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Delft University of Technology   Write your name and study number  
Faculty of Civil Engineering and Geosciences  at the top right-hand of your work. 
Structural Mechanics Section     
 
Exam CT5141 Theory of Elasticity  
Wednesday 25 January 2006 at 9:00 – 12:00 hours 
 
Problem 1  (4 points) 
 
Consider a spherical dome (Fig 1.) The 
radius is a [m]. The thickness t [m] is 
everywhere the same. The dome is loaded 
by self-weight p [kN/m²], which is evenly 
distributed over the dome surface. We will 
derive a formula for the deflection of the 
dome using potential energy. Therefore, we 
assume the following displacement. 
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a Is the displacement kinematically 

admissible? Explain your answer. 
 

b Give the expression of the potential energy 
of the dome. (You do not need to evaluate 
the expression). Note that the dome has only 
membrane forces and no bending moments. 
 

c The potential energy is evaluated by Maple 
with the following result. For simplification we 
used ν = 0. 
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Give the equations from which the 
coefficients 1 2 3 4andC ,C ,C C can be 
calculated. 
 

d The equations have been solved by Maple 
with the following result. 
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Derive a formula for the deflection of the 
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Figure 1. Spherical dome 

Formulas for spherical domes 
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dome top. 
 

e How can this formula be checked? 
 
 
Problem 2  (3 points) 
 
A round high-rise building has an outside truss 
structure (Fig. 2). The radius of the building is a. 
The distance between the floors is h. The truss 
members have a cross-section area A, a Young’s 
modulus E and a length l. The number of 
members in a cross-section of the building is n. 
The angle of a member with the building axis is α.  
 

a Show that for large n the normal force N in a truss 
member due a torsion moment tM  is 
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tM
N
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α
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b Derive a formula for the torsion stiffness tGI  of 

the building. Use either a direct method or 
complementary energy. The floors can be 
considered as infinitely stiff. 
 

c Derive the angle α for which the torsion stiffness per amount of material tG
nAl
I

 is maximal. 

 
 
Problem 3  (2 points) 
 
A semi infinite linear elastic solid is 
loaded by a rigid circular plate (Fig. 3). 
The stress under the plate is found in 
the book of Timoshenko1. 
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where F is the weight of the plate, a is 
its radius and r is the coordinate in the 
radial direction. The displacement u of 
the plate is 
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where E is Young’s modulus and ν is Poisson’s ratio. 
                     
1 S.P. Timoshenko and J.N Goodier, Theory of Elasticity, McGraw-Hill, New York, third edition, p. 406. 
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Figure 2. Round truss structure 
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Figure 3. Solid loaded by a round plate 
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a The semi infinite solid is replaced by distributed springs. What spring stiffness k [N/mm³] 

needs to be used to obtain the same deflection u and the same stress distribution σ? Why is 
the result not practical? 
 

b The semi infinite solid is replaced by distributed springs. The spring stiffness k is 
independent of r. What spring stiffness needs to be used to obtain the same deflection u? 
 

c The spring stiffness appears to depend on the radius a of the plate. Explain this. Often the 
soil on which a structure rests is modelled by distributed springs. Is this an accurate 
representation of the real situation? 
 
 
Problem 4 (2 points) 
 
A spring is made of a wire that is formed in a helix shape (Fig. 
4). The radius of the spring is a, the thickness of the wire is t 
and the number of turns of the helix is n. The spring is loaded 
by a force F which causes an elongation u. 
 

a What section property of the wire is important for the spring 
stiffness? (For example; axial stiffness or bending stiffness or 
torsion stiffness). 
 

b Show that the spring stiffness is 
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(Note that the length of the helix can be approximated by 

2l n a= π .) 
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Figure 4. Helix spring 
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Exam CT5141, 25 January 2006 
Answers to Problem 1 
 

a Admissible 
Yes, the deflection is kinematically admissible because 

0 0 0zuu ,φ
∂
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 (symmetry) 

2 0uπ
φφ = → =  (boundary condition) 

 
b Energy 
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c Equations 
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d Deflection 

max 1 20 zu C Cφ = → = +  
2
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e Check 

We can check the formula by a finite element analysis of a dome with specific dimensions 
and material properties. 
Alternatively, we can check the formula by including more terms and coefficients in the 
functions zu anduφ . 
Alternatively, we can calculate the membrane forces ,n nφφ θθ and check whether they are 
approximately in equilibrium with the load p. 
 
 
Encore (not an exam problem) 
In a finite element analysis we have found 
 

= −
2

max 1.73z
pau
E t

. 

 
In this the following quantities have been used. p = 2500 N/m², a = 10 m, E = 29000e6 N/m², 
t = 0.1 m, ν = 0.2. 
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Answers to Problem 2 
 

a Normal force 
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b Complementary Energy 
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c Angle 
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Answers to Problem 3 
 

a Distributed Springs 
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At the edges r = a  the spring stiffness k is infinite. 
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b Evenly Distributed Springs 
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c Radius 
In a solid, part of the load is transferred by shear to the neighbouring material. If the area 

2aπ becomes larger the circumference 2 aπ  becomes relatively smaller 2
2 2a

aa
π

=
π

. Therefore, 

the contribution of the neighbouring material in carrying the load becomes relatively smaller. 
 
Distributed springs are a very crude model for soil that supports a structure. Not only the 
computed stress distribution will be completely wrong but also the spring stiffness depends 
on the compressed area, which is often not known in advance. 
 
 
Answers to problem 4 
 

a Stiffness 
Most of the wire is loaded in torsion and shear. Probably the torsion deformation is the 
largest. So, the torsion stiffness determines the spring stiffness. 
 

b Stiffness 
The following equations describe the problem. 
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Substitution gives 

41 1 4
2 2

2 2 3

( )

2 64

t
t

M
G tGF G tak

u a a l a n a n a

πθ
= = = = =

ϕ θ π

I
 

Q.E.D. 
 
Encore (not an exam problem) 
The largest torsion stress in the wire is 

max torsion 3 31 1
2 2

16
( )

tM Fa
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π π

 

The maximum shear stress in the wire is 
164 4

max shear 3 3 32 21
2( )

F F F
A t t

τ = = =
π π

 

At one point in the wire cross-section they occur together in the same direction. 
1

max max torsion max shear 3216 ( )F a
tt

τ = τ + τ = +
π

 

According to the Von Misses criterion, the shear stress must be smaller than max 3
yfτ <  
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The largest bending stress in the horizontal wire parts is 

max bending 3 31 1
4 2

32
( )
M Fa

t t
σ = =

π π
, which should be smaller than the yield stress yf . The latter 

is critical when a > t. 
 


