
Delft University of Technology   Write your name and study number  
Faculty of Civil Engineering and Geosciences  at the top right-hand of your work. 
Structural Mechanics Section     
 
Exam CT5141 Theory of Elasticity  
Wednesday 26 January 2005, 9:00 – 12:00 hours 
 
Problem 1  (4 points) 
 
Two metal strips are glued together 
(Figure 1). The strips have a 
thickness  and t , respectively. 
Young’s moduli are E  and , 
respectively. The strips are loaded 
by an axial force N. The width of 
the strips is w. 
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We want to study the shear stress 
in the thin glue layer. Therefore, a 
model is made consisting of bars 
connected by distributed springs 
(Figure 2). The springs have a 
stiffness k.  
 

a The model is not completely in 
equilibrium because the axial forces 
N are not aligned.  When can this 
eccentricity be neglected? 
 

b Show that the spring stiffness k can 
be calculated from 
 

1 2

1 22 2g

t tw d
k G G G

= + +  

 
where G  and G  are the shear 
moduli of the metals. d is the 
thickness of the glue layer and G  
is the shear modulus of the glue (Figure 3). 
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Figure 2. Model of the strip joint 
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Figure 3. Slice of the strip joint 

 
c Formulate the kinematic equations, constitutive equations and equilibrium equations of the 

model. Complete the following framework for the quantities involved. 
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d Derive a differential equation – or multiple differential equations – for solving this problem. 
Use either the displacement method or the force method (You do not need to do both). 
 

e Formulate the boundary conditions that need be used in solving the differential equation. 
 
Maple solves the differential equation and gives the following solution of the shear stress τ  
in the glue layer. 
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In Figure 4 this stress is plotted for E1 2 5e= N/mm², E e2 1 21 5 8 5, t , t= = = and l = 80 mm (d 
= 0, ν = 0). It shows that the largest shear stresses occurs at x = 0 and x = l. In the middle 
the shear stress is almost zero. The length l  has little influence on the results if it is much 
longer than the characteristic length 1/β. In Figure 4 the value of 1/β = 7.34 mm. The 
maximum shear stresses are 
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Figure 4. Shear stress in the glue layer 

 
f Simplify the formulae for the maximum shear stress. Assume = =1 2 EE E , , d = 0 

and 
= =1 2t t t

= = 11 2 2EG G . 
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Problem 2  (3 points) 
 
The following formula gives the deflection of a triangular plate at the middle of the free edge 
due to an evenly distributed perpendicular loading q (Figure 5). 
 

2 2 21180 466 216 320 27=
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Where a
b

α = . The error is less than 0.8 % 

for 0.2 < α < 1 and 0.1 < ν < 0.4. Note that 
this deflection is close to the maximum 
deflection. 
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Figure 5. Triangular plate 

 
a Explain how this formula can be derived 

using minimum potential energy. 
 

b What is approximated in this derivation? 
 

c Explain how the accuracy of this formula 
can be determined. 
 

d Could the formula also be derived using minimum complementary energy? Explain your 
answer. 
 
 
Problem 3 (3 points) 
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Figure 6. Equilateral triangle cross-section

The differential equations for Saint Venant torsion 
can be solved for an equilateral triangle cross-
section (Figure 6). The results are 
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G a y a y z a y z
a
θ

φ = − + − + + . 

 
 

a Calculate the maximum shear stress maxτ  in this cross-section as a function of the torsion 
moment . tM
 

b Calculate the maximum normal stress ,maxxxσ  in this cross section as a function of the bi-
moment . Mω
 
The following results might be useful in the derivations. 
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Exam CT5141, 26 January 2005 
Answers to Problem 1 
 

a Eccentricity 
The joint will rotate to be in equilibrium. This will introduce extra stresses in the glue layer. 
The rotation will be small if 1 1

1 22 2t t+ l . Therefore, the eccentricity can be neglected if it is 
small compared to the length of the joint. 
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b Spring Stiffness 
The following relations exist 
w keτ =  
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Substitution into the first relation gives 
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Q.E.D. 
 

c Kinematic Equations 
1

1

2
2

2 1

du
dx
du
dx

e u u

ε =

ε =

= −

    ( * ) 

 
Constitutive  Equations 
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Framework 
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d Displacement Method 
We substitute everything in the equilibrium equations. 
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Thus we obtain two coupled differential equation inu andu . 1 2
 
Force Method 
We derive a compatibility equation and substitute everything in there. 
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Thus we obtain one differential equation in the redundant τ . 
 

e Boundary Conditions Displacement Method 
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Using equations * and ** gives 
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Boundary Conditions Force Method 
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Using equation *** gives 
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f Simple Formula 
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Apparently, the maximum shear stress in the joint is approximately half the tensile stress in 
the strips. 
 
 
Answers to Problem 2 
 

a Derivation 
  1) Assume a deflection function as a function of several parameters. 
  2) Make sure that this function fulfils the kinematic boundary conditions. 
  3) Formulate the potential energy. 
  4) Solve the parameters by making the potential energy minimal. 
  5) Substitute the parameters in the deflection function 
  6) Determine the maximum deflection. 
 

b Approximation 
The assumed deflection function probably is not able to perfectly describe the exact 
deflection. If it could describe the exact deflection the exact deflection would be found. If it 
cannot describe the exact deflection an approximation is found. So, the deflection has been 
approximated. 
 
We can test whether the solved deflection is exact by substitution into the equilibrium equations 
and the dynamic boundary conditions. If it is not exact, equilibrium will not be fulfilled. So, we 
can also say that equilibrium has been approximated. 
 

c Accuracy 
We will find a more accurate approximation if we repeat the derivation with more terms in the 
deflection function. If this approximation differs little from the first one the solution is accurate. 
 

d Complementary energy 

 7



In theory it would be possible to use complementary energy for a plate deflection problem but 
this would be much more difficult than potential energy. The reason is that in complementary 
energy a moment distribution in the plate would need to be formulated that fulfils 
equilibrium and the dynamic boundary conditions. 

xx yy xym ,m ,m

 
 
Answers to Problem 3 
 

a Maximum Shear Stress 
The maximum shear stress occurs where the slope of the φ-bubble is maximal. This occurs at 
the middles of the edges. For example y = a, z = 0. The stress will be directed along the edge. 
Therefore, 
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The torsion moment is two times the volume of the φ-bubble. 
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Combining the two latter equations we obtain 
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b Maximum Normal Stress 

The normal stress due to restrained warping is 

xx
w
M
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ψ
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It is maximal when ψ is maximal. This occurs on the edges. For example on the edge y = a. 
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The warping constant is 
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Combining the latter three equations gives 
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Note that these analytical results are useful for checking finite element programs. 
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