Delft University of Technology
Faculty of Civil Engineering and Geosciences
Structural Mechanics Section

Exam CT5141 Theory of Elasticity

Write your name and study number
at the top right-hand of your work.

Wednesday 25 January 2006 at 9:00 — 12:00 hours

Problem 1 (4 points)

Consider a spherical dome (Fig 1.) The
radius is a [m]. The thickness t [m] is
everywhere the same. The dome is loaded
by self-weight p [kN/m?], which is evenly
distributed over the dome surface. We will
derive a formula for the deflection of the
dome using potential energy. Therefore, we
assume the following displacement.

u, =C;cos(2¢)+C, cos? ()
uy =Cg sin(2¢) + C,4 sin(4¢)

Is the displacement kinematically
admissible? Explain your answer.

Give the expression of the potential energy
of the dome. (You do not need to evaluate
the expression). Note that the dome has only
membrane forces and no bending moments.

The potential energy is evaluated by Maple
with the following result. For simplification we
used v=0.

Figure 1. Spherical dome

Epot = T:;TESt(126C 2., 84C,C, + 294C2 +336C,C3 + 672C,C3 +840C2 —96C,C, —

~192C,C4 - 480C5C, +2848C3) +npa’(3C;-C3+2C,)

Give the equations from which the
coefficients C;,C,,C5 andC,4 can be

calculated.

The equations have been solved by Maple
with the following result.

2 2
c,=-136P% c,-0600P2
Et Et

2 2
C;=0.60722 ¢, =-0.0216P2
Et Et

Derive a formula for the deflection of the
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dome top.

How can this formula be checked?

Problem 2 (3 points)

A round high-rise building has an outside truss
structure (Fig. 2). The radius of the building is a.
The distance between the floors is h. The truss
members have a cross-section area A, a Young's
modulus E and a length I. The number of
members in a cross-section of the building is n.
The angle of a member with the building axis is a.

Show that for large n the normal force N in a truss

member due a torsion moment M; is truss member

floor
nasino

Derive a formula for the torsion stiffness Gl of

complementary energy. The floors can be

considered as infinitely stiff.

. : . : . Gl . :
Derive the angle a for which the torsion stiffness per amount of material Tlt is maximal.
n

Problem 3 (2 points)

F rigid round plate

A semi infinite linear elastic solid is \l/
loaded by a rigid circular plate (Fig. 3). gu
The stress under the plate is found in
the book of Timoshenko®. c

F
o=—F——— a

oravaZ —r? ! semi infinite solid
—=>r
where F is the weight of the plate, a is
its radius and r is the coordinate in the
radial direction. The displacement u of
the plate is
_Fa-v?

U= Figure 3. Solid loaded by a round plate

where E is Young’s modulus and v is Poisson’s ratio.

! 5.P. Timoshenko and J.N Goodier, Theory of Elasticity, McGraw-Hill, New York, third edition, p. 406.
2



a The semi infinite solid is replaced by distributed springs. What spring stiffness k [N/mm§3]
needs to be used to obtain the same deflection u and the same stress distribution ¢? Why is
the result not practical?

b The semi infinite solid is replaced by distributed springs. The spring stiffness k is
independent of r. What spring stiffness needs to be used to obtain the same deflection u?

¢ The spring stiffness appears to depend on the radius a of the plate. Explain this. Often the
soil on which a structure rests is modelled by distributed springs. Is this an accurate
representation of the real situation?

Problem 4 (2 points)

A spring is made of a wire that is formed in a helix shape (Fig.
4). The radius of the spring is a, the thickness of the wire is t
and the number of turns of the helix is n. The spring is loaded

by a force F which causes an elongation u.

F
a What section property of the wire is important for the spring \

/
stiffness? (For example; axial stiffness or bending stiffness or
torsion stiffness).
b Show that the spring stiffness is n=7 jﬁ’
4

=L

64na
(Note that the length of the helix can be approximated by 4 F

=n2na.)

Figure 4. Helix spring




Exam CT5141, 25 January 2006
Answers to Problem 1

Admissible
Yes, the deflection is kinematically admissible because

ou
=0 u, =0, —%=0 (symmetr
¢ = Uy 3% (sy y)

¢$=2 —> Uuy,=0  (boundary condition)

Energy
1

*n
Epot = _[ j( NpoEop +35 n99899+uzpcos¢ u¢psm¢)asm¢dead¢

$=00=0
Equations
OEpot mEt 21
.~ 315 (252C1+84C; +336C5 —96C,) +mpa” ;=0
1
OE
et gEt (84C, + 588C, + 672C5 —192C,) =
2
OE
s - —’;Et (336C; +672C; +1680C; —480C,) —npa’ =
3
OE
agm - g—ft (—96C; —192C; - 480C; +5696C,) +npa’2=0
4
Deflection

a
0=0 > U;max =C1+Cy |Uzmax = 197pEt

Check

We can check the formula by a finite element analysis of a dome with specific dimensions
and material properties.

Alternatively, we can check the formula by including more terms and coefficients in the

functionsu, anduy .
Alternatively, we can calculate the membrane forces nyy, ngg and check whether they are
approximately in equilibrium with the load p.

Encore (not an exam problem)
In a finite element analysis we have found

pa
uzmax = —173? .

In this the following quantities have been used. p = 2500 N/m?, a = 10 m, E = 29000e6 N/m?2,
t=0.1m,v=0.2.



Answers to Problem 2

a Normal force

n
2 M;
1 (N= :
) EF nhasino
sing =<—
N

b Complementary Enerqy

2 2
M
truss EcznlN_|=n%1[ t j h
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Gl, =na®EAsin? a.cosa

¢ Angle

Gl; na®EAsin®acosa a’Esinacos’a
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Answers to Problem 3

a Distributed Springs
F

k:g:2na\/a2—r2 _ E
U F@-v)  pa-vZpa?-r2
2aE

At the edges r = a the spring stiffness k is infinite.



b Evenly Distributed Springs

F
Kk = Omean _ na’ __2E
u F(1-v?) mal-v?)
2aE
¢ Radius
In a solid, part of the load is transferred by shear to the neighbouring material. If the area
: : 2 2
na’ becomes larger the circumference 2na becomes relatively smaller L? =—. Therefore,
ra® a

the contribution of the neighbouring material in carrying the load becomes relatively smaller.

Distributed springs are a very crude model for soil that supports a structure. Not only the
computed stress distribution will be completely wrong but also the spring stiffness depends
on the compressed area, which is often not known in advance.

Answers to problem 4
a Stiffness

Most of the wire is loaded in torsion and shear. Probably the torsion deformation is the
largest. So, the torsion stiffness determines the spring stiffness.

b Stiffness
The following equations describe the problem.
M; =Fa u=ae
1144 | =n 2na
I t— 2 TC(2 t)

Substitution gives

% 1. _(1+\4 4
k:E:i:GltGZGQW(gt) _ Gt
u ap a2l a’n2ra  64na’
D

Q.E.

Encore (not an exam problem)
The largest torsion stress in the wire is
M Fa
Tmax torsion =7 73 =16 3
En(ét) mt
The maximum shear stress in the wire is
F_a F _16 F

At one point in the wire cross-section they occur together in the same direction.

-4
Tmax shear = 3

F.a ;4
Tmax = Tmax torsion + Tmax shear =16 2 (T +3)
T

f
According to the Von Misses criterion, the shear stress must be smaller than 1,5, < L

Ng



The largest bending stress in the horizontal wire parts is

Omax bending = M___ 32 Fa which should be smaller than the yield stress f, . The latter

1,013 3’
Zn(it) mt

is critical when a > t.




