (3 points) 
 
A reinforced concrete barge (Dutch: 
ponton) is lifted at two corners 
(Figure 3). The barge is loaded by 
self-weight. The material density is ρ 
[kg/m³] and the gravitation is g [m/s²]. 
All walls of the barge and the bottom 
plate have a thickness t. In this 
problem we calculate the deflection 
w of the barge and the largest stress 
using minimum potential energy. 
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Figure 3. Barge supported at two opposite corners 

 
We assume that the bottom plate 
has the following deflection (Figure 
4). 
 

2x y xyˆw w
a b ab

 = + − 
 

 

 
a Does the b

 

arge deformation fulfil the kinematic boundary conditions? Explain your answer. 
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Figure 4. Barge deformation 

b Show that the bottom plate and each 
wall experience the same constant 
torsion 

  4
xy

ŵ
ab

ρ = . 
 

c Give the formula for the potential 
energy of the barge. (You do not need 
to evaluate this formula). 
 
 
This formula can be evaluated to the 
following result 
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d Calculate the displacement w of the barge free corners. Explain why the height h does not 

appear in the formula. 
ˆ

 
 

Useful formulae for plates 
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e Calculate the torsion moment m . xy
 
 

f Calculate the largest principal stress 1σ . 
 
 

 
 
 
 
Problem 3  (3 points) 
 
A box-girder bridge has reinforced concrete flanges and corrugated steel plate webs (Figure 
5, 6). The shear stiffness of concrete is G while the shear stiffness of steel isG . In this 
problem we derive a formula for the torsion stiffness G  of the cross-section. 
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Figure 5. Section of a box-girder bridge 
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Figure 6. Cross-section dimensions of the box-girder 
 

a Bredt’s second formula states that 1
12

tM
At

τ = , 2
22

tM
At

τ =  and 3
32

tM
At

τ = . This formula is 

also valid for inhomogeneous cross-sections. Check this by calculating the box-girder torsion 
moment that the shear stresses τ , 1 2τ  and 3τ  produce. 
 

b Formulate the complementary energy of a slice of the box-girder with thickness ∆ and 
show that this can be evaluated to the following result 
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c Formulate the complementary energy of a wire model of the box-girder with length ∆. cE

 
d Derive the torsion stiffness G . tI

 
 
Problem 4 (1 point) 
 
Consider the following statement. 
 
In thin-wall open sections the largest torsion stress occurs in the thickest wall part, while in 
thin-wall single-cell closed sections the largest torsion stress occurs in the thinnest wall part. 
 
Is this statement correct? Explain your answer. 
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Exam CT5141, 5 November 2004 
Answers to Problem 1 

a Symmetry 
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The material matrix is symmetrical. E  is Young’s modulus in the circumferential direction or 
fibre direction. E is Young’s modulus in the radial direction or perpendicular to the fibres. ⊥
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c Boundary Conditions in the Displacement Method 

On an edge , therefore, 0rrσ =
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Boundary Conditions in the Force Method 
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d Moment and Normal Force 
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e Section Modulus 

According to Figure 2 the extreme stress occurs at r = a. 
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Encore (not an exam question) 
Figure 7 shows that the influence of α is not large considering that for most wood species α 
has a value between 3 and 6. The section modulus W can be approximated by 
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It can be shown that this approximation has an error less than 3 % for 0 < d < R and 1 < α < 
6. 
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Figure 7. Section modulus W as function of the beam height d and the stiffness ratio α. 
 
 
Answers to Problem 21 
 

a Kinematic Boundary Conditions 
The bottom plate is correctly connected to the supports because 
 

0 0x y w= = → =  
0x a y b w= = → =  

 
Therefore, the barge fulfils the kinematic boundary conditions. 
 

b Torsion 
The curvatures in the bottom plate are 
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The curvature in the large walls is (see Figure 8) 
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+
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The curvature in the small walls is (see Figure 8.) 
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1 Reinforced concrete barges are often used for constructing houseboats in The Netherlands (Dutch: 
woonboten).  
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ŵ h
a
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Figure 8. Deformation of the barge walls 

c Potential Energy 
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d Displacement 
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The displacement does not depend on the height h. Apparently the extra stiffness is 
compensated by the extra load. Therefore, the formula is equally valid for just a plate (no 
walls) and also valid for a barge without bottom plate (only walls). 
 

e  Torsion Moment 
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f Largest Stress 
The largest principal moment is , therefore, the largest principal stress is 1 xym m=
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Encore (Not an exam question) 
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The proposed barge displacement is not 
completely kinematically admissible 
because the wall joints are not 
perpendicular after deformation. The joint 
deformation angle at the top edge of the 
barge is 
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If the wall joints would remain perpendicular than bending moments in the x, y and z 
directions would occur. In fact these bending moments have been ignored in the present 
analysis. The moments would not carry much of the load but occur because the wall joints 
have to follow the deformation of the structure. Therefore they are called compatibility 
moments. 
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For practical dimensions the compatibility moments in the joints m will often be larger than 
the torsion moment m . 
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Answers to Problem 3 
 

a Bredt’s Formula 
Moment equilibrium around the middle point gives 
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Answer to Problem 4 
This statement is correct. The stress in thin-wall single-cell closed sections is calculated by 
Bredt’s second formula 
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The stress in thin-wall open sections is calculated by 
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