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Delft University of Technology   Write your name and study number  
Faculty of Civil Engineering and Geosciences  at the top right-hand of your work. 
Structural Mechanics Section     
 
Exam CT5141 Theory of Elasticity  
Wednesday 23 January 2008 at 9:00 – 12:00 hours 
 
Problem 1  (1 points) 
 
When we analyse structural details with linear elastic material behaviour we often find 
infinitely large stresses in some points. 
 

a Show in each situation of Figure 1 in which points we will find infinitely large stresses (or 
infinitely small stresses). 
 

b Clearly, in reality infinitely large stresses do not occur. How do we interpret these stresses in 
structural design? 

 
 

 
 
Figure 1. 5 Situations that can be analysed with a linear elastic model 
 
 
Problem 2 (2 points). 
 
Consider a point load F on the edge of a semi infinite plate with a thickness t. Often the 
stresses in the plate are approximated by a uniform distribution over an angle of 45 degrees 
(Fig. 2). Compare this approximate solution to the exact solution according to the theory of 
elasticity. 
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Figure 2. Point load on the edge of a large plate 
 
 
Problem 3 (4 points) 
 
A simply supported beam is loaded by a transverse force Q and an axial force F (Fig. 3). The 
beam has a flexural stiffness EI. The axial stiffness EA is very large and therefore not included 
in the analysis. We want to derive a formula for the deflection of this beam. We apply the 
principle of minimum potential energy with the deflection function 
 

π
=

xw w sin
l

. 

 
Figure 3. Simply supported beam 
 
The right-hand support of the beam has a horizontal displacement d (Fig. 4). This can be 
approximated as 
 

π
=

2 2

4
wd
l

. 

 
The beam kinematic equation is 
 

κ = −
2

2
d w
dx

 

 
and its constitutive equation is 
 

= κM EI . 
 

a What is the advantage of using potential energy compared to using a direct method? 
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b Write down the potential energy equation of this structure. 
 

c Derive a formula for the deflectionw of the beam. (Use 
π

=∫ 2 1
2

0

sin
l

x dx l
l

) 

 
Subsequently, two changes are proposed. The beam has nonlinear material behaviour 
 

= κ − κ κ <
1(1 )

2
M E h

h
I  

 
and a small initial deformation 
 

π
=o o

xw w sin
l

. 

 
Therefore, the total deflection becomes +ow w . 
 

d Write down the potential energy equation including the latter changes (You do not need to 
evaluate the equation). 
 
 
 
Problem 4  (2 points) 
 
A high building has a reinforced concrete stability core that is clamped in a thick foundation 
plate (Fig. 4). The dimensions a = 1 m and h =  0.2 m. The torsion constant wI  = 72 m3 and 
the warping constant wC = 60 m6. The height of the building is 100 m. Wind causes an 
evenly distributed torsion loading of 2000 kNm/m. In Figure 5 the torsion response of the 
building is plotted. 
 
 

 
Figure 4. Cross-section of a stability core 
 
 

a How can we calculate the torsion constant of the cross-section? How can we calculate the 
warping constant of the cross-section? 

 
b Why does a bi moment occur in the cross-section? 
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c Is the warping stiffness important for this stability core? 

    
Angular rotation ϕ  Torsion moment    Bi moment 

distribution wM    distribution B 
 
Figure 5. Torsion response of a 100 m high building 
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Problem 5  (1 point) 
 
An asphalt pavement is loaded by a car wheel (Figure 6). This situation is modelled as a 
point load on a half-space. Clearly the calculated stresses are realistic only at some distance 
of the point load. Which principle describes this property of the model? 
 

 
 
Figure 6. Car wheel on asphalt pavement   Linear elastic model
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Exam CT5141, 23 January 2008 
Answers to Problem 1 
 

a Infinity 
 

 
 

b Interpretation 
In reality the sharp edges have some radius which reduces the peak stresses. Also a point 
load is distributed over a small area. In addition, the material will yield, crack or crush locally 
which redistributes the force flow such that the peak stresses are much reduced. 
 
 
Answer to Problem 2 
 
The stress in the approximate distribution is 
 

−
σ =

2yy
F
d t

 

 
Where d is the depth at which the stress is calculated. In the linear-elastic solution the stress 
under the point load is (ϑ = 0) 
 

−
σ = σ =

π
2

yy rr
F

d t
 

(lecture book p. 109) which is 
−

π =

2 1
2 27%

1
2

 larger than the approximated stress. 

 
Encore (not an exam problem) 
Using the figure we derive the following equations. 
 



 7

σ ϑ = σ

ϑ =

cos

cos

rr yya b

a
b

 

−
ϑ =

′ −
ϑ =

−
σ =

′π

tan

tan

2
rr

x
d
d d

x
F

d t

 

 
These are applied to plot the following graph 
which shows the approximated and the linear 
elastic stress distribution.  
 
 
 
 

 
 
 
 
Answers to Problem 3 
 

a Advantage 
With potential energy we can derive an approximate solution by starting with an estimated 
deformation function. This is useful when a formula is needed and the equations cannot be 
solved exactly. 
 

b Potential energy 

= κ − −∫ 1
pot 2

0

l

E M dx Qw F d  

 
c Deflection 

π π
κ = −

π
= κ − −∫

2

2

2 2
21

pot 2
0

sin

4

l

xw
ll

wE E dx Qw F
l

I
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π π π
= − −

π π
= − −

π π
= − −

∫
4 2 2

2 21
pot 2 4

0
4 2 2

21 1
pot 2 24

4 2 2 2
pot 3

sin
4

4

44

l
x wE E w dx Qw F
l ll

wE E w l Qw F
ll

E w wE Qw F
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I

I

I

 

π π
= − − =

4 2

32 2 0
44

potdE E w wQ F
dw ll

I
 

⎡ ⎤π π
− =⎢ ⎥

⎢ ⎥⎣ ⎦
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d Potential energy including changes 
 

κ

= ξ − −∫ ∫pot

0 0

l

E M d Qw F d  

κ

= ξ=

⎡ ⎤π + π
= ξ − ξ ξ − − −⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫
2 2 2 2

pot

0 0

( )
(1 )

4 4

l
o o

x

w w w
E E h d dx Qw F

l l
I  

 
Encore (not and exam problem) 
Maple gives the solution of 
 

=pot 0
dE
dw

, 

 
which is 
 

⎡ ⎤ππ π π π⎢ ⎥= − − + − − −
⎢ ⎥π ⎣ ⎦

32 2 2 4 2 4 2 2

3 2 2 2 2
963 3 9 9 18 192

16
ow Fl F l F l F l Q lw

h E h E h E hh E h E hI I II I
 

 
In the derivation is used that h > 0. 
 
Encore (not an exam problem) 
The provided formula for d is derived below. 
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2 2 2

2 2 4
2 2 1 1

2 8

2 2 2 2
1 1
2 2

0 0 0

1 1 ...

1 1 sin
4

l l l

x x x

dz dw dx

dw dw dwdz dx dw dx
dx dx dx

dw d x wd l dz l dx l w dx
dx dx l l

 

 
 
 
 
Answers to problem 4 
 

a Calculation 
The torsion constant can be calculated by hand using the 
membrane analogy. Alternatively, a computer program can be 
used. This program solves the differential equation of Laplace 
using the finite element method. The warping constant can be 
calculated by a computer program only. 
 

b Bi moment 
The bi moment occurs where warping is restrained. In the stability 
core warping cannot occur at the bottom where it is fixed in the 
thick foundation slab. 
 

c Important 
In this case restrained warping gives only a small reduction of the 
rotation at the top of the building. In the right-hand figure the black 
line shows the start of the deformation line if warping would not 
have been included in the analysis. Therefore warping could have 
been neglected. 
 
 
 
 
 
 
 
 
 
Answer to problem 5 
 
Principle of De Saint Venant 

dx 

dz 
dw 

l 
l x 
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